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Introduction

In this thesis I willl conslider the asymptotic behavior of

solutions of the second order differential eguations
(1.1) (a(t)x")" + b(E)Fi(x)gi(x")x" + c(t)fa(x)ga(x') = e(t,x,x')
(1.2) (a(t)x")" + h(t,x,x') + c(t)f(x)g(x"'") = e{t,x,x")

where a(t), b(t), c(t), filx), g1(x"), g2(x') and g(x') are all
supposed positive, and xf,(x) > 0 for x # 0. The problems
treated are about the boundedness of solutions and the attractivity
property of the origin for these equations.

To begin with, we shall review results on the boundedness
problem for the equation (1.2). The conditions lim}/;xf(u)du = o
and liggj:yé%%edv = o gre generally assumed, fkﬁ+:xample in [2]7,
ES],]%6], (81, 091, [11], [19], [201, [21], [24] and so we will

make our observations under these conditions. In [19], J.S.W.

Wong and T.A.Burton considered the equation of the type x" +

c(t)f(x)g(x') = 0 . They assumed that c¢(t) is monotone and
1lim c(t) = ¢ > 0 . 1In later studies concerning equation (1.2),
Lo

several types of conditions on a(t) as well as c¢(t) were
considered. In [11], B.S.Lalli assumed that a'(t) > 0 and
lim a(t) = a > 0 , and that c¢'(t) < 0 and 1lim c(t) =c > O

+ >0 S
On the other hand, several authors tried to replace conditions

on a(t) by J[o lat(t)]dt < » . ( See [5], [11] and [24]. )
Furthermore in [6], S.H.Chang used. 0 < a; < a(t) and

«© 1
J[ ég%%%:dt < «© in place of these conditions where a'(t).=
0



max{0,-a'(t)}. - He showed also that if a'(t) > 0 and if

1im a(t) = a > 0 , then the condition "c(t) is monotone and
00 ‘

lim c(t) = ¢ > 0 " can be replaced by "0 < ¢; < c(t) and
{00 :

o0 1 :
jr 9——(Elﬂ:-dt < o " where c¢'(t)4y=max{0,c'(t)}. Similarly in [8],
0 . .
J.R.Graef and P.W.Spikes made thelir arguments under the

L T at(t)- f e ()~
con31tlons 0 < a(t) < az,jz alEy dt < o and ~=E) dt <

(t) N
e , and in [2] J.W.Baker assumed J[ _ETETi dt < and
J[ EE%%%: dt < «» . This kind of conditions on a(t) and c(t)
will also be imposed in our studies.
In the recent paper [9], Graef and Spikes discussed the

boundedness of solutions of the eduation (1.2) under some other

conditions. Among them, a particular assumption was [e(t,x,y)[
|
< QLE%%T%%l for some M > 0. This has an advantage that
g 7
2&%%%7L31 may even diverge to « as t tends to «, but still

it contains some unsatisfactory limitations. One is that c'(t)
must be nonnegative, and the other is, when c¢(t) is independent
of t, the above inequality will imply that e(t,x,y) = 0. So,
in our studies on the boundedness of the solutions of (1.2),

one of the assumptions on e(t,x,y) will be Je(t,x,y)]

a(t)le'(8)] f‘” ‘ - (e
e () + ri(t) + ra(t)|y| and i r (t)dt < = (i=1,2),
while we don't assume c'(t) > O . Our result on the boundedness

of solutions is Theorem 2.1, and 1t is an improvement of the
result of Graef and Spikes.
Next we consider the attractivity property of the origin

for the equation (1.1). D.W.Bushaw showed the global asymptotic



stability of the zero solution of the system
(1.3) x'' =y, y'=-f(x,y) - gx)

where xg(x) > 0 for x # 0 and yf(x,y) >0 for y # 0 ,
+ co
under the extra condition that ./' g(x)dx = « ., Without
0 o
assuming this condition, T.A.Burton discussed the global

asymptotic stability for the systen

(1.4) x' =y, y'=-px)|yly-ex

where p(x) > 0 and 0 < o < 1 , and gave the following theorem.
Theorem ([3]). The zero solution of (1.4) is globally

asymptotically stable if and only if jrjm[p(x) + Jg(x)]Jdx =+ o

In addition, Burton obtained in [4] an extension of this theorem

for a more general system

(1.5) x! =.y >y = ~f(x)h(y)y - g(x) + e(t)

( See [7] also. ) Furthermoré‘for the system

(1.6) x'' =y, y'=-f(x)n(yly - g(x)k(y) + e(t) ,

t oo
J.W.Heidel proved in [10] that if ./,; [f(x) + |g(x)]|ldx = £
and if the function k(y) satisfies some conditions, then all
solutions of (1.6) cohverge to the origin as t tends to
In [1], J.W.Baker studied the convergence to zero of the
solutions along with their derivatives of the nonautonomous

second order differential equation

(a(t)x")" + p(t,x,x")x' + c(t)f(x) = e(t,x,x")



under the conditions that the functions a(t) and c¢(t) are
monotone and tend to some pdsitive constants as t tends to
Also, M.Yamamoto and the author studied in (1473, [15] and [231],
the convergence to zero of the solutions along with their
derivatives of the equation (1.1) without assuming these conditions.

In our papers, we assumed that 0 < b; < b(t) < bz,'le(t,x,y)]‘;

ri(t) + r,(t)|y| and the functions a;gz; ,‘C;gzg , ri(t) and

r,(t) are absolutely integrable on [0,»). In this case, we
. * _ b(%) * _c(t) ®
note that, if we put b (t) = =(t) ° c (t) NED) and e (t,x,y)

— ¥ ‘ »
= e(t’x’zzt? (t)y then the equation (1.1) is reduced to the

equation

X"+ b (E)E) (g (x)x’ + o (1) (x)ga(x) = e (t,x,x')

which is easier to study. b*(t); c*(t) ‘and e*(t,x,y) satisfy
the same conditions as for b(t), é(t) and e(t,x;y).

Thé main resuits of my study concerning the attractivity
property of the origin for the equation (1.1) are Theorem 3.1,
Theorem 3.15 and Theorem 3.16. In Theorem 3.1, a sufficient
condition for the cdnvergence to zero of all bounded solutions
i1s given. In Theorem 3.15 a necessary and sufficient condition
for the attractivity of the origin and in Th. 3.16 a necessary
and sufficient condition for the uniform attractivity are given.
These extend Burton's results for (1.5) to a wide class of
equations (1.1). In the course, by generalizing Heidel's
result, we proved Theorem 3.11. This is a consequence of

Lemma 1.10 which is a modification of LaSalle's theorem in [12].



In this theslis, I will give accounts of my works concerning
these problems. 1In the first section, I give basgic definitions
and fundamental lemmas which are used throughout. In section 2
I will discuss the boundedness of.solutions, and in section 3 the

attractivity.



1. Definitilons and Lemmas

Consider a differential equation
(L.7) x' = f£(t,x)

for t >0 and x e R?, where f:[0,o) x R2 - R2 is a continuous
function. x(t;t,,x,) will denote a solution of (1.7) through
Xob at t =t, and 0.l denote the Euclidean norm. Moreover
Q, means the i-th quadrant in R? (1 =1,2,3,4 ). Let U be a

set in R2. U 1is the closure of U and 3U the boundary of U.

Definition 1.1. the solutions of (1.7) are uniformly
bounded if for any o > 0, there exists B(a) > 0 such that

Ixoh < o and to > 0 imply UIx(t;toe,xo0)l < B(a) for t

v

to.

Definition 1.2. The origin is globally uniformly attractive
for (1.7) if for any a > 0 and any € > 0, there exists T(a,e)
> 0 such that lIx,l < a and t, > 0 imply Ix(t;ty,xe)l < €

for t > t, + T(a,e).

Definition 1.3. Let the equation (1.7) héve tﬁe zZero
solution. Then
(A) the zero solution of (1.7) is uniformly stable if for any
€ > 0, there exists &(e) > 0 such that fIx,l <6 and t, >0
imply Hx(t;to,xojﬂ < e for t > t,,

(B) in addition to (A), if the solutions are uniformly bounded



and if the origin is globally uniformly attractive, then the zero
solution of (1.7) is said to be globally uniform-asymptotically

stable.

In what follows, we shall use the notations a'(t)4 =

max{0,a'(t)} and a'(t)_ = max{0,-a'(t)}.

Lemma 1.4. Let a(t) Dbe a continuously differentiable,

positive function defined on [0,»).

_a'(t)—
0 a(t)
such that a,; < a(t) for ¢t

(ii) If Jfo a;(zg dt < » , then there exists a constant a, > 0
0.

(1) If dt < o , then there exists a constant a, > 0

1

0.

v

such that a(t) <a, for ¢

v

Proof. i Put a, = a(0)ex _J[ a'(s)-3s7. Then we

t_, '
have a(t) = a(exol [ "2{2)as] > a(0expl - [ 2L5) gal
o 0

oo'
> a(0 -fé—(§l:d]= for t > O.
> a(0)expl O a, for t >

(ii1) Put &g, = a(O)exp[./w §é£§%i.ds]. Then we have

a(t) < a(O)eVpFJ[ 9—%§lf ds ] < a(O)exp[Jf i_%é%i ds] = for

t > 0. Q.E.D.

Lemma 1.5. Let ¢(t) and r(t) be nonnegative, continuous

functions defined on [Q,») and let A > 0. If

t+v —etf ¥ es
lim sup ——j'¢(s)ds < X and if 1lim e .{ e r(s)ds = 0 for any
(tav)—}(oo,oo £ >0 0



e > 0, then every nonnegative function u(t) which satisfies the

differential inequality

(1.8) }u' < (—X + ¢(ﬁ))u + r(t) for £

v
o
(=]

converges to zero as 't tends to =

Proof. Let wu(t) be a nonnegative solution of (1.8) with
u(to)'= Ug. Since expl[-At +./;t¢(s)ds] is a fundamental
solution of the differential equation u' = (=X + ¢(t))u, we
obtain the following estimate according to the well known

comparison theorem,
t
u(t) < uoexpl-A(t-t0) + [ (s)ds]
. to

t _ ~t

+J[ r(s)expl-A(t-s) +./’ é(u)dulds
Tty S

for t > t,. From the assumption on ¢(t), there exist e € (0,a)

and T > t, such that

1 s+v :
(1.9) = ¢p(u)du < x-¢ for s > T and v > T.
- - -

t _ o
{ence ./~ $(u)du < (A-e)(t-T) for any ¢t > 2T. This implies
T

that for t,<s <T, t > 2T,

T t
A(s-s) + [ “p(wau < -A(t-T) [ ewau + [ (wau
S ' S T

(A

T
e (£-T) +f o (u)du
to

T -t
and so ./. r(s)expl-2(t-s) + jf ¢(u)dulds .
) to s



A

2T.

v

T T
e”E(t”qua r(s)exp[j. ¢(u)dulds for t
to : to

The right-hand term of the above last inequality tends to zero as

t > o, Similarly we have

t : T
expl-A(t-t ;) + Jr ¢(uydul < expl-e(t-T) +J[ $(u)dul
to to

and the right-hand term tends to zero as t - «. It follows from

(1.9) that

t
‘[ ¢(u)du < (r-g)(t-s) for T < s < t-T, t > 2T,
S
t
hence ~A(t-8) + j. ¢(u)du < -e(t-s) for T < s < t-T, t > 2T.
S
This implies that
t-T7 t t t
J[ r(s)expl-A(t-s) +./. ¢(u)dulds < e~F jf e®5(s)ds
. . v

T T

for t > 2T. On the other hand, since
- “

J[ d(u)du < (A-e)T for ¢ > 2T, we obtain
t-T

t t
J[ r{s)expl~-A(t-s) +./' $(u)dulds
t-T ]

i:j.tr(s)exp[—k(t—s) +JC-;¢(u>du]dS

T

Il A

t
o (A=g)T e—kth e?Sr(s)ds for t > 2T.

These estimates show from the assumption on r(t) that |
t t ,
j‘ r{s)expl-2{(t-5) +./. $(u)dulds tends to zero as t > «. Thus
S

T
we conclude that

) t
ugexpl-A(t-t,) +./' ¢ (u)du]
to



' T t t
+ (_/:C0 +fT Jr(s)exp[-A(t-58) +fs ¢ (u)dulas

tends to zero as € + «, This completes the proof of Lemma 1.5.

Q.E.D.

Remark l.6.» The followlng propositiorn was given by
N.Onuchic. ( See [13], [22]. )
"Let ¢(t) Dbe a nonnegétive, continuous function defined on
"[0,®). Then the zero solution u(t) = 0 of the differential
equation u' = [-Xx + ¢(t)]Ju .is globally asymptotically stable,

if and only if the function ¢(t) satisfies
1 t+v

1im sup — dp(s)ds < A "

(t,v)>(e0,0) Vg

Lemma 1.7. Let ©r(t) be a nonnegative, continuous function

oo t
defined on [0,»). If jr "r(t)dt < «, then 1lim e_Eﬁ/. e®%r(s)ds
' 0 +£->o0 0
= 0 for any ¢ > 0.

Proof. For any positive number n, there exists T; > O

o t
such that jf r(s)ds < n. For t > T,, we have e"gﬁ/~ e®%r(s)ds
d : 0

T T ; Ty

‘E B
e_EE[ e®%pr(s)ds +J[ r(s)ds < e—eaf e®Sr(s)ds + n.
] 0
T,

t
Therefore there exists T, > T; such that e_Etj[ e®Sp(s)ds < 2n
. 0

for t > T,. This completes the proof of Lemma 1.7. Q.E.D.

Lemma 1.8. Let ©r(t) be a nonnegative, continuous

. » t
function. If 1im e_eﬁ/; e®°r(s)ds = 0 for some ¢ > 0, then

t->c0

10 —



1lim sup L t+Vr(s)ds = 0.

(t,v)(=,2) Y 7 ¢

Proof. Using the integration by parts formula, we have

1 tT+v ' 1 t4+v e
—*J[ r(s)ds =— e 5 e r(s)as
v v
t . t
’ t+v t+v s
=;L-éfxt+vyf e “%r(u)du +5Ljr é{B{/. e ®%r(u)dulds
v % vJog %

N

1 tHv —g(t+v-u £ v s -e(s-u |
?;jl e %(u)du +?7th-{jc e %(u)éu}ds.

For any positive number n, there exists T > 0 such that

S
f emele=Wnyydu < n for s > T. This shows that for t > T
0 = =

and v > 0,

t+v
]ﬁ e~€(t+v-u)yqy < n
1]

t+v S —E(S— ) t+v .
and jr dSJC e Yelu)du < J[ nds = nv,
t t

t+v
hence %?J[ r(s)ds < (1+e)n for t > T, v > 1 which yields
t
1 t+v
sup — r(s)ds < (l+4e)n.
t>7 Vg

v_il :

: t+v .
Therefore we conclude that 1im sup %%j[ r(s)ds = 0. Q.E.D.
(t,v)>(w,) T

Remark 1.9. Let r(t) be a nonnegative, continuous
function. Then the following conditions are equivalent.
-£% E €
(i) 1im e “Jf e*®r(s)ds = 0 for any € > 0.
+ >0 0

et
(ii) 1lim e~€otjf e®0%r(s)ds = 0 for some g, > O.
t >0 0

t+1
(iii) 1im.Jf r(s)ds = 0.
t

t >0

—_ 11 —



( See [22], [231. )

Lemma 1.10. Let f(t,x) be a continuous function from
[0,«) X R? into R? and let x(t) be a solution of x! = £(t,x)
which is defined on [td,w) and remains in a compact set D of
R? for t 2 to. Assume that there exist a positive constant N
and a nonnegative, continuous function r(t) such that NE(t,x) |
SN+ r(t) forall t >0 and all x € D, and ./;wr(t)dt < .
If there exists a nonnegative function V(t,x) on [0,») x R2

such that
(i) V(t,x) is continuously differentiable on [0,=x) x R2,

(i11) V' (t,x)

A

-W(x) + ¢(t) for ¢ > 0 and x € D, where

2 .
V' (t,x) = B—W-étt’—x) +Z EL‘L%{J_) r.(t,x) and W(x) is a
i=1 0%,

nonnegative, continuous function on D and ¢(t) > 0,

j:m¢(t)dt < o,

then x(t) approaches E = {x € D|W(x) = 0} as t tends t0 .

Proof. This lemma is an extension of Theorem 1(a) in
[ 12:LaSalle ] and the proof of fhis lemma is analogous to that
of Theorem 1(a). Since x(t) remains in the éompact set D in
the future, there exist é point X* € D and an increasing
sequence {tn} such that tn tends to o« and x(tn) converges
to x* as n > ». Now suppose that x(t) does not approach E

as t tends to «. Then we may assume, without any loss of

generality, that X ¢ E. This implies W(x ) > 0, hence there



*
exist a positive constant § and a Z2e-neighborhood ,Ugg(x ) of

* *
X such that W(x) > 6§ for all x in Uge(x ) N D. On the

dv(t,x(t))
dt

other hand, since < - W(x(b)) + ¢(t) for t > t,, it

t t
follows that 0 < V(t,x(t)) < V(to,x(to))—jf W(x(s))ds+jf o(s)ds
to to

for t > ty. Our assertion about ¢(t) shows that

A

t o
0 %:jf W(x(s))ds < V(te,x(te)) + jf $(s)ds for t > ty and so
+ 0 = . 0 -

t .
jr W(x(s))ds 1is bounded for all t > t,. Thus x(t) can not
t 0 %
remain in U2€(x ) "D for an infinite length of time. However

*
x(t) passes through Uge(x ) an infinite number of times,

*

because x(tn) converges to X as n » « ., Hence there exist
increasing sequences {tn‘} and {sn‘} such that tn' < sn’ <
* *
! : ! = oo v '
tn+1 , lim tn R X(tn ) € BUQE(X ), x(sn ) € aUe(x )  and
oo
% [ee]

x(t) € U_. (x ) for t ' <t < s '. Then Z: (s "=t ') 1is

2¢€ n n =1 n n
convergent. This implies that- sn'—tn' converges to zero as

n » o _ and hence there exists a natural number n,; such that

sn'—tn' < 5& for all n > ng. On the other hand, it follows from

the assumption on f(t,x) that

1

Sl’l
e < Ix(s ') = x(t_ ")l iJf If(s,x(s))lds
= 0 n =

t ! ¢
n ) n
< N(s "—=t ') +J[ r(s)ds
= " n n £
1’1‘ n
and so J[ r{(s)ds > é% for n > ng, which contradicts
, Z
j[ r(s)ds < o . Therefore x(t) approaches E as ¢t tends to
0
® QR.E.D.

— 13 —



Lemma 1.11. Let ¢;(t) and ¢,(t) be nonnegative,
continuous functions defined on [0,») and let u(t) be a
nonnegative solution defined on [tg,») of the differential
inequality u' < [-A+¢,(t)Ju + ¢,(t) for some A > 0. If
j:w¢i(t)dt <o (1 =1,2), then for any € > 0 there exists
T = T(e) > 0 such that u(t) < e + K{u(to)e"x<t't°)+ e_x(t_T)}
for t > t,, where K 1is a positive constant which 1s

independent of (tg,ul(ty)).

-t’ .
Proof. Since expl[-At + jz $1(s)ds] 1s a fundamental
solution of the equation u' = [-A+¢,(t)Ju, it follows from a
comparison theorem and the variation of constant formula that for

t ; to,
) t
u(t) £ ulto)expl-A(t-to) + [ ¢1(s)as]
) t
. & 0 N
4 [ Teatedexptonti-s) + [ 4y (x)atlas
to ' S
Hence

u(t)

A

t ©
{u(to)exp[—x(t—to)]+jf ¢2(s)exp[—k(t—s)]ds}exp[jc $,(s)ds]
t v

0

Let € > 0. Then there exists a time T > 0 such that

J[ d,(8)ds < ¢ exp[—j[ $:(s)ds]
T 0

If T > t,, then

T t
[ [ 6a()expl-(t-5) Jas

%
jr ¢,(s)exp[-A(t-s)lds
to to T

A

T ~t
jr ¢,(s)expl-A(t-T)lds +‘/T $,(s)ds
to T

_ 14



o £
< (j; d2(s)ds)expl-A(t-T)] +_/; $p2(s)ds

for t > t,. On the other hand, if t, > T, then

A

t ' t
jf ¢2(s)exp[gx(t—s)]ds Jr po(s)ds for t > t,.
to T

Thus we conclude by putting K = (1+JC ¢2(S)ds)exp[jr $,(s)ds]
0

that
vu(t) < K{u(tolexpl-A(t-to)] + expl-A(t-T)]} + ¢ for t > t,.

Q.E.D.

— 15 —



2. Boundedness

Here we consider the equation

(2.1) (a(t)x")' + h(t,x,x') + c(t)f(x)g(x') = e(t,x,x') .

This equation i1s equivalent to the system

x'' =y
(2.2) 1
v' = gy (et (B)y - nleLx,y) - e(B)f(x)ely) + el(t,x,y)}) .

For the boundedness of solutions of (2.1), we make the
following assumptions about the equation (2.1):

(BR1l) The functions a(t) and c(t) are continuously

c(t) > 0 for all t > O.

differentiable, and a(t) > 0 and

f(x) and g(y) are continuous, and g(y) > O.

(B2) The functions

The functions h(t,x,y) and e(t,x,y) are also continuous.

(B3)f°%ldt<ooand O—CT'E%%:dt<w
(BY4) f; £(x)dx = o

There exist positive constants M and k such that

(B5)

y: Y v
s 2n [ gy e for vl 2k

for all t > 0 and all real x and y

(B6) yh(t,x,y) >0

There exist nonnegative, continuous functions r;(t) and

(B7)
r,(t) such that ./7 r . (t)dt < » (i = 1,2 ) and
0 1

—_— 16 —



oo,y |« 2Ly i) 4 2y |y

Theorem 2.1. Suppose the assumptions (Bl) ~ (B7). Then
every solution x(t) of (2.1) is bounded. If in addition to the

above assumptions, the following hold:

(B3) " fom%]-dt < w

(38) J, ST =
then every solution (x(t),y(t)) of (2.2) is bounded.
. < v
Proof. Put TF(x) = jc f(u)du . From the assumption (BY4) we
can find a positive number F, such that F(x) + F, > 0 for all
X . Moreover, the assumption (B5) implies that there exists

m > 0 such that

(2.3) E%%% <m + MG(y) for all real y ,

: ¥
h G = J[ —Y _dv . Let
where (y) e v e

t 3
Vi(t,x,y) =L ;gg; {F(x)+F,} + G(y) + %%Jexp[gjc CC(:;~jS]

and let (x(t),y(t)) Dbe a solution of (2.2) through (x,,y,) at

t = t,. Put V,;(t) = V,(t,x(t),y(t)) and differentiate V,(t).

Then we have

t ]
Vl'(t)exp[-2jc Egég%ids]

_ore'(x) _a'(tle(t) c(t) ' yy'
S2m e O Bk gy TOxt T ey

2c' (t)_ 2c'(t)— m

—_ 17 —



_ {!c'<t>l a'(t), c(t)

- 2c' ()
c (%) a(t)’ a(t)

c(t)

{F(X) + Fo} +

_a')y?  yh(t,x,y) , ye(t ,x,y)
a(t)gly) a(t)eg(y) a(t)eg(y)

Here the assumption (B7) implies that

lyeCe,x,y) | o le' (o) | ra(t) 3 lyl_ , ra2(t)ye
a(t)gly) = Mc () a(t) " ely) a(t)h(y)

which yields from (B5) and (2.3)

lye(t,x, 90| . ¢ c'(tg..+ mElt) o oyra(t) yeaeyy oy

a(t)eg(y) = c(t a(t) a(t)

Furthermore itbfollows from (B5) that

a'(t)ly? la' (t) ] L m
a(t)g(y) = MatE t6(y) TR
From the above facts and the assumption (B6), we obtain

t ‘
Vl'(t)eXp[*2./; _E_%El:dsj

c(s)

er(e)l , lar ) het) (pey + 5oy + (2200 4 yla' (D]

A

c(t) a(t) "a(t) c(t) a(t)

+ Cv(t) +Mrl(t)+Mr2(t),{G(y) +_£Mn-}

c(t) a(t) a(t)
< el v gl 2eitds v w8 i)
x tgggg{wx) + Fo} + G(y) + 40 . |
The assumption (B3) implies from Lemma 1.4 that 0 < a, < a(%t)
and a€£)=i ;ﬁ . Therefore for all t > t,,

o c' (%) lat(e) ]| 4 e'(t)—
N 2 Dy Dl o) +»r1(t) + ry () 11V, (8)

My

where L, = max{l+M, 4, = Integrating va'(t) from t,

! Vi(t)

18 —
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t, we obtain from the assumptions (B3) and (B7) that

t 1
Vi(t) ;'Vl(to)eXp[jf {CC§:§+L1(taa%:§! CC§§%:+P1(S)+r2(S))}dS]
. t g

;V:l(tO)—C%%%eXp[Ll'/; {[@- (S)J c! (S)_

a(s) c(s +r(s)+r,(s)}tds]

= Loc(t)

for ¢t

v

to, where L, > 0. From the definition of V,(t,x,y),

F(x(t)) ;2%? 1(t)expl- 2/ 9.__(?_’_):_d ]

fin

azLl,

for t > te. This implies from the assumption (B4) that the

solution x(t) of (2.1) is bounded for t > t,. Analogously, we
have

G(y(t))

A

V,(t)ex [-2ftc'<s)-d ]
! PL=e), ety ¢°

A

L,c(t)

for t > ty and so if the assumptions (B3)' and (B8) hold, then

y(t) 1is bounded for t > t,. The proof of Theorem 2.1 is now

completed. @Q.E.D.

Corollary 2.2. Suppose the assumptions (Bl), (B2), (B4),
(B6) and the following:

(B3)"

'(t) > 0, a(t) < a, for some constant a, > 0 and

- 19 —



(B5)"' There exist constants m > 0 and M > 0 such that
g(y) m¥ MJ[

(B7)' .There exists a nonnegative, continuous function r,(t)

dv for éll real ¥y,

such that ‘/‘ r;(t)dt < » and

le(t,x,y)]| < a(t&é%tgt)l + r,(t)

Then every solution x(t) of (2.1) is bounded. If in addition,
the assumptions (B3)' and (B8) hold, then every solution

(x(t),y(t)) of (2.2) is bounded.

Proof. Using the same function V,(%t,x,y) as in the proof

of Theorem 2.1, we have
" .
; c'(s)—
(t)exp[—2j;—~é—(—s—)——— dS]
< LB pior,y + 22 8=ty my 4 (le] <§>J ra(t)y Lyl

c(t) Mc(t) a(t) g(y)

because of a'(t) > 0

Hence V;'(t) < [9~%El + L, {C Egg“ + r,(t)}Jv,(t) . Thus we have

the same conclusion as that of Theorem 2.1. Q.E.D.

Remark 2.3. -‘Here we consider what function g(y) satisfies
the condition (B5) or (B5)'. First, the following are easily

shown

M
. . . k 2~M
(i) It is necessary for (B5) that g(y) > M@({ETIyl

for y =tk ,

(ii) It is necessary for (B5)' that g(y) > é%}yle“Mlyl

for all vy



For example, if g(y) is a positive constant, then the condition
(B5) holds for M = 2 and for an arbitrary k > 0. Moreover,

the following classes of functions satisfy the condition (B5)

(2.4) alyl® < gly) < B|y|® for |y| > k, where B > A > O

and o < 2 ,

(2.5) Alyl® < gly) < Blyl® for |yl

v

k, where A > 0, B > 0,

o > 2 and B > o ,

(2.6) A ealyl < gly) <B Byl or ly| > k, where A > O,

B>0 and B >a >0

On the other hand, g(y) = e—,yl satisfies (B5)' but not
(B5). Of course, any function which satisfies (B5) does also
(B5) .

Example 2.4, Consider the equation

= 0

(2.7) x" + ,

x! L X
G(t+1) = 8(t+1)2
where the latter of the assumption (B3) in Theorem 2.1 is not
et (v) 1

satisfied, since jg VEsz-dt = 2 OE;I-dt = o ., The other

conditions in Theorem 2.1 are all fulfilled. The function

x(t) = Jt+1 1s a solution of (2.7) which is unbounded.

Example 2.5. Consider the equation

(2.8) x" + 4t?x = 6t cos t? ,

—_ 21 —



where e(t) = 6t cos t? 1is not absolutely integrable on [0,x).
Hence the assumption (B7) in Theorem 2.1 is not valid. The other
conditions in Theorem 2.1 are all fulfilled. Then x(t) =

t sin t? is an unbounded solution of (2.8).

Example 2.6. Consider the eguation

(2.9) (a(t)x")' + c(t)x = e(t) ,

where a(t) = (£+7)2%2log(t+7), c(t) %ﬁ(t+7) and e(t) =

%f(t+ll)log(t+7) + 1 .  Then x(t) log(t+7) is an unbounded .

solution of (2.9). The function  e(t) satisfies the estimate

le(t)] < a“%i%;gt)l ;

while the former of the assumption (B3) in Theorem 2.1 does not
hold, since a(t) » « as t - o . The other conditions in
Theorem 2.1 are all satisfied.

Example 2.7. Consider the eguation

(2.10) x" + x'" + x = (2+t)x!

Then x(t) =t + 1 1is an unbounded solution of this équation,

where 7r,(t) = 2 + t is not integrable on [0,»)

—_— 22 —



3. Attractivity

3.1. Attractivity for the equation

(a(t)x") + b(B)F(x)gi(x")x" + c(E)Fs(x)ga(x")x = e(t,x,x"),

We shall here discuss the convergence to zero of bounded

solutions of the equation

(3.1) (a(t)x")' + b(t)f(x)gr1(x")x' + c(L)f(x)g(x")

= e(t,x,x")

with xf,(x) > 0 for x # 0 and 1lim
x>0

f.(x '
i; ) >0 . Put fi(x) =
Eiézl for x # 0 and f3(0) = 1rn£2£2ﬂ_. Then we see that
x>0
f,(x) = f3(x)x and f3(x) > 0 for all x . Hence in what

follows, we consider the equation

(3.2) (a(tl)x")' + b(E)f1(x)gi{x")x" + c(t)Ff3(x)go(x")x

= e(t,x,x")
which is eqguivalent to the system

x' =y
(3.3)
y' = gz%{—a'(t)y -b(t)f1(X)g:1 (y)y —c(t)fs(x)ga(y)x +e(t,x,y)}.

It is counvenient to use the functions

X ’ X
Fy(x) =f0 £o(w)du  ,  Fa(x) =f° ufs (w)du

- ! _ Y v
G e o L BB A o R
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and GL(y) = L Gz(y) - é%{Gl(y)}z . We first give a sufficient
condition for the convergence to the origin (0,0) of all

bounded solutions of (3.3).

Theorem 3.1. - Suppose the following assumptions.

(A1) The functions a(t) and c(t) are continuously
differentiable and the function b(t) is continuous, and

also a(t) >0 , b(t) >0 , c(t) >0 for all £t >0

(A2) There exist positive constants a;, a,, by, by, ¢; and
~such that a; < a(t) < a, , by < b(t) < b, and

c; <c(t) e, for t >0

(A3) The functions f;(x), f3(x), gi(y) and g,(y) are all
continuous and positive on R! , and also the function

e(t,x,y) 1s continuous on [0,») x R?

(Al4) There exist nonnegative continuous functions r;(t) and
r,(t) such that J|e(t,x,y)| < ri(t) + ro(t)(|x|[+]y])

for t© >0 and for any real x and y

t
(A5) 1im e_Etj: e¥%r,(s)ds = 0 for some € > O

00

tT+v
: 1 la'(s)| , le'(s)] -
S e e S

Then every bounded solution of (3.3) converges to the origin

(0,0) as t » «

Proof. Let (x(t), y(t)) be a bounded solution of (3.3)

ol



which is defined on [ty ,*). Then there exists a positive
constant K such that |[x(t)| + |y(t)| < K for t > to.

According to the assumptions imposed on fi1(x), fs(x), g1(y) and

g, (y), there exist positive constants d;, d2,..., ds such that
dy < f3(x) £dp , ds < F3(x) < du , ds < g1(y) < de ,
(3.4)
d; < g,(y) < ds

for any (x,y) satisfying |[x| + |y| £ X . Therefore it follows

from the above relations that

di x| < |Fi(x)] < dalx]| , “%*d3X2 < Fa(x) < %;duxz ,

1

(3.5) || 2 g-lvl s 7§%;y2 2 G (y) £ 5oy

1, L 1
and G (y) > 7?(5; - dsz)yz
Let V,(t,x,y) = a%f) {Fi(x) + g1(y)}?% + Le(t)Fa(x) + a(t)a, (y)

Then according to (A2) and (3.5)

Vg(t,X,y)

v

Le(t)Fa(x) + a(t)G, (y)

1 : 2 a L 1 2
= R Y (- .
2cld3LX 2(33 isz)y

v

and

Vo(t,x,y) = a<t>{F1(X>2 + 2F 3 (x)G1(y)} + Le(t)Fa(x) + La(t)Ga(y)

2
2pra2.2 4 2d2 s 1 2 asL >
< SHasx _75;4xy|} Sc2d,Ix* + 5&y
1 2 asds, 2 az,ds Ly,2
= + + 82092 , =
< 2(a2d2 . co,d L)x* + 2( : + d7)y
for t > 0 and for |x| + |y|] < K . By choosing L large
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enough, we have GL(y) > 0 and

(3.6) do(x? + y2) < Va(t,x,y) < di1g(x% + y?)

for t >0 and |[x| + |yl < K , where ds and d;, are

positive constants. Put Va(t) = Vo(t,x(t),y(t)) and

differentiate Va(t) with respect to t. Then we obtain

Vo' (t)

i

%lgﬁl{F1<x>+G1<y>}2 + a(6) P ()46, (1) HE (0 x 477y )
+ Lot (£)Fs(x) + Le()xfa(x)x' + a'(8)6, (y)

Ly
g2(y)

1 3 1
- G1(Y)ETT§TIY

+ a(t){

= 2" (6) [5{F1 (0461 (1) I24G, (1) ] + a(t) £2(x) {F1 (x)y+y61 (7))

- ar )DL ) n ori Gy - e(e) T8 (x)

' CTan y> £1(x)g1(y)y?
+ Le' (6)F5(x) - La'(t) H—y - Lb(t) R

Fi(x) , Ly
* {g1(y) * g2 (y

)}e(t,x,y) s
hence from (A4)
Vo' () < lat(6) [[5-F1(x) + 61 (312 + G (¥)]

+a(t)f () {[Fi(x)y| + yGi(y)} + [at(t)] i;fé;y

+ b(E) P () |F (x)y]| - c(t)f3<x>§j§§§XF1(X)

#Llet () Fs () + Llat(0) | gigy - (o) falEntigs

| [Fa(x)| , Lly|
+ {ri(6) + ro () (|x|+]|y]) L gi(y) * gz(Y)}
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and

vor (o) < 128810 p g 46032 ¢ alo)a, (1))

Lfggloceon o + o0 1 LZSHEL + i

F ey DR - g

+

+ r1<t>{l§§%§%i e o U GO BRI CS ENCEIN ENCEIPY

+alt)f(x)yt, (y) - c(t)faéf2§§<y>xF1<x>

- o) By

for t > t, . This implies from (A2), (3.4) and the definition

of V,(t,x,y) that

: lat(e)] , le'(6)] arla'(e) | |F, (0)y] |, Ly®
Va'(t) 2 4 Y R €3 Pa () + 2a(t) t 1d5 3, !

sy (6) (x| + ]y DG 4 Llyly ooy (P2 ], Llyly
ds dz ds d7

+ (a,+b,)d, |Fi(x)y| + a,d,yG.(y) -

C1d3d7
dG XFI(X)
_ Lbldlds 2
P
for t > t, . On the other hand, it follows from (3.5)

that |F,(x)y] < d,lxy| < %?dz(xz+y2) and so

[Fa(x)y| o Ly? do, 2, 2 L >
a. LT r S AR R

dz _Ii_ 2 2
= (§a; + d7)(X +y*)

We have also
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< Pxl o+ lyl < G2+ S Uxl+yD

|F1(X)| L!Yl
ds

Tnis implies that

Al +lyD AT Bl < @2 v ol iy

A

dy L 24,2
2(5% + ) (x*4y?)
An analogous estimation shows the inequality

Cld3d7

_ Lbidids. 2
a. =ty

(a2+b2)ds |F1(x)y| + axdayCGi(y) - P

xFy (x)

+ 22d2.2 _ ci1dhidsds 2 Lbad,ds o2

2
=< (ap+b,)d3 | xy]| as y de de y

and hence by choosing L large enough,

(82+D2)ds [F1()y| + a2dzyCi(y) - BPYap, (x) - 221930sy2
< - dyq (x2+y?)
where d;; 1is a sultably chosen positive constant.
Furthermore, we get the following estimate
[F2 Gy Llyl . 42 + Iyk  for |x|+]y] < X
ds d7 = d5 d7 =

Thus we obtaln from (3.6)

ey g - Py pydleldBl L LBy (63139, (6) + Lary (6)

o

for t > ty, where L; and L, are properly chosen positive
constants. ©Now Lemma 1.5 shows that V,(t) converges to zero as
T » © . This completes the proof of Theorem 3.1, since

2(£)2 + y(£)? < a—lgvz(t) : Q.E.D.



Remark 3.2. Let ©p(t) be a contlnuously differentiable

function and let O < p; < p(t) < p2 for some constants pi1 and

t+ Vy
A [ 2 (8) gy o4 Ly RlEEY)
p2. Then j[ ~p(s) ds =% v_log o(t) and so
t+v
j;log—i 5,;L-jr 2D (s )y 5_;£1oggé~ for any t and v > O
v P2 = V ¢ Pp(s)™7 = v o
t+v,
Hence we have 1im supj; —E—L§l~ds = 0 . Since p'(t)y =
v p(s) +
’ (t,v)>(e,00) t
p'(t) + p'(t)- , we obtain
‘ t+v t+v
. 1 p'(s) 1 J[ "(s)—
0 £ 1im sup — =ds < llm sup -T—-d
(b)) V) o POSTTT = (g pls)
Moreover since p'(t)— =p'(t)4 - p'(t), we obtain

1 [ (s) 1 Ve (s)
~lim Sup4l-jf P~T~4:ds < lim sup — 5(s)

(tov)r(o,e) ¥ g PUS) T = ey VY g

These show that

1 t+v (s) t+v o' ()
11m sup Jf W—ngtds = 1lim sup — ——T~7—ds
(t,v) P (t,v)> <oooo
t+v
Therefore we conclude that 1im sup — l——————Ld if and
\%
(t,v)>(c0,) t
l t+v (S)
only 1f 1im sup = B~C§f:ds =0 . ( See [23, Theorem 2].)
(t,v)>(e,) v P

Theorem 3.3. Suppose the assumptions (Al) ~ (A4) and the

following.

o f Aetiar <o e [ leE e

(A8) There exists a positive constant M such that
2 A
Y < Mj[ — Y __dv for an
g22(y) = Joga(v) v
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(49) f 0 gzs(fy) yoET
(A10) fo r.(t)dt < (1i=1,2).

If each of f3(x) and g,(y) has a positive lower bound, then
every solution of (3.3) converges to the origin (0,0) as t

tends to

Proof. To show the boundedness of solutions of (3.3), let

Vs(t,x,y) = SEHFs(x) + Galy) + 1

and let (x(t),y(t)) Dbe a solution of (3.3) through (xo,ye) at
t = ty . Differentiating Vi(t) = Va(t,x(t),y(t)) with respect

to t, we have

var(e) = S8 - SRR (0 ¢ S Goxt +
_ el (%) _e(B)a'(t) o at(t)y: () F i (x)er(7)y?

Y ARy €2 PRI C -y ¢ oy ¢ Ml € Py 6
ye(t,x,y)
2(t)e2(y)

for 't > t, . Also from (AN)

o la (o) L ler(e) e (k) lat (£) |24 (6) |y |42 (6) [y |42 (£) y 2

V' £ Ryt oy a0 e ) *

Here, by our assertion about f,(x) and g,(y), there exists a

positive constant d such that f3(x) > d and g,(y) > d. Then

Fi(x) > %?dxz, hence |x] < /ggéizl for any x. Since

y 1 ; [y ]M Go (¥)+1
gi(i) < /gz(y)MGz(y) > it follows that 22 (7) < u 2 5 and

I
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c(t) |xyl 2Mc (t) 1 c(t)
also a(t) gz(y) ;/ <t>F3 (X)Gz (y) < j—{ (t)F (X>+G (Y)}

for any x and any y. Thus we conclude from (A2) and (A8) that

ver(e) < Lol LelB v oy v e (03 ()

for t > ty, where Ly 1s a positive constant. Therefore it is
easily shown by (A7), (A9) and (A10) that the solution
(x(t),y(t)) 1is bounded for t > t,, because the existence of the
constant d implies 1im F3(x) = o

Next, (A7) and (A§63wimply (A5) and (A6) by applying Lemma

1.7 and Lemma 1.8. Hence the conclusion of Theorem 3.3 is an

immediate conseqguence of Theorem 3.1. R.E.D.

Corollary 3.4. Suppose the same assumptions as in Theorem

3.3 except for (A8), (A9) and the existence of a positive lower

]y!
g2.(y)

Gz(y)- for any y and for some M > 0, then every solution

bound of gz(y). Ir gz(y) has an upper bound and if
of (3.3) converges to the origin (0,0) as t tends to o

The proof of this corollary 1s analogous to that of Theorem
3.3 and so we omit 1it.

Example 3.5. Consider the equation
(3.7) ax" + bx' + ¢cx = 0 ,

where a, b and c¢ are positive constants. This is in the case

that the equation (3.2) is autonomous and f;(x) = f3(x) = gi(x")
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=g,(x') =1 and e(t,x,x') = 0 . Then the condition that a, b

and ¢ are positive means the well known Routh-Hurwitz's

criterion for the asymptotic stability of the zero solution.
Example 3.6. Consider the equation

(3.8) x" + x'" 4+ x =1+ cos t

In this case r;(t) =1 + cos t does not satisfy (A5). The
function x(t) = 1 + sin t 1is a bounded solution of (3.8) which

does not converge to zero as t tends to

Example 3.7. Consider the equation

2 1. 2 2
" 1 = '
(3.9) x" 4 x4 X 1+t(1 + Jx2%+x )

Then x{t) = 1 1is a bounded solution of (3.9) which does not

converge to zero. 1In this equation, it is obvious that
_2 . )

c(t) = T5E does not satisfy (A2).
Example 3.8. Consider the equation

(3.10)  x" + e°x' + x = 2e7° |

where b(t) = et tends to « as t » « . Hence (A2) is not

valid. The solution x(t) =1 + e”t or (3.10) does not converge

to zZero as £ > o«

Example 3.9. Consider the equation
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1 l+cos t 6 2

" ' = —-—
R G T =) L e S =-) AN G =) LA G R
. _ 1 - . .
Since b(t) = ey tends to zero as t ~ , (A2) is not wvalid
again. This equation also has a solution which does not converge
to zero as t » o , for example x(t) = sin t + ?I£%$?



3.2. Uniform boundedness and attractivity for the equation
X"+ b)) ()i (x")x" + e(t)Fa(x)ga(x') = e(t,x,x").
We shall consider the equation
(3.12) x" + b(E)f(x)gi(x")x' + c(t)f2(x)ga(x"') = e(t,x,x")
which is equivalent to the system

x' =y

(3.13)

]

Y= = b(6)F1(x)ei(y)y - c(6)F2(x)galy) + e(t,x,y)

In the previous section, we assumed that f,(x) = f3(x )x ,
£3(x) > 0 . Particularly, we considered the equations with
fo(x) = x in several examples. But we can not apply Theorem 3.1
to the equation (3.12) with f,(x) = x®. In this section, we
give a theofem which can be applied to such an equation.

In [4], T.A.Burton considered the system
x'' =y , y' = - f(x)h(y)y - g(x) + e(t) ,

where xg(x) > 0 for x # 0. Under some assumptions, he has
given a necessary and sufficient condition+for the boundedness of
all solutions of this system. That is J[ ; [f(x) + |eg(x)|]ax =

* « . He has also shown that, if £(0) > 0 and f£(x) > 0 , then
this condition is a necessary and sufficient conditién for the
convergence to the origin of all solutions. Our result isvan

extension of Burton's that. ( See [16], [171.)
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Theorem 3.10. Suppose the assumptions (A8), (A9), (A10) and
the following.

(A1) The functions b(t) and c¢(t) are continuous and
positive for t > 0, and also c¢(t) is continuously
differentiable.

(A3)? The functions fi(x), f2(x), g1(y) and g2(y) are all

continuous on R! and xf,(x) >0 for x # 0 ,
fi(x) > 0, g1(y) >0 and ga2(y) >0 Also, the
function e(t,x,y) is continuous on [0,°) X R2

(ah) There exist nonnegative, continuous functions ri:(t) and
ro{(t) such that
le(t,x,y)| < ri(t) + rz(t)[ylﬁ for any t > 0, x and y,
where 0 < £ < 1

had 1
(A11) jf lEE%%%idt < o gnd there exist positive constants b
0
and b, such that b; < b(t) < b, for ¢ >0
+ oo
(A12) J[o {f1(x) + |[f2(x)]}dx = % o
Then the solutions of (3.13) are uniformly bounded.
Proof. It follows from (A3)'" and (A8) that
1+8"
(3.14) L%L(;7~ <m + MG,(y) for any y and 0 < &' < 1 ,
Z\J T — -
where m > O Let V,a(t,x,y) = c(t)F,(x) + G2(y) + %% in which
%
F, (%) =J[ fo(u)du . Let a > 1 and let xo2 + yo2 < a2
0 =



For any solution (x(t),y(t)) of (3.13) through (x¢,ye) at
t =ty , differentiating Vy(t) = Vu,(t,x(t),y(t)) with respect

2

te €, we have

V' (t) = ¢'"(£)F(x) + c(B)Fo(x)y + g;%gy{ - b(E)F1(x)g1 (y)y
- c(t)fa(x)g2(y) + e(t,x,y)}
Z ot b)) fi(x)ei(y)y? L yelt,x,y)
¢! ()F,(x) I T 6
< Ic'(t)]Fz(X) + ‘Ye(t,X,Y)[

g2(y)

for t > ty. Here (AL)' and (3.14) imply that

1+

ry(8) |y l+ra(e) |y] < {r (8)+r, (8) Hm+Me, (y)}
g2 (y) =

lye(t,x,y) |
g2(y)

A

Hence V,'(t)

A

le' (£) [Fa(x) + M{P1(t)+P2(t)}{%%+Gz(Y)}

{lﬁé%%%l + Mr, () + Mr,(£)}V, (t)

A

' 4
Integrating Y%—%%% from t, to t, we have
l+ .

t Y
V() < Vaoodexnl [ (L8 4 mey(s) 4w, (5)1as)
to
Put Lg = exp?/; {igé%g%L + Mr,(s) + Mr,(s)}ds] . Then V,(t) <

LeVyu(ty). and so Ga(y(t)) < LeVy(ty) for to <t < t; , whenever

the solution (x(t),y(t)) 1is defined on [to,t1). From (A9),

G,(y) tends to « as |y| » » . Therefore there exists
B! = B'(a) > o such that G,(y) < Le sup {ca2Fa(x) + G2(y) + %%}
- 2 2 2 .
X" +y“<a
implies Iyl < B' , where B' depends only on o but is

independent of (t,,X(,¥o) Wwhenever x> + yo* £ o?



Thus |y(t3;tesX0e,ye)| has an upper bound @' . This implies
that the solution (x(t),y(t)) 1is defined in the future, since
x'(t) = y(t)

Now we shall consider four cases.

Case I: Fa(x) tends to o as |x|] » « . It follows from

Lemma 1.4 that F2(x(t)) < chLqu(to) for t > to, and so there

exists B" = 8"(a) > o such that F (x) < c1 'Le sup f{coFal(x) +
- 2 2
x+y;OL
Go(y) + %%} implies |x| < 8" . Hence |x(t;to,%xo0,y0)] < B"
for t > to . Put B8(a) = J(B')Z + (B")2 . Then x(t)2 + y(t)?2

< B% for ¢

v

ty and B depends only on o but 1s independent
of (te,xo0,y0), whenever x02 + yo? < a? . Thus the solutions of

(3.13) are uniformly bounded.

Case II: Fi(x) tends to *® agas x »%te« .  Since

ly(t)] £ B for ¢

v

to, we define Vs(x,y) = biFi(x) + CGi1(y)

for any x and |y] B'. Differentiating Vs(t) = Vs(x(t),y(t))

A

with respect to t, we have from (Al)' that

_d

Vst (t) = b1f1(x)y+g1(y>

{-b(t)f1(x)gi1(y)y-c(t)fa(x)ga(y)+te(t,x,y)}

e(8)f2(x)ep(y) | ra(t)tra(e)|y]”
g1(y) g1(y)

A

{b1-b(E) 1 (x)y -

for ¢ to . Suppose that =x(t) > 0 for ti1 < t < t2 £ =

v

Let (s1,32) be any subinterval of (ti,t2) 1in which y(t) > 0.
2
1+
Put go = sSup _;T%%%ﬁ" Then Vs'(t) < go(ri1(t) + ra2(t)) for
B!

lyl<B" =

A

. t ‘
s1 < t < s2 , hence Vs(t) < Vs(si1) + gojf (ri(s) + ra2(s))ds for
S1

81 £t < s2



(X0>YO)

K Xi
________________ _51~ L
Let (s3,s4) Dbe another subinterval such that y(t) < 0 for

s, <t £ s; and y(€) >0 for s3 <t < s, . As long as y (t)

< 0, x(t) is monotonically decreasing in t. Hence x(t) <
x(s,) for s, <t < s, which implies Vs(t) = b1Fi(x(t)) +

Gi(y(t)) < b3 Fy(x(s,)) = Vs(s,) and so
S t
Vs(6) < Vals) + goC [+ [ H(rae) + ru(s))as
51 S 3
for s, £t < s, . Thus we obtain that
Vs(t) £ 0aFy(x(81)) + Gi(8') + gof (rils) + ra(s))ds
for t;, <t <t, . If £, =%ty and x, > 0 , then

Vs(t) < byFy(a) + Gi(B') + %0]: (ri(s) + r,(s))ds

for ty <t < t, . On the other hand, if x(t;) = 0 , then
Fi(x(t1)) = 0, hence Vs(t) < G (B") + gofo (ri(s) + r,(s))ds
for t; <t < t, . Note that the upper bound of Vgs(t) is



independent of ti1 and t2 even if the curve {(x(t),y(t))]|t=2to}
spirals about the origin. Therefore Di1F1{x(t)) < b;F, (a)

+ G, {(B") - G;(—B') + gO/;m(rl(s) + r,(s))ds for all t > t, ,
because Db;F; (x) =.Vs(x,y) - G, (y) . Since F;(x) tends to
as X > o, the above estimate shows that there exists a constant
i& > a such that x(t) < ?& for t > t, . Similarly, the

existence of a lower bound Xy of x(t) follows by using

Vs(x,y) for x <0 and |y| < B' . Here we note that E& and

X are independent of (to,xXo,yo). Let B(a) = JZ%‘)2+§&2+§Cf

Then x(t)? + y(t)? < B(a)? for t > t, . This implies that the

solutions of (3.13) are uniformly bounded.

In the case III: 1im F;(x) = «® and 1im Fu(x) = o , use
X0 X - 00
the function
Ve (x,y) for £ >0, x>0, |y] < B

Ve (t,x,y) =

V,(t,x,y) for t >0, x <0, |y|] <8

Then we can show that the solutions of (3.13) are uniformly

bounded. Moreover in the case IV: 1im F,(x) = o and
x>0

lim F,;(x) = - o~ , use the function
X>r—-®

[ vae,x,y) for £ >0, x>0, |y| 28
V,(t,x,y) =
. Ve(x,y) for t >0 ,x<0, |y|] <8
Then we have the same conclusion as proved above. The proof of
Theorem 3.10 1is now completed. Q.E.D.



Theorem 3.11. Suppose the assumptions (A3)', (A4)',

(A8) ~ (A10), (Al2) and the following.

(A" The functions b(t) and c¢(t) are continuously

differentiable and positive for all t > O
© ] o 1
(A11)" f D' (t) 4t < » and f et lae < w .
0 b(t) | 0 c(t)
Then every solution of (3.13) converges to the origin (0,0) as

tends to o

Proof. Let (x(t),y(t)) Dbe a solution of (3.13) through
(x0,¥0) at t =ty . Since Theorem 3.10 implies that
(x(t),y(t)) 1is bounded for t > t, , there exists a compact set

D = {(x,y)|x?* + y* < 8% , 8> 0} such that (x(t),y(t)) remains
to

in D for t > Now let

i

Ve (T,x,¥) %?{b(t)Fl(X) + G1(y)%2 + Le(E)F2(x) + G (y)

Differentiate Vg(t) = Vg(t,x(t),y(t)) with respect to ¢

Then we have
Ve'(t) = {0 (£)Fi(x) + Gi(y)I{b'(£)F1(x) + b(E)f1(x)x" + g?éy)}

' | ' yy' _ y!
+ Le'"(E)F,(x) + Le(t)f(x)x" + ng(y) Gl(y)éTT§7

= b'(t){b(t)F(x)% + F1(x)G:1(y)} + b(t)F1(x)yCG:i(y)

- b(t)c(t)gzé{gii(X)fz(X) + Le'(E)F,(x)

Lb(£)F1 (X g1 (y)y? b(t)F1(x) Ly
- o2 (y) MRSy ¢ iy ¢ RAALEEEL R
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which implies from (A4)' that

< A2l ey oy zm, ()2 + b(6) [Fr ()G, () [} + MLC“)FMX)

b (t) c(t)
* rl(t){b(t)é?(é?)L gJ(;)} ¥ Pz{t){b(tél?y§X)yl gz(y)}
e
+ b(t) 1 (x)yCGi(y)
for t >ty . By Lemma 1.4, the assumption (All)' implies that
b(t) and c(t) are bounded for t > 0 . Recall that the

solution (x(t),y(t)) is bounded. Then by choosing L large

enough, we see the existence of positive constants L; and Lg

such that

(6) £ - Lo 08, Gy s ¢ Lo BB 1O L ey, (1))

for t > to, . Now put E = {(x,y) € DIF; (x)f(x) + y> = 0}

Since xFi(x) > 0 and xf.(x) >0 for x # 0 , E consists only

one point (0,0). Therefore we conclude from Lemma 1.10 that
(x(t),y(t)) converges to (0,0) as t tends to <« . Thus the
proof 1s completed. Q.E.D.

Corollary 3.12. . Suppose the same assumptions as in Theorem

3.11. If in addition, a(t) > 0 and J[ Lé—%%%Ldt < « , then

every solution of the system

x' =y

——{-a'(t)y-b () (x)g; (y)y-c(t)f(x)g, (y)+e(t,x,y)}

&
|

- a(t)
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converges to the origin (0,0) as t tends to =

o

(£), Moy = &8, vy (e - T

*
Note that b (t) = a(t) a(t) a(t)

and

* _ lar(e) | ra (%) , . )
ro (%) a(t) + 205 fulfil the assumptions in Theorem 3.11.

This corollary is an immediate consequence of Theorem 3.11.

In [18], D.W.Willett and J.3.W.Wong discussed the
boundedness of solutions and the global asymptotic stablility of
the zero solution for the autonomous system (3.16) x' =y ,
y' = -f(x,y)-g(x), under the éohditions "In {(x,y)|x%+y? > p;2},
yf(x,y) > 0 and the solutions of (3.16) are unigue" and "xg(x) >
0 for |x| > ppa". They showed that the zero solution is
globally asymptotically stable 1f and only if every trajectory
whiéh starts in the first or third quadrant and is eventually in
some neighborhood of » intersects the x-axls, under the

condition that p; = p, = 0 and the-set {(x,y)|yf(x,y) = 0}

contains no nontrivial trajectories of (3.16).

Lemma 3.13. Suppose the aSsumptions (A4)' and (A10), and
suppose that Db(t) and c¢(t) are continuous and b(t) > 0 ,
c(t) > ¢; for some c; > 0 . Then for every bounded solution

(x(t),y(t)) of (3.13) with (x(te),y(te)) € Q1 U Qs3, the curve

{(x(£),y(£)) |t > to} intersects the x-axis.

Proof. Let (x(t),y(t)) be a bounded solution of (3.13)

through (x¢,ye) at t = to, where xo > 0 and y, > 0

ki —



Suppose that (x(t),y(t)) remains in Q; for all 't > t,

From (3.13), we have x(t) > x¢ and
YU(E) < =o(8)Fa(x(6))Ea(y(6)) + |e(t,x(t),y(5))]

for t > to, . Since =x(t) and y(t) are bounded, it follows

from (A4)' that
y'(t) £ -A + r,(t) + Bro(t) for some A >0 and B > 0 .

This implies

y(t) £ yo - A(t-ty) +f(l riy(s)ds + Bfo rs(s)ds

for t > ty, . Hence y(t) tends to - « as t > o , which is a
contradiction.  Thus we conclude that the curve
{(x(t),y(£))|t > to} 1intersects the x-axis at a finite time

t1 > tg . The pfoof for the case of x4 < 0 and yq < 0 1is

similar to the above. R.E.D.

U?der some assumptions, Theovrem 3.10 and Lemma 3.13 show that, if
jr;w{fl(x) + |fa(x)|}dx = o , then for every solution of (3.13)
with = (x(to),y(te)) € Q1 U Qs, the curve {(x(t),y(t))|t > t,}
intersects the x-axis. The following theorem shows that the

converse 1s also valid under more relaxed assumptions.

Theorem 3.14. Suppose the assumptions (A4)' and (Al0), ahd
suppose that Db(t) and c¢(t) are bounded from above by by and

c2 respectively. If for any solution (x(t),y(t)) of (3.13)



fiv

with  (x(t0),y(te)) € Q1 U Qs, the curve {(x(t),y(£))[t 2 to}

+ oo
intersects the x-axis, then ./'0 {f1(x) + |Ff2(x)|}dx = £

Proof. We shall prove ./’ {fi1(x) + £o(x)}dx = = ., Let
0 .

! :
Voly) =./; T¥T§Tdv . Since Vg(y) tends to « as y » « |

there exists yp > 1 such that
Vo(ye) > V(1) + 1+ {ri(6) + ralt)las

Now suppose Jﬁ {r;(x) + f2(x)}dx < =« . Then taking
%
g = sup {g:1(y) + g2(y)}, we choose x4 > 0 so large that
1<y<yo ' ‘

(by + cz)g*jf {f1(x) + £o(x)}dx <1 . Let (x(t),y(t)) be a
X0

solution of (3.13) through (xp,¥0) at t = to. Then the curve
{(x(t)?y(t))lt > te} must interséct the x-axis at a finite time.
Hence we can find the first time t, > t, satisfying y(t,) =1
and the last time» t: < t, satisfying y(t:) = yg. Then of
course x'(t) = y(t) >1 for t, <t < t, and so x(t) > Xo
for ty <t < t,. Differentiating v(t) = Ve(y(t)), we obtain

from (Ad4)!

() = - (001 (e (13- (8) T2 (W)ga (y)+e(t,x,5))

2 TP (91 (0 (1y-e(8) 2 (x)g2 (3)-r1 (8)-r2(8) [y]]

for t; <t < t,. Since T¢T§%%37-< 1 and Té%é%%%T < 1 ,
vi(t) > -b(E)F (x)g1(¥)y - c(B)f2(x)ga(y) - r1(t) - rao(t)

D TR



for t; 2t < t, , hence

% *
v'(t) > =bg £1(x)x' - c2g fa(x)x' = v (8) - ra(t)
for t; <t < t, . Integrate v'(t) from t; to t, . Then we
have
tz t2
* *
v(t,) > v(ty) - bzgf fi(x)x'dt - ngf - fa(x)x'dt
tz t1 ‘t1'
“f {r,(t) + r,o,(t)}dt
t1
and
x(t2) ta
*
v(ty) > V9(Yo)"(b2+02)8f {f1(X)+f2(X)}dX-—f {ry(t)+r, (t)}dt.
Xy ti

Therefore v(ta) > Va(y,) - 1 —J[ {r,(t) + ro(t)}dt . This
- 0
implies v(t,) > Vo(1l), which contradicts y(t,) = 1 . Thus we
oo
conclude that ./' {f(x) + fo(x)}dx = « . It is analogously
0

proved that

f {fl(X) - fz(X)}dX = - 0, Q-E.D.

0

Theorem 3.15. Suppose the assumptions (A1)", (A3)', (A4)?

(A8) ~ (A10) and (All)'. Then the following statements are
equivalent.
(1) For any solution (x(t),y(t)) of (3.13) with (x(tq),y(tq))

€ Q; Y Q3, the curve {(x(t),y(t))|t > t,} intersects

the x-axis at a finite time.

11 e ¢ I lax = s e
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(11i) the solutions of (3.13) are uniformly bounded.

(iv) Every solution of (3.13) converges to the origin as ¢t

tends to

This theorem is an immediate consequence of Theorem 3.10,

Theorem 3.11, Lemma 3.13 and Theorem 3.14.

uE ——



3.3. Uniform attractivity for the equation

x" + b(t)Fi(x)gi(x")x' + c(t) f3(x)gr(x")x = e(t,x,x")

Tn this section we shall consider the uniform attractivity for

the system
x' =y
(3.17)
y! = —b(t)fl(x)gl(y)y - C(t)f3(X)gz(Y)X + e(t,x,y)

Theorem 3.16. Suppose the assumptions (A1l)', (A3), (AL)r,

(A8) ~ (All). Then the following statements are equivalent.

(1) For any solution (x(t),y(t)) of (3.17) with (x(te),y(ts))
€ Q1 U Q3, the curve {(x(t),y(t))|t > ty} dintersects

the x—-axis at a finife time.
+ oo ‘
(ii) ./; {ri(x) + |x|f3(x)}dx = % =
(iii) The solutions of (3.17) are uniformly bounded.

(iv) The origin is globally uniformly attractive for (3.17).

Proof. The implication (i) = (ii) = (i1ii) 1s a consequence
of Theorem 3.10 and Theorem 3.14. Therefore by Lemma 3.13, we
need only show that the implication (iii) = (iv) is wvalid.

Suppose a > 0 and %o + yo? < a® . Let (x(t),y(t)) be a

solution of (3.17) through (x¢,y¥0) at ¢ te . Then from

i

(iii), there exists a positive constant B B(o) such that

x(t)2 + y(£)* < 8% for t > t, . Now we choose positive

— b7 —



constants dy , d2,..., dg such that di < f1(x) < da,

dy < f3(x) 2 du, ds < g1(y) £ de¢ and dv < g2(y) < dg for

|x| <8 and |yl <8 . Let
Vio(t,x,y) = %?[Fl(x) + G1(y)]% + Le(b)Fs(x) + GL(y)
1 1,L 1
Then, Vlo(t>X:y) ; _2“LC1d3X2 -+ —?(a_; - @2_>y2 and

1 ' d 1.4 L ‘
V1o(t,x,y)‘; Tf(dzz + Leaody + a%)xz + Tf(af +<57)y2 for all

t >0 and for x? + y? < B% . Therefore there exist positive

constants uy = #3;(a) and 1y, = us(a) such that
(3.18) ny(x? + y2%) < Vie(t,x,y) < ual(x? + y?)

for t > 0, x* + y? < B2 . VNext differentiating Vi,(t) =
Vio(t,x(t),y(t)) with respect to ¢, we have
- y'
Vieg'(t) = LF + G f L + Le'(C)F
10" (%) [ 1(X) 1(y) I (x)x é:???j c'(t)Fs(x)

Lyy'! y!
g2(y) _'Gl(y)gl(y5

+ Le(t)xfs(x)x' +

= F1r(x)f1(x)y + G (y)f1(x)y + Le'(£)Fs(x) + Le(t)xfa(x)y

o 2 DY 3 ey e, () g (3)y-c(8) Fs (x)ga (v) xtelt,x,y)}

g21(y) g2(y)

= Le'(8)Fa(x) + {1 = b(£)}F;(x)F1(x)y + f;<x>el<y>yv

_e(B)F () Fs(x)eg,(y)x _ Lb(E)F (x)g:(y)y?
g1(y) g2(y)

Fa.(y) Ly
GG T ey eExy)

Here {1 - b(t)}F,(x)f1(x)y £ (1 + b,)d,?|xy] and T3(x)Gi(y)y <
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da y? . On the other hand, c(B)F1(x)fs(x)ga(y)x > c1d:d3d7 o>
5 g1(y) = de

Lo () (X)gs (y)y* o Lbidids 2

Furthermore (A4)' implies

g2(y) = dg
¥ (X> Ly dsix Lix 2
{g;(y) e Ye(t,x,y) 2 ( et —é7i-){r1(t) + r(t) ]y}
and sSo

Fa(x) , Ly < (42 L, L %

d2 4 Loygea + £) +
{gl(y) 2 (y) et xy) < (g 3. B( B ) {r1(t) + ra(t)} ,
because of |x| < B and |y| < B8 . Thus by choosing L large

enough
Vio'(t) < Lle'(8)|Fs(x) = do(x? + y2) + diolri(t) + ra(t)}

for € > ty , where positive constants ds and diy éré

independent of (to,X0,¥e) . Now (3.18) dimplies

Viot(6) < [- 32w Ll gy, (o) 4 dy e (6) + ra())

for t > ty . From Lemma 1.11, for any € > 0 there exists

T = T(g) > 0 such that
Vig(t) < e + K{v10<to>exp[-§—;’— (t-to)] + exp[—% (t-T) 1}

for t > t, . Let t(t) = Min{t-t,,t-T} . Since V;o(t,) <

Ua(xo? + yo?) < paa?, Vig(t) < e + K(uza? + l)eXpE-%%T(t)]

* % ¥ 2
Choose T =T (a,e) so that T > %iloggiﬁlggill + T . Then we
9

, 2 #
obtain t(t) > giloggiﬁég—ill for t > t, + T . Hence V,o(t)

. Z

%
< 2¢ for t >ty + T . Thus we conclude from (3.18) that
%
x(£)? + y(t)? < 5153 for ¢ > t, + T . This completes the
; Z

proof of Theorem 3.16. Q.E.D.

— b9 —
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In Theorem 3.16, we have not asked whethér the system (3.17)
has the zero solution (x(t),y(t)) = (0,0) . But if Je(t,x,y)]|
< r(t)|y]| , then the system (3.17) has the zero solution. In this

case the following theorem holds.

Thebrem 3.17. Suppose the assumptions (Al)', (A3), (AS8),
(A9), (All) and suppose that |e(t,x,y)] < r(t)]|y| and r(t) 1is
a nonnegative, continuous function satisfying J[owr(t)dt < o
Then the zero solution of (3.17) is globally uniform—asymptotically

+ oo
stable if and only if J[ {f,(x) + |x]f3(x)}dx = £

t oo
Proof. We need only show that if J[ {fi(x) + |x|fs(x)}ax
0
= % o, then the zero solution of (3.17) i1s uniformly stable.

For any solution (x(t),y(t)) of (3.17) through (xo;yo) at

t ty satisfying x,° + yo? < 1, it follows from Theorem 3.10
that x(t)? + y(t)? < Bg(1)? for t > t, . Then using the same

function V;,(t,x,y) as in the proof of Theorem 3.16, we have
py (% + y%) < Vig(t,x,y) < ua(x? + y?)

for t > 0 and for x? + y? < g(1l)? . Also, we have for the

derivative, of V,,(t,x,y) along the solution of (3.17),

)(t,X,y> < [—S—Z + [C;(Eg Jvlo(t,x,y)ﬂdélxl +L(Ii:’7’l}r(t)lyl-

(V10)1(3.17

HFurthermore

{d%};l + Lcl1377| dr(e) |yl = r(t){dZJ;EYL + ng }o<odaar(e)(x® + y?)

for some d,; > 0 . Thus we obtain
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(Vlo)'(?).l?)(t:X;Y) =< [IC;EE% + dplll

r(t)IVie(t,x,y)

for any t > 0 . This implies that the zero solution 1is
uniformly stable, according to the well known K.T.Persidsgki's

theorem. Q.E.D.
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