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Abstract

We give a sufficient condition for the girth of finitely gentxd groups to be
infinite by using a technique to prove a so-called ping-pogrgrha or table tennis
lemma. We show that some convergence groups and subgroupspmding class
groups satisfy the condition. Therefore the girth of eachheim is infinite.

1. Introduction

DerINITION 1.1 ([1], [2], [14]). Let G be a finitely generated group ark(G)
the family of finitely generating (not necessarily symnm@trsets of G. For any S
X(G), we define

UGS G)=min{n |1 Sh =6 9%+ S, Iis reduced,s € S}

and callU(S, G) the girth of G with respect toS. In the above, the elemestis the
unit element ofG. If there exists no reduced worsls,---s, with 5 € S which is
trivial as an element o6, then we setJ(S, G) = co. The girth of G is defined as

U(G) = supU(S, G) | Se X(G)}.

Let us list known facts on the girth of a finitely generateduyrd@s.
e If G is finite, thenU(G) is finite by definition.
e If G is an abelian group which is not isomorphic & then U(G) is finite
by definition.
e If G is isomorphic toz, thenU(G) is infinite by definition. More generally, iG
is a free group of rank, wheren is any positive integer, theb (G) is infinite.
e If G is a solvable group which is not isomorphic &y thenU(G) is finite [14,
Corollary 4.4].
e Let G be a subgroup o6L(n, k), wherek is any field. The girth ofG is finite if
and only if G contains a finite index solvable subgroup which is not isqghiar to Z
[2, Theorem 4.4].
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234 S. YAMAGATA

e The girth of a one-relator grou@ is infinite if and only if G is not solvable [2,
Theorem 3.1].

Akhmedov proved the following theorem on the girth of somégsoups of Gromov-
hyperbolic groups by using a technique to prove a ping-p@mgnia. See [5, Chap-
ter IIl.T" 2.1] for the definition of Gromov-hyperbolic groups. A groig said to be
virtually cyclic if it contains a cyclic subgroup of finite index.

Theorem 1.2 ([2] Theorem 2.6). Let G be a Gromov-hyperbolic group and H
a finitely generated subgroup of G which is not virtually @yclThen the girth of H
is infinite.

Our result on the girth of convergence groups is stated dewel We will define
a convergence group in Definition 3.1.

Theorem 1.3. Let G be a convergence group. Suppose that H is a finitely gen-
erated subgroup of G which is not virtually cyclic and thae timit set of H contains
at least two points. Then the girth of H is infinite.

Let G and H be groups as in Theorem 1.2. It is known ti@atacts on its ideal
boundary as a convergence group [17, Theorem 3A], [3, Piti@osl.13]. The limit
set of H contains at least two points sindé¢ contains a free group of rank two as a
subgroup by [7, Chapitre 8, Théoréme 37]. Her@eand H in Theorem 1.2 satisfy
the assumption of Theorem 1.3.

There exists another class of examples satisfying the gsgamof Theorem 1.3.
Let G be a group and a family of infinite subgroups o6. Suppose thaG is hyper-
bolic relative toG in the sense of Bowditch [4, Definition 1]. By definition, shn&
acts properly discontinuously and isometrically on a Grethgperbolic space satisfy-
ing some topological conditioni; acts on its ideal boundary as a convergence group
[17, Theorem 3A]. See [5, Chapter Ill.H] for Gromov-hypelibcspaces. One of the
examples of relatively hyperbolic groups is a free proddcgroups. Any free product
of finitely generated infinite groups is hyperbolic relatieeits factors in the sense of
Bowditch. (Consider the action on its Bass—Serre tree [IHjis action satisfies [4,
Definition 2] which is equivalent to [4, Definition 1].) Corwpegently, Theorem 1.3 is
an extension of Theorem 1.2.

We also investigate the girth of mapping class groups. Mebe a compact, ori-
entable and connected surface (we admit that it has nonyebmutndary). LetMody
be the group of isotopy classes of orientation preservirgainorphisms onM. We
call Mody, the mapping class groupf the surfaceM. See Section 4 for more details.
We show the following result.

Theorem 1.4. Suppose that G is a finitely generated irreducible subgrodip o
Mody which is not virtually cyclic. Then the girth of G is infinite.
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REMARK 1.5. In this paper, we consider the action of a mapping classipg
Mody on its Thurston boundary. Reducible elementdviafdy, can have more than two
fixed points in it. Therefore, in general, subgroupsMiidy do not act on its Thurston
boundary as convergence groups since any infinite orderegieaf convergence groups
has at most two fixed points. Hence, Theorem 1.3 does not applyis action.

Let X be a set ands a group acting onX. Given g € G, we denote by fixg)
the fixed point set ofy, that is, fix@) = {x € X | g(x) = x}. The cardinality of fix{)
is denoted by # fixf). We prove Theorems 1.3 and 1.4 by checking the conditions of
the following proposition.

Proposition 1.6. Let X be a Hausdorff topological space containing infinitenel
ents. Let G be a finitely generated group which is not virfualyclic. Suppose that G
acts on X by homeomorphisms and satisfies the following tondi
(1) There exists gg¢ G such that# fix(g) = 2;

(2) Let g be any element of G such tHa¢(g) consists of exactly two pointdenoted
by a and b. If we choose a neighborhood A of a and a neighbort®oaf b with
AN B = ¢, then we have the inclusions

g"(X\B)c A
and
g"(X\ACB

for any sufficiently large nafter exchanging a and b if necessary

(3) For any elements ,th € G such that# fix(g) = # fix(h) = 2, the fixed point sets
fix(g) and fix(h) satisfy eitherfix(g) = fix(h) or fix(g) N fix(h) = @;

(4) For any element g G such that# fix(g) = 2, the stabilizer offix(g),

Stab(fix@)) = {h € G | h(fix(g)) = fix(g)},

is virtually cyclic.
Then the girth of G is infinite.

In the proof of Proposition 1.6, we use the technique to ptbeeping-pong lemma
(for example, see [8, 11.B.24]). This lemma is applied tov@dhat certain class of
groups satisfies the Tits alternative. The Tits alternatisiginates from Tits’ result on
linear groups [16, Theorem 1]. We say that a class of groutisfisa the Tits alternative
if any group in the class is virtually solvable or it contaiasfree group of rank two
as a subgroup. For example, all subgroups of mapping claaggrsatisfy the Tits
alternative [11, Theorem A]. It is not known whether conesrtge groups satisfy the
Tits alternative or not. However, if the limit set of a conyence groupG contains
more than two points, the® contains a free subgroup of rank two [17, Theorem 2U].
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2. Groups of infinite girth

We will prove the following lemma which plays an importaniedn the proof of
Proposition 2.6.

Lemma 2.1. Suppose that X is a set and that G is not a virtually cyclic grou
acting on X. Forany,jj=1,2,..., r, let g and g be elements of G such that
#fix(g) = #fix(g;) = 2 and eitherfix(g;) = fix(g;) or fix(gi) N fix(g;) = 9. For each
i =1,2...,r, we suppose that the stabiliz8tab(fix@;)) = {g € G | g(fix(g)) = fix(g)}
of fix(gi) is virtually cyclic. If we putA = Ji_, fix(g)), then there exists k G such
that hAN A = 0.

Before proving Lemma 2.1, we quote the following lemma.

Lemma 2.2 ([13] Lemma 4.1). Suppose that a group G is a union of n cosets
of subgroups H Hy,..., Hy of G, i.e, G = Ui”:l g Hi. Then there exists a subgroup
H; such that the index of Hn G does not exceed n.

Proof of Lemma 2.1. For any, j =1, 2,..., r, the subsetA;; = {g € G |
g(fix(gi)) = fix(g;)} of G is a left coset of the stabilizer of fig(), i.e., A =
g - Stab(fix@;)) for any g € A;j. For anyi =1, 2,...,r, the stabilizer Stab(fixf))
is infinite index in G since G is not virtually cyclic. By Lemma 2.2, we havé 2
Ui joa Aij. Foranyh e G\ U ;—; A j, we know h(A) N A = @ since the fixed
point sets fixg;) and fix@;) satisfy fix@) = fix(g;) or fix(g) N fix(g;) = @ for any
i,j=121,2,...,r. O

Before proving Proposition 2.6, we consider reduced womls o
v =g, f, g% " g™Ma M, ..., oMo FM)
and
v'={g, f,on 0. ., o},

where M is a positive integer. We will use these reduced words in tto®fpof Prop-
osition 2.6 to apply the technique to prove the ping-pongnhem

A non-empty reduced word» on ¥ is denoted byw = u; or

w = Uy (@™Mgm, f™M) 1 uz(g™M gm, £M)2 - Uug(@™M g, £ ™M) Us 1

satisfying the following three conditions:

e mefl,2,...,k}foranyi =1,2,...,5s;
e g =1L1or-1foranyi=12,...,5s
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e Foranyi =1,2,...,s+1, the wordy; is the empty word or a reduced word only
containing f and g.

REMARK 2.3. If uy =@ and mi_; = m;, it is impossible to takes;_; = 1 and
g =—1. If .1 =1 andg; = —1, then the reduced word contains a word

(@™ Mg, F™M) -ty (G M gy ™M) = (@M g, ™ M)(@™ Mg M)

This is a contradiction since is a reduced word o&. For the same reason, uf = ¢
andmj_; = my;, it is also impossible to take,_; = —1 ande; = 1.

Note that ifu; is not empty, thery; is also a reduced word o¥’.

For alli =1, 2,...,k, if we regard the letteg™g; f'M in ¥ as a word ony’,
it consists of the letterg, g and f in ¥’. Regarding the letteg’Mg f' in ¥ as
a word on¥’, we reducew as a word on¥’ and denote it byw’. The wordw’ is
possibly empty althoughv is a non-empty reduced word of. We will show the
following two lemmas onw and w’.

Lemma 2.4. If w = uy, then the reduced wordy” on ¥’ is also denoted by
w = Usg.

If w = ug(@™Mgm, f™M)*1ux(gMM g, FMM)2- - Ug(g™M g, f™M)*sUs 1, then the
reduced wordw’ on ¥’ is denoted byw’" = ujgri U5g2 - - - Ugdrs U 1, Where the word {1
is the empty word or a reduced word only containing f and g for a=1, 2,...,s+ 1.

Before proving this lemma, we explain the assertion of teimrha by taking an
example. Takew = gMg; fM(g® g, f?)~L. The wordw consists of the two letters
gMgi f™ and g?Mg, f2M in w. Thenw' = gMg; f~Mg;1g=2™ and w’ consists of the
lettersg, f, g1 andgy in ¥'. In this casey; = gM, u, = f"M, uy=gM, m =1,
my,=2,¢6 =1ande, = —1.

Proof. Recall that for all =1, 2,...,s+ 1, the wordu; is a reduced word not
only on ¥ but also on¥’. Hence ifw = uy, thenw’ = u;.
In the following context, we treat the case of

w = Us(@™ N g, £ ™M) UG g, M) Q™ i, ) s

The wordu gy Usgr, - - - Ugdrs U, 1 IS obviously a reduced word o#’. We will show
that w” is denoted by this word.

Foralli =1,2,...,k, if the lettergMg; f'M in ¥ is regarded as a reduced word
on ¥’, it contains the lettergy, g and f in ¥'. For alli =1, 2,...,k, if a re-
duced word ¢Mg f'M)~1 on ¥ is regarded as a reduced word gf, it is denoted

by f-Mg-1g7™. It also contains the letter§, g andg in ¥'. For alli =1,2,...,s,
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after we carry out this process fogtMgy, f™M)4, we regardw as a (possibly not

reduced) wordw” on ¥’. After w” is reduced with respect t&’, the reduced word

w’ = U0t Usgr? - - - UgOns U, on ¥’ is obtained. We will explain the process of re-

ducingw” to w’ in the following.
If ¢4 =1, then

w = Ug(g™" g, F™M)U2(9™N O, £M)72 - - Us(G™M O, ™M) Us 41
Reduceu;g™M with respect to#’ and denote it by;. Moreover ifu; = g~™M, then
u; = 9.

If &4 = -1, then

w = Ug(g™Mgm, ™M) tua(g™M g, FEV)2 - - US(9™M O, f ™M) S Us 1
Reduceu; f~™M with respect to#’ and denote it byi;. Moreover ifu; = ™M, then
u; = 9.

Hence the wordy] is a reduced word o’ containing only f and g, or the empty
word in both the case of; = 1 ande; = —1.

For alli =2,3,...,s, we denote by the word obtained by reducing the follow-
ing words.
o MMy, gMM for g_; =1 andg = 1.
o MMy, f MM for 5_; =1 andg = —1.
o g MMy g™M for g_; = —1 andg = 1.
e g MMy f~MM for g_; = —1 ands = —1.

Note that ifu; = @ andm;_; = my, it is impossible to take;_; andeg; with g_1-¢& =
—1 by Remark 2.3.

Foralli =2,3,...,s, the wordu; is also possibly empty. For example,sjf; =1,
g =1 anduy = f MMg MM thenu/ is the empty word. By the above argument,
for alli =2,3,...,s, we know thatu; is the empty word or a reduced word @n

containing only f andg.

If es =1, the wordug_, is obtained by reducind MsMus 1. In addition, ifus,; =
f=mM thenul,, = 0. If &s = —1, the wordu, , is obtained by reducing=™Mus, ;.
Moreover if us,; = g™M, thenul, , = @. Henceu,, is the empty word or a reduced
word on ¥’ containing only f and g. O

If the word length ofw with respect tow is not greater tharM, the following
lemma holds. Using the technique to prove the ping-pong larimthe proof of Prop-
osition 2.6, we make use of this lemma.
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Lemma 2.5. Let w be the reduced word
u1(g™" gm, F™M)*U2(@™ g, ™M) - - ug(@™M g, ™M) 5Ug 1

on ¥. Suppose that the word length ef with respect tow is at most M. Then for
the reduced wordy’ = ujgii U502 - - - UsQrs Ug,, on ¥/, the following assertions hold
foralli=1,2,...,s:

(1) ui is not empty

(2) If & =1, then the last letter of uis g and the first letter of lu, is f;

(3) If & = —1, then the last letter of uis f and the first letter of U, is g.

Before proving this lemma, we show some examples to explanassertion of
this lemma. Ifw = g-M*4(gMg, f ™) (the word length ofw with respect to¥ is M),
thenw’' = gou fM, uj =g andu, = fM. The last letter ofu] is g and the first letter
of u, is f. This lemma is false if the word length af with respect to¥ is more
than M. For example, ifw = g~M(gMg; f¥) (the word length ofw with respect to@
is M + 1), thenw’ = g, fM, u) =0 andu, = ™.

Proof. If &1 = 1, the wordu] is obtained by reducing a wonghg™M. Especially,
if up =9, thenu] = g™M and the last letter ofi} is g. On the other hand, if; =1
andu; # @, then we seti; = fag™ feg>... fagh where ifa; = 0, thenb; # 0, and
if b =0, theng # 0. Since the word length ab) with respect to¥ is at mostM, we
know |a;| and |bi| are less tharM for all i =1, 2,...,1. If by =0, thenu,g™M = u}
becauseu;g™M = fagb fRgh ... fagmM s glready a reduced word of’. There-
fore the last letter ot} is g. If by # 0, thenuyg™M = fagh fagbz... fagh+mM,
If the exponenthy + myM of g is equal to O, therjb| = |-mM| = mM > M. This
is a contradiction sincéy| is less thanM. Therefore we knowy + MM # 0 and the
last letter ofu] is g.

If e1 = —1, we can prove that the last letter of is f in the same way as above.

For anyi =2,3,...,s, if §_1 =1 andg; = 1, the wordu; is obtained by reducing
a word fM-1My;gMmM_if u; = @, thenu = f™M-MgmM_f y; £ ¢, thenu; is denoted
by uj = faighfeg®... fagh In the above description, & = 0, thenb; # 0, and
if bp =0, theng # 0. Note that|a;| and |bj| is less thanM for anyi =1, 2,...,|
because the word length of with respect to¥ is at mostM. Then we obtain

meMgbl fangz R falgm\M (ag =0, b =0),
) fmi,lM-‘ralgbl fangz e fagm‘M (a]_ 7é 0, b = 0)!

u = fmi,lMgbl fangz . fagh+miM (al =0, bl # O),
fmaMtaigh faoghs .. fagh+tmM (5 £ 0 by #£0).
If m_1M+a =0, then|ay| = |-m_1M|=m;_1M > M. This is a contradiction since

|a;| is less thanM, thusa; + mj_1M # 0. We can show that + m; M is not equal to
0 in the same way as above. Therefore the first letten;ds f and the last letter of
u; is g in both the case ofif =@ andu; # @. For anyi =2, 3,...,s, we can prove
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that if &;_y = —1 andg = —1, the first letter ofu] is g and the last letter ot is f
in the same way.

For anyi = 2,3,...,s, if &1 = =1 ande = 1, the wordu; is obtained by
reducing a wordg~™-:Mu;g™M. If u; = @, thenu/ = gCM-++MM " Note mi_; # m,
by Remark 2.3. Therefora] = g-™-1+M)M s not the empty word, and; starts with
g and ends withg. If u; # @, then we can prove that the first letter @f is g and the
last letter ofu; is alsog in the same way as in the case ©f; = ¢ = 1.

If &_1 =1 andg = —1, the first letter ofu is f and the last letter ofi is also
f by the same argument as above.

If e&s =1 (resp.es = —1), the wordug_ , is obtained by reducing the wort™Mug, 4
(resp.g™Mug, 1). By the same argument as above, we know that the first lefitef .q
is f (resp.g). ]

Proposition 2.6. Let X be a Hausdorff topological space containing infinitene
ents. Let G be a finitely generated group which is not virfualyclic. Suppose that G
acts on X by homeomorphisms and satisfies the following tondi
(1) There exists g¢ G such that# fix(g) = 2;

(2) Let g be any element of G such tHat(g) consists of exactly two pointdenoted
by a and b. If we choose a neighborhood A of a and a neighbori®oaf b with
AN B = @, then we have the inclusions

g"(X\B)C A
and
g"(X\A)cCB

for any sufficiently large nafter exchanging a and b if necessary

(3) For any elements ch € G such that# fix(g) = # fix(h) = 2, the fixed point sets
fix(g) and fix(h) satisfy eitherfix(g) = fix(h) or fix(g) N fix(h) = @;

(4) For any element g G such that# fix(g) = 2, the stabilizer offix(g),

Stab(fix@)) = {h € G | h(fix(g)) = fix(g)},

is virtually cyclic.
Then the girth of G is infinite.

Proof. For any positive intege, we will prove that there exists a finite gener-
ating set¥ of G such thatU (¥, G) > M.

Let S= {01, 02, ..., Gk} be a generating set d&. By condition (1), there exists
g € G anda, b € X such thata # b and fix@) = {a, b}. Note that for anyh € G, the
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conjugate elementigh™ of g has two distinct fixed point&i(a) and h(b). Thus there
existsh € G such that

(*) {h(@), h(b)} N {a, b, g (@), g™ (). .. .. G (@), G (b)) = 0

by conditions (3), (4) and Lemma 2.1.
Set f = hgh! € G. The fixed point set off is {h(a), h(b)}. There existsx € X
such that

xeX \ ({a1 b’ h(a)! h(b)} U {gl(a)1 gl(b)v s gk(a)! gk(b)}
U {ai(h(@)), gi(h(b)), . .., g«(h(@)), gk(h(b))})

since X is an infinite set. Let;,U,, U3, U4 and W be neighborhoods dd, b, h(a), h(b)
and x, respectively and disjoint each other. For bl 1, 2,...,k, we know a #
g (h(@), a # g (h(b)), b # g**(h(a)) andb # gi*'(h(b)) by (x). Thus, for alll =
1,2,...,k, we can suppose that

U Ngu;) =9

() i=1,2 i =34
({J =34 % {i =1,2)

by continuity of the action ofs on X. By condition (2), there existag € N such that
for any n > np, we obtaing®"(X \ (Uy U Uy)) C U U U, and fE"(X \ (U3 U Uy)) C
UsUU4 By W C X\ (U UU,) andW C X\ (U3 UUy), we obtaing*"(W) c U; U U,
and f*"(W) c UsU U, for any n > ny. Rewriteg™ and f™ by g and f, respectively,
then gil(X \ (UpUUy)) Cc Ug UUsy, fﬂ(X \ (UsUUy)) C UzU Uy, gil(W) CcUiUU,
and f+1(W) c Uz U Uy,.

A finite set

v ={g, f,g"o M, g™ f™, ..., gMg M}

also generate& becauseG is generated bys.

We will show U (¥, G) > M.

Let w be a non-empty reduced word @nh whose word length with respect t&
is at mostM. As we have seeny is denoted byw = u; or

w = ul(gmlM Om, fmlM)sluz(gszgm2 fsz)az . us(ngMgmS fmSM)SSUs+1

satisfying the following conditions:

e miefl 2,...,k} foranyi=1,2,...,s;

e g =1L1or-1foranyi=1,2,...,s

e Foranyi =1,2,...,s+1, the wordy; is the empty word or a reduced word only
containing f andg.
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h(b) ’ ‘
a
b ‘

Fig. 1. The technique to prove the ping-pong lemma.

Puty’ ={g, f,01,9,...,0}. Reduce the word with respecttol’. By Lemma 2.4
and Lemma 2.5, the word' is denoted byw’ = u; or w’ = UjgrL U572 - - - UsOps Ug, 1,
where for alli =1, 2,...,s+1, the wordu; is a non-empty reduced word only containing
f andg. By Lemma 2.5, for all =1, 2,..., s, the following assertions hold:

e If g =1, then the letter right beforgy, is g and the letter right aftegy, is f;
e If 5 = —1, then the letter right beforgr;i1 is f and the letter right aﬁegr;il is g.

We move the pointx € W C X by any elementw of G whose word length with
respect to¥ is at mostM and showwx # x by using the same technique to prove
the ping-pong lemma. livx # X, the elementw of G is not trivial in G and thus
U, G) > M.

If w = uy, using the same technique in the proof of the ping-pong lepnwieasee
that wx = uyx is a point ofU; U U, U U3z U U, becauseau; consists of onlyg and f.
We seewx # X sincewx € U UU, UUzUUs andx e W C X\ (U3 UU, U U3z U Uy).

We consider the case of

w = Uy (g™Mgm, F ™M) Ux(g™M gm, ™M) - - - Ug(Q™M O, T ™M) U 1.

By Lemma 2.4,w is denoted byw’ = U} gy Usgr2 - - -Uggss Ug, , as a reduced word
on ¥’'. As an element of5, w is equal tow’ and thus movingx by w’ € G is equal
to moving x by w € G.

In UjgRt U50r2 - - - UgOrs Ug, 1 X (= w'x), note ug ;x first. Recall that the element
Ug,, of G contains onlyf andg. If es = 1, then the first letter otuy, , is f by
Lemma 2.5. Using the same technique in the proof of the porggdemma, we know
U/S+1X € Uz U Ug.

If es = —1, then the first letter ol , is g by Lemma 2.5 and thus, X €
U, U U,.
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In ujgn U502 - - - UgOrs Ug, 1 X (= w'X), we noteuggps Ug, X next. If es = 1 and
es—1 = 1, then

UsOm,Us, 1X € UgOm,(Uz U Uy).
By (xx), we see
Ui Ngm(UsUUs) =0, UsNgm(UsUUy) =9
and thus
UgOmUg 1X € UgOm,(Us U Us) C ug(X \ (Uz U Uy)).

Since the last letter ofi; is g and the first letter oli; is f by Lemma 2.5, using the
same technique in the proof of the ping-pong lemma again,egeigX \ (U1 UUy)) C
Us U Uyg. Thereforeuggm,ug, ;X € Us U Uy.

By the same argument as above, we can see

U]_ U U2 (83 = 1, Es—1 = —1),
U Usy X € YUsUUs  (es = —1,85 1 =1),
UiUU; (es=-1,85 1 =—1).

Repeating this process, we obtain

— / — ! ~NE1 1/ NE2 !/ ~E /
wX = w'X = Ujg UsQr2 - - - Ugps Ug, 1 X

eUiulUulUzulUy C X\ W.

This means thatvx # x sincewx € X \ W andx € W.
In conclusion, any element of G whose word length with respect @& is at
most M is non-trivial in G and thus the inequality (¢, G) > M holds. []

3. Convergence groups

We will show that some convergence groups satisfy the ciomgitof Proposition 2.6
and thus they have infinite girth. We first recall some defingi and known results
of convergence groups. Although there exist two equivatkfinitions of convergence
groups by Tukia [17] and Bowditch [3], we adopt Tukia’s defom in this paper. We
refer to [17] for more details.

DEerFINITION 3.1. LetX be an infinite compact Hausdorff space &@dan infinite
group acting onX by homeomorphisms. We say th@t acts onX as aconvergence
group (or simply say thatG is a convergence groypif, whenever{gn}nen IS a Se-
quence consisting of mutually distinct elementsGfwe can find a subsequen¢g,, }i
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and pointsa, b € X (which may be equal) satisfying the following: For any comipa
setK in X\ {b}, we have

O, (X) = a uniformly (i — oo, VX € K),
and for any compact sék’ in X\ {a}, we have
9, " (x) = b uniformly (i — oo, ¥x € K).
We say thata is anattractive pointof {gn}, andb is arepelling pointof {gn}n.

Any subgroup of convergence groups is also a convergenagdrg definition.
In this section, we assume tht is an infinite compact Hausdorff space and that
G is an infinite group which acts oX as a convergence group.

DerINITION 3.2. If g€ G is a finite order element, then we say tlggis elliptic.
If g € G is an infinite order element and has two distinct fixed pointsXi we say
that g is loxodromic If g € G is an infinite order element and has exactly one fixed
point in X, g is said to beparabolic

Lemma 3.3 ([17] Lemma 2A). If H is an abelian convergence group art,},
is an infinite sequence consisting of mutually distinct elets of H. Then the attrac-
tive and repelling point ofh,}, are fixed by every & H.

We know that a non-elliptic elemernf € G has at most two fixed points iX by
considering the infinite sequené¢g"}, and using Lemma 3.3.
The following lemma holds by [17, Lemma 2D].

Lemma 3.4. Let g be a loxodromic element of G. LeteaX be an attractive
point of {g"}, and let be X be a repelling point ofg"},. Then we havdix(g) =
{a, b}. Moreovey if we choose a neighborhood of A of a and a neighborhood B of b
with AN B = @, then we have the inclusions'@ \ B) € A and g"(X \ A) C B for
any sufficiently large n.

Theorem 3.5([17] Theorem 2I). Let g e G be loxodromic. Then the infinite cyclic
group (g) generated by g is a finite index subgroup in the stabilR&b(fix@)) = {h €
G | h(fix(g)) = fix(g)} of the fixed point set of g.

DEFINITION 3.6. We say thak € X is alimit point of G if x is an attractive
point or a repelling point of an infinite sequence consistrfiglistinct elements ofs.
We call the set of limit points ofs the limit set of G and denote it byL (G).

The following two results are important for us.
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Theorem 3.7 ([17] Theorem 2G). Let ge G be a loxodromic or parabolic elem-
ent. Let he G be also a loxodromic or parabolic element. Then they satither
fix(g) = fix(h) or fix(g) N fix(h) = 9.

Lemma 3.8 ([17] Lemma 2Q). If L(G) contains at least two pointsthen for
given xe L(G) and a neighborhood U of xthere exists a loxodromic elementegG
with one fixed point in U.

Using the above results, we will prove one of our main theardy showing to
satisfy all the conditions of Proposition 2.6.

Theorem 3.9. Let G be a convergence group. Suppose that H is a finitely gen-
erated subgroup of G which is not virtually cyclic and thae thimit set L(H) of H
contains at least two points. Then the girth of H is infinite.

Proof. Since a subgroup of a convergence group is also a igEnee group,
there exists a loxodromic elemegte H by Lemma 3.8. Thus condition (1) in Prop-
osition 2.6 is satisfied.

Condition (2) in Proposition 2.6 is satisfied by Lemma 3.4nd@itons (3) and (4)
in Proposition 2.6 are satisfied by Theorem 3.7 and Theoré&mnr8spectively. By the
above argument, all the conditions in Proposition 2.6 atesfged, thus the girth oH
is infinite. []

4. Mapping class groups

In this section, we will show that some mapping class grouge hinfinite girth.
We first recall some properties of mapping class groups. W te [6], [9], [10] for
more details.

DEFINITION 4.1. LetM be a compact orientable surface. We admit thathas
non-empty boundary. Ld¥lody be the group of isotopy classes of orientation preserv-
ing diffeomorphisms orM. We call Mody, the mapping class groupf the surfaceM.

In the following context, the surfac® is assumed compact, orientable and con-
nected. We denote by the genus oM and by p the number of boundary components
of M. Putk(M) = 3g + p—4 and assume(M) > 0 unless otherwise stated.

Let V(M) be the set of all non-trivial isotopy classes of non-pegilh (i.e., not
isotopic to any boundary component bf) simple closed curves oM. We denote by
R(M) the set of all non-negative real valued functions\6¢M) with product topology.
Let PR(M) be the quotient space G&(M) \ {0} by the natural diagonal action of the
multiplicative groupR., of all positive real numbers.
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Leti: V(M) x V(M) - N be the minimal geometric intersection number among
two elements oV (M). For all « € V(M), the minimal geometric intersection number
i (o, @) is equal to zero.

We identify V(M) to R(M)\ {0}, i.e., identify in V(M) to i(«, -) in R(M)\ {0}.
The mapV(M) > o (e, -) € R(M)\ {0} is injective. The closure of the séto |1 €
R.g, « € V(M)} in R(M) is denoted byMFy. The spaceMFy is homeomorphic
to the Euclid space of dimensiorg6- 6 + 2p. Each element of\.F\ is identified to
a foliation with some singularities oM with transverse measure [6, Exposé 5].

The mapV(M) — R(M) \ {0} — PR(M) is also injective. The closure of the
image of V(M) is denoted byPMFy C PR(M). The spacePMFy is called the
Thurston boundaryof M and homeomorphic to the sphere of dimensian-67 +
2p. The functioni: V(M) x V(M) — N can be extended continuously to a function
i: MFux MFnm — R>p such that

i(roFy, r2F2) = rarai(F, F2)

for anyrq, r, e R.g and Fy, F, € MFy. Hence for all element§, F, € PMFy,
it makes sense whethétFy, F,) is zero or not. We put

MIN ={F e PMFy |i(F,«) #0 for anya € V(M)}.

The mapping class groubod,, of M continuously acts oo’ Fy and PMFy
becauseR (M) is equipped with the product topology. Hence all elemefitMody are
homeomorphisms aMFy and PMFy. Since the function: MFy x MFy — Rxg
is Mody -invariant, i.e.,

i(gF, gR) =i(F1, F)

for all g € Mody and F;, F, € MFy, the spaceMZN is Mody-invariant.

In the following context, consider the action of the groMpd,, on PMFy. We
call g € Mody a pseudo-Anosoelement if g is infinite order and has distinct two
fixed points inPMFy. These fixed points are contained MZN . A pseudo-Anosov
element ofMody has the following properties.

Lemma 4.2 ([9] Lemma 8.3). Let f € Mody be a pseudo-Anosov element and
u' (resp. 1°) the unstable(resp. stablg foliation of f in MFy. If U and V are
disjoint neighborhoods iPMF )y, of the projective points oft and u® to PMFy,
respectivelythen we have the inclusions’(PMFy\V) cU and f"(PMFnu\U) C
V for any sufficiently large n.

Lemma 4.3 ([9] Lemma 5.11). If f and g are pseudo-Anosov elements of Mod
then eitherfix( f) = fix(g) or fix(f) Nfix(g) = 0.
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We define a simplicial comple€ (M) called thecurve complexThe set of vertices
of C(M) is V(M). A simplex of C(M) is a non-empty finite subset &f (M) which
can be realized disjointly oM. We denote byS(M) the set of all simplices o€(M).
Note thatMody naturally acts onC(M) as simplicial automorphisms. The sg{M)
is naturally embedded int®MFy so that MZN NS(M) = @.

A subgroupG of Mody is said to bereducibleif there is an element o5(M)
fixed by all elements ofs. OtherwiseG is said to beirreducible

Lemma 4.4 ([9] Corollary 7.14). If G is an infinite irreducible subgroup of
Mody, then G contains a pseudo-Anosov element.

Theorem 4.5 ([12] Theorem 4.6). If «(M) > 0, then any subgroup G of Mg
is one of the following types
(1) G is finite
(2) G is infinite and reducible
(38) There exists a pseudo-Anosov elemert @ such that fix(g)) = fix(g) for any
h e G;
(4) There exist two pseudo-Anosov elementgge G such thatfix(g;) Nfix(gz) = @.

REMARK 4.6. A groupG satisfying condition (3) is virtually infinite cyclic and
G satisfying condition (4) contains a non-abelian free sabgr

Using Theorem 4.5, we will prove the following lemma.

Lemma 4.7. Let M be a surface withc(M) > 0. If an element f of Mog
is pseudo-Anosouvhen the stabilizer ofix(f), that is Stab(fix(f)) = {g € Mody |
g(fix( f)) = fix(f)} is a virtually infinite cyclic group.

Proof. The stabilizer Stab(fiX() is an infinite subgroup oMody since f is an
infinite order element. Hence Stab(fiY) is the group in case of (2) or (3) or (4)
in Theorem 4.5. It is impossible that Stab(fiy] is the group in case (2). If there
exists 0 € §(M) such that Stab(fix{))o = o, then fo = o and thuso C fix(f).
Since MZN contains fix() and does not contaia, this is a contradiction. Therefore
Stab(fix(f)) is the group in case (3) or (4). In case (4), there existseugs-Anosov
elementg € Stab(fix(f)) such that fixf) N fix(g) = @. This is impossible forf, g
€ Stab(fix(f)). Therefore Stab(fix{)) is the group in case (3), and it is a virtually
infinite cyclic subgroup. []

We prove another main theorem such that the girth of some imgumbass groups
is infinite. Note that we do not assum€M) > O in this theorem.
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Theorem 4.8. Let G be a finitely generated irreducible subgroup of Modnd
suppose that G is not virtually cyclic. Then the girth of G ndirite.

Proof. For a surfacéM with «(M) < 0, the mapping class groudody, of M is
a finite group or isomorphic t&L(2, Z). Since it is known thaSL(2,Z) is a Gromov-
hyperbolic group, this theorem is true by Theorem 1.2.

We will show that all the conditions in Proposition 2.6 ardidaed if «(M) > 0.
Note thatPMFy is homeomorphic to the sphere of dimensian-67+ 2p and Mody,
acts onPMFy by homeomorphisms. Condition (1) in Proposition 2.6 issStil by
Lemma 4.4. Condition (2) in Proposition 2.6 is satisfied bynioea 4.2. We see that
condition (3) in Proposition 2.6 is satisfied by Lemma 4.3 anddition (4) is satisfied
by Lemma 4.7. ]
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