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1. Introduction

In the paper Lubich and Ostermann [15], they have shown that the Runge
- Kutta approximation methods are useful even for the ordinary differential equations 

in an infinite dimensional space. They studied the convergence properties of im
plicit Runge-Kutta methods applied to the initial value problem of the quasilinear 
abstract equation

(E)

of parabolic type. In the paper [15] the framework was set in a triple of Hilbert 

spaces V •¼ H=H' •¼ V', that is, A(u) are defined for u •¸ V and each A(u) is 

associated with a continuous bilinear form on V satisfying the Garding inequality 

and therefore is a bounded operator from V into V' and a densely defined, closed 

linear operator in H. In this framework the solution u to (E) is constructed in the 

space L2 ((0, T); V) n C ([0, T]; H) n H1((0, T); V'). Consequently the error estimates 

are also obtained in the same function space.

It is known, however, that the problem (E) can be considered in a Banach space 

X under the situation where each -A(u) is the generator of an analytic semigroup 

on X. Also it is known that somewhat stronger results are obtained in this setting. 

In fact, under suitable assumptions on A(u), f (u) and u0, a regular solution u in

 the space C1([0, T]; X) fl C([0, T]; D(A(u0))) (where D(A(uo)) is the domain of the 

operator A(u0) equipped with the graph norm) can be constructed, see Sobolevskii 

[25] and Lunardi [16], cf. also [33].
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Therefore we thought that it might be meaningful to study similar convergence 

properties of implicit Runge-Kutta methods in the framework of Banach space to 

obtain stronger error estimates in the space C([0, T]; D(A(uo))).

The domains D(A(u))•ßD(A(u0)) of A(u) are independent of the unknowns 

u. The spectral sets a (A(u)) of A(u) are assumed to be subsets of some closed 

sectorial region S;, 0 < (p < it/2, where S~ = {z e C; I arg z~ < Sp}. The Runge

- Kutta methods are assumed to be strongly A(ƒÆ)-stable with cp < 9 < ri-/2. In 

Section 2 basic properties of the stability function of strongly A(ƒÆ)-stable scheme 

will be summarized.

In Section 3 we shall consider the autonomous linear equation in X with a 

coefficient operator A. As shown in Crouzeix et al. [5] and Palencia [19], there 

exists a family of bounded operators which are given by the functional calculus of A 

with respect to the stability function and which describe the approximate solutions 

to the autonomous linear problem. Moreover, in this paper we shall show that 

the bounded operators enjoy properties quite analogous to the analytic semigroup 

generated by -A, see Proposition 3.4.

In Section 4 the non autonomous linear equation will be studied. Our tech

niques are quite different from [15] in which the energy estimates are the main tools. 

Instead, a family of bounded operators will be introduced as a fundamental solu

tion for constructing the approximate solutions. This family of bounded operators 

enjoys properties quite analogous to the fundamental solution of the continuous 

non autonomous problem, and consequently provides a new formula for describing 

the approximate solutions of the nonlinear problem (E).

By virtue of these representations, stronger results on the stability and on the 

convergence of the approximate solutions to (E) will be established in Section 5. 

Our results are applicable to the various quasilinear parabolic systems. We consider, 

as an example, the Keller-Segel equations appearing in mathematical biology.

The authors believe the obtained representation formula is useful even in the 

study of the convergence property in spatial discretizations. But this will be studied 

in the forthcoming paper. For the linear equations there is a lot of literature on 

this problem. We quote Helfrich [8] and Fujita and Mizutani [6] as the pioneering 

researches. In [8] the autonomous linear equation in a Hilbert space is considered, 

the coefficient being a self adjoint operator; and the error estimate is obtained by 

means of the Ritz operator. This result is then generalized by Ushijima [29, 30] 

and Piskarev [2] to the framework of Banach space. In [6] the autonomous linear 

equation in L2 space is considered, and the rate of convergence of the finite element 

method is obtained. This result is extended subsequently by Suzuki [26, 27] for 

the non autonomous linear equation. We quote also researches using somewhat 

different techniques, Bramble et al. [3], Baker et al. [1], and Sammon [22, 23]. For 

the full list, we refer the reader to References in Fujita and Suzuki [7]. For the 

semilinear equation we quote Keeling [10].
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We conclude this section by recalling some terminologies for numerical analysis 
used in this paper, cf. [4, 9].

An s-stage Runge-Kutta method applied to the initial value problem of an 
ordinary differential equation

(1.1)

with a stepsize h>0 is written as

(1.2a)

(1.2b)

(1.2c)

where tn=nh and tN+1=(N+1)h_??_T. The approximate solution {Un}
 is given recursively by (1.2a) with {Vn,i} given by (1.2b) at every time step n.

 The parameters aij, bi, ci are all given real numbers. Using the matrix notation 
A= [a> • i> j =1>... > s]> b = [b1,. .. > b]", e = [1>... > 1]T and C = diag[c1,. . . , cs] 
we can rewrite (1.2a-c) as

(1.3)

here Vn= [V,1,. n.. , V ,,S]" and Fn(W) _ [F(tn + hc1, W1),... , F(tn + hcs, WS)]T

 with W=[W1,...,Ws]T.

The Runge-Kutta scheme (1.3) is said to have an order of accuracy p, or briefly 

to be of order p, if Un+1-u(tn+1)=O(hp+1) as h•¨0 when Un=u(tn). By 

Butcher an equivalent condition for this has been given in terms of {A, b, C}, see 

[4, Theorem 307B].

THEOREM (Butcher's order condition). Let ci = > a2j for all i =

1, ... , s. Then the Runge-Kutta scheme (1.3) is of order p if and only if the coeffi

cient set {A, b, C} satisfies

(1.4)
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for each rooted tree ƒÑ which has vertices no more than p. Here, ƒÁ(ƒÑ) denotes the 

density of the tree ƒÑ and ƒ³(ƒÑ) the elementary weight for ƒÑ with respect to the 

scheme.

In addition, the stage order and the quadrature order of the Runge-Kutta 

scheme (1.3) are defined respectively by the maximum of numbers q such that

(1.5)

and by the maximum of numbers r such that

(1.6)

It is known that the relation

holds [4, pp. 218-219 and 289].

The Runge-Kutta scheme is said to be explicit if aij=0 for 1_??_i_??_j_??_s and 

implicit otherwise.

The scheme is said to be A(ƒÆ)-stable if (I+zA)-1 is holomorphic on a domain 

containing SB, 0 < 8 < ir/2, where S8 = {z e C; arg zI < 0}, and if the stability 

function R(z) =1- zbT(I + z,A)-1e satisfies

(1.7)

The scheme is storngly A(ƒÆ)-stable if it is A(ƒÆ)-stable and if the limit R(•‡)=

1-bT,A-1e exists with the estimate

•b R(•‡)•b<1.

Notice that explicit Runge-Kutta methods can not be A(ƒÆ)-stable, because 

stability functions

are all polynomials of degree at most s and (1.7) never holds.

OTHER NOTATIONS. X denotes a Banach space, its norm is denoted by •a•E•ax. 

The s-ple product space Xs of X consisting of column vectors [,..., ]T is denoted 

by X, X is equipped with the usual product norm.
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By a matrix of linear operators acting in X

we denote a linear operator acting in X in the usual manner. Similarly, by a column 

vector and a row vector of linear operators in X

we denote an operator from the domain D(B) •¼ X into X and an operator from 

the domain D(C) •¼ X into X, respectively.

We define also the products of such operators. More precisely, for A, B, C as 

    above and an operator A=[Aij] in X, we define

If there is no fear of confusion, a matrix M=[mij;i,j=1,...,s], a column 

vector k=[k1,...,ks]T and a row vector l=[l1,...,ls] are identified with the 

bounded operator [mijI] •¸ L(X), the bounded operator [kjI]T •¸ L(X, X) and the 

bounded operator [liI£ •¸ L(X, X), respectively, I being the identity operator of X. 

The identity matrix of order s is denoted by Z.

Throughout this paper we denote by C the generic constant determined in 

each occurrence by the initial constants appearing in the assumptions. In a case 

when C depends on some parameter, say ƒÄ, it will be denoted by CƒÄ.

ACKNOWLEDGEMENT. The authors express their hearty thanks to Professor 

S. Piskarev; discussions with him were very valuable for understanding the prob

lems. They also thank the referee very much for useful comments, especially for 

bringing important references to their attention.
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2. Some properties of the stability functions of Runge-Kutta 

methods

Let R(z) be the stability function of a strongly A(ƒÆ)-stable Runge-Kutta 

scheme. This section is devoted to surveying basic properties of R(z), which are 

used in the subsequent sections. Essential parts of the results are seen in [5].

As already noticed, R(z) is a holomorphic function in a domain containing Se. 

More precisely we observe the following proposition.

PROPOSITION 2.1. Singular points of R(z) are contained in the closed domain

PROOF. By definition, the singular points of R(z) are the same as those of 

(I+ zA)-1. It is clear that, if IzI ltAll < 1, (Z + z,A)-1 is holomorphic. On the 

other hand, since (I+zA)-1= ,A-1(z + ,A-1)-1, if IzI > 1lA'll, -(Z + z,A)-1 is 

holomorphic.

Since limz~ 0 z(I+z,A)_1 = Z, we obtain that R(•‡)=1-bTA-1e. Therefore,

(2.1)

In addition, we have:

(2.2)

Since •bR(•‡)•b<1, there exists some 0<K<1 such that

(2.3)

if ƒÂ>0 is sufficiently small.

Since

(2.4)

the stability condition (1.7) implies that b=bT•Ee_??_0. On the other hand, from 

(2.4) we see that

in a neighborhood of z=0. Furthermore we see that
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in a neighborhood of the origin. Since Ie'I -< e-b Los OI z I if I arg z l < 0, we can 

conclude that there exist some v, ƒÅ>0 such that

(2.5)

(2.6)

if ƒÂ>0 is sufficiently small.

Fix a sufficiently small ƒÂ>0 so that (2.3), (2.5) and (2.6) hold, and consider 

the domain encircled by the contour

In this domain R(z) is holomorphic with the estimate •bR(z)•b_??_1. Then the max

imum principle implies that for any 0<ƒÆ'<ƒÆ, there exists some 0<k'<1 such 

that

(2.7)

3. Autonomous linear equations

In this section we consider an implicit Runge-Kutta (R-K) method for the 
Cauchy problem of an autonomous linear evolution equation

(3.1)

in a Banach space X. Here, -A is the infinitesimal generator of an analytic semi

group on X, f is an X-valued function defined on [0, T], and u0 •¸ X is an initial 

value.

We shall assume the following conditions.

(A1) The resolvent set ƒÏ(A) contains a sector C•_S_??_ for some _??_, 0<_??_< ƒÎ/2, and 

the resolvent satisfies an estimate

(3.2)

with some constant M.

(Fl) For a number ƒÐ>0, f •¸ CƒÐ([0,T];X).

(I1) u0 •¸ D(A).

For the scheme we assume the following.
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(RK1) The scheme is of order p and has a stage order q with 1_??_q+1_??_p.

(RK2) The scheme is strongly A(ƒÆ)-stable with _??_<ƒÆ_??_ƒÎ/2.

Let 0<h_??_T and let N_??_0 be an integer such that (N+1)h_??_T. As 

the s-stage R-K scheme applied to (3.1), we obtain the following approximation 

solution

(3.3)

where f(r) n_ [f (t+c1h),. n .. , f (t,+c8h)f" , Tn = (tI+hC)e n= [t+cih,. n .. , tn+ 
C8hIT.

As will be proved below by Lemma 3.1, I+hAA has the bounded inverse on 
Xs for each h. Then (3.3) is written as

where Jh=(I+hAA)-1
Therefore, if we introduce the notation

the solution Un is given by the formula

(3.4)

LEMMA 3.1. The inverse of I+hAA exists as a bounded operator on Xs.
Moreover, Jh=(I+hAA)-1 satisfies the estimates

PROOF OF LEMMA 3.1. As noticed in. Section 2, (RK2) implies that the sin
gular points of (1+zA)-1 are contained in the set E _ {z e C; IIAL1 < Iz! < 
IIAII, -1 arg z~ > 0}.
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Let us define a bounded operator on Xs by the integral

(3.5)

with the integral contour A: A = re(0 < r < oo), where cp < <0. Since we 
can change the contour to a bounded one, for example,

where 0 < 5 < min{IIAII-1, we have:

Then by a direct calculation it is verified that (I+hAA)Jh=I. Therefore, 

(Z+hAA) -1 exists and is given by Jh.
In addition, since

we observe that IIJhII(x8) ~is uniformly bounded with respect to h. In a similar 

way, we see that IAJhI[(xs) ~< Ch-1.

The operator R(hA) plays, as verified by (3.4), a very important role in de

scribing the approximation solution Un. We here notice that R(hA) is a functional 

calculus of A for the stability function R(ha). Indeed, let ƒÃ>0. By A(ƒÆ)-stability 

we have:

where ƒ¡ is the integral contour introduced above. Then by (3.5) we observe that

Therefore, in view of (2.1), we conclude that
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Using this fact we show the first property of R(hA).

PROPOSITION 3.2.

(3.6)

PROOF. It suffices to consider the case n_??_1. Since

we observe that

For each n, let us change ƒ¡ to the following bounded one

where ƒÂ>0 denotes the number announced in Section 2. Then first of all it follows

 that

(3.7)

Since •bR(•‡)•b<1 is assumed, let us estimate the integrals on the subcontours. 

By virtue of (2.3) and (2.7), the integrals on ƒÁ(1)n and ƒÁ(2)n are easily seen to be 

estimated by Ckn, 0<k<1. The integral on ƒÁ(3)n is estimated by

On the other hand, the integral on ƒÁ(4)n is estimated by

Thus the proof is accomplished.

In the proof of this proposition we verified also that the range of R(hA)n-

R(•‡)n is contained in the domain of A. Moreover, we show the following estimate.
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PROPOSITION 3.3.

(3.8)

PROOF. We already know the formula

Then we repeat the same estimation as above for this integral dividing ƒÁn into ƒÁƒÁ(1)n

, ƒÁ(2)n, ƒÁ(3)n and ƒÁ(4)n . As a result we obtain that

This means that (3.8) holds.

As a corollary of this proposition we obtain very important estimates.

PROPOSITION 3.4.

(3.9)

(3.10)

PROOF. For the proof of (3.9) it suffices to notice that

and that nIR(oc)j n < C. The proof of (3.10) is similar.

We now prove the first main result of this section.

THEOREM 3.5. Assume the conditions (A1), (F1), (I1) and (RK2). Then, 
the solution {Un} to (3.3) satisfies the estimate

(3.11)

Moreover, Un •¸ D(A) and the estimate

(3.12)

is valid. The constants C_??_0 are independent of u0 and f.
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PROOF. Since Un is given by (3.4), the first estimate (3.11) follows immedi
ately from (3.6). To prove (3.12) we write

here we used a formula

(3.13)

Then (3.9) is used to obtain that

The estimate (3.12) is then shown by h ~i i {(n - l)h}0 4 < C(nh)~ f'(1 -
x)~-idx (cf. Lemma A.2 in Appendix).

We now proceed to estimate the error En=Un-u(tn). For this purpose we 
assume that (3.1) admits a sufficiently smooth solution u.

Let us define en, 0_??_n_??_N, and dn, 0_??_n_??_N by the following formulas

respectively, where u(r) _ [u(tn + cih),... , u(t~ + csh)]T, u'(-r) _ [u'(tn + 
ci h), ... , u'(tn + csh)]T and r n = (tI n+ hC)e. We observe that

(3.14)

In view of (3.3) it then follows that

with Dn=Vn-u(ƒÑn). Hence, we have
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Therefore En is represented by the formula

(3.15)

for every n=0,1,...,N+1.

On the other hand, we can obtain integral representaions of en and do by 

utilizing the Taylor expansion

repeatedly. Indeed, apply this expansion to u(tn+t) with m=p+1 and to each 

function u'(tn+cit) which is the i-th component of u'(ƒÑn) with m=p. Then we 

have:

where u~p+1) ((tnl+ tC)e) _ [(P+') u(tn + cit),... , (z'+1) (tn + cst)]T. Recalling that 
the quadratic order is bigger than p (see (1.4)), we obtain from (1.6) that

(3.16)

In a similar way we also obtain the following formula

(3.17)

Here we used the relation (1.5).

We now establish the error estimates
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THEOREM 3.6. Let the conditions (Al), (Fl), (I1) and (RK1-2) be satisfied. 

If u is a solution such that u •¸([0, T]; X) (1 C9+1([O,T];D(A)), then the error 

En is estimated by

(3.18)

for every n=0,1,...,N+1. Moreover, if u satisfies u •¸ Cp+1([O,T]; D(A)), then

(3.19)

for every n=0,1,...,N+1 with any 0<ƒÖ<1.

PROOF. Consider the case where u •¸ Cp+1([0,T];X)•¿Cq+1([0,T];D(A)).

From (3.16) we immediately observe that

(3.20)

Similarly from (3.17) it follows that

(3.21)

Therefore from the formula (3.15) we verify (3.18).

Consider next the case where u •¸ Cp+11([0,T];D(A)). As before we have:

On the other hand, the vectors Adn satisfy

with

(3.22)
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This then shows that by the same argument as in the proof Theorem 3.5 the estimate

is true for every 0_??_n_??_N. Hence (3.19) is also verified from (3.15).

REMARK 3.1. It is known that, if f (t) is more regular and if f (t) and u0 
satisfy some compatibility conditions, then the solution u to (3.1) actually possesses 
the regularity required in Theorem 3.6. For details, see Appendix.

REMARK 3.2. If the solution u possesses the regularity

then we can show better error estimates

for every n=0,1,...,N+1.

This estimate is in fact obtained from the same expansions of en and hbTAJhdl 

as above with the aid of another order condition that states

We are able to verify that

and

for every n=0,1,...,N+1.
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4. Non autonomous linear equations

We consider an approximate solution for the Cauchy problem of a non au

tonomous linear evolution equation

(4.1)

in a Banach space X. Here, -A(t), 0_??_t_??_T, are the infinitesimal generators of

 analytic semigroups on X with domains D(A(t)) independent of t.

Assume the following.

(A2) The resolvent sets ƒÏ(A(t)),0_??_t_??_T, contain a sector C•_S_??_, and the 

resolvents (ƒÉ-A(t))-1 satisfy the same estimate as (3.2) uniformly in t, that

 is,

(A3) The domains D(A(t))•ßD are constant, and, for some exponent 0<ƒÊ_??_1,

 A(•E) satisfies the Holder condition

(F2) For a number ƒÐ>0, f •¸ CƒÐ([0, T]; X).

(I2) u0 •¸ D(A(0)).

For the scheme we assume (RK1) and (RK2).

Each A(t) satisfies the assumptions stated in Section 3. Therefore, we can use 

the results established there.

Let 0<h_??_T and let N_??_0 be an integer such that (N+1) h_??_T. The R-K 

scheme for the problem (4.1) is written as

(4.2)

where A(ƒÑn)=diag[A(tn+c1h),..., A(tn+csh)],f(ƒÑn)=[f(tn+c1h),...,f(tn+

csh)]T and ƒÑn=(tnI+hC)e.

Let h be sufficiently small. Since Lemma 4.1 below is verified, we can write 

this scheme in the form
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where Jh(ƒÑn)=(I+hAA(ƒÑn))-1 •¸ L(Xs). Moreover, we can obtain the following 

formula which gives the approximation solution

(4.3)

by introducing the linear operators

As will be verified below by several propositions, this family of operators enjoys

 many properties which are quite analogous to the fundamental solution for the 

original problem (4.1) and in fact plays an analogous role for the approximation 

problem. In this sense we call ƒ³h(n, m), 0_??_m_??_n_??_N+1, the fundamental

 solution for (4.2).

LEMMA 4.1. There exists a number h0>0 such that Jh(ƒÑn)=

(1+ hAA(Tn))-1, 0 < n < N, exist as bounded operators provided that 0<h_??_h0.

 In addition, the estimates

hold for 0<h_??_h0.

PROOF OF LEMMA 4.1. We notice that

Then (A3) together with Lemma 3.1 yields that there exists some h0>0 such that

for 0<h_??_h0. Therefore, it follows that

The first estimate also follows immediately from this formula. The second one is 

verified by operating A(ƒÑn) to this formula in view of IIA(rfl)A(tflYI(x8) ~< C.

Throughout this section we assume that 0<h_??_h0.
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Let us verify various properties of ƒ³(n, m). By definition, we observe that

PROPOSITION 4.2.

(4.4)

PROOF. Consider the difference

Then, by (3.10) and (A3) we obtain the following inequality

of Volterra type. (4.4) is then proved as a direct consequence of this inequality.
 Indeed, use Proposition A.1 in Appendix.

PROPOSITION 4.3.

(4.5)

PROOF. In this case consider the difference

(4.6)
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From this we verify that

Furthermore, by (3.9) and (A3) the following inequality

is obtained. By virtue of Proposition A.1 we conclude (4.5).

PROPOSITION 4.4. The range of ƒ³h(n,m)-R(hA(tn))n-m is contained in 

the domain o f A(tn). In addition, the estimate

(4.7)

holds for 0_??_m_??_n_??_N+1.

PROOF. The first assertion is verified immediately from (4.6). Hence the 
family of bounded operators

can be defined. From (4.6), ƒµ(n, m) is shown to satisfy that

where
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As a consequence the following inequality

(4.8)

is verified.
Let us now estimate the norm of Qh(n, m). We first divide the summands as

with k=[(n+m)/2]. Then,

here we used that IIA(rl)Jh(rz)(I+ Ib,QA(t1))A(t`)-lIIc(x) < C. Therefore,

Next Q(2)n(n, m) is written in the form

To estimte the norms of these operators we here prepare the following two 

lemmas.
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LEMMA 4.5.

PROOF OF LEMMA 4.5. We have:

Jh(Tn) - Jh(Tm) = hJh(Tf)A{I- A(Tn)A(Tm)-11A-1Jh(Tm),AA(Tm).

Then the result follows easily from Lemma 4.1.

LEMMA 4.6.

PROOF OF LEMMA 4.6. We have to use the formula (3.7) obtained in the proof 
of Proposition 3.2. We can in fact write that

Then the desired estimate is obtained by the same calculation as for (3.8) in 
Proposition 3.3.

These two lemmas together with Proposition 3.4 yield that

The same estimate is true for Q(4)h(n, m) also.
Finally we verify directly that
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Therefore, it follows that

In this way we have proved that

The proof of Proposition 4.4 is now completed if we apply Proposition A.1 to 

(4.8).

As a corollary we observe the following results.

PROPOSITION 4.7.

(4.9)

(4.10)

PROOF. We have:

Therefore, (4.9) is verified from (3.9) and (4.7).
The proof for (4.10) is similar if we notice (3.10).

Now we prove the main results of this section.

THEOREM 4.8. Assume the conditions (A2-3), (F2), (I2) and (RK2), and let 

(N+1)h_??_T with sufficiently small h>0. Then, the solution {Un} of (4.2)
 satisfies the estimate

(4.11)

In addition, Un •¸ D(A(tn)) and the estimate

(4.12)
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is valid. The constants C>0 are independent of u0 and f.

PROOF. Since Un is given by (4.3), (4.11) is an immediate consequence of 

(4.4). To prove (4.12) we write

In view of (4.5) the norm of I(1) is estimated by C~IA(0)uolix. On the other hand,
 I(2) is divided into several terms

Then by (4.7) and (3.9) we show that (4.12) is also true.

We next consider the error En=Un-u(tn), n=0,...,N+1. Let the solution 
u to (4.1) be smooth, and let en and dn denote the same elements as in Section 3. 
Then, instead of (3.14), we see that

for 0_??_n_??_N. This together with (4.2) gives that

where Dn=Vn-u(ƒÑn). As a result we obtain the representation formula

(4.13)
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for every 0_??_n_??_N+1.

We prove the following estimates.

THEOREM 4.9. Let the conditions (A2-3), (F2), (I2) and (RK1-2) be satis
fied. If the solution u satisfies u e Cp+1([0, T]; X) fl Cq+l ([0, T]; D), then En is 
estimated by

(4.14)

for every 0_??_n_??_N+1. Moreover if u •¸ Cp+1([0,T]; D), then

(4.15)

for every 0_??_n_??_N+1 with any 0<ƒÖ<1.

PROOF. Consider the case where u •¸ Cp+1([0,T];X)•¿Cq+l ([0,T];D). We 

have verified (3.20). On the other hand, from (3.17) it is seen that

Therefore (4.14) is verified from (4.13), noting that A(r) Jh(Tn)dn=,A.-1Jh(Tn)A 

X A(r)d.

Consider next the case where u •¸ Cp+1([0,T];D). From (3.16) it is easy to 

verify that

On the other hand, in order to estimate A(ƒÑn)dn, let us use again do defined by 

(3.22). It is not difficult to verify that

and
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Then we can repeat the same argument as in the proof of Theorem 4.8, replacing 

f (ƒÑn) and f(tn) with A(ƒÑn)dn and A(tn)dn, respectively. Consequently we obtain 

that

Hence (4.15) is verified from (4.13).

REMARK 4.1. We remark that Theorems 4.8 and 4.9 and all other related 
results have been derived essentially from the following four conditions:

(4.16)

(4.17)

(4.18)

(4.19)

REMARK 4.2. Under suitable regularity conditions on A(t) and f (t) together 
with some compatibility conditions, the regularity of the solution u required in 
Theorem 4.9 is actually verified. For details, see Appendix.

REMARK 4.3. Let us assume that

and that the solution u has the regularity

for 0_??_k_??_p. Then, as for Remark 3.2, we can show that

for every 0_??_n_??_N+1.
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5. Quasilinear equations

In this section we apply the R-K method to the Cauchy problem of a quasilinear 
evolution equation

(5.1)

in a Banach space X. Here, -A(u) are the infinitesimal generators of analytic 

semigroups on X and are defined for elements u in an open ball K={u •¸ Z; •au-

u0 •az<R} of Z, Z (•¼ X) being another Banach space embedded continuously in

 X. The domains D(A(u)) of A(u) are independent of u •¸ K.

Here we assume the following conditions.

(A4) The resolvent sets ƒÏ(A(u)), u •¸ K, contain a sector C•_S_??_?, and the resolvents 

(ƒÉ-A(u))-1 satisfy the same estimate

as (3.2) with some constant MA independent of u.

(A5) The domains D(A(u))•ßD are constant, and A(u) satisfies the Lipschitz 

condition

(Sp) For some 0<ƒ¿<1, D(A(u0)a) (•¼ X) is continuously embedded in Z.

(F3) f(u) is a given function defined for u •¸ K with values in X and satisfies the 

Lipschitz condition

with some constant Lf.

(I3) The initial value u0 is in D(A(uo)).

Under these assumptions it is already known, see Appendix, that (5.1) has a 
unique local solution

for sufficiently small (T_??_) S>0. Under these assumptions we shall also construct 
an R-K solution {U0, U1,..., UN+1} which approximates the known solution u(t).

In order to estimate the error, however, we shall need to assume more regularity 
for A(u) and f(u).
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(A6) For each ƒÖ •¸ D, the function A(u)ƒÖ of u •¸ K with values in X is Frechet 

differentiable, and the derivative denoted by A'(u)[.,w] •¸ L(Z, X) satisfies

 the Lipschitz condition

with some constant LA' independent of ƒÖ, where D is considered as a Banach 

space with the graph norm •aA(uo)•E•ax.

(F4) f(u) is Frechet differentiable, and the derivative f'(u)[•E] •¸ L(Z, X) satisfies 

the Lipschitz condition

with some constant Lf'.

Formally the R-K scheme for obtaining {U0, U1,..., UN+1} is written as fol
lows.

(5.2)

where A(V)=diag[A(V1),..., A(Vs)] and f(V)=[f(V1),..., f(Vs)]T for V=

[V1,...,Vs}T •¸ Ks.

However no solution is obtained immediately, because the second equation in 

(5.2) is not linear. So we have to apply Banach's fixed point theorem.

Take numbers S and h so that 0<S_??_T and 0<h<S, and let N_??_0 

denote an integer such that (N+1)h_??_S. We consider the product space of Z

equipped with the usual product norm. And we define a subset of X by

where ƒÅ denotes a fixed exponent such that 0<ƒÅ<1-a. It is easy to observe 

that K is a closed subset of X.
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For each element W=[W,Yo,...,YN] •¸ K, consider the linear equation

(5.3)

with the unknown elements Un •¸ X and Vn •¸ Ds.

As verified below by Lemma 5.1, if h is sufficiently small, then Jh(Yn)

=(I+ hAA(Yn))-1 are bounded operators from Xs into Ds for all components Yn in 

W. Therefore the second equation in (5.3) is solved as Vn=Jh(Yn){eUn+f(Yn)}.

 This then means as in Section 4 that a unique solution to (5.3) exists which can be 

written in the form

(5.4)

by using the fundamental solution ƒ³W(n, m), 0_??_m_??_n_??_N+1,

corresponding to the element W.

In this way a mapping T:Kh(S)•¨XN+2•~(Ds)N+1

T(W)={UO,...,UN+1,V0,...,VN}

is defined from (5.3).

LEMMA 5.1. Let h>0 be sufficiently small. Then Jh(Yn)=(I+hAA(Yn))-1
 exist as bounded operators from Xs into Ds for all 0_??_n_??_N and the estimates

hold uniformly in n and h>0.

PROOF OF LEMMA 5.1. By Proposition 3.1 similar results are true for the 
operators Jh(Wn)=(I+hAA(Wn))-1, here Wn are the components of W. Then 
we can write at least formally
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But this can be verified, in fact, since the condition W •¸ kh(S) together with (A5) 

implies that

The first estimate is also verified. To prove the second estimate it suffices to note 

that IIA(1'n)4(WnY' II(x) ~$<_ C follows immediately from (A5).

Let us prove that T is a contraction mapping of K. We begin with verifying 

the following proposition.

PROPOSITION 5.2. Let S be sufficiently small, then T maps the set Kh(S) 

into itself.

PROOF. Let W=[W,Yo,...,YN] •¸ K and let u=[U,V0,...,VN]=TW 

which is given by (5.4).

We here want to use the results in Section 4. According to Remark 4.1, all the 

results were established essentially under the conditions (4.16), (4.17), (4.18) and 

(4.19). If we substitute A(Y), A(Wn), f (Yn) and f(Wn) for A(Tn), A(tn), f(Tn)

 and f(tn), then the conditions corresponding to (4.16), (4.17), (4.18) and (4.19)

 are shown to hold with ƒÊ=ƒÐ=ƒÅ. For example, from

(4.16) is verified. It is similar for the others.
Therefore Theorem 4.8 applied to (5.4) yields that

(5.5)

On the other hand, since the semigroup property of ƒ³w(n, m) implies

for 0_??_m_??_n_??_N+1, we have:

Therefore Proposition 4.2 together with Lemma 5.3 below yields that

(5.6)
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Then from (5.5) and (5.6) it follows that

In particular if m=0 then Un - uo lJz < CS1-a
We now use the second formula of (5.4). Since

we verify in view of Lemma 5.1 that

Then in the same way as above it follows that

Thus if S is sufficiently small, then U belongs to K.

LEMMA 5.3.

PROOF OF LEMMA 5.3. The equation verified in the proof of Proposition 4 .2 

gives in the present case that

From this it follows that

Similarly, it is obtained from (3.13) that

Hence we complete the proof of lemma.
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PROPOSITION 5.4. Let S be sufficiently small. Then, T is a contraction map

ping with respect to the norm •a•E•axh(s).

PROOF. Let W, W' •¸ Kh(S) and U=TW, U'=TW'. Then we have:

Take a number ƒÆ such that ƒ¿<ƒÆ<1. Since

Lemma 5.5 below and Proposition 4.3 yield that

By some calculation it is seen that

Since W'=[W',Y'0,...,Y'N] •¸ kh(S) and since f is Lipschitz continuous, we can 

repeat the same argument as Theorem 4.8 to obtain
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Therefore, Lemma 5.5 below again yields that

The estimate for I3 follows more directly from Lemma 5 .5. Indeed we have:

Summing up these estimates we conclude that

Here we used the fact that D(A(W))=D(A(u0)) implies that D(A(W)ƒÆ) •¼

 D(A(u0)ƒ¿) for W •¸ K.

Let us now estimate the norm of Vn-V'n. From the second formula of (5 .4) 

we can write that

Then, using the estimate obtained above, we verify that

with (ƒ¿<)ƒÆ<ƒÆ'<1.

For J2 we easily observe that

Hence, JJA(Y)°J2JIxs n< CS1-amaxo<c_<N ~JY - Y'~J. The same is true for J3.
Therefore, it follows that

We have thus proved that, if S is sufficiently small, then T is a contraction 

mapping.
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LEMMA 5.5. For any 0<ƒÆ<1,

holds with some constant CƒÆ depending on ƒÆ.

PROOF OF LEMMA 5.5. The results which correspond to ƒÆ=0 and 1 were 

already obtained by Propositions 4.2 and 4.7. Hence the desired result follows 

immediately by the moment inequality

We are now in a position to prove the existence of solution to (5.2).

THEOREM 5.6. Assume the conditions (A4-5), (Sp), (F3), (I3) and (RK2).
Let S>0 be sufficiently small. Then, in kh(S) the problem (5.2) has a unique 
solution U=[U,V0,...,VN]. In addition, all the components of U are in D and 
satisfy the estimates

(5.7)

The constant C>0 is independent of h and n.

PROOF. Obviously U •¸ kh(S) is a solution to (5.2) if and only if U is a 

fixed point of the mapping T. Hence the existence and uniqueness is obtained by 

the fixed point theorem for the contraction mappings. In addition, U satisfies the 

formula

The estimate (5.7) follows from (5.5).

Let us proceed to estimate the error En=Un-u(tn),n=0,1,...,N+1.
Let u be the solution to (5.1) on [0,S]. As before u is assumed to be sufficiently

 smooth. In particular, there exists a constant C>0 such that

We again use the elements en and dn given by (3.16) and (3.17) respectively. In 
the present case we observe the relation

(5.8)
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for each 0_??_n_??_N.
Let {U0, Ul,..., UN+1} be the solution to (5.2) constructed by Theorem 5.6 

on the interval [0, S] . As proved, there is a constant C>0 such that

(5.9)

We are concerned with the difference between (5.2) and (5.8). For this we note 
that

where B(u, v) and F(u, v) denote the linear operators

respectively. Then the difference is written as

(5.10)

for each 0_??_n_??N, where

B(u,v)=diag{B(ul,v1),...,B(us,vs)},

F(u,v)=diag{F(u1,vl),...,F(us,vs)}

for u=[u1,...,u3]T and v=[v1,...,vs]T. Of course, E0=0 .
We are then led to introduce the linear operators

A(u,v)=ƒÀ+A(u)+B(u,v)-F(u,v)

acting in X for u •¸ K and v •¸ K={v •¸ K •¿ D; •av•aD_??_C} (see (5 .9)), here 

ƒÀ denotes a positive constant specified below. Obviously the domains of A(u
, v) 

coincide with D for all (u, v).

Moreover, from the assumptions, the following conditions are satisfied .
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PROPOSITION 5.7. Let ƒÀ be sufficiently large. Then, the resolvent sets of 

A(u, v) contain the sector C•_S_??_, and the resolvents (ƒÉ-A(u, v))-1 satisfy

for all (u, v) •¸ K •~ K. In addition, the Lipschitz condition

holds.

PROOF. If ƒÉ-ƒÀ_??_?S_??_, then

From (A6) it is easily verified that

Similarly, from (F4)

These then show that, if ƒÀ is sufficiently large, then ƒÉ •¸ ƒÏA(u, v)) for all ƒÉ_??_S_??_

 with

Hence the first assertion is proved.
The Lipschitz condition is also easily verified from (A5), (A6) and (F4).

For n=0,1,...,N, let us set

where Vn=[Vn,1,...,Vn,s]T. Then it is easily verified that

(5.11)

(5.12)
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C being dependent on the norm ~IUIJC1([OT];D).
Using these operators, (5.10) is rewritten as

Here we assume that h is sufficiently small so that

exist as bounded operators (cf. Lemma 5.1). Then, since

(if necessary we may reduce h again), some calculation yields that

As a consequence we obtain the representaion formula

with the fundamental solution ƒ³h(n, m) with respect to An
, 0_??_n_??_N.

We will now accomplish the error estimates.

THEOREM 5.8. Assume the conditions (A4-6)
, (Sp), (F3-4), (I3) and (RK1

2). Let S>0 be sufficiently small . If the solution u to (5.1) satisfies u •¸

 C p+1([0
, S]; X) fl C'([0, S]; D), then the errors En, 0_??_n_??_N+1, are estimated

 by

(5.13)

the constant C being dependent on ~IUIJC1([OS];D) . Moreover, if u satisfies u •¸

Cp+1([0, S]; D), then

(5.14)
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with any 0<ƒÖ<1, the constant C being dependent on IhhIIC1([O
,S};V).

PROOF. The operators An and An satisfy (5.11) and (5.12). Therefore, as re

marked in Remark 4.1, the fundamental solution ƒ³h(n, m) enjoys all the properties 

established in Section 4.

Consider first the case where u •¸ Cp+1([0, S]; X) fl Cq+1([0, S]; V). Then, by 

(3.20) and (3.21) we obtain that

Therefore, it follows that

Hence we prove (5.13).

Consider next the case where u •¸ Cp+1([0, S]; D). By the same argument as 

for (4.15), we obtain that

From this we conclude (5.14).

6. An application to the chemotactic model

Let us consider the Keller-Segel equations

(6.1)
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which was presented as a model for the chemotaxis, see [11]. Here, 11 is a bounded

 region in R2 of C2-class, n(x) the outer normal vector at a boundary point x •¸ •Ýƒ¶.

 a, d, f and g are positive constants. b(ƒÏ) is a given function satisfying

(6.2)

u0 and ƒÏ0 are the initial functions which are assumed to be

(6.3)

with a constant ƒÂ0>0. u and ƒÏ are the unknown functions.

As was done in [34], under these assumptions, we formulate (6.1) as an abstract 

equation in the product L2-space X=L2(ƒ¶)•~L2(ƒ¶) of the form [:]. Set Z=

H'+E(1) x H' (1l) with some fixed 0<ƒÃ<1/2. By (6.3) the initial function

U° i
s in Z C C(SI). Define an open ball

in Z with the center U0. If r is small, then there exists ƒÂ>0 such that

for U= L u J •¸ K.

For U = [u] •¸ K, let us define linear operators A(U) by

(6.4)
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Then (6.1) is written as

(6.5)

where F(U) denotes the function

(6.6)

Since A1=-a•¢+a and A2=-d•¢+g with the domains D(A1)=D(A2)=

{u E H2(1I); au/8n = 0 on 8SI} are positive definite self adjoint operators in 

L2(ƒ¶), for any ƒÉ •¸ C•_ (0, •‡), ƒÉ-A(U) has a bounded inverse

Then, by means of the inequalities

(A4) is proved with any 0<_??_<ƒÎ/2; for details confer [341. Also (AS) and (F3) 

are easily verified. By (6.3), (I3) is obvious.

From (6.4) it is easily seen that the domain of the adjoint operator A(U)* 

of A(U) coincides with D(A(U))=D. Then, by [34, Theorem A.1], we have 

D(A(U)(1+ƒÃ)/2)•ßZ, U •¸ K, and hence (Sp) is observed.

By a direct calculation it is observed that A(U)U, U •¸ D, is Frechet differen

tiable with the derivative

Similarly,

Since b and b' are smooth in C+, (A6) and (F4) are verified.
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Appendix

A.1. Discrete version for the inequality of Volterra type

As a discrete version of the inequality of Volterra type, we can prove the 
following results.

PROPOSITION A.1. Let h>0 and let N_??_0 be an integer. Assume that a 
double sequence {Xn,m}O_??_m_??_n_??_N+1 satisfies the inequality

(A.1)

for all 0_??_m_??_n_??_N+1, where a, b are positive constants and 0<ƒ¿, ƒÀ_??_1 are 

some exponents. Then, xn,m is estimated by

where the constant C is determined by a, b, ƒ¿, ƒÀ and (N+1)h only.

PROOF. By induction we shall prove that

(A.2)

holds for every 0_??_k_??_n-m, where ƒ¡(x) denotes the gamma function. When 

k =0, this is nothing more than (A.1). Hence, assume that (A.2) holds for some 

k_??_0. Then, replacing xl,m, m_??_l_??_n-k-1, by the terms on the right hand 

side of (A.1) applied to themselves, we obtain that

(A.3)
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here the change of the order of summation is used for m'
Now we notice the following lemma.

LEMMA A.2. Let p>0 and 0<q<1. Then,

for 0_??_m_??_n_??_N+1, where B(p, q) denotes the beta function.

PROOF OF LEMMA A.2. Consider first the case when 0<p<1. The function 
1(x) _ ((n + 1)h - x)p-1(x - mh)q-1 takes its minimum at some point x0 and let 
10 be the integer such that l0h < xo < (lo + 1)h. Then, since f(x) is decreasing 
(resp. increasing) in (mh, l0h] (resp. [(lo + 1)h, (n + 1)h)), it is seen that

Consider next the case when p_??_1. Then the same function f(x) is decreasing 
in (mh, (n+1)h]. Therefore,

Thus the lemma is proved.

Let us estimate the terms on the right hand side of (A.3) with the aid of this 
lemma. Since
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(A.3) shows that (A.2) is true for k+1 also.
Thus (A.2) has been verified for every 0_??_k_??_n-m. In particular, when 

k=n-m, (A.2) gives that

Since [br(13){(N + 2)h}a]'/F(a + j/3) <00, this shows the desired estimae.

By an analogous method we can prove also the following proposition.

PROPOSITION A. 3. The same assertion as in Proposition A.1 is true even if 
the inequality (A.1) is replaced by

A.2. Abstract evolution equations in a Banach space

Let

(A.4)

be an equation in a Banach space X, where -A is the generator of an analytic 

semigroup on X (that is, A satisfies the condition (A1) in Section 3), f:[0,T]•¨X 

is a given function, n0 •¸ X is an initial value, and u=u(t) is the unknown.

Let e-tA, 0_??_t<•‡, denote the semigroup generated by -A. As it is well 

known (for example, see [28, Theorem 3.4 in Chap. 3] ), the solution u is constructed 

by means of the semigroup.

THEOREM A.4. Let A satisfy (A1) in Section 3. Let f •¸ CƒÐ([0, T]; X), 0<

ƒÐ <1, and let u0 •¸ D(A). Then, (A.4) possesses a unique solution u such that

Moreover, the solution u is given in the form

Furthermore, if we assume the compatibility conditions on u0 and f(t), then 

the solution u enjoys higher regularity. Indeed, let f •¸ C([0, T]; X), where p is
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a positive integer and 0<ƒÐ<1, and let all the elements u(1)0,...,u(p)0 such that

 be well defined as elements belonging to D(A). Then, Theorem A.4 is applicable 
to

repeatedly for k=1,..., p. As a consequence, we obtain that u has the regularity

Consider next the non autonomous linear equation

(A.5)

in X, where each -A(t) is the generator of an analytic semigroup on X with the 

domain D(A(t)) independent of t. A(t) are assumed to satisfy the Holder condition 

(A3) announced in Section 4.

According to the Sobolevskii and Tanabe theory, a unique fundamental solution 

U(t, s), 0_??_s_??_t_??_T, is constructed which gives the solution to (A.5).

THEOREM A.S. Let A(t) satisfy (A2) and (A3) in Section 4 . Let f •¸

 CƒÐ([0,T];X), 0<ƒÐ<1, and let u0 •¸ D(A(0)). Then (A.5) possesses a unique 

solution u such that

Moreover, the solution u is given in the form

with the unique fundamental solution U(t, s), 0_??_s_??_t_??T.

For the proof we refer the reader to Sobolevskii [25] or Tanabe [28].
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As above we can obtain a more regular solution provided that the compatibility 

conditions on u0 and f(t) are satisfied. Indeed, let A E Cp-'+µ([O, T]; £(D(A(0)), 

X)) and f E C' ([0, T]; X) with a positive integer p and 0<ƒÊ, ƒÐ<1, and let all

 the elements u(1)0,...,u(p)0 such that

be well defined as elements belonging to D(A(0)). Then, the solution u enjoys the 
regularity

For the proof see [25].

Consider a quasilinear equation

(A.6)

in X.

Here, A(u) are defined for all u •¸ K, where K is an open ball K={u •¸ 

Z; Ilu - uo I Z <R} of another Banach space Z which is continuously embedded 

in X and contains the initial value uO, the domains D(A(u)) are independent of 

u •¸ K. Each -A(u) is the generator of an analytic semigroup on X. In addition, 

A(u) are assumed to satisfy the Lipschitz condition (A5) announced in Section 5.

f:K•¨X is a given function satisfying the Lipschitz condition (F3) in Section 

5. u0 is an initial value of the problem, uo is assumed to satisfy u0 •¸ D(A(u0)) and 

the condition (Sp) in Section 5.

Then the existence and uniqueness of local solution to (A.5) is already known.

THEOREM A.6. Let (A4-5), (Sp), (F3) and (In) in Section 5 be satisfied. 

Then, there exists a number 0<S_??_T such that on the interval [0, S], (A.6)

 possesses a unique solution u such that

u E C([0, S]; D(A(uo))) n C7'([0, S]; Z) n C1([0, S]; X),

where 0<ƒÅ<1-ƒ¿ and ƒ¿ is the exponent appearing in (Sp).

For an outline of proof of this theorem, see [33]. For the detailed proof, see 

[16] or [25].
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