

Title	On some classes of L^p -bounded pseudodifferential operators
Author(s)	Nagase, Michihiro
Citation	Osaka Journal of Mathematics. 1986, 23(2), p. 425-440
Version Type	VoR
URL	https://doi.org/10.18910/9099
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nagase, M.
Osaka J. Math.
23 (1986), 425–440

ON SOME CLASSES OF L^p -BOUNDED PSEUDO-DIFFERENTIAL OPERATORS

To the memory of Professor Hitoshi Kumano-go

MICHIHIRO NAGASE

(Received March 22, 1985)

1. Introduction

In the present paper we shall give some sufficient conditions for the boundedness of pseudo-differential operators in $L^p=L^p(\mathbb{R}^n)$ for $2 \leq p \leq \infty$. We treat the classes of non-regular symbols, which generalize the Hörmander's class $S_{\rho,\delta}^m$. There have already been many L^p -boundedness theorems of pseudo-differential operators with symbols which belong to generalized classes of $S_{\rho,\delta}^m$ and are at least $n+\varepsilon$ differentiable in the covariables $\xi=(\xi_1, \dots, \xi_n)$. In the present paper we study the boundedness for operators with symbols $p(x, \xi)$ which are only up to $\kappa=[n/2]+1$ differentiable in ξ .

Recently in [16], Wang-Li showed an L^p -boundedness theorem for pseudo-differential operators with symbols which belong to a generalized class of $S_{\rho,\delta}^{-m_p}$, where $0 < \rho < 1$ and $m_p = n(1-\rho)|1/2-1/p|$. Moreover in [12] and [13], the author has obtained L^p -boundedness theorems for the operators which have symbols of generalized class of $S_{1,\delta}^0$ ($0 \leq \delta < 1$). In these paper the L^p -boundedness theorems for $p \geq 2$ are proved under the assumptions that the symbols are only up to $\kappa=[n/2]+1$ differentiable and satisfy some additional conditions.

The main theorem of the present paper is Theorem 4.5 in Section 4, which is given for operators in the generalized class of Hörmander's $S_{\rho,\delta}^{-m_p}$. We note that Theorem 4.5 is obtained under $\kappa=[n/2]+1$ differentiability in ξ and Hölder continuity condition in the space variables $x=(x_1, \dots, x_n)$ when p is sufficiently large or ρ is sufficiently near to 1.

As pointed out by Hörmander in [5], $m_p = n(1-\rho)|1/2-1/p|$ is the critical decreasing order for the L^p -boundedness of pseudo-differential operators with symbols in $S_{\rho,\delta}^m$. Furthermore we note that $\kappa=[n/2]+1$ differentiability of symbols in ξ does not always imply the L^p -boundedness of the operators when $1 \leq p < 2$ (see [16] and [17]).

In Section 2 we give notation and preliminary lemmas. In Section 3, we show L^p -boundedness theorems for the operators with symbols which have higher decreasing order than the critical decreasing order m_p , as $|\xi| \rightarrow \infty$. In

Section 4, we investigate the L^p -boundedness of operators with symbols which have the critical decreasing order as $|\xi| \rightarrow \infty$. The main theorem is proved by using an approximation (regularization) of symbols (see [8]).

2. Preliminaries

We use a standard notation which is used in the theory of pseudo-differential operators (see [7] and [15]). Let $p(x, \xi)$ be a function defined on $R_x^n \times R_\xi^n$. Then the pseudo-differential operator $p(X, D_x)$ associated with symbol $p(x, \xi)$ is defined, formally, by

$$p(X, D_x) u(x) = \int e^{ix \cdot \xi} p(x, \xi) \hat{u}(\xi) d\xi ,$$

where $\hat{u}(\xi)$ denotes the Fourier transform of the function $u(x)$, that is, $\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx$, and $d\xi = (2\pi)^{-n} d\xi$. For $p(x, \xi)$ we denote $p_{(\beta)}^{(\alpha)}(x, \xi) = \partial_\xi^\alpha D_x^\beta p(x, \xi) = (-i)^{|\beta|} \partial_\xi^\alpha \partial_x^\beta p(x, \xi)$ for any multi-indices α and β . Moreover we write $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$. Then the Hörmander's class $S_{\rho, \delta}^m$ of symbols is defined by $S_{\rho, \delta}^m = \{p(x, \xi) \in C^\infty(R_x^n \times R_\xi^n); |p_{(\beta)}^{(\alpha)}(x, \xi)| \leq C_{\alpha, \beta} \langle \xi \rangle^{m - \rho|\alpha| + \delta|\beta|} \text{ for any } \alpha \text{ and } \beta\}$. Here and hereafter we denote by $C, C_\alpha, C_{\alpha, \beta}, c_n$ etc., the constants which are independent of the variables (x, ξ) and are not always the same at each occurrence. We denote by N, N_0, N_1 etc., the semi-norms of symbols. Moreover we denote $\kappa = [n/2] + 1$.

Lemma 2.1. *Let $0 \leq \rho < 1$ and let $\omega(t)$ be a non-negative and non-decreasing function defined on $[0, \infty)$ and satisfy*

$$(2.1) \quad \int_0^1 \frac{\omega(t)^2}{t} dt = M_2 < \infty .$$

Suppose that a symbol $p(x, \xi)$ satisfies

$$(2.2) \quad \begin{cases} N_0 = \sup_{|\alpha| \leq \kappa, (x, \xi)} |p^{(\alpha)}(x, \xi)| \langle \xi \rangle^{|\alpha|} < \infty , \\ N_1 = \sup_{|\alpha| \leq \kappa, (x, y, \xi)} |p^{(\alpha)}(x, \xi) - p^{(\alpha)}(y, \xi)| \omega(|x - y| \langle \xi \rangle^\delta)^{-1} \langle \xi \rangle^{|\alpha|} < \infty . \end{cases}$$

Then $p(X, D_x)$ is L^2 -bounded and we have

$$(2.3) \quad \|p(X, D_x) u\|_{L^2} \leq C(N_0 + N_1 M_2) \|u\|_{L^2} .$$

Lemma 2.1 is shown in [9] and [10] for $\delta = 0$ and in [13] for $0 \leq \delta < 1$.

Lemma 2.2. *Let $0 \leq \rho < 1$. Suppose that a symbol $p(x, \xi)$ satisfies*

$$(2.4) \quad N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{\rho(|\alpha| - |\beta|)} < \infty .$$

Then $p(X, D_x)$ is L^2 -bounded and we have

$$(2.5) \quad \|p(X, D_x) u\|_{L^2} \leq C N \|u\|_{L^2}.$$

When $\rho=0$, the lemma is obtained by Cordes in [2]. In [6] Kato proved the L^2 -boundedness for $0 < \rho < 1$ when the semi-norm N in (2.4) is defined for $|\alpha| \leq \kappa$ and $|\beta| \leq \kappa + 1$. In [1] Coifman-Meyer obtained the Lemma 2.2.

We use the following lemma in Section 4 in order to smooth the non-regular symbols. The lemma is shown in [8] and [11].

Lemma 2.3. *Let τ be a positive number. Then for any α there exists $\{\phi_{\alpha, \beta}(\xi)\}_{|\beta| \leq |\alpha|}$ in $S_{1,0}^{-|\alpha|}$ such that for any C^∞ function function ψ we have*

$$(2.6) \quad \partial_\xi^\alpha \{\psi(\langle \xi \rangle^\tau z)\} = \sum_{|\beta| \leq |\alpha|} \phi_{\alpha, \beta}(\xi) \{\langle \xi \rangle^\tau z\}^\beta \psi^{(\beta)}(\langle \xi \rangle^\tau z),$$

where $\psi^{(\beta)}(y) = \partial_y^\beta \psi(y)$.

3. L^p -boundedness for operators with lower order symbols

In this section we treat pseudo-differential operators associated with symbols which decrease as $|\xi| \rightarrow \infty$ faster than the critical decreasing order for L^p -boundedness. We denote the norm of $L^p = L^p(R^n)$ by $\|\cdot\|_p$ and denote by $L(L^p)$ the space of bounded linear operators on L^p . Let $H^s = H^s(R^n)$ denote the Sobolev space of order s with norm $\|\cdot\|_{H^s}$ defined by

$$\|u\|_{H^s} = \|\langle D_x \rangle^s u\|_{L^2} = \left\{ \int |\langle \xi \rangle^s \hat{u}(\xi)|^2 d\xi \right\}^{1/2},$$

and let $\|\cdot\|_{H^s(a)}$ denote the equivalent norm with positive parameter a defined by

$$\|u\|_{H^s(a)} = \|\langle a D_x \rangle^s u\|_{L^2} = \left\{ \int |\langle a \xi \rangle^s \hat{u}(\xi)|^2 d\xi \right\}^{1/2}.$$

Proposition 3.1. *Let $s > n/2$ and let $2 \leq p \leq \infty$. We assume that a symbol $p(x, \xi)$ belongs to the Sobolev space H^s and satisfies*

$$(3.1) \quad \sup_x \|p(x, \cdot)\|_{H^s} = N_0 < \infty.$$

Then the operator $p(X, D_x)$ belongs to $L(L^p)$ and satisfies

$$(3.2) \quad \|p(X, D_x) u\|_p \leq C a^{-n/2} \sup_x \|p(x, \cdot)\|_{H^s(a)} \|u\|_p$$

for any $a > 0$, where the constant C is independent of $2 \leq p \leq \infty$.

Proof. We have only to prove L^2 - and L^∞ -boundedness of the operator because of the Riesz-Thorin interpolation theorem (see [18]). First we show L^∞ -boundedness. We can write

$$(3.3) \quad p(X, D_x) u(x) = \int K(x, x-y) u(y) dy,$$

where the integral kernel $K(x, z)$ is defined by

$$(3.4) \quad K(x, z) = \int e^{iz \cdot \xi} p(x, \xi) d\xi.$$

It follows from the Schwarz inequality that

$$\begin{aligned} \int |K(x, z)| dz &\leq \left\{ \int \langle az \rangle^{-2s} dz \right\}^{1/2} \left\{ \int \langle az \rangle^{2s} |K(x, z)|^2 dz \right\}^{1/2} \\ &= c_n a^{-n/2} \|p(x, \cdot)\|_{H^s(a)} \leq c_n a^{-n/2} \sup_x \|p(x, \cdot)\|_{H^s(a)}, \end{aligned}$$

and this implies that the operator $p(X, D_x)$ is L^∞ -bounded.

Next we show L^2 -boundedness. By (3.3) we have

$$\begin{aligned} \int |\hat{p}(X, D_x) u(x)|^2 dx &\leq \int \left(\int |K(x, x-y) u(y)| dy \right)^2 dx \\ &\leq \int \left\{ \int \langle a(x-y) \rangle^{2s} |K(x, x-y)|^2 dy \right\} \left\{ \int \langle a(x-y) \rangle^{-2s} |u(y)|^2 dy \right\} dx \\ &\leq c_n^2 a^{-n} \left(\sup_x \|p(x, \cdot)\|_{H^s(a)} \right)^2 \|u\|_2^2. \end{aligned}$$

This means that the operator $p(X, D_x)$ belongs to $L(L^2)$.

Q.E.D.

We note that the symbol in Proposition 3.1 is uniformly bounded by the Sobolev inequality, however, the derivatives of the symbols are not always bounded. As a special case we have

Corollary 3.2. *Let $2 \leq p \leq \infty$. If the support of a symbol $p(x, \xi)$ is contained in $\{\xi; |\xi| \leq r\}$ for some positive constant r and if $p(x, \xi)$ satisfies*

$$(3.5) \quad N_0 = \sup_{|\alpha| \leq \kappa, (x, \xi)} |\hat{p}^{(\alpha)}(x, \xi)| < \infty,$$

then the operator $p(X, D_x)$ is L^p -bounded and we have

$$(3.6) \quad \|\hat{p}(X, D_x) u\|_p \leq C N_0 \|u\|_p,$$

where the constant C is independent of $2 \leq p \leq \infty$.

By this corollary, hereafter we may assume that the support of the symbols are contained in $\{\xi; |\xi| \geq R\}$ for some positive R .

Theorem 3.3. *Let $0 \leq \rho \leq 1$ and let $\omega(t)$ be a non-negative and non-decreasing function which satisfies*

$$(3.7) \quad \int_0^1 \frac{\omega(t)}{t} dt = M_1 < \infty.$$

If a symbol $p(x, \xi)$ satisfies

$$(3.8) \quad N = \sup_{|\alpha| \leq \kappa, (x, \xi)} |p^{(\alpha)}(x, \xi)| \omega(\langle \xi \rangle^{-1})^{-1} \langle \xi \rangle^{n(1-\rho)/2+\rho|\alpha|} < \infty,$$

then $p(X, D_x)$ belongs to $L(L^p)$ for $2 \leq p \leq \infty$ and we have

$$(3.9) \quad \|p(X, D_x) u\|_p \leq C(N M_1 + N_0) \|u\|_p,$$

where the constant C is independent of $2 \leq p \leq \infty$, and N_0 is defined by

$$(3.10) \quad N_0 = \sup_{|\alpha| \leq \kappa, |\xi| \leq 4} |p^{(\alpha)}(x, \xi)|.$$

Proof. By Corollary 3.2 we may assume that the support of $p(x, \xi)$ is contained in $\{\xi; |\xi| \geq 2\}$, because of (3.10). Then since $\omega(t)$ is non-decreasing, (3.8) can be replaced by

$$(3.8)' \quad |p^{(\alpha)}(x, \xi)| \leq N \omega(|\xi|^{-1}) |\xi|^{-n(1-\rho)/2-\rho|\alpha|} \quad (|\xi| \geq 2)$$

for $|\alpha| \leq \kappa$. We take a smooth function $f(t)$ on R^1 so that the support is contained in the interval $[1/2, 1]$, $f(t) \geq 0$ and

$$(3.11) \quad \int_0^\infty \frac{f(t)}{t} dt = 1.$$

Then since

$$\int_0^\infty \frac{f(t|\xi|)}{t} dt = 1 \quad \text{for } |\xi| \neq 0,$$

we can write

$$p(X, D_x) u(x) = \int_0^{1/2} p(t, X, D_x) u(x) \frac{dt}{t},$$

where $p(t, x, \xi) = p(x, \xi) f(t|\xi|)$, since $p(t, x, \xi) = 0$ for $t > 1/2$.

To estimate the norm of $p(t, X, D_x)$ we make use of Proposition 3.1 with $s = \kappa$ and $a = t^{-\rho}$. Since $1/(2t) \leq |\xi| \leq 1/t$ on the support of $f(t|\xi|)$, we have

$$\sum_{|\alpha| \leq \kappa} |t^{-\rho|\alpha|} \partial_\xi^\alpha \{p(x, \xi) f(t|\xi|)\}|^2 \leq C^2 N^2 t^{n(1-\rho)} \omega(2t)^2.$$

Therefore we have

$$\begin{aligned} \|p(t, x, \cdot)\|_{H^{\kappa(\rho-\rho)}}^2 &\leq C^2 N^2 t^{n(1-\rho)} \omega(2t)^2 \int_{1/(2t) \leq |\xi| \leq 1/t} d\xi \\ &= C^2 N^2 t^{-n\rho} \omega(2t)^2. \end{aligned}$$

Hence, by Proposition 3.1, we see that the norm of the operator $p(t, X, D_x)$ is not greater than $C N \omega(2t)$, which gives

$$\|p(X, D_x) u\|_p \leq C N \int_0^{1/2} \omega(2t) \frac{dt}{t} \|u\|_p = C N M_1 \|u\|_p. \quad \text{Q.E.D.}$$

REMARK 3.4. (i) In this theorem we did not assume the continuity of symbols in the space variables x . In fact we needed only the uniform boundedness and measurability of symbols in the space variables x in the proof of this theorem.

(ii) In the case $\rho=1$, Theorem 3.3 has already been proved in [12] and [13].

Now we give L^p -boundedness results in the case $0 \leq \rho < 1$ as corollaries of Theorem 3.3.

Corollary 3.5. *Let $0 \leq \rho < 1$ and $2 \leq p \leq \infty$. We assume that a function $\omega(t)$ on $[0, \infty)$ is the same as in Theorem 3.3 and assume that a symbol $p(x, \xi)$ satisfies*

$$(3.12) \quad N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p^{(\alpha)}_{(\beta)}(x, \xi)| \omega(\langle \xi \rangle^{-1})^{-1} \langle \xi \rangle^{m_p + \rho(|\alpha| - |\beta|)} < \infty,$$

where m_p is the critical decreasing order for L^p -boundedness, that is,

$$(3.13) \quad m_p = n(1 - \rho)(1/2 - 1/p).$$

Then $p(X, D_x)$ is L^p -bounded and we have

$$(3.14) \quad \|p(X, D_x) u\|_p \leq C(N M_1 + N_0) \|u\|_p,$$

where the constant C is independent of $2 \leq p \leq \infty$ and N_0 is defined in (3.10).

Proof. When $p=\infty$ and $p(x, \xi)$ satisfies (3.12) for $p=\infty$, by Theorem 3.3, $p(X, D_x)$ is L^∞ -bounded. Since $\omega(\langle \xi \rangle^{-1})$ is a bounded function in ξ , if $p(x, \xi)$ satisfies (3.12) for $p=2$, then it follows from Lemma 2.2 that $p(X, D_x)$ is L^2 -bounded. Then by the interpolation theorem of analytic families of operators (see, for example, [14]), we can get the corollary by defining the families of operators in a similar way to Wang-Li in [16] (see also [3]). Q.E.D.

Corollary 3.6. *Let $0 \leq \rho \leq 1$ and $m > n(1 - \rho)/2$. If a symbol $p(x, \xi)$ satisfies*

$$(3.15) \quad N = \sup_{|\alpha| \leq \kappa, (x, \xi)} |p^{(\alpha)}(x, \xi)| \langle \xi \rangle^{m + \rho|\alpha|} < \infty,$$

then $p(X, D_x)$ belongs to $L(L^p)$ for $2 \leq p \leq \infty$, and we have

$$(3.16) \quad \|p(X, D_x) u\|_p \leq C N \|u\|_p,$$

where we can take the constant C independently of $2 \leq p \leq \infty$.

Corollary 3.7. *Let $0 \leq \rho < 1$, $2 \leq p \leq \infty$ and $m > m_p$. If a symbol $p(x, \xi)$ satisfies*

$$(3.17) \quad N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p^{(\alpha)}_{(\beta)}(x, \xi)| \langle \xi \rangle^{m + \rho(|\alpha| - |\beta|)} < \infty,$$

then $p(X, D_x)$ belongs to $L(L^p)$ and we have

$$(3.18) \quad \|p(X, D_x) u\|_p \leq C N \|u\|_p,$$

where the constant C is independent of $2 \leq p \leq \infty$.

We can prove Corollary 3.6 directly from Theorem 3.3 by taking $\omega(t)=t^\tau$, $\tau=m-n(1-\rho)/2$. Corollary 3.7 can be proved from Corollary 3.5 by taking $\omega(t)=t^\tau$, $\tau=m-m_p$.

If $\omega(t)$ satisfies (3.7) then we have

$$(3.7)' \quad \int_0^1 \frac{\omega(t^\tau)}{t} dt = \frac{1}{\tau} M_1 < \infty$$

for any positive τ . Hence we have

Corollary 3.8. *Let ρ and $\omega(t)$ be the same as in Theorem 3.3. If a symbol $p(x, \xi)$ satisfies*

$$(3.8)' \quad N = \sup_{|\alpha| \leq \kappa, (x, \xi)} |p^{(\alpha)}(x, \xi)| \omega(\langle \xi \rangle^{-\tau})^{-1} \langle \xi \rangle^{n(1-\rho)/2 + \rho|\alpha|} < \infty$$

for some positive τ , then $p(X, D_x)$ is L^p -bounded for $2 \leq p \leq \infty$ and the inequality (3.9) holds.

We use Corollary 3.8 in the proof of Theorem 4.4.

4. L^p -boundedness of operators of the critical decreasing order

In this section we show L^p -boundedness theorems for operators of symbols which have the critical decreasing order as $|\xi| \rightarrow \infty$.

We denote the norm of bounded mean oscillation for a function $f(x)$ on R^n by $\|f\|_* = \|f\|_{BMO} = \sup_Q \frac{1}{|Q|} \int_Q |f(x) - f_Q| dx$, where Q denotes an arbitrary cube in R^n , $|Q|$ is the volume of the cube Q and $f_Q = \frac{1}{|Q|} \int_Q f(x) dx$. The following theorem has already been proved in [13] and [16]. However we give here a slightly different proof, in which we use a continuous decomposition of the operators.

Theorem 4.1. *We assume that a symbol $p(x, \xi)$ satisfies one of the following two conditions.*

$$(i) \quad N = \sup_{|\alpha| \leq \kappa, |\beta| \leq 1, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{|\alpha| - \delta|\beta|} < \infty,$$

where δ is a positive constant with $\delta < 1$.

$$(ii) \quad N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{n(1-\rho)/2 + \rho(|\alpha| - |\beta|)} < \infty,$$

where ρ is a positive constant with $\rho < 1$.

Then the operator $p(X, D_x)$ is bounded from L^∞ to BMO and we have

$$(4.1) \quad \|p(X, D_x) u\|_* \leq C_n N \|u\|_\infty.$$

Proof. We note that, by Lemma 2.1, if $p(x, \xi)$ satisfies the condition (i) then $p(X, D_x)$ is L^2 -bounded and we have

$$(4.2) \quad \|p(X, D_x) u\|_2 \leq C N \|u\|_2.$$

Moreover if $p(x, \xi)$ satisfies the condition (ii) then, by Lemma 2.2, the operator $p(X, D_x) \langle D_x \rangle^{n(1-\rho)/2}$ is L^2 -bounded and we have the similar estimate to (4.2).

As in the proof of Theorem 3.3, we take a smooth function $f(t)$ so that the support is contained in the interval $[1/2, 1]$ and

$$\int_{-\infty}^{\infty} \frac{f(t)}{t} dt = \int_0^{\infty} \frac{f(t)}{t} dt = 1.$$

Let Q be an arbitrary cube with side d and center x^0 . Then we note $|Q|=d^n$. We may assume without loss of generality that the sides of the cube are parallel to the coordinate axis and $d < 1$. Hence we can write $Q = \{x = (x_1, \dots, x_n); |x_j - x_j^0| \leq d/2, j = 1, \dots, n\}$. We take a $C_0^\infty(R^1)$ and even function $\phi(t)$ so that the support is contained in the interval $[-2, 2]$, $\phi(t)=1$ for $|t| \leq 1$ and $\phi(t) \geq 0$. We set $\psi_d(\xi) = \phi(d|\xi|)$. By Corollary 3.2, we may assume that the support of $p(x, \xi)$ is contained in $\{\xi; |\xi| \geq 2\}$ and $p(x, \xi)$ satisfies

$$|p_{(\beta)}^{(\alpha)}(x, \xi)| \leq c_n N |\xi|^{-\rho|\alpha| + \delta|\beta| - n(1-\rho)/2} \quad (|\xi| \geq 2)$$

for $|\alpha| \leq \kappa$ and $|\beta| \leq 1$ in the case $\rho=1$ and $|\beta| \leq \kappa$ in the case $0 < \delta = \rho < 1$. Then we split the symbol $p(x, \xi)$ as

$$p(x, \xi) = p(x, \xi) \psi_d(\xi) + p(x, \xi) (1 - \psi_d(\xi)) = p_0(x, \xi) + p_1(x, \xi).$$

Then we see that

$$(4.3) \quad |p_{j(\beta)}^{(\alpha)}(x, \xi)| \leq c_n N |\xi|^{-n(1-\rho)/2 - \rho|\alpha| + \delta|\beta|} \quad (j = 0, 1)$$

for $|\alpha| \leq \kappa$ and $|\beta| \leq 1$ in the case $\rho=1$ and $|\beta| \leq \kappa$ in the case $0 < \delta = \rho < 1$, where the constant c_n is independent of the length d of the cube.

First we consider the operator $p_0(X, D_x)$. Since the support of $p_0(x, \xi) f(t|\xi|)$ is contained in the set

$$\{\xi; 1/(2t) \leq |\xi| \leq 1/t, 2 \leq |\xi| \leq 2/d\},$$

we have

$$D_{x_j} p_0(X, D_x) u(x) = \int_{d/4}^{1/2} D_{x_j} p_0(t, X, D_x) u(x) \frac{dt}{t},$$

where $p_0(t, x, \xi) = p_0(x, \xi) f(t|\xi|)$. The symbol of $D_{x_j} p_0(t, X, D_x)$ is equal to

$$p_{0,j}(t, x, \xi) = \{p_{0,(e_j)}(x, \xi) + \xi_j p_0(x, \xi)\} f(t|\xi|).$$

Hence by (4.3) we have

$$\|p_{0,j}(t, x, \cdot)\|_{H^k(t^{-p})}^2 \leq C^2 N^2 t^{-2-np},$$

which gives with the aid of Proposition 3.1

$$\begin{aligned} \|D_{x_j} p_0(X, D_x) u\|_\infty &\leq \int_{d/4}^{1/2} \|D_{x_j} p_0(t, X, D_x) u\|_\infty \frac{dt}{t} \\ &\leq C N \int_{d/4}^{1/2} \frac{dt}{t^2} \|u\|_\infty \leq 4 C N d^{-1} \|u\|_\infty. \end{aligned}$$

Therefore, for x' in Q we have

$$\begin{aligned} & \left| \frac{1}{|Q|} \int_Q p_0(X, D_x) u(x) dx - p_0(X, D_x) u(x') \right| \\ & \leq \frac{1}{|Q|} \int_Q |p_0(X, D_x) u(x) - p_0(X, D_x) u(x')| dx \\ & \leq C N \|u\|_\infty. \end{aligned}$$

This implies

$$(4.4) \quad \|p_0(X, D_x) u\|_* \leq C N \|u\|_\infty.$$

Next we show the boundedness of the operator $p_1(X, D_x)$. Let $\chi(x)$ be a $C_0^\infty(R^n)$ function which satisfies $\chi(x) = 1$ for any $x = (x_1, \dots, x_n)$ with $|x_j| \leq 2$ ($j = 1, \dots, n$) and $\chi(x) = 0$ for any $x = (x_1, \dots, x_n)$ with $|x_{j_0}| \geq 4$ for some j_0 . We set $\chi_d(x) = \chi(d^{-p}(x - x^0))$, and we write

$$\begin{aligned} (4.5) \quad p_1(X, D_x) u(x) &= p_1(X, D_x) (\chi_d u)(x) + p_1(X, D_x) (u - \chi_d u)(x) \\ &= I u(x) + II u(x). \end{aligned}$$

Then, we see

$$II u(x) = \int_0^d \frac{dt}{t} \int K_1(t, x, z) (u - \chi_d u)(x - tz) dz,$$

where $K_1(t, x, z)$ is defined by

$$K_1(t, x, z) = \int e^{iz \cdot \xi} p(x, \frac{1}{t} \xi) (1 - \psi_d(\frac{1}{t} \xi)) f(|\xi|) d\xi.$$

Since $|x_j - x_j^0| \geq 2d^p$ for some $j \in \{1, \dots, n\}$ in the support of $u(x) - \chi_d(x) u(x)$, for any x in Q we have

$$|tz_j| \geq |x_j - x_j^0 - tz_j| - |x_j - x_j^0| \geq 2d^p - d/2 \geq d^p.$$

Hence if x belongs to Q , then $|z| \geq t^{-1} d^p$ in the integrand of $II u(x)$. Then

$$\begin{aligned}
& \int_{|z| \geq t^{-1} d^\rho} |K_1(t, x, z)| dz \\
& \leq \left\{ \int_{|z| \geq t^{-1} d^\rho} |z|^{-2\kappa} dz \right\}^{1/2} \left\{ \int |z|^{2\kappa} |K_1(t, x, z)|^2 dz \right\}^{1/2} \\
& \leq c_n \left(\frac{d^\rho}{t} \right)^{-\kappa+n/2} \left\{ \sum_{|\alpha|=n} \int |\partial_x^\alpha \{ p(x, \frac{1}{t} \xi) (1 - \psi_d(\frac{1}{t} \xi)) f(|\xi|) \}|^2 d\xi \right\}^{1/2} \\
& \leq c_n N \left(\frac{d^\rho}{t} \right)^{-\kappa+n/2} t^{n(1-\rho)/2 - \kappa(1-\rho)} = C N t^{\rho(\kappa-n/2)} d^{\rho(n/2-\kappa)}.
\end{aligned}$$

Therefore we have

$$|II u(x)| \leq C N d^{\rho(n/2-\kappa)} \int_0^d t^{-1+\rho(\kappa-n/2)} dt \|u\|_\infty \leq C N \|u\|_\infty$$

for x in Q . This implies

$$(4.6) \quad \frac{1}{|Q|} \int_Q |II u(x)| dx \leq C N \|u\|_\infty.$$

In order to estimate $I u(x)$ we use the L^2 -boundedness of the operator $p(X, D_x) \langle D_x \rangle^{n(1-\rho)/2}$ under one of the two conditions (i) and (ii). Since

$$I u(x) = p(X, D_x) (1 - \psi_d(D_x)) (\chi_d u)(x),$$

we can see

$$\begin{aligned}
& \frac{1}{|Q|} \int_Q |I u(x)| dx \leq \left\{ \frac{1}{|Q|} \int_Q |I u(x)|^2 dx \right\}^{1/2} \\
& \leq \frac{C N}{|Q|^{1/2}} \|\tilde{\psi}_d(D_x) \chi_d u\|_2,
\end{aligned}$$

where $\tilde{\psi}_d(\xi) = \langle \xi \rangle^{-n(1-\rho)/2} (1 - \psi_d(\xi)) \tilde{\chi}(\xi)$, $\tilde{\chi}(\xi) = 1$ for $|\xi| \geq 2$ and $\tilde{\chi}(\xi) = 0$ for $|\xi| \leq 2$. Since $|\tilde{\psi}_d(\xi)| \leq c_n d^{n(1-\rho)/2}$ and $|Q| = d^n$, it follows from Plancherel's formula that

$$\begin{aligned}
(4.7) \quad & \frac{1}{|Q|} \int_Q |I u(x)| dx \leq C N d^{-n/2} d^{n(1-\rho)/2} \|\chi_d u\|_2 \\
& \leq C N d^{-\rho n/2} \|\chi_d u\|_2 \|u\|_\infty \leq C N \|\chi_d u\|_2 \|u\|_\infty.
\end{aligned}$$

From the inequalities (4.4), (4.6) and (4.7) we get

$$\|p(X, D_x) u\|_* \leq C N \|u\|_\infty.$$

Thus we complete the proof of Theorem 4.1. Q.E.D.

Theorem 4.2. *Let $2 \leq p < \infty$. Suppose that a symbol $p(x, \xi)$ satisfies the condition (i) in Theorem 4.1 or satisfies*

$$(ii)' \quad N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{m_p + \rho(|\alpha| - |\beta|)} < \infty,$$

where m_p is the critical decreasing order $n(1-\rho)(1/2-1/p)$ and $0 < \rho < 1$. Then $p(X, D_x)$ is L^p -bounded and we have

$$(4.8) \quad \|p(X, D_x) u\|_p \leq C_p N \|u\|_p.$$

Proof. When the symbol $p(x, \xi)$ satisfies the condition (i), the operator $p(X, D_x)$ is L^2 -bounded by Lemma 2.1 and bounded from L^∞ to BMO by Theorem 4.1. Therefore by the interpolation theorem of Fefferman-Stein in [4] we can obtain the estimate (4.8). In a similar way, we can obtain the estimate (4.8), when $p(x, \xi)$ satisfies (ii)', from the interpolation theorem of Fefferman-Stein in [4] (see [3] and [16]). Q.E.D.

REMARK 4.3. We note also that Theorem 4.2 has already been proved in [16].

Theorem 4.4. *Let $0 \leq \delta < \rho \leq 1, \tau > 0$ and let $\omega(t)$ be a non-negative and non-decreasing function which satisfies*

$$(4.9) \quad \int_0^1 \frac{\omega(t)}{t} dt = M_1 < \infty.$$

We assume that a symbol $p(x, \xi)$ satisfies

$$(4.10) \quad \begin{cases} N_0 = \sup_{|\alpha| \leq \kappa, (x, \xi)} |p^{(\alpha)}(x, \xi)| \langle \xi \rangle^{n(1-\rho)/2 + \rho|\alpha|} < \infty, \\ N_1 = \sup_{|\alpha| \leq \kappa, (x, y, \xi)} \{ |p^{(\alpha)}(x, \xi) - p^{(\alpha)}(y, \xi)| \omega(|x-y|^\tau \langle \xi \rangle^{\delta\tau})^{-1} \\ \times \langle \xi \rangle^{n(1-\rho)/2 + \rho|\alpha|} \} < \infty. \end{cases}$$

Then $p(X, D_x)$ is bounded from L^∞ to BMO and is L^p -bounded for $2 \leq p < \infty$, and we have

$$(4.11) \quad \|p(X, D_x) u\|_p \leq (C_p N_0 + C_0 N_1 M_1) \|u\|_p,$$

$$(4.12) \quad \|p(X, D_x) u\|_* \leq C_0 (N_0 + N_1 M_1) \|u\|_\infty,$$

where the constant C_0 is independent of $2 \leq p < \infty$.

Proof. We take a $C_0^\infty(R^n)$ function $\phi(y)$ such that the support is contained in $\{y; |y| \leq 1\}$ and $\int \phi(y) dy = 1$. We take a positive constnat δ' so that $\delta' = \rho$ if $\rho < 1$ and $\delta < \delta' < 1$ if $\rho = 1$. Now we define symbols $\tilde{p}(x, \xi)$ and $q(x, \xi)$ by

$$\begin{aligned} \tilde{p}(x, \xi) &= \int \phi(y) p(x - \langle \xi \rangle^{-\delta'} y, \xi) dy \\ &= \int \phi(\langle \xi \rangle^{\delta'} (x - y)) p(y, \xi) \langle \xi \rangle^{\delta' n} dy, \end{aligned}$$

and $q(x, \xi) = p(x, \xi) - \tilde{p}(x, \xi)$. Then by Lemma 2.3 we can show that

$$|\tilde{p}^{(\alpha)}_{(\beta)}(x, \xi)| \leq C_{\alpha, \beta} N_0 \langle \xi \rangle^{-n(1-\rho)/2 - \rho|\alpha| + \delta'|\beta|}$$

for any β and α with $|\alpha| \leq \kappa$, and

$$|q^{(\alpha)}(x, \xi)| \leq C_{\alpha} N_1 \omega(\langle \xi \rangle^{-\tau(\delta' - \delta)}) \langle \xi \rangle^{-n(1-\rho)/2 - \rho|\alpha|}$$

for $|\alpha| \leq \kappa$ (see, for example, [8] or [11]). Therefore it follows from Lemma 2.2 and Theorem 4.1 that $\tilde{p}(X, D_x)$ is L^2 -bounded and bounded from L^∞ to BMO, and by the interpolation theorem of Fefferman-Stein we have

$$\begin{aligned} \|\tilde{p}(X, D_x) u\|_p &\leq C_p N_0 \|u\|_p \quad (2 \leq p < \infty) \\ \|\tilde{p}(X, D_x) u\|_* &\leq C_0 N_0 \|u\|_\infty. \end{aligned}$$

Moreover by Corollary 3.8, we have

$$\|q(X, D_x) u\|_p \leq C_0 N_1 M_1 \|u\|_p \quad (2 \leq p \leq \infty).$$

Thus we get the theorem. Q.E.D.

In this theorem, we got L^p -boundedness under a weak continuity condition (4.10) of symbols with respect to the space variables x , however, the decreasing order of symbols as $|\xi| \rightarrow \infty$ was the constant $n(1-\rho)/2$. We know that when $\rho < 1$ this is not the critical decreasing order for L^p -boundedness except for $p = \infty$. So next we show an L^p -boundedness of operators of the critical decreasing order under some continuity condition in the space variables.

Theorem 4.5. *Let $0 < \rho < 1$ and $2 \leq p < \infty$. We denote*

$$(4.13) \quad m_p = n(1-\rho)(1/2 - 1/p), \quad \mu_p = \frac{\kappa n(1-\rho)}{\kappa p \rho + n(1-\rho)}.$$

Let μ be an arbitrary positive number greater than μ_p . We suppose that a symbol $p(x, \xi)$ satisfies

$$(4.14) \quad N_0 = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |\tilde{p}^{(\alpha)}_{(\beta)}(x, \xi)| \langle \xi \rangle^{m_p + \rho|\alpha|} < \infty.$$

Moreover if $\mu_0 = \mu - [\mu] > 0$, then we assume that

$$(4.15) \quad N_1 = \sup_{|\alpha| \leq \kappa, |\beta| \leq [\mu], (x, y, \xi)} |\tilde{p}^{(\alpha)}_{(\beta)}(x, \xi) - \tilde{p}^{(\alpha)}_{(\beta)}(y, \xi)| |x - y|^{-\mu_0} \langle \xi \rangle^{m_p + \rho|\alpha|} < \infty.$$

Then $p(X, D_x)$ is L^p -bounded and we have

$$(4.16) \quad \|\tilde{p}(X, D_x) u\|_p \leq C_p (N_0 + N_1) \|u\|_p.$$

Proof. We set $\rho' = \rho + n(1-\rho)/(p\kappa)$. Then we see easily $\rho < \rho' < 1$. We take a Schwartz rapidly decreasing function $\phi(z)$ such that $\int \phi(z) dz = 1$ and

$\int z^\alpha \phi(z) dz = 0$ for any $\alpha \neq 0$ (see [8]). We define new symbols $\tilde{p}(x, \xi)$ and $q(x, \xi)$, as in the proof of Theorem 4.4, by

$$(4.17) \quad \begin{aligned} \tilde{p}(x, \xi) &= \int \phi(y) p(x - \langle \xi \rangle^{-\rho'} y, \xi) dy \\ &= \int \phi(\langle \xi \rangle^{\rho'} (x - y)) p(y, \xi) \langle \xi \rangle^{\rho' n} dy, \end{aligned}$$

and $q(x, \xi) = p(x, \xi) - \tilde{p}(x, \xi)$. Then setting $\nu = [\mu]$, we have

$$\begin{aligned} \tilde{p}(x, \xi) &= p(x, \xi) + \sum_{0 < |\beta| < \nu} \frac{(-i)^{|\beta|}}{\beta !} \int y^\beta \phi(y) dy \langle \xi \rangle^{-\rho' |\beta|} p_{(\beta)}(x, \xi) \\ &\quad + \sum_{|\beta|=\nu} \frac{\nu(-i)^\nu}{\beta !} \int_0^1 (1-t)^{\nu-1} \int y^\beta \phi(y) p_{(\beta)}(x - t \langle \xi \rangle^{-\rho'} y, \xi) \langle \xi \rangle^{-\rho' \nu} dy dt. \end{aligned}$$

Since $\int y^\beta \phi(y) dy = 0$ for $\beta \neq 0$, we have

$$\begin{aligned} q(x, \xi) &= -\nu(-i)^\nu \sum_{|\beta|=\nu} \frac{1}{\beta !} \int_0^1 (1-t)^{\nu-1} \int \phi_\beta \left(\frac{\langle \xi \rangle^{\rho'}}{t} (x - y) \right) \\ &\quad \times t^{-n} p_{(\beta)}(y, \xi) \langle \xi \rangle^{-\rho' \nu + \rho' n} dy dt \\ &= -\nu(-i)^\nu \sum_{|\beta|=\nu} \frac{1}{\beta !} \int_0^1 (1-t)^{\nu-1} \int \phi_\beta \left(\frac{\langle \xi \rangle^{\rho'}}{t} (x - y) \right) \\ &\quad \times t^{-n} \{ p_{(\beta)}(y, \xi) - p_{(\beta)}(x, \xi) \} \langle \xi \rangle^{\rho' (n-\nu)} dy dt, \end{aligned}$$

where $\phi_\beta(z) = z^\beta \phi(z)$. Thus using Lemma 2.3 we can see that

$$\begin{aligned} |q^{(\alpha)}(x, \xi)| &\leq CN_1 \sum_{|\beta|=\nu} \langle \xi \rangle^{-m_\beta - \rho' \nu - \rho |\alpha|} \int |\tilde{\phi}_{\alpha, \beta}(\langle \xi \rangle^{\rho'} y)| |y|^\mu \langle \xi \rangle^{\rho' n} dy \\ &\leq C N_1 \langle \xi \rangle^{-m_\beta - \rho' \mu - \rho |\alpha|} \end{aligned}$$

for $|\alpha| \leq \kappa$, where $\tilde{\phi}_{\alpha, \beta}(z)$ are linear combinations of Schwartz functions determined from $\phi_\beta(z)$ and its derivatives of order not greater than $|\alpha|$. By the definitions of μ , μ_β , m_β and ρ' , we can see easily that

$$\rho' \mu + m_\beta > \rho' \mu_\beta + m_\beta = n(1-\rho)/2.$$

Therefore by Corollary 3.6 we have

$$(4.18) \quad \|q(X, D_x) u\|_r \leq C N_1 \|u\|_r$$

for $2 \leq r \leq \infty$.

Next we consider the symbol $\tilde{p}(x, \xi)$. For $|\alpha| \leq \kappa$ and $|\beta| \leq \nu = [\mu]$, it follows from Lemma 2.3 that

$$(4.19) \quad |\tilde{p}_{(\beta)}^{(\alpha)}(x, \xi)| = |\partial_\xi^\alpha \{ \int \phi(y) p_{(\beta)}(x - \langle \xi \rangle^{-\rho'} y, \xi) dy \}|$$

$$\begin{aligned}
&= |\partial_{\xi}^{\alpha} \left\{ \int \phi(\langle \xi \rangle^{\rho'} (x-y)) p_{(\beta)}(y, \xi) \langle \xi \rangle^{\rho' n} dy \right\}| \\
&\leq C \sum_{\alpha^1 + \alpha^2 + \alpha^3 = \alpha} \int |\partial_{\xi}^{\alpha^1} (\phi(\langle \xi \rangle^{\rho'} (x-y))) p_{(\beta)}^{(\alpha^2)}(y, \xi) \partial_{\xi}^{\alpha^3} \langle \xi \rangle^{\rho' n}| dy \\
&\leq C N_0 \langle \xi \rangle^{-m_p - \rho |\alpha|}.
\end{aligned}$$

When $|\alpha| \leq \kappa$ and $\nu < |\beta| \leq \kappa$, writing $\beta = \beta^1 + \beta^2$, $|\beta^1| = \nu$ and $\beta^2 \neq 0$, we have

$$\begin{aligned}
|\tilde{p}_{(\beta)}^{(\alpha)}(x, \xi)| &= |\partial_{\xi}^{\alpha} \partial_x^{\beta^2} \left\{ \int \phi(y) p_{(\beta^1)}(x - \langle \xi \rangle^{-\rho'} y, \xi) dy \right\}| \\
&= |\partial_{\beta}^{\alpha} \left\{ \int \phi_{(\beta^2)}(\langle \xi \rangle^{\rho'} (x-y)) p_{(\beta^1)}(y, \xi) \langle \xi \rangle^{\rho' (n+|\beta^2|)} dy \right\}|,
\end{aligned}$$

where $\phi_{(\beta^2)}(z) = D_x^{\beta^2} \phi(z)$. Since $\int \phi_{(\beta^2)}(z) dz = 0$, in a similar way to the estimate for $q(x, \xi)$, we have

$$\begin{aligned}
(4.20) \quad |\tilde{p}_{(\beta)}^{(\alpha)}(x, \xi)| &= |\partial_{\xi}^{\alpha} \left\{ \int \phi_{(\beta^2)}(\langle \xi \rangle^{\rho'} (x-y)) \{p_{(\beta^1)}(y, \xi) - p_{(\beta^1)}(x, \xi)\} \right. \\
&\quad \times \langle \xi \rangle^{\rho' (n+|\beta^2|)} dy \} | \\
&\leq C N_1 \langle \xi \rangle^{-m_p - \rho |\alpha| + \rho' (|\beta| - \nu) - \rho' \mu_0}.
\end{aligned}$$

Since

$$\rho' (|\beta| - \nu) - \rho' \mu_0 - \rho |\beta| = (\rho' - \rho) |\beta| - \rho' \mu < (\rho' - \rho) \kappa - \rho' \mu_p = 0$$

for $|\beta| \leq \kappa$, combining the estimates (4.19) and (4.20), we get

$$|\tilde{p}_{(\beta)}^{(\alpha)}(x, \xi)| \leq C(N_0 + N_1) \langle \xi \rangle^{-m_p - \rho |\alpha| + \rho |\beta|}$$

for $|\alpha| \leq \kappa$ and $|\beta| \leq \kappa$. Therefore by Theorem 4.2, we have

$$(4.21) \quad \|\tilde{p}(X, D_x) u\|_p \leq C(N_0 + N_1) \|u\|_p.$$

From (4.18) and (4.21) we get (4.16). Q.E.D.

REMARK 4.6. (i) we first note that

$$\mu_p - \kappa(1 - \rho) = \kappa\rho(1 - \rho) (n - p\kappa) / (\kappa p\rho + n(1 - \rho)) < 0$$

for $p \geq 2$, and therefore $\mu_p < \kappa(1 - \rho)$. In the condition (ii)' of Theorem 4.2, we assumed the κ differentiability of symbols in the space variables x and the covariables ξ , in order to get the L^p -boundedness for the operators of a class which generalizes the Hörmander class $S_{p,\rho}^{-m_p}$ ($0 < \rho < 1$). However for operators of our class which generalizes the Hörmander class $S_{p,\rho}^{-m_p}$ ($0 < \rho < 1$), we can obtain the L^p -boundedness under less regularity μ in the space variables x by Theorem 4.5, since $\mu_p < \kappa(1 - \rho) < \kappa$.

(ii) It is clear that $\lim_{p \rightarrow \infty} \mu_p = 0$ and $\lim_{\rho \uparrow 1} \mu_p = 0$. This means that if p is sufficiently large or ρ is sufficiently near to 1, then we can obtain the L^p -bounded-

ness under only the Hölder continuity of symbols with respect to the space variables x .

Acknowledgement. The author is heartily grateful to the referee for the improvement of Proposition 3.1 and the simplification of the proofs of Theorem 3.3 and Theorem 4.1.

References

- [1] R.R. Coifman and Y. Meyer: *Au dela des opérateurs pseudo-differentiels*, Astérisque **57** (1978), 1–85.
- [2] H.O. Cordes: *On compactness of commutators of multiplications and convolutions, and boundedness of pseudo-differential operators*, J. Funct. Anal. **18** (1975), 115–131.
- [3] C. Fefferman: *L^p -bounds for pseudo-differential operators*, Israel J. Math. **14** (1973), 413–417.
- [4] C. Fefferman and E.M. Stein: *H^p -spaces of several variables*, Acta Math. **129** (1972), 137–193.
- [5] L. Hörmander: *Pseudo-differential operators and hypo-elliptic equations*, Proc. Symposium on Singular Integrals, Amer. Math. Soc. **10** (1967), 138–183.
- [6] T. Kato: *Boundedness of some pseudo-differential operators*, Osaka J. Math. **13** (1976), 1–9.
- [7] H. Kumano-go: *Pseudo-differential operators*, MIT Press, Cambridge, Mass. and London, England, 1982.
- [8] H. Kumano-go and M. Nagase: *Pseudo-differential operators with non-regular symbols and applications*, Funkcial. Ekvac. **22** (1978), 151–192.
- [9] T. Muramatu and M. Nagase: *On sufficient conditions for the boundedness of pseudo-differential operators*, Proc. Japan Acad. **55** Ser A (1979), 613–616.
- [10] T. Muramatu and M. Nagase: *L^2 -boundedness of pseudo-differential operators with non-regular symbols*, Canadian Math. Soc. Conference Proceedings, 1 (1981), 135–144.
- [11] M. Nagase: *The L^p -boundedness of pseudo-differential operators with non-regular symbols*, Comm. Partial Differential Equations **2** (1977), 1045–1061.
- [12] M. Nagase: *On the boundedness of pseudo-differential operators in L^p -spaces*, Sci. Rep. College Gen. Ed. Osaka Univ. **32** (1983), 9–19.
- [13] M. Nagase: *On a class of L^p -bounded pseudo-differential operators*, Sci. Rep. College Gen. Ed. Osaka Univ. **33** (1984), 1–7.
- [14] E.M. Stein and G. Weiss: *Introduction to Fourier analysis on Euclidean spaces*, Princeton Univ. Press, Princeton, NJ, 1971.
- [15] M. Taylor: *Pseudo-differential operators*, Princeton Univ. Press, Princeton, NJ, 1981.
- [16] Wang Roughuai and Li Chengzhang: *On the L^p -boundedness of several classes of pseudo-differential operators*, Chinese Ann. Math. **5B**(2) (1984), 193–213.
- [17] K. Yabuta: *Calderón-Zygmund operators and pseudo-differential operators*, Comm. Partial Differential Equations **10** (1985), 1005–1022.
- [18] A. Zygmund: *Trigonometrical series*, Cambridge Univ. Press, London, 1968.

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan