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1. Introduction and statement of results

In this paper, we shall study a certain class of Yang-Mills connections on a
quaternionic Ké&hler manifold, called quaternionic Yang-Mills connections.

Our basic setting is the following. Let F be an associated Riemannian vector
bundle of a principal bundle with a compact Lie group G as the structure group over
a compact oriented Riemannian manifold (M, g). Let A be the space of connections
on E. For a connection V € A, we denote by dV and 6V the covariant exterior
derivative and its formal adjoint respectively acting on End(E)-valued p-forms.

The Yang-Mills energy functional Y M : A — R is defined by

1
YME) =3 [ 1F)d,

where FV is the curvature of a connection V € A. A connection V is called a
Yang-Mills connection , if V is a critical point of the Yang—Mills energy functional
Y M(V); namely, if it satisfies the Euler-Lagrange equation

§VFV =0.
By the Bianchi identity d¥ FV = 0, the Euler-Lagrange equation is equivalent to
AVFY =0,

which says that FV is harmonic, where AV = dVéV + 6VdV.

Nitta ([6]), Mamone Capria-Salamon ([2]) independently found higher dimen-
sional analogues of the notion of self-dual and anti-self-dual connections on a
quaternionic Kahler manifold. A quaternionic Kdhler manifold is a Riemannian
4n-manifold whose holonomy group lies in Sp(n)-Sp(1), n > 1. In the case of n = 1,
we add the condition that M is Einstein and half-conformally flat. The bundle of
2-forms on a quaternionic Kéhler manifold (M, g) has the following irreducible
decomposition as a representation of Sp(n) - Sp(1):

(1.1 NT*M = S*H & S’E @ (S?H @ S?E)*,
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where H and E are the vector bundles associated with the standard representations of
Sp(1) and Sp(n), respectively. Corresponding to the decomposition (1.1), we write
the curvature FV as

FV:F1+F2+F3,

where F! € I'(M;S’H ® End(E)), F? € T(M;S’E ® End(E)) and F? €
I'(M;(S?H @ S?E)* ® End(E)). A connection V is said to be c;-self-dual (i=1, 2
or 3) if FJ =0 for all j # i. In the case of n = 1, we have F' = F'*, F? = F~ and
F3 =0 where Ft (resp. F~) is the (resp. anti-) self-dual part of the curvature F'V.
We shall confine ourself to the case where (M, g) is a compact quaternionic Kahler
4n-manifold.

Recall that each ¢;-self-dual connection is a Yang-Mills connection (cf. [6], [2],
[3]). Moreover, if M is compact, a ¢; or ce-self-dual connection is minimizing the
Yang-Mills energy functional Y M (V) (cf. [3], [2]). As far as we know, there is no
example of non-flat c3-self-dual connections. If they exist, they are believed to be
unstable. Indeed, it is known ([7]) that any non-flat c3-self-dual connection over the
quaternionic projective space HP™ is, if it exists, unstable. Nagatomo ([5]) proved
that there is a unique non-flat ¢;-self-dual connection over any simply-connected
quaternionic Kahler 4n-manifold with n > 1.

Let us recall some results on Yang-Mills connections. Bourguignon and Lawson
([1)) discussed gap-phenomena for Yang-Mills connections. They gave explicit C°-
neighborhoods of the minimal Yang-Mills fields which contain no other Yang-Mills
fields up to gauge equivalent. They obtained the following.

Theorem A. ([1]) Let V be a Yang-Mills connection on (S*, go). If the self-
dual part F* of the curvature of V satisfies the pointwise inequality |[F*||? < 3,
then F+ = 0. The same is true for the anti-self-dual part F~ of the curvature of V.

They next examined the case where the inequality ||FV||? < 3 is relaxed on
(547 gO)

Theorem B. ([1]) LetV be a Yang-Mills connection on a Riemannian vector
bundle E over (5%, go). If FV satisfies the pointwise inequality | F¥ ||? < 3, then either
E is flat or E = Ey @ S where Ey is flat and where S is one of the 4-dimensional
bundles of tangent spinors with the canonical Riemannian connections.

The purpose of this paper is to generalize these results to quaternionic Kahler
manifolds. We introduce the following notion for connections:

DEeFINITION 1.1. A connection V on a Riemannian vector bundle over a com-
pact quaternionic Kéhler manifold is called a quaternionic Yang-Mills connection
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if AV(FV AQ"~1) = 0 where Q is the fundamental 4-form on (M, g) (See §2).

Note that in the case of n = 1, the quaternionic Yang-Mills connections are
the Yang-Mills connections, and vice versa. It is easy to see that the c;-, c3- and
cs-self-dual connections introduced above are quaternionic Yang-Mills connections.

Proposition 1.1. If a connection V is a quaternionic Yang-Mills connection,
then V is a Yang-Mills connection.

We shall give a proof of Proposition 1.1 in § 3.

Wolf ([9]) classified the compact simply-connected quaternionic Kéahler
symmetric spaces, called Wolf spaces . The only examples of the Wolf spaces are the
following.

HP", Gry(C™*?), Gry(R™™?), 5000)"

F, Eg Er Eg
Sp(3)-Sp(1)’ SU(B)-Sp(1)’ Spin(12)-Sp(1)’ EBr-Sp(1)’

From now on, we suppose that (M, g) is a Wolf space. Note that the Riemannian
curvature operator R acting on A2T'M has also a splitting R = R; + Ry + R3 with
respect to the decomposition (1.1). By ([4]) we can write the curvature operator R;
as R; = p;I 27 pr where p; (1 =1 or 2) is a positive constant. Since R3 is negative
semi-definite, we put puz = 0. We set A\; = s/(2n) — 2u; (¢ = 1, 2 or 3) where s is the
scalar curvature of (M, g). Then we shall state the following.

Theorem 1.1. LetV be a quaternionic Yang-Mills connection on a Wolf space
(M, g), (n > 1), and assume F3 = 0, ie., the cs-self-dual part F3 of the curvature
of V vanishes.

(1) If the c;-self-dual part F' of the curvature of V satisfies the pointwise
inequality

4n — 1))\?

Fly2 n( 1

[F)" < Te@n_12’
then F1 =0, that is, V is a cy-self-dual connection.

(2) If the cy-self-dual part F? of the curvature of V satisfies the pointwise
inequality

n(4n — 1)\2

F2 2 ,
IEZIE < 16(2n — 1)2

then F? =0, that is, V is a c,-self-dual connection.
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Theorem 1.1 for M = HP? coincides with Theorem A. It seems that the as-
sumption F2 = 0 is necessary to get the generalization of Theorem A. We next
show that the c3-self-dual connections can be characterized as follows if they exist.

Theorem 1.2. Let V be a quaternionic Yang-Mills connection on a Wolf space
(M,g), (n > 1). If the c,-self-dual part Fland the cy-self-dual part F?of the
curvature of V respectively satisfy the pointwise inequalities

n(4n — 1)\2
16(2n —1)2’

n(4n — 1)A\3

F12
I1E7]1" < To(@n— 12’

I1F2)1* <
then F1 = F? = 0, that is, V is a c3-self-dual connection.

To generalize Theorem B, we suppose that the base manifold M is a quaternionic
projective space (HP", go). Let go be the Riemannian metric on HP™ with the scalar
curvature s = 4n(2n — 1)(n + 2). With respect to this metric gy, we calculate A\; and
Ao of Theorem 1.1. Then we can read Theorem 1.1 as follows.

Corollary 1.1. Let V be a quaternionic Yang-Mills connection on (HP™, go),
(n > 1), and assume that F* = 0.
(1) If F! satisfies the pointwise inequality

IFH* < n(4n — 1),

then F* =0, that is, V is a cy-self-dual connection.
(2) If F? satisfies the pointwise inequality

(4n —1)(n+1)?
4 )

n
12> <
then F? =0, that is, V is a c,-self-dual connection.

Using Corollary 1.1, we examine what happens when the inequality ||FV||? <
n(4n — 1) is relaxed on (HP", go).

Theorem 1.3. LetV be a quaternionic Yang-Mills connection on a Riemannian
vector bundle E with any structure group G over (HP", go), (n > 1), and assume
that F3 = 0. If FV satisfies the pointwise inequality |[FY ||? < n(4n — 1), then either
E is a flat vector bundle or E = Ey @ H, where Ey is a flat vector bundle and where
H is the tautological quaternion line bundle.

In the case of n = 1, Theorem 1.3 coincides with Theorem B. We next obtain
the following theorem in which the assumption of F2 = 0 is not necessary.
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Theorem 1.4. LetV be a quaternionic Yang-Mills connection on a Wolf space
(M7g)’ (n 2 2)'
(1) IfF, F? and F? satisfy the pointwise inequalities

A1
Fl < —,
174 < 2%
Az

F3|| < == = (n+3)||FY|| - || F?|,

IF2]l 7 (n+3)IF7| = (177
then F' = F3 = 0, that is, V is a cy-self-dual connection. Moreover if V is
non-flat, then the cy-self-dual part F? satisfies

(2) IfFY, F? and F? satisfy the pointwise inequalities

V2 n

then F? = F3 = 0, that is, V is a c,-self-dual connection. Moreover if V is
non-flat, then the c,-self-dual part F! satisfies

1E2] = I,

2L < 22

V2 V2

2. Preliminaries

In this section, we fix notation. Let (M, g) be a compact quaternionic Kéhler
4n-manifold, and P a principal G-bundle over (M, g) with a compact Lie group G
as structure group. We denote by g the Lie algebra of G. For a faithful orthogonal
representation p : G — O(N), we consider a Riemannian vector bundle £ =
Px pRN associated with P by p. Each connection on P corresponds to a connection
V on E. We denote by A the set of the connections on E. To each connection V
on E, the curvature FV, given by the formula F;Y = [Vx,Vy] — Vix,y) for
tangent vectors X, Y, is a 2-form on M with values in the bundle sog whose fibre
S0Ez, £ € M, consists of skew-symmetric endomorphisms of the fibre £, of E. The
pointwise norm of F'V at each point z is given by

IEYIZ =D IFY o117,

i<j
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where {ej, -, e4n} is an orthonormal basis of the tangent space T, M, z € M, and
the inner product of the fibre sog . is given by

@.1) (A, B) = —%tr(A o B)

for A, B € sog ;. There exists a subbundle g5 of sog corresponding to a bundle
gp = P x 449 through p. Let AP(gg), 0 < p < 4n, be the space of gg-valued p-forms
on M. We get the exterior differential dV : AP(gp) — AP*1(gg) and the adjoint
operator §V : AP(gp) — AP~1(gg) corresponding to V€ A. AY =dVéY +6VdY
is the Laplacian for gg-valued p-forms. There is another second order operator V*V,
called the rough Laplacian , acting on g-valued differential forms. It is given by the
formula V*Vp = — ngl(vgj,ej ©), ¢ € AP(gg), where V% y = VxVy — Vp,v.

The bundle of 2-forms on a quaternionic Kéhler manifold M has the following
irreducible decomposition as a representation of Sp(n) - Sp(1):

(2.2) N2T*M = S’H o S’E @ (S’He S?E)*,

where H and E are the vector bundles associated to the standard representations
of Sp(1) and Sp(n), respectively. A connection whose gg-valued curvature 2-form
lies in S%H, S%E or (S?H @ S?E)* is called a c;, ¢y or cz-self-dual connection
respectively. Corresponding to the decomposition (2.2), we write the curvature FV
as
FV =F'+F?+ F3.

In the case of n = 1, corresponding to the fact that SO(4) = Sp(1) - Sp(1), A>°T*M
is decomposed as

(23) NT*M = NL @ A2

A connection whose gg-valued curvature 2-form lies in A% or AZ is called a self-
dual or anti-self-dual connection respectively. Corresponding to the decompdsition
(2.3), we write the curvature FV as

FV=Ft4+F.

The associated bundles H, E for this case are precisely the half-spinor bundles of
M. The vector bundle S?H is a subbundle of End(7T'M) of real rank 3. Locally S?H
has a basis {I, J, K} satisfying

I’=J%=-1, IJ=-JI=K.

The metric g on M satisfies g(IX,IY) = g(JX,JY) = g(KX,KY) = g(X,Y) for
all X,Y € T, M. Local 2-forms {wy,ws,wk} are defined by

wi(X,Y) = g(IX,Y), ws(X,Y)=g(JX,Y), wg(X,Y)=g(KX,Y).
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{wr,ws,wk} is a local orthogonal frame of S?H. We define a global 4-form Q by
Q=wiAwj+twjAwj+wkg \wk.

(2 is a nondegenerate and parallel form on M, called the fundamental 4-form on
M. A connection V on the quaternionic Kéhler 4n-manifold (M, g) is a c;-self-dual
connection (i = 1, 2 or 3) if and only if its curvature F'V satisfies

(2.4) «FY = PV A QY

where * is the Hodge star operator and ¢; = (6n)/((2n + 1)!), co = —1/((2n — 1))
and ¢z = 3/((2n — 1)!) ([3]). Note that the equation (2.4) can be viewed as the
self-dual or anti-self-dual equation on a oriented Riemannian 4-manifold.

Let (M, g) be a compact quaternionic Kéhler 4n-manifold. At each point, we
consider F'V as a linear map

FY : A’TM — g.
In A2TM we have the identities
(2.5) lei Nej e ANel]l = biuer Nej + bjie; Nex + bivej Ner+ kel N e;

for all 4, j, k, I, where {e1,...,es4n} is an orthonormal basis of the tangent space
T, M. For any ¢ in A%(gg), the Bochner-Weitzenbdck formula is

(A%0,0) = (V*Vip,0) = (po (5=1 ~2R) ,¢) = p(e),

p(‘lp) = (K'(SO)’ 90> = <[Fvv<p]790>v K’(‘P)X,Y = Z{[FZ,Xa‘Pe,',Y] - [Fev,-,Y’ ‘pei,X]}

=1

and R is the Riemannian curvature operator acting on A2TM.
For ¢ = FV, this formula implies that

(26) (AFY,FY) — (V*VFY,FY) = (F¥ o (-1 -2R) ,F¥) = p(F7),

where
4n
2.7) p(FV)= > ([FY . . F ) Fy ).
i,5,k=1

We now examine the term p given by (2.7). We now introduce an inner product
on the bundle g as follows. Recall that we have g C sog, the bundle of skew-
symmetric endomorphisms of E. Given two endomorphisms A and B of E,, we
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define (A, B) := 1/2tr(*A o B). There is a natural bundle isomorphism A2E ~ sog
determined by the requirement that

(u A v)(w) = (u, whv — (v,w)u

for u, v, w € E,. The elements {&; A {;}i<; form an orthonormal basis of (sog),
whenever (£;,...,£n) is an orthonormal basis of E,. In particular, there is a
canonical isometry A?TM ~ sop;. We have also g C A?T,M ~ so(N). For any
Lie algebra g with a fixed Ad-invariant inner product (-,-), we have the associated
fundamental 3-form ®; given by ®,(X,Y,Z) = ([X,Y],Z) for X,Y,Z € g and
&, 270 (a, B,7) = ([a, B],7) for a, 8,7 € /\ZTM We may rewrite (2.7) as

V
Z QQEJ( €i,e;) e],ek’ ek,ez)

1,J,k=1
4n
- Z (FV*®,,)(e; Aej,ej A ex,ex Ae;)
0,5 k=1
= (Fv*q’gE’q)/@TM))

where, for notational convenience, we define the inner product in A3(A2T*M) by

) =Y pvw QU V,W)¥(U,V,W), where U, V and W are an orthonormal
basis of A2T'M. Therefore, we have the following basic result. Let F'V be a curvature
2-form on E and let A be the minimal eigenvalue of the operator (s/2n)I — 2R on
2-forms over a compact quaternionic Kahler manifold M. Then

(28) (V*VFV,FV) —(AVFV,FV) < —{\|FV|? - (FV*®,,,®porm)}-

At each point z € M, we want to estimate (Fy *®;_, ® 27, 5/) in terms of ||[FV||?
where FY : s0(4n) — g is a linear map and where g is any Lie subalgebra of so0(IV).
Recall that an inner product on g is induced from the canonical one on so(N)
defined by (A,B) = —(1/2)tr(p(A) - p(B)). Consequently Fy*®; = FY*®.,n.
Therefore, in the argument of this paper, we can ignore g.

The norm || - || induced by the inner product (2.1) has the property that

(2.9) I14, B[l < V2| All - | B

for all A, B in which the equality holds if and only if the pair A, B is orthogonally
equivalent to the following matrices:

(G ()




where
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We shall also state the following result, which is used in proving our theorems.

Lemma 2.1.

Let S = ((ss;)) be a symmetric 4n x 4n matrix with s;; > 0 and

8 = 0. If trS? = (4n(4n — 1)A2)/((4n — 2)%22) for any positive real number \, then

4n(4n —1)\3
tred < ———— 2T
U= Tan — 2)223

with equality holding if and only if s;; = (A\)(4(2n — 1)), i # j.

The proof of Lemma 2.1 is entirely similar to the argument for Lemma (5.14)

in [1].

Denoting F; . by Fj, we have the following.

Proposition 2.1 ([3]).

1,

co-self-dual and c3-self-dual parts.

&)

)

The c,-self-dual part F* satisfies

1 _ ol _ ol _ ol
F4k+1,4k+2 = Fypi3,ak+4 = Fut1,a42 = Fags v

1 _ _ _
Firi1,ak43 = Fakyaahye = Fapia43= F4l+4,4l+27

1 _ ol _ ol
Firi1,ak+4 = Faky2,ak43 = Foi1a44 = Fuioats

1 ol _ pl _ ol _
Fipi1,a9+1 = Fapyoagr2 = Fapisaqrs = Fipraagra =0,

(Vk,1,p,9),
F41p+a,4q+ﬁ = 07 (Vp # q, ‘v’a, ﬂ)

The cy-self-dual part F? satisfies

F42k+1,4k+2 = —F42k+3,4k+4a

F42k+1,4k+3 = F42k+2,4k:+47

F42k+1,4k+4 = _F42k+2,4k+37

F42p+1,4q+1 = F42p+2,4q+2 = F42p+3,4q+3 = F42p+4,4q+47

F 42p+1,4q+2 = —F 42p+2,4q+1 = _F42p+3,4q+4 = F42p+4,4q+3’
F42p+1,4q+3 = F42p+2,4q+4 = —F42p+3,4q+l = _F42p+4,4q+2,
F42p+1,4q+4 = _F412p+2,4q+3 = F42p+3,4q+2 = _F42p+4,4q+17

(Vk), (0<p<g<n-1).

Let F', F? and F® be respectively the c,-self-dual,
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(3)  The c3-self-dual part F? satisfies

n—1 n—1 n—1

E : 3 _ § : 3 _ § : 3 —
F4k+1,4k+2 - F4k+1,4k+3 - F4k+l,4k+4 - Oa

k=0 k=0 k=0

3 3 _ 3 3
Fipt1,ag+2 t Figi1,ap+2 = Fipysaqra T Fagesaptas

3 3 _ 3 3
Fapr1ag43 + Fagriaprs = —(Fipioagia + Figio.ap1a),

3 3 _ 3 3
Fipi1,ag+a T Fagr1,ap4a = Fipr2,ags + Figr2.ap+3s

4
3 —
Z F4p+a,4q+a - 07

a=1
(Yp,q).

Proposition 2.1 follows from the argument for Theorem 2.2 in [3].

3. Some properties of quaternionic Kahler manifolds

In this section, we prepare a few propositions. First, we shall give a proof of
Proposition 1.1.

Proof of Proposition 1.1. We see that d¥V(FV AQ""1) =0 by dVFVY =0 and
dQ) = 0. Hence if M is compact, then the connection V satisfies AV (FY AQ"?"1) =0
if and only if 6V(FY A Q*!) = 0. We shall prove that V satisfies 6V FV = 0 if
§V(FY AQ™1) = 0. We take an orthonormal frame field {e;;i = 1,2,...,4n} such
that Tesrt1 = eapr2, Jeswt1 = eanys, Kegpp1 = eapys, (k =0,1,...,n — 1),
and denote the dual frame by {#%;i = 1,2,...,4n}. The vector bundle S?H has the
following frame field, {wr,ws,wk }:

n—1
wr = Z(G4k+1 A 94k+2 + 94k+3 A 04k+4),
k=0
n—1
wy = 2(041‘:-}-1 A 94k+3 + 94k+4 A 94k+2),
k=0
n—1
Wi = Z(e4k+1 A GHHE 4 gakt2 5 giki3)
k=0
The fundamental 4-form is Q = w; A w; + wy A wy + wg A wg. Using the or-
thonormal frame {6%i = 1,2,...,4n}, we can write the curvature 2-form FV as
FV =%, . Fij6° A67. From Q"' = ((2n—1)!/6) *Q ([3]), 6V (FY AQ"1) =0 is
equivalent to 6V (FV A *Q) = 0. It is easy to see that the quaternionic Yang-Mills
equation 8§V (FV A *Q) = 0 is equivalent to

ViFij =0, (i,j=1,...,4n).
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On the other hand, the Yang-Mills equation §V FV = 0 is equivalent to

Y ViF; =0, (j=1,...,4n).

Therefore, if V satisfies §V(FV A Q" 1) =0, then §VFY = 0. O

Proposition 3.1. Let F', F? and F3 be respectively the c,-self-dual, c,-self-
dual and c3-self-dual parts of the curvature FN on a compact quaternionic Kdhler
manifold. Then the following are equivalent:

(3.1) AV(FY A Q1) =0,
(3.2) av (c"‘ “Crpa ) BT CVW) ~0

Cq (&% ]
for any permutation (a, 3,7) of {1,2,3}.

Proof. Let
(3.3) FV=F*+F°+F
denote the curvature, for any (o, 3,7) as above. From (3.3), we have
(B4)  FYAQ = FOAQ" 4, FAAQY f o FY A QL
Hence, we get

(3.5) ey % (FY AQP1) = c—”F‘*+Z—”Fﬁ+Fr
(%% B

It follows from (3.3) and (3.5) that

(3.6) (1 - C—”) F* + ( - c—”) FP=FY —c «(FVAQ" ).

Cq (&%}

Applying dV and 6V to (3.6), respectively, and using Bianchi identity d¥FY = 0
and dQ"~! = 0, we obtain

av [(1_ C_w) Fo o4 ( _ ﬁ) Fﬁ] =—c, *6V(FY A Q")

Ca

§v [(1 - —Cl) Fo 4 (1 - cl) Fﬂ] —6VFV.
Co c3

From Proposition 1.1, V fullfills 6V FV = 0 if it satisfies 6V (F'V AQ™~1) = 0. Hence,
(3.1) and (3.2) are equivalent. This completes the proof of Proposition 2.1. (]
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In the case n = 1, we conclude that the following three conditions are equivalent
(C1:
() 6YFV=0, () AVFt=0, (3) AVF- =0

Proposition 3.2. Let F' and F? be respectively the c,-self-dual and c,-self-dual
parts. Then for vectors X, Y € T, M, the quantity

Z ej, X e,,

is symmetric in X andY .
Proof. Let {e1,...,esn} be an orthonormal frame field of T, M. Substituting

X = egpt1, Y = eqp42 into 24" Fel], F2 -y and using Proposition 2.1, we see
that

§ . = F! -F? +F! - F?
e; €4k+1 eJ 1€4k+2 €4k+3,€4k+1 €4k+3,€4k+2 €4k+4,€4k+1 €4k+4,€4k+2

ol 2 1 2
F€4k+2,€4k+4 F€4k+1,€4k+4 + F€4k+3,€4k+2 Fe4k+3,€4k+1
Z €j,edk+2 53154k+1
for each 0 < k < n — 1. This completes the proof of Proposition 3.2. O

The following is the key of the proofs of the theorems.

Proposition 3.3. Let F!, F? and F? be respectively the c,-self-dual, c,-self-dual
and cs-self-dual parts. Then
(1) [FYLF?xy=0,
(2) [Fz, F3]X,Y € (S2Hz @ Sz]Ez)_L ®g
(3) [FI’FB]X,Y € (SQ]HIQ: S SzEz)_L g,
where [F*, FPlx v = 30" {[F& x, FL 1= [F& v, FL ]} for dl X,Y € T M, o,
B=1,23.

Proof. (1) From Proposition 3.2, X and Y are symmetric. Hence,
[F',F?xy =0.
(2) From the properties of the Killing form, we have

3.7 <[Aa B]7 C>.= (Av [B’ C]>

for any A, B,C € A?TfM ® g. Using Proposition 2.1, we see that [FLFllxy €
S°H, ® g, [F?, F?|xy € S?E, ® g and [F3, F3|xy € A?TyM ® g and note that
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[F,FA] = [FP F*]. Putting A = F', B = F? and C = F? in (3.7) and using
[FI,F2]X,Y = 0, we get

(3.8) (F',[F? F°]) = 0.
Putting A = F', B= F® and C = F? in (3.7), we have
(39) ([F*, F?), F?) = (F',[F®, F?]).

Putting A = F!, B = F! and C = F® in (3.7), we get ([F!},F!],F3) =
(F',[F', F®)). From [F!,Fl]x y € S?H, ® g, we have

(3.10) (FY,[F*, F?) = 0.

Putting A = F2, B = F? and C = F3 in (3.7), we get ([F% F?],F3) =
(F?% [F?, F®]). From [F? F?|xy € S?E, ® g, we have

(3.11) (F2,[F?,F3)) =0
From (3.8) and (3.11), we conclude that
[F2, F3x.y € (S°H, ® S?E,)* ® g.
(3) From (3.8) and (3.9), we get
(3.12) ([F, F3],F?) =0.
From (3.10) and (3.12), we conclude that
[F', F?|xy € (S’H, & S°E,)" ® g
These complete the proof of Proposition 3.3. ]

The proof of the following Proposition 3.4 is analogous to that of Proposition
(5.6) in [1].

Proposition 3.4. Let FY : so(4n) — so(N) be a linear map and \ be a

positive real number.
D IF|FY)? < (n(4n — 1)22)/(16(2n — 1)?), then

(3.13) (FY*®g, ®p2p, 1) < M| FV|2

(IT) Putting A = 4(2n — 1), we have the following:
If|FY||? < n(4n — 1), then
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(3.14) (FY*®g, ®por, ) < 4(2n — 1)[|FY|%.

The equality holds if and only if there is an orthogonal splitting RY = Sy @ S,
(dim S; = 4) with respect to which FY = 0 @ o where o is a representation
o :sp(1) — so0(4).

Proof. We shall prove the inequality for ||FV |2 = (n(4n—1)A2)/(16(2n—1)3).
Let {e; A eJ}KJ be the orthonormal basis of 50(4n) > AZT,M. Then ||[FV|? =
S [FF (e A e and ("8, rarpe) = S0, ([ET (e A ) EY e 1

ex)], Fy (ex A e;)). We now denote Fy (e; A e;) by F;;. We introduce the 4n x 4n-
symmetric matrix S = ((s”)) with non-negative entries s;; = V/2||Fi;||. By the
assumption, trS? = Zf’; 155 =42, |1 Fijll? = (4n(4n — 1)X%) /((4n — 2)22). By
Lemma 2.1 we have

4n(4n — 1)A3
3 _ g . -

Therefore, using (2.9), we see that

(F *‘I’g,‘l’/@TM Z |[ 1J’F]k Fli)|
z],k 1

Z Fsss Ejielll - 1| Feil

1,J,k=1

| AN

4n

> V2IFl - I Fkll - | Fal
1,7,k=1

1 4an
=3 Y sismsk S MFYP.
1,7,k=1

IA

Hence, we complete the proof of (I).
We next prove (II). Putting A = 4(2n — 1) in (I), we see that

(Fy " ®y, ®por, ) < Z ([Fs, Fi, Fia)l
,Jk 1

< Z ITEsg Esell - [ Fsl

1,J,k=1

4n
< N V2IF - IF) - | Fall

1,5,k=1
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4n

1
= 5 Z 8ij8jkSki < 4(2n - I)HFV',2'

i,5,k=1

Suppose now that we have the equality in each line. From the last line we see
that s;; = 1, and so |F;;|| = (1/v/2) for i # j. From the first and second lines
we conclude that, when 4, j, k are mutually distinct, [F;;, Fjx| = tF}; where t > 0.
Taking the inner product with Fj; and using the equality in each line we see that
t = 1. Hence, we have

(3.15) [Fij, Fjx) = Frs

for all 4, j, k distinct. This equation has a number of consequences. Setting
ikt = [Fij, Fra|, we have gk = —0jikt,  Qujki = —Qijik,  Oujki+ 0kt +oijk = 0,
04k = Oxi;. However, from the definition we see a;jx = —ogij, and so we con-
clude that

(3.16) [Fij, Fri] =0

for ¢, j, k, I distinct. Comparing (3.15) and (3.16) with (2.5) we conclude that
FY :s50(4n) — so(N) is a Lie algebra homomorphism. Finally, we observe that by
(2.9) each pair (F;;, Fx) for 4, j, k distinct is conjugate to a pair of matrices of (2.10).
In particular, each of the endomorphisms F;; is supported in the same 4-dimensional
subspace. Therefore, we conclude that F;; : so(4n) — so(4) is also a Lie algebra
homomorphism. This homomorphism is injective. To see this directly we note that if
i, j, k, | are mutually distinct, then it is easy to see that (F};, Fi;) = 0. The matrices
{Fi;}i<; are orthogonal. Hence F;; is injective. Therefore, F;; : s0(4n) — s0(4)
reduce the Lie algebra homomorphism Fj; : sp(1) — so(4). Note that so(4n) =
sp(1)®sp(n) @ (sp(1) ®sp(n))+. This completes the proof of Proposition 3.4. OJ

4. Proof of theorems

In this section, we shall give the proofs of theorems stated in Introduction.
Proof of Theorem 1.1. We shall rewrite the Bochner-Weitzenbock formula
(2.4).

@1 (A%0,0) = (V'V0,0) = (po (5=1 — 2R) ) — (),
where p(¢) = ([FV,¢],p) for any ¢ € A%(gg). We put A = (c1 — ¢2)/(c1) and

B = (c3 — ¢3)/(c3). Substituting ¢ = AF! + BF? into (4.1) and using Proposition
3.1, we have

(42) —||V(AF! + BF?)|> = A2\ | FY||? + B?X\3||F3||> — p(AF" + BF?),
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where \; = ((s/(2n))] — 2R;)x,y = s/(2n) — 2ui, X,Y € T, M. We see that

p(AF' + BF®) = ([FV,AF' + BF®), AF' + BF?®)
= A2(([F', F'],F") + ([F*, F"|,F') + ([F*,F'], F')}
+ AB{([F*, F"], F®) + ([F? F'], F®) + ([F?,F'], F?)}
+ AB{([F!, F3),FY) + ([F?, F3), F') + ([F3, F®], F')}
+ B*{([F', F?], F®) + ([F?, F°], F°) + ([F®, F®], F?)}.

Using Proposition 3.3, we get

p(AF' + BF3) = A%([F', F'], F1) + (2AB + B?)([F®, F'], F?)

(4.3)
+ B*([F?,F®], F3) + B*([F?, F?], F?).

Since we assume F = 0, (4.2) implies that
(4.4) ~IVEY? = MFH? — ([F FY, F).

By Proposition 3.4 (D), if || F||2 < (n(4n—1)A%)/(16(2n—1)?2), then ([F!, F!], F') <
A1||F1||%. Hence, the right hand side of (4.4) is non-negative. On the other hand, the
left hand side of (4.4) is non-positive. This is a contradiction. This implies F'* = 0.
The same statement is true for F2. O

Proof of Theorem 1.4. From (4.2), (4.3) and using (2.7), we obtain

—|IV(AF* + BF?)|)?

= A2 || FY? = ([FY FY, F}
+ B*{ X3l F?||? — (n+3)([F°, F'], F?)
— ([F?, F?|, F®) — ([F®, F?], F®)}

> A {M||IFY1P - V2| FY*Y
+ B3| F2||? — V2(n + 3)|| F* ||| F?||?
— V2||F2|||| F3|* — V2| F3||3}

= A2{(\ = V2 FDIIFYPY
+ B {(As — V2(n + 3)||F!|| — V2||F?|| — V2||F?|))|| F*|I*}.

Hence, if
—~V2||FY| >0 and X3 —V2(n+3)|FY| - V2||F?|| - V2||F?| > o,

we see that F1 = F3 = 0. When F! = F3 = 0, moreover, from the second in-
equality stated above, we have || F2|| < A\3/v/2. On the other hand, from the Bochner-
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Weitzenbdck formula for FV = F? and using Proposition 3.3 and (2.7), we get

(AVF2, F?) — |[VF?|? = Xo||[F?|* — ([F?, F?], F?)
> (A2 = V2 F2|))|F?2.

Since AV F2 = 0, we have
—[IVF?|12 > (A2 — V2| F?|))|| F2|2.

If | F?|| < A2/v/2, then F? = 0. Thus if F2 # 0, then \y/v/2 < ||F?||. Consequently,
if V is a non-flat, then the cy-self-dual part F? satisfies A\2/v/2 < ||[F?| < A3//2,
where A1, A2 and A3 always satisfy A\; < Ay < A3 on (M, g). The same argument
can be applied to (2) of Theorem 1.4. OJ

Proof of Theorem 1.2. We put A = (¢; — c3)/c1 and B = (cz — c3)/ca.
Substituting ¢ = AF! + BF? into the Bochner-Weitzenbdck formula (4.1) and
using Proposition 3.1, we have

4.5) —IV(AF! + BF?)||? = AX{ || F*|? — ([F', F'], F')}
' + B*{Xo||F?||? — ([F?, F?), F?)}.
By Proposition 3.4 (I), if

n(dn — 1)A\2
16(2n — 1)2

n(4n — 1)A\3

IFY? < 16@n =12

and ||F?||? <

then
((F*, F',FYy < M||[FY? and ([F?, F?),F?) < Ao F?|%.

Hence, the right hand side of (4.5) is non-negative. Meanwhile, the left hand side
of (4.5) is non-positive. This is a contradiction. This implies F! = F2? = 0. O

Proof of Corollary 1.1. Let HP™ = Sp(n + 1)/Sp(n) x Sp(1) be the quater-
nionic projective space. Let sp(n + 1) = sp(n) + sp(1) + m be the orthogonal
decomposition of sp(n + 1) with respect to Killing form B. We identity m with
the tangent space of HP™ at the origin in a natural manner. Let gy denote the
invariant Riemannian metric on HP" defined by —2(2n — 1)(n + 2) Blm. The Ricci
tensor of (HP™, go) is given by Ric(X,Y) = (2n—1)(n+2)go(X,Y) for X,Y € m.
Accordingly, the scalar curvature is given by s = 4n(2n — 1)(n + 2). Corresponding
to the decomposition (2.2), we can write the Riemannian curvature operator R as
R = R; + Rz + R3. From [4] and for this metric go we know

R1 = TL(2TL - 1)[, R2 = (Zn - 1)], R3 =0.
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We have A\; = (s/(2n)] — 2Ry)x,y = (s/(2n)] — 2n(2n — 1)I)xy = 4(2n — 1).
In the same way, we have A\ = 2(2n — 1)(n + 1). Substituting A; and A, into
Theorem 1.1, we get Corollary 1.1. ]

Proof of Theorem 1.3. When ||[FV|?> < n(4n — 1), by the Bochnor-
Weitzenbock formula (4.1) and Proposition 3.4 (II), we conclude that FV = 0.
Hence E is flat bundle. When ||FV||? = n(4n — 1), we get VFV = 0. Proposi-
tion 3.4 (II) implies that there is an orthogonal splitting £ = Eo & S where Ep
is flat, where S is a 4-dimensional bundle. By Corollary 1.1 (2) and VFV =0,
FV : A’TM — P X4 50(4) reduces to FV : S?H — P xa4 50(4). This
implies that the connection V is a cj-self-dual connection. The vector bundle
H on any simply-connected quaternionic Kahler manifold with non-zero scalar
curvature admits a unique c;-self-dual connection ([5]). The vector bundle H, only
when M = HP", is globally defined ([8]). Consequently S = H, hence £ = Fo @ H.

U
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