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Application of Plastic Node Method to Thermal Elastic-Plastic

and Dynamic ProblemsT

Yukio UEDA *, Keiji NAKACHO **, Masahiko FUJIIKUBO *** and Yoshikazu ISHIKAWA ¥

In 1968, the author and his colleagues developed the new mechanism of plastic hinge based on the incremental
theory of plasticity and derived the elasitc-plastic stiffness matrices for one dimensional members. In 1979, extending the
basic idea of the plastic hinge, the authors developed the new method of plastic analysis of plates and solid bodies using
the ordinary finite element method and derived the elastic-plastic stiffness matrices. Later, the new method of plastic

analysis was named ‘‘the plastic node method”.

In this paper, the basic theory of the plastic node method is further developed for analyses of thermal elastic-plastic
and dynamic behaviors of structures and the stiffness equations are derived. Using the new theory, several examples were
analyzed and the good applicability of this method is demonstrated.

KEY WORDS: (Plastic Node Method) (Thermal Elastic-Plastic Problem) (Dynamic Elastic-Plastic Problem)

(Welding Residual Stress) (Inertia Force)

1. Introduction

For the elastic-plastic analysis of space-framed struc-
tures, the authors developed a new mechanism of plastic
hinge based on the plastic flow theory and derived the
elastic-plastic and plastic stiffness matrices including the
effect of the large deflection!) 2.

Recently, this plastic hinge method was generalized
to be applicable to a continuum of any geometrical
shape®” 4. In this method, using the finite elements of
the ordinary finite element method, plastification is
examined only at the nodes. Regarding the yield condi-
tions at the nodes as plastic potentials, and applying the
plastic flow theory, the elastic-plastic stiffness matrices of
the elements for plates and solid bodies as well as one-
dimensional members were derived. In the above sense,
the authors named this method “the plastic node meth-
0d™.

In this paper, in order to apply the plastic node meth-
od to dynamic elastic-plastic problems accompanied with
temperature change, the basic theory is further developed.
In derivation of the basic equations, treatment of inertia
forces becomes important problems. Here, two types of
basic equations are presented, and the analytical results

are compared.

Several examples including dynamic and thermal ef-
fects are analyzed and the validity and usefulness of this
method will be demonstrated.

2. Theory and Analysis

In this chapter, the basic theory of the plastic node
method is extended to be applicable to dynamic elastic-
plastic problems accompanied with temperature change.

When temperature changes, thermal elastic or elastic-
plastic behavior occurs in an object. Then the following
effects should be considered comparing with the ordinary
elastic-plastic analysis.

(i) Production of thermal strain

(i) Dependence of material properties (Young’s modulus,
Poisson’s ratio, instantaneous linear expansion co-
efficient, yield stress, etc.) on temperature.

(iii) Changes of metallic structure (e.g. phase transforma-
tion, latent heat)

On the other hand, dynamic behavior should be evalu-
ated in consideration of the following effects. That is,

(iv) Effect of inertia force
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(v) Effect of damping force
(vi) Dependence of material properties (especially yield
stress) on strain rate

Within these effects, changes of metallic structure (iii)
can be accounted as those of instantaneous linear expan-
sion coefficient and yield stress. The dependence of
material properties on strain rate (vi) is not to be con-
sidered here, since it can be treated in the same way as
the effects of strain hardening which is presently under
study. Then the basic theory is developed considering the
effects of (i) through (v).

For the concrete formulation, the phenomena are
classified into elastic and elastic-plastic ones, and the
temperature and dynamic effects are introduced for each
case.

The plastic node method is based on the ordinary finite
element method (the stiffness method) as mentioned
before. Therefore, in the elastic behavior, this method is
the ordinary finite element method itself. In this paper,
the behavior of an element is described within the frame-
work of infinitesimal deformation.

2.1 Incremental relation between stress and nodal force

Based on the principle of virtual work, the relation be-
tween stress increments in an element and nodal force in-
crements can be expressed as follows,

@x}= [, 181 faotav M

where, {dx}:nodal force increments corresponding to
stress increments
{do}: stress increments
[B] :nodal displacement-strain matrix
The above relation should be satisfied whether the ele-
ment is elastic or plastic, temperature does change or not,
and the behavior is static or dynamic.

2.2 Elastic stiffness equations

In this section, the elastic stiffness equations of a finite
element will be derived.

2.2.1 Static elastic stiffness equation without tempera-
ture change '

The basic expressions are shown in the following.

(1) Total strain and stress-strain relation
{de} = {dee} ()

where, {de}, {de¢}: total strain increments and elastic
strain increments
{do} = [De] {dec}= [D¢] {de} (3)
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where, [De]: elastic stress-strain matrix

(2) Total nodal displacement and strain-nodal displace-
ment relation

{du} = {due} 4
{de} = [B] {du}, {dee}= [B] {due} Q)

where, {du}, {due}: total nodal displacement increments
and elastic nodal displacement incre-
ments

(3) Nodal force
{dx}= {dx,} (6)
where, {dx,}: static nodal force increments

(4) Stiffness equation

Using Egs. (1) through (6), the stiffness equation is
derived as follows,

{dx}= [Ke] {du} (7
where, [Ke] =jV [B]t [De] [B]dV : elastic stiffness matrix

2.2.2 Dynamic elastic stiffness equation with temperature
change

(1) Total strain and stress-strain relation®)

When temperature change, thermal strain is produced
and material properties such as Young’s modulus,
Poisson’s ratio and instantaneous linear expansion coef-
ficient may vary. In this case, total strain increments can
be obtained as the sum of the elastic and thermal com-
ponents.

{de}= {dee}+ {deT} (®

where, {deT}={a}dT: thermal strain increments
{a}: instantaneous linear expansion coefficients
dT : temperature increment
The incremental relation between stresses and strains is
expressed as,

d[De]
dT

{do} = [Dg®] {dee]} + dT{ee} )

total elastic strains before the latest load

increment »

[Dg4¢]: elastic stress-strain matrix at the latest
temperature

where, {ee}:

d|[De]
dT

dT: increment of stress-strain matrix due
to temperature change
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(2) Total nodal displacement and strain-nodal displace-
ment relation

Due to production of thermal strains, thermal nodal
displacements are also produced as follows,

{du}= {due} + {auT} (10)
where, {duT}: thermal nodal displacement increments
The incremental relation between nodal displacements

and the corresponding strains in an element are expressed
for respective component as follows,

{de} = [B] {du}, {dec} = [B] {due}, {deT} = [B] {duT}

(11)
(3) Nodal force

In the dynamic problems, both inertia and damping
forces should be considered in addition to the static ones.
(i) Inertia force

Inertia force acting at any point in an element can be

expressed as the product of the mass by acceleration. In -

the finite element method, it is necessary to concentrate
the inertia forces acting in an element at its nodal points
in the form of equivalent nodal inertia forces. Here, two
types of methods are employed, which are the lumped
mass method and the consistent mass method. Generally,
easiness to use is with the former, while higher accuracy
of the result is with the latter.

(i-1) Inertia force based on the lumped mass method: In
this method, the mass is concentrated at the nodes.
Usually, the total mass of an element is equally distrib-
uted at the nodes and the rotating inertia forces are
neglected. Then, the quivalent nodal inertia force in-
crements can be expressed as follows, considering the
existence of thermal strains.

{axm} = —IM)) ({due} + {auT}) = —[M;) {dis}
(12)

where, {dx,,}: equivalent nodal inertia force increments
{diie}, {diT}, {dir}: increments of elastic, thermal
and total nodal displacement
acceleration
[M;]: the lumped mass matrix (diagonal matrix)
(i-ii) Inertia force based on the consistent mass meth-
od: In this method, the nodal inertia forces are evaluated
equivalent to the inertia forces distributed over the entire
element. According to the principle of virtual work, the
equivalent nodal inertia force increments can be obtained
as follows,

{dxm} = —[Mc] ({die} + {daT}) = —[Mc] {dit}
(13)
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where, [M,] =pr [A]t[A]dV : the consistent mass matrix
[4] : displacement function, {dug} = [4] {du}
{dug}: displacement increments in an element
p  : density
(ii) Damping force
Regarding damping forces distributed in an element as
proportion to velocity, the equivalent nodal damping
force increments are expressed as follows,
{axp} = —[HI({due}+ {duT}) = —[H{du} (14)
where, {dxp}: equivalent nodal damping force increments
{due}, {duT}, {du}:increments of elastic, thermal
and total nodal displacement
velocity
[H] : damiping matrix.. , .
The above damping matrix, [H], cannot be obtained
theoretically at present but is usually evaluated experi-
mentally®). In this paper, the details of the damping
matrix will not be discussed, and Eq. (14) is used for the
expression of the nodal damping force increments in the
following derivation.
(iif) Total nodal force increment
The total nodal force increments in the dynamic pro-
blems can be expressed as the sum of the static nodal
force increments, {dx,}, the nodal inertia force incre-
ments, {dxy,}, and the nodal damping force increments,
{dxp}. That is,

{dx}={dxy}+{dxm}+ {dxp} (15)

(4) Stiffness equation

As mentioned above, the effect of temperature change
appears on {do} represented by Eq. (9). On the other
hand, the dynamic effect appears on {dx} of Egs. (1) and
(15) including the effect of temperature change in the
form of Egs. (13) and (14). Using Egs. (1) and (8) throu-
gh (15), the elastic stiffness equations are obtained as
follows.

(i) When both temperature change and dynamic effects
are considered together:

{dxy}= [Ka®] {du} + [H] {du}+ [M] {dit}

— [K4°] {duT}+[dKe] {ue} (16-2)

where, [K;°] = - [B] [D,] [B]dV: elastic stiffness
‘ matrix at the latest
temperature
[dK?] = f - [B]? [dD?] [B]dV: increment of elastic
stiffness matrix due
to temperature
charge
{u®}: total elastic nodal displacements before the
latest load increment
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(ii) When only the effect of temperature change is con-
sidered:

{dxy}= [Kq] {du} —[K4¢] {du”}+ [dK°] {u®}
(16-b)

(iii) When only the dynamic effect is considered:
{dx,}=[K®] {du} + [H] {du}+ [M] {au} (16-)

2.3 Elastic-plastic stiffness equations

Applying the plastic node method, the elastic-plastic

stiffness equations are derived for a finite element with:

plastic region.

2.3.1 Static elastic-plastic stiffness equation without tem-
perature change3)’ 4

(1) Total strain and stress-strain relation in an element

In the plastic node method, no plastic strain is produc-
ed in an element. Then, strain increments and their rela-
tions to stress increments are also expressed by Egs. (2)
and (3).

(2) Total nodal displacement and strain-nodal displace-
ment relation

Plastic displacements being concentrated only at the
nodes, the total nodal displacement increments are ex-
pressed by the sum of elastic and plastic components.

a7y

where, {duP} : plastic nodal displacement increments
The relation between elastic nodal displacements and
elastic strains is the same as Eq. (5) in the elastic condi-
tion, while plastic displacements do not have a similar
relation.
(3) Plasticity condition and plastic nodal displacement
increment

{du}={au®}+{duP}

The plasticity condition at the ith node of an element
can be expressed by the stress components at the ith
node, Oyj, Oyj, - . . . . , Tzxi and the yield stress of the
material, oy, as follows,

(18)

Generally, stresses at the ith node of a finite element
are represented as a function of the nodal forces at the ith
and the other j—1 nodes depending upon the assumed
displacement function (j <n, n: the number of nodes in
an element). Therefore, the plasticity condition at the ith
node can be expressed by the nodal forces as follows,

Fi (0 () - xdy oy) =0 (19)

When plastifications occur at the first through the kth
nodes in an element; the plasticity conditions are express-

fi(oxia Oyis s Tzxis oy)=0
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ed as follows,
F; ({x},0y)=0 (=1,2,...,k) (20)

As long as the plastic nodes are under loading, the follow-
ing conditions must be satisfied.

0 =dF;={¢;} {dx} @i=1,2,...,k) (21
oF; oF;
where, {(b } {a {x}1 a{x}z o a{x}j}
oF; oF; Ok }
a{x}; ofx}, o {x}y
oF; _
YL a{x}, ={0} (G <I<n)

Regarding the plasticity function, F;, as a plastic po-
tential and applying the plastic flow theory, the plastic
nodal displacement increments can be obtained as follows,

(@)= £ a\(o:)= (6] ) (22)
where, {d\}={d\d\, ...dNe}

[®] = [61 8 - - 0]
(4) Nodal force

Nodal force increments, {dx}, are the same as in the
case of static and elastic behavior.

{dx} ={dx,}

(5) Stiffness equation

(23)

Using the basic equations presented above, the elastic-
plastic stiffness equation is derived. Substituting Eqgs. (3),
(5), (17) and (22) into Eq. (1), the following equation is
obtained.

{ax} = [K°] ({du} —{auP}) = [K®] ({du}— [PHdN})
‘ (24)
Further substitution of Eq. (24) into Eq. (21) presents as,
oY [Ke]{du} — [®] {d\}) =0 (=1,2,...,k)
(25)
Equation (25) can be rewritten as,

[@17[K°] ({du}— [®]{dA}) = {0} (26)
Equation (26) composes a set of simultaneous linear equa-
tions for {dA}. Solving this equation, {dA} can be obtain-
ed as the function of {du} as follows,

{aN=([@) [K°] [o]) ' [®)[K°] {du}  (27)

Substituting Eq. (27) into Eq. (24) again, the elastic-plas-
tic stiffness equation is obtained as follows,
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{dx}= [KP] {du} (28)

where, [KP] =[K°] — [K°] [®]([®]* [K°] [®]) [®][K°]
: elastic-plastic stiffness matrix
When all nodes become plastic, Eq. (28) gives the plas-
tic stiffness matrix.

2.3.2 Dynamic elastic-plastic stiffness equation with tem-
perature change

(1) Total strain and stress-strain relation in an element

No plastic strain being produced in an element, both
Eqgs. (8) and (9) are also applicable.
(2) Total nodal displacement and strain-nodal displace-
ment relation

Nodal displacement increments consist of elastic, plas-
tic and thermal displacement components, as

{du} ={au®}+{auP}+{au’} (29)

The incremental relations between elastic displace-
ments and elastic strains and that betweenr thermal dis-
placements and thermal strains are expressed by Eq. (11).
(3) Plasticity condition and plastic nodal displacement

increment

Generally, since the yield stress of the material is in-
fluenced by temperature, the plasticity condition at the
ith node expressed Eq. (20) should be replaced by

Fi({x},opi(T3))=0 (i=1,2,...,k) 30)

where, 7; : temperature at the ith node
In oder that the plastic nodes are under loading, Eq. (21)
should be also replaced by

0F;
~doy; (i=1,2,...,k)
i

ooy ‘
31)
On the other hand, the plastic nodal displacement incre-

ments can be expressed by the same form as Eq. (22).
(4) Nodal force

0=dF;={¢;} {ax}+

(i) Inertia force

Here the nodal inertia forces of an element which is in
the elastic-plastic condition are discussed. Like the case of
an elastic element, the lumped mass method and the con-
sistent mass method are applied. When the consistent mass
method is used, the nodal inertia force increments are
estimated by two approaches.

(i-i) Equivalent nodal inertia forces by the lumped
mass method: In this method, the equivalent nodal inertia
forces are evaluated as the product of the concentrated
nodal mass and total nodal displacement acceleration.
Then, their increments, are,

{dxm} = — [M]({di®} + {aiT} +{duP})
= — (] {au} (32)
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where, {diP }: increments of plastic nodal displacement
acceleration

(i-ii) Equivalent nodal inertia forces by the consistent
mass method-1 (plastic displacements are considered to be
distributed in an element): In the plastic node method,
the discontinuous fields are introduced to the plastic
regions for the evaluation of the rigidity of an element.
On the other hand, considering the actual elastic-plastic
behaviors of the structures, there exists a mass even in the
plastic region. From this point of view, in the consistent
mass method-I, the continuous fields are introduced only
for the evaluation of the equivalent nodal inertia forces.

Here, it is assumed that the plastic displacements are
distributed over the entire element in the same pattern of
the elastic ones. That is,

{auf)} = [4] {a} (33)
where, {dub;} : plastic displacement increments in an
element
Then,
{deP} = [B] {auP} (34)

Upon this assumption, the following equation cor-
responding to Eq. (24) is developed.

{dx} = fV [B)* {do}av = [, [B]'[DF] {de?}av
= [y B [D°]({de} - {aeP}) aV
= [ 1BI'[D°]1B] {au}av
— [ B)[DF] [B] {duP}av
= [K°] {au} - [K¢] {auP} = [K®] {du®}
(35)
Equation (35) presents just the same stiffness equation
as Eq. (24) which is derived on the assumption that the
plastic displacements are concentrated only at the nodes.
Accordingly, such assumption as Eq. (33) never be in-
consistent with the evaluation of the rigidity in the plastic
node method.

Applying the principle of virtual work, the equivalent
nodal inertia force increments can be obtained as follows,

{dxm} = — [M.] {@u®}+{daP}+{aaT})

=— [M.] {dit} (36)

{dxy,} is represented as the function of the total nodal
displacement accelerations similarly to Eq. (32).

In Eq. (36), the thermal displacements are also assum-
ed to be distributed with the same displacement function
as of the elastic displacements like in Eq. (11).

(i-iii) Equivalent nodal inertia forces by the consistent
mass method-II (Plastic displacements are considered to be
concentrated only at nodes): In this approach, such
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characteristic of the plastic node method is strictly ap-

plied that although the plastic displacements are devel-

oped at the nodes, no region with the mass exists there.

Then,

(a) The inertia forces occur only in the elastic region ex-
cluding plastic nodes.

(b)The forces acting from the outside of plastic nodes
(nodal force) equal to those acting in the elastic region
(inside of plastic nodes).

Based on the assumption of (a), the inertia force incre-
ments produced in the elastic region are replaced by the
equivalent nodal inertia force increments at the tentative
nodes (i' and j' in Fig. 1) set at the points where the
elastic region connects to the plastic nodes (Fig. 1). Based
on the principle of virtual work, the following equation
is derived.

{adu} {dxm'} = = [}, {duetYp { diter}dVeiastic
=— [}, {au* 141" p[A] {di} Vi

=_ {d”'}*th [410[4]dVe1astic.

x {dir} = — {duwy*" {M, ] {dir}
(37)
where,
{dxm,'}: equivalent nodal intertia force increments at
tentative nodes
{dw}* : virtual displacements at tentative nodes
{dug}* : virtual displacements in the elastic region,

{duer}* = [A] {du'}*

{dile;} : increments of displacement acceleration in the
elastic region, {dit,;} = [4] {di'}

i i J J
N o
Plastic \M Plastic
node node

Fig. 1 Element with plastic nodes and inertia forces

Using Eq. (37), the equivalent nodal inertia force incre-
ments at the tentative nodes, {dx;, '}, are obtained. In this
case, the tentative nodal displacements are the total nodal
displacements minus plastic nodal displacements, that is
the sum of elastic nodal displacements and thermal nodal
displacements. Therefore, {dxy, "} is expressed as follows,

{dxm'}=— [M.] {dir}=— [M.] ({due}+{duT})
= — [M,] ({di} - {aiP}) (38)

Here, the tentative nodes are attached to the inside of the
plastic nodes. Then, based on the assumption of (b),
{dx;,'} are regarded as the forces acting at the actual
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nodes. That is,
{dxm}={dxm'} = — [M.] {du}—{di"})

(ii) Damping force
As mentioned in section 2.2.2-(3)-(ii), Eq. (14) pre-
sents the equivalent nodal damping force increments.
However, in the elastic-plastic condition, it should be
noted that the plastic nodal displacement velocity incre-
ments are also included in the total ones.
(iii) Total nodal force increment
The total nodal force increments are the sum of the
static nodal force increments, {dx,}, the nodal inertia
force increments, {dxy;,} and the nodal damping force
increments {dxy, }.

it ={dxy} + {dxm } + {dxp}
(5) Stiffness equation

(39)

(40)

In the plastic node method, since no plastic strain is
developed in an element, the effects of temperature chang
except for those on the yield stress can be accounted as
the change of the elastic stiffness matrix. Then, substitut-
ing Egs. (9), (11), (29) and (22) into Eq. (1), the elastic
characteristics of an element are presented as follows,

{dx}=[K4°]1({du} — [@]{aN} - {duT})

+ [dK®]{u®} (41)
When this equation is substituted into Eq. (31), the result-
ing equation yields,

(@] T {[Ka®1({ du} — [®]{d N} — {duT})

+[aK¢]{u}} + [¥] {doy}={0} “2)

where, [¥] : diagonal matrix of which diagonal elements

are
aFl aFZ aFk
ooy, ~ 00y, 7 doyg

{doy}={doy, doy, .. doy, 3T,

doy;

it
1

dT;

Solving this set of simultaneous equations for {dA}, {dA}
can be obtained as follows,

{any = ([2]"[Ks°] [@D)7 [@] [Ka®){du}
+([@17 (K] [@D) 7" (~[®] [Kg°] { duT}
+ [‘I>]t[011<e]{u‘f}+ [¥]{doy}) (43)

In section 2.3.2-(4)-(i), three types of equations were
derived for evaluation of the equivalent nodal inertia force
increments. Formally, they can be classified into two
types of equations, that is, [M] {du} for Egs. (32) and
(36), [M] ({da} — {duP}) for Eq. (39). Then, the stif-
fness equations are derived for the respective type as
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follows.

(i) When [M] {di} type is used as inertia force incre-
ments:

Substituting Egs. (14), (43) and (32) or (36) into Eq.
(41), the elastic-plastic stiffness equations are obtained as
follows.

(a) When both temperature change and dynamic effects
are considered together:

{dxy}=[KqP] {du} +[H]{du}+ [M]{dit}
— [KaPH{duT}+ [Gry ] [dK®] {uf}
— [Kd”1[Q]{doy}
where, [Gr,] = [I] - [K4°] [G],
[0] = [®1([®]" [Ka°] [®])7* [,
[G] = [®1([@]’ [Ka°] [®])~ [®]7,
[Z] : identity matrix

(44-a)

(b) When only the effect of temperature change is con-
sidered:

{dxy}= [KgP1{du} — [K4P1{duT}
-+ (6] [dK°1{u®} — [K4°] (0] {doy} (44-b)
(c) When only the dynamic effect is considered:
{dxy}= [KP){du}+ [H{di} + M) {di} ~ (44-c)

(ii) When [M] ({di} — {duP}) type is used as inertia force
increments:

Substitution of Egs. (39) and (14) into Eq. (41) pre-
sents as,
{dxy} — [M]({di} — {@iP}) — [H]{du}
= [Kaf1({du} — [@]{d\} — {duT}) + [dK°] {u°}
(45)
{diP} included in Eq. (45) can be expressed using Eqs.
(22) and (43) as,
{diP}= [@]{ak} = [@]{([®]" [K4°] [®])™"
x [®)° [Kq®]{di} + ([@] [K4®] [@])
x (~[®)" [Ka®1{duT] + [@]"[aK°]1{u}+ [¥]{doy])}
(46)
Substituting Eqs. (43) and (46) into Eq. (45), the elastic-
plastic stiffness equations are obtained as follows.

(a) When both temperature change and dynamic effects
are considered together:

{dxy}= [Kg"]{du} + [H]{dd} + [M] [Gr,]{du}
— [Kg"H{auT}+ [Gr ] [AK®]{u}
— [Ka°1[01{doy} + IMI([G] [K4°1{duT}
— [G1[aK*1{u®} — [0]{doy}))  (47-a)
where, [Gp,] = [I] - [G][K4°]
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(b) When only the effect of temperature change is con-
sidered:

{dx,} = [KsP1{du}— [K4"1{duT}
+ (G [ak®1{u’} — [K4°1 [Q]{doy}(47-D)
(c) When only the dynamic effects is considered:

{dxy}=[KP]{du} + [H]{au}+ [M] [Gp, |{ it}
(47-c)
Equations (44) and (47) are a set of simultaneous second
differential equations with respect to the nodal displace-
ment increments {du}. In this paper, for integration of
these equations, the Newmark’s $-method will be used.

3. Examples of Analysis

In this chapter, the validity and usefulness of the plas-
tic node method for the thermal elastic-plastic and dyna-
mic problems will be demonstrated with several examples.

3.1 Thermal elastic-plastic analysis (Analysis of welding
residual stress)

The thermal elastic-plastic behavior in a long butt joint
of plate by welding is analyzed. An instantaneous heat
source is applied along the weld line. In Fig. 2, the ana-
lytical model and conditions are shown.

For actual analysis of the middle part of the joint, a
strip which is prependicular to the weld line and is ex-
pressed by the broken lines in Fig. 2 is treated. The as-
sumed geometrical boundary conditions are as follows.
The sections of the strip expressed by the broken lines in
Fig. 2 are always kept plane, and when there is no rigidity
in the weld zone, both parallel and rotating deformations
of the sections are allowed. While, when the rigidity is re-
covered, the rotating deformation is restricted.

Y
1]
|l (in mm)
Strip for analysis !
: h=10 : Thickness
Mesh division ——1 | o
(PNM) -5 ]
|
Weld metal ¥
i x
v //IIA////;,IIIIFI ,1[111,4/1 Z [,I 2 >
Heat input : 17000 J/cm
Efficiency : 80 %
Specific heat : 0.167 cal/g°C
Specific weight : 7.8
Heat conductivity : 0.01 cal/mmsec °C

Fig. 2 Model for thermal elastic-plastic analysis (Butt weld)
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Both the ordinary finite element method and the
plastic node method are adopted for comparison. In the
finite element method, 80 constant strain triangular ele-
ments are used to regard the solutions by this method as
very accurate ones. On the other hand, in the plastic node
method, since the plastification is examined at the nodes
and the inside of an element is completely elastic, it is
simple to obtain accurate solutions by large elements in
which changes of strains, stresses and temperature can be
considered. Here, 10 rectangular elements in which
temperature and strains linearly vary are adopted as
shown in Fig. 2.
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Fig. 4 Transient and residual stresses, and plastic zone and plastic nodes

The mechanical properties of the material used in the
analysis are shown in Fig. 3. The mechanically melting
temperature (stiffness recovery temperature at cooling
stage) is set at 750°C. Changes of metallic structure are
neglected in this example. The dependence of an instan-
taneous linear expansion coefficient on temperature being
very small, it is assumed to be constant as shown in Fig. 3.
This assumption and the temperature field which varies
linearly in an element presents a compatibility of thermal
strains in this rectangular element. Under 750°C, both
Young’s modulus and yield stress are varied linearly in an
element depending on temperature. While, above 750°C,
for the stability of analysis, Young’s modulus is assumed
to be constant in an element and evaluated according to
the average temperature.

In Fig. 4, the resulting transient and residual stress
distributions in the transverse direction are shown ac-
companied with the plastic zones or nodes at each state.
Figure 4 (a) shows the state just after the rigidity of the
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weld zone is recovered, Fig. 4 (b) the following state and
Fig. 4 (c) the distribution of residual stresses. The solid
and broken lines indicate the solutions obtained by the
plastic node method and the finite element method re-
spectively. When the plastic node method is applied, it
should be noted that there exist both plastic and elastic
nodes in an element owing to the variation of stresses and
the difference of the yield stresses at each node. Com-
parison between the solutions by two methods about the
distributions of stresses and plastic zones indicates the
good applicability of the plastic node method in spite of
rough meshes.

3.2 Analysis of dynamic elastic-plastic behavior

The infinitesimal elastic-plastic dynamic behaviors of
beam and plate under impact lateral loads are analyzed
using three types of the nodal inertia forces in the plastic
node method.

For comparison, the ordinary finite element method is
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also adopted. The effects of damping force are neglected
here.

(1) Time increment

As mentioned before, for time integration of Egs. (44)
and (47), the Newmark’s $-method is applied. In this
method, when 8 is set at 1/4, the solutions are uncondi-
tionally stable, while at 1/6, conditionally. Therefore, the
time increment, dt, can be selected to a comparatively
large value in the former case, but is restricted in the latter
to be less than the shortest natural period of the analytical
model, tyin.

In the analyses of elastic response using 1/4 for 8, such
dt as 4 times t;, i, yielded the exact solutions comparing
with the analytical ones. This indicates that 1/4 for 8 is
more useful than 1/6 in the framework of elastic analyses.

On the other hand, in the elastic-plastic analyses, dt
.can not be always selected to be unconditionally large
even when 1/4 is used for B, since both the accuracy of
evaluation of yielding and a deviation of stresses from the
yields surface are effected by dt. Then, a check for con-
vergence becomes indispensable,

From the above view points, in this paper, 1/6 is
adopted for § and approximately one half of t.,;, for dt.
tmin in the lumped mass method is usually larger than
that in the consistent mass method. However, the same
value of dt is adopted in the both methods for comparison
of their difference. In the elastic-plastic conditions, since
the rigidity is reduced, tyi, obtained by the analysis of
eigen value in the elastic condition is also applicable.

(2) Beam under impact lateral load

The dynamic elastic-plastic behavior of rectangular
beam fixed at both ends under a centrally concentrated
step load is analyzed.

Using one dimensional beam elements, the beam is
divided into 20 elements in the longitudinal direction. In
the finite element method, two types of further divisions
are adopted. In the first type, each element is equally
divided into 20 layers in the direction of the thickness,
(type EL-I). In the second type, the element is divided not
only in the above direction but also the longitudinal into
10 parts in order to strictly distinguish the elastic and
plastic regions, (type EL-II). The applied load is 80% of
the static collapse load obtained by the plastic analysis of
beam and applied in the first time increment.

In the analysis by the plastic node method, the plastic
node is developed when the nodal mement reaches the
fully plastic moment of the member. In the finite element
method, each region in an element yields when the stress
at its center reaches the yield stress. The analyses are
carried out strictly evaluating both unloading and reload-
ing and the equilibrium conditions are satisfied at each
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time step.

The adopted combinations of the analysis methods are
indicated in Table 1 and the resulting relations between
time and deflection at the center are shown in Fig. 5.

Table 1 Methods of analysis (beam)

Method E1(—N;I)e15han€;és)is Inertia force
1 P.N.M. Lumped
2 P.N.M. Consistent-I
3 P.N.M. Consistent-1I
4 F.E.M. (E1-1) Lumped
5 F.E.M. (E1-0) Lumped
6 F.E.M. (E1-I1) | Consistent
7 F.E.M. (E1-I) Consistent

Concerning the solutions by the finite element method,
when type E1-Il in which the elastic and plastic regions *
are further strictly distinguished is used, both results by
the lumped mass and the consistent mass method ap-
proximately coincide with each other. When type E1-I is
used, the lumped mass method presents the behavior in-
cluding oscillation of higher mode. By the consistent mass
method, the stable behavior is obtained, but the deflec-
tion is comparatively small.

Then, attention is paid to the solutions by the plastic
node method. When the lumped mass method and the
consistent mass method-I are applied, the solutions by the
respective methods coincide almost completely and the
stable responses are obtained. Besides, they are close to
the solutions by the finite element method using type
EL-. In this example, although the mechanism of static
collapse is established by the plastifications at the center
and both ends, unlimited deformation does not occur,
since the work done by the specific external force is
absorbed by the works of the plastic nodes. On the other
hand, when the consistent mass method-Il is applied, the
following behavior is obtained. Right after the initial
plastification at the center, the inertia forces are increased
rapidly and the neighboring two nodes are plastified.
Then, the local mechanism of collapse is established and
the solution diverges.

(3) Square plate under impact lateral load

The behavior of a simply supported square plate under
uniformly distributed lateral step loads is analyzed. The
applied loads are 80% of the static collapse loads. Assum-
ing the deformation of the model can be expressed only
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Fig. 5 Time-deflection relations of beams under impact lateral load, and plastic zone and plastic nodes

by the symmetric mode, a 1/8 part of the square plate is
analyzed.

As an element, a non-conforming triangular plate bend-
ing element is adopted. In this element, the stresses at
each node-are represented as the function of the all nodal
forces in the element. Therefore, in the plastic node
method, the virtual plastic nodal displacements are deve-
loped even at the elastic nodes as indicated in Eq. (22). In
the finite element method, elements are divide into 20
layers.

The cases of analyses are indicated in Table
solutions are shown in Fig. 6.

Like 'the previous example (2), when the consistent
.mass method-Il is applied in the plastic node method,
collapse occurs right after the initial plastification, and the
solutions diverges, (Fig. 6). From these phenomena, it can
be concluded that the discontinuous fields can be in-
troduced usefully for the evaluation of rigidity like in the
plastic node method, but the nodal inertia forces in the
consistent mass method should be always evaluated
regarding the deformations as continuous.

On the other hand, the solutions by the other four
methods well coincide with each other, and the validity of
the plastic node method using the lumped mass method
and the consistent mass method-I is demonstrated.

The characteristics of the above solutions are as fol-

2, and the

Table 2 Methods of analysis (plate)

Method E](—M;QShanta;g;s)is Inertia force
1 P.N.M Lumped
2 P.N.M. Consistent-I
3 P.N.M. Consistent-1I
4 F.E.M. Lumped
5 F.E.M. Consistent
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lows. Since the plastification occurs at the earlier stage in
the finite element method, the velocity of the deflection
is Jarger than that obtained by the plastic node method
until the first peak. However, the residual deflection by
each method well coincides, since the expansion of the
yield zones in this example reaches almost through the
thickness of plate even in the case of the finite element
method. The computation time by the plastic node me-
thod is approximately a half of that by the finite element
method.

From the above results, the good applicabilities of the
plastic node method to the dynamic elastic-plastic ana-
lyses are confirmed.
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Fig. 6 Time-deflection relations of plates under impact*lateral

distributed load and plastic nodes

4. Conclusion

In this paper, the theory of the plastic node method is
extended to be applicable to the-dynamic thermal elastic-
plastic problem and some examples of the analysis are
demonstrated. The main results are summarized as fol-
lows.

(1) Theoretical equations were developed regarding
thermal strains, dependence of material properties on
temperature and changes of metallic structure as the
effect of temperature change, and inertia and damping
forces as the dynamic effect. As a result, interaction
terms of the respective effects were formed. However,
the problems were analyzed being divided into the
thermal elastic-plastic and the dynamic elastic-plastic,
then the applicability of the theory was investigated.

(2) As a thermal elastic-plastic problem, the transient and
residual stresses in a butt joint of a plate by welding
were analyzed. Using the rectangular elements in which
both the strains and the temperature linearly vary, the
highly accurate solutions were obtained in spite of
rough meshes.

(3) As for the dynamic elastic-plastic problem, the beam
fixed at both ends under centrally concentrated lateral
step load and the simply supported square plate under
uniformly distributed lateral step loads were analyzed.
The solutions by the plastic node method in which the
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lumped mass.smethod and the consistent mass method-I
are used for the inertia forces were in good agreement
with those by the finite element method. Then, the
good applicability of the plastic node method was
confirmed.

According to the result of beam, it also became
clear that in“spite of the field of an infinitesimal dis-
placement, the member did not collapse even after the
mechanism of static collapse was established.
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