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1. Introduction and the statement of main results

A link is a closed oriented 1-manifold smoothly embedded in the 3-sphere S® and
a knot is a link with one component. Let K be a knot. The unknotting number u(K)
of K is the minimal number of crossing changes needed to create the trivial knot.

In the 1960s, Milnor [5] conjectured that the unknotting number of any algebraic
knot would be equal to the genus of the Milnor fiber. In the 1990s, Kronheimer and
Mrowka [2] [3] proved this conjecture using gauge theory. In particular, the unknotting
number of (p, g)-torus knot is ((p — 1)(¢ — 1))/2. In 1995, Auckly [1] gave an alter-
native proof of this conjecture for certain torus knots using Seiberg-Witten theory. In
this paper we shall compute unknotting numbers of certain knots using Seiberg-Witten
theory.

An argument explained in Auckly’s lecture notes [1] is based on the following
theorem, which is the so-called generalized adjunction formula.

Theorem 1.1 (Kronheimer-Mrowka [4], Morgan-Szab6-Taubes [7]). Let X be a
smooth closed oriented four-manifold with dim H2(X,R) > 1. If F < X is a s-
moothly embedded closed oriented surface of genus g > 1 and K is a basic class of
X, then

29-2>K(F)+F-F

where A - B denotes the intersection number of A and B.
By extending the argument in [1], we obtain the following Theorem.

Theorem 1.2. Let K be an oriented knot in S3 x {1} and L, ,, the link in S3 x
{0} illustrated in Fig. 1. If there is a compact connected oriented surface Fin 83 x
[0,1] such that OF = Ly n U K, then

u(K) > (m—1)(n - 1) — g(F)

*The author is partially supported by JSPS Research Fellowships for Young Scientists.
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Fig. 1. Link Ly,

where g(F') denotes the genus of F.

By means of Theorem 1.2, we can determine the unknotting numbers of certain
knots. In particular, in the present paper, we show the following result.

Theorem 1.3. (1) The unknotting number of the knot 10139 is 4.
(2) The unknotting number of the knot 10,52 is 4.

The unknotting numbers of 10;39 and 10;52 had been known to be either 3 or 4,
but they had not been determined. The author was suggested by Kawauchi that this
problem might be solved by Theorem 1.2, and Theorem 1.3 is the answer to it.

AcCKkNOWLEDGEMENT.  The author would like to thank Professor Akio Kawauchi
and Professor Toshitake Kohno for their useful advice. She also would
like to thank Professor Dave Aucky and Professor Lee Rudolph for helpful
communications.

2. The proof of Theorem 1.2 and its corollary

Before proving Theorem 1.2, we shall review the definition of basic class.

Let X be a smooth closed oriented 4-manifold with b3 (X) > 1. The Seiberg-
Witten invariant of X is an integer valued function which is defined on the set of
Spin®-structures over X, (cf. for example [4] [6] [10]). This invariant is considered
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as a map
n: H%(X; Z)/Torsion - Z,

(cf. [1]). If n(K) # 0, then K is called a basic class.
To prove Theorem 1.2, we will use the following lemma;

Lemma 2.1 (Auckly [1]). 0 is a basic class for T*.

More generally, the work by Witten [10, pp. 786-789] implies that if X is a
Kéhler-Einstein manifold, the canonical class of X is a basic class. Lemma 2.1 can
be also proved by this fact.

Auckly [1] presented a way of computing the unknotting number of (2,5)-torus
knot applying Theorem 1.1 and Lemma 2.1 to a suitable surface in 7. Theorem 1.2
is an extension of result in [1], and the argument in proof of Theorem 1.2 is almost
same as his argument.

Proof of Theorem 1.2. We consider 72 = [0,1]?/ ~ and T* = T? x T2, where
~ is the equivalent relation defined by (0,t) ~ (1,t) and (s,0) ~ (s,1). We will
construct a surface F' embedded in 7.

We define FE and J by

(U {Fras)b)o( U m{(GEat)

k=1,---,m =1,,n
1 m+1]° 1 n+1)?
= b x b
m+2' m+2 n+2 n+2

The four-disk J includes all self-intersections of E. Then 0(E—J) = ENdJ C dJ is
equivalent to L,, , C S3. We suppose that K can be unknotted by u-crossing changes.
Then there is a surface F' C D* with genus u such that OF' = K C S® = §D*.

We can regard 8J x [0, 1] as a collar of 8J in J and 8J x {0} as 8J. We can
identify 8J x [0,1] with S® x [0,1] since 8J = S3. We can consider that F' lies in
dJ x[0,1] and FNdJ = ENAJ. We can identify the closure of J — (8J x [0, 1]) with
D*. We can consider that F' lies in the closure of J—(8Jx[0,1]) and FNdJ x {1} =
OF'. We define a surface F' by

F=(E-J)UFUF'.

A

The genus of F is equal to m +n + g(F) + u. The self-intersection number F - F'
is the same as E - F, because F' is homologous to E. So F'- F = E - E = 2mn.
We can apply Theorem 1.1 and Lemma 2.1 for F'. Then we obtain the inequality

2(m+n+ g(F) +u) —2 > 0+ 2mn.
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Fig. 2. Fusion procedure to obtain 10139 from L33
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Thus, we obtain the desired inequality u > (m — 1)(n — 1) — g(F). O

To prove Theorem 1.3, we show a corollary of Theorem 1.2. In order to state it,
we shall review the definition of fusion procedure.

Let L be a u-component oriented link. Let By, --- B, be mutually disjoint orient-
ed bands in S® such that B;NL =98B;NL = a; Ua!, where oy, a, -+, ay, o, are
disjoint connected arcs. The closure of LUOB,U---UdB, —a1UajU---Uay, Ua,,
is also the link. We will write it by L’.

DeriNiTION.  If L' has the orientation compatible with the orientation of L —
Ui=1’,_’y a;Ua; and Uizl,m,u(aBi—aang), L' is called the link obtained from L by
the band surgery along the bands B, ---, B,. Moreover if L' has (u—v)-components,
this transformation is called a fusion.
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Fig. 3. Crossing changes

Corollary 2.2. Let L., be the link illustrated in Fig. 1. If an oriented knot K
in S% is obtained from L, n by the fusion, then

wK) 2 (m—-1)(n—1).

Proof of Corollary 2.2. To apply Theorem 1.2, we construct a suitable surface in
53 x [0,1]. Let By, -, Bmin_1 be the surgery bands. Identifying £'N S x {t} with
this band surgery in S3 at time ¢ (¢ € [0,1]), we get a proper surface F' C S x [0, 1]
such that F = L, , U K. Here we consider that K lies in S® x {1} and L,y , in
S3 x {0}, and that Ly, , U By U+ U Byypn— lies in S x {1/2}. The surface Fis
homeomorophic to a surface which is obtained as S? minus m + n + 1 disjoint open
disks, so g(F) = 0.

By Theorem 1.2, we have

w(K) > (m—1)(n-1). ]
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Fig. 4. Fusion procedure to obtain 1052 from L33

3. The proof of Theorem 1.3

In this section, we prove Theorem 1.3 by using Corollary 2.2.

Proof of Theorem 1.3. (1) Fig. 2 shows that the knot 10;39 is obtained
from L33 by connecting the components with 5 bands. It implies that 10,39 is ob-
tained from L3 3 by a fusion.

By Corollary 2.2, we have

u(10139) > (3-1)(3-1) =4.

On the other hand, we observe that the knot 10339 can be unknotted by 4-crossing
changes. By changing the crossings which are marked as in Fig. 3, we obtain the triv-
ial knot. Therefore we conclude that u(10139) = 4.

(2) Similarly to (1), we can show that the knot 10;52 is obtained from L33 by
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Fig. 5. Changing the crossings of 10;¢;

a fusion as in Fig. 4. By Corollary 2.2, we have
u(10152) > (3 - 1)(3—-1) =4.

On the other hand, we observe that the knot 10152 can be unknotted by 4-crossing
changes. By changing the crossings which are marked as in Fig. 3, we obtain the triv-
ial knot. Therefore we conclude that 4(10;52) = 4. O

ReMArRk. By Theorem 1.3(1), it can be shown that the unknotting number of
10161 is 3. 1046 is illustrated in Fig. 5, and can be obtained from 10,39 by 1-
crossing change. We see that 10;6; cannot be unknotted by 2-crossing changes, be-
cause the unknotting number of 10;39 is 4. On the other hand, we observe that
the knot 10167 can be unknotted by 3-crossing changes. By changing the crossings
which are marked as in Fig. 5, we obtain the trivial knot. Therefore we conclude that
u(10161) = 3. The author was informed by Shimokawa that Tanaka [9] proved the re-
sult u(10161) = 3 using a result of Rudolph [8, pp. 56, Corollary] on a quasipositive
link. That is, our arguments also give an alternative proof of a result of Tanaka. The
author would like to thank Doctor Koya Shimokawa for his interest in this work.
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