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1. Introduction

Let L be an oriented link in S3. A Seifert surface R for L is a compact
oriented surface, without closed components, such that dR=L. Suppose that

the complementary sutured manifold (M, γ) for R (for the definition, see sec-

tion 4) is irreducible. The handle number of R is as follows:

h(R) = min{h(W); (W, W) is a Heegaard splitting of (M; Λ+(y), J?-(y))}.

We give the definitions of h(W) and a Heegaard splitting of (M\ R+ty),
R-(γ)) in section 2 using compression bodies which is introduced by Casson
and Gordon in [1].

Note that R is a fiber surface if and only if k(R)=0.
In this paper, we completely determine the handle numbers of incompres-

sible Seifert surfaces for prime knots of < 10 crossings. In addition, we show
that there is a knot which admits two minimal genus Seifert surfaces whose
handle numbers are mutually different (see Example 6.2).

Let R be a Seifert surface in S3 obtained by a 2w-Murasugi sum (for the de-
finition, see section 4) of two Seifert surfaces Rτ and R2 whose complementary
sutured manifolds are irreducible. In [7], we have shown the following two
theorems:

Theorem A ([7], Theorem 1).

Theorem B ([7], Theorem 2). // Rλ is a fiber surface, then h(R)=h(R2).

And it has been also shown in [7] that the estimation in Theorem A is the

best possible.
In this paper, we give a sufficient condition to realize the upper equality

h(R)=h(R1)+h(R2) of Theorem A in the case of a plumbing (i.e., n=2). In
fact, we prove:
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Theorem 1. Let R be a Seίfert surface in S3 obtained by a plumbing of two
Seifert surfaces R! and R2 whose marked complementary sutured manifolds (Miy Ύi3A?)
(i=l,2) associated with the plumbing R=R1\JR2 are irreducible. Assume that
there is a product disk in Ml with Al as an edge. Then,

For the definition of a marked sutured manifold, see section 5.
To prove Theorem 1, we consider the cancelling disk pair. Let (M\ ΛΓ,

N') be a 3 -manifold triad such that N contains no closed surface. Let (W, W)
be a Heegaard splitting of (M N, N') and F a Heegaard surface (for the defini-
tion, see section 2). A cancelling disk pair is a pair of disks (Z), D') with the
following condition: (D,9D) and (D',dDf) are disks in (Wyd+W) and (W,
d+W) respectively such that dDf}QD' consists of a single point. A pseudo
cancelling disk pair is a pair of disks (Z), Z)7) having the following conditions:
(1) D is a disk in M such that QDdF and N(3D, D) is contained in W,
(2) (D', 3D') is a disk in (W, Q+W),
(3) QD Π QD' consists of a single point.

Under the above notation, we have :

Proposition 2. If (W, W) has a pseudo cancelling disk pair, then (W, W')
has a cancelling disk pair.

Note that if M is irreducible then there is a slightly general result in [2] or
in [19].

The author wishes to thank Professors Makoto Sakuma and Tsuyoshi
Kobayashi for their several conversations. He wants also to thank Professor
Kanji Morimoto for his valuable advice.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category, all mani-
folds including knots, links and Seifert surfaces are oriented, and all submani-
folds are in general position unless otherwise specified. For the definitions
of standard terms of 3 -dimensional topology, knot and link theory, we refer

to [9], [10] and [17]. For a topological space J3, $B denotes the number of the
components of B. Let H be a subcomplex of a complex K. Then N(H\ K)
denotes a regular neighborhood of H in K. Let N be a manifold embedded
in a manifold M with dim ΛΓ=dim M. Then FrMΛΓ denotes the frontier of
N in M. An arc a properly embedded in a surface S is inessential if it is rel
9 isotopic to an arc in dS. If a is not inessential, then it is essential. Let

{of,.} be mutually disjoint essential arcs in S. Then the collection of such arcs
is called a complete system of arcs for S if the closure of each component of S—

{U ctt} is a disk. Let S be a surface properly embedded in a 3-manifold M. A
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disk D2 in M is a compressing disk for S if D2 Π S=QD2, and 9Z)2 is not contiacti-
ble in S. If there exists no compressing disk for S9 then it is incompressible.

A compression body Wis a cobordism rel 3 between surfaces 3+ W and d~W
such that W^Q+WχI\J 2-handles U 3 -handles and 3 -W has no 2-sphere com-
ponents. We can see that if d-W4=φ and Wis connected, W is obtained from
9_PFχ7 by attaching a number of 1-handles along the disks on d-Wx {1} where
9 -W corresponds to d-Wx {0}. We denote the number of these 1-handles by
h(W).

A defining disk system D for a compression body W is a disjoint union of
disks (D2, dD2)d(W, Q+W) such that W cut along D is homeomorphic to either
a 3-ball or d-Wx! according to whether or not Q-W is empty. We say that a
component of Z) is a defining disk. A spine for IF is a properly embedded 1-
complex Q such that IF collapses to Q(J Q-W. Dually, if Q is the spine of W,
then W is a regular neighborhood of Q-W U ζλ

^4 3-mαnifold triad (M; N, N') is a cobordism M rel 9 between surfaces N
and Nf. Thus ΛΓ and ΛΓ are disjoint surfaces in QM with QN^QN', such that
QM=N\jN'\JdNχI. A Heegaard splitting of (M\N,Nf) is a pair of com-
pression bodies ( W, IF7) such that W U PF= M, W Γϊ W'=d+W=d+W'(=F, say)
and d-W=N, d-W'=N'. We call ί1 a Heegaard surface. In the following
section, we assume that N contains no closed surface.

3. Proof of Proposition 2

Let M and (W, W) be as stated in section 1. Let Q' be a spine for W,
and .Fa Heegaard surface for (W, W), and let (Z), Z)') be a pseudo cancelling
disk pair in (W, W). We can see that F is FrW'N(d-W U Q'; W) by moving
F by a rel 9 isotopy. Then we may suppose that N(Q-W\JQ'; W)Γ\D=
N((d-W'\jQ')Γ}D;D). Hence every component of IntDlW is a disk or
IntDΓiW'=φ. If IntDΓlW= φ, (A^7) is a cancelling disk pair. Hence,
assume that Int D Π PFΦφ, and D° denotes the disk with holes Df}W.

Claim 3.1. IF* mzy Λφpow that D Π D'=QD Π 9£>7 : 0

Proof. Each component of IntDftD' is a loop or an arc properly em-
bedded in disks Int D Γl W. Since W is irreducible, we may suppose that
Int D Π D' consists of arcs by an isotopy. Let E be a component of Int D Π W
and δ an outermost arc of Int D Π D' in £". By cut and paste of Df along δ, we
have two disks D{ and D'2. Since dD (Ί 9Z>' consists of a single point, 9£>ί or
9Z>2, say 9Z>ί, intersects dD in a single point. Thus we have a pseudo cancelling
disk pair (D, Dί) such that ff {Int D Π D{} <#{Int D Π O'} . Then, put D{=D'.
Continuing in this way, we finally obtain a pseudo cancelling disk pair (Z>, D')
such that Int D Π D'=φ. This is the conclusion.
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Let a be an essential arc in D°. The arc a is called a recurrent arc if both
of its end points lie in one component of 9Z)°. Suppose that a is non-recurrent,
and that there is a disk BinW such that B Π d+W=dB Π d+W=a' : an arc such

that a U a'=dB (note that, possibly, Int BΓ\D° Φφ). Let ω be one component
of 3D0 — dD containing a point from da.

Lemma 3.2. Suppose that ω Π 95 consists of a single point (i.e., a compo-

nent of da). Then, F is rel 9 isotopic to a surface F such that :
(1) (D, D') is a pseudo cancelling disk pair for the Heegaard splitting (W, W')

induced by F,
(2) each component of D Π Wr is a disk,
(3)

Proof. The idea of this proof is due to Lemma 2.1 in [11]. This can be
proved as well by the inverse argument of isotopy of type A introduced in [16].

Let E be the component of Int D Π W whose boundary is ω, and e a center of E.
The core of N(E; W) is of the form exl, say /?, which is a subarc of Q'. Let
eQ(el resp.) be a point for ex {0}(eX {1} resp.) such that eϋ is in the side of B
with respect to D and e1 is in the other side. Slide eQ on Q' and Q-W along B
fixing eλ. Then we can see that β is parallel with a in N(D\ M) after this iso-

topy, since ωΓ\dB consists of one point (see Figure 3.1). Thus #{DΓ\ W} is
reduced by moving F by an isotopy. Moreover, after this isotopy, each com-
ponent of D Π W is a disk and 3D Π QD' still consists of a single point, since we
move N(E'y W) only in this isotopy.

Ot

Assume that (D, D') is a pseudo cancelling disk pair such that each com-

ponent of Int D Π W is a disk and that %{D Π W'} is minimal. Then we have:

Claim 3.3. D Π W(=D°) is incompressible in W.

A properly embedded disk E in a compression body W is a product disk

if 9E1 Π 3(3- W) X I consists of two essential arcs in 8(9_ W) X I.
A complete disk system of W is a system of disks {£",.} in W which satisfies

the following conditions:

(1) each Έi is a defining disk or a product disk,
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(2) each component of d(W— \JN(E^ W)) is a 3-ball.
(There is a complete disk system of Wy since 8 ~W contains no closed surface by

the assumption.)

We can observe that Z>° Π {U-E,} consists of loops and arcs properly em-

bedded in D°. Further, we may suppose that 3N(D' '; FF)n3{U£ ί}
 are dis"

joint from QN(D'\ W) Π 3D, by moving Eit if necessary, by an isotopy.

By using the standard innermost circle and outermost arc argument, we
obtain the following claim.

Claim 3.4. We may assume that D° Π { U E{} consists of essential arcs.

By Claim 3.3, we have the next claim.

Claim 3.5. D° (Ί {U E^ is a complete system of arcs for D°.

Proof of Proposition 2.

Case 1. All components of D° Π {U E{} are non-recurrent.

Let α be a component of D° Π { U £",} , and E a component of {E^ contain-

ing a. Let a' be an outermost arc of D° Π E on E with respect to a, and E' a

subdisk in E which is bounded by a.' and QE. Thus we have a non-recurrent

arc cίf of Lemma 3.2, and it contradicts the minimality of ${DΓ\W}. Then
we have the conclusion of Proposition 2.

Case 2. There is a recurrent arc a in D° (Ί {U £",}.

Let Z)0/ be a disk with holes which are bounded by a and 9Z)° which con-

tains 9a. We can suppose that there is no recurrent arc in D0/ Π {U E{} by re-

peating that operation, if necessary. Then there is a non-recurrent arc in D°' (Ί

{U^ } by Claim 3.5. Let β be a component of their non-recurrent arcs, and ω
a component of 9Z)°' which contains a component of 9/3 and does not contain

Qa. E denotes a component of {U £",} containing /3, and take £' the closure of
a component of E—β. Let /?' be an outermost arc with respect to β in D°' Γ\E'

whose boundary is contained in ω. Then, β1 is the non-recurrent arc of Lemma

3.2. If there is no such arc, then β is the non-recurrent arc of Lemma 3.2.

This contradicts the minimality of ${Df\W}, and we have the conclusion of

Proposition 2.

4. Handle number

In this section, we give firstly some definitions connected with sutured

manifolds and Murasugi sum. Next, we give some lemmas with respect to the

properties of a handle number and a compression body. For the proofs of them,

see [7].
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For the definitions of standard terms of sutured manifolds, see [4] and [18],
We say that a sutured manifold (M, 7) is a product sutured manifold if (M, 7) is

homeomorphic to (Fx/, QFxI) with R+(<γ)=Fx {!}, R-(γ)=Fx {0}, -4(«y)=
dFxI, where F is a surface and / is the unit interval [0, 1]. Let L be an ori-
ented link in S3 and R a Seifert surface for L. The exterior E(L) of L is the
closure of S3—N (L\ S3). Then R Γ\E(L) is homeomorphic to R, and we often

abbreviate RΓ\E(L) to Λ. (ΛΓ, δ)=(ΛΓ(Λ; £(L)), ΛΓ(3#; 8E(Zr))) has a product
sutured manifold structure (Rxl, dRxI). (N9 δ) is called the product sutured

manifold for R. The sutured manifold (ΛT, 8*)=(d (£(£)-#), cl(9£(L)-δ))
with j?+(δc)— R-(δ) is the complementary sutured manifold for R.

Sutured manifold decomposition is an operation to obtain a new sutured

manifold (M', 7') from a sutured manifold (M, 7) by decomposing along an
oriented proper surface S (see [4]). The notation for this operation is as follows:

(M, 7) (M', 7')

A surface J?(C/S3) is a 2n-Murasugi sum of two surfaces 7?j and R2 in *S3

if:

(1) R=R1 U 0 Λ2, where D is a 2n-gon, i.e., dD=μ1\Jv1 U ••• U μ«U z>Λ (possib-
ly 7z— 1), where μi(vi resp.) is an arc properly embedded in Rι(R2 resp.).

(2) There exist 3-balls Bly B2 in S3 such that:
(i) B^B^S3, B1Γ\B2=dBl=dB2=S2: a 2-sphere,

(ii) Λ1c51,/^cSaandjR1n5a=l^nίS
2=D.

When Z) is a 2-gon, the Murasugi sum is known as a connected sum. When
D is a 4-gon, the Murasugi sum is known as a plumbing. This paper focuses
on a plumbing mainly. Put L=QR. Note that R'=(R—D) U D' is an oriented
surface with QR'=L where D'=dB1— IntZλ By a tiny isotopy of S3 keeping

L fixed we can move R' so that R' ΓiRΓί E(L)=φ. We will say that R' is a dual
of Λ. Note that R' is also a 2w-Murasugi sum of R{ and Λ£ where R^Rf—D)

Let 12 be a Seifert surface obtained by a plumbing of two Seifert surfaces
Rl and R2 whose complementary sutured manifolds (Mly 7X) and (M2, 72) are ir-
reducible, and let (M, 7) be the complementary sutured manifold for R. By the
definition of a plumbing, there is a 2-sρhere S2 along which R is summed and

the summing disk D. Let S be the 8-gon S2— (IntDU lntN(QR)) and we
call S a cross-section disk in this paper.

Next lemma follows from [5], [7].

Lemma 4.1 (cf. [5], [7]). (M^ 7X) *md (M2, 72) are obtained from (M, 7)
by the sutured manifold decomposition along S with an appropriate orientation, (see
Figure 4.1.)

Since (Ml9 7ι) and (M2, 72) are obtained from (M, 7) by a sutured manifold
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o

1

t ί

(M, y)

Figure 4.1

decomposition along S, we call M{ in M the part of Mi (i= 1, 2). Let Sι(S2 resp.)
be the component of FrMN(S; M) in the part of Mλ (the part of M2 resp.).

Then we may suppose that N(S; M)=SxI, S=Sx {1/2}, S^Sx {0} and S2

=Sx {1}. Moreover, let at(l <i<4) be a set of points cyclic ordering on dS Π
s(γ), then we can suppose that each component of s(γ) ΓiN(S', M) is of the form
tf,.χ/, and set «}=«,.X {0} and αf=α.χ {1} (l<f <4).

In the following, we identify (Ml9 γ1)((M2, 72) resp.) with the component of
the sutured manifold obtained from (M, <y) by decomposing along S2(S1 resp.)

which contains the part of Ml(M2 resp.). Further, we assume that each com-

ponent of S2Γ\s(fγ1)(S1Γ[s(fγ2) resp.) joins a], a2

i+ι(a}, a]+ι resp.) for i odd (for i
even resp.).

Let (W, W) be a Heegaard splitting of (M; R+(γ), -R-(τ)) and ί1 the Hee-

gaard surface. F is said to be a nice Heegaard surface of (M; jR+(τ), R_(γ)) if it
satisfies the following conditions:
(1) Sl Γ\F consists of arcs joining a] and a}+ι for i even,

Figure 4.2
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(2) S2 f}F consists of arcs joining a] and a2

i+ι for £ odd,
(3) Fn(Sx/)isadisk.

The next proposition follows from [7].

Proposition 4.2 ([7], Proposition 3.1). We can assume that each compo-
nent of S Π W is a product disk by moving F by a rel 9 isotopy. (see Figure 4.3.)

Let P be a properly embedded surface in a compression body W. P is
called boundary compressible toward Q+ W if there exists a disk D in W such that
D Γ\P=a :an arc in 9D and D Π 9+FF— β :an arc in 9D, with α nβ=9α=9/3,
# U β=QD, and either α is essential in P or α is inessential in P and the bound-
aries of all disk components of cl(P— a) intersect 9(9- W) xl. If P is not
boundary compressible toward d+W, then we say that P is boundary incompressi-
ble toward d+W.

Now, let P be a connected surface properly embedded in a compression
body W such that each component of 9PΠ9(9-W)X/ *s an essential arc in

Lemma 4.3 ([7], Lemma 2.3). Assume that QP (*\d+W^φ artd P is in-
compressible and boundary incompressible toward d+W. Then P is
(1) an annulus such that one boundary component is contained in d+W and the

other is contained in d-W,
(2) a disk whose boundary component is contained in d+W, or
(3) a product disk in W.

Suppose that (W, W') is a Heegaard splitting of (M; R+(j)> R-(Ύ)) such that
h(W)= h(R). By Proposition 4.2, we may suppose that every component of
S Π W and S Π W' is a disk as illustrated in Figure 4.3 and that each component
of S Π F joins a., ai+l for i even. By Lemma 4.3, we can see that S Π W has a
boundary compressible disk D toward d+W. If D is contained in the part of
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M2, we say that D is good. If D is contained in the part of M19 we say that D
is bad. Note that if D is good, then F is isotopic to a nice Heegaard surface.
Then, we have the following inequalities concerning the handle numbers of

R, R1 and R2.

Lemma 4.4 (cf. [7], Lemma 4.6). If D is good, then

h(R). If D is bad, then A(/y+A(Jy- 1 < h(R).

Next, we define a product disk and a product decomposition for a sutured
manifold (M, 7).

A properly embedded disk E in (M, 7) is a product disk if 3J? ΓΊ ̂ (7) con-

£
sists of two essential arcs in -4(7). A product decomposition (M, 7) -> (M', 7')
is a sutured manifold decomposition along a product disk £. Note that each
compression body W can be regarded as a sutured manifold with A(fγ)=

d(d~W)χI. In this sense, we can see that this definition of a product disk is
equivalent to the preceding definition for a compression body (W, 7).

The next lemma shows a property of a compression body.

Lemma 4.5 ([7], Lemma 2.4). Let (W, 7) fo # sutured manifold and

(W , 7') the sutured manifold obtained from (W,<γ) by a product decomposition.
Then (Wy 7) is a compression body if and only if (W , 7') is a compression body.

Moreover, h(W)= h(W).

5. Marked sutured manifolds and Proof of Theorem 1

Firstly, we give the definition of a marked sutured manifold following [12].

A marked sutured manifold (M, 7, A) is a sutured manifold (M, 7) together

with a properly embedded arc AdRty). We call A a mark on (M, 7).
Let L be a non-split link and R its Seifert surface. Suppose that R is a

plumbing of Rl and Λ2 where 72,. (i=l, 2) is a Seifert surface for a link Ltf—

1,2). We denote that D=R1ftR2. Let (Mj, 7ι) and (M2, 72) ((ΛΓi, $1) and
(Λ/2, δ2) resp.) be the complementary sutured manifolds (the product sutured
manifolds resp.) for Λj and R2 respectively. We will produce marked sutured
manifolds (Mf, 7,., At) and (Ni9Si9Ai)(i=l92) as follows. We first consider

(Mj, 7:) and (Nly δj). Let /j be a core of D relative to the embedding DdR1

i.e., /! is a properly embedded arc in R1 so that D is a regular neighborhood of
/! in R^ Push out Iλ from /?! to the side on which R2 is attached, and consider

this arc A1 to be properly embedded in ^(7^— R(Sl). Thus we get marked
sutured manifolds (Mly Jλί A^ and (N19 819 A^. By the same way, we also get

(M2, 72, A2) and (ΛΓ2, δ2, ^42) (see Figure 5.1). These markings correspond to the
plumbings of RI and R2.

Let E be a product disk in a marked sutured manifold (Tkf, 7, ^4). If ^4
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1

I

1
! _ . _ _ _

_ _ _ ; _ _ _

Figure 5.1

Figure 5.2

is contained in 9£", then we call E a product disk with A as an edge.

Proof of Theorem 1.

By Theorem A, we see that tyRJ+h^-l^hW^RJ+h^). Now,
we assume that h(R1)+h(R2)-l=h(R). Let (W, W) be a Heegaard splitting of
(M; Λ+(y), Λ-(γ)) such that h(W)=h(R), where (M, 7) is the complementary
sutured manifold for R. Let ί1 be the Heegaard surface of (W, W) and *S the
cross-section disk. By Proposition 4.2, we may suppose that each component
of 5 Π W is a product disk as illustrated in Figure 4.3 and that each component
of S Πί1 joins ai9 ai+ί for i even. By Lemmas 4.3 and 4.4, we can see that 5 Π
W has a bad compressing disk. After compressing along this disk, attach a
1-handle on d+W as illustrated in Figure 5.3. Let F be the surf ace ̂ obtained
from F, and let W and W' be the closure of the components of M— F corres-
ponding to W and W respectively.

Claim. (W, Wr) is a Heegaard splitting of (M;
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1-handle

Figure 5.3

Proof. Since W is obtained from a compression body W by attaching
1-handle on d+W, W is a compression body. On the other hand, a compression
body W is obtained from Wr by the decomposition along S where S is a thin
rectangle as in Figure 5.3. Thus W' is also a compression body. Then we
have this claim.

By Lemma 4.2 in [7], (W, W') induces a Heegaard splitting (W., W\) of
(Mi'ίR+(7i)yR,(7i)(ι=ly2) such that A(ϊP)=A(lPi)+Λ(lP2) since (IP, IP') has
a nice Heegaard surface (see Figure 5.4).

Figure 5.4

We denote E the product disk in the statement of Theorem 1.
By the definition of the mark Al9 we may suppose that Al is contained

in *Sf

2(cM1). Then, let Δ be a disk in M1 such that 9Δ contains A1 as illu-
strated in Figure 5.5. Further, we may suppose that E contains Δ.

Thus the cocore of attaching 1-handle and a subdisk of E constitute a
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Figure 5.5

pseudo cancelling disk pair. (Note that the subdisk of E is contained in E— Δ,
see Figure 5.5). Then we have a cancelling disk pair in (Wly W{) by Proposi-
tion 2. Let (Wl9W{) be the Heegaard splitting of (M^R+fa), R-(7ι)) ob-
tained from (Pl^i, W{) by compressing along this cancelling disk pair. Then,
we have that h(W^h(W^)— 1. By the definition of a handle number,

A(lPι)<A(ϊPι). Then A(Λ1)+^^)<A(^ι)+A(^2)=*(I^=A(^)+l
Hence h(R1)+h(R2)—l<h(R), a contradiction. This completes the proof of

Theorem 1.

6. Examples

EXAMPLE 6.1. Let R be an unknotted annulus in S* with n-full twists, then
h(R)=Qifn=l andh(R)=l ifn>2.

For a proof of this example, see Example 2.1 in [7],

EXAMPLE 6.2. Knot 910 has the minimal genus Seifert surface R and its dual
surface R' such that h(R)*h(R') (for the notation, see [17]).

Let R be the minimal genus Seifert surface for 910 and R' its dual surface
shown in Figure 6.1. R and R' is obtained from R1 and R2 as illustrated in
Figure 6.1. By Example 6.1 and Theorem J3, h(R1)=h(R2)=l. Moreover,
by Theorem A, we can obtain that 1 <h(R), h(R')<2. Now, we will show that

Firstly, we consider R. Let (Mx, γlf Aλ) be the marked sutured manifold
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R

for R! as illustrated in Figure 6.2. The mark Al corresponds to the plumbing
which is associated to R and there is a product disk with Al as an edge. Then,
by Theorem 1, we have that h(R)=2.

Next, we will show that h(R')=l. We can see by straightforward observa-
tion that R' is ambient isotopic to R" as in Figure 6.3. Let (N, δ) be the pro-
duct sutured manifold for R" and (M, γ) the complementary sutured manifold
for R". We consider the properly embedded arc α in (M, γ) such that dad
R_(γ)=R+(δ) as illustrated in Figure 6.3.
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R"

Figure 6.3

Put X=R-(γ)xI U ΛΓ(α; M); then X is a compression body with
On the other hand, by product decompositions and Lemma 4.5, cl(M
also a compression body with h(cl(M— X))=l. Hence h(R')=l.

X) is

EXAMPLE 6.3. The condition of Theorem 1 is not necessary in fact, there
is a Seifert surface R such that h(R)=2 and h(R1)=h(R2)=l where R is obtained
from RI and R2 by a plumbing. Moreover, there is no product disk in M. with
Ai(i=ly 2) as an edge.

Let R be the incompressible Seifert surface of 1067; then R is obtained from
R1 and R2 by a plumbing, as illustrated in Figure 6.4 (cf. [12], Figure 6.11).

We have that h(R1)==h(R2)=l and h(R)<2 by a similar argument of Exam-
ple 6.2. Moreover, we can verify that there is no product disk in M{ with A{

(ί=l, 2) as an edge by Lemma 4.1 and Proposition 4.2 in [12]. Then we will
show that h(R)=2. By Theorem B, we may investigate R' instead of R (see

Figure 6.5).
Let (ΛΓ, δ) be a product sutured manifold for Rr and (M, γ) the comple-

mentary sutured manifold for R' '. Now, we assume that λ(JR')<l. Then

J?/1(M)/Z4:/;ί1(J
[?+(γ))»<(A|r>, where h is a generator corresponding to attaching

1-handle and r is a relation arising from a 2-handle. Note that M is obtained
from jf?+(fy)χ/ by attaching a 1 -handle and a 2-handle by the assumption. This
abelian group is generated by a single element. However, this group is isomor-
phic to Z2®Z6 for this example. Hence this is a contradiction and h(R/)=2.
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R

Figure 6.4

7. Handle number of the incompressible Seifert surfaces for pri-
me knots of < 10 crossings

Let R1 and R2 be Seifert surfaces for an oriented link L in S3. RI and
R2 are equivalent if Rλ is ambient isotopic to R2 in the exterior of L. The in-
compressible Seifert surfaces for prime knots of < 10 crossings are classified
by Hatcher and Thurston [8], and Kakimizu [12]. In fact, Kakimizu proved
the following theorem.

Theorem ([12]). (I) The incompressible Seifert surfaces for every prime
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knot of < 10 crossings are unique except for the following knots (see [17] for the
notation).

74

2

1024

3

83

2

1028

2

95

2

103o

2

9ιo

4

103ι

3

9l3

2

1033

4

9l8

3

1037

2

923

2

1038

2

103

2

1053

2

10ιι

2

1067

2

1016

4

1068

2

1018

3

1074

3

(II) Each knot in the above table has exactly two, three or four equivalence

classes of incompressible Seifert surfaces according to the number written under the

knot; moreover they are all of minimal genus.

Kanenobu and Gabai detected the fibered knots of < 10 crossings in [13]

and [6]. Note that a fibered knot has a unique incompressible Seifert surface,

that is, a fiber surface. The fibered knots of < 10 crossings are listed in Table

I. (For the notation, see [17].) Namely, the handle numbers of incompressi-

ble Seifert surfaces corresponding to these knots are equal to 0.

Table I

3,

87

9ι

930

9«

1043

1069

1088

10107

10126

10*3

10156

4ι

89

9ι,

9sι

94,

1044

1070

1089

10109

10127

10,45

10,57

5,

810
9,7

932

948

1045

107,

109,

10,10

10,32

10,48

10,58

62
8,2

920

933

102

1046

1073

1094

10,,2

10,33

10,49

ιo,59

63
8,β

922

934

105

1047

1075

1U96

10,15

10,36

10,50

10,60

7,

8,7

924

936

109

1048

1078

1099

lOiie

10137

1015l

1016ι

76

818

926

940

1017

1059

1079

10100

10118

10138

10152

10162

77

819

927

942

1029

lOeo

1081

10ι04

10123

10139

10153

Iθl64

82

820

Qy2β

943

1041

1062

1082

lOios

10124

10ι40

10154

—

85

821

929

944

1042

1064

lOβs

10106

10125

10141

10155

—

The handle numbers of Seifert surfaces in Table II are all 2. (For the

notation, see [8] and [17].) The handle numbers of Seifert surfaces which are

not fiber surfaces and are out of Table II are all 1. We note that each knot

in Table II has two minimal genus Seifert surfaces whose handle numbers are
mutually different.
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Table II

79

knot type

Seifert surface

ιolβ

[S,(0, 0, 1)]

1033
[S,(0,0,l)]

9,o

[^(0,0,0)]

1018

[S,(0,0,0)]

1067

Figure 6.4

[S,(0,0,l)]

1024

[S,(0,0,0)]

ιoββ

Figure 7.1

918

[^(0,0,0)]

1031

[^(0,0,0)]

1016

[£,(0,0,0)]

1033

[5,(0, 0, 0)]

1074

Figure 7.2 Figure 7.3

Figure 7.1 Figure 7.2

Figure 7.3
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