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Abstract
We study the well-posedness issue of the generalized Bénj@mo-Burgers
(gBO-B) equations. We solve the initial-value problem ()VBf the gBO-B
equations with data below?(R). Our proof is based on the method of L. Molinet
and F. Ribaud, which is analogous to that of J. Bourgain, aitl Eenig, G. Ponce,
and L. Vega. It is known that such a method cannot be appligde¢denjamin-Ono
equation.

1. Introduction

In this paper, we are devoted to the well-posedness issueeoihitial-value prob-
lem (IVP) for the generalized Benjamin-Ono-Burgers (gBDeBuations

1.1) 3U + UdU — 35| Dy MU+ |Dy®u =0, (x,t) € R xRy,
u(x, 0) =ug(x) € H3(R),

wherea > 0, « > 0, and|Dy| is the Fourier multiplier operator with symba4|*.

Equation (1.1) is called the KdV-Burgers (KdV-B) equationdathe ordinary BO-B

equation wheng, @) = (1, 1) and &, @) = (0, 1) respectively.

In [23], L. Molinet and F. Ribaud showed that the KdV-B equatis globally
well-posed fors > —1 [23]. Their method of the proof was analogous to that of
J. Bourgain [4] and C.E. Kenig, G. Ponce, and L. Vega [17].sTieisult of the KdV-B
equation is surprising compared with the known results ef kldV equation and the
Burgers equation. Kenig, Ponce, and Vega [17] proved thatkdV equationd;u +
udcu +a3u = 0 is locally well-posed inHS(R) with s > —3/4. See also [6, 7]. On the
other hand, D.B. Dix [9] and D. Bekiranov [1] made it cleartttiae Burgers equation
U+ udxu — 92u = 0 is locally well-posed fors > —1/2. The result is optimal since
the uniqueness of the solutions fails wher: —1/2 [9].

In a previous paper [25], we were concerned with the speoiath$ of (1.1):

(1.2) U + UdgU — x| Dy|*Pu — 92u = 0.

2000 Mathematics Subject Classification. 35A07, 35M10, 35Q@6B15.



936 M. OTANI

In [25], we have proved that the gBO-B equations (1.2) aréballg well-posed for
s > —(1 +a)/2 by applying the argument by L. Molinet and F. Ribaud [21, 23]. 2
Here we note that whea > 0, the values = —(1 +a)/2 is lower than the threshold
s = —1/2 for the well-posedness of the Burgers equation. This rdsutlue to the
effect of the dispersive term of (1.2).

The purpose of this paper is to generalize the dissipativa &u of (1.2). This
kind of generalization whem = 1 was treated by Molinet and Ribaud [21] (Case of
the dissipative KdV), and they showed that the dissipativ®/kequation is globally
well-posed fors > —3/4, which is the same as that of the KdV [17]. The smoothing
property of the KdV equation is strong so that they did not enake of the dissipative
term to solve the dissipative KdV equation in paper [21]. by study, we shall use
not only dispersive property but dissipative one to sohe ¢gBO-B equation (1.1), and
define the following function space:

DEFINITION 1.1. Fors,beR, XS denotes the completion of the Schwartz
spaceS(R?) with respect to the norm

@) e = ([ [l e e P o o dr)m,
where (-) = (1+] - [2)Y2

For T > 0, we define the localized spaoe?b with the norm
1.4) I fllxse = gg(fs_b{llgllxabi g(t) = f(t) on [0, T]}.

Hereafter,™ or F denotes the Fourier transform with respect to space-timahias.
Note thati(z — £|£|**?) +|£|% is the symbol of the linear part of the gBO-B equation.

To solve the dissipative KdV equation, Molinet and Ribaud aa&pace-time func-
tion space equipped with the norfiiz — &3)2(6)5F (¢, 7)|| L27- This space is essen-
tially suitable for the KdV equation, and was used by Kenignée, and Vega [17].

In the case of the gBO-B equations (1.1) with<Oa < 1, it is difficult to adopt
the approach based on the dispersive property since therdigp effect is weaker
than that of the KdV equation. Indeed, L. Molinet, J.-C. Sautd N. Tzvetkov [24]
showed that the following generalized Benjamin-Ono (gB@)iations

1.5 U +Uudu — 9 |Dg|*u=0, O<a<1
(

cannot be solved by the Picard iteration scheme when irdé#h is inH3(R), s € R.
Therefore, when O< a < 1, we cannot solve the gBO-B equations (1.1) in function
spaces with the nornf(z — &|&[1*%)2(6)5F (¢, 7)|| L2?) DY the iteration scheme. How-
ever, once we adopt the function spaces defined above (Dwfiriitl), we can avoid
the difficulty with the aid of the dissipative term.
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DEFINITION 1.2. LetU(t) = exptdx|Dx|'*®) be the unitary operator associated
with the linear gBO equation. We denote by/(t) the semigroup associated with the
linear gBO-B equation;

(16)  AMWO)E) = exd—I§1*t +i5[5 "] F(@)E). 120, g€
And we extend/(t) to a linear operator defined dR by setting

@L7)  AWOE) = exd— 61>t +i5|5"t] A (9)E). teR, €S

Here Fy denotes the Fourier transform with respectxto

The following is the main result in this paper.

Theorem 1.1. Let s> —(a+20 —1)/2 with a+2¢ <3 anda > (3—a)/4 > 1/2.
Then for any gy € H5(R), there exist T= T(|lugllns) > 0, b € (1/2, 1), and a unique
solution yt) of the IVP (1.1) satisfying

(1.8) u(t) € ([0, T], H*(R)) N C((0, T], H*(R)),
(1.9) ue Xo«@Db,
(1.10) Udyu € X3 @D Gy 92y € XS @b

Moreover, the flow map g+ u(t) is locally Lipschitz from H(R) to C([O, T],
HS(R)) N C((0, T], H®(R)) N Xs—«>-1.b_|f the solution u is real-valugdu e
C((0, +00), H™(R)).

REMARK 1.1. Note that for anyug € HS(R), the solutionu(t) belongs not to
XsP put to XS~ «@-Db This loss of the regularity follows from Proposition 2.1.
See Remark 2.1.

To prove the well-posedness, we solve by a contraction mappiinciple the cor-
responding integral equation associated with the IVP (1.1)

(1.11) u(t) = W(t)uo(x) — % / t W(t —t)a(u*(t))dt, t=>0.
0

However, we actually prove that the following map is a contraction on a suitable
function space:

t

A1) ) =90 [Woweo - 259 [wi - Oarotrar |
0

for t € R, wherev is a cut-off function satisfying

¥ € CP(R), suppy C[-2,2], ¢ =1 on [-1,1],
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and y;5(t) = ¥(t/8), and g, (t) is the characteristic function of the interval, [®).
Finally, we shall collect some corollaries derived from dream 1.1.

Corollary 1.1 ([23], [25]). Whena = 1, the gBO-B equations witb <a <1
(1.13) BU +UdcU — x| Dy|*Pu —92u=0
are locally well-posed for s —(a+1)/2.

Corollary 1.2. When a= 0, the gBO-B equations witB/4 < o < 3/2
(1.14) 3U + Uudyu — 3y |DyJu+ |Dy|®Xu=0
are locally well-posed for s- (1 — 2a)/2.

REMARK 1.2. Corollary 1.2 implies that the gBO-B equations (1.14) cally
well-posed in Sobolev spaces of negative order. Hence grtdise of the gBO-B (1.14),
we can treat the IVP with more singular data than that of thedg@ation so far, see
Remark 1.4 below. Moreover, the author expects from the aegtsnin [1, 9] that the
generalized Burgers equations

(1.15) 3 + Udyu + | Dy|*u=0

are locally well-posed fos > (3 — 4«)/2 with « > 3/4; note that (3- 4a)/2 > (1 —
2a)/2 whena < 1. Based on this conjecture, we may see the effect of the mispe
term of the gBO-B (1.14).

REMARK 1.3. From Theorem 1.1, the gBO-B equations can be solved akeve
spaces than that of the gBO equations and of Burgers typetieqsiaThe reason of
this is due to dispersive-dissipative effects. Bilineatineates (Proposition 3.1) are cru-
cial ones for the well-posedness, and Lemmas 3.1 to 3.5 adedein the proof of
Proposition 3.1.

In the proofs of these lemmas, we are to use the dispersigipdiive effects.
Roughly speaking, we are to use the dissipative effect indihr@ain of interaction of
low and high frequencies, and dispersive one in the domaihigii-high interactions.

However, in the cases of the gBO (resp. Burgers type) equatie cannot use the
dissipative (resp. dispersive) effect. This leads to tethdt the gBO-B can be solved
in weaker spaces. See Remark 3.4 for more details.

REMARK 1.4. According to C.E. Kenig and K.D. Koenig [16], the gBO aqu
tion (1.3) is locally well-posed fos > 9/8 — 3a/8. In particular, T. Tao [26] has
shown that the ordinary BO equation (whare 0) is globally well-posed inH(R).
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As is mentioned above, the gBO with<fa < 1 is not solved by iteration scheme as
in [4, 17]1

However, J. Colliander, C. Kenig, and G. Staffilani [8] shdwley the iteration
scheme that the gBO equations with<0a < 1 is locally well-posed in some weighted
Sobolev space which is smaller thah/?(R). Moreover, S. Herr [12] has shown the
local well-posedness of the equation (1.3) with<0a < 1 in a Sobolev-like space
whose high frequency corresponds to thathbf(R) with s > (1 — a)/2. Herr's study
seems to be motivated by the work of K. Kato [15] on the existeaf the solutions
of the BO equation.

REMARK 1.5. It is known that the flow map of the ordinary BO is not unmnifidy
continuous when the initial data is iH5(R) with s > 0 [19] ands < —1/2 [3]. Re-
cently, N. Kita and J. Segata [18] have proved that the BO tmuas locally well-
posed in some weighted Sobolev spaces which are smallerHR@R) but contain the
soliton solution. In this case, the flow map is locally Lipgzh

Corollary 1.3. When a= 1, the generalized KdV-Burgers equations witfp <
a<l

(1.16) dU+Uudcu — 83U+ |Dy|*u=0
are locally well-posed for s> —«a.

According to Molinet and Ribaud [21], the stronger statenfefiows whena =1
and O< o < 3/4:

Theorem 1.2 ([21]). Let s > —3/4. Then the same results as Fheorem 1.1
are valid for the IVP(1.1) with a=1 and @ > 0.

REMARK 1.6. It follows from Corollary 1.3 that we improve the formezsults
by Molinet and Ribaud [21] of the IVP (1.1) wita = 1 anda > 3/4. Under the
assumption of Theorem 1.1, we can not take- 1. In our proof, whena = 1, the
assumptiore > 1/2 truns out to be unnecessary. See Remark 3.3.

NOTATIONS. If there exists a harmless positive constant 0 such thatA < cB
(resp. A > c¢B) for any positive A and B, we denoteA < B (resp. A 2 B) for
abbreviation. The notatio® ~ B means thatA < B < A

1Since the submission of this paper, remarkable studies erB#njamin-Ono equation have ap-
peared. The reader is referred to [5, 14, 20]. The papers ghd] [20] deal with the global well-
posedness in2(R) and in L%(T) respectively.

2See also [13], which is an improvement of [12]. Herr has imptbthe exponents down to
s> —3a/4.
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The rest of this paper is organized as follows: Section 2anstsome linear es-
timates. In the proof of Theorem 1.1, bilinear estimateogBsition 3.1) are key es-
timates. Section 3 includes the preparatory lemmas for ¢mstouction of the bilinear
estimates. Section 4 is devoted to the proof of the bilinséimates. Theorem 1.1 will
be proved in Section 5.

I would like to thank Professor Keiichi Kato for several dission. Thanks also
to Professor Takayoshi Ogawa for his stimulating commenthenprevious work.

2. Linear estimates

In this section, we shall collect a few linear estimates far proof of Theorem 1.1.
The estimates corresponding to the case ef ® <1 andw =1 are given in [25]. We
also treat a linear estimate (Lemma 2.3) to construct Pitpos3.1.

Proposition 2.1. Let se R, « > 0, and be [1/2, 1]. There exists C> 0 such that

(2.1) ¥ (W ()Pl xso =< Cl@ s

for any ¢ € HS*(-1(R),

Proof. From the definition of the norm,

OWO e = | €1F@O [+ 16 (0 )0

L2 Lg

22) < | @ |orrmoe )

L2 Lg

+C [ A 00 | A0 )

L2 Lg

Put g:(v) = F (v (©)e ME™)(z). If |&] > 1, it follows from ()® < (v — /)P +|z/[°
and Young'’s inequality that

9l = [0 (72 A E)]
(2.3) = @ e i+ 1] e

< C(I&]™ + |&|“®) < Clg @D,

where we note that fok > 0

(2.4) )k ~ 2521 F (O -
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If |&] <1, it follows that

|201

—_ — |t
Ik llp = e M
|2

<C tn t L
2.5) < Z‘O RO

SC<1+Z(n—11)!> <C.

n>1

HP

Hence it follows that

<b<l1

NI =

(2.6) |(2)°ge(@)] . < C(e)® Y for
Combining (2.2) with (2.6), we obtain the desired estimate. ]

REMARK 2.1. It follows from this proposition that for any initial thauy € H5(R)
the solutionu(t) is in XS~«@-12b which means the loss of the space regularity (in
the L2-based sense). In this proposition, we have estimat@dW(t)¢ in the L2-based
space. Whereas we can treat it in the genérBdbased sense. Indeed, it is easy to
derive the following estimate from the proof of the propiasit ||1p(t)W(t)¢||xsp.b <

Cllgllygao-sowm, Where|[F lyzo = [ (i(z —£1§172)+1§1*)°(€)°F (6. 7)| p and | flw; =

[ F©)] .-

Noting thatb = 1/2 +¢ in the practical use, we see that the regularity loss can be
recovered, provideg > 2. This may be a reasonable fact since tifeframework is
suitable to treat the dispersive term.

Linear estimates appearing below can also be translatedtiat in aLP-based
sense. However, the author think that such a translationnoarbe applied to bilinear
estimates below as long as our method of proof is used. The negison for using
L2 space here is to use the duality argument in the proof of theehi estimates.

In [11], A. Grunrock deals with the modified KdV equation in thé framework,
but it is open problem whether or not his argument is appleab the gBO-B equa-
tion (1.1).

Proposition 2.2. Let se R and let b> 1/2. For § € (0, 1], we have
2.7) 195 Fllxso < C8E 22| F s

Proof. The proof can be done by modifying that of Lemma 2.51i@] [slightly.
U

Lemmas 2.1 and 2.2 are needed for the proof of Proposition 2.3
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Lemma 2.1. For w € S(R?), we define k on R as follows

gtt _ g ltlgr

W@(s, T)dT.

(2.8) ke(®) = ¥ (0) /R

Leta > 0and 1/2 < b < 1. Then it holds for any fixed € R that

Jlie + 16 P A

LZ(R)
2u@o-1) ([ _1DE D) )2 ( / D, 7)? >
SC[@ (/R e rier °7) T Ur e igpeas ) |

Proof. We rewriteks in the following way:

(2.9)

g1 1_ et
ke (t) = ¥ (t) - Ww(é, t)dr + ¥ (t) o1 TTHEE

(2.10) gt oIt
t —_— ,T)dt — Y (t —_—
Hv) =1 1T+ [§[% wig.Tydr =y (1) =1 1T+ [§[%

=+10+000 =1V,

w(&, r)dr
w(&, r)dr

We have to estimate the contribution of these four terms ¢ole¢ft-hand side of (2.10).
Contribution of IV. Noting that(it +]£|?*) < C|it +|£/*| holds for || > 1,

iz +16> 7 0Vv)

2
L

= [fir+ e [Awoe o) dr ( [ oL & d,>2

cz1 (i T+ €[>

(2.11)

Setge(r) = F (v (t)e 1E™)(2). By using (2.6), we have

/R<ir + 1621 (1) 2 dr < C/R<r>2b|gg(r)|2dr +CI$I"°‘b/R e (1) dr

(2.12)

Therefore we obtain

(&, 7)| dr)?

(iT+]6%)

213)  [fic +EP°RW) |7, < CE @D ( [
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Contribution of Ill. Noting that(it +|§/%)* < C(z/}* +Cli(r — /) + |§|2"‘|b and
using Young's inequality,

H(i T+ g1 (Il Hiz

— H 2a\2b T /Uj(f, T — r/)X\‘L'fr’\Zl ’ 2
_/R(Ir+|.§| ) /Rlﬁ(‘f) o)+ e dr
2
N 0E, T =1 ,
(2.14) / (/| w( )||I(‘L’ ,)+|€|Za|XT—T’I21dr> dr

2

T |’u\)(§,f—f/)| )
T—1'|> d d
+~/R</R|w(r)||i(l'—‘[/)+|%‘|2u|1_bxl =1 T) T

wE ) |
=¢ H (i +|E)iD

dr

’
2
Lr

where |[(t)% , <C for 0<b < 1.
Contribution of 1l. It follows from Schwarz inequality that

[fiz +18=P 7 an Hiz <Clfic+ g PR O[L-e )

2.15
(249 (Iélz“) W, 7)I? q
T

e Jr G g

(i) Case of|¢] > 1. It follows that

i+l PR (@[ - e

(2.16) = H T+ 161%) ft(w)(r)H H i+ |g|2a) (w(b)e e

=2 (||¢||Hg + ISI““blltlflng) + C(£)24@-1)
< C(g)%®

where we use (2.12) for the second term. Therefore we have

) 2
(2.17) H(ifﬂaza)bﬂ(“) Hiz SC@__)Za(Zb—l)/ (!w(éi,f)ldr

R (iT +1€])
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(i) Case of|&] < 1. It follows that

i+t PR (w01 - e 1))

" tn t 2an
= C|@PREO[L-e @) LUk
n>1 ’ b
(2.18) ISI "
<CY = Ht VO s
n>1
|%~|20{ 20
=C) = <Cl™
n>0 !
Hence
. o\b 2 w (EP) [ 1W(E, T)?
(2.19) H(IHH >E(H)HL¥§C|S| €% Jq Gz B

[w(§, 7)I?
<C / S ER2 M
R (T +]5%)
From (2.17) and 2.19, we obtain

clep@ [ 1TED 40

R (iT+[£2)
- (. )

B ./R (iT+[g2>)20b)

Contribution of I. We can rewrite | as

(2.21) | =y (t)/| IZ(”T,)”.@@”) dr

T+ &[>

iz +1iep R, <

(2.20)
dr.

It follows from Schwarz inequality that

iz + g™ PR0)|
< CllHllme + CIE*®II1 2

<cy '_

(2.22) n>1 |:
liz|"

-7 9 d

x /| B, 7)) de

"y (t)

2ab
i e

L?:|
djst [iT+ 1812

20 w2 |\ / ll2liT +1g1%) .\
Cla+igl )</z|<1(if+|§|2“)df) (z|<1 lit+ &% dr) ’
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If 1&] <1, (2.22) is bounded by
D, 1) )”2

2.23 C —d .
(2.23) (/R 7+
If 1&] > 1, (2.22) is bounded by
(£)2b ( / (&, 7)|2 )”2

- dr
©e \Jg (it +E%)

D, 7)) V2
<o ([ )

/ |+ 151*) dr < L
\

7|<1 |i7:+|§|20‘|2 (g

(2.24)

where we note that

(2.25)

From (2.23) and (2.24), we get

~ 2 1/2
(2.26) llie+ PR, <c (/R Mo@ .

(iT +]g2)2b)

Summing up, from (2.13), (2.14), (2.20) and (2.26), we obtdie desired esti-
mate (2.9). ]

Lemma 2.2. Let0<o <1,0 #1/2. For f € H°(R) with f(0) =0,

(2:27) e £

wo < Coll fllue,
where xR, is the characteristic function of0, co).

Proposition 2.3. Let se R, o > 0, and let b> 1/2.
(i) There exists C> 0 such that for any v € S(R?),

(2.28) B, 1) 2 1/2
o 25+20(2b—1) ;
=¢ {”””XS‘ i <fR<‘§> </R (i (z — £1E17) + &%) dt) dg) }

(i) For 0 <8 < 1/2, there exists €> 0 such that for any v € X3P-1%

t
X YO /0 Wit — U)o(t) dt

Xs.b

< Csllv]| xsb-14s.

(2.29) ‘
Xs.b

t
X Y () /0 Wit — U)o(t') dt
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Proof. Assume thab € S(R?). Recall thatU (t) = exptdx|Dy|*™?). Settingw(t’) =
U(—t)v(t"), we get

t
. OV () / Wit — t)o(t) dt
(2.30) e

iT (g

=U(t) |:XR (t)x//(t)/ e"‘é w(§, )dg dr} :

Putting

gtt _ gItig™

(2.31) ke(t) = Y (1) /

- W@@,T)df,

we can rewrite
t
(2.32) xR (DY () /0 W(t —t)o(t') dt' = Ut)F; * (xr, (Dke) (X, 1).

Since w(t) = U(—t)u(t) € S(R?), it is clear that for any fixed € R, k; is continuous
on R and k:(0) = 0. By virtue of Lemma 2.2] xr,Ksllyp < Cpllksllpp holds for 0<
b<1 b#1/2.

Thus we find that

t

1 OV ) [ W= tuyar
= JU®F * (xr. Ok (1) | oo
= [t +167)°E)°F (xr, (ke (1) €. D) 2

(2:33) < |©* . OO, | ,+ ] @ xr. Ok O] ],

L?)

Xs.b

<C (H € kel ],

+ @7 el

it + 1€ A

<c|er

With the aid of Lemma 2.1, the statement (i) follows if we nobat W(£, v) =
V(E, T + £|£|**?). By using Schwarz inequality and the density argument, wectly
derive (ii) from (i). ]

Proposition 2.4. Let se R, @ >0, b>1/2 and § > 0. For all f e XSb~1%,

(2.34) t > /t W(t —t) f(t')dt’ € C(R+, HS**(R)).
0
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Moreover we have

t
(2.35) ‘ OV fo Wit — ) f () dt

S C || f || Xs.b-145 .
Loo(R+_Hs+2mS)

Proof. We can ses = 0 without loss of generality. It suffices to prove that
t
t— U(—t)/ W(t —t')f(t')dt
0

is continuous from [Doo) to H2¥(R) sinceU is strongly continuous unitary group in
L2(R).
Put g(x, t) = (U(-t) f(t))(X). The statement follows if we show the continuity of

t
(2.36) Fit— (g)Z““/ e Bt Ex(g( -, t))(€) dY’
0

for (iz +|§1)> %G e LZ (R?). We rewrite, fort > 0,

t
F(t) = (£)20e 51"t / G, 7) / elEP ) gt 47
R 0

(2:37) dtt _ g l&>t]

ST B dr.

= (£)%* f [[(3%5)
R
Hence

(2.38) F(t1) — F(tp) = (£)*° % [(eifn — ) — (ef\s@*mw _ eﬂ;\%\)] dr.
R

When |§] > 1, applying Schwarz inequality, we obtain

[F(t) — F(t2)l

2 19, )12 e /<if+|s|2“>2<lb>za 12
@39 =4 </R<ir+|é|2°'>2<1—b>—26dt) <R i+ e dr)

20 |§($’ T)|2 vz a(1—2b—25) de 12
=6 5</R (it + [§|%)20-D-2 df) o 5</R <0>2b+28> ’

where we putr = |£]26. Hence it follows that forg| > 1

. ) 12
(2.40) F) - Rl < ([ o )
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When [&| < 1, we separate the two terms to estimate the right-hand $i¢2.38).
We may assume that; — t;| < 1. It follows from mean value theorem and Schwarz
inequality that

’g\(S’ 7:) Tty itt)
7”_”&'20[(6' — ™) dr
17| [G(&, 7)I / 19, o)l
< |ty —t — “dr+2 _
=lh—bl o<1 [iT + €12 ’ =1 |iT 1612
(2.41) =C|liT+Er) "6 )|,
B 1/; 1/2
y (/ (7)20-D)-2 dr) + (/ (1)-2-2 dr) }
| \Jiz1=1 lt]=1
<C T+l "aE ) ,-

Similarly it follows that

9E.T) el alel
[t e
6. 1) 16(¢. 7)
(2.42) s|t—t||s|2“/ %de/ _18&. oL
T izt JiT + (6] ot JiT + B
b—1+5 ~,

<C H(ir +151%)

Lz’
Summing up, we obtain

b—1+5 A

(243) IF(t) - Fe)l = C [fie+1e™) g, ) ,-
Furthermore, we find that
(2.44) IF(t) = F@)llew < C (it +1e™) 56 1),

It is clear that the integrant in (2.38) tends to O |as— t;| — 0, and is bounded
uniformly in |t; —t| by the integrant of the right-hand side of (2.43). Hend&(t;) —
F(t;)] — 0 as|ty — t|] — 0O for almost everyé € R. Moreover, from (2.45) and the
Lebesgue dominated convergence theorem, we infer that

(245) ||F(t1) - F(t2)|||_2(R) — 0 as |t1 —t;] > 0.
To show (2.35), we refer to the previous paper [25]. ]

Finally, we introduce the following estimate to finish thiscion. Lemma 2.3 will
be used in the proof of Proposition 3.1.
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Lemma 2.3. Let v be with compact support in time ir-T, T]. For any 6 > 0O,
there existsu = u(0) > 0 such that

_ (. 1)
F 1

Xt ((r - 5|5|1+a>9)
Proof. A similar estimate was verified by J. Ginibre, Y. Tsut$, and G. Velo

[10, Lemma 3.1]. It suffices to modify the proof slightly. Tkeéore we omit the proof
of Lemma 2.3. ]

< CT*lIvll 2, ry-

(2.46) ‘
L2((R?)

3. Bilinear estimates

Proposition 3.1. For s > —(a+20¢—1)/2 with a+2¢ < 3 and e > (3—a)/4 > 1/2,
there exist b> 1/2, C, u, and § > 0 such that for any uv e XP with compact
support in[—T, T], we have

(3.1) 3 (Uv)xso-10s < CTH Ul oo 0]l xo.

By duality argument, it is equivalent to show that for amye X~5170=% with
wlx-si-v-s < 1,

(3.2) 1] = [(Bx(uv), w)] < CT [ullxsol[vllxsollwllx-s1-0-s.
Putting
e, 1) = (i (v - £1617) + 1512 (6)°06. 7).
8. 7) = (i (v — E1614*2) +1612)° ()06 7).
and

>lfb78

h(g, 7) = (i (v — &1 + &>

we see that (3.2) is equivalent to

(&) w(E, 1),

(3.3) = CT*I fllz2liglzz 1Dl z 2.
And we can rewrite
(3.4)
- f £N(E, ) (8)° 91 (60 °
re (I(T —£|E[173) + |£|20) 100 (i (vg — &1]&1[173) + |£1|2)P

5 fe —& 0 —m)(E — &)
(i(t — 1 — (€ — &1)I§ — &11M2) + & — &)
_ / NG, D)) G )€ T —&t —n)(E —&)°
R

s (io +§]2) 17070 (ioy + |&1|2)P (iop +1& — &1/2)P

b dé dr dél d‘L’l

dE dr dél dTl,
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where
(35) o=t—EEM o=u-&lEat?, o=t —u—(E—£&)E - &M

3.1. Algebraic smoothing relation. The following algebraic relation will be ef-
fectively used for the proof of Proposition 3.1:

Proposition 3.2 ([25]). Let|&| > 1and |§ — & > 1, and let0 < a < 1. Then
the following relation holds among, o1 and o, defined above
(i) If &(5 —&1) > 0and [&1] > [§ — &,

1
(36) max|a|, o], |o2]} =

ta 14
3 1|78 — &l
(ii) If &(& —&1) <0 and [&] > & — &,
l+a a
(3.7) max|o|, |o1l, |oa|} > Tlfl 111716 — &1l

(iii) If &1(5 —&1) > 0 and |&1] < |& — &,

1
(3.8) malo . loal, o) = —=léal I — a1,
(iv) If £1(§ —&1) < 0 and [&1] < |& — &1,
l+a a
(3.9) max|o|, lo1l, |oz2]} > TISI 11l 1& — &1I°.
Proof. See [25, Proposition 3.2]. L]

REMARK 3.1. Whena = 1, it follows from o1 + 0o — 6 = 3¢&1(§ — &) that
max{|o|, o1], lo2l} > |£€1(€ — &1)I. See [4], [17].

REMARK 3.2. Letp =(at2x—1)/2—(11+5+10x)e/2. The following exponents
often appear throughout the proofs of Lemmas 3.1 to 3.4.
(3.10) my =20 —a—2a +5(2+a)e —dae = —1— (1 + 1dx)e,
(3.11) mp; =2p —a— 20 — 2(2+a)e + 10ne = —1 — (15 + 7a)e,
n; =4p — (L +a)(1 — 5¢) — 20(1 + 2)

(3.12)
=a+20 —3— (17 + 5+ 24w)e.
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3.2. Preliminaries I. For any fixed &, 7;) with |&| > 1, we introduce the fol-
lowing integral region:A(¢1, 1) = {(§, 7) € R?: |§] < 2|&, |§ — & = 1}

Lemma 3.1. Letp=(a+20 —1)/2—(11+5a+10x)e/2 and letl < a+ 2«0 < 3.

If max{|o|, |01, |o2]} 2 &1/ |€ — &1] with |&] > 1 holds then for anye > O there
exists C> 0, depending only or, such that

(3.13)

(€)% // |§12(6) "% (& — §1)¥ dé dt
Al

T (iog + [&g|2) @) (10 +E2) 15 (i0p + & — &|2) 1% —
By symmetry betweer§; and& — &;, we can easily derive the following corollary:

Corollary 3.1. Letp=(a+20—1)/2—(11+5+10x)e/2 and letl < a+2a < 3.
If max(|o|, o1l, lo2]} 2 |£1] 1§ — &[™** with |&] > 1, then (3.13) holds

Proof of Lemma 3.1. It follows tha€ —£;| < 3|&| in A(£1, T1). We split A&y, T1)
into three regions;

Mg, t1) = {(5, 1) € Al¢1, 1) o]l = maX{|o], loa], |o2l}},
Ao(E1, 1) = {(§, 7) € Al§1, T): |oa| = maxX{|o|, |o1l, |o2]}},
Ag(E1, T1) = {(§, T) € Al§1, 10): lo2|l = maX{|o|, |o1], |o2]}}.

Estimate in A;. It follows from the assumption of the lemma thét) >
(£1)1"2(& — &) in Aq. With the aid of (o) > (£1)'"2(¢ — &), we have

dédr

' f / (§)% 2 ()% O SN (g — gy)20 (%)
- Aq(61.71)

(I&1[2) 12 (o) 12

(3.14) ) // (£)2-20 ()20 —(L3a)(1-56)~2u(1+20) (£ _ £;)20-(1-5¢)
~ Au(61,71)

dé dt.

(o) 1+

Sincep <1 anda+ 20 > 1, it follows from |&| < 2|&;| and |§ — &1| < 3|&;] that

(é_->2—2p (%-1>2p—(1+a)(1—5€)—20t(1+26) (g _ él)zp—(l—5€)
(315) < (El>1—a72a+5(1+a)ef4ae (S _ El>2p7(1756) < (%- _ §1>2p7372o{+5(2+a)€740(€‘

~

Hence it follows from Remark 3.2 that

(3.16) I< cffA dé dr <cC.

L(EL1) (%‘ §1>1+(1+14x)e (02)l+2€ -

Estimate in A,. It follows from the assumption of the lemma that;) >
(1)1 — &) in Ag.
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(i) Case of|€ —&;] > |€]. In this case, it follows thalg —&;| ~ |&1]. We first note
that (o)1 (1) % = (o)1 * (o) *(01) = (0)1**(01)">* holds since|oy| > |o].
With this inequality and(cy) > (£1)1"3(& — £1), we have

| < /f ()% ()P (€ — &) dé dr
~ Ax(&1.11) (

o) 1% (01)15 (i0p + |& — &1|2)1+%
Sff e g
~ Ag(1.11) (O')l+26(|é}. - §1|2a)1+25

< // <$)272p <$1)2p7(1+a)(175e) (é- _ §1>2p7(175e)720¢(1+2€)
~ Ao(E1,11)

(U>1+2€

(3.17) d& dr

dé dr.

Sincep < 1, it follows from |£]| < 2|&1| and | — &1| ~ |&1] that

(82720 (1) 20~ WD) (5 )20~ (1756) ~20(1+20)

(3.18) v N B ]
5 <§l)2 (1+a)(1 55)(5 _$l>2p (1-5€¢)—2(1+2¢) (é _Sl)Zp a—2u+5(2+a)e 40(5.

Hence it follows from Remark 3.2 that

dédt
(319) '=C //;—\2(51,11) (E - é,-:1>:l'+(1+14)[)E (U>1+2€ =C

(i) Case of |€ —&;1] < |&]. In this case, it follows thaté| ~ |&;1] holds. With the
aid of (01) Z (61)*2(¢ — &1), we have

2-2 2p—(1+a)(1+2¢) j& _ 2p—(1+2)
I”S//A(é )(S) Py (§ — &) dt dr

(I§]2%)1=5¢ (o) 142

< // (£)2 20~ 2150 (g ) 20~ (LHAY(1¥2) (& _ )20~ (1+2)
~ Ax(81,71)

(0'2)1"'25

(3.20)

dé dr.

Sincea+ 2x > 1, it follows from |&]| ~ |&1] and |§ — &;| < |&] that

(§>272p7201(1756) <§1)2p7(1+a)(1+25) (S _ §1)2p7(1+26)

(321) ~ <S)1—a—2a—2(1+a)e+l(bts (%- _ é;-l)Zp—(l+2€) < <S _ %-1>2p—a—2a—2(2+a)5+100¢e.

Hence it follows from Remark 3.2 that
dédt
3.22 I<C <C.
(322) N / //—\2(51,11) (£ — &) 1H(OS+Re (o) 142 —

Estimate in Az. It follows from the assumption of the lemma thad,) >
(1)1*%(6 — &) in Ag. We first note that(c)'™>(02)"*%* = (0)17>(02)1 > (02)"¢ >
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(0)1*% (0)175% holds since|oy| > |o|. With this inequality and(o,) > (£1)1*3(& — £1),
we have

(o) 172 (| 20) 172 df d

// (é)Z 2p é- )Zp (1+a)(1—-5¢)— 2a(1+25)<%~ %-1>2p (1-5¢)
As(§1,71)

( >1+25

| < // <$>2—2p <é~l)2p—(1+a)(1—5€)<$ _ §1>2p_(1_5é)
(3.23) As(61.71)

dé dr.

Sincep <1 anda+ 20 > 1, it follows from |&] < 2|&;] and |§ — &1] < 3|&;] that

oay (TSRO - g%

~

< §l>17a720t+5(l+a)6740t6 (s _ §l>2p7(175€) < (S _ El>2p7a720l+5(2+a)674a6.
Hence it follows from Remark 3.2 that

dédr
(3.25) '=¢ / /Asel.n) € — g ram gy = O

Summing up, we have the desired result. ]

Lemma 3.2. Letp=(a+20 —1)/2—(11+5a+10x)e/2 and letl <a+ 2«0 < 3.
If max{|o|, |oul, lo2|} 2 1€ 1611216 — &1| with |&1] > 1 holds then for anye > O there
exists C> 0, depending only or, such that

2 2 2
(326) 1=— SU7 f[ E12(8) 20 (£ — &)% dE dr
Al

(io1 + [E112)12% ] Jne ) (10 +16[2) 17 (l0p + |5 — &[22

By symmetry betweel§; and & — &, we can easily derive the following corollary:

Corollary 3.2. Letp=(a+20—1)/2—(11+5+10x)e/2 and letl < a+2a < 3.
If max{|a|, loal, lozl} 2 (€] 1&1] 1§ — &1|* with [&1] > 1, then (3.26) holds

Proof of Lemma 3.2. We find thgt — &;| < 3|&1]| holds in A(&1, t1). As in the
proof of Lemma 3.1, we splitA(&1, 1) into three regionsA;(&1, 1), Ax(&1, T1) and

As(é1, T1).
Estimate in A;. It follows from the assumption of the lemma thét) >
|E1(£1)%(& — &1) in Aq. With the aid of(o) 2 |£](51)%(§ — &1), we have

| < // | 145 (£) =20 () 20-a(1-5¢) (£ _ g,y20~(1-5¢)
A(&1,71)

dédt

(|§1]2) 12 (o) 12

/ / ()10 (gg) 2720202 — gy) 20 (159
N NERS)

(o) 1%

(3.27)

dé dt.



954 M. OTANI

When p < 1/2, it follows from |&]| < 2]&;] and | — &;1] < 3|&;| that

<%—>1—2p+5€ <%_l>2p—a(1—56)—2a(1+25) (é_- _ g1>2p—(1—5€)
(328) < <$1)17372a+5(l+a)€740{€ (S _ %-1>2p7(175€) < (S _ €1>2p7372a+5(2+a)€74ae’

where we note thah + 20 > 1. Whenp > 1/2, it follows from |& — & | < 3|&;| and
€] < 2|&] that

<§>172,0+56 <§l>2,07a(175€)72a(1+2§) (é: _ §1)2p7(175€)
(329) < <$)1—2p+5€ (é.l)4p—(1+a)(l—5e)—2a(1+25) < <§)2p—a—2a+5(2*a)5—4ae

where we note that Remark 3.2 aad- 2o < 3 in the last term.
Hence it follows from Remark 3.2 that

dé dr
3.30 I<C - C.
(3.30) S/&WWMWFMWMW@Mi

Estimate in A;. It follows from the assumption of the lemma thad,;) >

|E1(E1)3(& — &1) In Ag.
() Case of|&¢ — & > |&|. In this case, it follows thaté;| ~ |& — &1]. We first
note that(o )15 (01)1*%* > (6)1*%* (01)1~% holds since|o1| > |o|. Hence we get

216\ =20 /£.\20 /5 __ £.\2
331) I<M@N EPE e E e

~ o) HE (o)1 (o + [§ — &y |2) 14

With the aid of (o1) = |§](51)2(€ — &1), (3.31) is bounded by
|§ |1 (5) 2 (£y) 22075 (& — )20 —(1759)
//Az(sl,n) (0) 1% (|& — &)%) 142

< // <é>172p+5€ (g_—l)pra(lf&)(%- _ §1>2p7(175e)72a(1+25)
~ Ao(E1,11)

(O’)l+2‘

dé dr
(3.32)

dé dr.

It follows from |&1| ~ |€ — &1 and |&]| < 2|&,] that

(§>1—2p+56 <§l>2,0—a(1—5€) (S _ él>2p—(l—5€)—2a(l+26)

(333) ~ <$)1—2p+5€ <§1>4p—(l+a)(l—56)—20[(l+26) < <§)2,0—a—2a+5(2+a)6—40¢e ,

where we note that Remark 3.2 and- 2o < 3 in the last term.
Therefore it follows from Remark 3.2 that

dé dt
(334) I=C //;\z(&,n) (S)l+(1+l4x)g <0)1+ZE =C
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(i) Case of [§ — &| < |&]. In this case, it follows that&| ~ |&;]. By virtue of
(01) 2 1£1(62)%(§ — &1), we have

< |§|l 26 —-2p (S )Zp—a(l+26) (fi: %-1>2p—(1+2€)
=
Az(£1.71)

ded
(& [2) 15 (o) 172 st

(E)l 2p—2¢—2a(1— 56)(& )2;) a(l+2£)<%- %->2p (1+2¢)
~ //I:-\z(fl 1)

(CARG

(3.35)

dé dr.

Sincea+ 20 > 1, it follows from |&]| ~ |&1| and | — &;] < |&] that

<§)172p72e72a(175s) <$1)2p7a(1+25) (E _ $1>2p7(l+26)
(336) ~ (g)l—a—Za—2(1+a)e+1(}xe <%- _ %-1)2,0—(1+2E) < (-’;: _ él)2p—a—2a—2(2+a)e+10ae‘

Hence it follows from Remark 3.2 that

dédr
3.37 I<C / / -c
(337 Poler.y) (§ — E1)1HISTRIE (gp) 142

Estimate in A;. It follows from the assumption of the lemma thét,) >
& 1(€1)%(& —&1) In As.

(i) Case of|¢ — &| > |&|. In this case, it follows that&;| ~ |€ — &|. Since
|&1] ~ |& —&4], this case is proved as in the regida (i) above by using the symmetry
betweeno; and os.

(i) Case of|&€ — &] < |&€]. In this case, it follows that&| ~ |&1]. We first note
that ()15 (02) "% > (0)1*% (0,)1~> holds sincelo,| > |o|. Hence we get

(3.39) |< // E2(8) "% (51)% ( — 1% dé dr
. ~ As(61,m1) ( .

o)+ (iog + [81|2*) 1% (0p) 175

By virtue of (02) 2 |£|(61)*(£ — &), we have
1< / / 615 ()72 (52) 2075 — £9) %70~
~ As(61,71) (o) 1+2 (|&|2x)1r2

: / / (£)17207% (fy) 207205972 (¢ — gy) 2~ (759
~ As(£1,71)

()%

dédt

(3.39)
dé dt.

Sincea + 20 > 1, it follows from |&] ~ [&1] and |§ — &1| < |&] that

()12 (£1)20~a0=5) 2142 (¢ _ )20~ (1=5¢)

(340) ~ <§>17672a+5(l+a)6740t6 (s _ §l>2p7(175€) < (E _ El>2p7a720{+5(2+a)674a6.

Hence it follows from Remark 3.2 that

dédr
(34 1= [ ) Fom <C

Thus we finish the proof. ]
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3.3. Preliminaries Il. For any fixed £, t), we introduce the following integral
region: B(§, 7) = {(&1, 11) € R?: 216 < |§], |&al = 1, € — &) > 1)

Lemma 3.3. Letp = (@a+20 —1)/2— (11 + 5+ 10x)e/2 and leta > 1/2. If
max{|c|, lo1], lo2]} 2 |£1]1"€ — &1] holds then for anye > O there exists C> 0,
depending only or, such that

(3.42) l=—2 5l <C.

oy (T + (62| 2) % (fop + & — & |2)1+% —

1§17 // ()% (€ — &% d&rdn
B(.

(io+ |é|2a>1 =
By symmetry betweer§; and & — &;, we can easily derive the following corollary:

Corollary 3.3. Letp=(a+20¢ —1)/2— (11+5:+10x)e/2 and leta > 1/2. If
max|o|, lo1], |o2]} Z 1611 1§ — &11**2, then (3.42) holds

Proof of Lemma 3.3. It follows thaté| ~ |& — & | in B(&, 7). We split B(&, 1)
into three regions;
Bi(§, 7) = {(61, 1) € B(§, 7): |o| = maX|o], |o1l, |o2l}},
B2(§, 7) = {(51, 72) € B(§, 1) |oa| = maXo], |oal, [o2l}},
Bs(§, ) = {(51, 11) € B(§. 7): loz2l = maX]a|, |01, |o2|}}.

Estimate in B;. It follows from the assumption of the lemma thay) >
(61)1*3(§ — &) in By. With the aid of (o) > (£1)!*2(& — &1), we have

2-2p 5 \2p—(1+a)(1—5€) /& _ £ \2p—(1—5¢)
| < //B( | (&)™ (61) (§ — &) déy dry
1(8.7

()12 (|& — & 2) 1+

< // (§)2720 (£1)2~ WAA5) (& _ g2~ (175¢) 2u(1+2)
~ Bi(§.7)

<O.1>1+Ze

(3.43)

dé:]_ dl']_.

Since 2 > 1, it follows from |£] ~ |§ — &1| and 2&,| < |&]| that

<§>272p <§1>2p7(l+a)(175€) (s _ §l>2p7(175e)72a(l+2€)

(3.44)
~ (E)172a+5€74a6 (él)2p7(1+a)(175€) 5 (él)2p7a72a+5(2+ﬁ)6740t6.

Hence it follows from Remark 3.2 that

déi1dr
(3.45) '=C / /Ble.z) ) Taa) gy = &
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Estimate in B,. It follows from the assumption of the lemma thét;) >
(1)1*3(& — &) in B,. With the aid of(o1) > (£1)1*2(¢§ — &), we have

= / / (622 (ga) %~ (A2 — gy) 20 (12)
™ e ([[2)1-5 (o) 1%

- // (§>272p72a(1756) (é—l>2p7(1+a)(1+25) (é: _ gl)2p7(1+25)
~ Ba2(§.7)

<02>1+25

déi1dry
(3.46)

d%‘l d‘El.

Since 2 > 1, it follows from |&| ~ |&€ — &;| and 2&,| < |&| that

(g)y2 20 —2a(1756) (£ ) 20~ (LAY 2) (& gy 20—(142)

(347) ~ (%->1—2u+1(116—26 (§1>2p—(1+a)(1+25) < (é_-l)Zp—a—Za—Z(Zi-a)e+l(he‘

Hence it follows from Remark 3.2 that

dédny
3.48 I<C // <C.
(348) Ba(e.7) (51)1TUISTRE (o) 1426

Estimate in B;. It follows from the assumption of the lemma thét,) >
(£1)1(£ — £1) in Bs. By symmetry betweeno; + |£1]% andio, + |§ — £1]%, we can
prove this case by following the analogous argumenBjn

Summing up, our statement is established. ]

Lemma 3.4. Letp = (@+ 20 —1)/2 — (11 + 5 + 1Qx)e/2 and leta > 0. If
maxX|o|, lo1l, lo2|} = |&] 121|216 — &1] holds then for anye > O there exists C> 0,
depending only or, such that

(3.49) =215l

|§| // ()% (€ — &)* d&rdn
B

+I§I2“ 175 g (ion +161]2) 4% (iop + |§ — &1 [2) 2%

By symmetry betweel§; and & — &;, we can easily derive the following corollary:

Corollary 3.4. Letp = (a+20¢ —1)/2— (11 + 5 + 10x)e/2 and leta > 0. If
max|o|, [oal, lo2]} 2 [§]1€1] 1§ — £1]°, then (3.49) holds

Proof of Lemma 3.4. It follows thatg| ~ |& —&;| in B(&, t). As in the proof of
Lemma 3.3, we spliB(&, 7) into three regionBs (&, t), B(&, t) and Bs(&, 7).

Estimate in B;. It follows from the assumption of the lemma that) >
(6)(€1)%(& — &1) in By With the aid of (o) 2 (§)(61)%(§ — &1), we have

= / / (§)15 72 () 272075 (g — )20
~ ey (o) 142 (|& — &q|20)1¥2

< // <$)1+55—2p <§-1>2p—a(1—5e)<%- _ %-1>2p—(1—56)—2a(l+25)
R

(o) 1+%

dé1dn
(3.50)

dEl d‘L’1.
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Since || ~ |&€ — &| and 2&;] < |&] hold, we have
(§>l+55720 (€l>2pfa(175€) (E _ $l>2p7(1756)720t(l+25)

(3.51) ~ () 1020(142) (g 20-a(1-5€) < () 2p—a—2a+5(2sa)e—dac

Hence it follows from Remark 3.2 that

déidr
(3:52) '=C //Bl(é.z) (§1) 1 AF14)e (g ) 142 =C

Estimate in B,. It follows from the assumption of the lemma that;) >
(£)(£1)2(€ — &1) In By. By virtue of (01) 2 (£)(61)%(6 — &1), we have

5 ff BT g e
~ Bt 1) (|§- |2a)1—55 (02)1+25

< // (5)172;)72672&(1756) (gl>2p—a(l+2€) (é— _ Sl)2p7(1+25)
~ B2(§.7)

(0’2)1+ZE

d&i drg
(3.53)
d§1 d‘L']_.

Since |&| ~ | — &] and 2&;] < |&| hold, we obtain

(é)l—Zp—Ze—Z(x(l—Se) <$l)2p—a(1+25) (é _ %-1)2,0—(1+2E)

(354) ~ (5)746720{(1756) (El>2p73(1+2€) < <§-1)2p73720(72(2+a)e+10¥6.

Hence it follows from Remark 3.2 that

dér1dn
(3'55) I= C//Bz(g ) (&1) 1+(15+@)e (O-2>1+25 =C.

Estimate in Bz. It follows from the assumption of the lemma that,) >
(£)(£1)*(6 — &1) in Bs. By symmetry betweetioy + |£1/** andio + |§ — £&[*, we
can prove this case by following the analogous argumer,in

Summing up, we finish the proof. O

3.4. Preliminaries IlI.

Lemma 3.5. Letp = (a+ 20 —1)/2 — (11 + 5 + 10x)e/2 with a+ 20 < 3 and
a > (3—a)/4 = 1/2. For any fixed(&, t), we introduce the following integral region

D(. 1) = {(51, 1) € R%, |&1] <1}
Then for anye > 0 there exists C> 0, depending only or, such that

_ Iél // (E0)*(E — &% d&rdn
3.56 I = C
(3.59) o+ ISIZ"‘)l * J by (Tor +162) 1% (iop + & — &)%) 1+ =
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Proof. By direct calculations, we have

(|& %) A=)/ / / (1€ — &12)P/* d& dry
71 J|E

(I0+I§I2"‘ 15 <t (Ton + (612 ) 1% (o + & — £ 2) 1+

(3.57) =Cis |§|za>1_(1_p)/a_se

y / / dér1dn
o Je<1 (o1 + |12 1% (i + |§ — & |20)Lop/ar2e

Note that 1— (1 — p)/a — 5¢ =2 — (3 —a)/2a — (11 + 2 + 20x)e /2 > O from the
assumption. Hence it follows that

I<C / / déydry
B 71 J]&1]<1 (Ul)l+26<62>1_P/0+25
d'L'l
3.58 50/ / | .
( ) &<l Jny (mln{|61|, |O'2|})2—)0/0t+4e él

= d‘[]_
-¢ /5151 /f1 W dé¢; < C,

where 2— p/a +4e =1+ (1—a)/2x + (11 + B + 18x)e/20 > 1 from the assumption
a<l.
Hence we establish our statement. O

REMARK 3.3. Whena=1, we do not need to assume that- 1/2 in Lem-
ma 3.5. Indeed, by following the proof of [17, Lemma 2.4], wan@rove (3.56) with-
out the assumptiomw > 1/2. On the other hand, for the construction of the bilinear
estimates (Proposition 3.1), Lemmas 3.1 and 3.3 are notedeethena = 1. Hence,
we need not impose the assumptien- 1/2 on the bilinear estimates when= 1

REMARK 3.4. Lemmas 3.1 to 3.4 are estimates over the domain of oiiens
of high and high frequenciedé¢| > 1 and|é — &]| > 1), and Lemma 3.5 over the
domain of low and high interaction$é{| < 1 or |§ —&;| < 1). The point of the proofs
of these lemmas is to utilize the dissipative property in liwe-high interactions and
the dispersive-dissipative one in the high-high inteati

The dissipative effect plays an important role in the probLemma 3.5. In fact,
the proof of Lemma 3.5 is independent of the dispersive pigpthat is

& // (1% (& — &1)% dé1dry
3.59 C
(3:59) (it+ |5|2"‘)1 % JUp.r (it + [E2) % (i (v — 1) +]E — &)= =

holds for the same exponents «.
If the dispersive effect is missing, the proofs of Lemmas t8.B.4 (high-high in-
teractions) break down fop > 0. In the proofs of Lemmas 3.1 to 3.4, we use the
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dispersive-dissipative effect rather than the dispersime. We shall take Lemma 3.1
for example. In Lemma 3.1, we have proved that

(£1)% // £12(8) % (& — £1)* dE dr
A1, Tl)

(ioy + &%) % (io +|g[2)1=>¢ (iop + |& — &)1 —

(3.60)

In the KdV-B case ¢ = v — &3, o = 1), the weight(i (r — £%) + £2) has dispersive and
dissipative characteristics. Hence, as we have seen in ribaf, pve can takeo < 1
with the relation(r — £3) > |£&,(£ — &)| and cancellation by&|?.

On the other hand, to show the well-posedness of the KdV &guat our method,
we need to show for example that

(51)2[) // &12(6) 720 (€ — £1)% d& dt
A(£1,71) (t =

(o — &3 S € B

Since we cannot use the dissipative effect in the KdV caseshald setp < 3/4
as was proved by Kenig, Ponce, and Vega [17]. The conditiorthfe convergence of
integral (3.61) is more restrictive than that of the KdV-Bsedfor the lack of the dis-
sipative term. Thus, the KdV-B equation can be solved in weapaces than that of
the KdV equation.

Similarly, we also consider the BO and gBO-B equations. le BO case, the
integral

(3.62) (61)* / / E2(€)"% (& — £)% dE dr
| (= &laD ™% [ agm (7 —EEDT5 (0 — 1 — (€ — E)IE — &>

is not convergent. On the other hand, in the gBO-B case with0 (o0 = t —£|£]), the
integral (3.60) is certainly convergent with the aid of thissipative pari£|>. The re-
striction ofs= —p > (1—2)/2, « > 3/4 is a necessary condition for the convergence
of the integral (3.60).

(3.61)

4. Proof of Proposition 3.1

Let s > —(a+ 2o — 1)/2. In this section, we shall prove

(4.1) 1< CTHU flzlglze il
where
(4.2)
_ EN(E, T)(8)° Q61 m)(61)™° T(& — &1, 7 — m)(E —&1)~°
'/R4 o+ P15 oy (6P Gop ¥ [E —gap b 0v déadm

It suffices to show (4.1) only in the case= —p = —(a+2a —1)/2+(11+5%+100)e/2.
By Fubini's theorem, we can assume thiatg, h > 0.
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We divide R* into five regionsD;, Dy, D3, D4, and Ds;

Dy ={(.61.7,7) e R*: |&a] = 1, € — &[> 1, (3.6) holds,
D ={(£.61.7,7) e R*: |&] > 1, |§ — &[> 1, (3.7) holds,
D3 ={(£,&1,7,11) e R*: &1l = 1, € — & > 1, (3.8) holds,
Dy={(t. &, 7,71) e RY &1 = 1, [ — &1 = 1, (3.9) holds,
Ds={(5.&.7.1) e R*: &1 <1 or | —&] <1).

REMARK 4.1. Whena =1, we have only to seD; = D3 = ¢. See Remark 3.1.
Furthermore we split these regions into two parts respagtiv
D;=D;aUD;e (j=123,4),
where
Dja={(t,&1,7,11) € Dj: |&]| <2|&1}, Dje={(,%1,7,11) € Dj: |E] = 2|&11}.

And we need not divideDs. According to these integral regions, we divide the
integral | :Z‘j‘zlle_A + Z?:l'D;,B +lp,, where

dE dr dél d‘[l

s = / ghe. D)™ G ) T —& 7 -n)E &)

5 (i +EZ) V22 (i + |Ea )27 (iop + [E — £|%) V2

and we ses=—p=—(a+2x —1)/2+(11+3+10x)e/2, § =€ andb = 1/2 +¢. Each
integral Is is estimated according to the following two cases:

(I) Case of D = D1 AUD2 AUD3 AUD4 a. Using Schwarz inequality and applying
four lemmas in Section 3.2, we have

- (£1)”
D= on | (ion + [£1]2%) /2%

5125 — £0% (6)~% )1/2
d¢d
“3) X(fmsl.u) o+ 1 5 o ¥ 18 — P2 "

ﬁ ’ 2 _ 1/2
X / (51, 7) / @| f§ —61,7— 71)|2d€ dr ] dé& dm,
R? rRe (o)

where D(&1, 71) = {(§, 7) € R?: (£, &, 7, 1) € D}. Moreover from Schwarz inequality,
Fubini’'s theorem and Lemma 2.3, we obtain

(4.4) ls < CTH| fllL2ry)l19llL2®e) 1Nl L2R?)-
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(I) Case of D = D1g UDypg UD3sg UDygUDs. Inthe same way, we can
show that

HIGRG
o Ss”fp[ao * (g VST
(E1)% (€ — £1)% >1/2
4.5 d&; d
49 X(/asf) 0w+ [E12) 7% (i0y + |E — By P2 ondm

A 1/2
X/RZ (SG/TZ) (/ 1661, ) ?| F(& — &1 7 — 1) déldn) dé dr,

where D(&, 7) = {(£1, 1) € R?: (£, &1, 7, 11) € D}. Moreover, by virtue of five lemmas
in Sections 3.3, 3.4 and Lemma 2.3, we obtain

(4.6) Is < CTH|| fllLzwre) 19llL2re) 1Nl L2R?)-
Therefore Proposition 3.1 follows from (4.4) and (4.6). ]

5. Proof of Theorem 1.1

5.1. Existence. Let up(x) € H5(R) with s > —(a+2« — 1)/2, a+ 2« < 3 and
a > (3—a)/4 > 1/2. We may assum& < 1. Let us choose & 8xe < s+(a+2u—1)/2
and takeb such that B — 1 = 2.

We define the map

1 t
(5.1) F(@) = (OW(HUo — 5 xr. OV (1) /O W(t — t)ax(Yr(t))? dt’
and suppose is in the ball
(5.2) By = {u e X570 ly|lyswmno < M},

where M = 2Cy||Ug||ns. In what follows, we shall show thdaE(w) is a contraction on
the ball By for [0, T].
By virtue of Propositions 2.1, 2.3, 3.1 and 2.2, we have

1F (U) [l xs-e@-vo < [[Y (t)W(t)Uo|| xs-e@-25
t
X Y ) /0 Wt — V) (yru(t))? dt

= CO”UO” Hs +Cs ” 8x(wT U)2 Xs—a(2b—1),b—1+5

2
= Colluollns + CsTH [[YrrUllsez-no

1
+
2

Xs—a(2b-1).b

(5.3)

< Collugllms + C1T* % |Ul1Zs ao1105
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wheres—a(2b—1) > —(a+2x —1)/2+6xe and 1—2b = —2¢. Therefore, foru € By
(5.4) | F(U)]| xs-a@-nb < % +C TH2M2,

Hence it follows that forT = (4MC;) " Y(#~29) F(u) € Bu.

Similarly, it follows that foru, v € By

| F(u) — F ()| xss@-no < 2MC1T#72||U — v a1

(5.5)
= §||U — V|| xs—a@-1)b,

from which F is a contraction or3y. By virtue of the contraction mapping principle,
F(u) has the fixed point in the balBy. Therefore there exists a unique solutioft)
in By for T < (4MCy)~V(#=29) satisfying

t
56  u®)=v() [W(t)uo - ) [ wee- t’)ax(vau(t’»zdt’} .

Henceu(t) solves the integral equation associated with the IVP (Inlthe time
interval [0, T].

5.2. Continuous dependence. In this section, we shall show the continuous de-
pendence upon the initial data. We choose: @aee < s+ (a+ 20 — 1)/2 and takeb
such that B — 1 = 2. Let u and v be the solutions obtained in Section 5.1 with data
Up and vy respectively.

As in Section 5.1, with the aid of Propositions 2.1, 2.3, 3atl 2.2, we obtain

lu = v]| xs-«@-n6 < Co|lUg — vg|[Hs + 2M ClT'UﬁZEHU — V| xs—a@-1),b

(5.7) 1
< Collug — vollns + > lu — vl xs-a@-1

for u,v € By and forT < (4MCy)~Y®=2) Hence
(5.8) U — vl xs-e@-16 < 2Col|Uo — vollHs-
Moreover, by virtue of Propositions 2.4, 3.1, 2.2 and (5.8, lvave
u(t) — v()llns < 1Y OW(t)(Uo — vo)llns
3 [ [ wie -t - aee ) ar

< C[W(t)(uo — vo)llns + C [|ox (¥E(U — v)(U + 1)) || go 2 2
(5.9) < Colluo — vollus + C1TA 72U — v|| xezued || U + ]| xs-2uep

< CollUo — vollhs + 2C1TH 2 M ||U — v]| xs-2ue

Hs

1
< Collug — vollns + EHU — VU xs-2ec0

< 2Cq||ug — vollns,
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which implies the continuous dependence on the initial .data

5.3. Uniqueness and global existence.The proof of these parts are the same

as in the previous paper. We refer to [25]. See also [2] foruemess.
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