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Abstract
We study the well-posedness issue of the generalized Benjamin-Ono-Burgers

(gBO-B) equations. We solve the initial-value problem (IVP) of the gBO-B
equations with data belowL2(R). Our proof is based on the method of L. Molinet
and F. Ribaud, which is analogous to that of J. Bourgain, and C.E. Kenig, G. Ponce,
and L. Vega. It is known that such a method cannot be applied tothe Benjamin-Ono
equation.

1. Introduction

In this paper, we are devoted to the well-posedness issue of the initial-value prob-
lem (IVP) for the generalized Benjamin-Ono-Burgers (gBO-B) equations

(1.1)

(�tu + u�xu� �xjDxj1+au + jDxj2�u = 0; (x; t) 2 R� R+;
u(x;0) = u0(x) 2 H s(R);

where a � 0, � > 0, and jDxjk is the Fourier multiplier operator with symbolj� jk.
Equation (1.1) is called the KdV-Burgers (KdV-B) equation and the ordinary BO-B
equation when (a; �) = (1;1) and (a; �) = (0;1) respectively.

In [23], L. Molinet and F. Ribaud showed that the KdV-B equation is globally
well-posed for s> �1 [23]. Their method of the proof was analogous to that of
J. Bourgain [4] and C.E. Kenig, G. Ponce, and L. Vega [17]. This result of the KdV-B
equation is surprising compared with the known results of the KdV equation and the
Burgers equation. Kenig, Ponce, and Vega [17] proved that the KdV equation�tu +
u�xu + �3

xu = 0 is locally well-posed inH s(R) with s> �3=4. See also [6, 7]. On the
other hand, D.B. Dix [9] and D. Bekiranov [1] made it clear that the Burgers equation�tu + u�xu � �2

xu = 0 is locally well-posed fors � �1=2. The result is optimal since
the uniqueness of the solutions fails whens< �1=2 [9].

In a previous paper [25], we were concerned with the special forms of (1.1):

(1.2) �tu + u�xu� �xjDxj1+au� �2
xu = 0:

2000 Mathematics Subject Classification. 35A07, 35M10, 35Q53, 76B15.
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In [25], we have proved that the gBO-B equations (1.2) are globally well-posed for
s > �(1 + a)=2 by applying the argument by L. Molinet and F. Ribaud [21, 22, 23].
Here we note that whena > 0, the values = �(1 + a)=2 is lower than the threshold
s = �1=2 for the well-posedness of the Burgers equation. This result is due to the
effect of the dispersive term of (1.2).

The purpose of this paper is to generalize the dissipative term �2
xu of (1.2). This

kind of generalization whena = 1 was treated by Molinet and Ribaud [21] (Case of
the dissipative KdV), and they showed that the dissipative KdV equation is globally
well-posed fors > �3=4, which is the same as that of the KdV [17]. The smoothing
property of the KdV equation is strong so that they did not make use of the dissipative
term to solve the dissipative KdV equation in paper [21]. In our study, we shall use
not only dispersive property but dissipative one to solve the gBO-B equation (1.1), and
define the following function space:

DEFINITION 1.1. For s;b 2 R, Xs;b denotes the completion of the Schwartz
spaceS(R2) with respect to the norm

(1.3) kFkXs;b =

�Z 1
�1

Z 1
�1


i
�� � � j� j1+a

�
+ j� j2��2bh�i2s

��bF(�; � )
��2 d� d��1=2 ;

where h � i = (1 + j � j2)1=2.

For T > 0, we define the localized spaceXs;b
T with the norm

(1.4) k f kXs;b
T

= inf
g2Xs;bfkgkXs;b : g(t) = f (t) on [0; T ]g:

Hereafter,b� or F denotes the Fourier transform with respect to space-time variables.
Note thati (� � � j� j1+a) + j� j2� is the symbol of the linear part of the gBO-B equation.

To solve the dissipative KdV equation, Molinet and Ribaud seta space-time func-
tion space equipped with the norm



h� � �3ibh�isbF(�; � )




L2(R2). This space is essen-
tially suitable for the KdV equation, and was used by Kenig, Ponce, and Vega [17].

In the case of the gBO-B equations (1.1) with 0� a < 1, it is difficult to adopt
the approach based on the dispersive property since the dispersive effect is weaker
than that of the KdV equation. Indeed, L. Molinet, J.-C. Saut,and N. Tzvetkov [24]
showed that the following generalized Benjamin-Ono (gBO) equations

(1.5) �tu + u�xu� �xjDxj1+au = 0; 0� a < 1

cannot be solved by the Picard iteration scheme when initialdata is in H s(R), s 2 R.
Therefore, when 0� a < 1, we cannot solve the gBO-B equations (1.1) in function
spaces with the norm



h� � � j� j1+aibh�isbF(�; � )




L2(R2) by the iteration scheme. How-
ever, once we adopt the function spaces defined above (Definition 1.1), we can avoid
the difficulty with the aid of the dissipative term.
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DEFINITION 1.2. Let U (t) = exp(t�xjDxj1+a) be the unitary operator associated
with the linear gBO equation. We denote byW(t) the semigroup associated with the
linear gBO-B equation;

(1.6) Fx(W(t)�)(� ) = exp
��j� j2�t + i � j� j1+at

�
Fx(�)(� ); t � 0; � 2 S:

And we extendW(t) to a linear operator defined onR by setting

(1.7) Fx(W(t)�)(� ) = exp
��j� j2�jt j + i � j� j1+at

�
Fx(�)(� ); t 2 R; � 2 S:

HereFx denotes the Fourier transform with respect tox.

The following is the main result in this paper.

Theorem 1.1. Let s> �(a+2��1)=2 with a+2� � 3 and � > (3�a)=4 � 1=2.
Then for any u0 2 H s(R), there exist T= T(ku0kH s) > 0, b 2 (1=2;1), and a unique
solution u(t) of the IVP (1.1) satisfying

u(t) 2 C([0; T ]; H s(R)) \ C((0; T ]; H1(R));(1.8)

u 2 Xs��(2b�1);b;(1.9)

u�xu 2 Xs��(2b�1);b�1; �tu; �2
xu 2 Xs��(2b+1);b�1:(1.10)

Moreover, the flow map u0 7! u(t) is locally Lipschitz from Hs(R) to C([0; T ];
H s(R)) \ C((0; T ]; H1(R)) \ Xs��(2b�1);b. If the solution u is real-valued, u 2
C((0;+1); H1(R)).

REMARK 1.1. Note that for anyu0 2 H s(R), the solutionu(t) belongs not to
Xs;b but to Xs��(2b�1);b. This loss of the regularity follows from Proposition 2.1.
See Remark 2.1.

To prove the well-posedness, we solve by a contraction mapping principle the cor-
responding integral equation associated with the IVP (1.1):

(1.11) u(t) = W(t)u0(x)� 1

2

Z t

0
W(t � t 0)�x

�
u2(t 0)� dt0; t � 0:

However, we actually prove that the following mapF is a contraction on a suitable
function space:

(1.12) F(!) =  (t)

�
W(t)u0(x)� �R+(t)

2

Z t

0
W(t � t 0)�x( T!(t 0))2 dt0�

for t 2 R, where is a cut-off function satisfying

 2 C1
0 (R); supp � [�2;2];  � 1 on [�1;1];
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and Æ(t) =  (t=Æ), and�R+(t) is the characteristic function of the interval [0;1).
Finally, we shall collect some corollaries derived from Theorem 1.1.

Corollary 1.1 ([23], [25]). When� = 1, the gBO-B equations with0� a � 1

(1.13) �tu + u�xu� �xjDxj1+au� �2
xu = 0

are locally well-posed for s> �(a + 1)=2.

Corollary 1.2. When a= 0, the gBO-B equations with3=4< � � 3=2
(1.14) �tu + u�xu� �xjDxju + jDxj2�u = 0

are locally well-posed for s> (1� 2�)=2.

REMARK 1.2. Corollary 1.2 implies that the gBO-B equations (1.14) are locally
well-posed in Sobolev spaces of negative order. Hence, in the case of the gBO-B (1.14),
we can treat the IVP with more singular data than that of the BOequation so far, see
Remark 1.4 below. Moreover, the author expects from the arguments in [1, 9] that the
generalized Burgers equations

(1.15) �tu + u�xu + jDxj2�u = 0

are locally well-posed fors � (3� 4�)=2 with � > 3=4; note that (3� 4�)=2 > (1�
2�)=2 when� < 1. Based on this conjecture, we may see the effect of the dispersive
term of the gBO-B (1.14).

REMARK 1.3. From Theorem 1.1, the gBO-B equations can be solved in weaker
spaces than that of the gBO equations and of Burgers type equations. The reason of
this is due to dispersive-dissipative effects. Bilinear estimates (Proposition 3.1) are cru-
cial ones for the well-posedness, and Lemmas 3.1 to 3.5 are needed in the proof of
Proposition 3.1.

In the proofs of these lemmas, we are to use the dispersive-dissipative effects.
Roughly speaking, we are to use the dissipative effect in thedomain of interaction of
low and high frequencies, and dispersive one in the domain ofhigh-high interactions.

However, in the cases of the gBO (resp. Burgers type) equation, we cannot use the
dissipative (resp. dispersive) effect. This leads to result that the gBO-B can be solved
in weaker spaces. See Remark 3.4 for more details.

REMARK 1.4. According to C.E. Kenig and K.D. Koenig [16], the gBO equa-
tion (1.3) is locally well-posed fors > 9=8 � 3a=8. In particular, T. Tao [26] has
shown that the ordinary BO equation (whena = 0) is globally well-posed inH1(R).
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As is mentioned above, the gBO with 0� a < 1 is not solved by iteration scheme as
in [4, 17].1

However, J. Colliander, C. Kenig, and G. Staffilani [8] showed by the iteration
scheme that the gBO equations with 0< a < 1 is locally well-posed in some weighted
Sobolev space which is smaller thanH1=2(R). Moreover, S. Herr [12] has shown the
local well-posedness of the equation (1.3) with 0< a < 1 in a Sobolev-like space
whose high frequency corresponds to that ofH s(R) with s > (1� a)=2. Herr’s study
seems to be motivated by the work of K. Kato [15] on the existence of the solutions
of the BO equation.2

REMARK 1.5. It is known that the flow map of the ordinary BO is not uniformly
continuous when the initial data is inH s(R) with s > 0 [19] and s < �1=2 [3]. Re-
cently, N. Kita and J. Segata [18] have proved that the BO equation is locally well-
posed in some weighted Sobolev spaces which are smaller thanH1(R) but contain the
soliton solution. In this case, the flow map is locally Lipschitz.

Corollary 1.3. When a= 1, the generalized KdV-Burgers equations with1=2 <� � 1

(1.16) �tu + u�xu� �3
xu + jDxj2�u = 0

are locally well-posed for s> ��.

According to Molinet and Ribaud [21], the stronger statementfollows whena = 1
and 0< � � 3=4:

Theorem 1.2 ([21]). Let s > �3=4. Then the same results as inTheorem 1.1
are valid for the IVP(1.1) with a = 1 and � > 0.

REMARK 1.6. It follows from Corollary 1.3 that we improve the formerresults
by Molinet and Ribaud [21] of the IVP (1.1) witha = 1 and � > 3=4. Under the
assumption of Theorem 1.1, we can not takea > 1. In our proof, whena = 1, the
assumption� > 1=2 truns out to be unnecessary. See Remark 3.3.

NOTATIONS. If there exists a harmless positive constantc > 0 such thatA � cB
(resp. A � cB) for any positive A and B, we denoteA . B (resp. A & B) for
abbreviation. The notationA � B means thatA . B . A.

1Since the submission of this paper, remarkable studies on the Benjamin-Ono equation have ap-
peared. The reader is referred to [5, 14, 20]. The papers [14]and [20] deal with the global well-
posedness inL2(R) and in L2(T) respectively.

2See also [13], which is an improvement of [12]. Herr has improved the exponentss down to
s > �3a=4.
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The rest of this paper is organized as follows: Section 2 contains some linear es-
timates. In the proof of Theorem 1.1, bilinear estimates (Proposition 3.1) are key es-
timates. Section 3 includes the preparatory lemmas for the construction of the bilinear
estimates. Section 4 is devoted to the proof of the bilinear estimates. Theorem 1.1 will
be proved in Section 5.

I would like to thank Professor Keiichi Kato for several discussion. Thanks also
to Professor Takayoshi Ogawa for his stimulating comment onthe previous work.

2. Linear estimates

In this section, we shall collect a few linear estimates for the proof of Theorem 1.1.
The estimates corresponding to the case of 0� a � 1 and� = 1 are given in [25]. We
also treat a linear estimate (Lemma 2.3) to construct Proposition 3.1.

Proposition 2.1. Let s2 R, � > 0, and b2 [1=2;1]. There exists C> 0 such that

(2.1) k (t)W(t)�kXs;b � Ck�kH s+�(2b�1)

for any � 2 H s+�(2b�1)(R).

Proof. From the definition of the norm,

(2.2)

k (t)W(t)�kXs;b =





h�isFx(�)(� )




i � + j� j2��bFt

� (t)e�jt j j� j2� �(� )





L2�






L2�
� C





h�isFx(�)(� )



h� ibFt

� (t)e�jt j j� j2� �(� )





L2�






L2�
+ C





h�is+2�bFx(�)(� )



Ft

� (t)e�jt j j� j2� �(� )





L2�






L2� :
Put g� (� ) = Ft

� (t)e�jt jj� j2� �(� ). If j� j � 1, it follows from h� ib � h� � � 0ib + j� 0jb
and Young’s inequality that

(2.3)

kg�kHb
t

=



h� ib �b �� Ft

�
e�jt j j� j2� ��




L2�� 

h� ibb 

L1� 

e�jt j j� j2�

L2
t

+


b 

L1� 

e�jt j j� j2�

Ḣb

t� C
�j� j�� + j� j�(2b�1)

� � Cj� j�(2b�1);
where we note that for� > 0

(2.4) k f (�t)kḢ s
t
� �s�1=2k f (t)kḢ s

t
:
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If j� j � 1, it follows that

(2.5)

kg�kHb
t

=


 e�jt j j� j2�



Hb
t

� C
X
n�0

j� j2�n

n!
kjt jn (t)kH1

t

� C

 
1 +

X
n�1

1

(n� 1)!

!
� C:

Hence it follows that

(2.6)


h� ibg� (� )




L2� � Ch�i�(2b�1) for

1

2
� b � 1:

Combining (2.2) with (2.6), we obtain the desired estimate.

REMARK 2.1. It follows from this proposition that for any initial data u0 2 H s(R)
the solutionu(t) is in Xs��(2b�1);b, which means the loss of the space regularity (in
the L2-based sense). In this proposition, we have estimated (t)W(t)� in the L2-based
space. Whereas we can treat it in the generalL p-based sense. Indeed, it is easy to
derive the following estimate from the proof of the proposition: k (t)W(t)�kXs;b

p
�

Ck�kH s+2�(b�1+1=p)
p

, wherekFkXs;b
p

=


hi (��� j� j1+a)+ j� j2�ibh�isbF(�; � )




L p�;� and k f kH s

p
=

h�isbf (� )




L p� .

Noting thatb = 1=2 +� in the practical use, we see that the regularity loss can be
recovered, providedp > 2. This may be a reasonable fact since theL2 framework is
suitable to treat the dispersive term.

Linear estimates appearing below can also be translated into that in a L p-based
sense. However, the author think that such a translation cannot be applied to bilinear
estimates below as long as our method of proof is used. The main reason for using
L2 space here is to use the duality argument in the proof of the bilinear estimates.

In [11], A. Grünrock deals with the modified KdV equation in theL p framework,
but it is open problem whether or not his argument is applicable to the gBO-B equa-
tion (1.1).

Proposition 2.2. Let s2 R and let b> 1=2. For Æ 2 (0;1], we have

(2.7) k ÆFkXs;b � CÆ(1�2b)=2kFkXs;b:
Proof. The proof can be done by modifying that of Lemma 2.5 in [10] slightly.

Lemmas 2.1 and 2.2 are needed for the proof of Proposition 2.3.
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Lemma 2.1. For w 2 S(R2), we define k� on R as follows:

(2.8) k� (t) =  (t)
Z

R

ei t � � e�jt j j� j2�
i � + j� j2� bw(�; � ) d� :

Let � > 0 and 1=2� b < 1. Then, it holds for any fixed� 2 R that





i � + j� j2��bFt (k� )


2

L2� (R)

� C

"
h�i2�(2b�1)

�Z
R

jbw(�; � )jhi � + j� j2�i d��2

+

�Z
R

jbw(�; � )j2hi � + j� j2�i2(1�b)
d��

#
:(2.9)

Proof. We rewritek� in the following way:

k� (t) =  (t)
Z
j� j�1

ei t � � 1

i � + j� j2�bw(�; � ) d� + (t)
Z
j� j�1

1� e�jt j j� j2�
i � + j� j2� bw(�; � ) d�

+ (t)
Z
j� j�1

ei t �
i � + j� j2�bw(�; � ) d� �  (t)

Z
j� j�1

e�jt j j� j2�
i � + j� j2�bw(�; � ) d�

= I + II + III � IV :
(2.10)

We have to estimate the contribution of these four terms to the left-hand side of (2.10).
Contribution of IV. Noting thathi � + j� j2�i � C

��i � + j� j2��� holds for j� j � 1,





i � + j� j2��bFt (IV)



2

L2�
� C

Z
R



i � + j� j2��2b

���Ft
� (t)e�jt j j� j2� �(� )

���2 d� �Zj� j�1

jbw(�; � )jhi � + j� j2�i d��2(2.11)

Set g� (� ) = Ft
� (t)e�jt j j� j2� �(� ). By using (2.6), we have

Z
R



i � + j� j2��2bjg� (� )j2 d� � C

Z
R
h� i2bjg� (� )j2 d� + Cj� j4�b

Z
R
jg� (� )j2 d�

� Ch�i2�(2b�1):(2.12)

Therefore we obtain

(2.13)


hi � + j� j2�ibFt (IV)



2

L2� � Ch�i2�(2b�1)

�Z
R

jbw(�; � )jhi � + j� j2�i d��2 :
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Contribution of III. Noting thathi � + j� j2�ib � Ch� 0ib + C
��i (� � � 0) + j� j2���b and

using Young’s inequality,





i � + j� j2��bFt (III)



2

L2�
=
Z

R



i � + j� j2��2b

����
Z

R

b (� 0)bw(�; � � � 0)�j��� 0j�1

i (� � � 0) + j� j2� d� 0����
2

d�
� Z

R

 Z
R

��h� 0ibb (� 0)�� jbw(�; � � � 0)j��i (� � � 0) + j� j2����j��� 0j�1 d� 0
!2

d�

+
Z

R

 Z
R

��b (� 0)�� jbw(�; � � � 0)j��i (� � � 0) + j� j2���1�b
�j��� 0j�1 d� 0

!2

d�
� C





 bw(�; � )hi � + j� j2�i1�b






2

L2� ;

(2.14)

where


h� ibb 

L1 � C for 0� b � 1.

Contribution of II. It follows from Schwarz inequality that





i � + j� j2��bFt (II)



2

L2� � C




i � + j� j2��bFt

� (t)
�
1� e�jt j j� j2� ��(� )




2

L2�
� hj� j2�ij� j4�

Z
R

jbw(�; � )j2hi � + j� j2�i d� :(2.15)

(i) Case ofj� j � 1. It follows that





i � + j� j2��bFt
� (t)

�
1� e�jt j j� j2� ��(� )




2

L2�
� 



i � + j� j2��bFt ( )(� )




2

L2� +




i � + j� j2��bFt

� (t)e�jt j j� j2� �(� )



2

L2�
� 2

�k k2
Hb� + j� j4�bk k2

L2�
�

+ Ch�i2�(2b�1)

� Ch�i4�b;

(2.16)

where we use (2.12) for the second term. Therefore we have

(2.17)




i � + j� j2��bFt (II)




2

L2� � Ch�i2�(2b�1)
Z

R

jbw(�; � )j2hi � + j� j2�i d� :
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(ii) Case of j� j � 1. It follows that



i � + j� j2��bFt
� (t)

�
1� e�jt j j� j2� ��(� )





L2�

� C



h� ibFt

� (t)
�
1� e�jt j j� j2� ��(� )





L2� = C







X
n�1

tn (t)j� j2�n

n!







Hb�

� C
X
n�1

j� j2�n

n!



tn (t)




H1�
� C

X
n�0

j� j2�
n!

< Cj� j2�:

(2.18)

Hence 



i � + j� j2��bFt (II)



2

L2� � Cj� j4� hj� j2�ij� j4�
Z

R

jbw(�; � )j2hi � + j� j2�i d�
� C

Z
R

jbw(�; � )j2hi � + j� j2�i d� :(2.19)

From (2.17) and 2.19, we obtain





i � + j� j2��bFt (II)



2

L2� � Ch�i2�(2b�1)
Z

R

jbw(�; � )j2hi � + j� j2�i d�
� C

Z
R

jbw(�; � )j2hi � + j� j2�i2(1�b)
d� :(2.20)

Contribution of I. We can rewrite I as

(2.21) I = (t)
Z
j� j�1

X
n�1

(i t � )n

n!

bw(�; � )

i � + j� j2� d� :
It follows from Schwarz inequality that



i � + j� j2��bFt (I)





L2�� CkIkHb� + Cj� j2�bkIkL2�

� C
X
n�1

"



 tn (t)

n!






Hb� + j� j2�b





 tn (t)

n!






L2�
#

� Zj� j�1

ji � jn��i � + j� j2��� jbw(�; � )jd�
� C

�
1 + j� j2�b

� �Z
j� j�1

jbw(�; � )j2hi � + j� j2�i d��1=2�Z
j� j�1

j� j2hi � + j� j2�iji � + j� j2�j2 d��1=2 :

(2.22)
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If j� j � 1, (2.22) is bounded by

(2.23) C

�Z
R

jbw(�; � )j2hi � + j� j2�i d��1=2 :
If j� j � 1, (2.22) is bounded by

h�i2�b

h�i�
�Z

R

jbw(�; � )j2hi � + j� j2�i d��1=2

� C

�Z
R

jbw(�; � )j2hi � + j� j2�i2(1�b)
d��1=2 ;

(2.24)

where we note that

(2.25)
Z
j� j�1

j� j2hi � + j� j2�i��i � + j� j2���2 d� � 1h�i2� :
From (2.23) and (2.24), we get

(2.26)



i � + j� j2��bFt (I)




L2� � C

�Z
R

jbw(�; � )j2hi � + j� j2�i2(1�b)
d��1=2 :

Summing up, from (2.13), (2.14), (2.20) and (2.26), we obtain the desired esti-
mate (2.9).

Lemma 2.2. Let 0� � � 1, � 6= 1=2. For f 2 H� (R) with f (0) = 0,

(2.27)


�R+ f




H� � C�k f kH� ;

where�R+ is the characteristic function of[0;1).

Proposition 2.3. Let s2 R, � > 0, and let b> 1=2.
(i) There exists C> 0 such that, for any v 2 S(R2),



�R+(t) (t)

Z t

0
W(t � t 0)v(t 0) dt0





Xs;b
� C

2
4kvkXs;b�1 +

 Z
R
h�i2s+2�(2b�1)

�Z
R

jbv(�; � )jhi (� � � j� j1+a) + j� j2�i d��2

d�
!1=235 :(2.28)

(ii) For 0< Æ < 1=2, there exists CÆ > 0 such that, for any v 2 Xs;b�1+Æ,
(2.29)





�R+(t) (t)
Z t

0
W(t � t 0)v(t 0) dt0





Xs;b � CÆkvkXs;b�1+Æ :
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Proof. Assume thatv 2 S(R2). Recall thatU (t) = exp(t�xjDxj1+a). Settingw(t 0) =
U (�t 0)v(t 0), we get

�R+(t) (t)
Z t

0
W(t � t 0)v(t 0) dt0

= U (t)

"
�R+(t) (t)

Z
R2

ei x� ei t � � e�t j� j2�
i � + j� j2� bw(�; � ) d� d�

#
:(2.30)

Putting

(2.31) k� (t) =  (t)
Z

R

ei t � � e�jt j j� j2�
i � + j� j2� bw(�; � ) d� ;

we can rewrite

(2.32) �R+(t) (t)
Z t

0
W(t � t 0)v(t 0) dt0 = U (t)F�1� ��R+(t)k� � (x; t):

Sincew(t) = U (�t)v(t) 2 S(R2), it is clear that for any fixed� 2 R, k� is continuous
on R and k� (0) = 0. By virtue of Lemma 2.2,k�R+k�kHb

t
� Cbkk�kHb

t
holds for 0�

b � 1, b 6= 1=2.
Thus we find that



�R+(t) (t)

Z t

0
W(t � t 0)v(t 0) dt0





Xs;b
=


U (t)F�1� ��R+(t)k� (t)�

Xs;b

=


hi � + j� j2�ibh�isFt

��R+(t)k� (t)� (�; � )




L2�;�
� 


h�is 

�R+(t)k� (t)

Hb

t





L2� +




h�is+2�b


�R+(t)k� (t)

L2

t





L2�

� C

�


h�is 

k� (t)

Hb
t





L2� +




h�is+2�b


k� (t)

L2

t





L2�
�

� C





h�is 



i � + j� j2��bFt (k� )(� )





L2�






L2� :

(2.33)

With the aid of Lemma 2.1, the statement (i) follows if we notethat bw(�; � ) =bv(�; � + � j� j1+a). By using Schwarz inequality and the density argument, we directly
derive (ii) from (i).

Proposition 2.4. Let s2 R, � > 0, b � 1=2 and Æ > 0. For all f 2 Xs;b�1+Æ ,
(2.34) t 7! Z t

0
W(t � t 0) f (t 0) dt0 2 C

�
R+; H s+2�Æ(R)

�:
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Moreover, we have

(2.35)





�R+(t) (t)
Z t

0
W(t � t 0) f (t 0) dt0





L1(R+;H s+2�Æ) � Ck f kXs;b�1+Æ :
Proof. We can sets = 0 without loss of generality. It suffices to prove that

t 7! U (�t)
Z t

0
W(t � t 0) f (t 0) dt0

is continuous from [0;1) to H2�Æ(R) sinceU is strongly continuous unitary group in
L2(R).

Put g(x; t) = (U (�t) f (t))(x). The statement follows if we show the continuity of

(2.36) F : t 7! h�i2�Æ Z t

0
e�j� j2� jt�t 0jFx(g( � ; t 0))(� ) dt0

for hi � + j� j2�ib�1+Æbg 2 L2�;� (R2). We rewrite, fort � 0,

F(t) = h�i2�Æe�j� j2� t
Z

R
bg(�; � )

Z t

0
e(j� j2�+i �)t 0 dt0 d�

= h�i2�Æ Z
R
bg(�; � )

ei t � � e�j� j2� jt j
i � + j� j2� d� :

(2.37)

Hence

(2.38) F(t1)�F(t2) = h�i2�Æ Z
R

bg(�; � )

i � + j� j2�
h�

ei � t1 � ei � t2
�� �e�j� j2� jt1j � e�j� j2� jt2j�i d� :

When j� j � 1, applying Schwarz inequality, we obtain

jF(t1)� F(t2)j
� 4h�i2�Æ �Z

R

jbg(�; � )j2hi � + j� j2�i2(1�b)�2Æ d��1=2�Z
R

hi � + j� j2�i2(1�b)�2Æ
ji � + j� j2�j2 d��1=2

� Ch�i2�Æ �Z
R

jbg(�; � )j2hi � + j� j2�i2(1�b)�2Æ d��1=2 j� j�(1�2b�2Æ) �Z
R

d�h�i2b+2Æ
�1=2 ;

(2.39)

where we put� = j� j2�� . Hence it follows that forj� j � 1

(2.40) jF(t1)� F(t2)j � C

�Z
R

jbg(�; � )j2hi � + j� j2�i2(1�b)�2Æ d��1=2 :
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When j� j � 1, we separate the two terms to estimate the right-hand side of (2.38).
We may assume thatjt1 � t2j < 1. It follows from mean value theorem and Schwarz
inequality that����

Z bg(�; � )

i � + j� j2� (ei � t1 � ei � t2) d� ����
� jt1 � t2j Zj� j�1

j� j jbg(�; � )j��i � + j� j2��� d� + 2
Z
j� j�1

jbg(�; � )j��i � + j� j2��� d�
� C





i � + j� j2��b�1+Æbg(�; � )



L2�

�
"�Z

j� j�1
h� i2(1�b)�2Æ d��1=2

+

�Z
j� j�1

h� i�2b�2Æ d��1=2#

� C




i � + j� j2��b�1+Æbg(�; � )




L2� :

(2.41)

Similarly it follows that����
Z bg(�; � )

i � + j� j2� �e�j� j2� jt1j � e�j� j2� jt2j�d� ����
� jt1 � t2j j� j2�

Z
j� j�1

jbg(�; � )j��i � + j� j2��� d� + 2
Z
j� j�1

jbg(�; � )j��i � + j� j2��� d�
� C





i � + j� j2��b�1+Æbg(�; � )



L2� :

(2.42)

Summing up, we obtain

(2.43) jF(t1)� F(t2)j � C




i � + j� j2��b�1+Æbg(�; � )




L2� :
Furthermore, we find that

(2.44) kF(t1)� F(t2)kL2(R) � C




i � + j� j2��b�1+Æbg(�; � )





L2�;� :

It is clear that the integrant in (2.38) tends to 0 asjt1 � t2j ! 0, and is bounded
uniformly in jt1� t2j by the integrant of the right-hand side of (2.43). Hence,jF(t1)�
F(t2)j ! 0 as jt1 � t2j ! 0 for almost every� 2 R. Moreover, from (2.45) and the
Lebesgue dominated convergence theorem, we infer that

(2.45) kF(t1)� F(t2)kL2(R) ! 0 as jt1 � t2j ! 0:
To show (2.35), we refer to the previous paper [25].

Finally, we introduce the following estimate to finish this section. Lemma 2.3 will
be used in the proof of Proposition 3.1.
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Lemma 2.3. Let v be with compact support in time in[�T; T ]. For any � > 0,
there exists� = �(�) > 0 such that

(2.46)





F�1
x;t
� bv(�; � )h� � � j� j1+ai�

�




L2

x;t (R2)

� CT�kvkL2
x;t (R2):

Proof. A similar estimate was verified by J. Ginibre, Y. Tsutsumi, and G. Velo
[10, Lemma 3.1]. It suffices to modify the proof slightly. Therefore we omit the proof
of Lemma 2.3.

3. Bilinear estimates

Proposition 3.1. For s> �(a+2��1)=2 with a+2� � 3 and � > (3�a)=4� 1=2,
there exist b> 1=2, C, �, and Æ > 0 such that for any u; v 2 Xs;b with compact
support in [�T; T ], we have

(3.1) k�x(uv)kXs;b�1+Æ � CT�kukXs;bkvkXs;b:
By duality argument, it is equivalent to show that for anyw 2 X�s;1�b�Æ withkwkX�s;1�b�Æ � 1,

(3.2) jIj = jh�x(uv); wij � CT�kukXs;bkvkXs;bkwkX�s;1�b�Æ :
Putting

bf (�; � ) =


i
�� � � j� j1+a

�
+ j� j2��bh�isbu(�; � );

bg(�; � ) =


i
�� � � j� j1+a

�
+ j� j2��bh�isbv(�; � );

and

bh(�; � ) =


i
�� � � j� j1+a

�
+ j� j2��1�b�Æh�i�sbw(�; � );

we see that (3.2) is equivalent to

(3.3) jIj � CT�k f kL2
x L2

t
kgkL2

x L2
t
khkL2

x L2
t
:

And we can rewrite

I =
Z

R4

�bh(�; � )h�ishi (� � � j� j1+a) + j� j2�i1�b�Æ bg(�1; �1)h�1i�s

hi (�1 � �1j�1j1+a) + j�1j2�ib
� bf (� � �1; � � �1)h� � �1i�s

hi (� � �1 � (� � �1)j� � �1j1+a) + j� � �1j2�ib d� d� d�1 d�1

=
Z

R4

�bh(�; � )h�ishi� + j� j2�i1�b�Æ bg(�1; �1)h�1i�s

hi�1 + j�1j2�ib
bf (� � �1; � � �1)h� � �1i�s

hi�2 + j� � �1j2�ib d� d� d�1 d�1;

(3.4)
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where

(3.5) � = � � � j� j1+a; �1 = �1 � �1j�1j1+a; �2 = � � �1 � (� � �1)j� � �1j1+a:
3.1. Algebraic smoothing relation. The following algebraic relation will be ef-

fectively used for the proof of Proposition 3.1:

Proposition 3.2 ([25]). Let j�1j � 1 and j� � �1j � 1, and let 0 � a < 1. Then
the following relation holds among� , �1 and �2 defined above:
(i) If �1(� � �1) > 0 and j�1j � j� � �1j,
(3.6) maxfj� j; j�1j; j�2jg � 1 + a

3
j�1j1+aj� � �1j:

(ii) If �1(� � �1) < 0 and j�1j � j� � �1j,
(3.7) maxfj� j; j�1j; j�2jg � 1 + a

3
j� j j�1jaj� � �1j:

(iii) If �1(� � �1) > 0 and j�1j � j� � �1j,
(3.8) maxfj� j; j�1j; j�2jg � 1 + a

3
j�1j j� � �1j1+a:

(iv) If �1(� � �1) < 0 and j�1j � j� � �1j,
(3.9) maxfj� j; j�1j; j�2jg � 1 + a

3
j� j j�1j j� � �1ja:

Proof. See [25, Proposition 3.2].

REMARK 3.1. Whena = 1, it follows from �1 + �2 � � = 3��1(� � �1) that
maxfj� j; j�1j; j�2jg � j��1(� � �1)j. See [4], [17].

REMARK 3.2. Let� = (a+2��1)=2�(11+5a+10�)�=2. The following exponents
often appear throughout the proofs of Lemmas 3.1 to 3.4.

m1 = 2� � a� 2� + 5(2 +a)� � 4�� = �1� (1 + 14�)�;(3.10)

m2 = 2� � a� 2� � 2(2 +a)� + 10�� = �1� (15 + 7a)�;(3.11)

n1 = 4� � (1 + a)(1� 5�)� 2�(1 + 2�)
= a + 2� � 3� (17 + 5a + 24�)�:(3.12)
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3.2. Preliminaries I. For any fixed (�1; �1) with j�1j � 1, we introduce the fol-
lowing integral region:A(�1; �1) = f(�; � ) 2 R2 : j� j � 2j�1j; j� � �1j � 1g.

Lemma 3.1. Let � = (a + 2�� 1)=2� (11 + 5a + 10�)�=2 and let 1< a + 2� � 3.
If maxfj� j; j�1j; j�2jg & j�1j1+aj� � �1j with j�1j � 1 holds, then for any� > 0 there
exists C> 0, depending only on�, such that

(3.13) I =
h�1i2�hi�1 + j�1j2�i1+2�

ZZ
A(�1;�1)

j� j2h�i�2�h� � �1i2� d� d�hi� + j� j2�i1�5�hi�2 + j� � �1j2�i1+2� � C:
By symmetry between�1 and � � �1, we can easily derive the following corollary:

Corollary 3.1. Let � = (a+2��1)=2� (11+5a+10�)�=2 and let 1< a+2� � 3.
If maxfj� j; j�1j; j�2jg & j�1j j� � �1j1+a with j�1j � 1, then (3.13) holds.

Proof of Lemma 3.1. It follows thatj���1j � 3j�1j in A(�1; �1). We split A(�1; �1)
into three regions;

A1(�1; �1) = f(�; � ) 2 A(�1; �1) : j� j = maxfj� j; j�1j; j�2jgg;
A2(�1; �1) = f(�; � ) 2 A(�1; �1) : j�1j = maxfj� j; j�1j; j�2jgg;
A3(�1; �1) = f(�; � ) 2 A(�1; �1) : j�2j = maxfj� j; j�1j; j�2jgg:

Estimate in A1. It follows from the assumption of the lemma thath� i &h�1i1+ah� � �1i in A1. With the aid ofh� i & h�1i1+ah� � �1i, we have

(3.14)

I .

ZZ
A1(�1;�1)

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)
hj�1j2�i1+2�h�2i1+2� d� d�

.

ZZ
A1(�1;�1)

h�i2�2�h�1i2��(1+a)(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
h�2i1+2� d� d� :

Since� � 1 anda + 2� > 1, it follows from j� j � 2j�1j and j� � �1j � 3j�1j that

h�i2�2�h�1i2��(1+a)(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
. h�1i1�a�2�+5(1+a)��4��h� � �1i2��(1�5�) . h� � �1i2��a�2�+5(2+a)��4�� :(3.15)

Hence it follows from Remark 3.2 that

(3.16) I� C
ZZ

A1(�1;�1)

d� d�h� � �1i1+(1+14�)�h�2i1+2� � C:
Estimate in A2. It follows from the assumption of the lemma thath�1i &h�1i1+ah� � �1i in A2.
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(i) Case ofj���1j � j� j. In this case, it follows thatj���1j � j�1j. We first note
that h� i1�5�h�1i1+2� = h� i1�5�h�1i1�5�h�1i7� � h� i1+2�h�1i1�5� holds sincej�1j � j� j.
With this inequality andh�1i & h�1i1+ah� � �1i, we have

(3.17)

I .

ZZ
A2(�1;�1)

h�i2�2�h�1i2�h� � �1i2�h� i1+2�h�1i1�5�hi�2 + j� � �1j2�i1+2� d� d�
.

ZZ
A2(�1;�1)

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)
h� i1+2�hj� � �1j2�i1+2� d� d�

.

ZZ
A2(�1;�1)

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
h� i1+2� d� d� :

Since� � 1, it follows from j� j � 2j�1j and j� � �1j � j�1j that

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
. h�1i2�(1+a)(1�5�)h� � �1i2��(1�5�)�2�(1+2�) � h� � �1i2��a�2�+5(2+a)��4�� :(3.18)

Hence it follows from Remark 3.2 that

(3.19) I� C
ZZ

A2(�1;�1)

d� d�h� � �1i1+(1+14�)�h� i1+2� � C:
(ii) Case of j� � �1j � j� j. In this case, it follows thatj� j � j�1j holds. With the

aid of h�1i & h�1i1+ah� � �1i, we have

(3.20)

I .

ZZ
A2(�1;�1)

h�i2�2�h�1i2��(1+a)(1+2�)h� � �1i2��(1+2�)
hj� j2�i1�5�h�2i1+2� d� d�

.

ZZ
A2(�1;�1)

h�i2�2��2�(1�5�)h�1i2��(1+a)(1+2�)h� � �1i2��(1+2�)
h�2i1+2� d� d� :

Sincea + 2� > 1, it follows from j� j � j�1j and j� � �1j � j� j that

h�i2�2��2�(1�5�)h�1i2��(1+a)(1+2�)h� � �1i2��(1+2�)
� h�i1�a�2��2(1+a)�+10��h� � �1i2��(1+2�) . h� � �1i2��a�2��2(2+a)�+10�� :(3.21)

Hence it follows from Remark 3.2 that

(3.22) I� C
ZZ

A2(�1;�1)

d� d�h� � �1i1+(15+7a)�h�2i1+2� � C:
Estimate in A3. It follows from the assumption of the lemma thath�2i &h�1i1+ah� � �1i in A3. We first note thath� i1�5�h�2i1+2� = h� i1�5�h�2i1�5�h�2i7� �
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h� i1+2�h�2i1�5� holds sincej�2j � j� j. With this inequality andh�2i & h�1i1+ah� � �1i,
we have

I .

ZZ
A3(�1;�1)

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)
h� i1+2�hj�1j2�i1+2� d� d�

.

ZZ
A3(�1;�1)

h�i2�2�h�1i2��(1+a)(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
h� i1+2� d� d� :(3.23)

Since� � 1 anda + 2� > 1, it follows from j� j � 2j�1j and j� � �1j � 3j�1j that

h�i2�2�h�1i2��(1+a)(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
. h�1i1�a�2�+5(1+a)��4��h� � �1i2��(1�5�) . h� � �1i2��a�2�+5(2+a)��4�� :(3.24)

Hence it follows from Remark 3.2 that

(3.25) I� C
ZZ

A3(�1;�1)

d� d�h� � �1i1+(1+14�)�h� i1+2� � C:
Summing up, we have the desired result.

Lemma 3.2. Let � = (a + 2�� 1)=2� (11 + 5a + 10�)�=2 and let 1< a + 2� � 3.
If maxfj� j; j�1j; j�2jg & j� j j�1jaj� � �1j with j�1j � 1 holds, then for any� > 0 there
exists C> 0, depending only on�, such that

(3.26) I =
h�1i2�hi�1 + j�1j2�i1+2�

ZZ
A(�1;�1)

j� j2h�i�2�h� � �1i2� d� d�hi� + j� j2�i1�5�hi�2 + j� � �1j2�i1+2� � C:
By symmetry between�1 and � � �1, we can easily derive the following corollary:

Corollary 3.2. Let � = (a+2��1)=2� (11+5a+10�)�=2 and let 1< a+2� � 3.
If maxfj� j; j�1j; j�2jg & j� j j�1j j� � �1ja with j�1j � 1, then (3.26) holds.

Proof of Lemma 3.2. We find thatj� � �1j � 3j�1j holds in A(�1; �1). As in the
proof of Lemma 3.1, we splitA(�1; �1) into three regionsA1(�1; �1), A2(�1; �1) and
A3(�1; �1).

Estimate in A1. It follows from the assumption of the lemma thath� i &j� jh�1iah� � �1i in A1. With the aid ofh� i & j� jh�1iah� � �1i, we have

I .

ZZ
A1(�1;�1)

j� j1+5�h�i�2�h�1i2��a(1�5�)h� � �1i2��(1�5�)
hj�1j2�i1+2�h�2i1+2� d� d�

.

ZZ
A1(�1;�1)

h�i1�2�+5�h�1i2��a(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
h�2i1+2� d� d� :(3.27)
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When � � 1=2, it follows from j� j � 2j�1j and j� � �1j � 3j�1j that

h�i1�2�+5�h�1i2��a(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
. h�1i1�a�2�+5(1+a)��4��h� � �1i2��(1�5�) . h� � �1i2��a�2�+5(2+a)��4�� ;(3.28)

where we note thata + 2� > 1. When� � 1=2, it follows from j� � �1j � 3j�1j andj� j � 2j�1j that

h�i1�2�+5�h�1i2��a(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
. h�i1�2�+5�h�1i4��(1+a)(1�5�)�2�(1+2�) . h�i2��a�2�+5(2+a)��4�� ;(3.29)

where we note that Remark 3.2 anda + 2� � 3 in the last term.
Hence it follows from Remark 3.2 that

(3.30) I� C
ZZ

A(�1;�1)

d� d�hminfj� j; j� � �1jgi1+(1+14�)�h�2i1+2� � C:
Estimate in A2. It follows from the assumption of the lemma thath�1i &j� jh�1iah� � �1i in A2.
(i) Case of j� � �1j � j� j. In this case, it follows thatj�1j � j� � �1j. We first

note thath� i1�5�h�1i1+2� � h� i1+2�h�1i1�5� holds sincej�1j � j� j. Hence we get

(3.31) I.
ZZ

A2(�1;�1)

j� j2h�i�2�h�1i2�h� � �1i2�h� i1+2�h�1i1�5�hi�2 + j� � �1j2�i1+2� d� d� :
With the aid of h�1i & j� jh�1iah� � �1i, (3.31) is bounded by

ZZ
A2(�1;�1)

j� j1+5�h�i�2�h�1i2��a(1�5�)h� � �1i2��(1�5�)
h� i1+2�hj� � �1j2�i1+2� d� d�

.

ZZ
A2(�1;�1)

h�i1�2�+5�h�1i2��a(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
h� i1+2� d� d� :(3.32)

It follows from j�1j � j� � �1j and j� j � 2j�1j that

h�i1�2�+5�h�1i2��a(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
� h�i1�2�+5�h�1i4��(1+a)(1�5�)�2�(1+2�) . h�i2��a�2�+5(2+a)��4�� ;(3.33)

where we note that Remark 3.2 anda + 2� � 3 in the last term.
Therefore it follows from Remark 3.2 that

(3.34) I� C
ZZ

A2(�1;�1)

d� d�h�i1+(1+14�)�h� i1+2� � C:
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(ii) Case of j� � �1j � j� j. In this case, it follows thatj� j � j�1j. By virtue ofh�1i & j� jh�1iah� � �1i, we have

I .

ZZ
A2(�1;�1)

j� j1�2�h�i�2�h�1i2��a(1+2�)h� � �1i2��(1+2�)
hj� j2�i1�5�h�2i1+2� d� d�

.

ZZ
A2(�1;�1)

h�i1�2��2��2�(1�5�)h�1i2��a(1+2�)h� � �1i2��(1+2�)
h�2i1+2� d� d� :(3.35)

Sincea + 2� > 1, it follows from j� j � j�1j and j� � �1j � j� j that

h�i1�2��2��2�(1�5�)h�1i2��a(1+2�)h� � �1i2��(1+2�)
� h�i1�a�2��2(1+a)�+10��h� � �1i2��(1+2�) . h� � �1i2��a�2��2(2+a)�+10�� :(3.36)

Hence it follows from Remark 3.2 that

(3.37) I� C
ZZ

A2(�1;�1)

d� d�h� � �1i1+(15+7a)�h�2i1+2� � C:
Estimate in A3. It follows from the assumption of the lemma thath�2i &j� jh�1iah� � �1i in A3.
(i) Case of j� � �1j � j� j. In this case, it follows thatj�1j � j� � �1j. Sincej�1j � j���1j, this case is proved as in the regionA2 (i) above by using the symmetry

between�1 and �2.
(ii) Case of j� � �1j � j� j. In this case, it follows thatj� j � j�1j. We first note

that h� i1�5�h�2i1+2� � h� i1+2�h�2i1�5� holds sincej�2j � j� j. Hence we get

(3.38) I.
ZZ

A3(�1;�1)

j� j2h�i�2�h�1i2�h� � �1i2�h� i1+2�hi�1 + j�1j2�i1+2�h�2i1�5� d� d� :
By virtue of h�2i & j� jh�1iah� � �1i, we have

I .

ZZ
A3(�1;�1)

j� j1+5�h�i�2�h�1i2��a(1�5�)h� � �1i2��(1�5�)
h� i1+2�hj�1j2�i1+2� d� d�

.

ZZ
A3(�1;�1)

h�i1�2�+5�h�1i2��a(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
h� i1+2� d� d� :(3.39)

Sincea + 2� > 1, it follows from j� j � j�1j and j� � �1j � j� j that

h�i1�2�+5�h�1i2��a(1�5�)�2�(1+2�)h� � �1i2��(1�5�)
� h�i1�a�2�+5(1+a)��4��h� � �1i2��(1�5�) . h� � �1i2��a�2�+5(2+a)��4�� :(3.40)

Hence it follows from Remark 3.2 that

(3.41) I� C
ZZ

A3(�1;�1)

d� d�h� � �1i1+(1+14�)�h� i1+2� � C:
Thus we finish the proof.
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3.3. Preliminaries II. For any fixed (�; � ), we introduce the following integral
region: B(�; � ) = f(�1; �1) 2 R2 : 2j�1j � j� j; j�1j � 1; j� � �1j � 1g.

Lemma 3.3. Let � = (a + 2� � 1)=2� (11 + 5a + 10�)�=2 and let � > 1=2. If
maxfj� j; j�1j; j�2jg & j�1j1+aj� � �1j holds, then for any� > 0 there exists C> 0,
depending only on�, such that

(3.42) I =
j� j2h�i�2�

hi� + j� j2�i1�5�
ZZ

B(�;� )

h�1i2�h� � �1i2� d�1 d�1hi�1 + j�1j2�i1+2�hi�2 + j� � �1j2�i1+2� � C:
By symmetry between�1 and � � �1, we can easily derive the following corollary:

Corollary 3.3. Let � = (a + 2� � 1)=2� (11 + 5a + 10�)�=2 and let � > 1=2. If
maxfj� j; j�1j; j�2jg & j�1j j� � �1j1+a, then (3.42) holds.

Proof of Lemma 3.3. It follows thatj� j � j� � �1j in B(�; � ). We split B(�; � )
into three regions;

B1(�; � ) = f(�1; �1) 2 B(�; � ) : j� j = maxfj� j; j�1j; j�2jgg;
B2(�; � ) = f(�1; �1) 2 B(�; � ) : j�1j = maxfj� j; j�1j; j�2jgg;
B3(�; � ) = f(�1; �1) 2 B(�; � ) : j�2j = maxfj� j; j�1j; j�2jgg:

Estimate in B1. It follows from the assumption of the lemma thath� i &h�1i1+ah� � �1i in B1. With the aid ofh� i & h�1i1+ah� � �1i, we have

I .

ZZ
B1(�;� )

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)
h�1i1+2�hj� � �1j2�i1+2� d�1 d�1

.

ZZ
B1(�;� )

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
h�1i1+2� d�1 d�1:

(3.43)

Since 2� > 1, it follows from j� j � j� � �1j and 2j�1j � j� j that

h�i2�2�h�1i2��(1+a)(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
� h�i1�2�+5��4��h�1i2��(1+a)(1�5�) . h�1i2��a�2�+5(2+a)��4�� :(3.44)

Hence it follows from Remark 3.2 that

(3.45) I� C
ZZ

B1(�;� )

d�1 d�1h�1i1+(1+14�)�h�1i1+2� � C:
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Estimate in B2. It follows from the assumption of the lemma thath�1i &h�1i1+ah� � �1i in B2. With the aid ofh�1i & h�1i1+ah� � �1i, we have

I .

ZZ
B2(�;� )

h�i2�2�h�1i2��(1+a)(1+2�)h� � �1i2��(1+2�)
hj� j2�i1�5�h�2i1+2� d�1 d�1

.

ZZ
B2(�;� )

h�i2�2��2�(1�5�)h�1i2��(1+a)(1+2�)h� � �1i2��(1+2�)
h�2i1+2� d�1 d�1:

(3.46)

Since 2� > 1, it follows from j� j � j� � �1j and 2j�1j � j� j that

h�i2�2��2�(1�5�)h�1i2��(1+a)(1+2�)h� � �1i2��(1+2�)
� h�i1�2�+10���2�h�1i2��(1+a)(1+2�) . h�1i2��a�2��2(2+a)�+10�� :(3.47)

Hence it follows from Remark 3.2 that

(3.48) I� C
ZZ

B2(�;� )

d�1 d�1h�1i1+(15+7a)�h�2i1+2� � C:
Estimate in B3. It follows from the assumption of the lemma thath�2i &h�1i1+ah� � �1i in B3. By symmetry betweeni�1 + j�1j2� and i�2 + j� � �1j2�, we can

prove this case by following the analogous argument inB2.
Summing up, our statement is established.

Lemma 3.4. Let � = (a + 2� � 1)=2 � (11 + 5a + 10�)�=2 and let � > 0. If
maxfj� j; j�1j; j�2jg & j� j j�1jaj� � �1j holds, then for any� > 0 there exists C> 0,
depending only on�, such that

(3.49) I =
j� j2h�i�2�

hi� + j� j2�i1�5�
ZZ

B(�;� )

h�1i2�h� � �1i2� d�1 d�1hi�1 + j�1j2�i1+2�hi�2 + j� � �1j2�i1+2� � C:
By symmetry between�1 and � � �1, we can easily derive the following corollary:

Corollary 3.4. Let � = (a + 2� � 1)=2� (11 + 5a + 10�)�=2 and let � > 0. If
maxfj� j; j�1j; j�2jg & j� j j�1j j� � �1ja, then (3.49) holds.

Proof of Lemma 3.4. It follows thatj� j � j� � �1j in B(�; � ). As in the proof of
Lemma 3.3, we splitB(�; � ) into three regionsB1(�; � ), B2(�; � ) and B3(�; � ).

Estimate in B1. It follows from the assumption of the lemma thath� i &h�ih�1iah� � �1i in B1. With the aid ofh� i & h�ih�1iah� � �1i, we have

I .

ZZ
B1(�;� )

h�i1+5��2�h�1i2��a(1�5�)h� � �1i2��(1�5�)
h�1i1+2�hj� � �1j2�i1+2� d�1 d�1

.

ZZ
B1(�;� )

h�i1+5��2�h�1i2��a(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
h�1i1+2� d�1 d�1:

(3.50)
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Since j� j � j� � �1j and 2j�1j � j� j hold, we have

h�i1+5��2�h�1i2��a(1�5�)h� � �1i2��(1�5�)�2�(1+2�)
� h�i10��2�(1+2�)h�1i2��a(1�5�) . h�1i2��a�2�+5(2+a)��4�� :(3.51)

Hence it follows from Remark 3.2 that

(3.52) I� C
ZZ

B1(�;� )

d�1 d�1h�1i1+(1+14�)�h�1i1+2� � C:
Estimate in B2. It follows from the assumption of the lemma thath�1i &h�ih�1iah� � �1i in B2. By virtue of h�1i & h�ih�1iah� � �1i, we have

I .

ZZ
B2(�;� )

h�i1�2��2�h�1i2��a(1+2�)h� � �1i2��(1+2�)
hj� j2�i1�5�h�2i1+2� d�1 d�1

.

ZZ
B2(�;� )

h�i1�2��2��2�(1�5�)h�1i2��a(1+2�)h� � �1i2��(1+2�)
h�2i1+2� d�1 d�1:

(3.53)

Since j� j � j� � �1j and 2j�1j � j� j hold, we obtain

h�i1�2��2��2�(1�5�)h�1i2��a(1+2�)h� � �1i2��(1+2�)
� h�i�4��2�(1�5�)h�1i2��a(1+2�) . h�1i2��a�2��2(2+a)�+10�� :(3.54)

Hence it follows from Remark 3.2 that

(3.55) I� C
ZZ

B2(�;� )

d�1 d�1h�1i1+(15+7a)�h�2i1+2� � C:
Estimate in B3. It follows from the assumption of the lemma thath�2i &h�ih�1iah� � �1i in B3. By symmetry betweeni�1 + j�1j2� and i�2 + j� � �1j2�, we

can prove this case by following the analogous argument inB2.
Summing up, we finish the proof.

3.4. Preliminaries III.

Lemma 3.5. Let � = (a + 2� � 1)=2� (11 + 5a + 10�)�=2 with a + 2� � 3 and� > (3� a)=4 � 1=2. For any fixed(�; � ), we introduce the following integral region:

D(�; � ) = f(�1; �1) 2 R2; j�1j � 1g:
Then for any� > 0 there exists C> 0, depending only on�, such that

(3.56) I =
j� j2h�i�2�

hi� + j� j2�i1�5�
ZZ

D(�;� )

h�1i2�h� � �1i2� d�1 d�1hi�1 + j�1j2�i1+2�hi�2 + j� � �1j2�i1+2� � C:
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Proof. By direct calculations, we have

I � C
hj� j2�i(1��)=�
hi� + j� j2�i1�5�

Z
�1

Z
j�1j�1

hj� � �1j2�i�=� d�1 d�1hi�1 + j�1j2�i1+2�hi�2 + j� � �1j2�i1+2�
� C

1hi� + j� j2�i1�(1��)=��5�
� Z�1

Z
j�1j�1

d�1 d�1hi�1 + j�1j2�i1+2�hi�2 + j� � �1j2�i1��=�+2� :
(3.57)

Note that 1� (1� �)=� � 5� = 2� (3� a)=2� � (11 + 5a + 20�)�=2� > 0 from the
assumption. Hence it follows that

I � C
Z
�1

Z
j�1j�1

d�1 d�1h�1i1+2�h�2i1��=�+2�
� C

Z
j�1j�1

Z
�1

d�1hminfj�1j; j�2jgi2��=�+4� d�1

= C
Z
j�1j�1

Z
�1

d�1h�1i2��=�+4� d�1 � C;
(3.58)

where 2� �=� + 4� = 1 + (1� a)=2� + (11 + 5a + 18�)�=2� > 1 from the assumption
a � 1.

Hence we establish our statement.

REMARK 3.3. Whena = 1, we do not need to assume that� > 1=2 in Lem-
ma 3.5. Indeed, by following the proof of [17, Lemma 2.4], we can prove (3.56) with-
out the assumption� > 1=2. On the other hand, for the construction of the bilinear
estimates (Proposition 3.1), Lemmas 3.1 and 3.3 are not needed whena = 1. Hence,
we need not impose the assumption� > 1=2 on the bilinear estimates whena = 1.

REMARK 3.4. Lemmas 3.1 to 3.4 are estimates over the domain of interactions
of high and high frequencies (j�1j � 1 and j� � �1j � 1), and Lemma 3.5 over the
domain of low and high interactions (j�1j < 1 or j� ��1j < 1). The point of the proofs
of these lemmas is to utilize the dissipative property in thelow-high interactions and
the dispersive-dissipative one in the high-high interactions.

The dissipative effect plays an important role in the proof of Lemma 3.5. In fact,
the proof of Lemma 3.5 is independent of the dispersive property, that is

(3.59)
j� j2h�i�2�

hi � + j� j2�i1�5�
ZZ

D(�;� )

h�1i2�h� � �1i2� d�1 d�1hi �1 + j�1j2�i1+2�hi (� � �1) + j� � �1j2�i1+2� � C

holds for the same exponents�, �.
If the dispersive effect is missing, the proofs of Lemmas 3.1to 3.4 (high-high in-

teractions) break down for� > 0. In the proofs of Lemmas 3.1 to 3.4, we use the
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dispersive-dissipative effect rather than the dispersiveone. We shall take Lemma 3.1
for example. In Lemma 3.1, we have proved that

(3.60)
h�1i2�hi�1 + j�1j2�i1+2�

ZZ
A(�1;�1)

j� j2h�i�2�h� � �1i2� d� d�hi� + j� j2�i1�5�hi�2 + j� � �1j2�i1+2� � C:
In the KdV-B case (� = � � �3, � = 1), the weighthi (� � �3) + �2i has dispersive and
dissipative characteristics. Hence, as we have seen in the proof, we can take� < 1
with the relationh� � �3i � j��1(� � �1)j and cancellation byj� j2.

On the other hand, to show the well-posedness of the KdV equation in our method,
we need to show for example that

(3.61)
h�1i2�
�1 � �3

1

�1+2�
ZZ

A(�1;�1)

j� j2h�i�2�h� � �1i2� d� d�h� � �3i1�5�h� � �1 � (� � �1)3i1+2� � C:
Since we cannot use the dissipative effect in the KdV case, weshould set� < 3=4
as was proved by Kenig, Ponce, and Vega [17]. The condition for the convergence of
integral (3.61) is more restrictive than that of the KdV-B case for the lack of the dis-
sipative term. Thus, the KdV-B equation can be solved in weaker spaces than that of
the KdV equation.

Similarly, we also consider the BO and gBO-B equations. In the BO case, the
integral

(3.62)
h�1i2�h�1 � �1j�1ji1+2�

ZZ
A(�1;�1)

j� j2h�i�2�h� � �1i2� d� d�h� � � j� ji1�5�h� � �1 � (� � �1)j� � �1ji1+2�
is not convergent. On the other hand, in the gBO-B case witha = 0 (� = ��� j� j), the
integral (3.60) is certainly convergent with the aid of the dissipative partj� j2�. The re-
striction of s = �� > (1�2�)=2, � > 3=4 is a necessary condition for the convergence
of the integral (3.60).

4. Proof of Proposition 3.1

Let s> �(a + 2� � 1)=2. In this section, we shall prove

(4.1) jIj � CT�k f kL2
x L2

t
kgkL2

x L2
t
khkL2

x L2
t
;

where

I =
Z

R4

�bh(�; � )h�ishi� + j� j2�i1�b�Æ bg(�1; �1)h�1i�s

hi�1 + j�1j2�ib
bf (� � �1; � � �1)h� � �1i�s

hi�2 + j� � �1j2�ib d� d� d�1 d�1:
(4.2)

It suffices to show (4.1) only in the cases = �� = �(a+2��1)=2+(11+5a+10�)�=2.
By Fubini’s theorem, we can assume thatbf ;bg;bh � 0.
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We divide R4 into five regionsD1, D2, D3, D4, and D5;

D1 = f(�; �1; � ; �1) 2 R4 : j�1j � 1; j� � �1j � 1; (3.6) holdsg;
D2 = f(�; �1; � ; �1) 2 R4 : j�1j � 1; j� � �1j � 1; (3.7) holdsg;
D3 = f(�; �1; � ; �1) 2 R4 : j�1j � 1; j� � �1j � 1; (3.8) holdsg;
D4 = f(�; �1; � ; �1) 2 R4 : j�1j � 1; j� � �1j � 1; (3.9) holdsg;
D5 = f(�; �1; � ; �1) 2 R4 : j�1j � 1 or j� � �1j � 1g:

REMARK 4.1. Whena = 1, we have only to setD1 = D3 = �. See Remark 3.1.

Furthermore we split these regions into two parts respectively;

D j = D j ;A [ D j ;B ( j = 1;2;3;4);
where

D j ;A = f(�; �1; � ; �1) 2 D j : j� j � 2j�1jg; D j ;B = f(�; �1; � ; �1) 2 D j : j� j � 2j�1jg:
And we need not divideD5. According to these integral regions, we divide the

integral I =
P4

j =1 ID j;A +
P4

j =1 ID j;B + ID5, where

IeD =
Z
eD

�bh(�; � )h�i��hi� + j� j2�i1=2�2� bg(�1; �1)h�1i�hi�1 + j�1j2�i1=2+� bf (� � �1; � � �1)h� � �1i�hi�2 + j� � �1j2�i1=2+� d� d� d�1 d�1

and we sets = �� = �(a + 2�� 1)=2 + (11 + 5a + 10�)�=2, Æ = � and b = 1=2 +�. Each
integral IeD is estimated according to the following two cases:

(I) Case ofeD = D1;A[D2;A[D3;A[D4;A. Using Schwarz inequality and applying
four lemmas in Section 3.2, we have

IeD � sup�1;�1

" h�1i�hi�1 + j�1j2�i1=2+�
� �ZeD(�1;�1)

j� j2h� � �1i2�h�i�2�
hi� + j� j2�i1�5�hi�2 + j� � �1j2�i1+2� d� d��1=2#

� Z
R2
bg(�1; �1)

 Z
R2

��bh(�; � )
��2

h� i�
��bf (� � �1; � � �1)

��2 d� d�
!1=2

d�1 d�1;
(4.3)

where eD(�1; �1) =
�
(�; � ) 2 R2 : (�; �1; � ; �1) 2 eD	. Moreover from Schwarz inequality,

Fubini’s theorem and Lemma 2.3, we obtain

(4.4) IeD � CT�k f kL2(R2)kgkL2(R2)khkL2(R2):
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(II) Case of eD = D1;B [ D2;B [ D3;B [ D4;B [ D5. In the same way, we can
show that

IeD � sup�;�
" j� jh�i��hi� + j� j2�i1=2�5�=2
� �ZeD(�;� )

h�1i2�h� � �1i2�hi�1 + j�1j2�i1+2�hi�2 + j� � �1j2�i1+2� d�1 d�1

�1=2#

� Z
R2

bh(�; � )h� i�=2
�Z

R2
jbg(�1; �1)j2��bf (� � �1; � � �1)

��2 d�1 d�1

�1=2
d� d� ;

(4.5)

where eD(�; � ) =
�
(�1; �1) 2 R2 : (�; �1; � ; �1) 2 eD	. Moreover, by virtue of five lemmas

in Sections 3.3, 3.4 and Lemma 2.3, we obtain

(4.6) IeD � CT�k f kL2(R2)kgkL2(R2)khkL2(R2):
Therefore Proposition 3.1 follows from (4.4) and (4.6).

5. Proof of Theorem 1.1

5.1. Existence. Let u0(x) 2 H s(R) with s > �(a + 2� � 1)=2, a + 2� � 3 and� > (3�a)=4 � 1=2. We may assumeT < 1. Let us choose 0< 8�� < s+(a+2��1)=2
and takeb such that 2b� 1 = 2�.

We define the map

(5.1) F(!) =  (t)W(t)u0 � 1

2
�R+(t) (t)

Z t

0
W(t � t 0)�x( T!(t 0))2 dt0

and suppose! is in the ball

(5.2) BM =
�
u 2 Xs��(2b�1);b : kukXs��(2b�1);b � M

	;
where M = 2C0ku0kH s. In what follows, we shall show thatF(!) is a contraction on
the ballBM for [0; T ].

By virtue of Propositions 2.1, 2.3, 3.1 and 2.2, we have

kF(u)kXs��(2b�1);b � k (t)W(t)u0kXs��(2b�1);b
+

1

2





�R+(t) (t)
Z t

0
W(t � t 0)�x( Tu(t 0))2 dt0





Xs��(2b�1);b
� C0ku0kH s + CÆ 

�x( Tu)2




Xs��(2b�1);b�1+Æ

� C0ku0kH s + CÆT� k Tuk2
Xs��(2b�1);b

� C0ku0kH s + C1T��2�kuk2
Xs��(2b�1);b;

(5.3)
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wheres��(2b�1)> �(a + 2��1)=2 + 6�� and 1�2b = �2�. Therefore, foru 2 BM

(5.4) kF(u)kXs��(2b�1);b � M

2
+ C1T��2�M2:

Hence it follows that forT = (4MC1)�1=(��2�), F(u) 2 BM .
Similarly, it follows that for u, v 2 BM

kF(u)� F(v)kXs��(2b�1);b � 2MC1T��2�ku� vkXs��(2b�1);b
=

1

2
ku� vkXs��(2b�1);b;(5.5)

from which F is a contraction onBM . By virtue of the contraction mapping principle,
F(u) has the fixed point in the ballBM . Therefore there exists a unique solutionu(t)
in BM for T < (4MC1)�1=(��2�) satisfying

(5.6) u(t) =  (t)

�
W(t)u0 � 1

2
�R+(t)

Z t

0
W(t � t 0)�x( T u(t 0))2 dt0� :

Henceu(t) solves the integral equation associated with the IVP (1.1)in the time
interval [0; T ].

5.2. Continuous dependence. In this section, we shall show the continuous de-
pendence upon the initial data. We choose 0< 8�� < s + (a + 2� � 1)=2 and takeb
such that 2b� 1 = 2�. Let u and v be the solutions obtained in Section 5.1 with data
u0 and v0 respectively.

As in Section 5.1, with the aid of Propositions 2.1, 2.3, 3.1 and 2.2, we obtain

ku� vkXs��(2b�1);b � C0ku0 � v0kH s + 2MC1T��2�ku� vkXs��(2b�1);b
� C0ku0 � v0kH s +

1

2
ku� vkXs��(2b�1);b(5.7)

for u; v 2 BM and for T < (4MC1)�1=(��2�). Hence

(5.8) ku� vkXs��(2b�1);b � 2C0ku0 � v0kH s:
Moreover, by virtue of Propositions 2.4, 3.1, 2.2 and (5.8), we have

ku(t)� v(t)kH s � k (t)W(t)(u0 � v0)kH s

+
1

2





 (t)�R+(t)
Z t

0
W(t � t 0)�x

� 2
T (u� v)(u + v)(t 0)�dt0





H s� CkW(t)(u0 � v0)kH s + C


�x

� 2
T (u� v)(u + v)

�


Xs�2��;b�1+�� C0ku0 � v0kH s + C1T��2�ku� vkXs�2��;bku + vkXs�2��;b

� C0ku0 � v0kH s + 2C1T��2�Mku� vkXs�2��;b
� C0ku0 � v0kH s +

1

2
ku� vkXs�2��;b

� 2C0ku0 � v0kH s;

(5.9)
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which implies the continuous dependence on the initial data.

5.3. Uniqueness and global existence.The proof of these parts are the same
as in the previous paper. We refer to [25]. See also [2] for uniqueness.

References

[1] D. Bekiranov:The initial-value problem for the generalized Burgers’ equation, Diff. Int. Eqns.
9 (1996), 1253–1265.

[2] D. Bekiranov, T. Ogawa and G. Ponce:Interaction equations for short and long dispersive
waves, J. Funct. Anal.158 (1998), 357–388.

[3] H.A. Biagioni and F. Linares:Ill-posedness for the derivative Schrödinger and generalized
Benjamin-Ono equations, Trans. Amer. Math. Soc.353 (2001), 3649–3659.

[4] J. Bourgain: Fourier transform restriction phenomena for certain lattice subsets and appli-
cations to nonlinear evolution equations. Part II The KDV-equation, Geom. Funct. Anal.3
(1993), 209–262.

[5] N. Burq and F. Planchon:On the well-posedness for the Benjamin-Ono equation, arXiv:
math.AP/0509096.

[6] M. Christ, J. Colliander and T. Tao:Asymptotics, frequency modulation, and low regularity ill-
posedness for canonical defocsing equations, Amer. J. Math.125 (2003), 1235–1293.

[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao: Sharp global well-posedness for
KdV and modified KdV onR and T, J. Amer. Math. Soc.16 (2003), 705–749.

[8] J. Colliander, C. Kenig and G. Staffilani:Local well-posedness for dispersion-generalized
Benjamin-Ono equations, Diff. Int. Eqns. 16 (2003), 1441–1472.

[9] D.B. Dix: Nonuniqueness and uniqueness in the initial-value problemfor Burgers’ equation,
SIAM J. Math. Anal.27 (1996), 708–724.

[10] J. Ginibre, Y. Tsutsumi and G. Velo:On the Cauchy problem for the Zakharov System, J.
Funct. Anal.151 (1997), 384–436.

[11] A. Grünrock: An improved local wellposedness result for the modified KdV-equation, Internat.
Math. Res. Not.2004 (2004), 3287–3308.

[12] S. Herr:Well-posedness for equations of Benjamin-Ono type, Illinois J. Math., to appear.
[13] S. Herr: An improved bilinear estimates for Benjamin-Ono type equations, arXiv:

math.AP/0509218.
[14] A.D. Ionescu and C.E. Kenig:Global well-posedness of the Benjamin-Ono equation in low-

regularity spaces, arXiv: math.AP/0508632.
[15] K. Kato: On the existence of solutions to the Benjamin-Ono equation, in preparation.
[16] C.E. Kenig and K.D. Koenig:On the local well-posedness of the Benjamin-Ono and modified

Benjamin-Ono equations, Math. Res. Lett.10 (2003), 879–895.
[17] C.E. Kenig, G. Ponce and L. Vega:A bilinear estimate with applications to the KdV equation,

J. Amer. Math. Soc.9 (1996), 573–603.
[18] N. Kita and J. Segata:Time local well-posedness for the Benjamin-Ono equation with large

initial data, Publ. Res. Inst. Math. Sci.42 (2006), 143–171.
[19] H. Koch and N. Tzvetkov:Nonlinear wave interactions for the Benjamin-Ono equation, Inter-

nat. Math. Res. Not.2005 (2005), 1833–1847.
[20] L. Molinet: Global well-posedness inL2 for the periodic Benjamin-Ono equation, arXiv:

math.AP/0601217.
[21] L. Molinet and F. Ribaud:The Cauchy problem for dissipative Korteweg-de Vries equations in

Sobolev spaces of negative order, Indiana Univ. Math. J.50 (2001), 1745–1776.
[22] L. Molinet and F. Ribaud:The global Cauchy problem in Bourgain’s-type spaces for a disper-

sive dissipative semilinear equation, SIAM J. Math. Anal.33 (2002), 1269–1296.



GENERALIZED BENJAMIN-ONO-BURGERS EQUATIONS 965

[23] L. Molinet and F. Ribaud:On the low regularity of the Korteweg-de Vries-Burgers equation,
Internat. Math. Res. Not.2002 (2002), 1979–2005.

[24] L. Molinet, J.-C. Saut and N. Tzvetkov:Ill-posedness issues for the Benjamin-Ono and related
equations, SIAM J. Math. Anal.33 (2001), 982–988.

[25] M. Otani: Bilinear estimates with applications to the generalized Benjamin-Ono-Burgers equa-
tions, Diff. Int. Eqns. 18 (2005), 1397–1426.

[26] T. Tao: Global well-posedness of the Benjamin-Ono equation inH1(R), J. Hyperbolic Diff.
Eqns.1 (2004), 27–49.

Department of Mathematics
Tokyo University of Science
26 Wakamiya-cho, Shinjuku-ku, Tokyo, 162-0827
Japan
e-mail: otan@aug.rikadai.jp


