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Abstract

We give a sufficient condition for the girth of finitely generated groups to be
infinite by using a technique to prove a so-called ping-pong lemma or table tennis
lemma. We show that some convergence groups and subgroups ofmapping class
groups satisfy the condition. Therefore the girth of each ofthem is infinite.

1. Introduction

DEFINITION 1.1 ([1], [2], [14]). Let G be a finitely generated group andX(G)
the family of finitely generating (not necessarily symmetric) sets ofG. For any S 2
X(G), we define

U (S, G) D minfn j s1s2 � � � sn D e, s1s2 � � � sn is reduced,si 2 Sg
and callU (S, G) the girth of G with respect toS. In the above, the elemente is the
unit element ofG. If there exists no reduced words1s2 � � � sn with si 2 S which is
trivial as an element ofG, then we setU (S, G) D1. The girth of G is defined as

U (G) D supfU (S, G) j S2 X(G)g.
Let us list known facts on the girth of a finitely generated group G.

• If G is finite, thenU (G) is finite by definition.
• If G is an abelian group which is not isomorphic toZ, then U (G) is finite
by definition.
• If G is isomorphic toZ, thenU (G) is infinite by definition. More generally, ifG
is a free group of rankn, wheren is any positive integer, thenU (G) is infinite.
• If G is a solvable group which is not isomorphic toZ, then U (G) is finite [14,
Corollary 4.4].
• Let G be a subgroup ofGL(n, k), wherek is any field. The girth ofG is finite if
and only if G contains a finite index solvable subgroup which is not isomorphic to Z
[2, Theorem 4.4].
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• The girth of a one-relator groupG is infinite if and only if G is not solvable [2,
Theorem 3.1].
Akhmedov proved the following theorem on the girth of some subgroups of Gromov-
hyperbolic groups by using a technique to prove a ping-pong lemma. See [5, Chap-
ter III.0 2.1] for the definition of Gromov-hyperbolic groups. A groupis said to be
virtually cyclic if it contains a cyclic subgroup of finite index.

Theorem 1.2 ([2] Theorem 2.6). Let G be a Gromov-hyperbolic group and H
a finitely generated subgroup of G which is not virtually cyclic. Then the girth of H
is infinite.

Our result on the girth of convergence groups is stated as follows. We will define
a convergence group in Definition 3.1.

Theorem 1.3. Let G be a convergence group. Suppose that H is a finitely gen-
erated subgroup of G which is not virtually cyclic and that the limit set of H contains
at least two points. Then the girth of H is infinite.

Let G and H be groups as in Theorem 1.2. It is known thatG acts on its ideal
boundary as a convergence group [17, Theorem 3A], [3, Proposition 1.13]. The limit
set of H contains at least two points sinceH contains a free group of rank two as a
subgroup by [7, Chapitre 8, Théorème 37]. HenceG and H in Theorem 1.2 satisfy
the assumption of Theorem 1.3.

There exists another class of examples satisfying the assumption of Theorem 1.3.
Let G be a group andG a family of infinite subgroups ofG. Suppose thatG is hyper-
bolic relative toG in the sense of Bowditch [4, Definition 1]. By definition, since G
acts properly discontinuously and isometrically on a Gromov-hyperbolic space satisfy-
ing some topological condition,G acts on its ideal boundary as a convergence group
[17, Theorem 3A]. See [5, Chapter III.H] for Gromov-hyperbolic spaces. One of the
examples of relatively hyperbolic groups is a free product of groups. Any free product
of finitely generated infinite groups is hyperbolic relativeto its factors in the sense of
Bowditch. (Consider the action on its Bass–Serre tree [15].This action satisfies [4,
Definition 2] which is equivalent to [4, Definition 1].) Consequently, Theorem 1.3 is
an extension of Theorem 1.2.

We also investigate the girth of mapping class groups. LetM be a compact, ori-
entable and connected surface (we admit that it has non-empty boundary). LetModM

be the group of isotopy classes of orientation preserving diffeomorphisms onM. We
call ModM the mapping class groupof the surfaceM. See Section 4 for more details.
We show the following result.

Theorem 1.4. Suppose that G is a finitely generated irreducible subgroup of
ModM which is not virtually cyclic. Then the girth of G is infinite.
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REMARK 1.5. In this paper, we consider the action of a mapping class group
ModM on its Thurston boundary. Reducible elements ofModM can have more than two
fixed points in it. Therefore, in general, subgroups ofModM do not act on its Thurston
boundary as convergence groups since any infinite order element of convergence groups
has at most two fixed points. Hence, Theorem 1.3 does not applyto this action.

Let X be a set andG a group acting onX. Given g 2 G, we denote by fix(g)
the fixed point set ofg, that is, fix(g) D fx 2 X j g(x) D xg. The cardinality of fix(g)
is denoted by # fix(g). We prove Theorems 1.3 and 1.4 by checking the conditions of
the following proposition.

Proposition 1.6. Let X be a Hausdorff topological space containing infinite elem-
ents. Let G be a finitely generated group which is not virtually cyclic. Suppose that G
acts on X by homeomorphisms and satisfies the following conditions:
(1) There exists g2 G such that# fix(g) D 2;
(2) Let g be any element of G such thatfix(g) consists of exactly two points, denoted
by a and b. If we choose a neighborhood A of a and a neighborhoodB of b with
A\ B D ;, then we have the inclusions

gn(X n B) � A

and

g�n(X n A) � B

for any sufficiently large n, after exchanging a and b if necessary;
(3) For any elements g, h 2 G such that# fix(g) D # fix(h) D 2, the fixed point sets
fix(g) and fix(h) satisfy eitherfix(g) D fix(h) or fix(g) \ fix(h) D ;;
(4) For any element g2 G such that# fix(g) D 2, the stabilizer offix(g),

Stab(fix(g)) D fh 2 G j h(fix(g)) D fix(g)g,
is virtually cyclic.
Then the girth of G is infinite.

In the proof of Proposition 1.6, we use the technique to provethe ping-pong lemma
(for example, see [8, II.B.24]). This lemma is applied to prove that certain class of
groups satisfies the Tits alternative. The Tits alternativeoriginates from Tits’ result on
linear groups [16, Theorem 1]. We say that a class of groups satisfies the Tits alternative
if any group in the class is virtually solvable or it containsa free group of rank two
as a subgroup. For example, all subgroups of mapping class groups satisfy the Tits
alternative [11, Theorem A]. It is not known whether convergence groups satisfy the
Tits alternative or not. However, if the limit set of a convergence groupG contains
more than two points, thenG contains a free subgroup of rank two [17, Theorem 2U].
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2. Groups of infinite girth

We will prove the following lemma which plays an important role in the proof of
Proposition 2.6.

Lemma 2.1. Suppose that X is a set and that G is not a virtually cyclic group
acting on X. For any i, j D 1, 2,: : : , r , let gi and gj be elements of G such that
# fix(gi ) D # fix(g j ) D 2 and eitherfix(gi ) D fix(g j ) or fix(gi ) \ fix(g j ) D ;. For each
i D 1,2,:::,r , we suppose that the stabilizerStab(fix(gi ))D fg 2 G j g(fix(gi ))D fix(gi )g
of fix(gi ) is virtually cyclic. If we putA D Sr

iD1 fix(gi ), then there exists h2 G such
that hA \A D ;.

Before proving Lemma 2.1, we quote the following lemma.

Lemma 2.2 ([13] Lemma 4.1). Suppose that a group G is a union of n cosets
of subgroups H1, H2, : : : , Hn of G, i.e., G DSn

iD1 gi Hi . Then there exists a subgroup
Hi such that the index of Hi in G does not exceed n.

Proof of Lemma 2.1. For anyi , j D 1, 2,: : : , r , the subsetAi , j D fg 2 G j
g(fix(gi )) D fix(g j )g of G is a left coset of the stabilizer of fix(gi ), i.e., Ai , j D
g � Stab(fix(gi )) for any g 2 Ai , j . For any i D 1, 2,: : : , r , the stabilizer Stab(fix(gi ))
is infinite index in G since G is not virtually cyclic. By Lemma 2.2, we haveG ©Sr

i , jD1 Ai , j . For any h 2 G n Sr
i , jD1 Ai , j , we know h(A) \ A D ; since the fixed

point sets fix(gi ) and fix(g j ) satisfy fix(gi ) D fix(g j ) or fix(gi ) \ fix(g j ) D ; for any
i , j D 1, 2,: : : , r .

Before proving Proposition 2.6, we consider reduced words on

	 D fg, f , gM g1 f M , g2M g2 f 2M , : : : , gkMgk f kMg
and

	 0 D fg, f , g1, g2, : : : , gkg,
where M is a positive integer. We will use these reduced words in the proof of Prop-
osition 2.6 to apply the technique to prove the ping-pong lemma.

A non-empty reduced wordw on 	 is denoted byw D u1 or

w D u1(gm1M gm1 f m1M )"1u2(gm2M gm2 f m2M )"2 � � � us(g
msM gms f msM )"susC1

satisfying the following three conditions:
• mi 2 f1, 2,: : : , kg for any i D 1, 2,: : : , s;
• "i D 1 or �1 for any i D 1, 2,: : : , s;
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• For any i D 1, 2,: : : , sC1, the wordui is the empty word or a reduced word only
containing f and g.

REMARK 2.3. If ui D ; and mi�1 D mi , it is impossible to take"i�1 D 1 and"i D �1. If "i�1 D 1 and"i D �1, then the reduced wordw contains a word

(gmi�1M gmi�1 f mi�1M )"i�1ui (g
mi M gmi f mi M )"i D (gmi M gmi f mi M )(gmi M gmi f mi M )�1.

This is a contradiction sincew is a reduced word on	 . For the same reason, ifui D ;
and mi�1 D mi , it is also impossible to take"i�1 D �1 and"i D 1.

Note that if ui is not empty, thenui is also a reduced word on	 0.
For all i D 1, 2,: : : , k, if we regard the lettergi M gi f i M in 	 as a word on	 0,

it consists of the lettersg, gi and f in 	 0. Regarding the lettergi M gi f i M in 	 as
a word on	 0, we reducew as a word on	 0 and denote it byw0. The wordw0 is
possibly empty althoughw is a non-empty reduced word on	 . We will show the
following two lemmas onw andw0.

Lemma 2.4. If w D u1, then the reduced wordw0 on 	 0 is also denoted byw0 D u1.
If w D u1(gm1M gm1 f m1M )"1u2(gm2M gm2 f m2M )"2 � � �us(gmsM gms f msM )"susC1, then the

reduced wordw0 on	 0 is denoted byw0 D u01g"1
m1

u02g"2
m2
� � �u0sg"s

ms
u0sC1, where the word u0i

is the empty word or a reduced word only containing f and g for all i D 1, 2,: : : , sC1.

Before proving this lemma, we explain the assertion of this lemma by taking an
example. Takew D gM g1 f M (g2M g2 f 2M )�1. The wordw consists of the two letters
gM g1 f M and g2M g2 f 2M in 	 . Thenw0 D gM g1 f �M g�1

2 g�2M andw0 consists of the
letters g, f , g1 and g2 in 	 0. In this case,u01 D gM , u02 D f �M , u03 D g�2M , m1 D 1,
m2 D 2, "1 D 1 and"2 D �1.

Proof. Recall that for alli D 1, 2,: : : , sC 1, the wordui is a reduced word not
only on 	 but also on	 0. Hence ifw D u1, thenw0 D u1.

In the following context, we treat the case of

w D u1(gm1M gm1 f m1M )"1u2(gm2M gm2 f m2M )"2 � � � us(g
msM gms f msM )"susC1.

The wordu01g"1
m1

u02g"2
m2
� � � u0sg"s

ms
u0sC1 is obviously a reduced word on	 0. We will show

that w0 is denoted by this word.
For all i D 1, 2,: : : , k, if the letter gi M gi f i M in 	 is regarded as a reduced word

on 	 0, it contains the lettersg, gi and f in 	 0. For all i D 1, 2,: : : , k, if a re-
duced word (gi M gi f i M )�1 on 	 is regarded as a reduced word on	 0, it is denoted
by f �i M g�1

i g�i M . It also contains the lettersf , gi and g in 	 0. For all i D 1, 2,: : : , s,
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after we carry out this process for (gmi M gmi f mi M )"i , we regardw as a (possibly not
reduced) wordw00 on 	 0. After w00 is reduced with respect to	 0, the reduced wordw0 D u01g"1

m1
u02g"2

m2
� � � u0sg"s

ms
u0sC1 on 	 0 is obtained. We will explain the process of re-

ducingw00 to w0 in the following.
If "1 D 1, then

w D u1(gm1M gm1 f m1M )u2(gm2M gm2 f m2M )"2 � � � us(g
msM gms f msM )"susC1.

Reduceu1gm1M with respect to	 0 and denote it byu01. Moreover if u1 D g�m1M , then

u01 D ;.

If "1 D �1, then

w D u1(gm1M gm1 f m1M )�1u2(gm2M gm2 f m2M )"2 � � � us(g
msM gms f msM )"susC1.

Reduceu1 f �m1M with respect to	 0 and denote it byu01. Moreover if u1 D f m1M , then

u01 D ;.

Hence the wordu01 is a reduced word on	 0 containing only f and g, or the empty
word in both the case of"1 D 1 and"1 D �1.

For all i D 2, 3,: : : , s, we denote byu0i the word obtained by reducing the follow-
ing words.
• f mi�1Mui gmi M for "i�1 D 1 and"i D 1.
• f mi�1Mui f �mi M for "i�1 D 1 and"i D �1.
• g�mi�1Mui gmi M for "i�1 D �1 and"i D 1.
• g�mi�1Mui f �mi M for "i�1 D �1 and"i D �1.
Note that if ui D ; and mi�1 D mi , it is impossible to take"i�1 and "i with "i�1 � "i D�1 by Remark 2.3.

For all i D 2, 3,: : : , s, the wordu0i is also possibly empty. For example, if"i�1 D 1,"i D 1 and ui D f �mi�1M g�mi M , then u0i is the empty word. By the above argument,
for all i D 2, 3,: : : , s, we know thatu0i is the empty word or a reduced word on	 0
containing only f and g.

If "s D 1, the wordu0sC1 is obtained by reducingf msMusC1. In addition, if usC1 D
f �msM , thenu0sC1 D ;. If "s D �1, the wordu0sC1 is obtained by reducingg�msMusC1.
Moreover if usC1 D gmsM , thenu0sC1 D ;. Henceu0sC1 is the empty word or a reduced
word on	 0 containing only f and g.

If the word length ofw with respect to	 is not greater thanM, the following
lemma holds. Using the technique to prove the ping-pong lemma in the proof of Prop-
osition 2.6, we make use of this lemma.
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Lemma 2.5. Let w be the reduced word

u1(gm1M gm1 f m1M )"1u2(gm2M gm2 f m2M )"2 � � � us(g
msM gms f msM )"susC1

on 	 . Suppose that the word length ofw with respect to	 is at most M. Then for
the reduced wordw0 D u01g"1

m1
u02g"2

m2
� � � u0sg"s

ms
u0sC1 on 	 0, the following assertions hold

for all i D 1, 2,: : : , s:
(1) u0i is not empty;
(2) If "i D 1, then the last letter of u0i is g and the first letter of u0iC1 is f ;
(3) If "i D �1, then the last letter of u0i is f and the first letter of u0iC1 is g.

Before proving this lemma, we show some examples to explain the assertion of
this lemma. Ifw D g�MC1(gM g1 f M ) (the word length ofw with respect to	 is M),
thenw0 D gg1 f M , u01 D g and u02 D f M . The last letter ofu01 is g and the first letter
of u02 is f . This lemma is false if the word length ofw with respect to	 is more
than M. For example, ifw D g�M (gM g1 f M ) (the word length ofw with respect to	
is M C 1), thenw0 D g1 f M , u01 D ; and u02 D f M .

Proof. If "1 D 1, the wordu01 is obtained by reducing a wordu1gm1M . Especially,
if u1 D ;, then u01 D gm1M and the last letter ofu01 is g. On the other hand, if"1 D 1
andu1 ¤ ;, then we setu1 D f a1gb1 f a2gb2 � � � f al gbl , where if a1 D 0, thenb1 ¤ 0, and
if bl D 0, thenal ¤ 0. Since the word length ofw with respect to	 is at mostM, we
know jai j and jbi j are less thanM for all i D 1, 2,: : : , l . If bl D 0, thenu1gm1M D u01
becauseu1gm1M D f a1gb1 f a2gb2 � � � f al gm1M is already a reduced word on	 0. There-
fore the last letter ofu01 is g. If bl ¤ 0, thenu1gm1M D f a1gb1 f a2gb2 � � � f al gblCm1M .
If the exponentbl Cm1M of g is equal to 0, thenjbl j D j�m1Mj D m1M � M. This
is a contradiction sincejbl j is less thanM. Therefore we knowbl Cm1M ¤ 0 and the
last letter ofu01 is g.

If "1 D �1, we can prove that the last letter ofu01 is f in the same way as above.
For any i D 2, 3,: : : , s, if "i�1 D 1 and"i D 1, the wordu0i is obtained by reducing

a word f mi�1Mui gmi M . If ui D ;, thenu0i D f mi�1M gmi M . If ui ¤ ;, thenui is denoted
by ui D f a1gb1 f a2gb2 � � � f al gbl . In the above description, ifa1 D 0, thenb1 ¤ 0, and
if bl D 0, thenal ¤ 0. Note thatjai j and jbi j is less thanM for any i D 1, 2,: : : , l
because the word length ofw with respect to	 is at mostM. Then we obtain

u0i D
8��<
��:

f mi�1M gb1 f a2gb2 � � � f al gmi M (a1 D 0, bl D 0),
f mi�1MCa1gb1 f a2gb2 � � � f al gmi M (a1 ¤ 0, bl D 0),
f mi�1M gb1 f a2gb2 � � � f al gblCmi M (a1 D 0, bl ¤ 0),
f mi�1MCa1gb1 f a2gb2 � � � f al gblCmi M (a1 ¤ 0, bl ¤ 0).

If mi�1MCa1 D 0, thenja1j D j�mi�1Mj D mi�1M � M. This is a contradiction sinceja1j is less thanM, thusa1Cmi�1M ¤ 0. We can show thatbl Cmi M is not equal to
0 in the same way as above. Therefore the first letter ofu0i is f and the last letter of
u0i is g in both the case ofu0i D ; and u0i ¤ ;. For any i D 2, 3,: : : , s, we can prove
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that if "i�1 D �1 and"i D �1, the first letter ofu0i is g and the last letter ofu0i is f
in the same way.

For any i D 2, 3,: : : , s, if "i�1 D �1 and "i D 1, the wordu0i is obtained by
reducing a wordg�mi�1Mui gmi M . If ui D ;, then u0i D g(�mi�1Cmi )M . Note mi�1 ¤ mi

by Remark 2.3. Thereforeu0i D g(�mi�1Cmi )M is not the empty word, andu0i starts with
g and ends withg. If ui ¤ ;, then we can prove that the first letter ofu0i is g and the
last letter ofu0i is also g in the same way as in the case of"i�1 D "i D 1.

If "i�1 D 1 and"i D �1, the first letter ofu0i is f and the last letter ofu0i is also
f by the same argument as above.

If "s D 1 (resp."s D�1), the wordu0sC1 is obtained by reducing the wordf msMusC1

(resp.g�msMusC1). By the same argument as above, we know that the first letter of u0sC1

is f (resp.g).

Proposition 2.6. Let X be a Hausdorff topological space containing infinite elem-
ents. Let G be a finitely generated group which is not virtually cyclic. Suppose that G
acts on X by homeomorphisms and satisfies the following conditions:
(1) There exists g2 G such that# fix(g) D 2;
(2) Let g be any element of G such thatfix(g) consists of exactly two points, denoted
by a and b. If we choose a neighborhood A of a and a neighborhoodB of b with
A\ B D ;, then we have the inclusions

gn(X n B) � A

and

g�n(X n A) � B

for any sufficiently large n, after exchanging a and b if necessary;
(3) For any elements g, h 2 G such that# fix(g) D # fix(h) D 2, the fixed point sets
fix(g) and fix(h) satisfy eitherfix(g) D fix(h) or fix(g) \ fix(h) D ;;
(4) For any element g2 G such that# fix(g) D 2, the stabilizer offix(g),

Stab(fix(g)) D fh 2 G j h(fix(g)) D fix(g)g,
is virtually cyclic.
Then the girth of G is infinite.

Proof. For any positive integerM, we will prove that there exists a finite gener-
ating set	 of G such thatU (	 , G) > M.

Let SD fg1, g2, : : : , gkg be a generating set ofG. By condition (1), there exists
g 2 G and a, b 2 X such thata ¤ b and fix(g) D fa, bg. Note that for anyh 2 G, the
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conjugate elementhgh�1 of g has two distinct fixed pointsh(a) and h(b). Thus there
existsh 2 G such that

fh(a), h(b)g \ fa, b, g�1
1 (a), g�1

1 (b), : : : , g�1
k (a), g�1

k (b)g D ;(�)

by conditions (3), (4) and Lemma 2.1.
Set f D hgh�1 2 G. The fixed point set off is fh(a), h(b)g. There existsx 2 X

such that

x 2 X n (fa, b, h(a), h(b)g [ fg1(a), g1(b), : : : , gk(a), gk(b)g
[ fg1(h(a)), g1(h(b)), : : : , gk(h(a)), gk(h(b))g)

sinceX is an infinite set. LetU1,U2,U3,U4 and W be neighborhoods ofa,b, h(a), h(b)
and x, respectively and disjoint each other. For alll D 1, 2,: : : , k, we know a ¤
g�1

l (h(a)), a ¤ g�1
l (h(b)), b ¤ g�1

l (h(a)) and b ¤ g�1
l (h(b)) by (�). Thus, for all l D

1, 2,: : : , k, we can suppose that

(��)

Ui \ g�1
l (U j ) D ;��

i D 1, 2
j D 3, 4

or

�
i D 3, 4
j D 1, 2

�

by continuity of the action ofG on X. By condition (2), there existsn0 2 N such that
for any n � n0, we obtaing�n(X n (U1 [ U2)) � U1 [ U2 and f �n(X n (U3 [ U4)) �
U3[U4. By W � X n (U1[U2) and W � X n (U3[U4), we obtaing�n(W) � U1[U2

and f �n(W) � U3[U4 for any n � n0. Rewrite gn0 and f n0 by g and f , respectively,
then g�1(X n (U1[U2)) � U1[U2, f �1(X n (U3[U4)) � U3[U4, g�1(W) � U1[U2

and f �1(W) � U3 [U4.
A finite set

	 D fg, f , gM g1 f M , g2M g2 f 2M , : : : , gkMgk f kMg
also generatesG becauseG is generated byS.

We will show U (	 , G) > M.
Let w be a non-empty reduced word on	 whose word length with respect to	

is at mostM. As we have seen,w is denoted byw D u1 or

w D u1(gm1M gm1 f m1M )"1u2(gm2M gm2 f m2M )"2 � � � us(g
msM gms f msM )"susC1

satisfying the following conditions:
• mi 2 f1, 2,: : : , kg for any i D 1, 2,: : : , s;
• "i D 1 or �1 for any i D 1, 2,: : : , s;
• For any i D 1, 2,: : : , sC1, the wordui is the empty word or a reduced word only
containing f and g.
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Fig. 1. The technique to prove the ping-pong lemma.

Put	 0 D fg, f , g1, g2, : : : , gkg. Reduce the wordw with respect to	 0. By Lemma 2.4
and Lemma 2.5, the wordw0 is denoted byw0 D u1 or w0 D u01g"1

m1
u02g"2

m2
� � � u0sg"s

ms
u0sC1,

where for alli D 1, 2,: : : , sC1, the wordu0i is a non-empty reduced word only containing
f andg. By Lemma 2.5, for alli D 1, 2,: : : , s, the following assertions hold:
• If "i D 1, then the letter right beforegmi is g and the letter right aftergmi is f ;
• If "i D �1, then the letter right beforeg�1

mi
is f and the letter right afterg�1

mi
is g.

We move the pointx 2 W � X by any elementw of G whose word length with
respect to	 is at mostM and showwx ¤ x by using the same technique to prove
the ping-pong lemma. Ifwx ¤ x, the elementw of G is not trivial in G and thus
U (	 , G) > M.

If w D u1, using the same technique in the proof of the ping-pong lemma, we see
that wx D u1x is a point ofU1 [U2 [U3 [U4 becauseu1 consists of onlyg and f .
We seewx ¤ x sincewx 2 U1[U2[U3[U4 and x 2 W � X n (U1[U2[U3[U4).

We consider the case of

w D u1(gm1M gm1 f m1M )"1u2(gm2M gm2 f m2M )"2 � � � us(g
msM gms f msM )"susC1.

By Lemma 2.4,w is denoted byw0 D u01g"1
m1

u02g"2
m2
� � �u0sg"s

ms
u0sC1 as a reduced word

on 	 0. As an element ofG, w is equal tow0 and thus movingx by w0 2 G is equal
to moving x by w 2 G.

In u01g"1
m1

u02g"2
m2
� � � u0sg"s

ms
u0sC1x (D w0x), note u0sC1x first. Recall that the element

u0sC1 of G contains only f and g. If "s D 1, then the first letter ofu0sC1 is f by
Lemma 2.5. Using the same technique in the proof of the ping-pong lemma, we know
u0sC1x 2 U3 [U4.

If "s D �1, then the first letter ofu0sC1 is g by Lemma 2.5 and thusu0sC1x 2
U1 [U2.
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In u01g"1
m1

u02g"2
m2
� � � u0sg"s

ms
u0sC1x (D w0x), we noteu0sg"s

ms
u0sC1x next. If "s D 1 and"s�1 D 1, then

u0sgmsu
0
sC1x 2 u0sgms(U3 [U4).

By (��), we see

U1 \ gms(U3 [U4) D ;, U2 \ gms(U3 [U4) D ;
and thus

u0sgmsu
0
sC1x 2 u0sgms(U3 [U4) � u0s(X n (U1 [U2)).

Since the last letter ofu0s is g and the first letter ofu0s is f by Lemma 2.5, using the
same technique in the proof of the ping-pong lemma again, we seeu0s(X n (U1[U2)) �
U3 [U4. Thereforeu0sgmsu

0
sC1x 2 U3 [U4.

By the same argument as above, we can see

u0sg"s
ms

u0sC1x 2
8<
:

U1 [U2 ("s D 1, "s�1 D �1),
U3 [U4 ("s D �1, "s�1 D 1),
U1 [U2 ("s D �1, "s�1 D �1).

Repeating this process, we obtain

wx D w0x D u01g"1
m1

u02g"2
m2
� � � u0sg"s

ms
u0sC1x

2 U1 [U2 [U3 [U4 � X n W.

This means thatwx ¤ x sincewx 2 X n W and x 2 W.
In conclusion, any elementw of G whose word length with respect to	 is at

most M is non-trivial in G and thus the inequalityU (	 , G) > M holds.

3. Convergence groups

We will show that some convergence groups satisfy the conditions of Proposition 2.6
and thus they have infinite girth. We first recall some definitions and known results
of convergence groups. Although there exist two equivalentdefinitions of convergence
groups by Tukia [17] and Bowditch [3], we adopt Tukia’s definition in this paper. We
refer to [17] for more details.

DEFINITION 3.1. Let X be an infinite compact Hausdorff space andG an infinite
group acting onX by homeomorphisms. We say thatG acts onX as aconvergence
group (or simply say thatG is a convergence group) if, whenever fgngn2N is a se-
quence consisting of mutually distinct elements ofG, we can find a subsequencefgni gi
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and pointsa, b 2 X (which may be equal) satisfying the following: For any compact
set K in X n fbg, we have

gni (x) ! a uniformly (i !1, 8x 2 K ),

and for any compact setK 0 in X n fag, we have

g�1
ni

(x) ! b uniformly (i !1, 8x 2 K 0).
We say thata is an attractive pointof fgngn and b is a repelling point of fgngn.

Any subgroup of convergence groups is also a convergence group by definition.
In this section, we assume thatX is an infinite compact Hausdorff space and that

G is an infinite group which acts onX as a convergence group.

DEFINITION 3.2. If g 2 G is a finite order element, then we say thatg is elliptic.
If g 2 G is an infinite order element and has two distinct fixed points in X, we say
that g is loxodromic. If g 2 G is an infinite order element and has exactly one fixed
point in X, g is said to beparabolic.

Lemma 3.3 ([17] Lemma 2A). If H is an abelian convergence group andfhngn

is an infinite sequence consisting of mutually distinct elements of H. Then the attrac-
tive and repelling point offhngn are fixed by every h2 H.

We know that a non-elliptic elementg 2 G has at most two fixed points inX by
considering the infinite sequencefgngn and using Lemma 3.3.

The following lemma holds by [17, Lemma 2D].

Lemma 3.4. Let g be a loxodromic element of G. Let a2 X be an attractive
point of fgngn and let b2 X be a repelling point offgngn. Then we havefix(g) Dfa, bg. Moreover, if we choose a neighborhood of A of a and a neighborhood B of b
with A\ B D ;, then we have the inclusions gn(X n B) � A and g�n(X n A) � B for
any sufficiently large n.

Theorem 3.5 ([17] Theorem 2I). Let g2 G be loxodromic. Then the infinite cyclic
group hgi generated by g is a finite index subgroup in the stabilizerStab(fix(g)) D fh 2
G j h(fix(g)) D fix(g)g of the fixed point set of g.

DEFINITION 3.6. We say thatx 2 X is a limit point of G if x is an attractive
point or a repelling point of an infinite sequence consistingof distinct elements ofG.
We call the set of limit points ofG the limit set of G and denote it byL(G).

The following two results are important for us.
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Theorem 3.7 ([17] Theorem 2G). Let g2 G be a loxodromic or parabolic elem-
ent. Let h2 G be also a loxodromic or parabolic element. Then they satisfy either
fix(g) D fix(h) or fix(g) \ fix(h) D ;.

Lemma 3.8 ([17] Lemma 2Q). If L (G) contains at least two points, then for
given x2 L(G) and a neighborhood U of x, there exists a loxodromic element g2 G
with one fixed point in U.

Using the above results, we will prove one of our main theorems by showing to
satisfy all the conditions of Proposition 2.6.

Theorem 3.9. Let G be a convergence group. Suppose that H is a finitely gen-
erated subgroup of G which is not virtually cyclic and that the limit set L(H ) of H
contains at least two points. Then the girth of H is infinite.

Proof. Since a subgroup of a convergence group is also a convergence group,
there exists a loxodromic elementg 2 H by Lemma 3.8. Thus condition (1) in Prop-
osition 2.6 is satisfied.

Condition (2) in Proposition 2.6 is satisfied by Lemma 3.4. Conditions (3) and (4)
in Proposition 2.6 are satisfied by Theorem 3.7 and Theorem 3.5, respectively. By the
above argument, all the conditions in Proposition 2.6 are satisfied, thus the girth ofH
is infinite.

4. Mapping class groups

In this section, we will show that some mapping class groups have infinite girth.
We first recall some properties of mapping class groups. We refer to [6], [9], [10] for
more details.

DEFINITION 4.1. Let M be a compact orientable surface. We admit thatM has
non-empty boundary. LetModM be the group of isotopy classes of orientation preserv-
ing diffeomorphisms onM. We call ModM the mapping class groupof the surfaceM.

In the following context, the surfaceM is assumed compact, orientable and con-
nected. We denote byg the genus ofM and by p the number of boundary components
of M. Put �(M) D 3gC p� 4 and assume�(M) � 0 unless otherwise stated.

Let V(M) be the set of all non-trivial isotopy classes of non-peripheral (i.e., not
isotopic to any boundary component ofM) simple closed curves onM. We denote by
R(M) the set of all non-negative real valued functions onV(M) with product topology.
Let PR(M) be the quotient space ofR(M) n f0g by the natural diagonal action of the
multiplicative groupR>0 of all positive real numbers.
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Let i W V(M) � V(M) ! N be the minimal geometric intersection number among
two elements ofV(M). For all � 2 V(M), the minimal geometric intersection number
i (�, �) is equal to zero.

We identify V(M) to R(M)n f0g, i.e., identify� in V(M) to i (�, � ) in R(M)n f0g.
The mapV(M) 3 � 7! i (�, �) 2R(M)nf0g is injective. The closure of the setfr� j r 2R>0, � 2 V(M)g in R(M) is denoted byMFM . The spaceMFM is homeomorphic
to the Euclid space of dimension 6g� 6C 2p. Each element ofMFM is identified to
a foliation with some singularities onM with transverse measure [6, Exposé 5].

The mapV(M) ! R(M) n f0g ! PR(M) is also injective. The closure of the
image of V(M) is denoted byPMFM � PR(M). The spacePMFM is called the
Thurston boundaryof M and homeomorphic to the sphere of dimension 6g � 7 C
2p. The function i W V(M) � V(M) ! N can be extended continuously to a function
i W MFM �MFM ! R�0 such that

i (r1F1, r2F2) D r1r2i (F1, F2)

for any r1, r2 2 R>0 and F1, F2 2 MFM . Hence for all elementsF1, F2 2 PMFM ,
it makes sense whetheri (F1, F2) is zero or not. We put

MIN D fF 2 PMFM j i (F , �) ¤ 0 for any � 2 V(M)g.
The mapping class groupModM of M continuously acts onMFM and PMFM

becauseR(M) is equipped with the product topology. Hence all elements of ModM are
homeomorphisms ofMFM andPMFM . Since the functioni W MFM�MFM ! R�0

is ModM -invariant, i.e.,

i (gF1, gF2) D i (F1, F2)

for all g 2 ModM and F1, F2 2MFM , the spaceMIN is ModM -invariant.
In the following context, consider the action of the groupModM on PMFM . We

call g 2 ModM a pseudo-Anosovelement if g is infinite order and has distinct two
fixed points inPMFM . These fixed points are contained inMIN . A pseudo-Anosov
element ofModM has the following properties.

Lemma 4.2 ([9] Lemma 8.3). Let f 2 ModM be a pseudo-Anosov element and�u (resp. �s) the unstable(resp. stable) foliation of f in MFM . If U and V are
disjoint neighborhoods inPMFM of the projective points of�u and �s to PMFM ,
respectively, then we have the inclusions fn(PMFM nV) � U and f�n(PMFM nU ) �
V for any sufficiently large n.

Lemma 4.3 ([9] Lemma 5.11). If f and g are pseudo-Anosov elements of ModM ,
then eitherfix( f ) D fix(g) or fix( f ) \ fix(g) D ;.
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We define a simplicial complexC(M) called thecurve complex. The set of vertices
of C(M) is V(M). A simplex of C(M) is a non-empty finite subset ofV(M) which
can be realized disjointly onM. We denote byS(M) the set of all simplices ofC(M).
Note thatModM naturally acts onC(M) as simplicial automorphisms. The setS(M)
is naturally embedded intoPMFM so thatMIN \S(M) D ;.

A subgroupG of ModM is said to bereducible if there is an element ofS(M)
fixed by all elements ofG. OtherwiseG is said to beirreducible.

Lemma 4.4 ([9] Corollary 7.14). If G is an infinite irreducible subgroup of
ModM , then G contains a pseudo-Anosov element.

Theorem 4.5 ([12] Theorem 4.6). If �(M) � 0, then any subgroup G of ModM

is one of the following types:
(1) G is finite;
(2) G is infinite and reducible;
(3) There exists a pseudo-Anosov element g2 G such that h(fix(g)) D fix(g) for any
h 2 G;
(4) There exist two pseudo-Anosov elements g1, g2 2 G such thatfix(g1)\ fix(g2) D ;.

REMARK 4.6. A groupG satisfying condition (3) is virtually infinite cyclic and
G satisfying condition (4) contains a non-abelian free subgroup.

Using Theorem 4.5, we will prove the following lemma.

Lemma 4.7. Let M be a surface with�(M) � 0. If an element f of ModM
is pseudo-Anosov, then the stabilizer offix( f ), that is, Stab(fix(f )) D fg 2 ModM j
g(fix( f )) D fix( f )g is a virtually infinite cyclic group.

Proof. The stabilizer Stab(fix(f )) is an infinite subgroup ofModM since f is an
infinite order element. Hence Stab(fix(f )) is the group in case of (2) or (3) or (4)
in Theorem 4.5. It is impossible that Stab(fix(f )) is the group in case (2). If there
exists � 2 S(M) such that Stab(fix(f ))� D � , then f � D � and thus� � fix( f ).
SinceMIN contains fix(f ) and does not contain� , this is a contradiction. Therefore
Stab(fix(f )) is the group in case (3) or (4). In case (4), there exists a pseudo-Anosov
elementg 2 Stab(fix(f )) such that fix(f ) \ fix(g) D ;. This is impossible for f , g2 Stab(fix(f )). Therefore Stab(fix(f )) is the group in case (3), and it is a virtually
infinite cyclic subgroup.

We prove another main theorem such that the girth of some mapping class groups
is infinite. Note that we do not assume�(M) � 0 in this theorem.
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Theorem 4.8. Let G be a finitely generated irreducible subgroup of ModM and
suppose that G is not virtually cyclic. Then the girth of G is infinite.

Proof. For a surfaceM with �(M) < 0, the mapping class groupModM of M is
a finite group or isomorphic toSL(2,Z). Since it is known thatSL(2,Z) is a Gromov-
hyperbolic group, this theorem is true by Theorem 1.2.

We will show that all the conditions in Proposition 2.6 are satisfied if �(M) � 0.
Note thatPMFM is homeomorphic to the sphere of dimension 6g�7C2p andModM

acts onPMFM by homeomorphisms. Condition (1) in Proposition 2.6 is satisfied by
Lemma 4.4. Condition (2) in Proposition 2.6 is satisfied by Lemma 4.2. We see that
condition (3) in Proposition 2.6 is satisfied by Lemma 4.3 andcondition (4) is satisfied
by Lemma 4.7.
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