<table>
<thead>
<tr>
<th>Title</th>
<th>Errata to "Growth of equivariant harmonic maps and harmonic morphisms"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kasue, Atsushi; Washio, Takumi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1992, 29(1), p. 419-420</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9059</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
ERRATA TO
“GROWTH OF EQUIVARIANT HARMONIC MAPS
AND HARMONIC MORPHISMS”

ATSUSHI KASUE and TAKUMI WASHIO

This Journal, vol. 27 (1990), 899–928
(Received September 2, 1991)

1. The first condition (1) of Theorem 3.2 (p.923) should be corrected as follows:
 (1) The Ricci curvature Ricci_M of M satisfies
 \[(0 \leq) \text{Ricci}_M \leq \frac{c_1}{r_M^2} \]
 for some constant $c_1 > 0$, and moreover the injectivity radius $\text{inj}_M(x)$ of M grows at
 least linearly, namely,
 \[\text{inj}_M(x) \geq c_2 r_M(x) \]
 for some constant $c_2 > 0$.

2. Correspondingly the second remark just after Theorem 3.2 should be read
 as follows:
 (2) In Theorem 3.2, we can replace condition (1) with the following:
 (1)' The sectional curvature K_M of M satisfies
 \[K_M \leq \frac{c_1}{r_M^2} \]
 for some constant $c_1 > 0$, and moreover M has the maximal volume growth, namely,
 \[\text{Vol}(B_M(t)) \geq c_2 t^m \]
 for some constant $c_2 > 0$, where $m=\dim M$.
 In fact, we can derive condition (3.2) from these conditions (3.1)' and
 (3.2)' together with the nonnegativity of the Ricci curvature of M (cf. [10]).

3. Finally, reference [10] should be replaced with the following:
References

Atsushi KASUE
Department of Mathematics
Osaka University
Toyonaka, Osaka 560/Japan

Takumi WASHIO
NEC Fuchu-Ryo
1–10, Nishin-cho Fuchu
Tokyo 183/Japan