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1. Introduction and the statement of main results

A link is a closed oriented 1-manifold smoothly embedded in the 3-sphere S3 and

a knot is a link with one component. Let K be a knot. The unknotting number u(K)
of K is the minimal number of crossing changes needed to create the trivial knot.

In the 1960s, Milnor [5] conjectured that the unknotting number of any algebraic

knot would be equal to the genus of the Milnor fiber. In the 1990s, Kronheimer and

Mrowka [2] [3] proved this conjecture using gauge theory. In particular, the unknotting

number of (p, g)-torus knot is ((p — l)(q — l))/2. In 1995, Auckly [1] gave an alter-

native proof of this conjecture for certain torus knots using Seiberg-Witten theory. In
this paper we shall compute unknotting numbers of certain knots using Seiberg-Witten
theory.

An argument explained in Auckly's lecture notes [1] is based on the following

theorem, which is the so-called generalized adjunction formula.

Theorem 1.1 (Kronheimer-Mrowka [4], Morgan-Szabό-Taubes [7]). Let X be a

smooth closed oriented four-manifold with dimH+(X, K) > \. If F <-ϊ X is a s-

moothly embedded closed oriented surface of genus g > 1 and K is a basic class of

X, then

2g-2> K(F) + F-F

where A B denotes the intersection number of A and B.

By extending the argument in [1], we obtain the following Theorem.

Theorem 1.2. Let K be an oriented knot in S3 x {1} and Lm,n the link in S3 x
{0} illustrated in Fig. 1. If there is a compact connected oriented surface F in S3 x

[0,1] such that OF = Lm,n U K, then

u(K) > (m - l)(n - 1) - g(F)
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Fig. 1. Link L

where g(F) denotes the genus of F.

By means of Theorem 1.2, we can determine the unknotting numbers of certain
knots. In particular, in the present paper, we show the following result.

Theorem 1.3. (1) The unknotting number of the knot
(2) The unknotting number of the knot 10i52 is 4.

is 4.

The unknotting numbers of WISQ and 10i52 had been known to be either 3 or 4,
but they had not been determined. The author was suggested by Kawauchi that this
problem might be solved by Theorem 1.2, and Theorem 1.3 is the answer to it.

ACKNOWLEDGEMENT. The author would like to thank Professor Akio Kawauchi
and Professor Toshitake Kohno for their useful advice. She also would
like to thank Professor Dave Aucky and Professor Lee Rudolph for helpful
communications .

2. The proof of Theorem 1.2 and its corollary

Before proving Theorem 1 .2, we shall review the definition of basic class.
Let X be a smooth closed oriented 4-manifold with b£(X) > 1. The Seiberg-

Witten invariant of X is an integer valued function which is defined on the set of
5pm c- structures over X, (cf. for example [4] [6] [10]). This invariant is considered
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as a map

n :H2(X;Z) /Torsion -» Z,

(cf. [1]). If n(K) Φ 0, then K is called a
To prove Theorem 1.2, we will use the following lemma;

Lemma 2.1 (Auckly [1]). 0 w a basic class for T4.

More generally, the work by Witten [10, pp. 786-789] implies that if X is a
Kahler-Einstein manifold, the canonical class of X is a basic class. Lemma 2.1 can
be also proved by this fact.

Auckly [1] presented a way of computing the unknotting number of (2,5)-torus
knot applying Theorem 1.1 and Lemma 2.1 to a suitable surface in T4. Theorem 1.2
is an extension of result in [1], and the argument in proof of Theorem 1.2 is almost
same as his argument.

Proof of Theorem 1.2. We consider T2 = [0, 1]2/ - and Γ4 = T2 x T2, where
~ is the equivalent relation defined by (0, t) ~ (l,ί) and (5,0) ~ (5,!). We will
construct a surface F embedded in T4.

We define E and J by

τn + 1 2 [ 1 n + Γ 2

+ 2'ra +

The four-disk J includes all self-intersections of E. Then d(E-J) = EΓ\dJ C dJ is
equivalent to Lm,n C 53. We suppose that K can be unknotted by u-crossing changes.
Then there is a surface F1 C D4 with genus u such that dF' = K C S3 = dD4.

We can regard dJ x [0,1] as a collar of dJ in J and 9J x {0} as dJ. We can
identify dJ x [0,1] with S3 x [0,1] since dJ = S3. We can consider that F lies in
dJ x [0,1] and FΓ\dJ = EΓ\dJ. We can identify the closure of J-(dJ x [0,1]) with
£>4. We can consider that F' lies in the closure of J-(dJx [0,1]) and FndJx {1} =
9F'. We define a surface F by

F- (E- J ) U F U F ' .

The genus of F is equal to ra -I- n + #(F) + w. The self-intersection number F F
is the same as E - F, because F is homologous to F. So F F = F E = 2mn.

We can apply Theorem 1.1 and Lemma 2.1 for F. Then we obtain the inequality

2(m + n + #(F) + u) - 2 > 0 + 2mn.
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Fig. 2. Fusion procedure to obtain from

Thus, we obtain the desired inequality u> (m — l ) (n- l )— g(F). D

To prove Theorem 1.3, we show a corollary of Theorem 1.2. In order to state it,

we shall review the definition of fusion procedure.
Let L be a //-component oriented link. Let B\, Bv be mutually disjoint orient-

ed bands in S3 such that Bi Π L — dBi Π L = OLI U αj, where αi, 0;^, , α^, o;̂  are
disjoint connected arcs. The closure of L U dBi U U dBv — a\ U α'x U U OLV U α',,

is also the link. We will write it by L'.

DEFINITION. If L' has the orientation compatible with the orientation of L —

U»=ι,...,ι/α»Uα< and Ut=i,...,i,(d#t-aiUa/i)» i' is called the link obtained from L by
the foam/ surgery along the bands BI, , Bv. Moreover if L1 has (μ—^)-components,
this transformation is called a fusion.
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Fig. 3. Crossing changes

Corollary 2.2. Let Lm,n be the link illustrated in Fig. I. If an oriented knot K

in S3 is obtained from !>m,n by the fusion, then

u(K) > (m-l)(n-l).

Proof of Corollary 2.2. To apply Theorem 1.2, we construct a suitable surface in

53 x [0,1]. Let BI, , Bm+n-ι be the surgery bands. Identifying FΓ\S3 x {t} with

this band surgery in S3 at time t (t G [0,1]), we get a proper surface F C S3 x [0,1]

such that dF = Lm,n U K. Here we consider that K lies in S3 x {1} and Lm,n in
S3 x {0}, and that Lm,n U Bl U U £m+n_ι lies in S3 x {1/2}. The surface F is

homeomorophic to a surface which is obtained as 52 minus m + n + 1 disjoint open

disks, so g(F) = 0.
By Theorem 1.2, we have

D
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Fig. 4. Fusion procedure to obtain 10i52 from L3?3

3. The proof of Theorem 1.3

In this section, we prove Theorem 1.3 by using Corollary 2.2.

Proof of Theorem 1.3. (1) Fig. 2 shows that the knot 10ι39 is obtained

from 1/3,3 by connecting the components with 5 bands. It implies that lOiag is ob-

tained from L3,3 by a fusion.

By Corollary 2.2, we have

On the other hand, we observe that the knot 10ι39 can be unknotted by 4-crossing

changes. By changing the crossings which are marked as in Fig. 3, we obtain the triv-

ial knot. Therefore we conclude that u(10ι3g) = 4.

(2) Similarly to (1), we can show that the knot 10i52 is obtained from L3,3 by
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Fig. 5. Changing the crossings of

a fusion as in Fig. 4. By Corollary 2.2, we have

u(10i52)>(3-l)(3-l)=4.

On the other hand, we observe that the knot 10i52 can be unknotted by 4-crossing
changes. By changing the crossings which are marked as in Fig. 3, we obtain the triv-

ial knot. Therefore we conclude that w(10i52) =4. D

REMARK. By Theorem 1.3(1), it can be shown that the unknotting number of
lOiei is 3. lOiei is illustrated in Fig. 5, and can be obtained from lOisg by 1-
crossing change. We see that 10i6i cannot be unknotted by 2-crossing changes, be-
cause the unknotting number of 10ι39 is 4. On the other hand, we observe that
the knot lOiei can be unknotted by 3-crossing changes. By changing the crossings
which are marked as in Fig. 5, we obtain the trivial knot. Therefore we conclude that
w(lθιeι) = 3. The author was informed by Shimokawa that Tanaka [9] proved the re-
sult u(lθιβι) = 3 using a result of Rudolph [8, pp. 56, Corollary] on a quasipositive
link. That is, our arguments also give an alternative proof of a result of Tanaka. The
author would like to thank Doctor Koya Shimokawa for his interest in this work.
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