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1. Introduction

For an infinite 1-dimensional wordα = α0α1α2 · · · over a finite alphabet ,
Teturo Kamae and Luca Zamboni [1] introduced the maximal pattern complexity as

∗
α( ) := sup

τ
♯{α +τ (0)α +τ (1) · · ·α +τ ( −1); = 0 1 2 . . .}

where the supremum is taken over all sequences of integers 0 =τ (0) < τ (1) < · · · <
τ ( − 1) of length , and♯ denotes the cardinality of the set . They proved thatα

is eventually periodic if and only if ∗
α( ) is bounded in , while otherwise,∗α( ) ≥

2 ( = 1 2 . . .).
Teturo Kamae, Rao Hui and Xue Yu-Mei [3] considered the maximal pattern com-

plexity for 2-dimensional words defined onZ2 and proved that either∗α( ) is bounded
in or ∗

α( ) ≥ 2 ( = 1 2 . . .) if α satisfies a 2-dimensional recurrence condition.
In this paper, we consider the maximal pattern complexity for 2-dimensional

words defined on

:= N2 \ {(0 0)}

Let α = (α( )( )∈ ) ∈ be a 2-dimensional word overA = {0 1} defined on
. Let τ be a finite set inZ2 with (0 0)∈ τ and ♯τ = , which is called a -window.

For any ∈ with + τ ⊂ , we denote

α[ + τ ] := (α( + )) ∈τ ∈ τ

We also denote

τ (α) := {(α[ + τ ]; ∈ with + τ ⊂ }
∗
α( ) := sup{♯ α(τ ); τ : -window} ( = 1 2 . . .)

DEFINITION 1. α is called eventually2-periodic if there exist , ∈ Z+ and ,
∈ N such that for any ( )∈ , α( ) = α( + ) holds if ≥ andα( ) =

α( + ) holds if ≥ .



258 T. KAMAE AND X. YU-MEI

DEFINITION 2. α is called minimal if for any positive integer , there exists
such that for any ( )∈ there exists (′ ′) ∈ with | − ′| ≤ , | − ′| ≤
such thatα( + ′ + ′) = α( ) holds for any ( )∈ with < , < .

DEFINITION 3. α is called sectionally periodicif for any ( ), ( ) ∈ , the
word β on ∈ N defined byβ( ) = α( + + ) is periodic.

In this paper, we characterize the words with bounded maximal pattern complex-
ity. We give an example of wordα with ∗

α( ) = 2 ( = 1 2 . . .) which is minimal
and sectionally periodic.

2. Words with bounded maximal pattern complexity

Theorem 1. α is eventually2-periodic if and only if ∗
α( ) is bounded in .

Proof. Assume thatα is eventually 2-periodic. Take , ∈ Z+ and , ∈ N

such that for any ( )∈ , α( ) = α( + ) holds if ≥ and α( ) =
α( + ) holds if ≥ .

Let τ be a -window. Let

1 := { = ( ) ∈ ; + τ ⊂ ∩ [ ∞)× [ ∞)}
2 := { = ( ) ∈ \ 1; + τ ⊂ ∩ [ ∞)× [0 ∞)}
3 := { = ( ) ∈ \ 1; + τ ⊂ ∩ [0 ∞)× [ ∞)}
4 := { = ( ) ∈ \ ( 1 ∪ 2 ∪ 3); + τ ⊂ }

For any = ( )∈ 1, we have

α[ + ( ) + τ ] = α[ + τ ] (∀ = 0 1 2 . . .)

Therefore, there exist at most different elements amongα[ + τ ] with = 1.
For any = ( )∈ 2, we have

α[ + ( 0) + τ ] = α[ + τ ] (∀ = 0 1 2 . . .)

Hence, there exist at most different elements amongα[ + τ ] with = 2.
In the same way, there exist at most different elements amongα[ + τ ] with

= 2. Finally, there exist at most elements in4.
Therefore, we have

♯ α(τ ) ≤ + + + = ( + )( + )

Thus, ∗
α( ) ≤ ( + )( + ) for = 1 2 . . ., and hence, ∗

α( ) is bounded in .
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Conversely, assume that sup=1 2 ...
∗
α( ) = <∞. There exist = 1 2. . . and

a -window τ such that♯ α(τ ) = . Take a positive integer such thatτ is contained
in a square of size × . Let σ be the ( + 1)2-window such that

σ = {( ) ∈ ; 0≤ ≤ 0≤ ≤ }

and σ′ be the ( + 2)2-window such that

σ′ = {( ) ∈ ; 0≤ ≤ + 1 0≤ ≤ + 1}

Since

= ♯ α(τ ) ≤ ♯ α(σ) ≤ ♯ α(σ′) ≤

we have♯ α(σ) = ♯ α(σ′) = . This implies that each elementξ ∈ α(σ) has a unique
extension in α(σ′). Therefore, there exists a function :α(σ) → α(σ′) such that

(α[ + σ]) = α[ + σ′] for any ∈ .
In particular, there exist functions , :α(σ)→ α(σ) such that

(1)
(α[ + σ]) = α[ + (1 0) +σ]
(α[ + σ]) = α[ + (0 1) +σ]

for any ∈ .
Since is a transformation on a finite set, there exist∈ N and a period ∈ Z+

such that

(2) + =

any = + 1 + 2 . . . . Since

α[( ) + σ] = (α[(0 ) + σ])

by (1), it follows from (2) that

α[( ) + σ] = α[( + ) + σ]

for any ( )∈ with ≥ .
In particular, we have

α( ) = α( + )

for any ( )∈ with ≥ . In the same way, we have

α( ) = α( + )

for any ( )∈ with ≥ . Thus,α is eventually 2-periodic.
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3. A word with 2k maximal pattern complexity

A window τ ′ is said to be animmediate extensionof a window τ if τ ′ ⊃ τ and
♯τ ′ = ♯τ + 1.

The following Lemma 1 is proved in [2, Theorem 3] for words defined onN. It
remains true for words defined on .

Lemma 1. Let α ∈ {0 1} be such that ∗
α(2) = 4. Assume that for any

2-window τ and for any immediate extensionτ ′ of τ , it holds that♯ α(τ ′) ≤ ♯ α(τ ) +
2. Then, we have ∗

α( ) ≤ 2 ( = 1 2 . . .).

Define a 2-dimensional wordα ∈ {0 1} by

(3) α( ) =

{
1 if 2( ) = 2( )
0 otherwise

for any ( )∈ , where for ∈ N, 2( ) = if and only if 2 | and 2+1 ∤ . We
also define 2(0) =∞.

REMARK 1. The wordα defined by (3) together withα((0 0)) = 0 is the fixed
point of the 2-dimensional substitution

(4) σ : 0→
0 1
0 0 and 1→

0 1
1 0

so thatα = σ∞(0).

Theorem 2. For α defined by(3), we have ∗
α( ) = 2 for any = 1 2 . . . .

Proof. First we prove that ∗
α( ) ≥ 2 ( = 1 2 . . .). It is clear that ∗

α(1) = 2.
For any = 2 3. . ., take a -windowτ := {(0 0) (1 1) . . . ( − 1 − 1)}. Then,
since

α[(1 1) + τ ] = (1 1 . . . 1)

α[(2 − 2 +1− ) + τ ] = (1 . . . 1
( )
0 1 . . . 1)

( = 0 1 . . . − 1)

α(τ ) contains + 1 elements containing the letter 0 at most once.
Now, let us consider the elements inα(τ ) containing the letter 0 at least twice.

They are determined by ∈ N and ∈ N such that 0≤ < 2 and + 2 < since
there exists a unique element inα(τ ) of the form

(1 . . . 1
( )
0 1 . . . 1

( +2 )
0 ∗ ∗ ∗)
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which is realized asα[(2 − 2 +1− ) + τ ]. There are exactly

:=
⌊log2 ⌋∑

=0

min{2 − 2 }

number of elements of this type. Since

=
⌊log2 ⌋−1∑

=0

2 + − 2⌊log2 ⌋

= 2⌊log2 ⌋ − 1 + − 2⌊log2 ⌋ = − 1

we have♯ α(τ ) = + 1 + − 1 = 2 . Thus, ∗
α( ) ≥ 2 ( = 1 2 . . .).

To prove that ∗
α( ) ≤ 2 ( = 1 2 . . .), it is sufficient by Lemma 1 to prove

that for any 2-windowτ and for any immediate extensionτ ′ of τ , it holds that

(5) ♯ α(τ ′) ≤ ♯ α(τ ) + 2

Take an arbitrary 2-windowτ = {(0 0) = τ0 τ1} and an arbitrary immediate ex-
tensionτ ′ = {(0 0) = τ0 τ1 τ2} of τ .

To prove (5), we divide into 3 cases according to the parity ofτ1

Case 1:τ1 ∈ ×
Case 2:τ1 ∈ ×
Case 3:τ1 ∈ ×

where “ ” stands for the set of even numbers, while “ ” stands for the set of odd
numbers. By symmetry, we can reduce the caseτ1 ∈ × to Case 2.

Lemma 2. (i) In Case 1, α(τ ) = {(0 0) (0 1) (1 0) (1 1)} holds.
(ii) In Case 2, α(τ ) = {(0 0) (0 1) (1 0)} holds.
(iii) In Case 3, α(τ ) = {(0 0) (0 1) (1 0) (1 1)} holds.

Proof. Let τ1 = ( ).
(i) Let ( ) ∈ × . For ( )∈ × , we haveα[( ) + τ ] = (0 0). If = , then
by taking integers and with2( ) < < , we haveα[(2 2 )+τ ] = (0 1). If
6= , then assuming that < without loss of generality, we haveα[( − 0)+τ ] =

(0 1). If 6= , then we haveα[(2 − 2 − ) + τ ] = (1 0) for a sufficiently large
integer . If = , then by taking integers and with2( ) < < , we have
α[(2 − 2 − )+τ ] = (1 0). Finally, for ( )∈ × , we haveα[( )+τ ] = (1 1).
(ii) Let ( ) ∈ × . Then,α[(2 4)+τ ] = (0 0) α[( ) + τ ] = (0 1) α[(1 1)+τ ] =
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(1 0), while α[( ) + τ ] = (1 1) is impossible since either and have different
parities or + and + have different parities.
(iii) Let ( ) ∈ × . For ( )∈ × , we haveα[( ) + τ ] = (0 0). We also have
α[(2 4) + τ ] = (0 1) andα[(2 − 2 − ) + τ ] = (1 0) for integers and such
that + < 2 < 2 . Moreover,α[(2 2) + τ ] = (1 1).

We divide the above 3 cases into the following 10 subcases according to the parity
of τ2

Case 1-1:τ1 ∈ × τ2 ∈ ×
Case 1-2:τ1 ∈ × τ2 ∈ ×
Case 1-3:τ1 ∈ × τ2 ∈ ×
Case 2-1:τ1 ∈ × τ2 ∈ ×
Case 2-2:τ1 ∈ × τ2 ∈ ×
Case 2-3:τ1 ∈ × τ2 ∈ ×
Case 2-4:τ1 ∈ × τ2 ∈ ×
Case 3-1:τ1 ∈ × τ2 ∈ ×
Case 3-2:τ1 ∈ × τ2 ∈ ×
Case 3-3:τ1 ∈ × τ2 ∈ ×

Lemma 3. (i) In Case 1-2, α(τ ′) ⊂ {0 1}3 \ {(0 1 1) (1 0 1) (1 1 1)}.
(ii) In Case 1-3, α(τ ′) ⊂ {0 1}3 \ {(0 1 0) (1 0 0)}.
(iii) In Case 2-1, α(τ ′) ⊂ α(τ )× {0 1} \ {(0 1 1)}.
(iv) In Case 2-2, α(τ ′) ⊂ α(τ )× {0 1} \ {(1 0 1)}.
(v) In Case 2-3, α(τ ′) ⊂ α(τ )× {0 1} \ {(1 0 1)}.
(vi) In Case 2-4, α(τ ′) ⊂ α(τ )× {0 1} \ {(0 1 1)}.
(vii) In Case 3-1, α(τ ′) ⊂ {0 1}3 \ {(0 0 1) (1 0 0)}.
(viii) In Case 3-2, α(τ ′) ⊂ {0 1}3 \ {(0 1 1) (1 0 1) (1 1 1)}.
(ix) In Case 3-3, α(τ ′) ⊂ {0 1}3 \ {(0 0 1) (0 1 0)}.

Proof. Let τ1 = ( ), τ2 = ( ′ ′) and ( )∈ .
(i) Since either and have different parities or +′ and + ′ have different

parities, (1 0 1), (1 1 1) do not belong toα(τ ′). Moreover, since either + and
+ have different parities or +′ and + ′ have different parities, (0 1 1) does

not belong to α(τ ′).
(ii) Note thatα[( ) + τ ] ∈ {(1 0) (0 1)} implies ( )∈ × . Since ( )∈

× implies α(( ) + ( ′ ′)) = 1, (0 1 0) and (1 0 0) do not belong toα(τ ′).
(iii)(iv)(v)(vi)(viii) They follow by applying the parity argument in the proof of

(i).
(vii) It follows by the same argument as in the proof of (ii).
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(ix) Note thatα(( ) + ( )) 6= α(( ) + ( ′ ′)) implies ( )∈ × . Since
( ) ∈ × implies thatα(( )) = 1, (0 0 1), (0 1 0) does not belong toα(τ ′).

Lemma 4. (i) For any subcase except forCase 1-1,we have(5).
(ii) For any subcase except forCase 1-1,we have

(6) ♯( α(τ ′) \ {(0 0 0) (1 1 1)}) ≤ 4

Proof. Clear from Lemma 2 and Lemma 3.

Now we consider Case 1-1. Assume thatτ1 ∈ × τ2 ∈ × . Then, we have
α[( ) + τ ′] = (1 1 1) if ( ) ∈ × and α[( ) + τ ′] = (0 0 0) if ( ) ∈
× ∪ × . Hence we have

α(τ ′) = {α[( ) + τ ′]; ( ) ∈ × } ∪ {(0 0 0) (1 1 1)}

Let τ ′/2 := {0 τ1/2 τ2/2}. Since 2( ) = 2( ) is equivalent to 2(2 ) = 2(2 ),
we haveα[( )+ τ ′] = α[( /2 /2)+τ ′/2] for any ( )∈ × . Therefore, we have

(7) α(τ ′) = α(τ ′/2)∪ {(0 0 0) (1 1 1)}

If τ ′/2 is of Case 1-1, we can apply (7) again.
By applying (7) repeatedly, we have

α(τ ′) = α(τ ′/2 )∪ {(0 0 0) (1 1 1)}

with τ ′/2 not of Case 1-1. Then, by (ii) of Lemma 4, we have♯ α(τ ′) ≤ 6. Thus,
we have (5) by Lemma 2, which complete the proof of Theorem 2.

Theorem 3. The wordα defined by(3) is minimal and sectionally periodic.

Proof. Take any positive integer . Let be a positive integer such that <

2 . Take any ( )∈ . Then, there exists (′ ′) ∈ with | − ′| ≤ 2 and
| − ′| ≤ 2 such that 2( ′) ≥ and 2( ′) ≥ . Then, since 2( + ′) = 2( ) and

2( + ′) = 2( ) for any ( )∈ with < and < , we haveα( + ′ + ′) =
α( ) for any ( )∈ with < and < . Thus,α is minimal.

Take any ( ), ( )∈ . Let β be a word on ∈ N defined byβ( ) =
α( + + ).

Let us consider the case where + = 0 or + = 0. Without loss of generality,
assume + = 0. Then, we have = = 0 and> 0, > 0. Hence,β is periodic
sinceβ( ) = 0 ( = 0 1 2 . . .).
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Now assume that +> 0 and + > 0. Let us consider the case where− =
0. Suppose that = 0. Then,> 0 and > 0 since + > 0 and + > 0. This
contradicts with − = 0. Therefore, > 0. By the same reason, > 0. Since

( + ) = ( + ) for = 0 1 2 . . ., we have 2( )+ 2( + ) = 2( )+ 2( + )
( = 0 1 2 . . .). Therefore, eitherβ( ) = 1 ( = 0 1 2 . . .) or β( ) = 0 ( =
0 1 2 . . .) holds according as2( ) = 2( ) or not, and hence,β is periodic.

Now assume that − 6= 0. Let be a positive integer such that >

2(| − |). Then, since ( + )− ( + ) = − ( = 0 1 2 . . .),
we have 2(| ( + ) − ( + )|) < ( = 0 1 2 . . .). This implies that
min{ 2( ( + )) 2( ( + ))} < , and hence, min{ 2( + ) 2( + )} < ( =
0 1 2 . . .). Therefore, if 2( + ) = 2( + ), then 2( + ) = 2( + ) <
holds, and hence, we have2( + ( +2 ) ) = 2( + ) = 2( + ) = 2( + ( +2 ) ).

If 2( + ) < 2( + ), then either 2( + ) < 2( + ) ≤ or 2( +
) < ≤ 2( + ) holds, and hence, we have2( + ( + 2 ) ) = 2( + ) <

min{ 2( + ) } ≤ 2( + ( + 2 ) ). In the same way, if 2( + ) > 2( + ),
then 2( + ( + 2 ) )> 2( + ( + 2 ) ).

Hence, we proved that2( + ) = 2( + ) holds if and only if 2( +( +2 ) ) =

2( + ( + 2 ) ) holds, so thatβ( ) = β( + 2 ) ( = 0 1 2 . . .) and β is periodic.
Thus,α is sectionally periodic.

ACKNOWLEDGEMENT. The authors thank Prof. Luca Zamboni (Univ. of North
Texas), Prof. Masamichi Yosida (Osaka City Univ.), Dr. Rao Hui (Wuhan Univ.) and
Dr. Gjini Nertila (Tirana Univ.) for their useful discussions with the authors.

References

[1] Teturo Kamae and Luca Zamboni:Sequence entropy and maximal pattern complexity of infinite
words, Ergodic Theory and Dynamical Systems22 (2002), 1191–1199.

[2] Teturo Kamae and Luca Zamboni:Maximal pattern complexity for discrete systems, Ergodic
Theory and Dynamical Systems22 (2002), 1201–1214.

[3] Teturo Kamae, Rao Hui and Xue Yu-Mei:Maximal pattern complexity of two-dimensional
words, preprint.



TWO DIMENSIONAL MAXIMAL PATTERN COMPLEXITY 265

Teturo Kamae
Osaka City Univ.
Osaka 558-8585, Japan
e-mail: kamae@sci.osaka-cu.ac.jp

Xue Yu-Mei
Osaka City Univ.
Osaka 558-8585, Japan
e-mail: setu@sci.osaka-cu.ac.jp


