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1. Introduction

Let L be an oriented link in S®. A Seifert surface R for L is a compact
oriented surface, without closed components, such that dR=L. Suppose that
the complementary sutured manifold (M, 7) for R (for the definition, see sec-
tion 4) is irreducible. The handle number of R is as follows:

h(R) = min{h(W); (W, W) is a Heegaard splitting of (M; R.(7), R-(7))}.

We give the definitions of (W) and a Heegaard splitting of (M; R.(v),
R_(7)) in section 2 using compression bodies which is introduced by Casson
and Gordon in [1].

Note that R is a fiber surface if and only if A(R)=0.

In this paper, we completely determine the handle numbers of incompres-
sible Seifert surfaces for prime knots of <10 crossings. In addition, we show
that there is a knot which admits two minimal genus Seifert surfaces whose
handle numbers are mutually different (see Example 6.2).

Let R be a Seifert surface in .S® obtained by a 2n-Murasugi sum (for the de-
finition, see section 4) of two Seifert surfaces R, and R, whose complementary
sutured manifolds are irreducible. In [7], we have shown the following two
theorems:

Theorem A ([7], Theorem 1).
h(Ry)+1(R;)—(n—1) <h(R) <h(R;)+h(R;) .

Theorem B ([7], Theorem 2). If R, is a fiber surface, then h(R)=h(Ry).

And it has been also shown in [7] that the estimation in Theorem A is the
best possible.

In this paper, we give a sufficient condition to realize the upper equality
h(R)=h(R,)+h(R;) of Theorem A in the case of a plumbing (i.e., n=2). In
fact, we prove:
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Theorem 1. Let R be a Seifert surface in S* obtained by a plumbing of two
Seifert surfaces R, and R, whose marked complementary sutured manifolds (M,,,;, A,)
(¢=1, 2) associated with the plumbing R=R,UR, are irreducible. Assume that
there is a product disk in M, with A, as an edge. Then, h(R)=h(R,)+h(Ry).

For the definition of a marked sutured manifold, see section 5.

To prove Theorem 1, we consider the cancelling disk pair. Let (M; N,
N’) be a 3-manifold triad such that N contains no closed surface. Let (W, W)
be a Heegaard splitting of (M; N, N’) and F a Heegaard surface (for the defini-
tion, see section 2). A cancelling disk pair is a pair of disks (D, D’) with the
following condition: (D, 0D) and (D', 9D’) are disks in (W, 0,W) and (W',
0. W") respectively such that 3D N8D’ consists of a single point. A pseudo
cancelling disk pair is a pair of disks (D, D’) having the following conditions:
(1) D is a disk in M such that 9 DCF and N(0D, D) is contained in W,

(2) (D',0D’)is adisk in (W', 8, W"),
(3) 8D NOD’ consists of a single point.

Under the above notation, we have:

Proposition 2. If (W, W’) has a gseudo cancelling disk pair, then (W, W')
has a cancelling disk pair.

Note that if M is irreducible then there is a slightly general result in [2] or
in [19].

The author wishes to thank Professors Makoto Sakuma and Tsuyoshi
Kobayashi for their several conversations. He wants also to thank Professor
Kanji Morimoto for his valuable advice.

2. Preliminaries

Throughout this paper, we work in the piecewise linear category, all mani-
folds including knots, links and Seifert surfaces are oriented, and all submani-
folds are in general position unless otherwise specified. For the definitions
of standard terms of 3-dimensional topology, knot and link theory, we refer
to [9], [10] and [17]. For a topological space B, #B denotes the number of the
components of B. Let H be a subcomplex of a complex K. Then N(H; K)
denotes a regular neighborhood of H in K. Let N be a manifold embedded
in a manifold M with dim N=dim M. Then Fr,N denotes the frontier of
N in M. An arc a properly embedded in a surface S is inessential if it is rel
0 isotopic to an arc in 8S. If o is not inessential, then it is essential. Let
{a;} be mutually disjoint essential arcs in S. Then the collection of such arcs
is called a complete system of arcs for S if the closure of each component of S—
{Ua;} isadisk. Let S be a surface properly embedded in a 3-manifold M. A4
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disk D* in M is a compressing disk for S if D* N S=0D? and 8D? is not contiacti-
ble in S. If there exists no compressing disk for S, then it is incompressible.

A compression body W is a cobordism rel d between surfaces 3., and 0_-W
such that W=, WxIU 2-handles U 3-handles and 8_W has no 2-sphere com-
ponents. We can see that if 3_W ==¢ and W is connected, I is obtained from
9_-Wx I by attaching a number of 1-handles along the disks on 0-W X {1} where
0_W corresponds to 0-Wx {0}. We denote the number of these 1-handles by
h(W).

A defining disk system D for a compression body W is a disjoint union of
disks (D?, 8D? (W, 8, W) such that W cut along D is homeomorphic to either
a 3-ball or 8_W X I according to whether or not 8_W is empty. We say that a
component of D is a defining disk. A spine for W is a properly embedded 1-
complex Q such that W collapses to QU 8_-W. Dually, if Q is the spine of W,
then W is a regular neighborhood of 8-W U Q.

A 3-manifold triad (M; N, N') is a cobordism M rel @ between surfaces N
and N’. Thus N and N’ are disjoint surfaces in M with dN=<8N’, such that
OM=NUN'UONXI. A Heegaard splitting of (M; N, N') is a pair of com-
pression bodies (W, W') suchthat WU W'=M, W N W'=0,W=0,W'(=F, say)
and 8-W=N, 0_-W’'=N’'. We call F a Heegaard surface. In the following
section, we assume that N contains no closed surface.

3. Proof of Proposition 2

Let M and (W, W’) be as stated in section 1. Let Q' be a spine for W',
and F a Heegaard surface for (W, W’), and let (D, D’) be a pseudo cancelling
disk pair in (W, W’). We can see that F is FrypzN(O-W’'U Q’; W’) by moving
F by a rel @ isotopy. Then we may suppose that N(@-W'UQ’; W')ND=
N((@-W'UQ'YND; D). Hence every component of Int DNW’ is a disk or
IntDNW'=¢. If IntDNW'=¢, (D,D’) is a cancelling disk pair. Hence,
assume that Int DN W’ =¢, and D° denotes the disk with holes DN W.

Claim 3.1. We may suppose that DN\ D'=0D N0D’: a single point.

Proof. Each component of Int DN D’ is a loop or an arc properly em-
bedded in disks Int DN W’. Since W’ is irreducible, we may suppose that
Int DN D’ consists of arcs by an isotopy. Let E be a component of Int DN W’
and & an outermost arc of Int DN D’ in E. By cut and paste of D’ along 8, we
have two disks D{ and Dj. Since 0D N9D’ consists of a single point, D] or
9D}, say 8Dy, intersects 8D in a single point. Thus we have a pseudo cancelling
disk pair (D, Df) such that ${Int DN D{} <#{Int DN D’}. Then, put Di=D".
Continuing in this way, we finally obtain a pseudo cancelling disk pair (D, D)
such that Int DN D'=¢. This is the conclusion.
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Let a be an essential arc in D°. The arc & is called a recurrent arc if both
of its end points lie in one component of dD°. Suppose that & is non-recurrent,
and that there is a disk B in W such that BN9,W=0BN3d,W=a': an arc such
that & U a@’=0B (note that, possibly, Int BN D°=#¢). Let w be one component
of 0D°—3dD containing a point from da.

Lemma 3.2. Suppose that » N 0B consists of a single point (i.e., a compo-
nent of dat). Then, F is rel 9 isotopic to a surface F such that :
(1) (D,D’) is a pseudo cancelling disk pair for the Heegaard splitting (W, W')
induced by F,
(2) each component of DN\ W' is a disk,
(3) #{DNW}<#{DNW'}.

Proof. The idea of this proof is due to Lemma 2.1 in [11]. This can be
proved as well by the inverse argument of isotopy of type 4 introduced in [16].
Let E be the component of Int DN W’ whose boundary is w, and e a center of E.
The core of N(E; W’) is of the form e I, say B, which is a subarc of Q’. Let
es(e; resp.) be a point for ex {0} (ex {1} resp.) such that ¢, is in the side of B
with respect to D and e, is in the other side. Slide ¢, on Q' and 3_W’ along B
fixing ;. Then we can see that 3 is parallel with ¢ in N(D; M) after this iso-
topy, since & NOB consists of one point (see Figure 3.1). Thus ${DNW'} is
reduced by moving F by an isotopy. Moreover, after this isotopy, each com-
ponent of DN W’ is a disk and 8D N 9D’ still consists of a single point, since we
move N(E; W’) only in this isotopy.

=

C/
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i | |

Figure 3.1

Assume that (D, D’) is a pseudo cancelling disk pair such that each com-
ponent of Int DN W' is a disk and that #{D N W'} is minimal. Then we have:

Claim 3.3. DN W(=D°) is incompressible in W.

A properly embedded disk E in a compression body W is a product disk
if 3E N9(8-W) X I consists of two essential arcs in 8(8-W) X I.

A complete disk system of W is a system of disks {E;} in W which satisfies
the following conditions:
(1) each E; is a defining disk or a product disk,
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(2) each component of cl(W—UN(E;; W)) is a 3-ball.
(There is a complete disk system of W, since 8- W contains no closed surface by
the assumption.)

We can observe that D° N {UE;} consists of loops and arcs properly em-
bedded in D°. Further, we may suppose that ON(D’; W')N0{UE;} are dis-
joint from dN(D’; W’')N 8D, by moving E,, if necessary, by an isotopy.

By using the standard innermost circle and outermost arc argument, we
obtain the following claim.

Claim 3.4. We may assume that D° N {U E} consists of essential arcs.
By Claim 3.3, we have the next claim.

Claim 3.5. D°N{UE} is a complete system of arcs for D°.

Proof of Proposition 2.

Case 1. All components of D° N {U E;} are non-recurrent.

Let a be a component of D° N {U E;}, and E a component of {E;} contain-
ing a. Let a’ be an outermost arc of D° N E on E with respect to @, and E’ a
subdisk in E which is bounded by &’ and 6E. Thus we have a non-recurrent
arc &’ of Lemma 3.2, and it contradicts the minimality of #{DNW’}. Then
we have the conclusion of Proposition 2.

Case 2. 'There is a recurrent arc @ in D° N {U E}}.

Let D° be a disk with holes which are bounded by & and 8D° which con-
tains 8. We can suppose that there is no recurrent arc in D°’ N {UE} by re-
peating that operation, if necessary. Then there is a non-recurrent arc in D°' N
{UE,;} by Claim 3.5. Let 8 be a component of their non-recurrent arcs, and o
a component of 8D°” which contains a component of 83 and does not contain
da. E denotes a component of {U E;} containing B, and take E’ the closure of
a component of E—@. Let 8’ be an outermost arc with respect to @ in D°" N E’
whose boundary is contained in w. Then, B’ is the non-recurrent arc of Lemma
3.2. If there is no such arc, then B is the non-recurrent arc of Lemma 3.2.
This contradicts the minimality of #{D N W'}, and we have the conclusion of
Proposition 2.

4., Handle number

In this section, we give firstly some definitions connected with sutured
manifolds and Murasugi sum. Next, we give some lemmas with respect to the
properties of a handle number and a compression body. For the proofs of them,
see [7].
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For the definitions of standard terms of sutured manifolds, see [4] and [18].
We say that a sutured manifold (M, v) is a product sutured manifold if (M, ) is
homeomorphic to (Fx I, dFxI) with Ry (v)=FXx {1}, R.(v)=Fx {0}, A(v)=
OF X I, where F is a surface and J is the unit interval [0, 1]. Let L be an ori-
ented link in S® and R a Seifert surface for L. The exterior E(L) of L is the
closure of S*—N (L; S%). Then RN E(L) is homeomorphic to R, and we often
abbreviate RNE(L) to R. (N, 8)=(N(R; E(L)), N(0R; dE(L))) has a product
sutured manifold structure (RX I, 9RXI). (N, 38) is called the product sutured
manifold for R. The sutured manifold (N*, §°)=(cl(E(L)—N), cl(8E(L)—3))
with R,(8°)=R_(8) is the complementary sutured manifold for R.

Sutured manifold decomposition is an operation to obtain a new sutured
manifold (M’, ¥’) from a sutured manifold (M, v) by decomposing along an
oriented proper surface S (see [4]). The notation for this operation is as follows:

(M, ) = (M, )

A surface R(CS?) is a 2n-Murasugi sum of two surfaces R, and R, in S®
if:

(1) R=R, Up R,, where D is a 2n-gon, i.e., dD=y,U»,U U p,U», (possib-
ly n=1), where p,(v, resp.) is an arc properly embedded in R,(R, resp.).
(2) There exist 3-balls B;, B, in S® such that:

(i) B,UB,=S% B,NB,=0B,=0B,=S?: a 2-sphere,

(i) R,CB,, R,CB,and R, NS*=R,NS?=D.

When D is a 2-gon, the Murasugi sum is known as a connected sum. When
D is a 4-gon, the Murasugi sum is known as a plumbing. This paper focuses
on a plumbing mainly. Put L=8R. Note that R'=(R—D)U D’ is an oriented
surface with 9R'=L where D'=8B,—Int D. By a tiny isotopy of S® keeping
L fixed we can move R’ so that R*" N RN E(L)=¢. We will say that R’ is a dual
of R. Note that R’ is also a 2n-Murasugi sum of R{ and R} where R{=(R,—D)
UD'(i=1, 2).

Let R be a Seifert surface obtained by a plumbing of two Seifert surfaces
R, and R, whose complementary sutured manifolds (M, v,) and (M,, 7,) are ir-
reducible, and let (M, ) be the complementary sutured manifold for R. By the
definition of a plumbing, there is a 2-sphere S? along which R is summed and
the summing disk D. Let S be the 8-gon S?—(Int DU Int N(dR)) and we
call S a cross-section disk in this paper.

Next lemma follows from [5], [7].

Lemma 4.1 (cf. [5], [7]). (M,,v,) and (M,, 7v,) are obtained from (M, )
by the sutured manifold decomposition along S with an appropriate orientation. (see
Figure 4.1.)

Since (M, v;) and (M,, 7,) are obtained from (M, ) by a sutured manifold
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decomposition along S, we call M; in M the part of M; (i=1, 2). Let S,(S, resp.)
be the component of Fry,N(S; M) in the part of M, (the part of M, resp.).
Then we may suppose that N(S; M)=Sx1, S=Sx {1/2}, S;=8x {0} and S,
=8X {1}. Moreover, let a,(1<7<4) be a set of points cyclic ordering on 9.5 N
$(77), then we can suppose that each component of s(v) N.N(S; M) is of the form
a;x I, and set aj=a;x {0} and a?=a;x {1} (1<i<4).

In the following, we identify (M, v,)((M,, 7,) resp.) with the component of
the sutured manifold obtained from (M, &) by decomposing along S,(S; resp.)
which contains the part of M;(M, resp.). Further, we assume that each com-
ponent of S, N s(7,)(:S; N s(7,) resp.) joins a?, a?,1(ail, ai .1 resp.) for ¢ odd (for 7
even resp.).

Let (W, W’) be a Heegaard splitting of (M; Ry(7v), R-(¥)) and F the Hee-
gaard surface. F is said to be a nice Heegaard surface of (M; Ry(7), R_(7)) if it
satisfies the following conditions:

(1) S;NF consists of arcs joining a; and aj,1 for 7 even,

é—‘Si

a; a3

Figure 4.2
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(2) S;NF consists of arcs joining af and a?,; for 7 odd,
@B) FN(SxI)isa disk.
The next proposition follows from [7].

Proposition 4.2 ([7], Proposition 3.1). We can assume that each compo-
nent of SN W' is a product disk by moving F by a rel 0 isotopy. (see Figure 4.3.)

F

<

S
Figure 4.3

Let P be a properly embedded surface in a compression body W. P is
called boundary compressible toward 0, W if there exists a disk D in W such that
DNP=a :anarcin 8D and DN, W= B :an arc in 8D, with a N B=0a=3,
aUB=0D, and either & is essential in P or « is inessential in P and the bound-
aries of all disk components of cl(P—a) intersect 8(0-W)x 1. If P is not
boundary compressible toward 0, W, then we say that P is boundary incompressi-
ble toward 0, W.

Now, let P be a connected surface properly embedded in a compression
body W such that each component of 9P N3(0-W)xI is an essential arc in
9(0-W)x 1.

Lemma 4.3 ([7], Lemma 2.3). Assume that 0P N9, W =%¢ and P is in-
compressible and boundary incompressible toward 0,W. Then P is
(1) an annulus such that one boundary component is contained in 8.W and the
other is contained in 0_W,
(2) a disk whose boundary component is contained in 0, W, or
(3) a product disk in W.

Suppose that (W, W’) is a Heegaard splitting of (M; R,(7), R-(7)) such that
h(W)=h(R). By Proposition 4.2, we may suppose that every component of
SNW and SNW’' is a disk as illustrated in Figure 4.3 and that each component
of SN F joins a;, a4, for i even. By Lemma 4.3, we can see that SN W has a
boundary compressible disk D toward 8. W. If D is contained in the part of
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M,, we say that D is good. If D is contained in the part of M,, we say that D
is bad. Note that if D is good, then F is isotopic to a nice Heegaard surface.
Then, we have the following inequalities concerning the handle numbers of
R, R, and R,.

Lemma 4.4 (cf. [7], Lemma 4.6). If D is good, then h(R,)+h(R;)<
h(R). If D is bad, then h(R,)+h(R,)—1<h(R).

Next, we define a product disk and a product decomposition for a sutured
manifold (M, ¥).
A properly embedded disk E in (M, ) is a product disk if 0E N A(7y) con-

sists of two essential arcs in A(Y). A product decomposition (M, ) E M5 ")
is a sutured manifold decomposition along a product disk E. Note that each
compression body W can be regarded as a sutured manifold with A(y)=
3(0-W)x1. In this sense, we can see that this definition of a product disk is
equivalent to the preceding definition for a compression body (W, 7).

The next lemma shows a property of a compression body.

Lemma 4.5 ([7], Lemma 2.4). Let (W, ) be a sutured manifold and
(W', ') the sutured manifold obtained from (W,) by a product decomposition.
Then (W, 7v) is a compression body if and only if (W', v') is a compression body.
Moreover, (W)=hW").

5. Marked sutured manifolds and Proof of Theorem 1

Firstly, we give the definition of a marked sutured manifold following [12].

A marked sutured manifold (M, v, A) is a sutured manifold (M, ) together
with a properly embedded arc ACR(y). We call 4 a mark on (M, ).

Let L be a non-split link and R its Seifert surface. Suppose that R is a
plumbing of R, and R, where R, (i=1, 2) is a Seifert surface for a link L,(i=
1,2). We denote that D=R,NR,. Let (M7, and (M, 7,) (N, §,) and
(NN, 8;) resp.) be the complementary sutured manifolds (the product sutured
manifolds resp.) for R, and R, respectively. We will produce marked sutured
manifolds (M;, v;, 4;) and (N, 8,, 4,) (=1, 2) as follows. We first consider
(M,, v,) and (N,, 8;). Let I, be a core of D relative to the embedding DCR,
i.e., I, is a properly embedded arc in R, so that D is a regular neighborhood of
I, in R,. Push out I, from R, to the side on which R, is attached, and consider
this arc A4, to be properly embedded in R(7v,)=R(S,). Thus we get marked
sutured manifolds (M, v,, 4;) and (IVy, §;, 4;). By the same way, we also get
(M, 75, A;) and (N, 8;, 4,) (see Figure 5.1). These markings correspond to the
plumbings of R, and R,.

Let E be a product disk in a marked sutured manifold (M, v, 4). If 4
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is contained in 9E, then we call E a product disk with A as an edge.
Proof of Theorem 1.

By Theorem A4, we see that A(R;)-+h(Rp)—1<h(R)<h(R)+k(R;). Now,
we assume that A(R,)+h(R,)—1=h(R). Let (W, W’) be a Heegaard splitting of
(M; R.(7), R-(7)) such that i(W)=h(R), where (M, 7) is the complementary
sutured manifold for R. Let F be the Heegaard surface of (W, W’) and S the
cross-section disk. By Proposition 4.2, we may suppose that each component
of SN W' is a product disk as illustrated in Figure 4.3 and that each component
of SN F joins a;, a;,, for i even. By Lemmas 4.3 and 4.4, we can see that SN
W has a bad compressing disk. After compressing along this disk, attach 2
1-handle on 0, W as illustrated in Figure 5.3. Let F' be the surface obtained
from F, and let W and W’ be the closure of the components of M —F corres-
ponding to W and W’ respectively.

Claim. (W, W’) is a Heegaard splitting of (M; R.(7), R-(7))-
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1-handle

Figure 5.3

Proof. Since W is obtained from a compression body W by attaching
1-handle on 8, W, W is a compression body. On the other hand, a compression
body W’ is obtained from W’ by the decomposition along A where A is a thin
rectangle as in Figure 5.3. Thus W’ is also a compression body. Then we
have this claim.

By Lemma 4.2 in [7], (W, W) induces a Heegaard splitting (W,, W?) of
(M;; Ri(7,), R-(v;) (i=1, 2) such that h((W)=h(W,)-+h(W,) since (W, W’) has

a nice Heegaard surface (see Figure 5.4).

\

’
4

\

iy

7

(Ml) Y1) (M3, v,)
Figure 5.4

We denote E the product disk in the statement of Theorem 1.

By the definition of the mark A;,, we may suppose that A4, is contained
in S,(CM,). Then, let A be a disk in M, such that A contains 4, as illu-
strated in Figure 5.5. Further, we may suppose that £ contains A.

Thus the cocore of attaching 1-handle and a subdisk of E constitute a
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Figure 5.5

pseudo cancelling disk pair. (Note that the subdisk of E is contained in E—A,
see Figure 5.5). Then we have a cancelling disk pair in (W,, W{) by Proposi-
tion 2. Let (W,, W{) be the Heegaard splitting of (M,; R.(7,), R-(v,)) ob-
tained from (W,, W{) by compressing along this cancelling disk pair. Then,
we have that A(W,)=h(W,)—1. By the definition of a handle number, A(R,)<
(W) <h(W,). Then h(R)+h(Rp)<h(W;)+-h(W,) =h(W)=h(W)+1=h(R)+1.
Hence A(R,)+h(R;)—1<h(R), a contradiction. This completes the proof of
Theorem 1.

6. Examples

ExampLE 6.1. Let R be an unknotted annulus in S* with n-full twists, then
h(R)=0if n=1 and h(R)=1 if n>2.

For a proof of this example, see Example 2.1 in [7].

ExampLE 6.2. Knot 9y, has the minimal genus Seifert surface R and its dual
surface R’ such that h(R)=+h(R') (for the notation, see [17]).

Let R be the minimal genus Seifert surface for 9, and R’ its dual surface
shown in Figure 6.1. R and R’ is obtained from R, and R, as illustrated in
Figure 6.1. By Example 6.1 and Theorem B, h(R,)=h(R,)=1. Moreover,
by Theorem A, we can obtain that 1<A(R), H(R')<2. Now, we will show that
h(R)=2 and h(R")=1.

Firstly, we consider R. Let (M, v,, 4;) be the marked sutured manifold
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for R, as illustrated in Figure 6.2. The mark A4, corresponds to the plumbing
which is associated to R and there is a product disk with 4, as an edge. Then,
by Theorem 1, we have that h(R)=2.

Next, we will show that 2(R’)=1. We can see by straightforward observa-
tion that R’ is ambient isotopic to R” as in Figure 6.3. Let (N, 8) be the pro-
duct sutured manifold for R” and (M, v) the complementary sutured manifold
for R”. We consider the properly embedded arc a in (M, 7) such that daC
R_(v)=R.,(3) as illustrated in Figure 6.3.
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Figure 6.3

Put X=R_(v)xIUN(a; M); then X is a compression body with A(X)=1.
On the other hand, by product decompositions and Lemma 4.5, cl(M—X) is
also a compression body with A(cl(M—X))=1. Hence A(R")=1.

ExampLE 6.3. The condition of Theorem 1 is not necessary; in fact, there
is a Seifert surface R such that h(R)=2 and h(R,)=h(R,;)=1 where R is obtained
from R, and R, by a plumbing. Moreover, there is no product disk in M; with
A(i=1, 2) as an edge.

Let R be the incompressible Seifert surface of 10g; then R is obtained from
R, and R, by a plumbing, as illustrated in Figure 6.4 (cf. [12], Figure 6.11).

We have that A(R,)=h(R;)=1 and A(R)<2 by a similar argument of Exam-
ple 6.2. Moreover, we can verify that there is no product disk in M; with 4,
(=1, 2) as an edge by Lemma 4.1 and Proposition 4.2 in [12]. Then we will
show that A(R)=2. By Theorem B, we may investigate R’ instead of R (see
Figure 6.5).

Let (N, 8) be a product sutured manifold for R’ and (M, ) the comple-
mentary sutured manifold for R’. Now, we assume that A(R")<1. Then
H\(M)/ixHy(R(v))~<h|r>, where k is a generator corresponding to attaching
1-handle and 7 is a relation arising from a 2-handle. Note that M is obtained
from R, ()X I by attaching a 1-handle and a 2-handle by the assumption. This
abelian group is generated by a single element. However, this group is isomor-
phic to Z,PZ; for this example. Hence this is a contradiction and A(R")=2.
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Figure 6.4

RI
Figure 6.5

7. Handle number of the incompressible Seifert surfaces for pri-
me knots of < 10 crossings
Let R, and R, be Seifert surfaces for an oriented link L in S®. R, and
R, are equivalent if R, is ambient isotopic to R, in the exterior of L. The in-
compressible Seifert surfaces for prime knots of < 10 crossings are classified
by Hatcher and Thurston [8], and Kakimizu [12]. In fact, Kakimizu proved
the following theorem.

Theorem ([12]). (I) The incompressible Seifert surfaces for every prime
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knot of < 10 crossings are unique except for the following knots (see [17] for the
notation).

To | 8 | 9% | 9% | 9 | 9 | 9 | 10, | 104 | 104 | 104

2 | 2| 2 4’2 3| 2] 2] 2] 4] 3

105 | 10, | 10, | 10, | 105 | 105 | 105 | 105 | 106 | 1065 | 10,

3 | 2] 2] 3 4|2 2 | 22| 2] 3

(II) Each knot in the above table has exactly two, three or four equivalence
classes of incompressible Seifert surfaces according to the number written under the
knot ; moreover they are all of minimal genus.

Kanenobu and Gabai detected the fibered knots of < 10 crossings in [13]
and [6]. Note that a fibered knot has a unique incompressible Seifert surface,
that is, a fiber surface. The fibered knots of < 10 crossings are listed in Table
I. (For the notation, see [17].) Namely, the handle numbers of incompressi-
ble Seifert surfaces corresponding to these knots are equal to O.

Table 1
3, 4, 5 6, 63 (A 76 T2 8, 85
& 8y 810 812 86 8y 85 819 82 8x
9 9 97 920 922 924 926 92 928 929
930 931 932 933 934 936 940 92 943 944

s 94 948 10, 105 104 10, 104 104, 10,4,

10,3 104, 10,5 104 104, 10,48 1059 1060 1062 10g4

106 | 10,0 | 10, | 103 | 105 | 1058 | 1055 | 105 | 105 | 10g

1088 1089 1091 1094 1096 1099 10100 10104 10105 10106

10107 10109 10110 10112 10115 10116 10118 10128 10124 10125

10126 10127 10132 10183 10136 10137 10188 10139 10140 10141

10143 10145 10143 10149 10150 10151 10152 10153 10154 10155

10456 10,57 10458 10459 10460 1046, 10462 10464 - -

The handle numbers of Seifert surfaces in Table II are all 2. (For the
notation, see [8] and [17].) The handle numbers of Seifert surfaces which are
not fiber surfaces and are out of Table II are all 1. We note that each knot
in Table II has two minimal genus Seifert surfaces whose handle numbers are
mutually different.
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Table 11

knot type 90 98 104

Seifert surface [.S1(0, 0, 0)] [S,(0, 0, 1)] [5:(0, 0, 0)] [5:(0, 0, 0)]

104 10,5 10, 10 104

(510, 0, )] [5:(0,0,0)] [S5:(0,0,0)] [5:(0, 0, 0)] [5:(0, 0, 0)]

1033 1057 1053 1074

[$1(0, 0, 1)] Figure 6.4 Figure 7.1 Figure 7.2 Figure 7.3

Figure 7.1 Figure 7.2

Figure 7.3
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