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1. Introduction

Concerning the problem® of “how to calculate the second homotopy group
of the complementary domain of a 2-knot in R*,” there exist several results in [1],
[2] and [3]. Especially, the result by C.H. Giffin in [3] seems to be conclusive,
but the proof in his report is so brief that there are some parts which can not be
understood straightforwards. In this paper, we will be concerned exclusively
about only ribbon 2-knots™> which have some nice properties both in the
geometrical and in the algebraical sides in the 2-knot theory, see [5], [6], [7] and
[8]. First in §3, we will discuss about the second homotopy group of the
complementary domain of 2-nodes (I, H*) with the properties defined in (2),
(3) and (4) in § 2, and we will prove the result z,(H*—D?)=(0) in Theorem (3.4).
In §4, we will investigate a relation between the knot-group and the second
homotopy group of the complementary doamin of the ribbon 2-knots, and as a
consequence, we will prove the main theorem, Theorem (4.3), of this paper.

2. Preliminaries

We may suppose the following (1), (2) (3) and (4) with a slight modification
for a ribbon 2-knot K*:
(1) 2-balls D2=K*’NH{ and D>?=K?N H* are symmetric each other
with respect to the hyperplane R ®,
(2) D? has no minimal point,
(3) all saddle points p;> of D} are at the level R}, and in a small neigh-

(0) See [4], p. 175, Problem 36.
(1) See [6], §4.

(2) R} ={(x1, Xz, X3, %) |25 =1}
Hi ={(xly X2, X3, x4)lx420}
HY ={(x1, xz, X3, %4)| %, =0}

HA(J)={(x1, %2, %3, 24) | %, E J}.
(3) see [4] p. 133.
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borhood of each saddle point, D} is a square B} at R} which is called
a saddle-band™®, see Fig. (1),
(4) DZ is in a general position with respect to the collection R} (¢=1).

X2 X2

e [

1-e<t1 t=1 1<t<1+¢&
Fig. (1)

For each saddle point p,(i=1, 2, ---, n), we suppose that, for sufficiently
small positive numbers & and §,

Pi . (x(t) x(!) 0’ 1)

B} : |o,—x”| =<1, |x,—a|<1, =0, x=1
O =0, |x,—a®|Zl, =0, 1-c=x=1
O3 Je—aP| <6, |a,—a” <1, =0, 1—-&=<x<1,

where []? is a square and [j is a cube, and B*N Bi=¢ and ﬁ n D,—qb if
i3 jO.

If we investigate the cross-sections of D? by R}(1—&<t<1+¢€) for a
small positive number &, we have the following (1), (2), (3) and (4):

(1) DZnRE_, is a ribbon knot & in RS_,,
(2) D2n -R1+e is a trivial link k, Uk, U--- Uk, in R},,,
(3) By the orthogonal projection @ of H{ onto R3,
(D% N HY(1, 1+&€]))co(D3 N RY)®
(D% N H 1—¢, 1))co(DiNR3)
607 = 0OinB; (=1, .,n).

(4) The band (square) B? spans 0(k;) and 0(k,) (=1, -+, n) coherently on
its opposite, parallel edges.

3. Surgery
For a PL-map g” of S? into H{—D?, there is a PL-map g’ of S? into

(4) 'This is a conventional word.
(5) These coordinate-presentations are not essential.

(6) 08X means the boundary and X the interior of a point set X. For convenience’sake,
we denote X—XNY by X—Y.
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H*[1—¢&, 14-&]—D? such that g'(S?) is homotopic to g"(S?) in H{—D3, since
there exist only the maximal points of D% but no saddle point of D} in the ex-
terior of H'[1—¢, 14+€]. If g/ (S9N ([T, U+ U (J,)=¢, we can jump to (3.3)
without troubles in the following discussion. If g (Sz)ﬂ([] U U[],,):l:gb,
we consider a PL-map g of S? into H*'[1—¢, 14-&]—D3% satisfying (1)~(4)
mentioned below:
(1) 2(S?) is homotopic to g'(S?) in H*[1—¢, 1+€]—D3,
(2) £(S*)N[J? consists of at most a finite number of points on R}_,
denoted by ¢i*, ---, g, for which g7*(gi") is just one point, say
¥, on S,
(3) there are 2-balls U, V& (1<i<n, A=1, ---, m;) on S? such that
3) T@oVeovesg?,
(3) T n TP = ¢ if either i jor A=k p s
(3,) g|U® is an imbedding,

(4) denote g(V?) by V¥ (1<i<n, n=1, -+, m;), then
xitaf <4

1
). —
|8 x, =

1+

Since it is not difficult to see the existence of two deformation retractions &’
and £”:

g: H'[l—e¢, 1+&]—D2 UD U-ull, — H'Y[1, 1+¢&]—D2

g HY1, 14€]—-D% — R} ,—D2
we may suppose that the above PL-map g satisfies not only (1)~(4) but also
(3), (6):

(5) g(Sz ))CR1+E + ’
(6) 2—ball U =g(UP) satisfies that the annulus U’ — V¥ is given b
4 g y

xi4xf =4
TSR 1
O _J7D . —
Up—vd. x, T
1—ezx,Z1+€.

Let ¢{ be the simple closed curve 0U " (i=1, ---, n, A=1, ---, m;). The
orientation of ¢{’ should be induced by that of U{” as a subcomplex of the
oriented 2-sphere S? and the orientation of knot k, in R},, should be induced
by that of D%. We classify these simple closed curves ¢§> into two collections
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T and T

'Y = {| 1<A<m;, the linking number ¢§"> and k, = 1}
TP = {c®|1<u<m,, the linking number ¢’ and k, = —1}

for each 7 (=1, .-+, n).

Lemma (3.1). T and T contains the same number of circles for each
i(i:l’ ooy, n)_

Proof. Consider a 2-node DY in H*[1—§, o) given by cutting
D% N H*[1—¢, o) along an arc D% N []? and sewing by the 2-ball (], where
we suppose that D’ Dk;. Then, since the closed curve ¢ does not link with
k; in R}, (j=i), the 2—ball U bounded by ¢ is isolated from D$ in
H'[1—¢, 00)—D$. Therefore ¢ 4-c§°+ -+ +c4)=0 in H,(H*[1—¢, 00)—D{’),
as ¢f”U -+ Ucy’ bounds a 2-complex g(S*—U® U U Ue).  Since
H(H'[1—¢, 0)—D{’)=(¢t; —), and either ¢{’=t or ¢{>=—t as ¢’ or
¢’ T respectively, the proof is now completed.

Lemma (3.2). There exists an arc § on a perforated 2-ball S*— U U®
iHA

satisfying (1) and (2) as follows:

(1) The arc v=g(¥) spans ¢’ and c>, where ¢l and ¢’ TP
(1<i<n),

(2) The arc y=g(¥) is on E?, where mutually disjoint 2-balls E3, E3, -+, E,
satisfy that 0E}=k; (i=0, 1, ---, n) in R} ,.

Proof. Let =g(S*)N R} . =g(S*— U U?;”), then =R}, .—k, Uk U:-*
HA
Uk,, 0Z=Uc{”. In this case, we may suppose with a slight modification if
i A

necessary that 3N E? consists of the curves s of the following four types:
(1) v=g(%) for a closed curve ¥ on S?,
(2) y=g(¥) for an arc § on S? spanning 0T’ and U, where either
&P, ¢ eT or ¢, ¢ TP,
(3) y=g(%) for an arc 4 on S? spanning dU" itself.
(4) y=g(®) for an arc § on S?spanning U’ and 0T, where ¢ T
and ¢ eT®.
In the cases (1)~(4), ¥ may be a non-simple curve, but for an imbedding »;
of E*X[—¢, €] into R},, such as {r,(E?x 0)=E?, we may suppose that

T ETX[—E, EINZ) = Y (EENZ) X[, €] .

Leaving the points on ;(8(E?X[—¢, €])) fixed, we can homotopically
carry the singularities of type (1), (2), and (3) into three regions 7(+), 7(0) and
r(—) on E%, see Fig. (2) below:
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(21) (22)
Fig. (2)

where we classify as follows:

ycr(+), if it spans ¢§’ and ¢{” of T,
ycr(—), if it spans ¢§” and ¢’ of T'®,
yc7(0), if ¥ is a closed curve.

If there exists no singularity of type (4), the trivial knot 8r(+) links only
with ¢ for cﬁ\”EI““ Therefore, ¢ +-++¢c’=0 in H,(R} . —0r(+))=
(¢; —), where {c, -+, 2} =T, since U+ Ucs? bounds a 2-complex
p U(.L)J\o-"’)jfi,;\ﬂh...,;\x where the 2-ball &§” is bounded by ¢{’ in R}, ,—0r(+).

Js

Then, we must say that I'’=¢ and necessarily T’ =¢ by (3.1). On the

other hand, we have assumed that g'(S?)N (E U--u ﬁn)¢¢, thus there must
be at most one integer i(1 <i<n) for which T 4¢. This is a contradiction,
and there must be a singularity ¢ desired in (3.2).

By the result in (3.2), we can modify 3 homotopically in R},.—k, Uk, U
- Uk, leaving the circles ¢ fixed for all 7 and A so that there exists a band
J§{? containing  and contained in 3, see (3,) in Fig. (3). Since X is an image

\ L L 1L
b g ’
)

Q\
~
=

26

\
=

—

~

i
ci

(31) (32) (33)
Fig. (3)
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of a subset of S? there exist an even number of twists on JZ2, see (3,). Never-
theless, it is not so difficult to move 3 homotopically in R} ,—k,Uk, U+ Uk,
leaving the circles ¢ fixed so that /2 has no twist, see (3,) and (3,).

Consider a surgery on g(S?) in the following figure, Fig. (4).

- Y

\M;ﬁ 9 ? Yiu
M% /2 M%-dl / Mf_”
V( i)
I\ /N
Rg—s R?-—;/z R:l’—-;/«s Ri R:I;n

Fig. (4)

In Fig. (4), the boundary circles of a 2-surface M? (1—€<t=<14-¢€) are
the circles UPNR} and U N RE, therefore U oMIuVeuVe=

1-e<t<1+8
UPUyUP. Let B3, and B3, be the two 3-balls bounded by the 2-spheres
Ve UM{2, and VP UM72, in the level R}_,, then the 3-manifold B{®, UB72,

U u Mf is a 3—ball X3, for which we may suppose that 9X3 .=

1-8<¢<1+8
UPuUPUME,,, M3,.=J2UY2,, where Y2,=M3 ,—J2 'Then, there is
a PL-map f’ of S? into H*[1—¢&, 1+4+&]—D?% satisfying the followings:

(1) f'(S?) is homotopic to g(S?) in H*[1—¢, 1+¢€]—D3,
2) fl S:— Uy U‘”—g[ S:— U U U’(i)’

(3) f(S)=g(S*—TLUTL UTHU Y

where J2 is a neighborhood of 4 such as g(J%)=J3.

Repeating these processes, we have finally a PL-map f of S§* into
H*[1—¢, 14-€]—D? such that f(.S?) is homotopic to g"(S?) in H*[1—¢, 14-6]—D3
and that f(S*)c R}, ,—k, Uk, U--- Uk,.

Here, we want to get the consideration above into shape.

Lemma (3.3). For any PL-map g" of S* into H,—D3, there is a PL-map
fof S into HY— D3 satisfying (1) and (2) below:

(1)  f(S?) is homotopic to g"(S?) in H,—D?,

(2) A(S)CRL,,—DinRL..

Theorem (3.4). =, (H}—D3%)=(0).

Proof. By the sphere-theorem™ for 1-links (, for 3-manifolds,)

(7) See [9], [10].
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(R}, .—D2N R3,,) is generated® by a collection of mutually disjoint non-
singular 2-spheres s%, 53, .-+, s2 in R} ,, where a 2-sphere s? is the boundary
surface of a regular neighborhood of the 2-ball E? in R}, (i=1, .-, n).
Since there is no saddle point of D% in H*[14¢, o), we can easily contract
the 2-sphere s? to a point through H*[14&, c©)—D? (=1, ---, n). On the
other hand, by (3.3), an arbitrary element s of z,(H%—D3%) can be represented
by the elements of z,(R},,—D3% N R},,)® which are contractible in H%—D? as
already mentioned. The proof is thus complete.

4. Covering spaces

Let u: W—R*—K?* be a universal covering for the complementary domain
of a ribbon 2-knot K? in R*. Then,

u, =u|W,: W,—-H}!—D?
u_=u|W_: W_—-H*-D2

are both universal, since K? is symmetric with respect to the hyperplane R§,
and the inclusion-induced homomorphism of z,(H%—D?%) into =,(R*—K?)
is onto as the 2-node (D3, H%) has no minimal point. By (3.4) and the Hurewicz
theorem, we have the followings:

H(W,)=(0), HW,)=n(W,)= 7, (H3—D3%) = (0),
() { H(W.)=(0), H(W.)=n(W.)=n(HL—D2)=(0),

H(W) = n(W) = my(R*—K?) .

Consider the next Mayer-Vietoris sequence:

HW,)+H,W_)— H2(W+HU W.)-HW.NW_.)— H((W,)+H((W_)
H(W)
By the relations in (x), we have the following:
Lemma (4.1). 7z,(R‘—K*)=H(W . NW.).

Now, we will consider the relation between z,(R}—k) and H,(W,. N W.),
where k=K?N R} is a 1-knot in Rj.

Lemma (4.2). If »,(R*—K?) is torsion free, then H (W, N W_)=XK|K®,
where the subgroup K of = (R3—Ek) is the kernel of the inclusion-induced homo-

(8) Consider n1(R},.¢—D?2) as an operator.
(9) Consider z;(H4 —D?%) as an operator.

(10) ““="’ means isomorphic to.
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morphism iy of =,(R§—Fk) onto = (R*—K?)™",

Proof. Let u,=u|W . NW_: W,— R}—k, where W,=W, N W_. Then
u, is also a covering which is not always universal. Therefore =, (W,) is iso-
morphic to a subgroup 4 of z,(R§—k), so we have H=.K by the facts that
7,(W)=1 and the homomorphism 7, is onto®®. Abelianize K by the commutator
subgroup K of A, and we have (4.2).

By (4.1) and (4.2), we have

Theorem (4.3). For a ribbon 2-knot K2 if = (R*—K?) is torsion free,
then w(R'*— K?)=XK| K™, where K is defined in (4.2).

Question. If z,(R*—K?) is not torsion free, the subgroup K will be the
subgroup of =,(R3—k) generated by all the elements with finite orders of

ix(w,(R3—Fk)), therefore we have a question: “Is z,(R*—K?) torsion free for a
ribbon 2-knot?”

ReMARK. If a ribbon 2-knot K* satisfies that = (R'—K?)=(t: —), then
7 (R*— K?)=(0).

Proof. By the result in [8], for a ribbon 2-knot K? and the cross-sectional
knot k=K?N R}, where the 2-nodes (D%, H%) for the 2-balls D2=K*N H%
satisfy the properties in §2, the Alexander polynomials satisfy that

AM(t) = Axlt)- Ax(F)

Therefore, if 7 (R*—K?*)=(t; —), Ag(t)=1, and necessarily A,(t)=1, then
by the theorem (4, 9, 1) in [11], p. 46, EP=* for G=r,(R§—k). On the
other hand, since z,(R'—K?*)=(t; —)=@8/&®, the kernel K of 7, surely
coincides with &®, Thus, we have

7R —K?) = BO[B> = GD[G = (0).
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