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Preface

Offset curves are also known as parallel curves. In the field of computer aided
geometric design (CAGD), rational curves and piecewise rational curves are used
as rational Bézier curves and non-uniform rational B-splines (NURBS), and off-
sets to rational plane curves are often needed. But, in general, offsets to rational
plane curves are not rational curves. Pottmann gave explicit representations of
rational plane curves with rational offsets in [7], and Lii studied necessary and suf-
ficient condition for rational plane curves to have rational offsets in [6]. Farouki
and Neff analyzed geometric and topological properties of offset curves, and stud-
ied implicit representations of offsets to rational plane curves in [3, 4]. Arrondo,
Sendra and Sendra introduced the notion of simple and special components of
generalized offsets to hypersurfaces, and proved that each component of reducible
generalized offsets to rational hypersurfaces is rational and that simple compo-
nents of reducible generalized offsets to hypersurfaces are birationally equivalent
to original hypersurfaces in [1], and gave a genus formula for generalized offset
curves in terms of the degree and the genus of original curves with some conditions
on singularities in [2]. Furthermore, Sendra and Sendra studied degeneration and
existence of simple and special components of generalized offsets to hypersurfaces
in [9].

However, the relation between the genus of offsets to rational plane curves and
proper parametrizations of original curves has not been studied so much except
for the case of rational offsets. In this paper, we construct a birational correspon-
dence between offsets to rational plane curves with no special components and
hyperelliptic curves derived from proper parametrizations of original curves, and
thus we can compute the genus of offsets to rational plane curves. Though our
result is limited to the case when original curves are rational, it does not require
conditions on singularities of original curves. Note that offsets to rational curves
with special components are reducible from a result in [9], and thus together with
the result in [1] mentioned above, each component is rational in this case. We
also give a criterion to decide the irreducibility of offsets to rational plane curves.
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1 Offsets to Rational Plane Curves

First we define the offsets to rational plane curves. We say a parametric rational
plane curve r(t) is properly parametrized provided that, with a finite number
of exceptions, for every point (zg,yo) of r(t), there is a unique parameter value
to such that r(tg) = (xo,y0). A rational parametric plane curve which is not
properly parametrized is said to be improperly parametrized. From Liiroth’s
theorem, any improperly parametrized rational plane curve can be expressed as a
properly parametrized rational plane curve (cf. [8],[10]).
For polynomials X (¢), Y (¢), W (t) with real coefficients, let

r(t) = (X(t)/W(t),Y(t)/W(t)) for t € R (1)

be a properly parametrized rational plane curve. Without loss of generality, we
may assume that

GCD(X (), Y (1), W(t)) = 1. 2)

Let d be a non-zero real number and regard d as a signed distance. Then the
offset r4(t) to r(t) at distance d is defined by

(xw v Y, Uw .
ra(t) = (W(t) +d EOFEORUG d EOR v2(t)> fort €R, (3)
where
Ult)y=X'6)W(t)— XOOW'(t), V(i)=Y ()W) —Y&)W'(t). (4)

We call 7(t) the generator curve of r4(t).

To obtain an implicit form fi4(x,y) = 0, dependent on the distance d, which
represents the offset curve, we follow a method due to Farouki and Neff [4]. Let

_ X V(1) yo Y, U (5)
W) T + VR W(t) U (t)+ V2(t)
Then we see that
VO _ 2y = g U0
X[ U2(t) + V2(t) = dy_ﬂ, (7)
W (t) W(t)

and by multiplying their denominators, we have

W2(t)(2? +y?) = 2W(O)(X (D) + Y (t)y) + (R(t) — PW2(1)) =0, (8)
W)Utz +V(t)y) — UBX(E) + V()Y (t) =0, (9)
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where R(t) = X%(t) + Y?(t). We regard (8),(9) as the polynomial equations in
x,y. Note that the intersection of curves (8) and (9) consists of two points r4(t)
and r_,4(t) whenever

W(t) # 0 and (U(t),V(t)) # 0. (10)

Let
6(t) = GCD(W?2(t), W ()X (t), W(t)Y (t), R(t) — d*W?3(t)), (11)
¥(t) = GCD(W (U (), W)V (¢), U)X (t) + V()Y (1)), (12)

be the greatest common divisors of the coefficients of (8), (9). Then we have

6(t) = GCD(W(t),R(t)), (13)
P(t) = C)ot) (1) = GCDU(1), V(1)) (14)

(cf. [4], Lemma 3.1,3.2). Since X (¢),Y(t), W (t),U(t),V(t) and R(t) are polyno-
mials with real coefficients, so are 6(t) and ((t).

To avoid parameter values ¢ which cause either (8) or (9) to vanish identically
in z,y, we divide them by these greatest common divisors #(t) and v (¢). Thus we
get new equations

Pyt z,y) = WEHWi(t)(a® +y*) — 2Wi(8)(X (t)z + Y (t)y)
+(Ry(t) — d*W ()W, (t)) = 0, (15)
Q(t,r,y) = Wi(t)(Ui(t)x + Vi(t)y) — S(t) =0, (16)

where

Wi(t) = W(@)/0@t), Ri(t) = R(t)/0(t), U.(t) =U(t)/C(1),
Vi(t) = V(0)/¢(t),  S{t) = (U)X (1) + Vi)Y (1)) /6(1). (17)

Note that Pg(t,#,y) is a polynomial in ¢,z,y with real coeflicients, only even
powers of d appearing in its coefficients, and Q(t, x, y) is a polynomial in ¢, x, y with
real coefficients. From now on, we use the subscript |d| to express the polynomials
in which only even powers of d appear in their coefficients.

Let hyg(z,y) be the resultant of Pg(t,z,y) and Q(t,z,y) with respect to t.
Then hyg(z,y) is a polynomial in z,y with real coefficients. We consider the
algebraic curve hyg(z,y) = 0.

By definition of resultant, for any point (z,o) of the curve hjq(z,y) = 0,
there exists ¢y such that P (to, zo, yo) = Q(to, %o, yo) = 0. Since o, yo and ¢, are
complex numbers in general, we extend the parameter value ¢ of r4(t) from real
numbers to complex numbers.

Note that a point (2o, yo) of hj(z,y) = 0 is a point of the offset r4(t) or r_4(t)
if and only if there exists t, € C such that Pg(to, z0,%0) = Q(to,%o,%) = 0,
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and Pg|(to,z,y) = 0 is an irreducible circle and Q(t,z,y) = 0 is a line. Since
Py (to,z,y) = 0 and Q(to,x,y) = 0 do not vanish identically in z,y, we consider
degenerate cases of the equation Py (to,z,y) = 0 to extract extraneous compo-
nents of hyg(z,y) = 0.

We compute the discriminant D of the quadratic Pg(to,x,y) = 0. Since
R ()W (t) = R(t)W1(t), we have

W (to) W (to) 0 — W (t0) X (to)
D - O W(to)WI(t()) —Wl(to)Y(to)
—Wi(to) X (to) —Wi(to)Y (to) Rilte) — d*W (to)Wi(to)
= —d*W3(to) W7 (to). (18)

Thus Pg|(to, z,y) = 0 is irreducible, if it is quadratic. We consider the cases of
P (to,,y) = 0 not being quadratic, that is, the case of W;(ty) = 0 and the case
of W(ty) =0 and Wi(to) # 0.
If Wi(ty) = 0, we have Py (to,x,y) = Ri(to). Since Wi(t) and Ry(t) are
relatively prime, there are no points which satisfy the equation Py (¢, z,y) = 0.
If W(to) =0 and Wy(to) # 0, P (to,x,y) = 0 represents the same line

Ry (to)
2W1 (to)

as Q(to,z,y) = 0 (cf. [4], Lemma 3.4). Note that, by definition of resultant, there
exist polynomials K (¢, z,y), L(t,z,y) € R[t, z,y] such that
hja(w,y) = K(t, 2, y) Pa (1, 2,y) + L(t, 2, 9)Q(t, 7, y) (20)
(cf. [10]). Let
E = {to € C|W(ty) =0, Wy(to) # 0}. (21)
Then, from (20), for any t; € E, there exists r; € N such that

P|d| (tiaxay)” hldl (x,y) and P\d\ (tml“,y)mﬂ J( h|d| (33,3/) (22)

and hyg(z,y) = 0 has the lines [, ., Plaj(ti, 7, )™ = 0 as extraneous components.
Note that if ¢; is a complex number, then the complex conjugate ¢; of ¢; belongs
to F and satisfies

P|d| (fi,x,y)” | h\d\(%y) and Pldl (t_z',m,y)mﬂ T h|d| (x,y). (23)

Thus HtieE Pq(t;,z,y)" is a polynomial in x,y with real coefficients.
From the observation above, if we put

h|d|<x7 y)
H F)|d| (tu z, y)n

t,eE

fla(z,y) =



then fig(z,y) is a polynomial in x,y with real coefficients, only even powers of
d appearing in its coefficients, and the equation fig(z,y) = 0 is the implicit
representation of the offsets at distance £d with no extraneous components (cf.
[4], Theorem 3.6), except for the case when the generator curve is a circle of radius
|d| (see Example 2).

We shall give two examples of an algebraic offset fiq(z,y) = 0.

Example 1. We consider the algebraic offset fiq(z,y) = 0 to the properly
parametrized rational curve

_[(2(5t" — 108 + 1) 2t(t* — 10t* 4 5)
7“( ) = ( (tz + 1)3 ) (t2 i 1)3 )

In this case, we have X (t) = 2(5t* — 10t? + 1), Y (t) = 2t(t* — 10> + 5), W(t) =
(t? +1)% and U(t) = —4t(t* + 1)?(5¢* — 30t> + 13) V(t) = —2(t2 +1)2(t5 — 35t +
55t —5), R(t) = 4(t* + 1)°. Noting that 6(¢) = (t*+ 1)% and ((t) = 2(1* +1)?, we
see that

(25)

)

rat) = 2(t* — 10¢% +1)  d(t® — 35" 4 55t* — 5)
! (2 + 1) N CGEREGCEYS)
2t(t* — 10t2 + 5) N 2dt(5t* — 30t + 13) (26)
(t?+ 1) V(2152 + 25)
Pyt,z,y) = (2°+y° —d)t° —dyt® + (3(z® + y* — d°*) — 20z + 4)t*

+40yt3 + (3(2* 4 y* — d?) + 40z + 8)t? — 20yt (27)
+(2® +y* — d* — 4o+ 4),

Qt,z,y) = —yt®— (102 — 2)t° + 35yt* + (602 4 4)t> — 5512
—(262 — 2)t + 5y, (28)

and by computing the resultant of Py (¢, z,y) and Q(t, z,y) with respect to t, we
have

ha((z,y) = 1073741824(2” + y*)*(—64d” + 16d" + 1184d°x — 3160d*x
+1584d°x — 216d%x + 642* — 7652d*x? + 28105d* z*
—46724d52? 4 29430d°x? — 7776d"°x? 4 729d"2x? — 118443
+22820d%x3 — 52852d 2 + 21124d°%2® — 2340d%23
+216d"23 4 763621 — 41210422 4+ 45922d*2* — 48020d°z*
+23830d%2* — 4374d"°2* — 196602° + 25952dx°
+10424d"2° + 4860d°2° — 1080d®z° + 131052° + 35828d%x°
+33105d*2° — 17560d°25 + 10935d%2° 4 253162"
—20856d%x” — 540d*x” + 2160d°2" — 350262° — 39870d°2®



—12540d* 2% — 14580d°x® — 104762° — 4140d°2°

—2160d*2” + 253552 4 21320d%2'° + 10935d*z*°
+21602' + 1080d%x'! — 72742'% — 4374d%2x*? — 2162
+7292' — 3716d%y* + 27625d*y* — 46660d°y* + 29430d%y?
—7776d" %% + 729d"%y? — 3202y° + 22820d°xy?
—52852d4xy? + 2112482y — 2340d8zy? + 216d' zy?
+80362%y* — 71260d°2%y* + 88352d*x%y* — 96040d°% %>
+47660d%z%y* — 8748d"°x*y* — 3932023y* + 51904d% 3 y>
+20848d*x%y? 4+ 9720d%2%y? — 2160d°23y? + 43635xy>
+99276d*x1y? 4+ 99315d 1 y? — 52680d°x1y?

+32805d%2z1y? + 759482°y* — 62568d%x°y* — 1620d 2"y
+6480d52y? — 1409682°%y? — 159480d%x%y? — 50160d* x°y>
—58320d°25y* — 4190427 y? — 16560d°x"y? — 8640d x>
+1267752%y* 4 106600d%2%y? + 54675d* 2%y + 108002"y?
+5400d22°%y? — 436442 0%y? — 26244d% 2% — 1296211y
451032292 + 400y* — 30050d%y* + 42430d*y* — 48020d°y*
+23830d%y* — 4374d%y* — 19660xy* + 25952d2xy*
+10424d*xy* + 4860d°zy* — 1080d°xy* 4 479552%* (29)
+91068d%zy* + 99315d* zy* — 52680d°zy* + 32805d%z2y*
+7594823y* — 625684223 y* — 1620d*z3y* + 6480d°z3y*
—212748x*y* — 239220d%x y* — 75240d* x*y* — 87480d5x1y*
—628562°y? — 24840d%2z°y* — 12960d*z°y* + 2535502%y*
+213200d225y* + 109350d*2%y* + 2160027 y* + 10800d%x"y*
—1091102%y* — 65610d%z5y* — 32402°y* + 153092 '0y*
+17425y° + 27620d%*y° + 33105d"y°® — 17560d°%°
+10935d%y5 + 253162y° — 20856d>xy® — 540d*zy°
+2160d°%2y°® — 1426962%¢° — 159480d%2%y°® — 50160d*2%y°
—58320d52%y5 — 4190423y° — 16560d%3y°® — 8640d* x3y"
+2535502y°® 4 213200d%2*y" + 109350d*z*y® + 216002°y°
+10800d2x°y® — 1454802y — 87480d2x%y® — 43202 7y°
+255152%y5 — 35890y° — 39870d%y® — 12540d*y®
—14580d5%y® — 10476xy® — 4140d%zy® — 2160d* x1®
+1267752%y® + 106600d°2%y® + 54675d*x%y® + 108002%y°
+5400d%23y® — 109110x1y® — 65610d%xy® — 32402°¢®
+255152%® + 25355¢'° + 21320d%y'° + 10935d*y*°



+21602y"° 4+ 1080d%zy'® — 4364422y*° — 26244d2*y"°
—129623y'% + 15309z4y'0 — 7274y'? — 4374d%y"?
—2162y™? + 51032%y"* 4 729y).

Since E = {i, —i} and Py (i, x, y)Pg/(—i, x,y) = 4096(z* + y?), we have from (29)
that

hya(z, y)
(4096 (22 + y?))?"

fla(z,y) = (30)

In Figure 1, we plot the generator curve (25) and its offsets at distnace +1.
The black curve represents the generator curve, the blue curve represents offsets
at positive distance and the red curve represents offset at negative distance. Note
that the blue curve and the red curve together constitute the algebraic offset

f\1|($’y) = 0.

Figure 1: The curve (25) in Example 1 with its offsets at distance 1

Example 2. We consider the algebraic offset fq(z,y) = 0 to the circle
2+ y? =12 (31)

The circle (31) is properly parametrized by X (t) = r(1 — t?),
1 + 2, and we observe that U(t) = —4rt, V(t) = 2r(1 — %),
Since 6(t) = 1 + t? and ((t) = 2r, we have

(t) = 2rt, W(t) =

Y
R(t) = r*(1 + t*)2.

a0 - (2800 20y
Pqy(t,z,y) = (22 + 2+ —d)H 1+ 1) — 2r((1 — Bz + 2ty), (33)
Qt,x,y) = —2tx+(1—1t)y, (34)



and by computing the resultant of Py (¢, z,y) and Q(t, x,y) with respect to ¢, we
see that

hyay (2, y) = 4" +y*) (2 + 3 = (d+ 7)) (@* +y* = (d —1)*). (35)

Note that £ = {—i,i} and Py (i, z,y)Pa(—i, z,y) = 16(2*+y?). Thus, if d # +r,
from (35), we have

fue,p) = 3 + 97 = (d+ PP) 47— (d = r)) (36)

and algebraic offsets to circles consist of two circles in general (See Figure 2).

©

1 1 3
Figure 2: A unit circle with its offsets at distance iZ’ :|:§, iz_l
On the other hand, if d = +r, we have
1
fia(@,y) = — (2 +y* = (2r)*)  (d = +r) (37)

64

and fig(x,y) = 0 is not the implicit representation of the offsets at distance +d
in this case, since the origin r_,4(t) or r4(t) is omitted.

Note that, since the set E is always finite, an algebraic offset f|4(z,y) = 0 does
not contain infinitely many points of r4(¢) or r_4(¢) if and only if the generator
curve is a circle of radius |d|. From now on, we exclude such cases from our
consideration.
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2 Birational Correspondence

We consider a correspondence between the algebraic offset fg(x,y) = 0 and the
algebraic curve §*> = U?(Z) + V?(Z). We assume that algebraic offsets always
contain infinitely many points of both 74(t) and r_4(t).

Lemma 3. Let fig(xz,y) = 0 be an algebraic offset to a properly parametrized
rational plane curve r(t) = (X (¢)/W(t),Y (t)/W(t)). Then the equation

_ X(@) | V(2) _Y(@) U@
I—W(j:)—f'd 7 y—W(i) d 7

=

(38)
defines a rational transformation from the algebraic curve §* = U?(Z) + V*(Z)
into the offset fiq(x,y) = 0.

Proof. Let (Z,7) be a point of the curve §* = U?(%) + V?(Z) which satisfies the
conditions

W (&) # 0 and § # 0. (39)

Then we have either § = /U2(Z) + V2(Z) or § = —\/U2(Z) + V(). If § =
VU%(Z) 4+ V2(Z), we see that

. X(if) V(z) _Y(@) U(z)
T e e YT we e e
from (38), and this gives the point 74(Z) of the offset f4(z,y) = 0. On the other
hand, if § = —/U2(Z) + V2(Z), we see that

(40)

X ()

B V(@) V(@) U(@)
W(z

VR M e R e e e

 +(=d)

(41)

from (38), and this gives the point r_q(%) of the offset fiq(z,y) = 0. Thus the
equation (38) defines a rational transformation from the algebraic curve 7? =
U?(z) + V*(Z) into the offset fq(z,y) = 0. O

We shall give an example of a rational transformation in Lemma 3.

Example 4. We consider the algebraic offset fq(z,y)
(t,t3) (See Figure 3). In this case, we have X (t) = t,
U(t)=1,V(t) = 3t* R(t) = t*> + t°. Noting that 0(t) =

= 0 to the cubic r(t) =
Y(t) =3, W() =1 and
¢(t) =1, we see that

ra(t) = (t LB L) (42)
V14 0td V1+0tt)’

Pu(t,z,y) =5 = 2yt® + * — 2zt + (2® + y* — d?), (43)

Qt,z,y) = —3t° + 3yt* —t + . (44)
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Since W (t) = 1, there is no extraneous factor, and by computing the resultant of
Pq(t,z,y) and Q(t,z,y) with respect to ¢, we have

fa(z,y) = —16d* —216d° — 729d" — 2052d"2” + 3645d°2* — 873d*z"
—7290d°z* + 162° + 7290d*x° — 3645d%x® + 72921°
+432d*xy — 4860d°ry — 322y 4+ 7830d*z3y — 1080d2x°y
—1890x7y + 16y* + 1188d*y* + 1458d%y> + 594d>x>y> (45)
—5832d%2%y? 4 1593xy* + 8748d ' y? — 5832d x>
+14582%y* — 432xy® + 9234d* vy — 6318d%23y® — 29162°1°
—1701d%y"* — 729d%* + 1458x%y* + 729¢° + 2187d" z2y*
—2187d%x y* 4+ 72920y — 4374d%xy® — 1458231°.

Now a rational transformation from the curve 2> = 1 4 92* into the offset
fia/(x,y) = 0 is given by

_ 3di? s
rT=r+—, Yy=2 —
Y

%/%

1
Figure 3: The cubic (t,#*) with its offsets at distance j:§, +1

(46)

< | Q.

We shall construct a rational transformation from an irreducible component
of the offset fi4(z,y) = 0 into the curve §* = U*(z) + V3(Z).
By decomposing the polynomial fi4(x,y) into irreducible factors, we have

f|d|(x7y) = .]F1<5(7,y)f_‘2(317,y) e fj('x7y) T fl(l',y)7 (47)

where f;(x,y) = ffj(x,y) for some irreducible polynomial f;(x,y) € C|x,y| and
for some n; € N, and fi(z,y) # fi(z,y) if i # j.

Now we recall the notion of simple and special components of fq(z,y) = 0 due
to Arrondo, Sendra and Sendra (cf. [1], Definition 2.2). An irreducible component
fi(z,y) = 0of fig(x,y) = 0is called simple provided that without a finite number

of exceptions, for every point (z,y) of f;(x,y) = 0, there exists a unique parameter

12



value t such that Pg(t,z,y) = Q(t,z,y) = 0. Otherwise f;(x,y) = 0 is called
special.

We also recall the results due to Sendra and Sendra [9] in our case, although
the cases of generalized offsets to hypersurfaces are discussed in [9]. If f;(z,y) =
0 is special, there exist infinitely many points of self-intersection of the offset
fia|(z,y) = 0. Thus, from Bézout’s theorem (cf. [10]), we see that the multiplicity
n; > 2. In particular, if the polynomial fi4(x,y) is irreducible then the offset
fia(x,y) = 0 is simple. Furthermore, since the generator curve r(t) is properly
parametrized, by definition of offset curves, the offset fiq(z,y) = 0 contains a
special component if and only if the generator curve r(t) is the rational offset
curve at distance d of some curve (cf. [9], Theorem 7).

We shall give an example of a special component. This example is due to the
referee of the paper [5].

Example 5. The offset curve r(t) to the parabola r(t) = (,t?) at distance 1 is

given by
2t 1
r(t) = (t+ — . 48
1) ( V1Tt 42 \/1—|—4t2) (48)

If we reparametrize r1(t) by

u? —1
t= 49
) (49)
we have a properly parametrized rational curve
u? —1
s(u) = n < ym )
du(u? — 1)(u? +4u+1) ub —ut — 320 —u?+1 (50)
16u?(u? + 1) ’ 16u?(u? + 1)

We study components of the algebraic offset fig(x,y) = 0 to the curve s(u). By
computing the resultant of Py (u,z,y) and Q(u,z,y) with respect to u, we have
hia(z,y) = 70368744177664(1 + 162* — 8y + 16y?)
((—1156 + 688z% — 1912* + 162° + 544y + 3022y — 402y
+225y% — 962%y* + 16x'y* — 136> — 322%y° + 16y*)
+(1 = d)(3 + d)(—2202° + 208d + 168d° + 64d* + 16d*
+377 — 96dx* — 48d%x* + 48z* — T2y* — 168y — 64dy
—32d%y — 8x%y — 32dy* — 16d%y* + 322%y* + 32y%)) (51)
((2* — y)*(1 + 162 — 8y + 16y?)
—(1 — d)*(25 — 80d + 104d> — 64d® + 16d* — 282>
+96dx? — 48d%x? 4 48x* — 40y + 64dy — Sy — 32d%y
—82%y + 32dy* — 16d*y* + 322%y* + 324°)).
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Note that E = {i, —i} and Pg|(i, 2, y)Pa(—%, z,y) = 65536(1 + 162* — 8y + 16y2).
Thus we have

flae-9) = Gesaa(a +f?é|a(:§:y)8y Tiggy M7 (52)
and
Julary) = hyy(z, y)
(65536(1 + 1622 — 8y + 1612))?
= 16384(2* — y)?(—1156 + 6882 — 1912* + 162° (53)

+544y + 30x%y — 402ty + 225y — 962712
+162%y? — 136> — 322%y% + 16y*).

Though algebraic offset fiq(z,y) = 0 has no special components if |d| # 1, the
algebraic offset f1/(z,y) = 0 has a special component 2> —y = 0 (See Figure 4).

Figure 4: The curve (50) in Example 5 with its offsets at distance 1

It is also known that for almost every distance d all the components of the
algebraic offset fiy(z,y) = 0 are simple (cf. [9], Theorem 8). From now on,
we only deal with the offsets with no special components. We shall construct a
rational transformation from a simple component of the offset fi4(z,y) = 0 into
the curve g = U?(z) + V*(Z).

Let

fa(@,y) = filz,y) falz,y) - fi(x,y) -+ filz,y) (54)

be a decomposition of fiq(z,y) into irreducible factors in Clz, y|.
We regard Pg(t, z,y) and Q(t,z,y) as polynomials in ¢ over the rational func-
tion field R(x,y) and apply the Euclidean algorithm to them. Then we have

1 1
Q|d| (taxay) T‘d‘(t,l',y)
Pd (tux7y) = Q(t,l‘,y)
l l S\ld\ ("L‘7 y) S|1d| (ZE, y)

)
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Q‘zd| (ta z, y) + T|2d| (ta z, y)
5|2d| (Q?, y) S|2d| (Z’, y)
Q‘3d| <t7 z, y) + {r|3d| (t7 z, y)

1 2
Td(tax7y) = rd<t7$7y)
i i siy(zy) sy (2,y)

Q(ta L, y) = r\ld\<t7 Z, y)

?

I

(55)
p—1 p—1
: Qg (txy) (T, y)
p—3 p—2 |d| |d|
rd (t7 xay) = rd (t7 x?l/) -1 —1
“ . Sﬁq (2, y) 3]|Dd| (2, y)
Qﬁ” (ta :C7y) + de\ (xvy)

Sfd| (l’, y) Sfd| (37, y) ’

Y

2 -1
de\ (t,z,y) = T\pd\ (t,z,y)

where q"'d| (t,x,y),rfd‘(t,x,y),sfdl (x,y),r‘pd‘(x,y) are polynomials with real coeffi-
cients and

deg, @ > deg, 7"|1d| > deg, 7"|2d| > -+ > deg, rfdf > deg, rﬁq = 0. (56)

Note that for each i, there exist polynomials Afd| (t,z,y), Bligl| (t,z,y) € R[t,z,y]
such that

rr'd\ (t7 Z, y) = A|Zd| <t7 z, y>P|d| (tu Z, y)
+B|id|(t,$,y)Q(t,.T,y) (Z: 1,'--,p—1), (57)
Tﬁq(xvy) = Afd|(t7xay>P|d|(tax7y) + B@(t,l’,y)@(t,l’,y) (58)

In our discussion, the polynomial r|p dTl(t, x,y) plays an important role. Let

mp_1—1

rhy (Gey) = ag ™ (@)t +agr T ()t
4+ 4+ a,|1d| (1‘, y)t —+ a?d| (:C7 y)7 (59)

where a‘id‘(:p,y) are polynomials in x,y. From Bézout’s theorem, we see that
if afdl(:c,y) vanishes for infinitely many points of the curve f;(z,y) = 0, then
a|’:d| (x,y) vanishes identically on f;(z,y) = 0. Now, suppose that all coefficients
ajy(z,y) (1 =0, -+, my_1) vanish for infinitely many points of f;(z,y) = 0. Then
for any t € C, the polynomial rml(t, x,y) in z,y vanishes identically on f;(x,y) =
0. Note that, with a finite number of exceptions, for every point (z,y) of f;(z,y) =
0, there exists a unique parameter value ¢ such that Py (t,z,y) = Q(t,z,y) = 0,
since the component f;(x,y) = 0 is simple. Since deg, r, = 0, we observe, from
(58), that the polynomial Tﬁ” (x,y) also vanishes identically on the curve f;(z,y) =
0. Then, from (55), for any point (z,y) of f;(z,y) = 0 and for any ¢t € C, we have
Pq(t,z,y) = Q(t,x,y) = 0. This contradicts the hypothesis that the component
fi(x,y) = 0 is simple. Thus there exists an ¢ € N such that afd| (x,y) does
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not vanish identically on the curve f;(z,y) = 0. Let m; be the maximum of
such i. If m; = 0, with a finite number of exceptions, for every point (x,y) of
fi(z,y) = 0 and for any t € C satisfying Py (t,z,y) = Q(t,z,y) = 0, we have
rfdf(t,x,y) = aﬂ” (x,y) # 0. However, this is impossible, since rfdf(t,x,y) =0
from (57). Thus we have 1 < m; < deg, r‘pdjl.

Let (2o, y0) be a generic point of f;(z,y) = 0. Then we have agf (xo,%0) # 0
and there exists a unique parameter value ¢, such that Py (to, 2o, %0) = Q(to, %o, Yo)
= 0. Since Tﬁq (xo,90) = 0, if ¢; is a parameter value satisfying rml(tl, T, Yo) =
0, we also have Py (t1,20,y0) = Q(t1,20,%) = 0 from (55). Because of the
uniqueness of ty, this implies that ¢; = ty and the polynomial r‘p dTl(t, Tg, Yo) must
have the factorization

i (820, 90) = ajyi (0, y0) (t — o)™ (60)

Comparing this expression with (59), we obtain

m]-—l
1 a (7o, yo)
to = ——Mjnj—- (61)
my; ag (xO;yO)

Now we put

mi—1
ia|d|] (xuy)

m; ayl (v,y)

t\jd\ (% ?J) = - (62)

Then we have the following.

Lemma 6. Let fig(xz,y) = 0 be an algebraic offset to a properly parametrized
rational plane curve r(t) = (X (t)/W(t),Y (t)/W (t)) with no special components,
and let f;(x,y) = 0 be an irreducible component of fiq(x,y) = 0. Then, with a
finite number of exceptions, for every point (x,y) of fj(x,y) =0, the value given
by (62) satisfies the equations

Pay(tly(2,9), 2,y) = Q(t, (z,y), z,y) = 0. (63)
Moreover, the equation

Y (6 (2,))
Wt (x,9))

7= t|jd| (x,y), y=-— (64)

defines a rational transformation from f;(x,y) = 0 into the curve §* = U?*(Z) +

V2(3).
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Proof. From the discussion above, with a finite number of exceptions, for ev-
ery point (z,y) of f;(x,y) = 0, rfd‘(a:,y) = 0 and the value t‘]d‘(x,y) satisfies
4r 1(t|]d|( z,y),x,y)) = 0, and hence from (55) we get the first part.

To prove the second part, consider a generic point of the curve f;(z,y) = 0
satisfying (63) and the conditions

W(tljdl (z,y)) # 0 and W(t{d|(x,y))y - Y(tfd|(x,y)) £ 0. (65)

Note that (z,y) is a point of r4(t) or a point of r_4(¢). If (z,y) is a point of ry(t),
then we see from (7) that

Ut (z
y = —d (H V) \/U2 (tg (x +V(|d\($y))
V(e
W(tfd|( y))
= JU2(2) + V2(2), (66)

and hence (z,y) is transformed into a point (z,7) of §> = U*(z) + V*(Z). On the
other hand, if (z,y) is a point of r_4(t), then we see from (7) that

Ut (z
j = —1x—(—d) <" 4) \/U2 L@ y) + V2t (2, y))
B Y( \d\
W(t|]d|< 7y))
= —\U2(7)+ V2(3), (67)

and hence (z,y) is transformed into a point (Z,7) of > = U?(z) + V*(z). Thus
the equation (64) defines a rational transformation from f;(z,y) = 0 into §* =
U%(Z) + V?(). O

We denote the rational transformation (38) in Lemma 3 from the curve j? =
U?(z) + V*(Z) into the algebraic offset fi4(z,y) =0 by

- o o X () V(z) Y(2) U(z)
(ZL‘,’y) ( 1(l‘7y)a 2(1’,y)) (W(j«:) g 7W(§7) g ) ( )
and for each j = 1, -, the transformation (64) in Lemma 6 from the irreducible

component f;(x,y) = 0 of the offset fiq(z,y) = 0into the curve §* = U?(Z)+V?*(2)
by

Ut (x.5))
Y (ty(wy)
Wt (x.))

Wiry) = (W), Wwy) = | ey, —d (69

Now we have the following.
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Theorem 7. With a finite number of ezceptions there is a one-to-one corre-
spondence between the points of the curve §° = U*(Z) + V*(Z) and those of the
algebraic offset fg(x,y) = 0 with no special components via the rational trans-
formatiOns ® and W (j = 1,---,1). In particular, the irreducible components of
§? = U*(Z) + V*(Z) and those of fiq(x,y) = 0 correspond each other, and their
corresponding irreducible components are birationally equivalent.

Proof. Let (Z,7) be a point of §* = U%(Z) + V?(Z) satisfying the conditions (39).
By construction of ®, with a finite number of exceptions, we may assume that
®(2,9) is not a point of the self-intersections of fig(x,y) = 0. Then there exists
a unique j such that ®(z,7) is a point of f;(z,y) = 0. Furthermore, we assume
that ®(Z,7y) satisfies the conditions (63), (65). Now, by definition of tfd| (x,y), we
see that

(W] o ®)(7,5) = t1,(P1(F,7), Ps(%,))

X@) V@) Y@ U@) _ .
(o 5w )
(

_ J
= g

(V0 ®)(2,§) =

@2(5%7@) - W(t|]d|(q)1(j’g)7 @2(&@)))
—d-U(z) —j
(m) - d.U@)) Y@ v
W) 7 W(z)

and hence we have (U7 o ®)(z,7) = (7, 7).

Conversely, let (x,y) be a point of fig(z,y) = 0 satisfying the conditions
(63), (65), and not being a point of the self-intersections. Then there exists a
unique j such that (z,y) is a point of f;(z,y) = 0. By construction of W/, with a
finite number of exceptions, we may assume that U7 (z, y) satisfies the conditions
(39). Now, by definition of tfdl (x,y), we see that

d-V(tl(x,y)) (y_ Y(tf;”(:r,y)))

| )
® 0o W) (x, = d '

(®10 %) (x,y) ) Zd Uy (@)

)

)

d- V(t|jd| (2, v))

- =T, (72)
VU, m) + V2t (@,9)

(s 0 W) (z,y) = Y(t|d|<x’y)) _ d U(t\d\(x7y)) (y B Y(tdl(:c,y)))
U T W) —d- U ) T W)
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and hence we have (® o W/)(z,y) = (z,y).
The second part of the theorem follows immediately from the first part. [

We shall give an example of a birational correspondence in Theorem 7.

Example 8. In Example 4, we considered the algebraic offset fq(z,y) = 0 to the
cubic r(t) = (,3) and constructed a rational transformation from the curve ¢ =
1+ 9z* into the offset f4(z,y) = 0. Here we construct a rational transformation
from the offset f4(z,y) = 0 into the curve g =1+ 9z

Since the curve §* = 1+ 9* is irreducible, so is the offset fiq(z,y) = 0, and
hence [ =1 (cf. Lemma 9 and Theorem 10). By applying the Euclidean algorithm
(55) to the polynomials

Py(t,z,y) = t°=2yt> +1* =22t + (2* + y* — &%),
Q(t,r,y) = —3t°+3yt> —t+ux,

rig(t o, y) = =3y’ + 2t — bat + 3(a* + y* — &%), (74)
rfd| (t,x,y) = (=8+60xy + 27d*y* — 272%y*)t?

+(20z + 18d%y — 9322y — 27y°)t

+(12d* — 122* — 45d%zy + 452°y — 12y* + 5day®),  (75)
rig(ta,y) = —9y°(16 + 108d* + 1134d%2? + 633z — 336y
+810d*ry — 1620d%z3y + 8102°y — 378d°y?
+6482%y* — 486d%xy® + 4862°%y° + 243y*)t
+9y3(162 — 540d*x — 45d%2® + 5852° + 108d%y (76)
—243d5y — 288z%y + 729d 2%y — 729d%zty
+2432%y + 27d*xy? + 13232%y* — 108y°
+243d*y® — 486d*x%y? + 2432Yy® + 4862y?).

Thus from Lemma 6, if we put

tly(z,y) = (162 —540d's — 45d%x> + 5852° + 108d%y
—243d%y — 28822y + 729d 2%y — 729d2xty
+24325y + 27dxy? + 132323y* — 108>
+243dYy?® — 486d*x*y® + 2432 y® + 486xy*)/ (77)
(16 4 108d* 4 1134d*x* + 6332 — 3362y
+810d*zy — 1620d%2%y + 8102y — 378d*y>
+6482%y* — 486d%zy® 4 48623y 4 243y*),
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we have a rational transformation

U(tjy (@, y))
W(t|1d| (2, y))

from the offset f4(z,y) = 0 into the curve g =1+ 9z

From Example 4 and Theorem 7, the algebraic offset fq(z,y) = 0 to the cubic
r(t) = (t,t3) is birationally equivalent to the curve ¢ = 1 + 92 via the rational
transformations (46) and (78).

We need the following elementary lemma.

Lemma 9. Let w(z) € Rlz| be a polynomial with positive leading coefficient.
Then the curve y*> —w(x) = 0 is reducible if and only if there exists a polynomial
w,(x) € R[z] such that w(x) = wi(z).

Proof. If w(x) = w?(x), then we have y* — w(x) = (y + w.(x))(y — w.(x)), and
hence the curve y? — w(z) = 0 is reducible.

Conversely, if the curve y*> —w(x) = 0 is reducible, then there exist b(z), ¢(z) €
C[x] such that

y* —w(z) = (y +b(x))(y — (). (79)

By comparing the coefficients with respect to y, we see that b(x) = c(z) and
w(z) = b(x)c(x). Thus, if we put w,(r) = b(x), we have w(z) = w?(x). We shall
prove w,(z) € Rlz]. Since the leading coefficient of w(x) is positive, the leading
coefficient of w,(z) is a real number. Note that w(a) = 0 implies w.(a) = 0.
Thus, if all solutions of the equation w(z) = 0 are real numbers, then we have
wy(z) € R[z]. Suppose a solution « of w(z) = 0 is not real. Then the complex
conjugate @ of « is also a solution of w(x) = 0, and hence w,(z) is divisible by
(x —a)(x —a) € Rlz]. Thus, even if w(x) = 0 has complex solutions, we conclude
that w.(z) € Rlz]. O

From Theorem 7 and Lemma 9 we have the following.

Theorem 10. Let fiq(x,y) = 0 be an algebraic offset with no special components.
Then flq(x,y) = 0 is reducible if and only if there exists a polynomial w,(z) € R[Z]
such that U*(Z) + V2(Z) = wi(2). In particular, if flg(z,y) = 0 is reducible, it
consists of two rational curves.

We shall apply Theorem 10 to the algebraic offsets to an ellipse and an asteroid.
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Example 11. We consider the algebraic offset fig(x,y) = 0 to the ellipse

x2 y2
SHG=1 (@b>0) (80)

(See Figure 5). The curve (80) is properly parametrized by X (¢) = a(l —

t2),Y (t) = 2bt, W(t) = 1 + t*. We observe that U(t) = —4at, V(t) = 2b(1 — t?),
and the offset fq(z,y) = 0 is birationally equivalent to the curve
§° = 16a*7* + 4b*(1 — 7). (81)

Then the discriminant D of the polynomial 16472 + 4b*(1 — Z%)? with respect to
T is

D = 67108864a*b%(a + b)*(a — b)?, (82)

and the polynomial 16a?7% + 4b*(1 — 7%)? has a multiple root if and only if a = b.
Thus, from Theorem 10, we get the following results:

1. Case of a # b.
The offset fig(x,y) = 0 is irreducible.

2. Case of a = 0.
The curve (80) is a circle of radius a. The offset fig(x,y) = 0 is birationally

equivalent to the curve §2 = (2a(1 4 #2))?, and hence the offset fla(z,y) =0
is reducible. Furthermore, the offset fiq(z,y) = 0 consists of two rational
curves, as we have seen in Example 2.

1 1 1 3 5
Figure 5: The ellipse Zx2+y2 = 1 with its offsets at distance iZ’ :|:§, iZ’ +1, :I:Z—1
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Example 12. We consider the algebraic offset fig(x,y) = 0 to the asteroid

Wl
wln

z3 +ys =1 (83)

(See Figure 6). The curve (83) is properly prametrized by X (t) = (1—t%)3,Y(t) =
8t3, W (t) = (1+t2)%. Noting that U(t) = —12t(t* —1)2, V() = 24£2(t* - 1) (£ +1),
we see that the offset fig(x,y) = 0 is birationally equivalent to the curve

2

7= (128%F - 1)@+ 1)@+ 1)°)". (84)

Thus the offset fg(x,y) = 0 is reducible and consists of two rational curves. In
fact, if we compute the polynomial fq(z,y), we obtain

alz,y) = 65536(1 — 8d% 4+ 16d* — 322 — 20d%2? + 32* + d*z* — 2

|
—36dzy + 16d3zy — 18dxy — 3y? — 20d%y* — 212°y?
+2d%x*y? — 3xty? — 18dxy® + 3y* + d*y* — 322yt — of)
(1 —8d® +16d" — 322 — 20d*z* 4 32" + d?z"* — 25 (85)
+36dxy — 16d%xy + 18dx3y — 3y? — 20d2y* — 2122y
+2d*x?y? — 3xty? + 18day® + 3y* + d*y* — 327yt — ¢°).

1 1 3
Figure 6: The asteroid (83) with its offsets at distance ié_l’ :t§, iZ
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3 Hyperellipticity

In this section, we study the genus of offsets to rational plane curves. Let w(z) be
a polynomial of degree 2g + 1 or 2g + 2 with real coefficients and distinct roots.
We consider an irreducible plane curve C' which is birationally equivalent to the
curve y? = w(z). Note that the curve y*> = w(z) has genus g. Since the genus is a
birational invariant, the curve C' has genus g. If g = 0, then y*> = w(z) is a conic
and C' is a rational curve. If g = 1, C' is called an elliptic curve and if g > 2, C'is
called a hyperelliptic curve. It is known that curves of genus 0, 1 and 2 are always
rational, elliptic and hyperelliptic, respectively, but curves of genus greater than
2 are not always hyperelliptic.

Let f(x) be a polynomial with real coefficients and let
f@) = cle—a))™ o (2 = @) (@ = b)* - (2= by) (86)

be the decomposition of f(z) into linear factors with distinct complex numbers
a1, Qm, by, -+, b,. Then we see that the curves y?> = f(z) and Y? = ¢(X —
ai)--- (X — ap,) are birationally equivalent via the rational transformations

= = )
Aoy (x —a)Pr - (x — ap)Pm(x — b)) -+ (z — b))’ (87)

=X, y=(@x—a)’ - (x—ay,)’"(r—0)" - (x—b,)"Y, (88)

and thus the curve y? = f(x) has genus [(m — 1)/2], where the symbol [a] de-
notes the largest integer < . Note that all coefficients appearing in the rational
transformations (87), (88) and of the polynomial ¢(X — a;)--- (X — a,,) are real
numbers since f(x) € R[z].

Noting that the degree of the polynomial U?(Z) + V?(Z) is even, we have the
following characterization of the offsets to rational curves from Theorem 7 and
Lemma 9.

Theorem 13. (Hyperellipticity) Let fiq(x,y) = 0 be an irreducible algebraic offset
to a properly parametrized rational plane curve r(t) = (X(t)/W(t),Y (t)/W(t))
with no special components, and let

UX(&) + V(@) = (@ — @) (T — @) (@ — b)* - (2 — b)) (89)

be the decomposition of the polynomial U*(Z) + V2(Z) into linear factors with
distinct complex numbers ay,- -+, Gy, b1, -+, b,. Then m is a positive even integer
and

1) if m = 2, the offset fig(x,y) = 0 is a rational curve,
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2) if m =4, the offset fiq(x,y) =0 is an elliptic curve,
3) if m > 6, the offset fiq(x,y) = 0 is a hyperelliptic curve of genus (m —2)/2.

In particular, the genus of the offset fiq(x,y) = 0 with no special components is
independent of the distance d.

We shall compute genus of some algebraic offsets by Theorem 13

Example 14. We compute genus of the algebraic offset fig(x,y) = 0 to the
properly parametrized curve

r(t) = (=2t + 2t,16t° — 24¢* + 8t%) (90)

(See Figure 7). In this case, we have X (t) = —2t3 + 2¢, Y (t) = 16t% — 24¢* +
82, W(t) = 1 and U(t) = —6t2 + 2,V (t) = 96t> — 96> + 16t. Thus the offset
fia/(x,y) = 0 is birationally equivalent to the curve

§° = 4(23047"° — 46087° + 30727° — 7593" + 58%% + 1). (91)

Noting that the discriminant of the polynomial 2304%'° — 46082% + 307275 —
7592* + 58%% + 1 is not 0, we see, from Theorem 13, that the offset fiq(x,y) =0
is a hyperelliptic curve of genus 4.

1
Figure 7: The curve (90) in Example 14 with its offsets at distance il_’g')
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Example 15. We compute genus of the algebraic offset f|q(z,y) = 0 to the folium
of Descartes

2*+y* =32y =0 (92)

(See Figure 8). The curve (92) is properly parametrized by X (t) = 3t,Y(t) =
3t2, W(t) = 1+ t* and we see that U(t) = —6t3 + 3,V (t) = —3t* + 6t. Thus we
observe that the offset fi4(z,y) = 0 is birationally equivalent to the irreducible
curve

7% = 9(2® + 47° — 47° — 43° + 42* + 1), (93)

Since the discriminant of the polynomial 7% + 47¢ — 47° — 423 + 422 + 1 is not 0,
we observe, form Theorem 13, that the offset fiq(z,y) = 0 is a hyperelliptic curve
of genus 3.

1 2
Figure 8: The folium of Descartes (92) with its offsets at distance j:g, j:g, +1

Example 16. We consider the offset fi4(z,y) = 0 to the lemniscate of Bernoulli
(@® +y*)* = (2" = ") =0 (94)

(See Figure 9). The curve (94) is properly parametrized by X (t) = —t'+1,Y (t) =
—2t3+2t, W (t) = t*+ 61>+ 1, and hence we have U (t) = —4t(3t* +2t>+3), V(t) =
2(t° —9t* — 9t +1). Thus the offset fq(x,y) = 0 is birationally equivalent to the
curve

J* = 4(7" + 63% + 1)°, (95)

and we see, from Theorem 13, that the offset fiq(z,y) = 0 is an elliptic curve.
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1 2
Figure 9: The lemniscate of Bernoulli (94) with its offsets at distance j:g, j:g, +1

From Theorem 13, we have the following propositions.

Proposition 17. Let n and m be relatively prime natural numbers. Then the
algebraic offset to y™ = a2 has genus m — 1. In particular, for m > 2, the
algebraic offset to y = 2™ has genus m — 2.

Proof. The curve y™ = z"t™ is properly parametrized by X (¢t) = t",Y(t) =
t"tm W (t) = 1. Thus we have U(t) = nt" ', V(t) = (n + m)t"™™ "1 and hence
the offset to y"™ = 2™ is birationally equivalent to the curve

g? — n2i,2n72 + (n + m>2j2n+2m72 _ j,2n72 (nQ + (n + m)2£,2m) ) (96)

Since the polynomial n?+(n+m)?Z*™ has no multiple roots, we get our claim. [

Figure 10: The quartic curve y = 2 with its offsets at distance £1
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Proposition 18. Let n and n+m be relatively prime natural numbers. Then the
algebraic offset to y™ = 1/x™™ has genus 2n +m — 1. In particular, for m > 1,
the algebraic offset to y = 1/x™ has genus m.

Proof. The curve y" = 1/x™™ is properly parametrized by X (t) = t*"*™ Y (t) =
1L,W(t) = t"*™. Thus we have U(t) = nt>" "1 V(t) = —(n +m)t"™ ! and
hence the offset to y™ = 1/2™™™ is birationally equivalent to the curve

gQ — n25:6n+4m72 T (n + m)2i2n+2m72 — j2n+2m72 (n2j4n+2m 4 (n + m)2) . (97)

Since the polynomial n?z4"*?™ 4 (n + m)? has no multiple roots, we get our
claim. O]

|
-

1 5
Figure 11: The curve y = — with its offsets at distance iﬁ
x

In particular,
Proposition 19. Offsets to conics can be classified in the following.

1) The algebraic offsets to parabolas are rational curves.

)
2) The algebraic offsets to circles are reducible and consist of two circles.
3) The algebraic offsets to ellipses are elliptic curves.
"

The algebraic offsets to hyperbolas are elliptic curves.
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Proof. It is enough to prove the case of hyperbolas. We may assume that a
hyperbola is given by the equation

T Y 1 (a,b>0). (98)

Note that the hyperbola (98) is properly parametrized by X (t) = a(1+2),Y (t) =

20t, W (t) = 1 — t*. Thus we have U(t) = 4at, V(t) = 2b(1 + t*), and hence the
algebraic offset to the hyperbola (98) is birationally equivalent to the curve

§* = 160’7 + 4b°(1 + &°)°. (99)

Since the discriminant D of the polynomial 16a*7? + 4b*(1 + 2%)? with respect to
T is

D = 67108864a"b%(a? + b*)?, (100)

the polynomial 16a27? + 4b*(1 + £2)? has no multiple roots, and we get our claim.

e

1
Figure 12: The hyperbola ZxQ —1y? = 1 with its offsets at distance j:E, j:g, jzl—o
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