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1. Introduction

The most familiar one-dimensional dynamical system is given by
(1.1) Xyry = f(x,) for n=0,

where f is a transformation from an interval into jtself. Usually f in (1.1) is
assumed to be of piecewise C?% Moreover if f is uniformly expanding the
asymptotic behavior of x, is investigated in detail (see [7], [8], and [14]). But
it will be more natural to consider that f may be changed for each %, by chance.
For example, let S be a measurable space, let {f,},cs be a family of transforma-
tions from the unit interval I into itself and let {X,};., be a sequence of S-valued
independent and identically distributed random variables on a probability space
(Q, &, P). The relation between x, and x,,, is given by

(1.2) Xr1 =[x, (%) 720

In this paper, we wili study the asymptotic behavior of x, given by (1.2).
Following S. Kakutani [5] and T. Ohno [9], we introduce the skew product
transformation T on IX Q satisfying

(13) Pr0j1°T”(x’ CD) =fX,,(w)fX,_1(w)'"fX,(w) X, n=0 ’

and deduce our problem to the investigation of the asymptotic behavior of T.
In section 5, we introduce an expanding condition (A.1) for the random

transformations fy ’s. Under this condition, similar to a single piecewise C?

uniformly expanding transformation, we can obtain the following results:

I. Let m denote the Lebesgue measure on I. Then T has a finite number
of (mXx P)-absolutely continuous ergodic probability measures such that any
(mX P)-absolutely continuous T-invariant g-additive finite set function can be
written as a linear combination of them. These ergodic measures have disjoint
supports, each of which is called an ergodic component of T.

II. Each ergodic component of T' can be decomposed into finitely many
exact components which are permuted cyclically by T
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III. If Sis a finite set, then each exact component is also a weak Bernoulli

one.

Our results generalize those of [4] (see section 8).

We will prove the above results by investigating the Perron-Frobenius
operator _L of T with respect to mX P and its eigenfunctions corresponding to
the eigenvalues of modulus 1. To do this, the results in the deterministic case
will play very important roles (for example, Lemma 5.4). From this point of
view in section 3 we will summarize the results in [7], [8], and [14] and prove
Wagner’s theorem [14] by using a different method from the original one.
This enable us to apply the results in the deterministic case to our random

iteration case.

In section 5, we will prove the main theorem and in section 6 we will give
some auxiliary results. Bernoulliness is to be discussed in section 7. In the
final section, we will give some examples and remarks.

2. Preliminaries

To begin with, we introduce the so-called Perron-Frobenius operator which
plays important roles in this article.

DeFiNiTION 2.1. Let (X, B, m) be a probability space and T be an m-
nonsingular transformation on X, namely it is measurable and for a measurable
set A, m(A)=0 implies m(T'4A)=0. We define the Perron-Frobenius operator
(P-F operator) Ly, of T with respect to m sa follows:

(2.1) Lrnd = 4 g ¢ dm for every pELY(m).
dm Jr7')

L7 » will often be denoted simply by L7 or _L,,.

DEerFINITION 2.2. For a measurable transformation 7' on a measurable
space (X, B), we define an operator Uy by

(2.2) Urp = ¢poT for each measurable function ¢ .

U, is called the operator induced by T.
Now we summarize some properties of P-F operator which are easily
verified. As usual, we write n times iteration of T by T".

Proposition 2.1. Let (X, B, m) be a probability space. Let T be an m-non-
singular transformation. Then, we have the following :
(1) The Perron-Frobenius operator L,,=_Lr ,, is characterized by the identity

2.3) g Upr b dm — S¢-.L’,,,¢ dm

for every p €L (m) and & L=(m).
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(2) L, is a positive linear operator on LY(m) with operator norm 1.
3) Forevery n=1,

2.4 L= L.
(4) For every p=L(m) and = L~(m),
(2.5) La(Uppep) =L ae. (m).

(5) For p=L¥m), L,p=¢ if and only if ¢m is T-invariant where dm is a
a-additive set function defined by (¢pm) (A):S ¢ dm.
4

Furthermore, let w be an m-absoultely continuous T-invariant probability meas-
ure with the density function h.
(6) For all & L(p),

(2.6) he L = Lo(hey) a.e. (m)

where Lu=_Lr pu.
(7) For all y€LYp),

(2.7) LU = ae. (p).
(8) Put B,=T " B, we have
(2.8) E.(v|B,) =Ur Liy ae. (p) foreach y&LY(u).
(9) Ly is the dual operator for the operator Uy on L*(p) (1= p<<oo).

Under the same notations in the above we have the following properties
about the eigenvalues of _£,, on L(m).

Proposition 2.2. (1) For A&C and & LY (), the following are equivalent :

(i) Upyr= Ay ae. (u),
(2.9) (i) L= X ae. (u) and |\ =1,
(i) Ln(Ph) = Mph ae. (m) and |N| =1.
(2) If p is maximal, namely any m-absolutely continuous T-invariant pro-

babiilty measure is p-absolutely continuous, then the set of all eigenvalues of modulus
1 of L on LY p) coincides with that of .L,, on L(m).

Proof. (1) From the formula (2.6), the equivalence of (ii) and (iii) is
obvious. So we prove the equivalence of (i) and (if). If Uppr=nyr for AEC
and Y€ LY(u), we have Y=L, Upp=ALuy a.e. (u) by (2.7) and

[ 1wl du =101 dn= 101 [ 19l di
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Thus Lur=2Ayr a.e. () and |A|=1. Conversely, if Luyp=2Ayr a.e. (u) and
In] =1, we have E.(y| B,)=N\"JroT" by (2.8) thus A"roT" converges to some
¥ in LY(p). It is easy to see YroT=AJr a.e. (z). We have to show that Y=+
.a.e. (u) but

[ 15—l da = | 1R T —Tpo 1) a
= S | fp—A"YpoT"| dy — 0 as n—>o0 .

Hence Upr=2A1r a.e. (p).
(2) Let A, and Au denote the set of all eigenvalues of modulus 1 of £, on

LY(m) and L. on LY(u) respectively. By (2.4) it is obvious that A, DAu. Sup-
pose that AEA,, and ¢ €LY(m) is an eigenfunction with S |¢| dm=1. Since L,

is a positive operator and preserves the value of integral, it is easy to see £, | ¢ |
=|¢| a.e. (m). Thus [¢p|m is T-invariant probability measure. From our as-
sumption {|¢| =0} D {h=0}, so p~~! makes sense and ¢ph~ 'L (). Therefore

we have
b Lu(ph) = Lup = A = Aph~ k.
Hence AEA,.
Now we consider one-dimensional dynamical systems.

DErFINITION 2.3. Let I be the unit interval. By 9 we denote the taotality
of transformations f of I satisfying:

(1) There is a partition 0=gy<a,<:-*<a;=1 of I such that for each /=
1,2, -+, k the restriction f|,_, .» of f to (a;_,, @;) is a function of class C? and
can be extended to the closed interval [a;_,, 4;] as a function of class C?%

(2) f satisfies the expanding condition

(2.11) d; = inf {| f'(x)|: x=%a;}>0.

ReMARK 2.1. In the above definition the partition 0=gy<a,< :-- <a,=1
can be chosen to be minimal in the sense of refinement among all partitions
satisfying (1). Unless otherwise stated, we always take the minimal partition,
so the points 0=a,<a;< +:» <a@;,=1 can uniquely determined by f.

RemArk 2.2.  From (2) of Definition 2.3, f is m-nonsingular and f|;_,..»
is strictly monotonic for each z.

DEFINITION 2.4. An element f of 9 is said to be uniformly expanding if
d;>1 and the totality of such transformations is denoted by 9,.

DerINITION 2.5. For fEe 9, set
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— 24~ - sup | (f | T p.a0)” |

2.11 B, = 2d7' max (a;—a;_;) "'+ max i-1:48

(&1 ) e (1T

where 0=g,<<a,<< -+ <a@,=1 is the minimal partition satisfying (1) of Definition
2.3.

3. Results in the deterministic case

In this section, we are concerned with a single transformation f in 9,.
Unless otherwise stated, 8 and m denote the topological Borel field on the unit
interval I and the Lebesgue measure respectively.

Theorem 3.1 (Li and Yorke [8]). Let f be in 9,. Then, there exists a
finite collection of sets Ly, Ly, -+, L; and a set of m-absolutely continuous f-invariant
probability measures {py, o, *+*, pi} Such that

(1) for each i=1, 2, ---, I L; is a finite union of closed intervals and fL;=L;;

(2) L;NL; contains at most a finite number of points when i=7;

(3) for each i, u(L;)=1 and the dynamical system (f, w;) is ergodic;

(4) if w is an m-absolutely continuous f-invariant o-additive finite set func-
tion, then it can be written as a linear combination of u;'s;

(5) let D=I\ LIJ L;, then DOf~* D> -+ and m(f "D)—0 (n—c0).

Theorem 3.2 (Wagner [14]). Let f be in 9),, and p be an m-absolutely con-

tinuous ergodic f-invariant probability measure. Put L= {%‘i> 0}. Then, there
m

is an integer N>0 and a collection of disjoint measurable subsets Ly, L,, ++-, Ly_,
of L such that

(1) fLi=Ljn, (0=j<N—1) and fLy_,=L;

(2) for each j=0, 1, ---, N—1, the dynamical system (f¥, w;) is exact, where
Ibi—'——Nl"lLr

ReMArk 3.1. Bowen proved that (f¥, u;) is weakly Bernoulli in [1].

In the sequel, we will give a poof of Theorem 3.2 by investigating the
eigenfunctions of P-F operator L, for the following two reasons. First,
Wagner’s method is rather complicated ; for example, he used the Rohlin criterion
(see [12]). The second reason is that our method employed here is also usefull
in studying the ergodic behavior of the skew product transformation T as one
sees in the later sections.

For a function ¢ from I into C, let \~/¢> denote the total variation of ¢. For
¢ €LY (m) we define

V¢ = inf {\/&:  is any version of ¢}
and BV={¢pELi(m): Vp<oo}.
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Lemma 3.1. (1) Let f belongs to 9. Then, for each ¢ EBV, we have
(3.1) VL d=20,V 4By llpllsm -

where d; and 3, are those defined in section 2 and o y=d5’.
(2) In addition, if f is in 9,, then there is a positive constant C such that

(3.2) lim sup VL}w $=C ||ll,n for every ¢EBV .

3) IffeD,, then {L% m P}n-1 is relatively compact in L(m) for every ¢ €
LY(m).

Proof. See [7].

Lemma 3.2. Letf bein 9, Let A be the set of all eigenvalues of L=
Ls m with modulus 1, and let E(\) denote the eigenspace belonging to NEA. Then,
(1) 1eA.
(2) i NEA, then pEE(\) implies that
(3.3) Vo=Cllls,n

where C is the constant which appeared in the inequality (3.2).
(3) dim E(\)<oo if ANEA.
4) #A<oo.
Proof. (1) By (3) in Lemma 3.1, we can use the Kakutani-Yosida Theo-
rem [6]. Hence, for each ¢ €L¥(m), the sequence {l ”2_1 L} <;b}°° | converges
n i=0 n=

in LY(m). 'The limit function ¢* has the following properties:
.L’,¢*=¢*and§¢*dm=$¢dm.

Thus 1€A.

(2) Since BV is dense in L'(m), we can choose ¢,EBV such that ||¢p,—
bllim= 1 for every p. Pick a sequence {n;}.; CN with n,<<n;,, and A" —1 (i—
o). By (3.2) and Helley’s theorem, we can find a subsequence {n/} 7.: C {n;} 71
with n}<n/,; and ¢,EBV such that

”&p_-f}”,j Pollm—=0  (f—>o0) and VE,=C [I¢yll1m -
It is easy to see that ”&;p'—(ll-)lll,m=%' Again, we can apply Helley’s theorem to

the sequence {$,};-1. Without loss of generality, we may assume that ¢, con-
verges to some EBV with VH=C ||$||,.., in L(m). It is obvious that f=¢.

(3) From the fact that just has been proved above, any bounded set in E(\)
is relatively compact in L'(m). Therefore, dim E(A)<<co.
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(4) Suppose that {\,};_; is an infinite sequence of distinct eigenvalues of
modulus 1. Let ¢, be an eigenfunction belonging to A, for each n. Let F, be
the linear span of ¢y, ¢,, =+, ¢, for #=1 and put Fp={0}. It is obvious that
L;F,=F,and F,&F,,, foralln=0. By Riesz’ lemma, there exists a {,EF,

such that |||, ,=1 and ||1/f,,—¢||1,,,,g% for any v€F,_, forn=1,2,---. Thus
we can easily show that
XY LY by—Ar,EF,_, for n=1,2, ---, and for any N=1.
Therefore, if p>g, then
(34) N3 LF A= LF rllsm
= XY LT Yp—Arptrs =2 LY Yol
g%, for all N, MEN.

On the other hand, since y»,EBV so
li}rn sup V(M LY Y, )<Cforallp.

Hence, we can choose a sequence {V,}»-; such that N,<N,,, and N=N, implies
that V(A LY +r,)<C+1. By Helley’s theorem, {A)» L¥»,}i., is relatively
compact in L'(m). But this contradicts (3.4). The proof of Lemma 3.2 is now
complete.

Here we give two general properties of ergodic transformations.

Proposition 3.1. Let (T, p) be an ergodic dynamical system such that the set
of all eigenvalues of Uy is writlen as {1, \, ++-, AN} where N is a primitive N-th
root of 1. Then the eigenfunction «Jr corresponding to \ has the following form up to
constani multiplication.

3.5 X)) =SIN1(x) .
(3.5) ORI

Proof. Let 4 be an eigenfunction corresponding to A. Since (T, u) is
ergodic we may assume that |y»|=1. Thus we can write Jr(x)=€"* where

0=a(x)<1 and a(Tx)—a(s)}+ - mod 1. Put Zi={ L <a(w)<* 1} fori=0, 1,
-+, N—1. Then Ly, L, ---, Ly_, are disjoint, T"* L,;,,=L; (0<i<N—1) and
T-'Ly=Ly_,. Define a function y» by J(x)= ﬁlx" 1.,(x). Obviously Uy yr(x)
=MJ(x). By the ergodicity of (T, u), there is a constant ¢ such that J(x)=cr(x).

Proposition 3.2. Let (T, u) be a dynamical system where p is T-invariant.
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Assume that { L} -1 s relatively compact in L(u) for any yELYu). Then, if
(T, p) is weakly mixing, it is exact and

(3.6) 1L = ¥ dull om0 (1>e0) for amy L)

Proof. Let (T, p) be weakly mixing. There is a subset J of N with density
zero such that

[ Lruvin= (Ut dusu(B) [wdu (i>eo,ned),
for any €LY w) and for any BESB (see [10, p. 70]). Thus {L% u},ena

converges weakly to S yr dp as n—>oco. By our assumption {_L} Y}, is relatively

compact in L(x) so we may assume that

[ 1Lt v dul du=s0 (r>o0, nec3).
Put .@”=ﬁ T-* B, we have

S IEM(\W-@M)—g Vrdu| du
= [ 181 8)—Buw 1 B0)) ds
+ 181 B) [ v dul .

The first term tend to 0 as #—oco by Doob’s theorem. The second term coin-

cides with S | L0 x/f—g W du| dp by (2.8). This implies that

| Bo) = [ duand [ 1. L8 9= v dul dum0 (n>co).
Now we can prove Theorem 3.2.

Proof of Theorem 3.2. It is enough to show that the conclusions are
valid if the word “exact” in the statmeent (2) is replaced by ‘“weakly mixing”
because of Proposition 3.2. Let G be the set of all eigenvalues of the operator
Us: LY (p)—L*w). Then from (2.9) and (4) of Lemma 3.2 G is a finite sub-
group of the unit circle S*. Therefore, there is a positive integer NV and a
primitive N-th root A of 1 with G={1, A, .-, A¥"'}. Let 4 be a eigenfunction
of U, corresponding to A. From Proposition 3.1, we may assume that

(@) =2 N 1),

where Ly={yr=2\"} (1) i=0, 1, -+, N—1 and fL,=L,,, (0<i<N—2), fLy_,=
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L, We will prove that (f¥, u,) is ergodic where gy=N p|;. If a measurable
set ACL, satisfies f¥A=A and p,(4)>0, then {f7A}}=} is a collection of dis-

joint sets and l‘VL_J:f"A is f-invariant. Since (f, p) is ergodic, we have u( jg:f i4)
=1. Consequently p,(A)=]%. Thus (f¥, w,) is ergodic.

To prove weak mixing property of (f¥, p,), it is enough to show that the
operator U &: L*pe)—>L'(u,) has a unique eigenvalue 1. If not, since f¥ also
belongs to 9),, we can apply the same argument as above to f¥ and p,. There-
fore, there is an integer M =2 and a measurable set L,, such that { L, } %=}
are mutually disjoint and f¥™L, =Ly, So we see that {f7L, ;} Y25 are mutually

disjoint and ,u,(x lﬁlfiLo_o):L Define a function X by
3=0
X(x) =«! if xEfiLy,,

where « is a primitive NM-th root of 1. Then X&€L¥u) and U, X=«X. This
contradicts the fact G={1, A, -+-, A¥"1}.

4. Random iteration and skew product transformation

From now on, we are concerned with the random iteration of transformations.
Our formulation is due to [5]. Let S be a set with Borel structure, {f},s be a
family of transformations from the unit interval [ into itself. Let X, X,, -+ be
a sequence of S-valued random variables defined on a probability space (Q, &, P).

DrrINITION 4.1. For each x&1I and 0 €0, set
xo =X
4.1) Xy = fx,)(%n-1) for n=1.

The sequence {x,=x,(¥, ®)}s=o is called the random orbit of x determined by
the random iteration fy, fx,_, *** fx, (simply random orbit of x).

We will study the ergodic properties of the random orbit x, under the
following

Assumptions. (1) S is a eomplete separable metric space with the topol-
ogical Borel field B(S) and 7 is a probability measure on (S, B(S)).
(2) The sequence of random variables obtained as follows :

Q=S89 =93Q),P=r", and
X,(0) = o, for 0wEQ

where o, is the n-th coordinate of w, that is, {X,}n-1 is a sequence of independent
and identically n-distributed rnadom variables.
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(3) The family {f.}cs is included in D and the map (s, x)—>f, x is B(SXI)|
B(I)-measurable.

In order to investigate the behavior of the random orbit we consider the
following skew product transformation 7' and deduce our problems to the study
of its ergodic properties.

DErFINITION 4.2. Define a transformation T': IX Q—IXQ by
4.2) I(x, ») = (fxl(m)(x)’ ow) for (v, 0)EIXQ,
where g: Q—Q is the shift transformation, that is, (00),=wu+1-

Since f,’s are all m-nonsingular and P is o-invariant 7' becomes (m X P)-
nonsingular. This fact enable us to consider the Perron-Frobenius operator of
T with respect to mX P.

Let .L=_Lr sxp be the Perron-Frobenius operator of T, and L;=_L; »
for every s€S.

Lemma 4.1. (1) For ¢ =L¥m), we can choose a B(S" x I)-measurable
function \p(s,, s3, **+, 5,) which is a version of (L, Ly, -+ L, ¢)(x). Moreover, if
b EBV we can choose (s, 3, **+, $,) so that

(43) Vr(sn 3 01 80) = VLo Loy Ly & -
() If ®ESL (mxP) has the form
B, 0) = $(x) YXi(o), Xa), - Xiw))
where ¢ & L (m) and & L=(x*), then for n=k, we have
(#4) (L D) (5 @)= | wls 5 (L, L, 8) () d" (5,5
ace. (mx P), that is, we can regard L'® as an element in LX(m).

Proof. We only prove (2). For any A€ B(I) and TEZF, we have
[ rodmap
axr

® dm dP

S T-"(AXT)
= [ 60 ¥(X), -+ Xu(@) Ly fry) 1n(o”0) dm dP

= P(T) | $(®) Wlss > ) L, = oy %) (@) d*(5y -, 52)

(since ¢~ "T" is (X, 41(@), X,+2(@), **+)-measurable)

— P(T) o 50 frtoegia H) dm(s) dnt(s, - )
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=P(T) S A (S1 *** S) (L (L, -+ L, d) () dm(x)) dr"(sy, -, 5,)
= SAxp (S 1]/‘(81, ooy Sk) (-Ks,, oo -£s1 4’) (x)) dn'”(sp sy S,,) dm dP
This proves (4.4).

5. The main theorem
For {f.}:ecsC9D put
a(s) = d?
and

BN(‘TI; S2 *** sN) = B.ﬂlf.rz"'f:_zv ’

where d;, and By, f,,-j, are those which were defined in section 2.
We set the following assumptions:

(A1) acLi(z)and S log & dn<0.
(A.2) For some N>(—log 2) (S log o dm)™! (ifg log a dm = —oo we regard
the right hand side as 0), By(sy, 55, **+, sy) EL}=") and By(s) € LY(z).

Then we have:

Theorem 5.1. Assume (A.1) and (A.2). Then, there exist finitely many
(m X P)-absolutely continuous T-invariant probability measures Qy, O, +++, O, with
the following properties :

(i) (1) For eachi=1,2, -+, n, the dynamical system (T, Q;) is ergodic.

(2) Any (mXx P)-absolutely continuous T-invariant o-additive finite set
function can be represented as a linear combination of Q,’s.

(3) For each i=1, 2, --+, n, the support of Q; has the form A;Xx Q where
A, B().

(ii) (4) For each i=1,2, ---, n, there is an integer N; and a collection of sets
Aoy Aiy o0y Ai ni-1EB(I) such that setting L; j=A; ;X Q we have TL; ;=L; ;,
(0=j<N;—1)and TL;.y,-y;=L;,.

(5) The dynamical system (T'V:, Q; ;) is exact, where Q; ;=N,; Q;|,, ;-

In the following we give the proof of Theorem 5.1. We put
(5.1) Q, = {a(X)) a(Xy)-a(X,)>7"} for +>0.

Lemma 5.1. Assume (A.1). Then for any v>exp (S log a dr), there exists
a positive constant C=0O() such that

(5.2) P(Q,)<Ce"7.
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Proof. In Ibragimov and Linnik [3, Lemma 12.2.1], it is shown that if
Y, Y,, -+ is a sequence of independent and identically distributed random var-

iables with E[Y,]=0, E[Y%]=c? then for any O<')’<% and p(z) which is
strictly increasing and goes to oo with #, there exist constants C,, C,>>0 such that

P{Y\+ Y, + -+ Y, =02 p(n) ' o} S C| exp [—Cy(n” p(n)™)7] .

We apply this to (—2)Vlog a'(X,,)—S (—?t)Vlog a dr, where t is positive and
chosen to satisfy log ’T>S (—t)Vlog a dz. Then we have

P(Q,)=P{(a(X)Ve™) (a(X)Ve™) - (a(X,) Ve )21}
<P{3] (—1)Vlog a(X,.)—S (—1)Vlog a dr)

=n (log T_g (—t)Vlog a dr)} .
From this we can easily prove the lemma.

By Lemma 4.1, L] 1, is to be an operator from LY(m) into L'(m). For
the simplicity we also write it by L.

Lemma 5.2 (basic). If (A.1) and (A.2) are saiisfied, then for each p =N, there
exist two sequences of linear operators {UP} ., and {SP} 5.1 from LY(m) into LY (m)
such that

(1) for every nEN,

(5.3) L= UP+4-SP ;
(2) there is a positive constant K which is independent of p with
(5.4) lim sup VUL $<K? lipllm i SEBV;

(3) there is a positive constant C which is independent of p and n with
(5.5) ISPlw=C~p 7.
Proof. Take N in (A.2) and choose >0 satisfying exp [S log a dr]<7<
NV% Pat ,= 10 where 0, is defined by (5.1). Then from (52) 7,=P
>

(Q\Q,)<C+/p e 7 for some positive constant independent of p. For fixed p
€N define

UP ¢ = Lx, Lz, Lz, $ P
»
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and
® g —
SP ¢ = L\ap Ly, Ly, Lx, ¢ dP
for pLi(m).
Then obviously L"¢=U¢ $+SP ¢ and
» -
1S9 gllm = [ dml . Lr, Lr, L, 6 dP]
< fam | 1Ly Lo Lrgl aP
»
é ‘Yp ”¢“1,m .

So statement (1) and (3) have been proved.

Then we have to show (2). Without loss of generality we may assume
that ||¢||,,=1. We can write p=qN-+r (0=r<N) and for n= p+1, n=kN-j
(0=<j<N). Applying the inequality (3.1) again and again we have for each v E
Q,

V—£w1 -sz oo ‘Ew[.N+j ¢’ é 2k a(wl)“ .a(wk-’v) V‘L:%Ni-l“ "Eﬁ’ﬁN-kj ¢
-1,
+§) 2° )+ win) Br(@in+1s s ©a+0w) -
From (A.1) and (A.2), 2°'a(w,) *** @(w;y)<(27¥) if i>qg. Consequently we have

2 Nyq___
(5.6) lim sup V UP ¢ =< 1 ( (S a dr)V)1—1
e T\ 1—-27¥ .
2(§ a dr)¥—1

SBN dn¥ .

Lemma 5.3. If (A.1) and (A.2) are satisfied, then {L"$}-. is relatively
compact in LmXxP), for any ® € L\(mXxP). In addition if the limit ®*=
lim L @ exists for some {n;}7-1CN with n;<n;, in L(mX P) then ®*(x, )=

ipoo

p*(x)a.e. (P) for p* € L(m).

Proof. First we prove that {_L" ¢}, is relatively compact in L'(m) for ¢ €
BV. Let {n;}7-1 be a sequence of natural numbers with #,<<n;,,. Because of
(5.4) and the diagonal method we can choose a subsequence {n/} 7., with nj<<n},,
such that {U{), ¢}7.. is convergent sequence in L'(m) for fixed p. Then we have

1L $—L Dllvm
< (1L ¢— UL $llym
UL $—UL) $llsm
UL =L il m
<29, 41 UL, $— UL llym -
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Therefore {-L*/ $}7., is a Cauchy sequence in L'(m). This proves that the
statement is valid for ¢ BV. Thus it is valid for ¢ €L'(m) since L is con-
tractive. From the formula (4.4) we can easily see that the statements are still
valid for the function ® € LY(m X P) with the form

D(x, w) = P(x) Y(Xy(o), *++, Xi(w)) where ¢ =LYm) and & L>(z*) .

Since the linear combinations of such functions are dense in L(m X P), the state-
ments are valid for any ® &L (m x P).

Proposition 5.1. Assume (A.1) and (A.2). Then for eack N\EC with |\ |=
1 and ® LY (m X P), the sequence {% gx" L CID}::=1 is convergent in LY(mX P).
And the limit ®* has the following :
(5.7) D*e LY (m) .
(5.8) LP* =\ D*.

In the case of A=1, we have
(5.9) S @ d(mx P) = S O* dm .

In particular if ®=0 and S @ d(mx P)>0, (D*m)X P is an (mX P)-absolutely
continuous T-invariant measure.

Proof. From Lemma 5.3, we can apply the Kakutani-Yosida Theorem [6,
Theorem 1] to L. So we get the above.

Remark 5.1.  If we assume (A.1") instead of (A.1)
(A1) g adr<l.

Then K? in (5.4) can be replaced by a constant which is independent of p. Thus
there is a constant C>0 with

(5.10) lilflsupV.E"cﬁéCHqSHm forall ¢=BV.

From this one can get the smae results as Lemma 3.1 and Lemma 3.2 when

L m is replaced by L.

Put

£
U
-

]
o

and
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By = {TeBIXQ): T T =T (Q)} .

To prove the ergodic decomposition and weakly mixing one, we need the
following:

Lemma 5.4 (basic). (1) If T€B,.,, there is a measurable set A {h>0}
such that T=A X Q(mX P).

(2) If AXQE By, then for almost all s (z). f'AD A(m).

() If YeLXQ) and Uy ¥ =\, then for almost all 5 (z),¥ of =AW ().

4) Put E={s: f,€9,}, Then n(E)>0.

(5) If AXQEB,y,,, then A contains at least one ergodic component of f, for
almost all s€E. Hence B, is a finite set.

Proof. (1) From the formula (2.5), if '€ %;,, we have
L(1pk) = L(poTh) = 1p.Lh = 1k .

So 1% is independent of w.
(2) Itis easy tosee T"HAXQ)DAXQmXP). Thus

0= Q(T-(AXQ)—0(Ax Q)
— g | 1a(f s %) —La(%) | 4O
= S 114(f, %) —14(x) | dR(x) dr(s) .

So i A=A (i) for almost all s (z). Hence f5* AD A(m) for almost all s (z).

(3) If U, ¥=A¥, then L(¥h)=ATk from (2.9). Thus Wk is inde-
pendent of o, so we have (3).

(4) Since S log @ dn<0, (E)>0.

(5) Let S, be the measurable set such that 7(S;)=1 and s&.S, implies that
f1 AD A(m) for AC {h>0} with AX QE By, If s€ENS,, f, has the ergodic
components L{, L, -+, LY from Theorem 3.1. From (5) in Theorem 3.1
m(ANLY)>0 for some j=1, 2, -, n. f7' ADA(m) implies f7'(ANL§)D
ANLY(w;). Thus pi(ANLY)=1 from the ergodicity of f,, Hence 4D L{(m).

Proof of Theorem 5.1. We first prove the assertions (1) and (3) of (i). By
Lemma 5.4, we may asssume

QinVZU({AiXQ: 7'=17 2) °tty n})’ where L'] A,:{ﬁ>0}(m) and m(A, nA,)ZO if
i=1
7. Set ﬁ,-=ii~(A,-)‘1 ZlAi, Fi=h;mand Q;=p;x P. Then it is clear that _L%;
=h; and (T, Q,) is ergodic.
The property (2) of (i) is proved as follows. Let O be any (m X P)-ab-

solutely continuous T-invariant g-additive set function. Then it is easy to
check that O is Q-absolutely continuous and Q| 4;xq is also T-invariant for every
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1=1,2, «.-;n. Since (T, Q;)’s are ergodic, we have
Ol 4xa=0(4;XQ) Q; i==1,2, ---,n. Hence

0 =31 0(4;x2) ;.

Now we prove the statement (ii). For the sake of simplicity we assume that
(T, Q) is ergodic. By (3) in Lemma 5.4, there is an s such that any eigenvalue of
U; is that of U,,. Thus U has only a finite number of eigenvalues and so the
totality of all eigenvalues is {1, A, -+, A¥ "1}, where \ is a primitive N-th root of
1. Let ¥ be an eigenfunction of U, on LY{Q) belonging to A. From Proposi-

N~
tion 3.1, we can write W:le‘ 1;,, where L;={¥=\’}. So we can see that
i=0
TL;=L;,, 0=i<N—1,TLy_,=L, and for each i, (T?, Q;) is weakly mixing in
the same manner as in the proof of Theorem 3.2. From Proposition 3.2, (T'%, Q)
is exact.

6. Auxiliary results

In this section we always assume (A.1) and (A.2) and use the same nota-

tions as before.
Analogously to Theorem 3.1, (5) we have

Proposition 6.1. Let L= {;>0} and D=IxQ\L. Then T~* DCD(mx P)
and (m X P) (T*D)—0 (n—> o).
Proof. It is obvious that 7-!'DCD. And we have
lim L ¥ (mx P) (T-D)
nyo P i=
. 1 n-1 .
—lim LS S 1p0T* d(mx P)
fyo0 33 i=0 JD
~ 1im_1.-"2"’S L1, d(mx P)
ny 1 i=0JD
. 1 n-t .
<lm1S S L1 dmx P)
nyo g i=0 JD
— SD i dmx P)
=0

From the above Proposition one can see that /xQ=LUD is the Hopf
decomposition for the Markov operator U, (see [2]). So from the Chacon-
Ornstein Theorem. we have

Corollary. For each ® =L (mx P), 1 ”Z-}I.L’ ' ® converges almost everywhere
ary - £1 "y
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(mXx P).
The operator L has the following spectral decomposition.

Proposition 6.2. Let A be the set of all eigenvalues of L on L*(mX P) with
modulus 1. Let E(\) be the eigenspace belonging to N. Then:

(1) 1leA.

(2) #FA<oo.

(3) Put A={l1=ny Ny, =, N\i}.  Then E(\;) CLY(m) and dim E(\;)< oo for
everp i=1,2, -+, L

(4) For every nEN, we have

(6.1) L= i N PAHTT,

where P; is projection onto the eigenspace, namely, P; P;=P; P;=0 (i%j), P; P;
=P; and P; TI=T1P;=O0.

(5) For each i=1, 2, -+, I, \; is a root of 1.

(6) For each D=L (mXP).

(6.2) 177" @lymxy—>0  (n—>00).

Proof. (1), (2), and (4) are easy consequences of the Kakutani-Yosida
Theorem and Proposition 5.1. For (3) we have only to show that dim E(\;)<
oo, But if we consider T%: instead of T where AYi=1, we can deduce the
problem to the case A;=1. It remains to prove (6.2). Without loss of gener-
ality, we may assume that (T, Q) is ergodic. Let Ly, Ly, -+, Ly_, be the exact
components of 7% and let L and D be the sets stated in Proposition 6.1. For
de L (m X P) we have

LD =1, LD+, LD,
The first term tends to 0 by Proposition 6.1. Next using (2.5) and (2.6) we have
1, L @ = L(1,0T™N D)
= SV L1, T Dl

I

N -1 N-1
S by (LE@h)— | ki dQ)+ B, | eny g,
j=o Lj j=o Lj

where h,=N £/, ; and Q=N o] r;» The last term corresponds to the projec-
tions. From Proposition 3.2,

h,.(.c"g;(@h;l)—g ®h;' dQ,)—0 in L(mx P) as n—>oco .

This completes the proof.
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7. Bernoulliness

Assume that the S is a finite set and assumption (A.1) is satisfied. We have
proved the existence of (mXP)-absolutely continuous 7-invariant probability
measures. Let O be one of such measures. Here we have:

Theorem 7.1. If the dynamical system (T,Q) is weakly maixing, then it is
weakly Bernoulls.

To prove the above we need some lemmas.

Lemma 7.1. Let ¢ be a nonnegative function of bounded variation. If
(A.1) and (A.2) are satisfied, any limit point ¢p* of the sequence {L" ¢}-. has the
following .

For any + with 0<7<1, there are positive cosntants K, K,, K, and p with
0<p<1 such that

[, % dm<K, o'+ K "

for every B& B(I) with m(B)<7*.
Proof. Let ¢* be a limit point of {L"¢};.;. From Lemma 5.2, we have
o* = ¢+ ¢F* for each pEN,
where ¢} and ¢} are functions with

V¢F <K?|p|l,n forsome K and
165 n=C D €7 |pllsm-

Moreover, we may assume that
163l m<C’ K? for some constant C’ .
Indeed, let 4, be a version of ¢} with
Vi, = V5 h

We may assume that +J, converges to ¢* almost everywhere as p goes to oo. Sc
there is an &1 such that {yr,(x)} 3., is 2 bounded sequence. Therefore

ll¢i'fll|»,mésgp [9p() | +K2| Bl 1, -

Hence we have
¥ o w=C'K?.

For a given 7 with 0<7<<1 choose a natural number L such that 7t<K™!
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and put p=7%/K. Then we have
1
S ¢*dm = S o dm‘l“g b rdm
B B B ;

<C' p”+C /\/i e-[n/L]

= L
whenever m(B)<<7".

From now on, put

S= {1’2) ) q}
1
»= 7

and
ps = n({s})>0 for each s&S.

Let {I;}7., be the partition of I into intervals which is determined by
{aSszo f‘:-o S=1, 2) 5 q.

Put E = {I;x[s]: 1=5i<r, 1=<s5<q}
and
o
g = v T-E.
If B is an atom in &), then we can write B=A X T, where 4 has the form
I‘_o anTol I"l n - nf—}i)lfjfll ;1;—1Iizv
and T is a cylinder set having the form
T = [oJju =5 Jn] -

Hence we have the following:

Lemma 7.2. & is a generator for (T,Q).

The next lemma can be proved in the same way as Lemma 1 in [1].

Lemma 7.3. Let AXT be an atom in EY*Y. If AN {a§}re, {ei=¢, then
T(AxT)eE].

Lemma 7.4. Let heLYm) be the density function of Q. Given £>0
there exists g, = BV with

0=g.=h
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and
S (h—g.) dm<c .
Proof. We may assume that h=’l‘i-2} L"1. Taking ¢=1 in (5.3) and
(5.4) we have
L'1=UP1+4+8SP1
and

limsup V UP 1<K?.
n > oo
By Helley’s theorem we may assume that }im U 1=g, exists. Then we see

0=g,=kh

and
1h—gll, w<C~p ¢*? by (5.5).

Lemma 7.5 and Lemma 7.6 correspond to Lemma 3.2 and Lemma 3.3 in
[11] respectively.

Lemma 7.5. Given >0, there is an integer Ny=N(€) and a positive

constant H, satisfying :
If N= N, then there exist collections of atoms oty CEY and oy CEY such that

(1) QUan>1—(Ho—;+6)

and

1

NZ’

where Q(U a) denotes the total Q-measure of all atoms contained in the collection o.
(2) AxTeayUal implies T CQy, where Qy is the set defined by (5.1) for

some fixed NV%>T> exp (S log «a dr).

3) |&x) 1‘
© &)
Piy(%)__ 1
¢io(y)
where g, is the function which appeared in Lemma 7.4.

O(Uaf)>1—H,

S-% for every x,yE A, whenever AXT'Eay and

= —]\272_ for every x, yE A, whenever AXT €af and T'C[iy],

Proof. Write g for g, Let 0<<é<1. Foracylinder I'=[4, ,, +*+, iy] CQy
consider the following exhaustive list of possibility for an atom A X T"'€&Y.
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(1) g(x)g% for all x& 4 and g(y)>e€’g(2) for some y, 2 4.
(i) g(x)<—g— and g(y) g%a for some x, ye 4.
(i) g(x)<%8 for all s 4.
(iv) g(x) g% for all x4 and g(y)<e’g(2) for all y, zE 4.

2
The variation of g over an A X T satisfying (i) and (ii) is at least %— The
total number of such atoms 4 X T' is at most %V g. 'Thus the total Q-measure

of all atoms satisfying (i) and (ii) is at most
4 —H
< H
ICEQ: P EA:S hdm= =% Vg H, e B2Y'N

for some constants H,; and H, by Lemma 7.1.

The total O-measure of all atoms satisfying (iii) is at most %8—{—8. Therefore

the total Q-measure of all atoms A X T with I'CQy satisfying (i), (ii) or (iii) is at
most

%Vg H, e"HzVF—I——i—S—}—E .

Next put C’,=§If§| du, where p=hm. For each s and T,C[s]NQy con-
sider the following exhaustive list again:

@1y ¢,(x)g% for all k€4 and ¢,(y)>e’p,(2) for some y, zE 4.
(i)’ ¢,(x)<% and ¢,(y)g%8 for some x, ye 4.
(iii)’ ,(x)<ia for all x 4.

@ivy o, (x)Z——- for all x4 and ¢(y)=e’p,(2) for all y, 2z 4.
The variation of ¢ over an A X I’ satisfying (i)’ and (ii)’ is at least % The
total number of such atoms 4 X T, is at most %V ¢,. Thus the total O-measure

of all atoms satisfying (i)’ and (ii)’ is at most

%qus H, e 2"V p .

The total Q-measure of all atoms satisfying (iii)’ is at most %B C,p,. Therefore
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the total O-measure of all atoms 4 X T with I'C [s] N Q and satisfying (i), (ii)’ or
(iii)’ for some s is at most

i Hl \/N— e 5N . é VSbsPs‘l‘—i“s g C:ps .

& =1
Put
1
=
ay = {AXTe&l: TCQy and (iv) holds} and
ay = {AxXTe&): TcQy and (iv)’ holds for all s&€.S} .
If N is large enough
1
o(u OZN)>1—<H0 W'f‘e)
o(u az’v)>1—Ho%

for some H, and (3) holds.
Given £€>0 put Q,=g, m X P we have:

Lemma 7.6 (basic). Given 7>>0 there exists an integer M=M(n)=DM(E, )
such that for each m=0, one can find a collection 81, CES™ with

(1) THAXT)EEY for any AXTELRyim

(2) O(U Buam)>1—(26+).

@) |2I"D) __ OD) |, QD)

O(T™(AXT))  QAXT) Q.(4XxT)

for any measurable D CAXT E By1m whenever Qy(AXT)>0 and Q(T™(AXT))
>0.

Proof. By Lemma 7.3 one can see that (1) will hold for 4 X T unless at least
one of the sets 4, f; 4, -+, f; _ - f;, A intersects {8} ino oy if T Cligy 2y, -+
im-1]- For 0<k=m, the total Q-measure of all atoms A x 'e&{*"* satisfying
Aan {a‘,—’)}l;’,o, ‘1% ¢ and T CQypy -y is at most 2(r+1)H, e~2"¥+m=k since m(A4) <
TM+m=k  The total Q-measure of all atoms 4 X Q€& * with T’ Q4 p— is at
most Ce™"¥+m=k, Since f;, -+ f;; AX T is a subset of some atom in &F~* if
AxT e+ and since Q is T-invariant, the total Q-measure of all atoms AX T
&+ with THA X T)e&* ™ * for all 0<k=<m is at least

1—2(r+1) H, S e~ %5 —C' /M e™¥ 7 .
=1

Put
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B = {AXTEay.p: THAXT)EE™* 0<k=m},
ay = {AXTEE: AxTEay},
ay = {AXTet): AxTe&al},

and put

B'=T"ayUdyem

= {B: B=T"C with C€a, or BEaysn} ,
Bl’e = T-mtk allw+m

= {T""** B: BE@y,u} ,
Busm = {BEB: B&: B} for all 0=k<m and B& S’} .

Then we have

O(U Busm)>1—2(r+1) H,"g‘,xe"’z‘/ﬂ—-—C’ VMe "

1 1
—2e—m, L g1
°w T (M+my
—H,3 L.
M 1

Now we have only to show (3). Assume that AXTEByrim I'=[lo, %, -,
Iyrtm)y Qe(AXT)>0 and Q(T™(AXT))>0. In the first place, consider the case
D=AxT where ACA and I'CT is a cylinder set.

Writing g for g, and set v=gm, we have

v(f'.m_l ...f’,o A)
= i f, AEE) dm
= [, @) 8(w) dm,
where p(x) =g(’fi"’" - fay x)gl-((xf)i"_l = fi) ()
So

p®)  gfipey i %) 8() mmt bif(fiy  fio ¥)
2()  &fioy  [19) 8(%) i bif(fiy - i %)

Since  Burim SUuysm N T "y N T sy, we have

& fopy = i ®) 2
PO —1‘<Mz’
g(x) 1 ' < 2 ,
() (M+-m)
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and

biy(fiy = f1, ) 2
¢:,(f.',j fom) )< (M—+m—j)* -

Because lim I (1:]:%) =1,
n

My M

(%) g l<770 if M is sufficiently large.
2(9)

Thus we have
O(T™(AXTY))
Q. (T™AXT))
_ Ufipy iy A) P(a™T)
= y(fim_1 ...fio A) P(o-"'I‘)
_ Wfipey o fi A) AT
= W(figey  fio A) P(T)
B SZ P(x) g(x) dm P(T")
| 2 8(x) dm P(T)

_ 200 dntmp)] g9 dm
2, &) dm—op(3){ g() dm 7T

14y v(A) P(T)

— 1—n, »(4) PT)

_ Lin QUAXT) |
1_"70 Qe(AXF)

Next if D=U4;xT; is a finite disjoint union of 4;xT'; with 4;C4 and a

cylinder I'; CT, then we have

(7.1) Qe(TmD) Sl‘f"?o Qe(D) .
QT"(AXT)) ™ 1—m, Q(AXT)

To prove this it suffices to show the following:

If D,cAXT, D,CcAXT and D,N D,=¢, then T"D;N T"D,=¢.

If (x, 0)€T"D,N T"D,, then there is a unique * €A with f; _ - f; z==x
and a unique o’ €EI'No "0 with o"e'=w, that is, o' €[4, i}, ***, i,,-,]. Hence
(2, ®)ED,N D,

Put & = {DeB(AxT): (7.1) holds} .
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It is easy to see that £ is a. monotone class. Hence we have now proved that
(7.1) holds for every measurable DCAXT.
We can show that

O(T"D) S 1—n QD)
QT™(AXT)) " 149 Q(AXT)

for every measurable DC A X T in the same manner. This implies (3).

Proof of Theorem 7.1. Given €>0 choose g, as Lemma 7.4 and M=M(¢)
as Lemma 7.6.
Put

Busm = {BEBysn: Q(B)>0, O(T"B)>0
O(B)—Q(B)<v'e Q(B) and
AT"B)—Q(T"B)<v'e QT"B)}
Then we have Q(U By+m)>1—56—21/¢ .

In fact, Qg (L{ B)<O(Ix Q)—0 (I x Q)<& and the total Q-measure of all atoms
(BI=0

Aty with Q,(4)=0is at most &. Since Q is T-invariant and T™B is contained
in some atom A€E{ if BEEY*™, the total Q-measure of all atoms BEE§*™ with
O(T™"B)=0 is also at most &. Next the total Q-measure of all atoms BE{*™
with Q(B)—Q(B)=+/€ Q(B) is at most /¢ since E>Q(UB)—Q(UB) =V
O(UB), where UB means the union of all atoms BE&{*™ with Q(B)—Q,(B)=
V€ O(B). And the total Q-measure of all atoms AEEY with Q(4)—0.(4)=
V& OQO(4) isat most \/g. Since Q is T-invariant the total Q-measure of all atoms
Be&Y with Q(T"B)—Q(T™B)=+/¢ Q(T™B) is at most \/¢ .
For families of finitely many disjoint measurable sets &, and &,, put

D(§, &) = AEE& Bazl o(4NB)—QO(4) 9(B)| -
Notice that §;C§, =1, 2, then
D&, £)=<2(2—Q(UE)—Q(UE))+D(E, &) -

In oder to prove that £ is a weak Bernoulli generator for T, we have to esti-
mate D(E{+m, E3M32miN). From the above

D(ESm, EREmiN) < 1064+4/6 +D(Brpm Eitivimi™) .
D(B3+m, BN
= X > J9BNC)—0(B) AC)]
BE fptem CefMﬁnz-:”l\-;
<S 0B S 9(BNnC)_Q9(T™"BNC))
> O3 "om T o)
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+3 0w 33| ATERO o))

= Dy(N)+Dy(N) .

D=3 0w 3 {ETHE)- LR
Q(BNC) _O(BNC) }
Q«(B) O(B)
0.(BNC) _Q(T™(BNC))
+pom 3| 20020
0(T"BNC))_Q(T"(BNO))
T3 08 2 { O(T"B) O(T™B) }
Q(T"(BNC)) _O(T™(BNC))
+30B) 3 { O(T"B) O(T"B) }
= D1,1+D1,2+D1,3+D1,4+D1,5 .

Clearly D, ,<é&.

rpom |

Q(B)—0«(B)
O(B) O.(B) 0(B) O.(B)

>
3 (Q(B)—0uB)
€.

D,,=<

l

A

By Lemma 7.6,

04BN C)
D, = 33 (Q(B) 3 ¢ 2LBOC)
s= 3B 3 e 70
<é¢
vy Q(T"B)—O,(T"B)
D,,= (T"B - =
= 3 XD Ty o1 B)
<3 0(B) Ve

=Ve
D,; < /¢ in the same way as D,, .

Thus D(N)=3&+2ve
Now we prove that Dy(N)—0 (N— o).
- QUT*BNC)) _ o pm
Dy(N) BE%‘-{ MQ(B)CE e%wﬁ Ik O(I"B) T"C)l
= B Q_(TLBM_ ™0
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= 3 ' |Q(BNC)—Q(B) Q(C)|

T e M 2M+2m N _ mmN 22M+2m
Beéy Ce€iysman =T " Exfem

=35, 1|, L-o®) L

B 0=r ¥;
= 5 {15 1,-0(B)l 4o
The last term goes to 0 as N—co from Proposition 3.2.

8. Examples and remarks

ExampLE 8.1 (Ito and Tanaka [4]). Consider the case S={1, 2, ---, I}, = {i}
=p;>0, '%,_l‘p,-zl and f; is given by

Ji(x) =

where 0<ag;<2 i=1,2,-,1L
(1) T has an (mx P)-absolutely continuous invariant probability measure if
and only if

8.1) I a; *>1
i=1

(2) Assume (8.1). Then the (mXP)-absolutely continuous 7T-invariant
probability measure is ergodic.

(3) Assume (8.1) and let Q be the above. If T satisfies that Q(7"(4 X Q))
—1 for any A€ B(I) with O(A4 x Q)>0, then (T, Q) is weakly Bernoulli.

Proof of (1). In this case a(s)=a;"’, so (A.1) is equivalent to (8.1). Only
if part can be proved in the same way as Proposition 1.3 and Proposition 1.4 in
[41. ‘

Proof of (2). From Lemma 5.4 the number of (m X P)-absolutely con-
tinuous ergodic probability measures is less than the number of the m-absolutely
continuous ergodic invariant probability measures for f; with d,,>1. And each
fi has at most one m-absolutely continuous invariant probability measure since
fi's are unimodal.

Proof of (3). Let ¥ be an eigenfunction of U, with U, ¥=)\¥. From
Lemma 5.4, we can find A€ $B(I) such that ¥ takes constant value on 4 X Q.
We may assume that ¥=1 on 4 X Q Then Q(T"(AxQ))—1 implies ¥=1 a.s.
(Q) and A=1. Therefore (T, Q) is weakly Bernoulli by Theorem 7.1.

ExampLE 8.2. Let f, be the identity function on I. Consider the case S=
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{0, 1, --+, g}, #{t} >0 for all i€ S. 1If (A.1) is satisfied, then caeh ergodic com-
ponent of T is weakly Bernoulli one. In fact, if U, ¥=\¥, then U, ¥=\¥ by
Lemma 5.4. Thus A=1.

RemMark 8.1. In general, we can say that we can expect nice ergodic pro-
perties of T if the family {f,} ,cs consists of transformations having distinct spectral
types one another.

ExampLE 8.3. Consider the case: S=R, #z=N(a, 1) and

e'x (s=0)
Jfs(x) = { ('+8) x (log n<s=<log (n+1—3) mod 1

(n+1)x (log (n+1—08)<s<log (n+1)
for nEN, where 8 is a positive constant with 0<<§<<1. Then T has a unique
(m X P)-absolutely continuous invariant probability measure Q and the dynamical
system (T, Q) is exact if a>log 2. In fact, a(s)<e™* and

2e° (s=0)
2
ﬁ 1 (S) = e + 8_ n

2 (log (r+1—8)=s<log (n+1)

(log n=s<log (n+1—34))

So aeLl(z) and

slog aa'n-<——S s dn
= —a
<—log 2
(B0 at) =2 _e*nia)

oo slog (s+1-8) 1

2 - -
t22 log » e+3—n

n=1

n(ds)

log(n+1)

+23 S (ds)

log(n+1-38)

< oo
Thus assumption (A.1) and (A.2) are valid with N=1.

ReEMARK 8.2. One can easily see that our results are based on the inequality
(3.1). So if the family {f.} .cs satisfies the smae type inequality as (3.1), we can
get the same results as above. For example, if there is a constant =1 and
there are measurable functions G,(s;, -+, $,) with
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(8'2) v-Es,, o ‘C-’l ¢§k a(sl) ot a(sn) \ ¢+Bn(sv ) S,,) ”¢’”1 m

for ¢ BV and for n=1, 2, -, then under the assumption (A.1) and the follow-
ing new assumption (A.2’), our arguments still works.

(A.2/) For some N >(—log k) (S log o dz)™Y, Bu(sy, -, sy)EL %") and By(s) €
L(z).
 Exampii 84. Consider the case: S=R, n=N(a, 1), and

f(®)=ex modl.

Then T has a unique (7 X P)-absolutely continuous invariant proabbility measure
O and the dynamical system (T, Q) is exact whenever a>>0.

Proof. Put f(x)=cx mod 1 with ¢>0, and ¢ €BV. If ¢<1, we have
VL S22 [glhm by B1). T n<eSntl, Lg=c 3 gof e

l[o,c—n] ¢°.[;—:h Wherefi:f l(_(}—l)c‘l,ic'l) for 121) 2; AN (4 andfn+l=f I(_n}:‘l,l)-
Therefore
ic—1

V Lp=ctS VbtV g, pofih

n=1 (i-1)"
eV gt V gt 1 §(1)]

=<'V ¢p+c|pllem
SV o+t V o+ |dllim
=2V ¢+ ||Pllim -

IA

Consequently

(8.3) V L p=2cV ¢+27 | Pll1,m -

Note that f, f, _ --f, x=e 12"+ " xmod 1. Put B,(s),s;, +++,,)=2 €™ Carszttsm,
From (8.3), (8.2) is valid with B,(s1, $3, ***, 5,) and

(8:4) [ Bats 0+, ) (s, dsyneds) <o

We have

S log a(s) m(ds) = S s 7(ds) = —a<0.

Thus (A.1) is satisfied. From (8.4), (A.2’) is valid.
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