<table>
<thead>
<tr>
<th>Title</th>
<th>Universal R-matrices for the quantum group $U_q(sl(N+1,C))$: the root of unity case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takata, Toshie</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 32(4) P.959-P.986</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9055</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9055</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
UNIVERSAL R-MATRICES FOR THE QUANTUM
GROUP Uq(sl(N + 1, C)): THE ROOT OF UNITY
CASE

TOSHIE TAKATA
(Received December 11, 1992)
(Revised May 31, 1993)

Introduction

The aim of this paper is to construct a universal R-matrix for a certain quotient of the quantized universal enveloping algebra Uq(sl(N + 1, C)) in the sense of Drinfeld [2] and Jimbo [5][6] at roots of unity. The notion of universal R-matrix is due to Drinfeld. A universal R-matrix for a Hopf algebra A over C is an invertible element \(R \in A \otimes A \) with the following properties: (1) \(R \Delta(a) R^{-1} = \hat{\Delta}(a) \), for \(a \in A \), (2) \((\Delta \otimes \text{id})(R) = R_{13} R_{23} \), \((\text{id} \otimes \Delta)(R) = R_{13} R_{12} \). Here \(\Delta : A \rightarrow A \otimes A \) is the comultiplication, and \(\hat{\Delta} \) is the opposite comultiplication \(\hat{\Delta} = P \circ \Delta \) for the permutation \(P \) in \(A \otimes A \), \(P(a \otimes b) = b \otimes a \). The map \(\Delta \) is not in general symmetric in the sense that \(\hat{\Delta} \neq \Delta \), but from the property (1) of this universal R-matrix, there arises an \(A \)-module isomorphism \(V \otimes W \rightarrow W \otimes V \) for \(A \)-modules \(V \) and \(W \). It follows from two properties (1) and (2) that it satisfies the Yang-Baxter equation:

\[
R_{12} R_{13} R_{23} = R_{23} R_{12} R_{13},
\]

where \(R_{ij} \) is the embedding of \(R \) into the i-th and j-th factor of \(A \otimes A \).

In [14], Rosso gave an explicit formula of universal R-matrix for \(U_q(sl(N+1, C)) \) for generic \(q \), and in [15], he obtained a universal R-matrix for a quotient of \(U_q(sl(N+1, C)) \) when \(q \) is a primitive \(r \)-th root of unity for an integer \(r \) satisfying that \(r \geq N+1 \) and that \(r \) and \(N+1 \) are coprime. The result was independently obtained in [17]. In [23],[24],[25], and [26], Yamane introduced quasi-triangular Hopf algebras associated to complex simple Lie superalgebras of types A-G, and gave explicit formulas of their universal R-matrices, both in generic and non-generic cases. In particular, he got an explicit formula of a universal R-matrix for a quotient of \(U_q(sl(N+1, C)) \).

In the present paper, we give an explicit formula of a universal R-matrix for a quotient of \(U_q(sl(N+1, C)) \) for a primitive \(r \)-th root of unity, \(r \neq 1,2,4 \). Let \(E_i, F_i, \) and \(K_i, 1 \leq i \leq N \), be the generators of the Hopf algebra \(U_q(sl(N+1, C)) \). Let \(U^+ \) be the Hopf subalgebra \(U_q(sl(N+1, C)) \) generated by \(E_i, K_i, 1 \leq i \leq N \) and \(U^- \) the Hopf subalgebra generated by \(F_i, K_i, 1 \leq i \leq N \). The construction of the universal R-matrix
is based on the quantum double construction due to Drinfel'd [2]. An essential point of this construction is the existence of a non-degenerate pairing $U^+ \times U^- \to C$ compatible with the Hopf algebra structures of U^+ and U^-. Since a pairing naturally defined degenerates when q is a root of unity, we consider, following Yamane [25], a certain quotient of $U_q(\mathfrak{sl}(N+1,C))$.

For $N \in \mathbb{N}$ and $1 < r \in \mathbb{N}$, we put $d = (r, N+1)$, $a = r \cdot (r, N+1)$. Let ζ be a primitive r-th root of unity with $(\zeta + \overline{\zeta})(\zeta - \overline{\zeta}) \neq 0$. We remark that ζ^{N+1} is a primitive a-th root of unity, and ζ^2 is a primitive r-th root of unity. Let $(a_{ij})_{1 \leq i,j \leq N}$ be the Cartan matrix for $\mathfrak{sl}(N+1,C)$. In the present paper, we consider the Hopf algebra U_ζ which is a quotient Hopf algebra of $U_q(\mathfrak{sl}(N+1,C))$.

As an algebra U_ζ is generated by $E_i, F_i, K_i, K_i^{-1}, \Lambda = \Pi_{i=1}^{N} K_i^a$ for $1 \leq i \leq N$ with the relations:

\[
K_i K_j = K_j K_i, \quad K_i K_i^{-1} = K_i^{-1} K_i = 1,
\]

\[
K_i E_j = \zeta^{(a_i a_j)} E_j K_i, \quad K_i F_j = \zeta^{- (a_i a_j)} F_j K_i,
\]

\[
[E_i F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{\zeta - \overline{\zeta}^{-1}},
\]

\[
E_i^2 E_j - (\zeta + \zeta^{-1}) E_i E_j E_i + E_i E_j^2 = 0 \quad (|i - j| = 1),
\]

\[
E_i E_j = E_j E_i \quad (|i - j| \geq 2),
\]

\[
F_i^2 F_j - (\zeta + \zeta^{-1}) F_i F_j F_i + F_i F_j^2 = 0 \quad (|i - j| = 1),
\]

\[
F_i F_j = F_j F_i \quad (|i - j| \geq 2),
\]

\[
E_i^\zeta = F_i^\zeta = 0,
\]

\[
K_i^\zeta = 1, \quad \Lambda^a = 1,
\]

where $(a_i a_j) = a_{ij}$ and for $1 \leq i \leq N+1$ and $X = E$ or F, the element X_{ij} is inductively defined by

\[
X_{ij} = \begin{cases} X_i & \text{if } j = i + 1, \\ X_{i-1} X_{j-1} - \xi X_{j-1} X_{i-1} & \text{if } j > i + 1. \end{cases}
\]

Let U^ζ_+ be the Hopf subalgebra of U_ζ generated by $E_i, K_i^\pm, 1 \leq i \leq N$, U^ζ_- the Hopf subalgebra of U_ζ generated by $F_i, K_i^\pm, 1 \leq i \leq N$, and $(U^\zeta_+)^\#$ the dual algebra of U^ζ_+ with the opposite comultiplication. We construct a Hopf algebra isomorphism $\varphi: U^\zeta_- \to (U^\zeta_+)^\#$, and give an explicit formula of an orthonormal basis with respect to the pairing Φ.

Applying the quantum double construction to the Hopf algebra U^ζ_+, we see that the Hopf algebra isomorphism φ induces a Hopf algebra epimorphism ψ from the quantum double $D(U^\zeta_+)$ to the Hopf algebra U_ζ. The image of the universal R of $D(U^\zeta_+)$ under $\psi \otimes \psi$ is a universal R of U_ζ.
As well-known, a universal R can be used in producing tangle invariants obtained from the representations of the quantized universal enveloping algebras for classical simple Lie algebras (see for example [11][12][13][18][19]). As an application of our universal R, we can calculate some tangle invariants, which are essential in the construction of Witten's 3-manifold invariants [21].

For any positive integer K, let $P_+(K)$ be the set of the dominant integral weights λ with $0 \leq (\lambda,\theta) \leq K$, where θ denotes the longest root. We consider the family of finite dimensional irreducible representations of U_ξ whose highest weight λ is contained in $P_+(K)$, in the case $\bar{r}=K+N+1$. For an oriented framed link L, we denote by $J(L)$ the tangle invariant obtained by using these irreducible representations. Using our explicit formula of universal R for U_ξ in the case $\bar{r}=K+N+1$, one can calculate $J(H_{\lambda\mu})$, where $H_{\lambda\mu}$ denotes Hopf link with two components assigned with V_λ and V_μ.

$$J(H_{\lambda\mu}) = \frac{\sum_{w \in \mathcal{W}} (\det w) q^{2(\lambda,\rho)+w(\mu+\rho)}}{\sum_{w \in \mathcal{W}} (\det w) q^{2(\rho,w(\rho))}}.$$

Here ρ is half the sum of positive roots. Let $S=(S_{\lambda\mu})$ be the modular transformation S matrix for characters of the integrable highest weight modules due to Kac and Peterson [7]. Using the equality $S_{\lambda\mu}=S_{00}J(H_{\lambda\mu})$, we show Verlinde's formula for the fusion algebra of type $A_N^{(1)}$. The fusion algebra is an associative commutative ring with basis labelled by $P_+(K)$ and the product $w_\lambda \cdot w_\mu$ of two basis elements can be written as a sum $\sum \Sigma N_{\lambda\mu}^{\nu} w_\nu$ with structure constants $N_{\lambda\mu}^{\nu} \in \mathbb{N}$ called the fusion rule. The modular transformation S-matrix and the fusion rules $N_{\lambda\mu}^{\nu}$ are related by Verlinde's formula [20]:

$$N_{\lambda\mu}^{\nu} = \sum_{\nu \in P_+(K)} \frac{S_{\lambda\nu} S_{\mu\nu} S_{\nu\nu}^{\nu\nu}}{S_{00}}.$$

The paper is organized as follows: In §1, we recall the quantum double construction due to Drinfel'd and define the Hopf algebra U_ξ. In §2, a universal R for U_ξ is obtained, applying the quantum double construction to the Hopf subalgebra U_ξ^+ of U_ξ. In §3, we state tangle operators derived from irreducible representations of U_ξ, and calculate some tangle invariants. As an application of the tangle invariants, we prove Verlinde's formula for the fusion algebra of type $A_N^{(1)}$.

ACKNOWLEDGEMENT. The author would like to thank H.Yamane for his lectures and conversations on his work. She wishes to express her deepest gratitude to Professor T. Kohno and M. Wakui for all of their help and useful advice.

1. **Hopf algebra U_ξ and quantum double construction**

In this section, we define the Hopf algebra and recall the quantum double
construction due to Drinfel'd [2].

Let A be a Hopf algebra over C. A universal R-matrix for A is an invertible element $R \in A \otimes A$ such that

\[
(1) \quad R \Delta(a) R^{-1} = \tilde{\Delta}(a) \quad \text{for} \quad a \in A,
\]

\[
(2) \quad (\Delta \otimes \text{id})(R) = R_{13} R_{23}, \quad (\text{id} \otimes \Delta)(R) = R_{13} R_{12},
\]

where Δ is the comultiplication and $\tilde{\Delta} = P \circ \Delta$ for the permutation $P, P(a \otimes b) = b \otimes a$. Here $R_{12} = \Sigma_i a_i \otimes b_i \otimes 1$, $R_{13} = \Sigma_i a_i \otimes 1 \otimes b_i$, and $R_{23} = \Sigma_i 1 \otimes a_i \otimes b_i$, where the components of the universal R are given by $R = \Sigma_i a_i \otimes b_i$. The pair (A, R) is called a quasitriangular Hopf algebra.

The so-called quantum double construction due to Drinfel'd allows us to produce quasitriangular Hopf algebras from Hopf algebras. It can be used to construct a univeasal R. The method can be sketched as follows. Let A be a finite dimensional Hopf algebra and A^* its dual with opposite comultiplication. Then, the quantum double $D(A)$ is isomorphic to $A \otimes A^*$ as a vector space, and it contains A and A^* as Hopf subalgebras via the natural embeddings, and the universal R of $D(A)$ is the image of the canonical element of $A \otimes A^*$ i.e. $\Sigma \Sigma_i 1 \otimes 1 \otimes e_i$, if $\{e_i\}$ is a basis of A and $\{e^i\}$ the dual basis in A^* which is the dual space of A.

For $N \in \mathbb{N}$ and $1 < r \in N$, we put $d = (r, N+1)$, $a = \alpha^d$, and $n = \frac{r}{(r,2)}$.

Let $((\alpha_i, \alpha_j))_{1 \leq i, j \leq N}$ be the Cartan matrix of type A_N:

\[
\begin{pmatrix}
2 & -1 & 0 \\
-1 & 2 & \ddots \\
\vdots & \ddots & \ddots \\
0 & \ddots & -1 & 2
\end{pmatrix}
\]

$((\alpha_i, \alpha_j)) = (2, -1, 0, \ldots, 2, -1)$.

Let ζ be a primitive r-th root of unity with $(\zeta + \bar{\zeta})(\zeta - \bar{\zeta}) \neq 0$. We remark that ζ^{N+1} is a primitive a-th root of unity, and that ζ^2 is a primitive \bar{r}-th root of unity.

We define the Hopf algebra U_ζ which is a quotient Hopf algebra of $U_{\tilde{\zeta}}(\mathfrak{sl}(N+1, C))$.

The algebra U_ζ is generated by $E_i, F_i, K_i, K_i^{-1}, \Lambda = \Pi_{i=1}^N$ for $1 \leq i \leq N$ with the relations:

\[
K_i K_j - K_j K_i, K_i K_i^{-1} - K_i^{-1} K_i = 1,
\]

\[
K_i E_j = \zeta^{(\alpha_i, \alpha_j)} E_j K_i, K_i F_j = \zeta^{-(\alpha_i, \alpha_j)} F_j K_i
\]

\[
[E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{\zeta - \bar{\zeta}^{-1}},
\]
where, for integers \(i \) and \(j \) with \(1 \leq i < j \leq N + 1 \) and \(X = E \) or \(F \), the element \(X_{ij} \) is inductively defined by

\[
X_{ij} = \begin{cases}
X_i & \text{if } j = i + 1, \\
X_{i-1}X_{j-1} - \zeta X_{j-1}X_{i-1} & \text{if } j > i + 1.
\end{cases}
\]

The algebra \(U_\zeta \) has a Hopf algebra structure with comultiplication \(\Delta \), counit \(\epsilon \), and antipode \(S \) given by

\[
\Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i, \quad \Delta(F_i) = F_i \otimes K_i^{-1} + 1 \otimes F_i,
\]

\[
\Delta(K_i^\pm) = K_i^\pm \otimes K_i^\pm,
\]

\[
\epsilon(E_i) = \epsilon(F_i) = 0, \quad \epsilon(K_i^\pm) = 1,
\]

\[
S(E_i) = -K_i^{-1}E_i, \quad S(F_i) = -F_iK_i, \quad S(K_i^\pm) = K_i^\mp.
\]

Let us show that the definitions of \(\Delta \) and \(S \) are compatible with (1.10). We prove some Lemmas.

We put

\[
[X, Y]_\zeta = XY - \zeta YX, \quad [X, Y]_\bar{\zeta} = XY - \bar{\zeta}^{-1} YX.
\]

Lemma 1.1. Let \(M \) be the C-algebra generated by \(A \) and \(B \) with the relations:

\[
A^2 B - (\zeta + \zeta^{-1})ABA + BA^2 = 0, \quad (1.12)
\]

\[
B^2 A - (\zeta + \zeta^{-1})BAB + AB^2 = 0. \quad (1.13)
\]

We put

\[
C = [A, B]_\zeta, \quad C' = [A, B]_{\bar{\zeta}}.
\]

Then it holds:

\[
C'' = C' + (1 - \zeta^{-2})\zeta^{\frac{\bar{B} - 1}{2}} A'B.'
\]
Proof. When \(C' = AB - \zeta^{-1}BA \), we have, for any positive integer \(n \),

\[
(C')^n = (\zeta^{-2}C + (1 - \zeta^{-2})AB)^n
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} (1 - \zeta^{-2})^{i} \zeta^{-\frac{(1-i)(n+1)}{2}} + (i-2)(a-2) \cdot A^i C^{n+1-i} B^i,
\]

(1.14)

where

\[
\binom{n}{i} \zeta^{[n]...[n-i+1]} = \frac{[n]}{[i]...[1]}, \quad [n] = \frac{1 - \zeta^{-2n}}{1 - \zeta^{-2}}
\]

The equality is shown as follows. We have the following equalities for any non-negative integer \(n \):

\[
B^n AB = \zeta^{-n} AB = \zeta^{-n} AB^{n+1} - \zeta^{-n-2}[n]CB^n,
\]

(1.15)

\[
(1 - \zeta^{-2})[n] = 1 - \zeta^{-2n},
\]

(1.16)

\[
\binom{n}{i} \zeta^{(n-i+1)} = \binom{n+1}{i} \zeta^{i}.
\]

(1.17)

We show the equality (1.14) by induction on \(n \). We suppose that the equality (1.14) holds for \(n \), and then it follows from (1.15),(1.16),(1.17) that

\[
(C')^{n+1}
\]

\[
= (C')^{(\zeta^{-2}C + (1 - \zeta^{-2})AB)}
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} (1 - \zeta^{-2})^{i} \zeta^{-\frac{(1-i)(n+1)}{2}} + (i-2)(a-2) \cdot A^i C^{n+1-i} B^i
\]

\[
+ \sum_{i=0}^{n} \binom{n}{i} (1 - \zeta^{-2})^{i} \zeta^{-\frac{(1-i)(n+1)}{2}} + (i-1)(a-1) \cdot A^{i+1} C^{n-i} B^{i+1}
\]

\[
- \sum_{i=0}^{n} \binom{n}{i} (1 - \zeta^{-2})^{i} \zeta^{-\frac{(1-i)(n+1)}{2}} + (i-2)(a-2) \cdot A^{i} C^{n+1-i} B^{i}
\]

\[
= \zeta^{-2(n+1)} C^{n+1} + (1 - \zeta^{-2})^n + 1 \cdot \zeta^{-\frac{(n+1)(n+2)}{2}} A^{n+1} B^{n+1}
\]

\[
+ \sum_{i=1}^{n} \left\{ \binom{n}{i-1} (1 - \zeta^{-2})^{i} \zeta^{-\frac{(1-i)(n+1)}{2}} + (i-2)(a+1-i) \right\} A^i C^{n+1-i} B^i
\]

\[
+ \binom{n}{i} (1 - \zeta^{-2})^{i} \zeta^{-\frac{(1-i)(n+1)}{2}} + (i-2)(a+1-i)(1 - (1 - \zeta^{-2})[i]) A^i C^{n+1-i} B^i
\]

\[
= \sum_{i=0}^{n+1} \binom{n+1}{i} (1 - \zeta^{-2})^{i} \zeta^{-\frac{(1-i)(n+1)}{2}} + (i-2)(a+1-i) A^i C^{n+1-i} B^i.
\]
So the equality (1.14) holds. As ζ^2 is a primitive r-th root of unity, we obtain the claim, putting $n=r$ in the equality (1.14).

For $1 \leq i < j \leq N+1$, the elements E_{ij} and E'_{ij} are inductively defined by

$$
E_{ij} = \begin{cases}
E_i & \text{if } j = i+1, \\
[E_{ij-1}, E_{j-1}]_\zeta & \text{if } j > i+1.
\end{cases}
$$

$$
E'_{ij} = \begin{cases}
E_i & \text{if } j = i+1, \\
[E_{ij-1}, E_{j-1}]_\zeta & \text{if } j > i+1.
\end{cases}
$$

Lemma 1.2. (i) For $i < p < j$, we put $A = E_{ip}$ and $B = E'_{pj}$. Then these A and B satisfy the relations (1.12) and (1.13).

(ii) We have that $[E_{ip}, E'_{pj}]_\zeta = [E_{ip+1}, E'_{pj+1}]_\zeta$.

Proof. (i) We show by induction on p that $[E_i, E_{ip}]_\zeta = 0$, for $p \geq i+2$. It follows from relation (1.6) that $[E_i, E_{i+2}]_\zeta = 0$. We suppose that $[E_i, E_{ip}]_\zeta = 0$. Then we obtain from the relation (1.7),

$$
[E_i, E_{ip+1}]_\zeta = [E_i, E_{ip}]_\zeta + [E_{ip}, E_{ip+1}]_\zeta = 0.
$$

Similarly, using the relation (1.7) and the equality

$$
[E'_{ip+1}, E_{j-1}]_\zeta = E_{ip+1}[E'_{ip}, E_{j-1}]_\zeta - \zeta[E_{ip}, E'_{ip+1}]_\zeta E_{ip+1},
$$

we obtain by induction on p that $[E'_{ip}, E_{ip+1}]_\zeta = 0$ for $p \leq j-2$.

We put $X = [E_{ip}, E_{ip}]_\zeta$ and $Y = [[E_{ip}, E_{ip}]_\zeta]_\zeta$. Computing $[E_{ip}, [E_{i-1}X]]_\zeta$, $[X, E_{ip}]_\zeta$, $[[Y, E_{ip}]]_\zeta$, and $[E_{i-1}, Y]$, we prove that E_{ip} and E'_{pj} satisfy the relations (1.12) and (1.13). Noting that $[E_i, E_{ip}]_\zeta = 0$ and

$$
E_{i-1}[E_{ip}, E'_{pj}]_\zeta - (\zeta + \zeta^2)E_{i-1}[E_{ip}, E'_{pj}]_\zeta E_{i-1} - [E_{ip}, E'_{pj}]_\zeta E_{i-1} E_{i-1} = 0,
$$

it follows that

$$
[E_{i-1}, E_{i-1}, X]_\zeta =
E_{i-1}^2 E_{ip}[E_{ip}, E'_{pj}]_\zeta - \zeta^2 E_{i-1}[E_{ip}, E'_{pj}]_\zeta E_{ip}
$$

$$
- \zeta^2 E_{i-1} E_{ip}[E_{ip}, E'_{pj}]_\zeta E_{i-1} + \zeta E_{i-1}[E_{ip}, E'_{pj}]_\zeta E_{i-1} E_{i-1}
$$

$$
- E_{i-1} E_{ip}[E_{ip}, E'_{pj}]_\zeta + \zeta E_{i-1}[E_{ip}, E'_{pj}]_\zeta E_{ip} E_{i-1}
$$

$$
+ \zeta^2 E_{ip}[E_{ip}, E'_{pj}]_\zeta E_{i-1} - \zeta [E_{ip}, E'_{pj}]_\zeta E_{ip} E_{i-1}^2
$$

$$
= (\zeta + \zeta^2)E_{i-1} E_{ip}[E_{ip}, E'_{pj}]_\zeta - E_{ip} E_{i-1}^2 [E_{ip}, E'_{pj}]_\zeta.
$$
Here we have used \[[E_{i-1}p[E_{ip}E_{pj}],\zeta] = [E_{ip}[E_{ip}E_{pj}],\zeta] \zeta \]. So, when \(\zeta + \zeta \neq 0 \) and \(X = 0 \), it turns out that \([E_{i-1}p[E_{ip}E_{pj}],\zeta] = 0 \). From the formula \([E_{ip}E_{pj+1}],\zeta \) and the relation (1.7), we have

\[
[X,E_{j}] = \zeta[E_{ip}[E_{ip}E_{pj}],\zeta]E_{ip}E_{j} - \zeta[E_{ip}[E_{ip}E_{pj}],\zeta]E_{ip}E_{j} + \zeta^2[E_{ip}E_{pj}],\zeta]E_{ip}E_{j} - \zeta^2E_{j}[E_{ip}E_{pj}],\zeta]E_{ip}E_{j} + \zeta^3E_{j}[E_{ip}E_{pj}],\zeta]E_{ip}E_{j} - \zeta^3E_{j}[E_{ip}E_{pj}],\zeta]E_{ip}E_{j} - \zeta^3E_{j}[E_{ip}E_{pj}],\zeta]E_{ip}E_{j}.
\]

So, if \([E_{ip}[E_{ip}E_{pj}],\zeta] = 0 \), then \([E_{ip}[E_{ip}E_{pj}],\zeta] = 0 \). Thus the elements \(E_{ip} \) and \(E_{pj} \) satisfy the relations (1.12).

From the equalities \([E_{pj},E_{i-1}] = 0 \) and

\[
[E_{ip}E_{pj}],\zeta]E_{j}^2 - (\zeta + \zeta)E_{j}[E_{ip}E_{pj}],\zeta]E_{j} + E_{j}^2[E_{ip}E_{pj}],\zeta] = 0.
\]

it follows that

\[
[[Y,E_{j}],\zeta]E_{j} = \zeta[E_{ip}[E_{ip}E_{pj}],\zeta]E_{ip}E_{j} - \zeta^2E_{p}[E_{ip}E_{pj}],\zeta]E_{p}E_{j} - \zeta^3E_{p}[E_{ip}E_{pj}],\zeta]E_{p}E_{j} + \zeta^4E_{p}[E_{ip}E_{pj}],\zeta]E_{p}E_{j} - \zeta^5E_{p}[E_{ip}E_{pj}],\zeta]E_{p}E_{j} - \zeta^6E_{p}[E_{ip}E_{pj}],\zeta]E_{p}E_{j}.
\]
Here we have used the equality $[E_{ip}, E_{ip}' + 1]_\xi = [[E_{ip}, E_{ip}']_\xi, E_j]_\xi$.

So, if $\zeta + \zeta \neq 0$ and $[[E_{ip}, E_{ip}']_\xi, E_j]_\xi = 0$, then $[[E_{ip}, E_{ip}']_\xi, E_{ip+1}]_\xi = 0$. From the equality $[E_{i-1}, [E_{ip}, E_{ip}']_\xi]_\xi = [E_{i-1}, p(E_{ip}')_\xi]_\xi$, we have

$$[E_{i-1}, Y]_\xi = E_{i-1}[[E_{ip}, E_{ip}']_\xi, E_{ip+1} - \zeta E_{i-1} E_{ip+1} [E_{ip}, E_{ip}']_\xi - \zeta [[E_{ip}, E_{ip}']_\xi, E_{ip+1}]_\xi = [E_{i-1}, [E_{ip}, E_{ip}']_\xi]_\xi = [E_{i-1}, p(E_{ip}')_\xi]_\xi.$$

If $[[E_{ip}, E_{ip}']_\xi, E_{ip}]_\xi = 0$, then $[[E_{i-1}, p(E_{ip}')_\xi]_\xi, E_{ip}]_\xi = 0$. Thus the elements E_{ip} and E_{ip}' satisfy the relations (1.13).

(ii) Let us show that $[[E_{ip}, E_{ip}']_\xi]_\xi = [E_{ip+1}, E_{ip+1}]_\xi$. We have

$$[E_{ii+1}, E_{i+1}]_\xi = E_{i+1} E_{i+2} - \zeta E_{i+1} E_{i+2} - \zeta E_{i+2} E_{i+1} + E_{i+2} E_{i+1} E_i$$

$$= [E_{i+2}, E_{i+1}]_\xi.$$

We suppose that $[E_{ip}, E_{ip}']_\xi = [E_{ip+1}, E_{ip+1}]_\xi$. Then we obtain

$$[E_{ip}, E_{ip+1}]_\xi = [E_{ip}, E_{ip}']_\xi E_j - \zeta E_j [E_{ip}, E_{ip}']_\xi$$

$$= [E_{ip+1}, E_{ip+1}]_\xi E_j - \zeta E_j [E_{ip}, E_{ip+1}]_\xi$$

$$= [E_{ip+1}, E_{ip+1}]_\xi E_j - \zeta E_j [E_{ip}, E_{ip+1}]_\xi - \zeta (E_{ip+1} E_j - \zeta E_{ip+1}) E_{ip+1}$$

$$= [E_{ip+1}, E_{ip+1}]_\xi$$

and

$$[E_{i-1}, p(E_{ip})]_\xi$$

$$= E_{i-1} [E_{ip}, E_{ip}']_\xi - \zeta [E_{ip}, E_{ip}']_\xi E_{i-1}$$

$$= E_{i-1} [E_{ip+1}, E_{ip+1}]_\xi - \zeta [E_{ip+1}, E_{ip+1}]_\xi E_{i-1}$$

$$= (E_{i-1} E_{ip+1} - \zeta E_{ip+1} E_{i-1}) E_{ip+1} - \zeta E_{ip+1} E_{i-1} E_{ip+1} - \zeta E_{ip+1} E_{i-1}$$

$$= [E_{i-1}, p(E_{ip+1})]_\xi.$$

So the claim holds.

By Lemma 1.1 and Lemma 1.2, we have the equality
Lemma 1.3. We have the formula
\[E_{ij}^\tilde{r} = E_{ij}^\tilde{r} + \sum_{i<p_1<\cdots<p_s<j} ((1-\zeta^{-2})^s \zeta^{-\tilde{r}^2-1} E_{ip_1} E_{p_s j}. \]

Proof. From the equality stated just before the lemma repeatedly, we have that
\[E_{ij}^\tilde{r} = E_{ij}^\tilde{r} + \sum_{k=i+1}^{j-1} (1-\zeta^{-2})^s \zeta^{-\tilde{r}^2-1} E_{ik} E_{kj}. \]

By induction on \(j-i \), we get the claim.

By Lemma 1.3, we obtain \(E_{ij}^\tilde{r} = 0 \) and similarly, \(F_{ij}^\tilde{r} = 0 \).

Now we prove that the definition of the coproduct \(\Delta \) is compatible with the relation (1.10). We can prove the following formula
\[\Delta(E_{ij}) = E_{ij} \otimes 1 + (1-\zeta^2) \sum_{i<k<j} K_{ik} E_{kj} \otimes E_{ik} + K_{ij} \otimes E_{ij}. \]

where \(K_{ij} = K_i \cdots K_{j-1} \). We put
\[u_1 = E_{ij} \otimes 1, \]
\[u_2 = K_{ii+1} E_{i+1, j} \otimes E_{ii+1}, \]
\[\vdots \]
\[u_{j-i-1} = K_{ij-1} E_{ij-1} \otimes E_{ij-1}, \]
\[u_{j-i+1} = K_{ij} \otimes E_{ij}. \]

It follows that if \(k > l \), then \(u_k u_l = \zeta^2 u_l u_k \). As we can write that \(\Delta(E_{ij}) = u_1 + (1-\zeta^2)(u_2 + \cdots + u_{j-i}) + u_{j-i+1} \), we have
\[\Delta(E_{ij})^m = \sum_{m_1 + \cdots + m_{j-i-1} = m} \phi_{m_1}(\zeta^2) \cdots \phi_{m_{j-i-1}}(\zeta^2) (1-\zeta^2)^{m_2 + \cdots + m_{j-i}} u_1^{m_1} \cdots u_{j-i+1}^{m_{j-i+1}}, \]

where \(\phi_m(\zeta^2) = (1-\zeta^2)(1-\zeta^4) \cdots (1-\zeta^{2m}) \) (see [14]). Putting \(m = \tilde{r} \), we can obtain the equality \(\Delta(E_{ij})^\tilde{r} = 0 \).

By induction, it follows that \(S(E_{ij}) = -K_{ij}^{-1} E_{ij} \) and \(S(F_{ij}) = -\zeta^{2(j-i-1)} F_{ij} \). We
recall that $E_{ij}^i = F_{ij}^i = 0$ and so one can obtain that $S(E_{ij}) = S(F_{ij}) = 0$.

2. A construction of a universal R-matrix for U_ζ

In this section, we construct a universal R-matrix for U_ζ, using the quantum double construction due to Drinfel'd [2]. Our method is similar to that of the construction of the universal R-matrix in [23] and [26].

Let U_ζ^+ be the Hopf subalgebra of U_ζ generated by $E_i, K_i^\pm, 1 \leq i \leq N$ and U_ζ^- the Hopf subalgebra of U_ζ generated by $F_i, K_i, 1 \leq i \leq N$ and $(U_\zeta^+)^\epsilon$ be the dual algebra of U_ζ^+ with the opposite comultiplication.

First we fix some notations. Let $\{x_i|1 \leq i \leq N\}$ be the system of simple roots and Π_+ the set of positive roots $x_1 + \cdots + x_{j-1}$ with $1 \leq i < j \leq N+1$ of $sl(N+1, C)$. We denote by $Q = \bigoplus \mathbb{Z} x_i$ the root lattice and let $\langle ., . \rangle: Q \times Q \rightarrow \mathbb{Z}$ be the pairing defined by $\langle x_i, x_j \rangle = \delta_{ij}$ where $(x_i)^0 = 0$ is the Cartan matrix of type A_N.

We shall put on the set $\{E_{ij}|1 \leq i < j \leq N+1\}$ a total order $<$ defining $E_{kl} < E_{ij}$ if $k < i$, or $k = i$ and $l < j$. We also denote E_{ij} by E_x for $x \in \Pi_+$ if $x = x_i + \cdots + x_{j-1}$. The following notation will be used in describing a C-basis of U_ζ^+:

$$I = \{ (m_a)_{a \in \Pi_+} | 0 \leq m_a < r \},$$

$$J = \{ (v_i)_{1 \leq i \leq N} | 0 \leq v_p < r, p = 1, \ldots, N-1, 0 \leq v_N < a \},$$

$$P = \{ v | v = \sum_{i=1}^{N} v_i x_i, (v_i)_{1 \leq i \leq N} \in J \}.$$

Moreover, we denote by $\Pi_{a \in \Pi_+} E_x^{m_a}$ for $\{m_a\}_{a \in I}$ ordered monomials of the E_xs according to the total order defined above, $E_{12} E_{13} \cdots E_{NN}^{m_N}$, and for $v = \sum_{i=1}^{N} v_i x_i$ with $(v_i)_{1 \leq i \leq N} \in J$, set $K_v = \Pi_{1}^{N} K_i^{v_i}$. In a way similar to Lemma 4.2 in [22], we can derive a system of generators of U_ζ^+.

Proposition 2.1. The algebra U_ζ^+ is generated by $\{ \Pi_{a \in \Pi_+} E_x^{m_a} K_v | (m_a)_{a \in I}, (v_i)_{1 \leq i \leq N} \in J \}$ as a C-vector space.

Proof. Using the relations (1.3),(1.4) and (1.11), any element x of U_ζ^+ can be written as a C-linear combination of the elements $E_{i_1} \cdots E_{i_m} K_v$ with $1 \leq i_k \leq N$ and $0 \leq v_i < r$. Let L be the subalgebra generated by K_v for $0 \leq i \leq N$. We remark that L is generated by $\{ K_v | v \in P \}$ as a C-vector space. In fact, it follows, from the relations $\Pi_{i=1}^{N} K_i^a = 1$, $K^{a_{\epsilon}} = 1$, that $K_v = \Pi_{i=1}^{N} K_i^{v_i}$. So we can write K_v^a for $a = b \leq r - 1$ as a product of elements in $\{ K_v | v \in J \}$. Let $P = \{ (i_1, j_1), \ldots, (i_k, j_k) | (i_p, j_p) \in N \times N, 1 \leq i_p < j_p < N+1 \} \cup \{ \phi \}$. For $\Sigma = (i_1, j_1), \ldots, (i_k, j_k) \in P$, we put $E_{\Sigma} = E_{i_1 j_1} \cdots E_{i_k j_k}$. We define a map $\eta: P_N \rightarrow \mathbb{Z}$ given by
\[\eta(\Sigma) = i_1(j_1 - i_1) + \cdots + i_k(j_k - i_k) \text{ for } \Sigma \in P_N, \quad \eta(\phi) = 0. \]

We consider the subspace \(W_m \) generated by \(\{ E_{\Sigma} | \eta(\Sigma) \leq m \} \). A sequence \(\Sigma = ((i_1,j_1), \ldots, (i_k,j_k)) \in P_N \) is called increasing if \((i_1,j_1) \leq (i_2,j_2) \leq \cdots \leq (i_k,j_k) \). In particular, \(\phi \) is increasing. From [22], for a pair \((s,t) \prec (x,y)\), we can show

\[E_{xy}E_{st} = \zeta^{\delta_{sx} - \delta_{xt} - \delta_{ys} + \delta_{yt}}E_{xy} + \sum_{\eta(\Sigma) < \eta((x,y);(s,t))} c_\Sigma E_{i_1j_1} \cdots E_{i_kj_k} \tag{*} \]

for some \(c_\Sigma \in C \). By induction on \(m \), we can show that for any \(m \), any element in \(W_m \) is written as a \(C \)-linear combination of the elements in the set \(\{ E_{\Sigma} | \eta(\Sigma) \leq m, \Sigma \text{ is increasing} \} \) (see [22]).

We give a triangular decomposition of \(\tilde{U}_\zeta \), using a way similar to one in [22].

Let us prepare some notations.

- \(\tilde{U}_\zeta \) is the algebra over \(C \) generated by \(E_i, F_i, K_i^\pm, 1 \leq i \leq N \) with relations (1.3), (1.4), (1.5).
- \(N_+ \) (resp. \(N_- \)) is the subalgebra of \(U_\zeta \) (resp. \(\tilde{U}_\zeta \)) generated by \(E_i \), \(1 \leq i \leq N \) along with 1.
- \(N_- \) (resp. \(N_+ \)) is the subalgebra of \(U_\zeta \) (resp. \(\tilde{U}_\zeta \)) generated by \(F_i \), \(1 \leq i \leq N \) along with 1.
- \(T \) (resp. \(\tilde{T} \)) is the subalgebra of \(U_\zeta \) (resp. \(\tilde{U}_\zeta \)) generated by \(K_i^\pm, 1 \leq i \leq N \) along with 1.
- \(\phi^+, \phi^-_i, 1 \leq i \neq j \leq N \) are the elements of \(\tilde{U}_\zeta \), defined
 \[
 \phi^+_i = \begin{cases}
 E_iE_j - E_jE_i & \text{if } |i-j| \geq 2, \\
 E_i^2E_j - (\zeta + \zeta^{-1})E_iE_jE_i + E_iE_j^2 & \text{if } |i-j| = 1,
 \end{cases}
 \]
 \[
 \phi^-_i = \begin{cases}
 F_iF_j - F_jF_i & \text{if } |i-j| \geq 2, \\
 F_i^2F_j - (\zeta + \zeta^{-1})F_iF_jF_i + F_iF_j^2 & \text{if } |i-j| = 1.
 \end{cases}
 \]

- \(J_+ \) (resp. \(J_- \)) is the two sided ideal of \(\tilde{N}_+ \) (resp. \(\tilde{N}_- \)) generated by \(\phi^+_i \), \(1 \leq i \neq j \leq N \), \(E_i^p \), \(1 \leq i < j \leq N + 1 \) (resp. \(\phi^-_i \), \(1 \leq i \neq j \leq N \), \(F_i^p \), \(1 \leq i < j \leq N + 1 \)).
- \(J_0 \) is the two sided ideal of \(\tilde{T} \) generated by \(K_i^\pm - 1, 1 \leq i \leq N, \Lambda^a - 1 \).
- \(J \) is the two sided ideal of \(\tilde{U}_\zeta \) generated by \(\phi^+_i \), \(1 \leq i \neq j \leq N \), \(E_i^p \), \(1 \leq i < j \leq N + 1 \), \(\phi^-_i \), \(1 \leq i \neq j \leq N \), \(F_i^p \), \(1 \leq i < j \leq N + 1 \), \(K_i^\pm - 1, 1 \leq i \leq N, \Lambda^a - 1 \).

We investigate the structure of \(\tilde{U}_\zeta \) as a vector space, in a way similar to the proof in Lemma 2.1 and 2.2 in [22].

Let \(\mathcal{A}_+ \) (resp. \(\mathcal{A}_- \)) be the free associative \(C \)-algebra with 1 generators \(e_i \), \(1 \leq i \leq N \) (resp. \(f_i \), \(1 \leq i \leq N \)). Let \(C[k_1^\pm, \ldots, k_N^\pm] \) be the \(C \)-algebra of Laurent polynomials in indeterminates \(k_1, \ldots, k_N \). Let \(\mathcal{M} = \mathcal{A}_- \otimes_c C[k_1^\pm, \ldots, k_N^\pm] \otimes_c \mathcal{A}_+ \). The elements \(f_{i_1} \cdots f_{i_n} k_{j_1}^\pm \cdots k_{j_r}^\pm \varepsilon_{j_1} \cdots \varepsilon_{j_r} v_1, \ldots, v_n \in \mathcal{M}, 1 \leq i_1, \ldots, i_n, j_1, \ldots, j_r \leq N \), form an \(C \)-basis.
UNIVERSAL Λ-MATRICES FOR QUANTUM GROUP $U_q(sl(N+1,\mathbb{C}))$

\mathcal{M} has a left U_ζ-module structure defined by

$$K_p f_{i_1} \cdots f_{i_k} k^{v_1}_1 \cdots k^{v_k}_N e_{j_1} \cdots e_{j_h} = \zeta^{-\sum_{i=1}^k v_i} f_{i_1} \cdots f_{i_k} k^{v_1}_1 \cdots k^{v_k}_N e_{j_1} \cdots e_{j_h},$$

$$F_p f_{i_1} \cdots f_{i_k} k^{x_1}_1 \cdots k^{x_k}_N e_{j_1} \cdots e_{j_h} = \zeta^{\sum_{i=1}^k x_i} f_{i_1} \cdots f_{i_k} k^{x_1}_1 \cdots k^{x_k}_N e_{j_1} \cdots e_{j_h},$$

where ζ is a Laurent polynomial ring in the variables K^\pm.

By this fact, it follows that the elements $F_{i_1} \cdots F_{i_k} K^{v_1}_1 \cdots K^{v_N}_k E_{j_1} \cdots E_{j_h}$, $v_1, \ldots, v_N \in \mathbb{Z}, 1 \leq i_1, \ldots, i_k, j_1, \ldots, j_h \leq N$, form a basis of \tilde{U}_ζ. We have $U_\zeta = U_\zeta / S_\zeta$ as a vector space, $\tilde{N}_+ (\text{resp. } \tilde{N}_-)$ is a free algebra in the variables E_i (resp. F_i), and \tilde{T} is the Laurent polynomial ring in the variables K^\pm. We have $\tilde{N}_+ = \tilde{N}_- \otimes \tilde{T} \otimes \tilde{N}_+$ as a vector space, and $(\tilde{T} / \mathcal{S}_0)$ as an algebra over \mathbb{C}. It is proved in the following way, which is analogous to the proof of Proposition 2.3 in [22]. It suffices to prove:

$$\mathcal{S} = \tilde{N}_- \tilde{T} \mathcal{S}_+ + \tilde{N}_- \mathcal{S}_0 \tilde{N}_+ + \mathcal{S}_- \tilde{T} \tilde{N}_+.$$

To prove it, we show that $\tilde{N}_- \tilde{T} \mathcal{S}_+, \tilde{N}_- \mathcal{S}_0 \tilde{N}_+$, and $\mathcal{S}_- \tilde{T} \tilde{N}_+$ are ideals of U_ζ. Firstly, we consider $\mathcal{S}_- \tilde{T} \tilde{N}_+$. The argument for $\tilde{N}_- \tilde{T} \mathcal{S}_+$ is analogous. Let $Y = \tilde{N}_- \tilde{T} \mathcal{S}_+$. It is clear that $K^\pm_i Y \subset Y$, $Y K^\pm_i \subset Y$, $F_i Y \subset Y$, and $Y E_i \subset Y$. Let us show that $E_i Y \subset Y$. We define the two \mathbb{C}-linear maps $E_i^\pm : \tilde{N}_- \rightarrow \tilde{N}_-$ by
$E_i^\pm(F_{i_1} \cdots F_{i_0}) = \sum_{i_0 = \pm} \zeta^\pm a_u F_{i_1} \cdots F_{i_u} \cdots F_{i_0}$,

where $a_u = (\alpha_{i_0} \alpha_{i_1} + \cdots + \alpha_{i_u})$, so that

$$
E_i \cdot F_{i_1} \cdots F_{i_u} K_1^{i_1} \cdots K_N^{i_u} E_{j_1} \cdots E_{j_t} \\
= \zeta^{-(\alpha_{i_0} \alpha_{i_1} + \cdots + \alpha_{i_u} + 1)N} F_{i_1} \cdots F_{i_u} K_1^{i_1} \cdots K_N^{i_u} E_{i_0} E_{j_1} \cdots E_{j_t} \\
+ \frac{1}{\zeta - \zeta^{-1}} \sum_{i_0 = \pm} (E_i^\pm(F_{i_1} \cdots F_{i_u})K_1^{i_1} \cdots K_1^{i_u+1} \cdots K_N^{i_u} E_{j_1} \cdots E_{j_t} \\
- E_i^\pm F_{i_1} \cdots F_{i_u})K_1^{i_1} \cdots K_1^{i_u-1} \cdots K_N^{i_u} E_{j_1} \cdots E_{j_t}).
$$

We can show

$$
E_i^\pm(F_{i_1} \cdots F_{i_p} F_{j_1} \cdots F_{j_x}) \in \mathcal{I}_-
$$

(see Proposition 2.3 in [22]). Moreover we have

$$
E_p F_{i_1} \cdots F_{i_x} F_{i+1} F_{i_1} \cdots F_{i_x+1} K_1^{i_1} \cdots K_N^{i_x} E_{j_1} \cdots E_{j_t} \\
= F_{i_1} \cdots F_{i_x} E_p F_{j_1} F_{i_1} \cdots F_{i_x+1} K_1^{i_1} \cdots K_N^{i_x} E_{j_1} \cdots E_{j_t} \\
+ \frac{1}{\zeta - \zeta^{-1}} \sum_{i_0 = p} (E_p^+(F_{i_1} \cdots F_{i_x})K_1^{i_1} \cdots K_N^{i_x} E_{j_1} \cdots E_{j_t} \\
- E_p^+(F_{i_1} \cdots F_{i_x})K_1^{i_1} \cdots K_N^{i_x} E_{j_1} \cdots E_{j_t}),
$$

for $1 \leq p \leq N$ and $1 \leq i < j \leq N + 1$.

Let us show that $[E_p F_{ij}] = 0$, for $1 \leq p \leq N$ and $1 \leq i < j \leq N + 1$.

If $i < p < j - 1$, then we can obtain

$$
E_p F_{ij} = E_p(F_{ip} - F_{pj} - \zeta F_p F_{ip}) \\
= F_{ip} E_p F_{pj} - \zeta E_p F_{pj} F_{ip} \\
= F_{ip} E_p + \zeta F_p K_p^{-1} F_{p+1} F_{ij} \kappa - \zeta^2 K_p^{-1} F_{p+1} F_{ip} \\
= F_{ip} E_p,
$$

using the equality $E_p F_{pj} = F_{pj} E_p + \zeta K_p^{-1} F_{p+1} F_{ij}$ and so it follows that $[E_p F_{ij}] = 0$.

We consider the case $p = i$. We have

$$
E_i F_{ij} = (E_i F_{i+1} E_i + \zeta F_{i+1} E_i F_{i+1}) F_{ij}^{-1} \\
= (F_{ij} E_i + \zeta K_i^{-1} F_{i+1}) F_{ij}^{-1}.
$$
Here we used the equality $F_{ij} + F_{i+1,j} = \zeta^{-1}F_{i+1,j}F_{ij}$. By induction, we can obtain that

$$E_i F_{ij} = F_{ij} E_i + \zeta(1 + \zeta^{-2} + \cdots + \zeta^{-2(r-1)}) = F^r_{ij} E_i.$$

Similarly, we can prove that $[E_{j-1} F_{ij}] = 0$.

Thus, we obtain that $E_i Y = Y$.

Nextly, we consider $\mathcal{N}_{-\mathcal{A}_o} \mathcal{N}_+$. It suffices to prove that for $X = E$ or F and $1 \leq i, j \leq N$,

$$[X_{ij}, K^r_{j} - 1] = 0 \quad \text{and} \quad [X_{ij}, \Lambda^a - 1] = 0.$$

Let us show the formulas for E_i. Indeed, we have

$$E_i K^r_{j} = \zeta^r K^r_{j} E_i = K^r_{j} E_i$$

and

$$E_i \left(\prod_{j=1}^{N} K^r_{j} \right)^a = \zeta^{a_1(a_2 + a_3)} \left(\prod_{j=1}^{N} K^r_{j} \right)^a E_i$$

$$= \zeta^{a_1(a_1 + \Lambda + a_2)} E_i$$

$$= \zeta^{a_1(N-\Lambda + a_2)} \Lambda^a E_i$$

$$= \Lambda^a E_i.$$

Similarly, we can prove the formulas $[F_i, K^r_{j} - 1] = 0$ and $[F_i, \Lambda^a - 1] = 0$.

The following map $\varphi: U^- \to (U^+)^\sigma$ plays an important role.

Proposition 2.2. There is a Hopf algebra homomorphism $\varphi: U^- \to (U^+)^\sigma$ such that for $X = E_{i_1} \cdots E_{i_m} K_{v_0}$

$$\varphi(F_i)(X) = \begin{cases} b & \text{if } X = E_i K_{v_0}, \\ 0 & \text{otherwise}, \end{cases}$$

$$\varphi(K_{i \pm})(X) = \begin{cases} \zeta^\mp(a_1, e) & \text{if } X = K_{v_0}, \\ 0 & \text{otherwise}, \end{cases}$$

where $b = -\frac{1}{1 - \zeta^{-1}}$.

Proof. We put $\varphi(F_i) = \xi_i, \varphi(K_{i \pm}) = \eta_i \pm$ and $\eta_{ij} = \eta_i \cdots \eta_{j-1}$. We define ξ_{ij} inductively by
We remark that if \(\{i_1, \ldots, i_m\} \neq \{j_1, \ldots, j_n\} \), then
\[
\xi_{i_1} \xi_{i_2} \cdots \xi_{i_m}(E_{j_1}E_{j_2} \cdots E_{j_n}) = 0. \tag{**}
\]

Let us prove the fact by induction on \(m \). We assume that it holds for \(m-1 \). Then we have
\[
\begin{align*}
\xi_{i_1} \xi_{i_2} \cdots \xi_{i_m}(E_{j_1}E_{j_2} \cdots E_{j_n}) &= \xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(\xi_{i_m}(\Delta(E_{j_1}) \cdots \Delta(E_{j_n}))) \\
&= \xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(\sum_{1 \leq p \leq n} E_{j_1} \cdots E_{j_{p-1}} K_{j_p} E_{j_{p+1}} \cdots E_{j_n} E_{j_p}) \\
&= \sum_{1 \leq p \leq n} \delta_{i_{m-1}, j_p} \xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(E_{j_1} \cdots \hat{E}_{j_p} \cdots E_{j_n} E_{j_p}).
\end{align*}
\]

By the hypothesis of induction, if \(\{i_1, \ldots, i_{m-1}\} \neq \{j_1, \ldots, j_{p-1} j_p + 1, \ldots, j_n\} \), then
\[
\xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(E_{j_1} \cdots \hat{E}_{j_p} \cdots E_{j_n}) = 0.
\]

We consider the pair \((i'j')\) satisfying that \((i'j') < (ij)\) and that there is no pair \((i''j'')\) with \((i'j') < (i''j'') < (ij)\). It follows that
\[
\begin{align*}
\xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(E_{i_1} \cdots E_{i_j}) &= 0, \tag{1} \\
\xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(E_{i_1} E_{i_3} \cdots E_{i_j}) &= 0 \tag{2}.
\end{align*}
\]

In fact, \(\xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(E_{i_1} \cdots E_{i_j})\) and \(\xi_{i_1} \xi_{i_2} \cdots \xi_{i_{m-1}}(E_{i_1} E_{i_3} \cdots E_{i_j})\) are \(C\)-linear combinations of the elements in (**).

We note that
\[
\Delta(E_{ij}) = E_{ij} \otimes 1 + (1 - \zeta^2) \sum_{i < k < j} K_{ik} E_{kj} \otimes E_{ik} + K_{ij} \otimes E_{ij},
\]
\[
\Delta(\xi_{ij}) = \xi_{ij} \otimes \eta_{ij}^{-1} + (1 - \zeta^2) \sum_{i < k < j} \xi_{ik} \otimes \eta_{ik}^{-1} \xi_{kj} + 1 \otimes \xi_{ij}.
\]

From these facts, it follows that if \(m_x > n_x \) and for any \(\beta \) with \(E_x < E_{\beta} \), \(m_\beta = 0 \) or \(n_\beta = 0 \), then
\[
\left(\prod_{x \in \Pi_+} \xi_x^{n_x} \eta_x \right) \left(\prod_{x \in \Pi_+} E_x^{m_x} K_v \right) = Y_{\xi_x^{n_x} \otimes \eta_x}(X E_x^{m_x} \otimes 1)(K_v \otimes K_v)
\]
universal elements for quantum group $U_q(sl(N+1,C))$,

$$= Y\zeta_{\alpha x}^{n_x}(X E_x^{m_x} K_x) \eta_w(K_v)$$

$$= Y\zeta_{\alpha x}^{n_x}(X E_x^{m_x}) \eta_w(K_v),$$

where $X = \Pi_x E_x E_x^{m_x}$ and $Y = \Pi_x E_x^{\xi x}$. By the equality $K_{ij} E_{ij} = \zeta E_{ij} K_{ij}$, we obtain

$$Y\zeta_{\alpha x}^{n_x}(X E_x^{m_x})$$

$$= Y\zeta_{\alpha x}^{n_x-1} \otimes \zeta((X \otimes 1) \Delta(E_x)^{m_x})$$

$$= Y\zeta_{\alpha x}^{n_x-1}(X E_x^{m_x-1}) \zeta(E_x)[m_x]$$

$$= \prod_{\alpha \in \Pi_+} \delta_{m_a n_a x}(E_x)^{m_w}[m_x],$$

where $[m] = \frac{\zeta^m-1}{\zeta-1}$. Here we have used the formula (\ast). Similarly, for $m_a < n_a$, the similar equality holds. Thus, we compute

$$\left(\prod_{\alpha \in \Pi_+} \zeta_{\alpha x}^{n_x} \eta_w \right) \left(\prod_{\alpha \in \Pi_+} E_x^{m_x} K_x \right) = \prod_{\alpha \in \Pi_+} \delta_{m_a n_a x}(E_x)^{m_w}[m_x] \zeta^{(v,w)}.$$

It follows that any element $\Pi_{\alpha \in \Pi_+} \zeta_{\alpha x}^{n_x} \eta_w$ is zero on ϕ_{ij}, $1 \leq i \neq j \leq N$, E_x^{ij}, $1 \leq i < j \leq N+1$, K_{ij}, $1 \leq i \leq N$, and Λ^{a-1}, and from the triangular decomposition of U_q, ϕ is well-defined.

Moreover, the elements ξ_{ij} and η_i^{\pm} satisfy the following relations:

1. $\eta_i \eta_j = \eta_j \eta_i$, $\eta_i^{-1} \eta_i = \eta_i^{-1} = \varepsilon_i$, (2.1)
2. $\eta_i \xi_j = \varepsilon^{-1}(\xi_{ij}) \xi_j \eta_i$, (2.2)
3. $\xi_i \xi_j = (\xi + \xi^{-1}) \xi_i \xi_j + \xi_i \xi_j = 0$ (for $i = j = 1$), (2.3)
4. $\xi_i \xi_j = \xi_j \xi_i$ (for $i = j \geq 2$), (2.4)
5. $\xi_i^{1} = 0$, (2.5)
6. $\eta_i^{1} = \varepsilon_i \left(\prod_{j=1}^{N} \eta_i^{a} \right)^a = \varepsilon_i$, (2.6)
7. $\Delta(\xi_i) = \xi_i \otimes \eta_i^{-1} + 1 \otimes \xi_i \Delta(\eta_i^{1}) = \eta_i^{1} \otimes \eta_i^{1}$, (2.7)
8. $e(\xi_i) = 0$, $e(\eta_i^{1}) = 1$, (2.8)
9. $S(\xi_i) = -\xi_i \eta_i$, $S(\eta_i^{1}) = \eta_i^{1}$. (2.9)

One can prove these formulas by easy computations. In the following, we show only the formulas (2.2), (2.5), (2.6) and (2.7). For (2.2), $\eta_i \xi_i$ is non-zero only on $E_x K_x$.
where its value is \(\zeta^{(\Lambda, \omega)} b \zeta^{(\Lambda, \omega)} \) and \(\xi_{i} \) is non-zero only on \(E_{j} K_{w} \) where its value is \(b \zeta^{(\Lambda, \omega)} \). For (2.5), it follows from the above equality that \(\zeta^{(\Lambda, \omega)} (\Pi_{a \in \Pi,} E_{a}^{m_{a}} K_{w}) = 0 \). For (2.6), \((\Pi_{j=1}^{N} \eta_{i})^{a} \) is non-zero only on \(K_{v} \). We have that for \(1 \leq p \leq N \), \((\Pi_{j=1}^{N} \eta_{i})^{a}(K_{p}) = 1 \). In fact, by the definition of \(\eta_{i} \), we have
\[
\left(\prod_{j=1}^{N} \eta_{i} \right)^{a}(K_{p}) = \zeta^{(\Lambda, \omega)}(\sum_{j=1}^{N} \eta_{i}) = \zeta^{(N, \omega)(N+1)} = 1.
\]
For (2.7), \(\Delta(\xi_{i}) \) is non-zero only on \(E_{i} K_{v} \otimes K_{w} \) and \(K_{v} \otimes E_{i} K_{w} \) where their values are respectively \(b \zeta^{(\Lambda, \omega)} \) and \(b \). On the other hand, \(\xi_{i} \otimes \eta_{i} \) is non-zero only on \(E_{i} K_{v} \otimes K_{w} \) where its value is \(b \zeta^{(\Lambda, \omega)} \) and \(\eta_{i}^{-1} \otimes \xi_{i} \) is non-zero only on \(K_{v} \otimes E_{i} K_{w} \) where its value is \(b \). The map \(\phi \) is a Hopf algebra homomorphism.

Proposition 2.3. We define \(\Phi: U_{i}^{+} \times U_{i}^{-} \rightarrow \mathbb{C} \) by \(\Phi(x, y) = \phi(y)(x) \) for \((x, y) \in U_{i}^{+} \times U_{i}^{-} \). Then \(\Phi \) is non-degenerate. Moreover, \(\{ \Pi_{a \in \Pi,} E_{a}^{m_{a}} K_{v}(m_{a}) \in I, (v_{i}) \in J \} \) in proposition 2.1 is a \(\mathbb{C} \)-basis of \(U_{i}^{+} \) and the Hopf algebra homomorphism \(\phi \) is an isomorphism.

Proof. By the discussion in the proof of Proposition 2.2, it follows that
\[
\Phi \left(\prod_{a \in \Pi} E_{a}^{m_{a}} K_{v} \prod_{a \in \Pi} F_{a}^{n_{a}} K_{w} \right) = \prod_{a \in \Pi} \delta_{m_{a}, n_{a}} \zeta^{(E_{a})^{m_{a}}[m_{a}]_{\zeta}^{(\ell, w)}},
\]
where \([m] = \frac{\ell_{m} - 1}{2} \), and \([m]! = [m][m-1] \cdots [1] \).

For \(v, w \in P \), we put
\[
h_{v-w} = \sum_{\mu \in P} \zeta^{(\mu, v-w)}
\]
and
\[
u-w = x_{1} \alpha_{1} + \cdots + x_{N-1} \alpha_{N-1} x_{N} (x_{i}) = (v_{i}) - (w_{i}), (v_{i}) \in J.
\]
We have that
\[
h_{v-w} = \sum_{\substack{0 \leq u_{1}, \ldots, u_{N-1} \leq r-1 \leq r-1 \leq a-1 \leq a-1}} \zeta^{(\ell_{a})^{u_{1}+2x_{1}-x_{1}+1}} \left(\prod_{i=1}^{N-1} \sum_{u_{i}=0}^{r_{u_{i}}(-x_{i-1}+2x_{i}-x_{i})} \right) = \left(\prod_{i=1}^{N-1} \sum_{u_{i}=0}^{r_{u_{i}}(-x_{i-1}+2x_{i}-x_{i})} \right) \zeta^{(\ell_{a})^{u_{1}+2x_{1}-x_{1}+1}}.
\]
We assume \(h_{v-w} \neq 0 \). Then \(\Pi_{i=1}^{N-1} \sum_{u_{i}=0}^{r_{u_{i}}(-x_{i-1}+2x_{i}-x_{i})} \neq 0 \). Hence we have that
\[-x_{i-1}+2x_{i}-x_{i+1} \equiv 0 \pmod{r}, 2 \leq i \leq N-1 \text{ and } x_{2} \equiv 2x_{1} \pmod{r}.
\]
So, it follows that
\[x_{i+1} = 2x_i - x_{i-1} = 2ix_1 - (i-1)x_1 \equiv (i+1)x_1 \pmod{r}. \]

Thus we obtain \(x_i \equiv ix_1 \pmod{r}, 1 \leq i \leq N \). From the equality

\[
\sum_{u_N=0}^{a-1} \xi^u x_{N-1} + 2x_N = \sum_{u_N=0}^{a-1} \xi^u x_{N+1} + x_1 \neq 0,
\]

we obtain that \(x_1 \equiv 0 \pmod{a} \), noting that \(\xi^a \) is a primitive \(a \)-th root unity. While \(x_N \equiv N x_1 \pmod{r} \) and \(ad = r \), we have that \(x_N \equiv 0 \pmod{a} \). As \(|x_N| < a \), it follows that \(x_N = 0 \). From the formulas \(x_i \equiv ix_1 \pmod{r} \) and \(x_i = 0 \pmod{a} \), we have that \(-x_{N-1} + 2x_N = (N+1)x_1 = 0 \pmod{r} \) and so \(x_{N-1} = 2x_N \pmod{r} \). From the equality \(x_{i-1} = 2x_i - x_{i+1} \pmod{r} \), by induction, we have that \(x_i \equiv (N-i+1)x_N = 0 \pmod{r} \). As \(|x_i| < r \) for \(1 \leq i \leq N-1 \), we obtain that \(x_i = 0 \) for \(1 \leq i \leq N-1 \). Thus we obtain that \(h_{v-w} \neq 0 \) if and only if \(v = w \). Let \(L = |J| \), and then

\[
\Phi \left(\frac{1}{L} \sum_{e \in \Pi^+} \xi^{(v,w)} K_{w} K_{v} \right) = \delta_{vw}.
\]

For \(m = (m_{\alpha})_{\alpha \in \Pi^+} \), we put

\[
c_m = \prod_{\alpha \in \Pi^+} \left(\frac{1}{\xi - \xi^{-1}(-\xi)^{ht(\alpha)-1}} \right)^{m_{\alpha}} [m_*]!
\]

where \(c_m \) is non-zero. From the above discussion,

\[
\left\{ \frac{1}{L} \sum_{e \in \Pi^+} \xi^{(v,w)} \prod_{\alpha \in \Pi^+} E_{\alpha}^{m_{\alpha}} K_{v} \right\}_{(m_{\alpha})_{\alpha \in \Pi^+}} = \left\{ \prod_{\alpha \in \Pi^+} F_{\alpha}^{m_{\alpha}} K_{w} \right\}_{(m_{\alpha})_{\alpha \in \Pi^+}}
\]

is a basis for \(U_{\xi^+} \) and \(U_{\xi^-} \), and they are orthonormal for the pairing \(\Phi \). Thus \(\Phi \) is non-degenerate and \(\left\{ \prod_{\alpha \in \Pi^+} E_{\alpha}^{m_{\alpha}} K_{v} \right\}_{(m_{\alpha})_{\alpha \in \Pi^+}} \) is a \(\mathcal{C} \)-basis of \(U_{\xi^+} \), by Proposition 2.1. From the definition of \(\Phi \), the homomorphism \(\varphi \) is an isomorphism.

Now we apply the quantum double construction to the Hopf algebra \(U_{\xi^+} \). By the definition of the multiplication of the quantum double, one can derive the following Lemma.

Lemma 2.4. Let \(e_i = E_i \otimes 1 \), \(k_i^+ = K_i^+ \otimes 1 \), \(f_i = 1 \otimes \varphi(F_i) \), and \(h_i^\pm = 1 \otimes \varphi(K_i^\pm) \) in the quantum double \(D(U_{\xi^+}) \). These elements satisfy the following commutation relations:

1. \(k_i h_j = h_j k_i k_i^{-1} h_i = k_i^{-1} h_i = 1 \)
2. \(h_i e_j = \xi^{(t_i, s_j)} e_j h_i k_i f_j = \xi^{-(t_i, s_j)} f_j k_i \)
978 T. TAKATA

(3) \[[e_i f_j] = \delta_{i j} \frac{k_i - h_i^{-1}}{\zeta - \zeta^{-1}}. \] (2.13)

Proof. For (2.13), we have

\[f j [\xi_j] = S(\xi_j) (e_i f_j) = f_j [\xi_j] S(\xi_j) (1) + S(1) (f_j) [\xi_j] = \delta_{ij} \frac{k_i}{\zeta - \zeta^{-1}} + e_i f_j - \delta_{ij} \frac{k_i}{\zeta - \zeta^{-1}}, \]

where \[\xi_j = \varphi(F_j) \] and \(\eta_i = \varphi(K_i) \). The other relations are also immediately obtained.

The Hopf algebra structure on \(D(U_\zeta^+) \) induces the one on \(U_\zeta^+ \).

Proposition 2.5. Let us define a map \(\psi : D(U_\zeta^+) \to U_\zeta^+ \) by \(\psi(x \otimes y) = x \varphi^{-1}(y) \) \(\psi(x \otimes y) = x \varphi^{-1}(y) \) for \(x \otimes y \in U_\zeta^+ \otimes (U_\zeta^+)^* \cong D(U_\zeta^+) \). Then the map \(\psi \) is a Hopf algebra epimorphism.

Proof. Comparing Lemma 2.4 with the commutation relations between \(E_i, F_i \) and \(K_i, 1 \leq i \leq N \), one can easily show that \(\psi \) is an algebra homomorphism. From the fact that \(\varphi^{-1} \) is a Hopf algebra isomorphism, due to the Hopf algebra structure of \(D(U_\zeta^+) \), it follows that \(\psi \) is a Hopf algebra homomorphism. The surjectivity of \(\psi \) follows from the fact that any element \(X_1 \cdots X_p, X_i \in \{ E_i, F_i, K_i \}, 1 \leq i \leq N \) is written as a \(C \)-linear combination of the elements \(X_\zeta Y_\zeta, X_\zeta, Y_\zeta \in U_\zeta^+ \), \(Y_\zeta \in U_\zeta^- \), using the relations (1.4) and (1.5).

Now, we obtain an explicit formula for a universal \(R \) of \(U_\zeta \), as the image of the universal \(R \) of \(D(U_\zeta^+) \) under \(\psi \otimes \psi \).

Theorem 2.6. A universal \(R \)-matrix for \(U_\zeta \) is given by

\[R = \frac{1}{[c_m]} \sum_{(m_a)_{a \in \Pi^+}, 0 \leq m_a < \bar{r}} \frac{1}{c_m} \prod_{a \in \Pi^+} E_a^{m_a} K_a \otimes \prod_{a \in \Pi^+} F_a^{m_a} K_a, \] (2.14)

where

\[I = \{(m_a)_{a \in \Pi^+}, 0 \leq m_a < \bar{r} \}, \]
\[J = \{(v_i)_{1 \leq i \leq N}, 0 \leq v_p < r_p = 1, \cdots, N - 1, 0 \leq v_N < a \}, \]
\[L = r^{-1}a, \]
\[c_m = \prod_{a \in \Pi^+} \left(-\frac{1}{\zeta - \zeta^{-1}}(\zeta^{-1} - 1) \right)^{m_a} \] for \(m = (m_a)_{a \in \Pi^+} \).
Proof. Since the universal R of $D(U_q)$ satisfies (1.1) and (1.2), and ψ is a Hopf algebra epimorphism, R also satisfies (1.1) and (1.2).

3. Results from the universal R-matrix for U_q

We recall how one can obtain tangle operators from representations of the quasitriangulra Hopf algebra (U_q, R), where R is the universal R-matrix for U_q in the previous section [13].

For non negative integers k and l, a (k,l)-tangle T is a smooth 1-manifold in $R^2 \times [0,1]$ such that its boundary $\partial T = \{(i,0,0)|1 \leq i \leq k\} \cup \{(j,0,1)|1 \leq j \leq l\}$. We put $\partial T_+ = \{(i,0,0)|0 \leq i \leq k\}$ and $\partial T_- = \{(j,0,1)|1 \leq j \leq l\}$. All tangles are assumed to be oriented.

It is well-known that every tangle diagram can be reconstructed from the elementary diagrams in Fig.3.1, using the composition \circ (when defined) and the tensor product \otimes in the Fig.3.2.

A coloring of a tangle T is defined to be an assignment of a U_q-module to each component of T. According to a coloring, we assign U_q-modules T_\pm to ∂T_\pm as follows: if an arc S of T has a color V, then to each boundary point in $R^2 \times \{0,1\}$ associate V if the orientation is downwards and associate V^* if it is upwards. Then the U_q-module T_+ (resp. T_-) is the tensor product from left to right of the U_q-modules associated to ∂T_+ (resp. ∂T_-). By convention, $T_\pm = \mathbb{C}$ if T is a link.

In this paper, we consider the following family of irreducible representations of U_q with $\bar{r} = K + N + 1$ for a positive integer K. Let $\alpha_1, \ldots, \alpha_N$ be the simple roots of $\mathfrak{sl}(N + 1, \mathbb{C})$ and we put

$$P_+(K) = \{ \lambda \in \mathfrak{h}^*| (\lambda, \alpha_i) \in \mathbb{Z}, 0 \leq (\lambda, \alpha_i), i = 1, \ldots, N, 0 \leq (\lambda, \theta) \leq K \},$$

where θ is the longest root, \mathfrak{h} is the Cartan subalgebra of $\mathfrak{sl}(N + 1, \mathbb{C})$. Let $\lambda_1, \ldots, \lambda_N$ be the fundamental dominant integral weight: each λ_i satisfies $(\lambda_i, \alpha_j) = \delta_{ij}$ for any α_j. We see that $\lambda = \sum_{i=1}^N m_i \lambda_i$ for integers m_1, \ldots, m_N. For each $\lambda \in P_+(K)$, there exists an irreducible highest weight module V_λ of U_q with highest weight λ and

![elementary diagrams](Fig. 3.1)

![elementary diagrams](Fig. 3.2)
highest weight vector e_λ such that
\[N_+ e_\lambda = 0, \quad V_\lambda = N_- e_\lambda, \quad K \rho e_\lambda = ^{\rho(\lambda,\nu)} e_\lambda. \]
Here N_+ is the subalgebra of U_ζ generated by E_i, $1 \leq i \leq N$ and N_- is the subalgebra of U_ζ generated by F_i, $1 \leq i \leq N$.

Let T be a colored tangle such that each color of a component of T is contained in the set \(\{ V_\lambda | \lambda \in P_+(K) \} \). When S_1, \cdots, S_n are the components of T, a coloring of T can be viewed as the map \(\{1, \cdots, n\} \to P_+(K) \). As is shown in [13], there exists a U_ζ-linear map $F_T: T_- \to T_+$ such that it satisfies $F_{T'T'} = F_T \circ F_{T'}$ and $F_{T \otimes T} = F_T \otimes F_T$, and for elementary diagrams,
\[F_{\downarrow} = \text{id}_{V_\lambda}, \quad F_{\downarrow} = \text{id}_{V_\lambda}, \]
\[F_{\chi}(x \otimes y) = \sum_k \beta_k y \otimes \alpha_k x, \quad \text{where} \quad R = \sum_k x_k \otimes \beta_k, \]
\[F_{\chi}(x \otimes y) = \sum_k \beta_k y \otimes \alpha_k x, \quad \text{where} \quad R^{-1} = \sum_k x_k \otimes \beta_k, \]
\[F_{\chi}(f \otimes x) = f(x), \quad F_{\chi}(x \otimes f) = f(K_{\rho}^{-1} x), \]
where $K_\rho = \Pi_{\rho \in P_+} K_\rho$. If L is a colored oriented link with coloring ν, F_L is a scalar map. We denote this scalar by $J(L, \nu)$.

In the following proposition, using the explicit formula (2.14) of the universal R for U_ζ, we shall compute two values, which are essential in the construction of 3-manifold invariants. We put $q = \xi^2$.

Proposition 3.1. (1) Let $H_{\lambda \mu}$ be a colored Hopf link such that the colors of the two components are V_λ and V_μ drawn in Fig. 3.3. Then we have
\[\lambda \quad \text{Fig. 3.3} \]
\[\mu \quad \text{Fig. 3.4} \]
\[= \exp 2\pi \sqrt{-1} \Delta \lambda \]
where ρ is half the sum of positive roots and W is the Weyl group.

(2) Let T be a colored $(1,1)$-tangle such that the one component has a color V_λ in Fig.3.4. Then F_T is the multiplication by $\exp 2\pi i/\Delta_\lambda$, where $\Delta_\lambda = (\lambda, \lambda + 2\rho)$.

Proof. (1) We consider the colored $(1,1)$-tangle in Fig.3.5. Since V_λ is irreducible, F_T is a scalar map. We denote this scalar by $b_{\lambda\mu}$. To compute $b_{\lambda\mu}$, it is enough to evaluate $F_T(e_\lambda)$ for the highest weight vector e_λ. If $R = \Sigma a_k \otimes \beta_k$, then we see $R^{-1} = (\text{id} \otimes S)(R)$. From the definitions of tangle operators, one can obtain

$$F_T(e_\lambda) = b_{\lambda\mu} e_\lambda = \sum_{k,l} S(\beta_k) \alpha_k \text{Tr}_\mu (K_\rho^{-1} \alpha_k S(\beta_l)) e_\lambda.$$

By the formula (2.14), one has

$$b_{\lambda\mu} e_\lambda = \frac{1}{L^2} \sum_{(m_a)(n_a) \in J} S \left(\prod_{a \in \Pi^+} F_a^{n_a} K_w \right) \left(\prod_{a \in \Pi^+} F_a^{m_a} K_u \right) \text{Tr}_\mu \left(K_\rho^{-1} \prod_{a \in \Pi^+} E_a^{n_a} K_u \cdot \left(\prod_{a \in \Pi^+} F_a^{m_a} K_v \right) \right) e_\lambda.$$

Since e_λ is the highest weight vector, the only terms with $m_a = n_a = 0$ for any $\alpha \in \Pi^+$ are non zero. Thus one can get

$$b_{\lambda\mu} e_\lambda = \frac{1}{L^2} \sum_{(m_a)(n_a) \in J} K_w^{-1} r(\nu, \omega) K_u \text{Tr}_\mu (K_\rho^{-1} r(\nu, \omega) K_v K_v^{-1}) e_\lambda$$

$$= \frac{1}{L^2} \sum_{(m_a)(n_a) \in J} r(\nu, \omega) r(\nu, \lambda) \text{Tr}_\mu (K_\rho^{-1} r(\nu, \omega) K_v K_v^{-1}) e_\lambda.$$

Noting that $\Sigma_{(u,\nu) \in J} r(\nu, \nu - \nu) \neq 0$ if and only if $\nu = \nu$, we can compute

$$b_{\lambda\mu} e_\lambda = \frac{1}{L} \sum_{(m_a)(n_a) \in J} r(\nu, \lambda) \text{Tr}_\mu (K_\rho^{-1} r(\nu, \omega) K_v K_v^{-1}) e_\lambda$$

$$= \sum_{m_a} r(\nu, \lambda) r(\nu, \nu) e_\lambda$$

$$= \sum_{m_a} \delta(\lambda + \rho, \nu) e_\lambda.$$
where \{\mu_j\} is the set of weights of \(V_\mu \) with multiplicity and \(\xi^2 = q \). It follows from the character formula of Weyl (see for example [10]) that

\[
\mathbf{b}_\lambda = \frac{\sum_{w \in W} (\det w) q^{(\lambda, \mu + \rho + w(\mu + \rho))}}{\sum_{w \in W} (\det w) q^{(\lambda + \rho, w(\rho))}}.
\]

Let \(L_\lambda \) be a colored unknot with a color \(\lambda \) in Fig. 3.6. Then we see

\[
J(L_\lambda) = \frac{\sum_{w \in W} (\det w) q^{(\lambda + \rho, w(\rho))}}{\sum_{w \in W} (\det w) q^{(\rho, w(\rho))}},
\]

which is called the quantum dimension of \(V_\lambda \) and we write it by \(\dim_q V_\lambda \). Since \(J(H_{\lambda \mu}) = \mathbf{b}_\lambda \dim_q V_\lambda \) according to [13, Lemma 2.6], the formula (3.1) holds.

(2) As the representation \(V_\lambda \) is irreducible, the tangle operator \(F_\tau \) is a scalar map. We denote this scalar by \(v_\lambda \). To compute \(v_\lambda \), it is enough to evaluate \(F_\tau(e_\lambda) \) for the highest weight vector \(e_\lambda \) of \(V_\lambda \). When \(R = \sum_{k} \otimes_\beta_k \), one can see

\[
F_\tau(e_\lambda) = \alpha_\lambda K_\rho e^\lambda(\beta_\lambda e_\lambda) e_\lambda.
\]

From computations similar to the one made in the proof of (1), it follows that

\[
v_\lambda e_\lambda = \frac{1}{L(v)} \sum_{(v,w) \in J} \xi^{(v,w)} K_\rho e_\lambda(\xi K_\rho e_\lambda) e_\lambda
\]

\[
= \frac{1}{L(v)} \sum_{(v,w) \in J} \xi^{(v,w)} \xi^{(v,\lambda)} \xi^{(\lambda + \rho, \lambda)} e_\lambda(\xi \xi e_\lambda)
\]

\[
= \xi^{(\lambda, \lambda)} \xi^{(\lambda + \rho, \lambda)} e_\lambda
\]

\[
= q^{(\lambda, \lambda + 2\rho)} e_\lambda
\]

Thus the claim holds.
Let $S = (S_{\lambda \mu})$ be the so-called S-matrix due to Kac [7], which is given by

$$S_{\lambda \mu} = \sqrt{-\frac{1}{N(N+1)/2}} \sum_{w \in W} (\det w) \overline{q}^{\lambda + \rho, w(\mu + \rho)}.$$ \hfill (3.2)

Comparing (3.1) with (3.2), one easily sees that $S_{\lambda \mu} = S_{\lambda 0} b_{\lambda \mu}$.

By the discussion in [9], for any closed oriented connected 3-manifold M,

$$Z_\sigma(M) = C^{\sigma} \sum_{\text{col}(L)} S_{0v(L)} \cdots S_{0v(n)} I(L, v)$$

is a topological invariant of M, where $C = (\exp 2\pi \sqrt{-1})^{-\frac{3}{2}}$, $c = \frac{K \dim \mathfrak{sl}(N+1, \mathbb{C})}{L}$, L is a framed link with n components such that M is obtained by Dehn surgery of S^3 along L, σ is the signature of the linking matrix of L, and $\text{col}(L)$ means the set of colorings of L.

We denote by $\text{Rep}(\mathfrak{sl}(N+1, \mathbb{C}))$ the representation ring of $\mathfrak{sl}(N+1, \mathbb{C})$. It is well-known that the representations of $\mathfrak{sl}(N+1, \mathbb{C})$ with fundamental weight λ_i, $1 \leq i \leq N$, generate $\text{Rep}(\mathfrak{sl}(N+1, \mathbb{C}))$. We put $\partial P_+(K) = P_+(K+1) \setminus P_+(K)$. Let I_K be the ideal of $\text{Rep}(\mathfrak{sl}(N+1, \mathbb{C}))$ generated by the representations W_{λ}, $\lambda \in \partial P_+(K)$. We put $R_K = \text{Rep}(\mathfrak{sl}(N+1, \mathbb{C}))/I_K$.

In [4], Goodman-Wenzl showed that the algebra R_K is a free \mathbb{Z}-module with basis w_{λ} corresponding to $\lambda \in P_+(K)$ and that

$$w_{\lambda} \cdot w_{\mu} = \sum_{\nu} N_{\lambda \mu}^{\nu} w_{\nu},$$

for non-negative integers $N_{\lambda \mu}^{\nu}$, which are called the fusion rule.

In $\text{Rep}(U_q)$, the irreducible representation V_{λ}, $\lambda \in P_+(K)$, can be written as a formal sum of monomials in the fundamental representations V_{λ_i}, $1 \leq i \leq N$ such that the monomials are in the span of $\{V_{\omega} \mid \omega \in P_+(K)\}$. This follows from the induction on the lexicographic order of Young diagrams, applying Littlewood-Richardson rule to the decomposition of the tensor products of V_{λ} and V_{λ_i}. Using the formal expressions, we can obtain the decomposition $V_{\lambda} \otimes V_{\mu} = \sum_{\nu} n_{\lambda \mu}^{\nu} V_{\nu} + Z_{\lambda \mu}$ for λ, μ, where $n_{\lambda \mu}^{\nu}$ are integers and $Z_{\lambda \mu}$ is contained in the ideal generated by the irreducible representations V_{ω} for $\omega \in \partial P_+(K)$. Since in decomposing tensor products of the fundamental representations and V_{λ}, $\lambda \in P_+(K)$, we can apply Littlewood-Richardson rule, in a way similar to the proof in Lemma 3.1 in [4], we get $n_{\lambda \mu}^{\nu} = N_{\lambda \mu}^{\nu}$. It follows that for $\lambda, \nu \in P_+(K)$,

$$V_{\lambda} \otimes V_{\mu} = \sum_{\nu \in P_+(K)} N_{\lambda \mu}^{\nu} V_{\nu} + Z_{\lambda \mu}. \hfill (3.3)$$

We recall that the quantum dimension means the trace of the representation matrix.
of K_ω and denote the quantum dimension of U_ζ module by $\dim_q V$. One can extend the definition of the quantum dimension to a C-linear map from $\text{Rep}(U_\zeta)$ to C. As the quantum dimension of V_ω for $\omega \in P_+(K)$, is equal to 0 from the equality $[\bar{f}] = 0$ (also see [3]), that of the tensor product of V_ω and any representation of U_ζ is also equal to 0. From these two facts, the extended quantum dimension of $Z_{\lambda\mu}$ is 0.

Remark. It is shown in [1] that for λ, μ, we have a decomposition

$$V_\lambda \otimes V_\mu = \bigoplus (M_{\lambda\mu} \otimes V_\lambda) \oplus Z_{\lambda\mu},$$

where the dimension of C-module $M_{\lambda\mu}$ is equal to $N_{\lambda\mu}$ and the quantum dimension of $Z_{\lambda\mu}$ is 0. Although, we don't need the fact.

As is shown in [13] for $sl(2,C)$ by Reshetikhin and Turaev, we extend $Z_\zeta(M)$ to $Z_\zeta(M,T)$ for M which contains a colored framed link L. Let T be a colored framed link in S^3 and we suppose that M is obtained by Dehn surgery on L. Then we think of $T \cup L$ as a framed link in S^3, and we put

$$Z_\zeta(M,T) = C^* \sum_{\text{vec}(L)} S_{0v(1)} \cdots S_{0v(n)} I(L \cup T,v).$$

From the above observation, one can get Verlinde's formula for the fusion algebra R_ζ with the fusion rule due to Goodman-Wenzl.

Proposition 3.2. The S-matrix $(S_{\lambda\mu})_{\lambda,\mu \in P_+(K)}$ and the fusion rule $N^*_{\lambda\mu}$ satisfy Verlinde's formula:

$$N^*_{\lambda\mu} = \sum_{\nu \in P_+(K)} \frac{S_{\lambda\nu} S_{\mu\nu} S^*_{\nu\nu}}{S_{0\nu}},$$

![Fig. 3.7](image1.png)
![Fig. 3.8](image2.png)
where for \(\lambda, \mu \in P_+(K) \),

\[
S_{\lambda \mu} = \frac{-1^{(N+1)/2}}{\sqrt{(N+1)^2}} \sum_{w \in W} (\det w) \hat{q}^{(\lambda, w(\mu, \mu))}.
\]

Proof. Let us consider \(S^2 \times S^1 \) containing the 3-component link \(L_{\lambda \mu \nu} \) with colors \(\lambda, \mu, \nu \) as drawn in Fig.3.7, where for the longest element \(w_0 \) in the Weyl group, \(\lambda^* = -w_0(\lambda) \). Let \(L \) be an unknotted circle with the zero framing which links \(L_{\lambda \mu \nu} \) as drawn in Fig.3.8. By the Dehn surgery on \(S^3 \) along the circle \(L \), one can obtain \((S^2 \times S^1, L_{\lambda \mu \nu}) \). In a way similar to the proof in [16, §3], we prove the assertion, evaluating \(Z_r(S^2 \times S^1, L_{\lambda \mu \nu}) \) in two ways.

We note that for \(\lambda \in \partial P_+(K) \), \(V_\lambda \) is irreducible and the quantum dimension \(\dim_q V_\lambda = 0 \), and that a colored link with a component assigned with the tensor product of \(V_{\omega} \), \(\omega \in \partial P_+(K) \) and the fundamental representations can be regarded as a colored link with a component assigned \(V_{\omega} \), \(\omega \in \partial P_+(K) \). Then, by the formula (3.3) and the unitarity of the S-matrix \((S_{\lambda \mu}) \) [7], we can compute

\[
Z_r(S^2 \times S^1, L_{\lambda \mu \nu}) = \sum_{\epsilon \in P_+(K)} S_{\epsilon 0}\left(\sum_{\epsilon' \in P_+(K)} \frac{S_{\epsilon \epsilon'} S_{\epsilon' \nu}}{S_{\epsilon 0} S_{00}} N_{\lambda \mu}^{\epsilon'} \right)
\]

\[
= \sum_{\epsilon' \in P_+(K)} N_{\lambda \mu}^{\epsilon'} \left(\frac{1}{S_{00}} \delta_{\epsilon' \nu} \right)
\]

\[
= \frac{1}{S_{00} N_{\lambda \mu}^{\epsilon}}.
\]

On the other hand, a link \(L_{\lambda \mu \nu} \cup L \) can be regarded as the result of connecting 3 Hopf links in a way analogous to the proof in [16], and so we can directly compute from Proposition 3.1 (1)

\[
Z_r(S^2 \times S^1, L_{\lambda \mu \nu}) = \frac{1}{S_{00}} \sum_{\epsilon} S_{\lambda \mu}^\epsilon S_{\mu \nu}^\epsilon S_{\lambda \nu}^\epsilon.
\]

Thus the claim follows from the comparison of these two evaluations.

References

