

Title	Reduction of interface and oxide traps in SiO ₂ /GaN MOS structures by oxygen and forming gas annealing
Author(s)	Mikake, Bunichiro; Kobayashi, Takuma; Mizobata, Hidetoshi et al.
Citation	Applied Physics Express. 2023, 16(3), p. 031004
Version Type	АМ
URL	https://hdl.handle.net/11094/90756
rights	This Accepted Manuscript is available for reuse under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License after the 12 month embargo period provided that all the terms of the licence are adhered to.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ACCEPTED MANUSCRIPT

Reduction of interface and oxide traps in SiO₂/GaN MOS structures by oxygen and forming gas annealing

To cite this article before publication: Bunichiro Mikake et al 2023 Appl. Phys. Express in press https://doi.org/10.35848/1882-0786/acc1bd

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2023 The Japan Society of Applied Physics.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

Reduction of interface and oxide traps in SiO₂/GaN MOS structures by oxygen and forming gas annealing

Bunichiro Mikake, Takuma Kobayashi^{*}, Hidetoshi Mizobata, Mikito Nozaki, Takayoshi Shimura, and Heiji Watanabe

Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

*E-mail: kobayashi@prec.eng.osaka-u.ac.jp

The effect of post-deposition annealing on the electrical characteristics of SiO₂/GaN MOS devices was investigated. While the key to the improvement was using oxygen annealing to form an interfacial GaO_x layer and forming gas annealing to passivate the remaining defects, caution must be taken not to produce fixed charge through reduction of the GaO_x layer. By growing the GaO_x layer with oxygen annealing at 800°C and performing forming gas annealing at a low temperature of 200°C, it became possible to suppress the reduction of GaO_x and to reduce the interface traps, oxide traps, and fixed charge simultaneously.

Gallium nitride (GaN) is suited for high-power and high-frequency device applications owing to its superior material properties, such as wide band gap and high breakdown electric field.¹⁻³⁾ AlGaN/GaN high electron mobility transistors (HEMTs) which rely on two-dimensional electron gases (2DEGs) at the AlGaN/GaN interface have been developed for high-frequency applications.^{2,4,5)} In addition to Schottky-gate HEMTs,⁴⁻⁶⁾ metal-insulator-semiconductor (MIS)-gate HEMTs are a promising means to reduce the gate leakage.⁶⁻⁹⁾ However, HEMTs are usually normally-on because 2DEGs automatically form at the AlGaN/GaN interface due to piezoelectric and spontaneous polarization.

From this perspective, vertical GaN metal-oxide-semiconductor field effect transistors (MOSFETs) are appealing as they may achieve normally-off operation and also operate at high voltages.^{10–13)} Various dielectrics such as silicon dioxide (SiO₂),^{14,15)} aluminum oxide (Al₂O₃),^{16,17)} and aluminum silicate (AlSiO),^{18,19)} have been investigated for GaN MOS devices. Among them, SiO₂ is extremely thermally stable and has a wide bandgap of about 9 eV. Thus, sufficiently large conduction and valence band offsets form at the SiO₂/GaN interface, which will prevent gate leakage.

To achieve highly reliable and high-performance MOSFETs, optimization of the MOS structure is necessary. It has been reported that the formation of gallium oxide (GaO_x) at the SiO₂/GaN interface is the key to reducing the interface traps.^{20–25)} During plasma-enhanced chemical vapor deposition (PECVD) of SiO₂ on GaN, a thin GaO_x layer is produced at the interface due to oxidation of the GaN surface by the plasma.^{22,24)} With post-deposition annealing in an oxygen ambient (O₂-PDA), the GaO_x layer grows further, which reduces the interface state density of the SiO₂/GaN MOS structure to 10^{10} cm⁻²eV⁻¹.^{22,24)}

However, there is a drawback to GaO_x formation in terms of threshold voltage (V_{TH}) instability. When forming gas annealing (FGA; hydrogen (H₂) annealing) is performed on a SiO₂/GaN MOS structure with a GaO_x layer, the flat band voltage (V_{FB}) shifts toward negative values.^{26,27)} This is most likely due to generation of positively charged oxygen vacancies through reduction of the GaO_x layer.^{26–31)} By performing O₂-PDA and FGA under appropriate temperature conditions, it is possible to reduce the interface traps while suppressing the fixed charge generation.²⁷⁾ Nevertheless, it is unclear whether this strategy can minimize oxide traps as well. Minimization of oxide traps is needed in order to suppress unwanted V_{TH} drift during operation of MOS devices and guarantee long-term reliability.

Therefore, in this study, we further investigated the effect of O_2 -PDA and FGA on the interface properties and reliability of GaN MOS devices. We fabricated MOS structures under various annealing conditions to control the oxidation and reduction reactions occurring at the SiO₂/GaN

interface. Interface properties and reliability were characterized through capacitance-voltage (C-V) measurements and bias stress tests (or charge injection stress tests), respectively. Our aim was to minimize the interface traps, fixed charge, and oxide traps simultaneously towards the goal of fabricating highly reliable and high-performance GaN MOS devices.

MOS devices were fabricated on freestanding GaN (0001) substrates with *n*-type GaN epilayers ([Si]: 2×10^{16} cm⁻³). The samples were first cleaned with acetone and 50%-hydrofluoric (HF) acid. After that, SiO₂ was deposited on the GaN by PECVD using a gas mixture of tetraethyl orthosilicate (TEOS) and O₂. In the initial deposition stage, a nitrogen-incorporated SiO₂ layer of about 5-nm thick was formed by introducing nitrogen (N₂) gas into the chamber; this layer prevents Ga from diffusing into the SiO₂ dielectric.²⁴⁾ Then, a normal SiO₂ layer about 80-nm thick was deposited (total oxide thickness: 85 nm). After the deposition, O₂-PDA was performed at 600–800°C for 30 min, followed by FGA (3% H₂/N₂) at 200–500°C for 30 min. Table 1 describes the annealing conditions of samples prepared in this study. An as-deposited sample without any annealing treatment was also prepared for comparison. For these SiO₂/GaN samples, MOS capacitors with Ni gate electrodes (100 µm in diameter) and Al back contacts were fabricated for electrical characterization.

Figure 1(a) shows the bidirectional C-V characteristics of the fabricated SiO₂/GaN MOS capacitors. For the as-deposited sample (as-depo.), a positive V_{FB} shift with respect to its ideal position (dashed line) and clockwise hysteresis were observed in the C-V characteristics. This shift was due to the large number of electron traps at the interface. After O₂-PDA at 800°C (O₂800), a decrease in the $V_{\rm FB}$ shift as well as hysteresis occurred that was due to the GaO_x growth at the interface.^{22,24)} However, a significant negative $V_{\rm FB}$ shift was observed when additional FGA was carried out at 500°C (O₂800-H₂500). This was likely caused by the reduction of the GaO_x layer, which would have formed positive fixed charge related to oxygen vacancies.²⁶⁻³¹⁾ Figure 1(b) describes the impact of O₂-PDA and FGA. While the growth of the GaO_x layer by O₂-PDA is helpful in passivating the interface traps, the layer will produce positive fixed charge when it is subjected to FGA. There are two ways to deal with this situation. The first way is to lower the O₂-PDA temperature to suppress the growth of the GaO_x layer (H₂500, O₂600-H₂500). As shown in Fig. 1(a), a mostly ideal V_{FB} position was indeed obtained for H₂500 and O₂600-H₂500. In particular, for O_2600 -H₂500, the V_{FB} shift and hysteresis were as small as 40 mV (negative) and 98 mV, respectively. The second way is to lower the FGA temperature to suppress the reduction reactions of the GaO_x layer (O_2800 -H₂200). Here, the V_{FB} shift and hysteresis of O_2800 -H₂200 were as small as 59 mV (positive) and 67 mV, respectively. Thus, both methods work quite nicely in terms of the interface properties. This conclusion is also in agreement with our previous

report.27)

Next, positive bias stress tests were conducted to investigate the oxide traps that affect the long-term reliability. Figure 2(a) shows a schematic diagram of the measurement scheme. A constant voltage stress (V_{stress}) was applied for up to 1000 s and *C-V* characteristics were repeatedly measured to monitor their drift. V_{stress} was selected for each sample such that it corresponded to an oxide field + 4 MVcm⁻¹ and was kept fixed during the stress tests. Figure 2(b) shows typical *C-V* characteristics obtained during the tests. Positive drift in the *C-V* characteristics clearly appears depending on the stress; it was due to electron injection into the oxide traps. The V_{FB} values were determined from the characteristics by extrapolating $1/C_{\text{deep}^2}$ to $1/C^2_{\text{max}}$, where C_{deep} and C_{max} are the deep-depletion and maximum capacitance, respectively.³²⁾ In this way, it should be able to minimize the effect of interface traps when evaluating the V_{FB} position.

Figure 3 shows the stress-time dependence of V_{FB} for the fabricated SiO₂/GaN MOS capacitors. For the as-deposited sample (as-depo.), V_{FB} drifted sharply in the positive direction even after a short stress period. Here, vacancy defects and carbon impurities would be present in the SiO₂ film immediately after the deposition, 33-35 which may act as electron traps. On the other hand, O₂-PDA and FGA made the situation better. Comparing the samples subjected to O₂-PDA at different temperatures and FGA at 500°C (H₂500, O₂600-H₂500, and O₂800-H₂500) reveals that the combination is effective in suppressing the $V_{\rm FB}$ drift; the drift after 1000 s of stress was 7.15, 3.73, and 0.54 V for H₂500, O₂600-H₂500, and O₂800-H₂500, respectively. Since O₂-PDA and FGA are both effective in reducing the traps causing the drift, the traps are removable by either oxygen or hydrogen. The fact that both O2-PDA and FGA are needed to sufficiently reduce the traps implies that they consist of multiple defects including vacancies, carbon impurities, and dangling bonds. As the O_2 -PDA temperature increased, the V_{FB} drift got smaller. However, when the O₂-PDA temperature was increased to 800°C (O₂800-H₂500), V_{FB} showed negative values (about -8 V; see Fig. 1(a)), which was due to reduction of the GaO_x layer. Therefore, once a positive fixed charge forms, it seems to be difficult to inject electrons to cancel it out. Next, we compared samples that were subjected to O2-PDA at 800°C and FGA at different temperatures (O₂800, O₂800-H₂200, and O₂800-H₂500). The V_{FB} drift after 1000 s of stress was 3.90, 0.85, and 0.54 V for O₂800, O₂800-H₂200, and O₂800-H₂500, respectively. Notably, for O₂800-H₂200, not only did $V_{\rm FB}$ show a small drift (0.85 V), it was close to its ideal value (within 0.9 V). Therefore, from the viewpoints of interface properties and long-term reliability, it would be good to form the GaO_x layer with O₂-PDA at a relatively high temperature (800°C) and then perform FGA at a temperature where the reduction of the GaO_x layer does not take place (200°C). Another solution might be to perform O₂-PDA at temperature in between 600°C and 800°C and then FGA at 500°C,

which we did not investigate in this study.

Finally, we investigated the temperature dependence of the V_{FB} drift. Figures 4(a)–(c) show the V_{FB} drift obtained at different measurement temperatures (RT, 100°C, and 150°C) for O₂800, O₂800-H₂200, and O₂800-H₂500. Note that the figures plot not V_{FB} but rather the drift of V_{FB} with respect to its initial position (ΔV_{FB}) in order to compare the V_{FB} drifts of the samples on an equal footing. While the sample subjected to O₂-PDA at 800°C (O₂800) exhibited a significant increase in V_{FB} drift at elevated measurement temperatures, the increase was suppressed to less than 2.6 V after FGA was performed at or above 200°C (O₂800-H₂200 and O₂800-H₂500). Note that, while the drift was significantly suppressed for O₂800-H₂500, the V_{FB} values were negative (Fig. 3), which will make the MOS device normally-on. Therefore, the optimum condition was again O₂800-H₂200, which offers not only a nearly ideal V_{FB} position (Fig. 3) but also high immunity against bias temperature stress (Fig. 4).

In summary, we investigated the effect of post-deposition oxygen annealing and forming gas annealing on the electrical characteristics of SiO₂/GaN MOS devices. Capacitance-voltage measurements and bias temperature stress tests were conducted to evaluate the interface properties and long-term reliability, respectively. It was found that both oxygen and forming gas annealing were effective in passivating the interface traps as well as oxide traps. In particular, the key to optimizing the SiO₂/GaN MOS structure is to form an interfacial GaO_x layer by using oxygen annealing and then to passivate the remaining defects by using forming gas annealing. However, when both oxygen and forming gas annealing were performed at high temperatures (i.e., 800 and 500°C, respectively), reduction of the GaO_x layer occurred, resulting in the appearance of a positive fixed charge. From the viewpoints of the interface properties and long-term reliability, the solution to this problem is to form a GaO_x layer by annealing in oxygen at high temperature (800°C) and then to perform forming gas annealing at a low temperature (200°C) where reduction of the GaO_x layer does not take place. In this way, interface traps, oxide traps, and fixed charge can be simultaneously reduced, leading to improved reliability even at elevated temperatures.

Acknowledgements

This work was partly supported by the MEXT "Program for creation of innovative core technology for power electronics" (Grant No. JPJ009777) and JSPS KAKENHI (Grant No. 19H00767).

References

- H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C. de Santi, M.M. de Souza, S. Decoutere, L. di Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M. van Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, and Y. Zhang, J. Phys. D: Appl. Phys. **51**, 163001 (2018).
- 2) B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).
- 3) T. Kachi, Jpn. J. Appl. Phys. 53, 100210 (2014).
- 4) F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, Materials 12, 1599 (2019).
- 5) N. Tipirneni, A. Koudymov, V. Adivarahan, J. Yang, G. Simin, and M.A. Khan, IEEE Electron Device Letters **27**, 716 (2006).
- M. Kanamura, T. Kikkawa, T. Iwai, K. Imanishi, T. Kubo, and K. Joshin, IEDM Tech. Dig., 2005, p. 572.
- T. Hashizume, K. Nishiguchi, S. Kaneki, J. Kuzmik, and Z. Yatabe, Mater. Sci. Semicond. Process. 78, 85 (2018).
- H. Kambayashi, Y. Satoh, S. Ootomo, T. Kokawa, T. Nomura, S. Kato, and T. sing P. Chow, Solid State Electron 54, 660 (2010).
- N. Ikeda, R. Tamura, T. Kokawa, H. Kambayashi, Y. Sato, T. Nomura, and S. Kato, Proc. Int. Symp. Power Semiconductor Devices and ICs 2011, p. 284.
- 10) T. Kachi, IEICE Electronics Express 10, 20132005 (2013).
- 11) T. Oka, Jpn. J. Appl. Phys. 58, SB0805 (2019).
- M. Kodama, M. Sugimoto, E. Hayashi, N. Soejima, O. Ishiguro, M. Kanechika, K. Itoh, H. Ueda, T. Uesugi, and T. Kachi, Applied Physics Express 1, 021104 (2008).
- H. Otake, K. Chikamatsu, A. Yamaguchi, T. Fujishima, and H. Ohta, Applied Physics Express 1, 011105 (2008).
- 14) K. Matocha, R.J. Gutmann, and T.P. Chow, IEEE Trans Electron Devices 50, 1200 (2003).
- 15) S. Takashima, K. Ueno, H. Matsuyama, T. Inamoto, M. Edo, T. Takahashi, M. Shimizu, and K. Nakagawa, Applied Physics Express 10, 121004 (2017).
- T. Hashizume, S. Kaneki, T. Oyobiki, Y. Ando, S. Sasaki, and K. Nishiguchi, Applied Physics Express 11, 124102 (2018).
- 17) K. Nishiguchi, S. Kaneki, S. Ozaki, and T. Hashizume, Jpn. J. Appl. Phys. 56, 101001 (2017).

18)	C. Gupta, S.H. Chan, A. Agarwal, N. Hatui, S. Keller, and U.K. Mishra, IEEE Electron Device
	Letters 38 , 1575 (2017).
19)	D. Kikuta, K. Ito, T. Narita, and T. Kachi, Applied Physics Express 13, 026504 (2020).
20)	T. Yamada, J. Ito, R. Asahara, K. Watanabe, M. Nozaki, T. Hosoi, T. Shimura, and H. Watanabe,
	Appl. Phys. Lett. 110, 261603 (2017).
21)	T. Yamada, J. Ito, R. Asahara, K. Watanabe, M. Nozaki, S. Nakazawa, Y. Anda, M. Ishida, T. Ueda,
	A. Yoshigoe, T. Hosoi, T. Shimura, and H. Watanabe, J. Appl. Phys. 121, 035303 (2017).
22)	T. Yamada, K. Watanabe, M. Nozaki, H. Yamada, T. Takahashi, M. Shimizu, A. Yoshigoe, T. Hosoi,
	T. Shimura, and H. Watanabe, Applied Physics Express 11 , 015701 (2018).
23)	T. Yamamoto, N. Taoka, A. Ohta, N.X. Truyen, H. Yamada, T. Takahashi, M. Ikeda, K. Makihara,
	O. Nakatsuka, M. Shimizu, and S. Miyazaki, Jpn. J. Appl. Phys. 57, 06KA05 (2018).
24)	T. Yamada, D. Terashima, M. Nozaki, H. Yamada, T. Takahashi, M. Shimizu, A. Yoshigoe, T.
	Hosoi, T. Shimura, and H. Watanabe, Jpn. J. Appl. Phys. 58, SCCD06 (2019).
25)	K. Aoshima, N. Taoka, M. Horita, and J. Suda, Jpn. J. Appl. Phys. 61, SC1073 (2022).
26)	H. Mizobata, Y. Wada, M. Nozaki, T. Hosoi, T. Shimura, and H. Watanabe, Applied Physics
	Express 13 , 081001 (2020).
27)	H. Mizobata, M. Nozaki, T. Kobayashi, T. Hosoi, T. Shimura, and H. Watanabe, Jpn. J. Appl. Phys.
	61 , SC1034 (2022).
28)	W. Jochum, S. Penner, K. Föttinger, R. Kramer, G. Rupprechter, and B. Klötzer, J. Catal. 256, 268
	(2008).
29)	Z. Hajnal, J. Miró, G. Kiss, F. Réti, P. Deák, R.C. Herndon, and J.M. Kuperberg, J. Appl. Phys.
	86, 3792 (1999).
30)	M. Fleischer, J. Giber, and H. Meixner, Appl. Phys. A 54, 560 (1992).
31)	T. Kobayashi, T. Gake, Y. Kumagai, F. Oba, and Y.I. Matsushita, Applied Physics Express 12,
	091001 (2019).
32)	K. Piskorski and H.M. Przewlocki, Int. conv. MIPRO, 2010, p. 37.
33)	A.R. Barron, Advanced Materials for Optics and Electronics 6, 101 (1996).
34)	T. Nishiguchi, S. Saito, N. Kameda, M. Kekura, H. Nonaka, and S. Ichimura, Jpn. J. Appl. Phys.
	48 , 116509 (2009).
35)	A. Uedono, W. Ueno, T. Yamada, T. Hosoi, W. Egger, T. Koschine, C. Hugenschmidt, M.
	Dickmann, and H. Watanabe, J. Appl. Phys. 127, 054503 (2020).
(
X '	
	7

Figure Captions

Table 1. Annealing conditions of samples in this study.

Fig. 1. (a) Bidirectional capacitance-voltage (*C*-*V*) characteristics of SiO₂/GaN MOS structures subjected to O₂-PDA and FGA. The ideal V_{FB} position is indicated by the dashed line. (b) Schematic image describing the impact of O₂-PDA and FGA.

Fig. 2. (a) Measurement flow of electron injection stress test. A constant voltage stress was applied for up to 1000 s and *C-V* characteristics were repeatedly acquired to evaluate the long-term reliability. (b) Typical *C-V* characteristics acquired during the stress measurements (sample: O_2800).

Fig. 3. $V_{\rm FB}$ position as a function of stress time for SiO₂/GaN MOS structures. A constant stress voltage corresponding to an oxide field of + 4 MVcm⁻¹ was applied. The ideal $V_{\rm FB}$ position is indicated by the dashed line.

Fig. 4. Drift in $V_{FB}(\Delta V_{FB})$ as a function of stress time for SiO₂/GaN MOS structures: the sample after (a) O₂-PDA at 800°C, (b) O₂-PDA at 800°C followed by FGA at 200°C, and (c) O₂-PDA at 800°C followed by FGA at 500°C. Measurement temperature was RT, 100, or 150°C.

1
י ר
2
3
4
5
6
7
, Q
0
9
10
11
12
13
14
15
10
16
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
12
C+ ۸ ۸
44
45
46
47
48
49
50
50
21
52
53
54
55
55

57 58 59

60

Label O₂-PDA (°C) FGA (°C) as-depo. H₂500 500 O₂600-H₂500 500 600 O₂800 800 O₂800-H₂200 800 200 O₂800-H₂500 800 500

Table 1.

(b) O₂800-H₂200

RT

Stress Time (sec)

Fig. 4.

10¹

150°C

10³ 10⁰

100°C

10²

150°C

RT

10²

10³ 10⁰

100°C

(c) O₂800-H₂500

RT

10¹ 10² Stress Time (sec)

101

100°C 150°C

10²

10³

