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1. Introduction

In the present paper we shall give some sufficient conditions for the bound-
edness of pseudo-differential operators in L*=L*(R") for 2< p<co. We treat
the classes of non-regular symbols, which generalize the Hoérmander’s class

s There have already been many L?-boundedness theorems of pseudo-
differential operators with symbols which belong to generalized classes of S;’;
and are at least n{-& differentiable in the covariables £=(&, ---, £,). In the
present paper we study the boundedness for operators with symbols p(x, £)
which are only up to x=[n/2]+1 differentiable in &.

Recently in [16], Wang-Li showed an L?-boundedness theorem for pseudo-
differential operators with symbols which belong to a generalized class of S; 2,
where 0<p<1 and m,=n(1—p)|1/2—1/p|. Moreover in [12] and [13], the
author has obtained L?-boundedness theorems for the operators which have
symbols of generalized class of S} ;(0=8<1). In these paper the L?-bounded-
ness theorems for p=2 are proved under the assumptions that the symbols are
only up to «=[n/2]+1 differentiable and satisfy some additional conditions.

The main theorem of the present paper is Theorem 4.5 in Section 4, which
is given for operators in the generalized class of Hormander’s S;72. We note
that Theorem 4.5 is obtained under x=[n/2]41 differentiability in & and
Holder continuity condition in the space varaibles x=(x,, ---, x,) when p is suf-
ficiently large or p is sufficiently near to 1..

As pointed out by Hérmander in [5], m,=n(1—p)|1/2—1/p| is the critical
decreasing order for the L?-boundedness of pseudo-differential operators with
symbols in S}';. Furthermore we note that x=[n/2]+1 differentiability of
symbols in & does not always imply the L?-boundedness of the operators when
1= p<2 (see [16] and [17]).

In Section 2 we give notation and preliminary lemmas. In Section 3, we
show L?-boundedness theorems for the operators with symbols which have
higher decreasing order than the critical decreasing order m,, as |E|—>co. In
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Section 4, we investigate the L?-boundedness of operators with symbols which
have the critical decreasing order as |£|—oco. The main theorem is proved by
using an approximation (regularization) of symbols (see [8]).

2. Preliminaries

We use a standard notation which is used in the theory of pseudo-differential
operators (see [7] and [15]). Let p(x, &) be a function defined on R; X RZ. 'Then
the pseudo-differential operator p(X, D,) associated with symbol p(x, &) is defined,
formally, by

»(X, D,) u(x) = S ¢t p(x, £) U(E) dE

where #(£) denotes the Fourier transform of the function u(x), that is, #(§)=/
e~ "t y(x) dx, and d6=(2z)""d§. For p(x, ) we denote p{)(x, £)=0¢DEp(x, £)
=(—1)"?1 8g08 p(x, £) for any multi-indices & and 8. Moreover we write <¢>=
(1+ €132 Then the Hormander’s class S5 of symbols is defined by S7';=
{p(x, )= C=(RiXR}); | pi(x, E)| SC, <EDm*1*1+381 for any o and B}. Here
and hereafter we denote by C, C,, C, g, ¢, etc., the constants which are inde-
pendent of the variables (x, £) and are not always the same at each occurence.
We denote by N, N,, N, etc., the semi-norms of symbols. Moreover we denote

w=[n/2]+1.

Lemma 2.1. Let 0=p<1 and let w(t) be a non-negative and non-decreas-
ing function defined on [0, o) and satisfy

2.1) SIE’%’X dt = My<oo .

0
Suppose that a symbol p(x, E) satisfies
No=_ sup |5 BB <eo,

lal =k, (x,

Ny= sup | p®(x, £)—p™(y, B) | a(|x—y|<E) KEI<eo .

lel =k, (x,5,6)

(2.2)

Then p(X, D,) is L*-bounded and we have
(23) Il (X, D) ull 2= C(No+N, My)llull,2 .
Lemma 2.1 is shown in [9] and [10] for §=0 and in [13] for 0=8<1.
Lemma 2.2. Let 0<p<1. Suppose that a symbol p(x, &) satisfies
2.4) N=  sup | &)KEM= 1M < oo

lal =k, 11k, (x,8)

Then p(X, D,) is L*-bounded and we have
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(2.3) Ip(X, D) ull 2= C Nlull 2.

When p=0, the lemma is obtained by Cordes in [2]. In [6] Kato proved
the L*-boundedness for 0<<p<<1 when the semi-norm N in (2.4) is defined for
|a|<rand |@|<«+1. In[1] Coifman-Meyer obtained the Lemma 2.2.

We use the following lemma in Section 4 in order to smooth the non-regular
symbols. The lemma is shown in [8] and [11].

Lemma 2.3. Let v be a positive number. Then for any o there exists
{D0.8(E)} 1p1<iwl 2 ST such that for any C= function function J» we have

(2.6) Gelw(<E)" 2)k = 33 dup(O)KE" 2} Py PKE 2),
where ® (y)=05 ¥(y).

3. L?-boundedness for operators with lower order symbols

In this section we treat pseudo-differential operators associated with symbols
which decrease as |£|—oco faster than the critical decreasing order for L?-
boundedness. We denote the norm of L’=LA(R") by ||+||, and denote by
L(L?) the space of bounded linear operators on L?. Let H*=H?*(R") denote the
Sobolev space of order s with norm [|+||,+ defined by

lallae = IKD.>ull2 = {{1<6>* a(g) 17dgp 7,
and let [|+[|zs» denote the equivalent norm with positive parameter a defined by
ellasin = KKaD,>* ull2 = {{1<aE>* (E) I°dey .

Proposition 3.1. Let s>n/2 and let 2= p<oco. We assume that a symbol
p(x, &) belongs to the Sobolev space H'® and satisfies

(3.1) sup [|p(x, )l = Ny<oo .

Then the operator p(X, D,) belongs to L(L?) and satisfies
(3.2) 1p(X, D,) ull,<C a™ sup || p(x, *)llzcollull,

for any a>0, where the constant C is independent of 25 p=< oo.

Proof. We have only to prove L?- and L*-boundedness of the operator
because of the Riesz-Thorin interpolation theorem (see [18]). First we show
L~-boundedness. We can write

(3.3) P(X, D) u(x) = | K(w, —3) u(y) dy,
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where the integral kernel K(x, 2) is defined by

(3.4) K(x, 2) — S ¢v p(x, £) dE .
It follows from the Schwarz inequality that

S |K(x, 2)|dz < {S Caz>? dz) il {g Caz>¥| K(x, s)|? dz} 2

= Cna—n/zllp(x’ .)”HS(E)écna—n/2 S?p ”P(x) .)lle(a) )

and this implies that the operator p(X, D,) is L*-bounded.
Next we show L*-boundedness. By (3.3) we have

1202, Dy u) 2 dn | (] | K, v—9) u(y) 1y ae
<[ (fat—y) 1 Ko 2= 2 dyy A[Cate—3)>7> 0 1 dy} d

<cia" (sup |[p(x, *)llws@)? llull3 .

This means that the operator p(X, D,) belongs to L(L?). Q.E.D.

We note that the symbol in Proposition 3.1 is uniformly bounded by the
Sobolev inequality, however, the derivatives of the symbols are not always
bounded. As a special case we have

Corollary 3.2. Let 2Z p=<co. If the support of a symbol p(x,&) is con-
tained in {E; |E| <r} for some positive constant r and if p(x, &) satisfies

(3.5) No= sup |p®(x,E)|<eo,

lalsk, (%, €
then the operator p(X, D,) is L?-bounded and we have
(3.6) lp(X, D,) ull,=C Nollull, ,
where the constant C is independent of 2= p= co.

By this corollary, hereafter we may assume that the support of the symbols
are contained in {&; |&| =R} for some positive R.

Theorem 3.3. Let 0=<p=1 and let w(t) be a mnon-negative and mnon-
decreasing function which satisfies

(3.7) Slﬂ’_gﬁdm M<oo.

0

If a symbol p(x, §) satisfies
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(3.8) N = SUP N | PO (x, £) | a(<EDY)KEYA-PHPI® < oo
a| <k, (x,
then p(X, D,) belongs to L(L?) for 2= p= oo and we have
(3.9) 1p(X;, D) ull,= C(N My+No) llull, ,
where the constant C' is independent of 2= p=< oo, and N, is defined by
— @)
(3.10) N, w127 ® E)]

Proof. By Corollary 3.2 we may assume that the support of p(x, &) is
contained in {&; |&| =2}, because of (3.10). Then since w(t) is non-de-
creasing, (3.8) can be replaced by

3.8)' | p(x, E) | =N o(|E] ) [E| PR (18] 22)

for || =x. We take a smooth function f(#) on R' so that the support is con-
tained in the interval [1/2,1], f(#)=0 and

(3.11) S“@dz: 1.

0

Then since

r@dtzl for |&|=0,

0

we can write

2%, D) ux) = [ o0, X, Dy uiw) L,

where p(¢, x, &) = p(x, &) f(t|€]), since p(¢, x,E)=0 for >1/2.

To estimate the norm of p(¢, X, D,) we make use of Proposition 3.1 with
s=x and a=t"". Since 1/(2t)=<|&| =1/t on the support of f(¢|&|), we have

1 o p( B S IE D SO N 20 ()

Therefore we have

lp( %, e -0 < C? N? 209 m(Zt)zsll(Zt)élE|§llt d€
= C? N2t (2t)%.
Hence, by Proposition 3.1, we see that the norm of the operator p(¢, X, D,) is
not greater than CNw(2f), which gives
172
12X, D) ull,<CN  © w(22) % llull, = CNMilull,.  QE.D.
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ReMARK 3.4. (i) In this theorem we did not assume the continuity of
symbols in the space variables x. In fact we needed only the uniform bound-
edness and measurability of symbols in the space variables x in the proof of this
theorem.

(it) In the case p=1, Theorem 3.3 has already been proved in [12] and [13].

Now we give L’-boundedness results in the case 0=<p<1 as corollaries of
Theorem 3.3.

Corollary 3.5. Let 0=p<<1 and 2 p=<oco. We assume that a function

w(t) on [0, o) is the same as in Theorem 3.3 and assume that a symbol p(x,§)
satisfies

(3.12) N = sup | S8 (0, E) | ao(<ED™)TIEympHPUSI=1P) < oo

lal=x, fl=k, (%,€)

where m, is the critical decreasing order for L?-boundedness, that is,

(3.13) m, = n(1—p) (1/2—1/p) .

Then p(X, D,) is L?-bounded and we have

(3.14) lp(X, D,) ull,=<C(N My+No) |[ull, ,

where the constant C is independent of 2= p<oo and N, is defined in (3.10).

Proof. When p=oco and p(x, &) satisfies (3.12) for p=-co, by Theorem
3.3, p(X, D,) is L=-bounded. Since w(<£>7") is a bounded function in &, if
p(x, &) satisfies (3.12) for p=2, then it follows from Lemma 2.2 that p(X, D,)
is L?-bounded. Then by the interpolation theorem of analytic families of
operators (see, for example, [14]), we can get the corollary by defining the families
of operators in a similar way to Wang-Li in [16] (see also [3]). Q.E.D.

Corollary 3.6. Let 0<p=<1and m>n(1—p)/2. If a symbol p(x, £) satisfies

(3.15) N= sup |p®( &) KEm" <o,

lal=k, (x,§
then p(X, D,) belongs to L(L?) for 2= p < oo, and we have
(3.16) lp(X, D) ull,=C Nllull,,
where we can take the constant C independently of 2= p= co.
Corollary 3.7. Let 0=p<1, 2<p=<oco and m>m, If a symbol p(x, &)
satisfies

(3.17) N=_sup | pigw BT <oo,

lal=x, 18ISk (%,8)

then p(X, D,) belongs to L(L?) and we have
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(3.18) lp(X, D,) ull,=C Nllull,
where the constant C is independent of 2= p= co.

We can prove Corollary 3.6 directly from Theorem 3.3 by taking w(#)=1",
r=m—n(1—p)/2. Corollary 3.7 can be proved from Corollary 3.5 by taking
o)=t", T=m—m,.

If o(2) satisfies (3.7) then we have

1 T
3.7) h%ﬁmzéMKm

for any positive 7. Hence we have

Corollary 3.8. Let p and «(t) be the same as in Theorem 3.3. If a symbol
p(x, &) satisfies

(3.8 N= sup | p(x E) o(E7) KE IR < oo

lal=x,

for some positive T, then p(X, D,) is L*-bounded for 2= p=<oco and the inequality
(3.9) holds.

We use Corollary 3.8 in the proof of Theorem 4.4.

4. L’-boundedness of operators of the critical decreasing order

In this section we show L?-boundedness theorems for operators of symbols
which have the critical decreasing order as |[&]|—co.
We denote the norm of bounded mean oscillation for a function f(x) on

R” by [|fllx=I1fllss0=5up |€1)| S | f(x)—feo|dx, where @ denotes an arbitrary
D)

cube in R", |Q| is the volume of the cube @ and fQ—|—Q~ S f(x) dx. The fol-

lowing theorem has already been proved in [13] and [16]. However we give here
a slightly different proof, in which we use a continuous decomposition of the

operators.

Theorem 4.1. We assume that a symbol p(x, E) satisfies one of the following
two conditions.

(i) N= sup |p{Ex )K" Fl<eo,

lel=k, 1BI=1, (%, ©)

where 8 is a positive constant with §<1.

(i1) N= sup | pSB(x, E) | KEDHO-PHPUSI=IB) < oo

lal=x, 1Bl=k, (=, €

where p is a positive constant with p<<1.
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Then the operator p(X, D,) is bounded from L= to BMO and we have
(4.1) 1p(X, D,) ullx=C, Nllull .

Proof. We note that, by Lemma 2.1, if p(x, &) satisfies the condition (i)
then p(X, D,) is L*-bounded and we have

(4.2) lp(X, D.) ull,=C N|lull, .

Moreover if p(x, ) satisfies the condition (ii) then, by Lemma 2.2, the operator
p(X, D,)XD,>"*"2 is L*-bounded and we have the similar estimate to (4.2).

As in the proof of Theorem 3.3, we take a smooth function f(¢) so that the
support is contained in the interval [1/2,1] and

[ SO g — ertz 1

- 1 o ¢

Let @ be an arbitrary cube with side d and center x°. Then we note |Q|=d".
We may assume without loss of generality that the sides of the cube are parallel
to the coordinate axis and d<<1. Hence we can write @={x=(x,, ---, x,); |%;
—x9| =dJ2, j=1, ---,n}. We take a C5(R') and even function ¢(t) so that the
support is contained in the interval [—2, 2], ¢(¢)=1 for || <1 and ¢(¢)=0.
We set Y, (E)=¢p(d |E]). By Corollary 3.2, we may assume that the support of
p(x, ) is contained in {&; |E| =2} and p(x, &) satisfies

| pE(x, E)| Sc, N |E|Poroibimna=nn (18] 22)

for |a| <« and |B|=1 in the case p=1 and |B| =<« in the case 0<<d=p<1.
Then we split the symbol p(x, £) as

p(x, &) = p(x, &) Yra(E)+-p(x, &) (1—ru(§)) = po(x, &) +P1(x, £) .
Then we see that
(4.3) | 9;8)(x, E)| Sc, N |E|re-mr-riesdibl (7= 0,1)

for |a| =« and |B|=1 in the case p=1 and |B| =« in the case 0<d=p<],
where the constant ¢, is independent of the length d of the cube.

First we consider the operator py(X,D,). Since the support of
Po(x, E) f(¢|E]) is contained in the set

& 1= 181=1/t, 2= |E| =2/d},

we have
v dt
Dy, polX, D) () = | Dey plts X, Do) () 4,

where py(t, x, E)=po(x, £) f(2|E]). The symbol of D, pi(t, X, D,) is equal to
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Poslts %, E) = {uep (5, E)HE 0 (5, B FCIED) -
Hence by (4.3) we have
120,52, %, )i -my < C? N? ¢7277%,
which gives with the aid of Proposition 3.1

1D, 24X, Doy ull-= 11D, 20, X, Dyl 2
gCNS‘” _"t} llull.<4 C N d-[u]l...

Therefore, for ' in @ we have

-

i) o B D2) u(x) dv—pyX, D) u(x)|

Q
S5 lj | X, D) u(x)—py(X, D,) u(x')| dx
<CNlu]l..

This implies

(44) 156X, D,) ulls <CN |fu]l..

Next we show the boundedness of the operator p,(X, D,). Let X(x) be a
C7(R") function which satisfies X(x)=1 for any x=(x,, ---, x,) with |x;| <2
(=1, -+, n) and X(x)=0 for any x=(x,, ---, x,) with |x; | =4 for some j,. We
set X (x)=%X(d""(x—a°)), and we write

(#.5) (X, D) u(x)=py(X, Dy) (Xg u) (¥)+p(X, D) (u—X, 1) (x)
= Tu(x)+1I u(x) .

Then, we sce
11 ufx) — So ‘i‘ g Ki(t, %, 2) (u—Xq u) (v—12) dz ,
where Ki(1, %, %) is defined by
Koty 2) = [ e plon, L) (1= (L)) 18 D)

Since |x;—x}| =2d” for some je {1, -+, n} in the support of u(x)—X,(x) u(x),
for any x in @ we have

|tz = |x;—xj—t2;| — |x;—x5| =2d°—d|2=d" .

Hence if x belongs to @, then |2| =¢"' d” in the integrand of I u(x). Then
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Slzlgt‘ld"l Kit, x =) |dz

<

sl [gt'ldplz| ~ dz}l/z {S ,zlleKl(ts X, z)lz dz}llz

e, (L) eor 33 floz (v L) a—w LE)) F1E D} 1 a7

P
N ( : >'“+"’2 {rU-PLRA=0) — O N gD o)
t

IA

Therefore we have
a
| 1T u(x)| <C Nd“”/z““)so £710=12) ]| < C N [u]..

for x in @. 'This implies

(4.6) LSQ |11 u(x) | dx=<C N |[u]..

Q]

In order to estimate I u(x) we use the L?-boundedness of the operator
p(X, D,)XD,>"*""%Z under one of the two conditions (i) and (ii). Since

Tu(x) = p(X, D,) (1—=ri(Dy)) (Xqu) () ,

‘W€ can see

CN -
dD.x 2
1Q[” [ra( ) X ul]

where Jry(§)=CED "1 —ry(£)) X(E), X(E)=1 for |E| =2 and X(£)=0 for
|E]| <2. Since [J,(&)|=c,d"* "2 and |Q|=d", it follows from Plancherel’s
formula that

|
<

1
QI
=CNa™™7|x,llsllull.= C NIIX]lllull .

4.7) SQ | u(x)|dx<C N d~"7 d"¢-2||x, ull,
From the inequalities (4.4), (4.6) and (4.7) we get
[12(X, D) ull$ =C N |[u]l.. .
Thus we complete the proof of Theorem 4.1. Q.E.D.

Theorem 4.2. Let 2= p<<oo. Suppose that a symbol p(x, £) satisfies the
condition (i) in Theorem 4.1 or satisfies
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(iy N=_sup |p(sEKEm <o,

lal<k, IBl=x, (x,€)

where m, is the critical decreasing order n(1—p) (1/2—1/p) and 0<p<<l. Then
p(X, D,) is L?-boundeed and we have

(4.8) (X, D) ull,=C, Nllull, -

Proof. When the symbol p(x, £) satisfies the condition (i), the operator
p(X, D,) is L*-bounded by Lemma 2.1 and bounded from L~ to BMO by The-
orem 4.1. Therefore by the interpolation theorem of Fefferman-Stein in [4]
we can obtain the estimate (4.8). In a similar way, we can obtain the estimate
(4.8), when p(x, ) satisfies (ii)’, from the interpolation theorem of Fefferman-
Stein in [4] (see [3] and [16]). Q.E.D.

RemaRK 4.3. We note also that Theorem 4.2 has already been proved in
[16].

Theorem 4.4. Let 0=8<p=1,7>0 and let w(t) be a non-negative and
non-decreasing function which satisfies

(4.9) Sl Q—y—) dt = M<co .

0
We assume that a symbol p(x, £) satisfies
Ny=sup |p®(x, §)[<EIITPAFN oo,
)

lal<k, (x,§
I A= sup (160 55, Bl I~y <€)

X LEMA-PHPIBNY oo

Then p(X, D,) is bounded from L™ to BMO and is L*-bounded for 2= p<<oo, and
we have

(4'11) [lp(X, D,) u”pg(cp Ny+Cy N, M) ”u“p’
(4.12) 1p(X, D,) ullsx = Co(No+N, M) |[u]l
where the constant C, is independent of 2= p<<oo.

Proof. We take a C§(R") function ¢() such that the support is contained
in {y; |y|=1} and [ ¢(y) dy=1. We take a positive constnat 8’ so that §&=p
if p<1and §<&'<1if p=1. Now we define symbols p(x, £) and ¢(x, &) by

B(x.8) = (60 pe—<&> 3, 8) dy
= (6" @20, < ay,
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and g(x, £)=p(x, &)—P(x, £). Then by Lemma 2.3 we can show that
| B (0, £)| SC, p NKE>TC PP+ 1R
for any B and a with || =, and
1g(x, &) | S C, Ny o(<EYT" B) CEDmnrmpie

for |a| =« (see, for example, [8] or [11]). Therefore it follows from Lemma
2.2 and Theorem 4.1 that (X, D,) is L*-bounded and bounded from L~ to BMO,
and by the interpolation theorem of Fefferman-Stein we have

1B(X, D,) ull,<C, Nollull, (2=p<oo)

12(X, D,) ullsx = Co Nolul|.- -

Moreover by Corollary 3.8, we have
llg(X, Do) ull,=<Co N, Mylull,  (2=p=ee).
Thus we get the theorem. Q.E.D.

In this theorem, we got L?-boundedness under a weak continuity condition
(4.10) of symbols with respect to the space variables x, however, the decreasing
order of symbols as |£|—>oco was the constant n(1—p)/2. We know that when
p<<1 this is not the critical decreasing order for L?-boundedness except for p=
oo, So next we show an L?-boundedness of operators of the critical decreasing
order under some continuity condition in the space variables.

Theorem 4.5. Let 0<p<land 2< p<oo. We denote
4.13 m, = n(1—p)(12—1/p), g, — "1 =p)

Let p be an arbitrary positive number greater than p,. We suppose that a symbol
p(x, E) satisfies

(4.14) No= _ sup | o §)I<E" <o

lal <k, 1l=k, (2, §

Moreover if py=p—[p]>0, then we assume that

(415) Ni= _ sup | pEw E)—pH(, E)| lv—y| KT <o

lal=x, 1BlS[a], (2,9, 6)

Then p(X, D,) is L*-bounded and we have

Proof. We set p’=p-+n(l1—p)/(px). Then we see easily p<p’'<1. We
take a Schwartz rapidly decreasing function ¢(2) such that [ ¢(2)dz=1 and



L?-BOUNDED PsFUDO-DIFFERENTIAL OPERATORS 437

J2*p(2) dz=0 for any a0 (see [8]). We define new symbols p(x, £) and
q(x, £), as in the proof of Theorem 4.4, by

(4.17) Bx, &) = | $(0 pla—<&> 5, 6) dy
= [o® =m0, 8" @y,

and ¢(x, &) = p(x, E)—D(x, ). 'Then setting v=[u], we have

3o &) = plw B+ 3 I [ 326(3) de> ™ pip(, ©)

odipi<v B!

mlz%l)— S (1—t)" gyﬂ¢(y)p<p>(x—t<£>""’ v, EXE>"" dy dt .

Since [ y?¢(y) dy=0 for B0, we have

a6 8) = ==y 2 - 10 [ 90 (E (50)
X" peay(, €) <EDTFHM dydt
— o= 2 -0 6 ()
X" Py (s E)—pesr(x, EF<E Y dydt

where ¢g(2)=2°¢(2). Thus using Lemma 2.3 we can see that

45 B SON, 32 <67 [ € ) 118"
<C Nl<§>—mp—p’u—p|w[

for |a| <k, where ¢, p(2) are linear combinations of Schwartz functions de-
termined from ¢g(2) and its derivatives of order not greater than |a|. By the
definitions of u, u,, m, and p’, we can see easily that

p'utmy>p pytmy, = n(1—p)/2.
Therefore by Corollary 3.6 we have
(4.18) llg(X, D) ull,=C N|lul],

Next we consider the symbol p(x, ). For |a|=« and |B|=<v=[u], it
follows from Lemma 2.3 that

419) 153 5)1=10:0() po(x—<E7 5, By dr} |
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= 10{ (<& (=) pioly, EXE" 3} |
<C_ 3 (107 =My (0 5 07E" dy

olialiad=w

SCNLE ™™,
When |a| =<« and v<|B| Z«, writing B=8"'+5% |B'|=v and B2+0, we have

155 (v £)1 = 1020246 (9) by (+—<E>™ 3, £) o} |
— 1031 (B (5—) gty (3, £) <+ |,

where ¢2(2)=D% $(2). Since [Pz (2)dz=0, in a similar way to the estimate
for g(x, &), we have

(420) BB (% )= |6g{g¢’(32) (K& (x—)) {py (9, E)—peen (%, E)}

X CEDF BB gyt |
<C _7\/‘1<‘§>-m[,—mao]+p/(|ﬁl_,,)_p,’Lo .

Since
P(I1B1 =)= ra—p| Bl =(p"—p)| Bl —p'n<(p"—p) €—p'1t, = 0
for |B]=<«, combining the estimates (4.19) and (4.20), we get
|58 (%, £) | = C(No+Ny) ED~me Pl +#Ifl
for |a|=<«and |B|=<«k. Therefore by Theorem 4.2, we have
(4.21) | B(X, D,) ull,< C(No-+N)llull, -
From (4.18) and (4.21) we get (4.16). Q.E.D.

REMARK 4.6. (i) we first note that

py—r(1—p) = ip(1—p) (n—pi)|(iepp+n(1—p))<0

for p=2, and therefore p,<<#(1—p). In the condition (i)’ of Theorem 4.2, we
assumed the « differentiability of symbols in the space variables x and the
covariables &, in order to get the L?-boundedness for the operators of a class
which generalizes the Hormander class S5 »(0<p<<1). However for operators
of our class which generalizes the Hormander class S; 52 (0<<p<1), we can obtain
the L?-boundedness under less regularity u in the space variables & by Theorem
4.5, since p,<w(l—p)<x.

(i1) It is clear that Il,im #,=0 and lim p,=0. This means that if p is suffi-

>0 o041

ciently large or p is sufficiently near to 1, then we can obtain the L?-bounded-
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ness under only the Holder continuity of symbols with respect to the space
variables x.
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