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Preface

Offset curves are also known as parallel curves. In the field of computer aided
geometric design (CAGD), rational curves and piecewise rational curves are used
as rational Bézier curves and non-uniform rational B-splines (NURBS), and off-
sets to rational plane curves are often needed. But, in general, offsets to rational
plane curves are not rational curves. Pottmann gave explicit representations of
rational plane curves with rational offsets in [7], and Lü studied necessary and suf-
ficient condition for rational plane curves to have rational offsets in [6]. Farouki
and Neff analyzed geometric and topological properties of offset curves, and stud-
ied implicit representations of offsets to rational plane curves in [3, 4]. Arrondo,
Sendra and Sendra introduced the notion of simple and special components of
generalized offsets to hypersurfaces, and proved that each component of reducible
generalized offsets to rational hypersurfaces is rational and that simple compo-
nents of reducible generalized offsets to hypersurfaces are birationally equivalent
to original hypersurfaces in [1], and gave a genus formula for generalized offset
curves in terms of the degree and the genus of original curves with some conditions
on singularities in [2]. Furthermore, Sendra and Sendra studied degeneration and
existence of simple and special components of generalized offsets to hypersurfaces
in [9].

However, the relation between the genus of offsets to rational plane curves and
proper parametrizations of original curves has not been studied so much except
for the case of rational offsets. In this paper, we construct a birational correspon-
dence between offsets to rational plane curves with no special components and
hyperelliptic curves derived from proper parametrizations of original curves, and
thus we can compute the genus of offsets to rational plane curves. Though our
result is limited to the case when original curves are rational, it does not require
conditions on singularities of original curves. Note that offsets to rational curves
with special components are reducible from a result in [9], and thus together with
the result in [1] mentioned above, each component is rational in this case. We
also give a criterion to decide the irreducibility of offsets to rational plane curves.
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1 Offsets to Rational Plane Curves

First we define the offsets to rational plane curves. We say a parametric rational
plane curve r(t) is properly parametrized provided that, with a finite number
of exceptions, for every point (x0, y0) of r(t), there is a unique parameter value
t0 such that r(t0) = (x0, y0). A rational parametric plane curve which is not
properly parametrized is said to be improperly parametrized. From Lüroth’s
theorem, any improperly parametrized rational plane curve can be expressed as a
properly parametrized rational plane curve (cf. [8],[10]).

For polynomials X(t), Y (t), W (t) with real coefficients, let

r(t) = (X(t)/W (t), Y (t)/W (t)) for t ∈ R (1)

be a properly parametrized rational plane curve. Without loss of generality, we
may assume that

GCD(X(t), Y (t),W (t)) = 1. (2)

Let d be a non-zero real number and regard d as a signed distance. Then the
offset rd(t) to r(t) at distance d is defined by

rd(t) =

(
X(t)

W (t)
+ d

V (t)√
U2(t) + V 2(t)

,
Y (t)

W (t)
− d

U(t)√
U2(t) + V 2(t)

)
for t ∈ R, (3)

where

U(t) = X ′(t)W (t) − X(t)W ′(t), V (t) = Y ′(t)W (t) − Y (t)W ′(t). (4)

We call r(t) the generator curve of rd(t).

To obtain an implicit form f|d|(x, y) = 0, dependent on the distance d, which
represents the offset curve, we follow a method due to Farouki and Neff [4]. Let

x =
X(t)

W (t)
+ d

V (t)√
U2(t) + V 2(t)

, y =
Y (t)

W (t)
− d

U(t)√
U2(t) + V 2(t)

. (5)

Then we see that (
x − X(t)

W (t)

)2

+

(
y − Y (t)

W (t)

)2

− d2 = 0, (6)

d
V (t)

x − X(t)

W (t)

=
√

U2(t) + V 2(t) = −d
U(t)

y − Y (t)

W (t)

, (7)

and by multiplying their denominators, we have

W 2(t)(x2 + y2) − 2W (t)(X(t)x + Y (t)y) + (R(t) − d2W 2(t)) = 0, (8)

W (t)(U(t)x + V (t)y) − (U(t)X(t) + V (t)Y (t)) = 0, (9)
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where R(t) = X2(t) + Y 2(t). We regard (8), (9) as the polynomial equations in
x, y. Note that the intersection of curves (8) and (9) consists of two points rd(t)
and r−d(t) whenever

W (t) ̸= 0 and (U(t), V (t)) ̸= 0. (10)

Let

θ(t) = GCD(W 2(t),W (t)X(t),W (t)Y (t), R(t) − d2W 2(t)), (11)

ψ(t) = GCD(W (t)U(t), W (t)V (t), U(t)X(t) + V (t)Y (t)), (12)

be the greatest common divisors of the coefficients of (8), (9). Then we have

θ(t) = GCD(W (t), R(t)), (13)

ψ(t) = ζ(t)θ(t) (ζ(t) = GCD(U(t), V (t))) (14)

(cf. [4], Lemma 3.1,3.2). Since X(t), Y (t),W (t), U(t), V (t) and R(t) are polyno-
mials with real coefficients, so are θ(t) and ζ(t).

To avoid parameter values t which cause either (8) or (9) to vanish identically
in x, y, we divide them by these greatest common divisors θ(t) and ψ(t). Thus we
get new equations

P|d|(t, x, y) = W (t)W1(t)(x
2 + y2) − 2W1(t)(X(t)x + Y (t)y)

+(R1(t) − d2W (t)W1(t)) = 0, (15)

Q(t, x, y) = W1(t)(U1(t)x + V1(t)y) − S(t) = 0, (16)

where

W1(t) = W (t)/θ(t), R1(t) = R(t)/θ(t), U1(t) = U(t)/ζ(t),

V1(t) = V (t)/ζ(t), S(t) = (U1(t)X(t) + V1(t)Y (t))/θ(t). (17)

Note that P|d|(t, x, y) is a polynomial in t, x, y with real coefficients, only even
powers of d appearing in its coefficients, and Q(t, x, y) is a polynomial in t, x, y with
real coefficients. From now on, we use the subscript |d| to express the polynomials
in which only even powers of d appear in their coefficients.

Let h|d|(x, y) be the resultant of P|d|(t, x, y) and Q(t, x, y) with respect to t.
Then h|d|(x, y) is a polynomial in x, y with real coefficients. We consider the
algebraic curve h|d|(x, y) = 0.

By definition of resultant, for any point (x0, y0) of the curve h|d|(x, y) = 0,
there exists t0 such that P|d|(t0, x0, y0) = Q(t0, x0, y0) = 0. Since x0, y0 and t0 are
complex numbers in general, we extend the parameter value t of rd(t) from real
numbers to complex numbers.

Note that a point (x0, y0) of h|d|(x, y) = 0 is a point of the offset rd(t) or r−d(t)
if and only if there exists t0 ∈ C such that P|d|(t0, x0, y0) = Q(t0, x0, y0) = 0,
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and P|d|(t0, x, y) = 0 is an irreducible circle and Q(t0, x, y) = 0 is a line. Since
P|d|(t0, x, y) = 0 and Q(t0, x, y) = 0 do not vanish identically in x, y, we consider
degenerate cases of the equation P|d|(t0, x, y) = 0 to extract extraneous compo-
nents of h|d|(x, y) = 0.

We compute the discriminant D of the quadratic P|d|(t0, x, y) = 0. Since
R1(t)W (t) = R(t)W1(t), we have

D =

∣∣∣∣∣∣
W (t0)W1(t0) 0 −W1(t0)X(t0)

0 W (t0)W1(t0) −W1(t0)Y (t0)
−W1(t0)X(t0) −W1(t0)Y (t0) R1(t0) − d2W (t0)W1(t0)

∣∣∣∣∣∣
= −d2W 3(t0)W

3
1 (t0). (18)

Thus P|d|(t0, x, y) = 0 is irreducible, if it is quadratic. We consider the cases of
P|d|(t0, x, y) = 0 not being quadratic, that is, the case of W1(t0) = 0 and the case
of W (t0) = 0 and W1(t0) ̸= 0.

If W1(t0) = 0, we have P|d|(t0, x, y) = R1(t0). Since W1(t) and R1(t) are
relatively prime, there are no points which satisfy the equation P|d|(t0, x, y) = 0.

If W (t0) = 0 and W1(t0) ̸= 0, P|d|(t0, x, y) = 0 represents the same line

X(t0)x + Y (t0)y − R1(t0)

2W1(t0)
= 0 (19)

as Q(t0, x, y) = 0 (cf. [4], Lemma 3.4). Note that, by definition of resultant, there
exist polynomials K(t, x, y), L(t, x, y) ∈ R[t, x, y] such that

h|d|(x, y) = K(t, x, y)P|d|(t, x, y) + L(t, x, y)Q(t, x, y) (20)

(cf. [10]). Let

E = {t0 ∈ C |W (t0) = 0,W1(t0) ̸= 0}. (21)

Then, from (20), for any ti ∈ E, there exists ri ∈ N such that

P|d|(ti, x, y)ri | h|d|(x, y) and P|d|(ti, x, y)ri+1 - h|d|(x, y) (22)

and h|d|(x, y) = 0 has the lines
∏

ti∈E P|d|(ti, x, y)ri = 0 as extraneous components.
Note that if ti is a complex number, then the complex conjugate t̄i of ti belongs
to E and satisfies

P|d|(t̄i, x, y)ri | h|d|(x, y) and P|d|(t̄i, x, y)ri+1 - h|d|(x, y). (23)

Thus
∏

ti∈E P|d|(ti, x, y)ri is a polynomial in x, y with real coefficients.
From the observation above, if we put

f|d|(x, y) =
h|d|(x, y)∏

ti∈E

P|d|(ti, x, y)ri

, (24)
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then f|d|(x, y) is a polynomial in x, y with real coefficients, only even powers of
d appearing in its coefficients, and the equation f|d|(x, y) = 0 is the implicit
representation of the offsets at distance ±d with no extraneous components (cf.
[4], Theorem 3.6), except for the case when the generator curve is a circle of radius
|d| (see Example 2).

We shall give two examples of an algebraic offset f|d|(x, y) = 0.

Example 1. We consider the algebraic offset f|d|(x, y) = 0 to the properly
parametrized rational curve

r(t) =

(
2(5t4 − 10t2 + 1)

(t2 + 1)3
,
2t(t4 − 10t2 + 5)

(t2 + 1)3

)
. (25)

In this case, we have X(t) = 2(5t4 − 10t2 + 1), Y (t) = 2t(t4 − 10t2 + 5),W (t) =
(t2 + 1)3 and U(t) = −4t(t2 + 1)2(5t4 − 30t2 + 13), V (t) = −2(t2 + 1)2(t6 − 35t4 +
55t2 − 5), R(t) = 4(t2 + 1)5. Noting that θ(t) = (t2 + 1)3 and ζ(t) = 2(t2 + 1)2, we
see that

rd(t) =

(
2(t4 − 10t2 + 1)

(t2 + 1)3
− d(t6 − 35t4 + 55t2 − 5)√

(t2 + 1)5(t2 + 25)
,

2t(t4 − 10t2 + 5)

(t2 + 1)3
+

2dt(5t4 − 30t2 + 13)√
(t2 + 1)5(t2 + 25)

)
, (26)

P|d|(t, x, y) = (x2 + y2 − d2)t6 − 4yt5 + (3(x2 + y2 − d2) − 20x + 4)t4

+40yt3 + (3(x2 + y2 − d2) + 40x + 8)t2 − 20yt (27)

+(x2 + y2 − d2 − 4x + 4),

Q(t, x, y) = −yt6 − (10x − 2)t5 + 35yt4 + (60x + 4)t3 − 55yt2

−(26x − 2)t + 5y, (28)

and by computing the resultant of P|d|(t, x, y) and Q(t, x, y) with respect to t, we
have

h|d|(x, y) = 1073741824(x2 + y2)2(−64d2 + 16d4 + 1184d2x − 3160d4x

+1584d6x − 216d8x + 64x2 − 7652d2x2 + 28105d4x2

−46724d6x2 + 29430d8x2 − 7776d10x2 + 729d12x2 − 1184x3

+22820d2x3 − 52852d4x3 + 21124d6x3 − 2340d8x3

+216d10x3 + 7636x4 − 41210d2x4 + 45922d4x4 − 48020d6x4

+23830d8x4 − 4374d10x4 − 19660x5 + 25952d2x5

+10424d4x5 + 4860d6x5 − 1080d8x5 + 13105x6 + 35828d2x6

+33105d4x6 − 17560d6x6 + 10935d8x6 + 25316x7

−20856d2x7 − 540d4x7 + 2160d6x7 − 35026x8 − 39870d2x8
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−12540d4x8 − 14580d6x8 − 10476x9 − 4140d2x9

−2160d4x9 + 25355x10 + 21320d2x10 + 10935d4x10

+2160x11 + 1080d2x11 − 7274x12 − 4374d2x12 − 216x13

+729x14 − 3716d2y2 + 27625d4y2 − 46660d6y2 + 29430d8y2

−7776d10y2 + 729d12y2 − 320xy2 + 22820d2xy2

−52852d4xy2 + 21124d6xy2 − 2340d8xy2 + 216d10xy2

+8036x2y2 − 71260d2x2y2 + 88352d4x2y2 − 96040d6x2y2

+47660d8x2y2 − 8748d10x2y2 − 39320x3y2 + 51904d2x3y2

+20848d4x3y2 + 9720d6x3y2 − 2160d8x3y2 + 43635x4y2

+99276d2x4y2 + 99315d4x4y2 − 52680d6x4y2

+32805d8x4y2 + 75948x5y2 − 62568d2x5y2 − 1620d4x5y2

+6480d6x5y2 − 140968x6y2 − 159480d2x6y2 − 50160d4x6y2

−58320d6x6y2 − 41904x7y2 − 16560d2x7y2 − 8640d4x7y2

+126775x8y2 + 106600d2x8y2 + 54675d4x8y2 + 10800x9y2

+5400d2x9y2 − 43644x10y2 − 26244d2x10y2 − 1296x11y2

+5103x12y2 + 400y4 − 30050d2y4 + 42430d4y4 − 48020d6y4

+23830d8y4 − 4374d10y4 − 19660xy4 + 25952d2xy4

+10424d4xy4 + 4860d6xy4 − 1080d8xy4 + 47955x2y4 (29)

+91068d2x2y4 + 99315d4x2y4 − 52680d6x2y4 + 32805d8x2y4

+75948x3y4 − 62568d2x3y4 − 1620d4x3y4 + 6480d6x3y4

−212748x4y4 − 239220d2x4y4 − 75240d4x4y4 − 87480d6x4y4

−62856x5y4 − 24840d2x5y4 − 12960d4x5y4 + 253550x6y4

+213200d2x6y4 + 109350d4x6y4 + 21600x7y4 + 10800d2x7y4

−109110x8y4 − 65610d2x8y4 − 3240x9y4 + 15309x10y4

+17425y6 + 27620d2y6 + 33105d4y6 − 17560d6y6

+10935d8y6 + 25316xy6 − 20856d2xy6 − 540d4xy6

+2160d6xy6 − 142696x2y6 − 159480d2x2y6 − 50160d4x2y6

−58320d6x2y6 − 41904x3y6 − 16560d2x3y6 − 8640d4x3y6

+253550x4y6 + 213200d2x4y6 + 109350d4x4y6 + 21600x5y6

+10800d2x5y6 − 145480x6y6 − 87480d2x6y6 − 4320x7y6

+25515x8y6 − 35890y8 − 39870d2y8 − 12540d4y8

−14580d6y8 − 10476xy8 − 4140d2xy8 − 2160d4xy8

+126775x2y8 + 106600d2x2y8 + 54675d4x2y8 + 10800x3y8

+5400d2x3y8 − 109110x4y8 − 65610d2x4y8 − 3240x5y8

+25515x6y8 + 25355y10 + 21320d2y10 + 10935d4y10
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+2160xy10 + 1080d2xy10 − 43644x2y10 − 26244d2x2y10

−1296x3y10 + 15309x4y10 − 7274y12 − 4374d2y12

−216xy12 + 5103x2y12 + 729y14).

Since E = {i,−i} and P|d|(i, x, y)P|d|(−i, x, y) = 4096(x2 + y2), we have from (29)
that

f|d|(x, y) =
h|d|(x, y)

(4096(x2 + y2))2
. (30)

In Figure 1, we plot the generator curve (25) and its offsets at distnace ±1.
The black curve represents the generator curve, the blue curve represents offsets
at positive distance and the red curve represents offset at negative distance. Note
that the blue curve and the red curve together constitute the algebraic offset
f|1|(x, y) = 0.

Figure 1: The curve (25) in Example 1 with its offsets at distance ±1

Example 2. We consider the algebraic offset f|d|(x, y) = 0 to the circle

x2 + y2 = r2. (31)

The circle (31) is properly parametrized by X(t) = r(1 − t2), Y (t) = 2rt,W (t) =
1 + t2, and we observe that U(t) = −4rt, V (t) = 2r(1 − t2), R(t) = r2(1 + t2)2.
Since θ(t) = 1 + t2 and ζ(t) = 2r, we have

rd(t) =

(
(r + d)(1 − t2)

1 + t2
,
2(r + d)t

1 + t2

)
, (32)

P|d|(t, x, y) = (x2 + y2 + r2 − d2)(1 + t2) − 2r((1 − t2)x + 2ty), (33)

Q(t, x, y) = −2tx + (1 − t2)y, (34)
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and by computing the resultant of P|d|(t, x, y) and Q(t, x, y) with respect to t, we
see that

h|d|(x, y) = 4(x2 + y2)(x2 + y2 − (d + r)2)(x2 + y2 − (d − r)2). (35)

Note that E = {−i, i} and P|d|(i, x, y)P|d|(−i, x, y) = 16(x2+y2). Thus, if d ̸= ±r,
from (35), we have

f|d|(x, y) =
1

4
(x2 + y2 − (d + r)2)(x2 + y2 − (d − r)2) (36)

and algebraic offsets to circles consist of two circles in general (See Figure 2).

Figure 2: A unit circle with its offsets at distance ±1

4
,±1

2
,±3

4

On the other hand, if d = ±r, we have

f|d|(x, y) =
1

64
(x2 + y2 − (2r)2) (d = ±r) (37)

and f|d|(x, y) = 0 is not the implicit representation of the offsets at distance ±d
in this case, since the origin r−d(t) or rd(t) is omitted.

Note that, since the set E is always finite, an algebraic offset f|d|(x, y) = 0 does
not contain infinitely many points of rd(t) or r−d(t) if and only if the generator
curve is a circle of radius |d|. From now on, we exclude such cases from our
consideration.

10



2 Birational Correspondence

We consider a correspondence between the algebraic offset f|d|(x, y) = 0 and the
algebraic curve ỹ2 = U2(x̃) + V 2(x̃). We assume that algebraic offsets always
contain infinitely many points of both rd(t) and r−d(t).

Lemma 3. Let f|d|(x, y) = 0 be an algebraic offset to a properly parametrized
rational plane curve r(t) = (X(t)/W (t), Y (t)/W (t)). Then the equation

x =
X(x̃)

W (x̃)
+ d

V (x̃)

ỹ
, y =

Y (x̃)

W (x̃)
− d

U(x̃)

ỹ
, (38)

defines a rational transformation from the algebraic curve ỹ2 = U2(x̃) + V 2(x̃)
into the offset f|d|(x, y) = 0.

Proof. Let (x̃, ỹ) be a point of the curve ỹ2 = U2(x̃) + V 2(x̃) which satisfies the
conditions

W (x̃) ̸= 0 and ỹ ̸= 0. (39)

Then we have either ỹ =
√

U2(x̃) + V 2(x̃) or ỹ = −
√

U2(x̃) + V 2(x̃). If ỹ =√
U2(x̃) + V 2(x̃), we see that

x =
X(x̃)

W (x̃)
+ d

V (x̃)√
U2(x̃) + V 2(x̃)

, y =
Y (x̃)

W (x̃)
− d

U(x̃)√
U2(x̃) + V 2(x̃)

(40)

from (38), and this gives the point rd(x̃) of the offset f|d|(x, y) = 0. On the other

hand, if ỹ = −
√

U2(x̃) + V 2(x̃), we see that

x =
X(x̃)

W (x̃)
+ (−d)

V (x̃)√
U2(x̃) + V 2(x̃)

, y =
Y (x̃)

W (x̃)
− (−d)

U(x̃)√
U2(x̃) + V 2(x̃)

(41)

from (38), and this gives the point r−d(x̃) of the offset f|d|(x, y) = 0. Thus the
equation (38) defines a rational transformation from the algebraic curve ỹ2 =
U2(x̃) + V 2(x̃) into the offset f|d|(x, y) = 0.

We shall give an example of a rational transformation in Lemma 3.

Example 4. We consider the algebraic offset f|d|(x, y) = 0 to the cubic r(t) =
(t, t3) (See Figure 3). In this case, we have X(t) = t, Y (t) = t3,W (t) = 1 and
U(t) = 1, V (t) = 3t2, R(t) = t2 + t6. Noting that θ(t) = ζ(t) = 1, we see that

rd(t) =

(
t +

3dt2√
1 + 9t4

, t3 − d√
1 + 9t4

)
, (42)

P|d|(t, x, y) = t6 − 2yt3 + t2 − 2xt + (x2 + y2 − d2), (43)

Q(t, x, y) = −3t5 + 3yt2 − t + x. (44)
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Since W (t) = 1, there is no extraneous factor, and by computing the resultant of
P|d|(t, x, y) and Q(t, x, y) with respect to t, we have

f|d|(x, y) = −16d2 − 216d6 − 729d10 − 2052d4x2 + 3645d8x2 − 873d2x4

−7290d6x4 + 16x6 + 7290d4x6 − 3645d2x8 + 729x10

+432d2xy − 4860d6xy − 32x3y + 7830d4x3y − 1080d2x5y

−1890x7y + 16y2 + 1188d4y2 + 1458d8y2 + 594d2x2y2 (45)

−5832d6x2y2 + 1593x4y2 + 8748d4x4y2 − 5832d2x6y2

+1458x8y2 − 432xy3 + 9234d4xy3 − 6318d2x3y3 − 2916x5y3

−1701d2y4 − 729d6y4 + 1458x2y4 + 729y6 + 2187d4x2y4

−2187d2x4y4 + 729x6y4 − 4374d2xy5 − 1458x3y5.

Now a rational transformation from the curve ỹ2 = 1 + 9x̃4 into the offset
f|d|(x, y) = 0 is given by

x = x̃ +
3dx̃2

ỹ
, y = x̃3 − d

ỹ
. (46)

Figure 3: The cubic (t, t3) with its offsets at distance ±1

2
,±1

We shall construct a rational transformation from an irreducible component
of the offset f|d|(x, y) = 0 into the curve ỹ2 = U2(x̃) + V 2(x̃).

By decomposing the polynomial f|d|(x, y) into irreducible factors, we have

f|d|(x, y) = f̄1(x, y)f̄2(x, y) · · · f̄j(x, y) · · · f̄l(x, y), (47)

where f̄j(x, y) = f
nj

j (x, y) for some irreducible polynomial fj(x, y) ∈ C[x, y] and
for some nj ∈ N, and fi(x, y) ̸= fj(x, y) if i ̸= j.

Now we recall the notion of simple and special components of f|d|(x, y) = 0 due
to Arrondo, Sendra and Sendra (cf. [1], Definition 2.2). An irreducible component
fj(x, y) = 0 of f|d|(x, y) = 0 is called simple provided that without a finite number
of exceptions, for every point (x, y) of fj(x, y) = 0, there exists a unique parameter

12



value t such that P|d|(t, x, y) = Q(t, x, y) = 0. Otherwise fj(x, y) = 0 is called
special.

We also recall the results due to Sendra and Sendra [9] in our case, although
the cases of generalized offsets to hypersurfaces are discussed in [9]. If fj(x, y) =
0 is special, there exist infinitely many points of self-intersection of the offset
f|d|(x, y) = 0. Thus, from Bézout’s theorem (cf. [10]), we see that the multiplicity
nj ≥ 2. In particular, if the polynomial f|d|(x, y) is irreducible then the offset
f|d|(x, y) = 0 is simple. Furthermore, since the generator curve r(t) is properly
parametrized, by definition of offset curves, the offset f|d|(x, y) = 0 contains a
special component if and only if the generator curve r(t) is the rational offset
curve at distance d of some curve (cf. [9], Theorem 7).

We shall give an example of a special component. This example is due to the
referee of the paper [5].

Example 5. The offset curve r1(t) to the parabola r(t) = (t, t2) at distance 1 is
given by

r1(t) =

(
t +

2t√
1 + 4t2

, t2 − 1√
1 + 4t2

)
. (48)

If we reparametrize r1(t) by

t =
u2 − 1

4u
, (49)

we have a properly parametrized rational curve

s(u) = r1

(
u2 − 1

4u

)
=

(
4u(u2 − 1)(u2 + 4u + 1)

16u2(u2 + 1)
,
u6 − u4 − 32u3 − u2 + 1

16u2(u2 + 1)

)
. (50)

We study components of the algebraic offset f|d|(x, y) = 0 to the curve s(u). By
computing the resultant of P|d|(u, x, y) and Q(u, x, y) with respect to u, we have

h|d|(x, y) = 70368744177664(1 + 16x2 − 8y + 16y2)

((−1156 + 688x2 − 191x4 + 16x6 + 544y + 30x2y − 40x4y

+225y2 − 96x2y2 + 16x4y2 − 136y3 − 32x2y3 + 16y4)

+(1 − d)(3 + d)(−220x2 + 208d + 168d2 + 64d3 + 16d4

+377 − 96dx2 − 48d2x2 + 48x4 − 72y2 − 168y − 64dy

−32d2y − 8x2y − 32dy2 − 16d2y2 + 32x2y2 + 32y3)) (51)

((x2 − y)2(1 + 16x2 − 8y + 16y2)

−(1 − d)2(25 − 80d + 104d2 − 64d3 + 16d4 − 28x2

+96dx2 − 48d2x2 + 48x4 − 40y + 64dy − 8y2 − 32d2y

−8x2y + 32dy2 − 16d2y2 + 32x2y2 + 32y3)).
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Note that E = {i,−i} and P|d|(i, x, y)P|d|(−i, x, y) = 65536(1+16x2 − 8y +16y2).
Thus we have

f|d|(x, y) =
h|d|(x, y)

65536(1 + 16x2 − 8y + 16y2)
(|d| ̸= 1) (52)

and

f|1|(x, y) =
h|1|(x, y)

(65536(1 + 16x2 − 8y + 16y2))2

= 16384(x2 − y)2(−1156 + 688x2 − 191x4 + 16x6 (53)

+544y + 30x2y − 40x4y + 225y2 − 96x2y2

+16x4y2 − 136y3 − 32x2y3 + 16y4).

Though algebraic offset f|d|(x, y) = 0 has no special components if |d| ̸= 1, the
algebraic offset f|1|(x, y) = 0 has a special component x2 − y = 0 (See Figure 4).

Figure 4: The curve (50) in Example 5 with its offsets at distance ±1

It is also known that for almost every distance d all the components of the
algebraic offset f|d|(x, y) = 0 are simple (cf. [9], Theorem 8). From now on,
we only deal with the offsets with no special components. We shall construct a
rational transformation from a simple component of the offset f|d|(x, y) = 0 into
the curve ỹ2 = U2(x̃) + V 2(x̃).

Let

f|d|(x, y) = f1(x, y)f2(x, y) · · · fj(x, y) · · · fl(x, y) (54)

be a decomposition of f|d|(x, y) into irreducible factors in C[x, y].
We regard P|d|(t, x, y) and Q(t, x, y) as polynomials in t over the rational func-

tion field R(x, y) and apply the Euclidean algorithm to them. Then we have

P|d|(t, x, y) = Q(t, x, y)
q1
|d|(t, x, y)

s1
|d|(x, y)

+
r1
|d|(t, x, y)

s1
|d|(x, y)

,
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Q(t, x, y) = r1
|d|(t, x, y)

q2
|d|(t, x, y)

s2
|d|(x, y)

+
r2
|d|(t, x, y)

s2
|d|(x, y)

,

r1
|d|(t, x, y) = r2

|d|(t, x, y)
q3
|d|(t, x, y)

s3
|d|(x, y)

+
r3
|d|(t, x, y)

s3
|d|(x, y)

,

... (55)

rp−3
|d| (t, x, y) = rp−2

|d| (t, x, y)
qp−1
|d| (t, x, y)

sp−1
|d| (x, y)

+
rp−1
|d| (t, x, y)

sp−1
|d| (x, y)

,

rp−2
|d| (t, x, y) = rp−1

|d| (t, x, y)
qp
|d|(t, x, y)

sp
|d|(x, y)

+
rp
|d|(x, y)

sp
|d|(x, y)

,

where qi
|d|(t, x, y), ri

|d|(t, x, y), si
|d|(x, y), rp

|d|(x, y) are polynomials with real coeffi-
cients and

degt Q > degt r
1
|d| > degt r

2
|d| > · · · > degt r

p−1
|d| > degt r

p
|d| = 0. (56)

Note that for each i, there exist polynomials Ai
|d|(t, x, y), Bi

|d|(t, x, y) ∈ R[t, x, y]
such that

ri
|d|(t, x, y) = Ai

|d|(t, x, y)P|d|(t, x, y)

+Bi
|d|(t, x, y)Q(t, x, y) (i = 1, · · · , p − 1), (57)

rp
|d|(x, y) = Ap

|d|(t, x, y)P|d|(t, x, y) + Bp
|d|(t, x, y)Q(t, x, y). (58)

In our discussion, the polynomial rp−1
|d| (t, x, y) plays an important role. Let

rp−1
|d| (t, x, y) = a

mp−1

|d| (x, y)tmp−1 + a
mp−1−1

|d| (x, y)tmp−1−1

+ · · · + a1
|d|(x, y)t + a0

|d|(x, y), (59)

where ai
|d|(x, y) are polynomials in x, y. From Bézout’s theorem, we see that

if ai
|d|(x, y) vanishes for infinitely many points of the curve fj(x, y) = 0, then

ai
|d|(x, y) vanishes identically on fj(x, y) = 0. Now, suppose that all coefficients

ai
|d|(x, y) (i = 0, · · · , mp−1) vanish for infinitely many points of fj(x, y) = 0. Then

for any t ∈ C, the polynomial rp−1
|d| (t, x, y) in x, y vanishes identically on fj(x, y) =

0. Note that, with a finite number of exceptions, for every point (x, y) of fj(x, y) =
0, there exists a unique parameter value t such that P|d|(t, x, y) = Q(t, x, y) = 0,
since the component fj(x, y) = 0 is simple. Since degt rp = 0, we observe, from
(58), that the polynomial rp

|d|(x, y) also vanishes identically on the curve fj(x, y) =

0. Then, from (55), for any point (x, y) of fj(x, y) = 0 and for any t ∈ C, we have
P|d|(t, x, y) = Q(t, x, y) = 0. This contradicts the hypothesis that the component
fj(x, y) = 0 is simple. Thus there exists an i ∈ N such that ai

|d|(x, y) does
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not vanish identically on the curve fj(x, y) = 0. Let mj be the maximum of
such i. If mj = 0, with a finite number of exceptions, for every point (x, y) of
fj(x, y) = 0 and for any t ∈ C satisfying P|d|(t, x, y) = Q(t, x, y) = 0, we have

rp−1
|d| (t, x, y) = a0

|d|(x, y) ̸= 0. However, this is impossible, since rp−1
|d| (t, x, y) = 0

from (57). Thus we have 1 ≤ mj ≤ degt r
p−1
|d| .

Let (x0, y0) be a generic point of fj(x, y) = 0. Then we have a
mj

|d| (x0, y0) ̸= 0

and there exists a unique parameter value t0 such that P|d|(t0, x0, y0) = Q(t0, x0, y0)

= 0. Since rp
|d|(x0, y0) = 0, if t1 is a parameter value satisfying rp−1

|d| (t1, x0, y0) =

0, we also have P|d|(t1, x0, y0) = Q(t1, x0, y0) = 0 from (55). Because of the

uniqueness of t0, this implies that t1 = t0 and the polynomial rp−1
|d| (t, x0, y0) must

have the factorization

rp−1
|d| (t, x0, y0) = a

mj

|d| (x0, y0)(t − t0)
mj . (60)

Comparing this expression with (59), we obtain

t0 = − 1

mj

a
mj−1

|d| (x0, y0)

a
mj

|d| (x0, y0)
. (61)

Now we put

tj|d|(x, y) = − 1

mj

a
mj−1

|d| (x, y)

a
mj

|d| (x, y)
. (62)

Then we have the following.

Lemma 6. Let f|d|(x, y) = 0 be an algebraic offset to a properly parametrized
rational plane curve r(t) = (X(t)/W (t), Y (t)/W (t)) with no special components,
and let fj(x, y) = 0 be an irreducible component of f|d|(x, y) = 0. Then, with a
finite number of exceptions, for every point (x, y) of fj(x, y) = 0, the value given
by (62) satisfies the equations

P|d|(t
j
|d|(x, y), x, y) = Q(tj|d|(x, y), x, y) = 0. (63)

Moreover, the equation

x̃ = tj|d|(x, y), ỹ = −d
U(tj|d|(x, y))

y −
Y (tj|d|(x, y))

W (tj|d|(x, y))

, (64)

defines a rational transformation from fj(x, y) = 0 into the curve ỹ2 = U2(x̃) +
V 2(x̃).
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Proof. From the discussion above, with a finite number of exceptions, for ev-
ery point (x, y) of fj(x, y) = 0, rp

|d|(x, y) = 0 and the value tj|d|(x, y) satisfies

rp−1
|d| (tj|d|(x, y), x, y)) = 0, and hence from (55) we get the first part.

To prove the second part, consider a generic point of the curve fj(x, y) = 0
satisfying (63) and the conditions

W (tj|d|(x, y)) ̸= 0 and W (tj|d|(x, y))y − Y (tj|d|(x, y)) ̸= 0. (65)

Note that (x, y) is a point of rd(t) or a point of r−d(t). If (x, y) is a point of rd(t),
then we see from (7) that

ỹ = −d
U(tj|d|(x, y))

y −
Y (tj|d|(x, y))

W (tj|d|(x, y))

=
√

U2(tj|d|(x, y)) + V 2(tj|d|(x, y))

=
√

U2(x̃) + V 2(x̃), (66)

and hence (x, y) is transformed into a point (x̃, ỹ) of ỹ2 = U2(x̃) + V 2(x̃). On the
other hand, if (x, y) is a point of r−d(t), then we see from (7) that

ỹ = −1 ×−(−d)
U(tj|d|(x, y))

y −
Y (tj|d|(x, y))

W (tj|d|(x, y))

= −
√

U2(tj|d|(x, y)) + V 2(tj|d|(x, y))

= −
√

U2(x̃) + V 2(x̃), (67)

and hence (x, y) is transformed into a point (x̃, ỹ) of ỹ2 = U2(x̃) + V 2(x̃). Thus
the equation (64) defines a rational transformation from fj(x, y) = 0 into ỹ2 =
U2(x̃) + V 2(x̃).

We denote the rational transformation (38) in Lemma 3 from the curve ỹ2 =
U2(x̃) + V 2(x̃) into the algebraic offset f|d|(x, y) = 0 by

Φ(x̃, ỹ) = (Φ1(x̃, ỹ), Φ2(x̃, ỹ)) =

(
X(x̃)

W (x̃)
+ d

V (x̃)

ỹ
,

Y (x̃)

W (x̃)
− d

U(x̃)

ỹ

)
, (68)

and for each j = 1, · · · , l, the transformation (64) in Lemma 6 from the irreducible
component fj(x, y) = 0 of the offset f|d|(x, y) = 0 into the curve ỹ2 = U2(x̃)+V 2(x̃)
by

Ψj(x, y) = (Ψj
1(x, y), Ψj

2(x, y)) =

tj|d|(x, y),−d
U(tj|d|(x, y))

y −
Y (tj|d|(x, y))

W (tj|d|(x, y))

 . (69)

Now we have the following.
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Theorem 7. With a finite number of exceptions, there is a one-to-one corre-
spondence between the points of the curve ỹ2 = U2(x̃) + V 2(x̃) and those of the
algebraic offset f|d|(x, y) = 0 with no special components via the rational trans-
formations Φ and Ψj (j = 1, · · · , l). In particular, the irreducible components of
ỹ2 = U2(x̃) + V 2(x̃) and those of f|d|(x, y) = 0 correspond each other, and their
corresponding irreducible components are birationally equivalent.

Proof. Let (x̃, ỹ) be a point of ỹ2 = U2(x̃)+V 2(x̃) satisfying the conditions (39).
By construction of Φ, with a finite number of exceptions, we may assume that
Φ(x̃, ỹ) is not a point of the self-intersections of f|d|(x, y) = 0. Then there exists
a unique j such that Φ(x̃, ỹ) is a point of fj(x, y) = 0. Furthermore, we assume
that Φ(x̃, ỹ) satisfies the conditions (63), (65). Now, by definition of tj|d|(x, y), we
see that

(Ψj
1 ◦ Φ)(x̃, ỹ) = tj|d|(Φ1(x̃, ỹ), Φ2(x̃, ỹ))

= tj|d|

(
X(x̃)

W (x̃)
+ d

V (x̃)

ỹ
,

Y (x̃)

W (x̃)
− d

U(x̃)

ỹ

)
= x̃, (70)

(Ψj
2 ◦ Φ)(x̃, ỹ) =

−d · U(tj|d|(Φ1(x̃, ỹ), Φ2(x̃, ỹ)))

Φ2(x̃, ỹ) −
Y (tj|d|(Φ1(x̃, ỹ), Φ2(x̃, ỹ)))

W (tj|d|(Φ1(x̃, ỹ), Φ2(x̃, ỹ)))

=
−d · U(x̃)(

Y (x̃)

W (x̃)
− d · U(x̃)

ỹ

)
− Y (x̃)

W (x̃)

= ỹ, (71)

and hence we have (Ψj ◦ Φ)(x̃, ỹ) = (x̃, ỹ).
Conversely, let (x, y) be a point of f|d|(x, y) = 0 satisfying the conditions

(63), (65), and not being a point of the self-intersections. Then there exists a
unique j such that (x, y) is a point of fj(x, y) = 0. By construction of Ψj, with a
finite number of exceptions, we may assume that Ψj(x, y) satisfies the conditions
(39). Now, by definition of tj|d|(x, y), we see that

(Φ1 ◦ Ψj)(x, y) =
X(tj|d|(x, y))

W (tj|d|(x, y))
+

d · V (tj|d|(x, y))

−d · U(tj|d|(x, y))

(
y −

Y (tj|d|(x, y))

W (tj|d|(x, y))

)

=
X(tj|d|(x, y))

W (tj|d|(x, y))
+

d · V (tj|d|(x, y))√
U2(tj|d|(x, y)) + V 2(tj|d|(x, y))

= x, (72)

(Φ2 ◦ Ψj)(x, y) =
Y (tj|d|(x, y))

W (tj|d|(x, y))
−

d · U(tj|d|(x, y))

−d · U(tj|d|(x, y))

(
y −

Y (tj|d|(x, y))

W (tj|d|(x, y))

)
= y, (73)
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and hence we have (Φ ◦ Ψj)(x, y) = (x, y).
The second part of the theorem follows immediately from the first part.

We shall give an example of a birational correspondence in Theorem 7.

Example 8. In Example 4, we considered the algebraic offset f|d|(x, y) = 0 to the
cubic r(t) = (t, t3) and constructed a rational transformation from the curve ỹ2 =
1 + 9x̃4 into the offset f|d|(x, y) = 0. Here we construct a rational transformation
from the offset f|d|(x, y) = 0 into the curve ỹ2 = 1 + 9x̃4.

Since the curve ỹ2 = 1 + 9x̃4 is irreducible, so is the offset f|d|(x, y) = 0, and
hence l = 1 (cf. Lemma 9 and Theorem 10). By applying the Euclidean algorithm
(55) to the polynomials

P|d|(t, x, y) = t6 − 2yt3 + t2 − 2xt + (x2 + y2 − d2),

Q(t, x, y) = −3t5 + 3yt2 − t + x,

which we computed in Example 4, we have

r1
|d|(t, x, y) = −3yt3 + 2t2 − 5xt + 3(x2 + y2 − d2), (74)

r2
|d|(t, x, y) = (−8 + 60xy + 27d2y2 − 27x2y2)t2

+(20x + 18d2y − 93x2y − 27y3)t

+(12d2 − 12x2 − 45d2xy + 45x3y − 12y2 + 54xy3), (75)

r3
|d|(t, x, y) = −9y3(16 + 108d4 + 1134d2x2 + 633x4 − 336xy

+810d4xy − 1620d2x3y + 810x5y − 378d2y2

+648x2y2 − 486d2xy3 + 486x3y3 + 243y4)t

+9y3(16x − 540d4x − 45d2x3 + 585x5 + 108d2y (76)

−243d6y − 288x2y + 729d4x2y − 729d2x4y

+243x6y + 27d2xy2 + 1323x3y2 − 108y3

+243d4y3 − 486d2x2y3 + 243x4y3 + 486xy4).

Thus from Lemma 6, if we put

t1|d|(x, y) = (16x − 540d4x − 45d2x3 + 585x5 + 108d2y

−243d6y − 288x2y + 729d4x2y − 729d2x4y

+243x6y + 27d2xy2 + 1323x3y2 − 108y3

+243d4y3 − 486d2x2y3 + 243x4y3 + 486xy4)/ (77)

(16 + 108d4 + 1134d2x2 + 633x4 − 336xy

+810d4xy − 1620d2x3y + 810x5y − 378d2y2

+648x2y2 − 486d2xy3 + 486x3y3 + 243y4),
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we have a rational transformation

x̃ = t1|d|(x, y), ỹ = −d
U(t1|d|(x, y))

y −
Y (t1|d|(x, y))

W (t1|d|(x, y))

(78)

from the offset f|d|(x, y) = 0 into the curve ỹ2 = 1 + 9x̃4.
From Example 4 and Theorem 7, the algebraic offset f|d|(x, y) = 0 to the cubic

r(t) = (t, t3) is birationally equivalent to the curve ỹ2 = 1 + 9x̃4 via the rational
transformations (46) and (78).

We need the following elementary lemma.

Lemma 9. Let w(x) ∈ R[x] be a polynomial with positive leading coefficient.
Then the curve y2 − w(x) = 0 is reducible if and only if there exists a polynomial
w∗(x) ∈ R[x] such that w(x) = w2

∗(x).

Proof. If w(x) = w2
∗(x), then we have y2 − w(x) = (y + w∗(x))(y − w∗(x)), and

hence the curve y2 − w(x) = 0 is reducible.
Conversely, if the curve y2−w(x) = 0 is reducible, then there exist b(x), c(x) ∈

C[x] such that

y2 − w(x) = (y + b(x))(y − c(x)). (79)

By comparing the coefficients with respect to y, we see that b(x) = c(x) and
w(x) = b(x)c(x). Thus, if we put w∗(x) = b(x), we have w(x) = w2

∗(x). We shall
prove w∗(x) ∈ R[x]. Since the leading coefficient of w(x) is positive, the leading
coefficient of w∗(x) is a real number. Note that w(α) = 0 implies w∗(α) = 0.
Thus, if all solutions of the equation w(x) = 0 are real numbers, then we have
w∗(x) ∈ R[x]. Suppose a solution α of w(x) = 0 is not real. Then the complex
conjugate ᾱ of α is also a solution of w(x) = 0, and hence w∗(x) is divisible by
(x−α)(x− ᾱ) ∈ R[x]. Thus, even if w(x) = 0 has complex solutions, we conclude
that w∗(x) ∈ R[x].

From Theorem 7 and Lemma 9 we have the following.

Theorem 10. Let f|d|(x, y) = 0 be an algebraic offset with no special components.
Then f|d|(x, y) = 0 is reducible if and only if there exists a polynomial w∗(x̃) ∈ R[x̃]
such that U2(x̃) + V 2(x̃) = w2

∗(x̃). In particular, if f|d|(x, y) = 0 is reducible, it
consists of two rational curves.

We shall apply Theorem 10 to the algebraic offsets to an ellipse and an asteroid.
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Example 11. We consider the algebraic offset f|d|(x, y) = 0 to the ellipse

x2

a2
+

y2

b2
= 1 (a, b > 0) (80)

(See Figure 5). The curve (80) is properly parametrized by X(t) = a(1 −
t2), Y (t) = 2bt,W (t) = 1 + t2. We observe that U(t) = −4at, V (t) = 2b(1 − t2),
and the offset f|d|(x, y) = 0 is birationally equivalent to the curve

ỹ2 = 16a2x̃2 + 4b2(1 − x̃2)2. (81)

Then the discriminant D of the polynomial 16a2x̃2 + 4b2(1− x̃2)2 with respect to
x̃ is

D = 67108864a4b6(a + b)2(a − b)2, (82)

and the polynomial 16a2x̃2 + 4b2(1− x̃2)2 has a multiple root if and only if a = b.
Thus, from Theorem 10, we get the following results:

1. Case of a ̸= b.
The offset f|d|(x, y) = 0 is irreducible.

2. Case of a = b.
The curve (80) is a circle of radius a. The offset f|d|(x, y) = 0 is birationally

equivalent to the curve ỹ2 = (2a(1 + x̃2))
2
, and hence the offset f|d|(x, y) = 0

is reducible. Furthermore, the offset f|d|(x, y) = 0 consists of two rational
curves, as we have seen in Example 2.

Figure 5: The ellipse
1

4
x2+y2 = 1 with its offsets at distance ±1

4
,±1

2
,±3

4
,±1,±5

4
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Example 12. We consider the algebraic offset f|d|(x, y) = 0 to the asteroid

x
2
3 + y

2
3 = 1 (83)

(See Figure 6). The curve (83) is properly prametrized by X(t) = (1−t2)3, Y (t) =
8t3,W (t) = (1+t2)3. Noting that U(t) = −12t(t4−1)2, V (t) = 24t2(t4−1)(t2+1),
we see that the offset f|d|(x, y) = 0 is birationally equivalent to the curve

ỹ2 =
(
12x̃2(x̃ − 1)(x̃ + 1)(x̃2 + 1)3

)2
. (84)

Thus the offset f|d|(x, y) = 0 is reducible and consists of two rational curves. In
fact, if we compute the polynomial f|d|(x, y), we obtain

f|d|(x, y) = 65536(1 − 8d2 + 16d4 − 3x2 − 20d2x2 + 3x4 + d2x4 − x6

−36dxy + 16d3xy − 18dx3y − 3y2 − 20d2y2 − 21x2y2

+2d2x2y2 − 3x4y2 − 18dxy3 + 3y4 + d2y4 − 3x2y4 − y6)

(1 − 8d2 + 16d4 − 3x2 − 20d2x2 + 3x4 + d2x4 − x6 (85)

+36dxy − 16d3xy + 18dx3y − 3y2 − 20d2y2 − 21x2y2

+2d2x2y2 − 3x4y2 + 18dxy3 + 3y4 + d2y4 − 3x2y4 − y6).

Figure 6: The asteroid (83) with its offsets at distance ±1
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,±1

2
,±3

4
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3 Hyperellipticity

In this section, we study the genus of offsets to rational plane curves. Let w(x) be
a polynomial of degree 2g + 1 or 2g + 2 with real coefficients and distinct roots.
We consider an irreducible plane curve C which is birationally equivalent to the
curve y2 = w(x). Note that the curve y2 = w(x) has genus g. Since the genus is a
birational invariant, the curve C has genus g. If g = 0, then y2 = w(x) is a conic
and C is a rational curve. If g = 1, C is called an elliptic curve and if g ≥ 2, C is
called a hyperelliptic curve. It is known that curves of genus 0, 1 and 2 are always
rational, elliptic and hyperelliptic, respectively, but curves of genus greater than
2 are not always hyperelliptic.

Let f(x) be a polynomial with real coefficients and let

f(x) = c(x − a1)
2p1+1 · · · (x − am)2pm+1(x − b1)

2q1 · · · (x − bn)2qn (86)

be the decomposition of f(x) into linear factors with distinct complex numbers
a1, · · · , am, b1, · · · , bn. Then we see that the curves y2 = f(x) and Y 2 = c(X −
a1) · · · (X − am) are birationally equivalent via the rational transformations

X = x, Y =
y

(x − a1)p1 · · · (x − am)pm(x − b1)q1 · · · (x − bn)qn
, (87)

x = X, y = (x − a1)
p1 · · · (x − am)pm(x − b1)

q1 · · · (x − bn)qnY, (88)

and thus the curve y2 = f(x) has genus [(m − 1)/2], where the symbol [α] de-
notes the largest integer ≤ α. Note that all coefficients appearing in the rational
transformations (87), (88) and of the polynomial c(X − a1) · · · (X − am) are real
numbers since f(x) ∈ R[x].

Noting that the degree of the polynomial U2(x̃) + V 2(x̃) is even, we have the
following characterization of the offsets to rational curves from Theorem 7 and
Lemma 9.

Theorem 13. (Hyperellipticity) Let f|d|(x, y) = 0 be an irreducible algebraic offset
to a properly parametrized rational plane curve r(t) = (X(t)/W (t), Y (t)/W (t))
with no special components, and let

U2(x̃) + V 2(x̃) = c(x̃ − a1)
2p1+1 · · · (x̃ − am)2pm+1(x̃ − b1)

2q1 · · · (x̃ − bn)2qn (89)

be the decomposition of the polynomial U2(x̃) + V 2(x̃) into linear factors with
distinct complex numbers a1, · · · , am, b1, · · · , bn. Then m is a positive even integer
and

1) if m = 2, the offset f|d|(x, y) = 0 is a rational curve,
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2) if m = 4, the offset f|d|(x, y) = 0 is an elliptic curve,

3) if m ≥ 6, the offset f|d|(x, y) = 0 is a hyperelliptic curve of genus (m−2)/2.

In particular, the genus of the offset f|d|(x, y) = 0 with no special components is
independent of the distance d.

We shall compute genus of some algebraic offsets by Theorem 13

Example 14. We compute genus of the algebraic offset f|d|(x, y) = 0 to the
properly parametrized curve

r(t) =
(
−2t3 + 2t, 16t6 − 24t4 + 8t2

)
(90)

(See Figure 7). In this case, we have X(t) = −2t3 + 2t, Y (t) = 16t6 − 24t4 +
8t2,W (t) = 1 and U(t) = −6t2 + 2, V (t) = 96t5 − 96t3 + 16t. Thus the offset
f|d|(x, y) = 0 is birationally equivalent to the curve

ỹ2 = 4(2304x̃10 − 4608x̃8 + 3072x̃6 − 759x̃4 + 58x̃2 + 1). (91)

Noting that the discriminant of the polynomial 2304x̃10 − 4608x̃8 + 3072x̃6 −
759x̃4 + 58x̃2 + 1 is not 0, we see, from Theorem 13, that the offset f|d|(x, y) = 0
is a hyperelliptic curve of genus 4.

Figure 7: The curve (90) in Example 14 with its offsets at distance ± 1
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Example 15. We compute genus of the algebraic offset f|d|(x, y) = 0 to the folium
of Descartes

x3 + y3 − 3xy = 0 (92)

(See Figure 8). The curve (92) is properly parametrized by X(t) = 3t, Y (t) =
3t2,W (t) = 1 + t3 and we see that U(t) = −6t3 + 3, V (t) = −3t4 + 6t. Thus we
observe that the offset f|d|(x, y) = 0 is birationally equivalent to the irreducible
curve

ỹ2 = 9(x̃8 + 4x̃6 − 4x̃5 − 4x̃3 + 4x̃2 + 1). (93)

Since the discriminant of the polynomial x̃8 + 4x̃6 − 4x̃5 − 4x̃3 + 4x̃2 + 1 is not 0,
we observe, form Theorem 13, that the offset f|d|(x, y) = 0 is a hyperelliptic curve
of genus 3.

Figure 8: The folium of Descartes (92) with its offsets at distance ±1

3
,±2

3
,±1

Example 16. We consider the offset f|d|(x, y) = 0 to the lemniscate of Bernoulli

(x2 + y2)2 − (x2 − y2) = 0 (94)

(See Figure 9). The curve (94) is properly parametrized by X(t) = −t4+1, Y (t) =
−2t3+2t,W (t) = t4+6t2+1, and hence we have U(t) = −4t(3t4 +2t2+3), V (t) =
2(t6 − 9t4 − 9t2 + 1). Thus the offset f|d|(x, y) = 0 is birationally equivalent to the
curve

ỹ2 = 4(x̃4 + 6x̃2 + 1)3, (95)

and we see, from Theorem 13, that the offset f|d|(x, y) = 0 is an elliptic curve.
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Figure 9: The lemniscate of Bernoulli (94) with its offsets at distance ±1

3
,±2

3
,±1

From Theorem 13, we have the following propositions.

Proposition 17. Let n and m be relatively prime natural numbers. Then the
algebraic offset to yn = xn+m has genus m − 1. In particular, for m ≥ 2, the
algebraic offset to y = xm has genus m − 2.

Proof. The curve yn = xn+m is properly parametrized by X(t) = tn, Y (t) =
tn+m,W (t) = 1. Thus we have U(t) = ntn−1, V (t) = (n + m)tn+m−1, and hence
the offset to yn = xn+m is birationally equivalent to the curve

ỹ2 = n2x̃2n−2 + (n + m)2x̃2n+2m−2 = x̃2n−2
(
n2 + (n + m)2x̃2m

)
. (96)

Since the polynomial n2+(n+m)2x̃2m has no multiple roots, we get our claim.

Figure 10: The quartic curve y = x4 with its offsets at distance ±1
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Proposition 18. Let n and n+m be relatively prime natural numbers. Then the
algebraic offset to yn = 1/xn+m has genus 2n + m − 1. In particular, for m ≥ 1,
the algebraic offset to y = 1/xm has genus m.

Proof. The curve yn = 1/xn+m is properly parametrized by X(t) = t2n+m, Y (t) =
1,W (t) = tn+m. Thus we have U(t) = nt3n+2m−1, V (t) = −(n + m)tn+m−1, and
hence the offset to yn = 1/xn+m is birationally equivalent to the curve

ỹ2 = n2x̃6n+4m−2 + (n + m)2x̃2n+2m−2 = x̃2n+2m−2
(
n2x̃4n+2m + (n + m)2

)
. (97)

Since the polynomial n2x̃4n+2m + (n + m)2 has no multiple roots, we get our
claim.

Figure 11: The curve y =
1

x
with its offsets at distance ±5

2

In particular,

Proposition 19. Offsets to conics can be classified in the following.

1) The algebraic offsets to parabolas are rational curves.

2) The algebraic offsets to circles are reducible and consist of two circles.

3) The algebraic offsets to ellipses are elliptic curves.

4) The algebraic offsets to hyperbolas are elliptic curves.
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Proof. It is enough to prove the case of hyperbolas. We may assume that a
hyperbola is given by the equation

x2

a2
− y2

b2
= 1 (a, b > 0). (98)

Note that the hyperbola (98) is properly parametrized by X(t) = a(1+t2), Y (t) =
2bt,W (t) = 1 − t2. Thus we have U(t) = 4at, V (t) = 2b(1 + t2), and hence the
algebraic offset to the hyperbola (98) is birationally equivalent to the curve

ỹ2 = 16a2x̃2 + 4b2(1 + x̃2)2. (99)

Since the discriminant D of the polynomial 16a2x̃2 + 4b2(1 + x̃2)2 with respect to
x̃ is

D = 67108864a4b6(a2 + b2)2, (100)

the polynomial 16a2x̃2 +4b2(1+ x̃2)2 has no multiple roots, and we get our claim.

Figure 12: The hyperbola
1

4
x2−y2 = 1 with its offsets at distance ±19

10
,±19

5
,±57

10
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