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ABSTRACT

Optimum Stratification Points (OSP), Minimum Variances and some kinds
of stratification efficiencies were computed ‘(a) for typical four
distributions, including normal and exponegtial, (b) under three sample
allocation methods; Neyman, Equal and‘Proportional, (c)’up to iO strata,
(d) in estimating the population mean u and variance 0?, by usiﬂg
nonlinear prograTming algorithms. The»optimum stratification in estimat-
ing y was found to be attained by Interval Optimum Stratification with 5
or less strata usually, whereas General Optimum Stratification was very
effective in estimating 02, especially for a symmetric distribution.

Based on these results, some sampling procedure was proposed, which
was effective in decreasing the standard error of the estimator for u in
some representative practical examples by about 30-60% compared with the
traditional procedure.

The author pointed out the importance of evaluating the robustness of
the optimum stratification method with respect to a small change of (i)
the distribution, (ii) sample sizes in respective strata and (iii)
stratification points, and gave some formulae for the evaluation.
Numerical studies with practical examples showed that (1) each of the
measures of the three kinds of robustness was so small as less than 10%,
(2) the proposed procedﬁre, therefore, might be useful in practical
fields, (3) Equal Allocation is recommendable for its simplicity, -
robustness and similarity to the Neyman allocation, and (4) symmetric

distributions were more robust than unsymmetric distributions.
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CHAPTER 1

INTRODUCTION

Stratified random sampling is frequently employed in various fields

in order to reduce the variance of some estimator of a population

parameter. Many research workers therefore have studied "Optimum
Stratification Problem". Technical problems in this subject are as
follows:

(a) the choice of sampling design within strata — Kitagawa[26],

(b) the choice of a population parameter to be estimated — Wakimoto[45 ]
- [47] and Taga et él.[34],~

(c) the choice of stratificati¢n variable — Ericson[14] and Taga[33],

(d) the allocation of sample size — Aoyama[l], [2] and Cochran[5],

(e) The choice of the number of strata — Murthy[29] and Taguri et
al.[41],
(f) the location of the boundary points of stratification — Hayashi et

al.[18], [19], Dalenius[7], Isii et al.[23], [24], Tagal[33],
Sethi [32], Taguri et al.[36], [41] and so on,
(g) the estimation of expected gains from stratification — Taguri et
al.[41].
The best method of stratified random sampling may consist of determining
an optimal choice of a solution fo the problems stated above, since they
are interdependent.
Earlier studies on the stratified random sampling were, however,

mainly restricted to the area of the allocation of sample size and the



determination of Optimum Stratification Points (OSP). Hayashi et al.[18],
[19] and Dalenius[7] suggested the significance of the determination
problem of OSP and considered the simultaneous nonlinear equations to be
satisfied by OSP. Various practical procedures or rules for attéining the
approximate OSP were proposed by Dalenius et al.[8] - [10], Durbin[11],
Eckman [12] and Kpedekpo[28]. Actually Sethi[32] and Taguri et al.[36],
[41] cdmputed OSP for some typical distributions by using iterative
approaches or mathematical programming techniques. Comparison of several
iterative procedures were reported by Cochran[4] and Hess et al.[20]. On
the other hand, Ghosh[15] considered the bi-variate cases and Isii et
al.[ 24] has extended the results of Ghosh. Furthermore, another optimum
stratification were proposed by Isii[23] and extended by Taga[33], which
were more general stratification than the traditional interval stratifi-
cation.

As for the allocation of sample size, Neyman suggested the problem
and many research workers have discussed it. Cochran{4] discovered the
fact that Neyman Allocation was nearly equivalent to Equal Allocation.
Although this has been numerically ascertained by Sethi[32] and Taguri et
al.[41], it is not yet proved theoretically. Ghosh[16 ], Aoyamal2]
discussed the multivariate case using concomitant variable. On the other
hand, Jagannathan[25] and Nordbotten[30] suggested the formulation of the
allocation problem as a mathematical programming problem and Bracken et
al.[3] actually solved some optimum sample allocation problem. However,
it may be said that this approach has, in general, received 1little
attention up to this time, partly because of the statisticians' unfamili-

arity with mathematical programming theory.



In almost all studies stated above, the population parameter to be
estimated was the population mean. Wakimoto[45] - [47] suggested the
problan to estimate the population variance, covariance and correlation
coefficient, and Taguri[36] numerically gave OSP in  estimating . the
population variance.

As for the number of strata and the gain from st?atification,
Murthy[29] and Taguri et al.[41] discussed the optimum number of strata
under some appropriate cost function.

These studies were done mainly from the theoretical point of view.
On the other hand, in practical sample surveys, stratification has been
usually used without any consideration of theoretical results on optimum
stratification. So I have studied this problem in order to apply the
theoretical results to practiéal problems.

At the beginning of sample design, the information needed to perform
it is assumed to be givgn. Therefore population distribution F is
definitely specified from past surveys or a pilot survey. Although F
could be different from the actual distribution, we can only apply our
design to such specified F. For this reason, we will assume that F is
known. Then it will make the sampling design more efficient to offer
Optimum Stratification Points and Minimum Variances of the estimator for
some typical distributions numerically, so as to provide approximate
optimum stratification points through specifying the population distribu-
tion F. In many practical problems,»we may be able to guess the type of
distribution approximately even if the true distribution itself is not

obtainable.



(i) From this standpoint, we firstly make tables giving Optimum Stratifi-
cation Points (OSP), Minimum Variances (Min.Var.) and some sorts of
efficiencies for some distributions (Taguri[36], [41]).

(ii) Secondly we propose a method how to use these tables, and then apply
our method to acfual data seté; Current Survey on Petroleum Products
Demand and Supply which was performed by the Ministry of International
Trade and Iﬁdﬁstry (MITI) in 1981 (Taguri[37]).

(iii) Now in appiying the tabies to practical problems, the optimum
values in stratification will not be always practicable because of
various constraints in practical fields. So it may be important to
analyse the problem how much the value of an objective function (the
variance of an estimator) is influenced by small deviation of a
distribution function (Taguri[38]), sample sizes in respective strata
(Tagﬁri[do]) and/or stratification points (Taguri[39]). Therefore we,
finally, investigate these facets of robustness analytically and
numerically.

Through these studies, the theoretical results on optimum stratification

could be effectively useful in many practical jobs.



CHAPTER 2

NOTATIONS AND PRELIMINARIES

2.1. Quantities of Population
Throughout the present paper, the distribution function F(x) corres-
ponding to the population I is assumed to be absolutelylcontinuous and to
have finite fourth order moment. Let ﬁ be decomposed into £ strata Hi
(i=1,2,...,4%), where % is a preassigned positive integer. Corresponding
to Hi, F(x) can be decomposed into Fi(x)(i=1,2,...,2) satisfying the
following relation;
L 1
F(x):Zilei(x) for xeR,
where Fi(x) is non-negative and non-decreasing in x for i=1,2,...,%. This
is called "an % -decomposition of F". Put w.=lim F,(x)-lim F_(x), then w,
1 X5 i X>—o” i i
represents the weight of Hi and Fi(x)/wi is a distribution functiom of
Hi' Let us denote the population mean and variance by y, oz(oko) and the
mean and variance of the i-th stratum by ui,cji(gi>0) respectively;
uy = f_mxdFi(X)/wi, .
2 e (i=1,2,.....,2).
o> = [7 (x=y, JaF, (x)/w_,
i —c i i i
The assumption implies that there exist the moments roi 9P to the 4-th
order of the i-th stratum;
—j x"dF (x) < (v=0,1,2,3,4). (2.1)
Since the population distribution is absolutely continuous by the

assumption, there exists the probability density function (p.d.f.) f(x).



2.2. Stratification Method

Now -for any g -decomposition {IFi} there corresponds the 'following

vector-valued function é:(él,é .,éz) defined uniquely except for

preee
F-measure O(see Tagal331]);

. L
éi(x)éo (1=1?2,...,£); : i=léi(x)=1 for a.e. F,

where éi(x)'is'the Radon-Nikodym derivative dFi/dF of the measure Fi with
respect to the measure F. Therefore we may take such a vector-valued
function #(x) for a stratification or "a General Stratification (GS)" and

designate a stratification by # instead of { Fi(x)} hereafter.

Let (f be the set of all open, half open or closed intervals in Rl.

Let € be the empty set. If #(x) satisfies

1 on Iie&, 2 1
(i=l,2,..,.2); Uile:'L:R H Iian=€ if i#j,

éi(x)={
0 on R eIi,

then we call it "Interval Stratification (IS)". If the F-measure for the
set {x;0<éi(x)<l} is positive for some ie{1,2,...,2}, then we call it

"Randomized Stratification (RS)".

2.3. Quantities Obtained from Sample

Let (Xil’XiZ"""’X'

ln) be a random sample with size ng drawn from

i
the i-th stratum Hi for i=1,2,...,%2. Total sample size is fixed and

_ L
n = zizlni'
Throughout this paper, we consider the following estimator of the

population mean y based on the stratified random sample:

n,
v R v . ¥ _ 1 .
X= ] o w. X Xi'Xj=1Xij/“i (i=1,2,...,2). (2.2)



The estimator f is unbiased provided that the weights wi are known(see
Section 6.1). We also consider the following estimator of the population
variance 02.
= Z.f w.U, + Zl A X)? Ziilwi(l—wi)Ui/ni,
U, = ZJni( J—Xi) /(ni-l) (i=1,2,...,8).

If a stratification method 6 and an allocation method {n;} of sample
sizes in respective strata are determined, then the variance V(i}é) of the
estimator X is given‘by

X'é) Z 2 2 2/n.

i= 1Y i"i% i
S LT B (0dF() [T x4 ()R (0~ ([T x6, (0)F ()} 2] /m,. (2.3)

2.4. Sample Allocation Method
Let us consider the following three sample allocation methods:
. o %
Neyman Allocation (NA) ni—nwici/zjzleoj,
Equal Allocation (EA) nizn/z, (i=1,2,c000e,).
Proportional Allocation (PA) : n =nw,,

Then the variance of the estimator X is given by

VN(XI¢)=(Z.£ w.o.)z/n for NA,

v, (X |$)=2] X w f 2/n for EA,
v (2|¢)—Zl 103 2/n for PA.

If we decide a number of strata § and a total sample size n, the problem
of optimum stratification for the population parameter p is reduced to
determining the stratification method ¢ under a given allocation method so
as to minimize the variance of X. Therefore we may adopt the following

functions y{#) as our objective functions to be minimized:



¥ (B)=nv (X| 8)= T.* w.o.)®  for N, (2.4)

i= 1 1 i

¥ p(8)=nv (X]ﬁ)—zz Wl for EA, (2.5)

¥, (8)=nv, (X #) * w0 for PA. (2.6)

i= 1 1 i

In estimating the population variance 02, we consider only the case
of PA for the simplicity of computation. Then the estimator Ust is

unbiased and its variance is given by

U_ 8= T 2w T e )8, GO AF () =0+ ) [ (e, )8, () aF ()

+4(u '“)262}+§(21 =1%i0 f ¢ g 121 f 4/(n —l)]
It is proved by Wakimoto [45] that
L
V(u)-v(U t|é)=*Zl<J i J{o —0 +(u, —u) —(uJ—u) }4 .
(Zl l 1 1 _E#Zl =1 1(0 Oy ) Zl =1 nfl ngll)} (2'7)

where U is an unbiased estlmator of ¢ 2 based on a simple random sample

o =2 v
(Xl,X ,Xn) and is given by U=2121(Xi—X) /(n-1) (X=Z£21Xi/n)-

PYEERRE
- Provided that a number of strata g ana total sample size n. are given,
minimizing V(Ust!é) is equivalent to maximizing (2.7) because of V(U)
being constant. If n is so large that the last two terms of the right-hand
of (2.7) may be neglected, the Asymptotic General Optimum Stratification
(AGOS) ¢** is given by one which attains the supremum of Zl < 5% J{ 2 0 +(u
2.2

i-“) —Qlj—u) } - Therefore we will take up the following as the obJectlve

function to be maximized;

2 2 2 2.2
Ws(é)=Zi£jwiwj{°i'Uj+(”i_“) ‘(uj‘u) }- (2.8)

Let us briefly summarize main results obtained up to now as to the

optimum stratification method é*:(é*,é;,...,ég) in estimating , . We
denote OSP by gf for i=0,1,...,M (x* r:x* for i=1,2,...,M), where xB and



xﬂ are the both end points of the domain of a distribution including %= .
w{, u?h and 032 are the weight, mean and variance of the i-th stratum
corresponding to #*.

(a) In the case of NA (Isii[23])

There exists some @#* attaining inf WN(é) such as

1 if gi(x)<g.(x) for all j#i,
é;(x)={ J (i=1,2,...,%), (2.9)
0 if gi(x)>gj(x) for some j#i,
where
1 2 . . \
gi(x)=5§(x—u;) +o% (c§>o), (i=1,2,...,2). (2.10)

Therefore in general, #* is GS. If we limit a stratification method to

IS, then x§ should satisfy the following relations (Dalenius[7]);

1 2 1 2 .
S{x3-ul) T+ol= =5 (x;—u§+l) +o%,,  (i=1,2,...,2-1). (2.11)
i i+l .

(b) In the case of EA
If we limit a stratification method to IS, it is easily shown by
differentiating (2.5) by X, that x; should satisfy
Wi (x%u*) Zeor2)s W {(x¥=pt ) 2w} (i=1,2,...,0-1). (2.12)
A N i i+1 71 Tiel i+l ' ? *
(c) In the case of PA (Taga[33])
There exists some ¢* attaining inf‘yp(é) such as
1l if x;_fgu;<x;,
éz(x)={ (i=1,2,.....,2).
0 otherwise,
That is, #* is nothing but IS, and x; satisfies the following (Hayashi et

al.[18], Dalenius[7]);

1 .
xt=5(ut+ut ) (i=1,2,.....,2-1). (2.13)



In the case of estimating 02, there exists some AGOS é**:(éi*,.....,

éﬁ*) attaining sup Ws(é) such as

1 if h,(x)>h,(x) for all j#i,
é%*(x)={ * J (i=1,2,..... L),
* 0 if hi(x)<hj(x) for some j#i,
where
h, (x)=a, {(x-m)%-a /2}, (2.14)

p0O 2 0
a;=f" (-1 gr* () ar(£)/[7_pre(t)ar(t).
[Remark 2.1] In the optimum stratification problem, we need not consider
Randomized Stratification (RS) as stated above. So hereafter, RS is

excluded from our consideration.

2.5. Some Efficiencies
Let us define some efficiencies in estimatingy :

e (2)={VE(1)-vx(2)}/V¥(1)  for NA,

ey ()=IVE(1)-VX(2)}/VE(1)  for EA,

ep(£)={VE(1)-Vx(2) }/VE(1)  for PA,
where V%(%) is the variance of X under the optimum stratification #* with
% strata. e.(2) therefore shows the relative efficiency of stratified
random sampling with £ strata to simple random sampling under each sample
allocation method. Moreover we will define the following.efficiency which
represents the degree of relative improvement of NA to EA or éA:

cp (2)={VE(2)-VX¥(2)}/VX(2)  for EA,

cp(z)={v;(z)—v§(z)}/Vﬁ(z) for PA.

- 10 -



In the case of estimating 02, the following two kinds of efficiencies
are defined:
er(M)={vex(1)-vex(2)}/vex(1),
eq(L)={vEx(1)-vxx(2)}/vax(1),
cg (2)=1vex(2 )-VEH (I /vpe(),
where Vﬁf(l) and V%;(Z) are the variances -of Ust under Asymptotic Interval
Optimum Stratificatjon (AIOS) and AGOS in +the case of 2 strata,
respectively. e.(2) therefore shows the relative efficiency of stratified
random sampling with £ strata to simple random sampling under each
stratification method, and cs(l) represents the degree of relative

improvement of AGOS to AIOS.

2.6. Conditions of Our Study
Our study was performed under the following conditions:

(A) Types of distributions

1° Equilateral triangular distribution P f(x)=1-]|x], ~lexgl.
2° Normal distribution Zf(x)=e—x2/2//§;; —o<x< 5o,
3° Rightangled triangular distribution P f(x)=1-x/2, Osxg2.
4° Exponential distribution P f(x)=e T, - Ogx <o,

The reason why we have selected these four types of distributions.are as
follows: First we adopt the distribution 1° or 2° as an example of a
symmetric one, while 3° or 4° as an unsymmetric one. Furthermore the
distribution 1° or 3° is considered as an example of a straight line type

distribution, and 2° or 4° as a curved line type one. In some papers of

- 11 -



the author([36], [41]), truncated versions of 2°, 4° and a (truncated)

gamma distribution were also taken into consideration in addition to these

four distributions.

(B) Population parameters to be estimated

1° The population mean u

2° The population variance 02

In Chapter _6 - 9, -we consider only u in discussing
robustness.

{(C) Stratification methods

1° Interval Optimum Stratification (I0S)

2° General Optimum Stratification (GOS)
Iﬁ estimating 02, Asymptotic IOS or GOS is considered.
(D) Sample allocation methods

1° Neyman Allocation (NA)

2° Equal Allocation (EA)

3° Proportional Allocafion (PA)
In estimating 02, only PA is taken into consideration.
(E) Number of strata £

L =2, 3,0000...,10.

Under GOS, we consider only the case of ¢ = 2, 3, 4.

- 12 -
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CHAPTER 3
OSP, Min.Var. AND SOME EFFICIENCIES

IN ESTIMATING THE POPULATION MEAN

3.1. Formulation as a Nonlinear Programming Problem
As stated in Section 2.4, the optimum stratification problem can be
formulated as a problem to minimize the appropriate objective function
under some constraints:
Minimize ¥ (x) subject to KGEX S e e n e aSXyy (3.1)

where x=(xl,x ) and ¥ (x) is given by (2.4), (2.5) or (2.6)

PURREEE Xy
according to each sample allocation method.

This formulation and its direct solution have received 1little
attention as reviewed in Chapter i. However, we are convinced that this
formulation as a mathematical programming problem is superior to alter-
native approaches (for example, [8] - [12]), since it is simpler and
easier in describing the whole environments of the problem.

Then we applied a general iterative nonlinear programming algorithm
and successfully solved the optimum stratification problem for some
typical distributions as shown later. The nonlinear programming algo-
rithms could treat quite easily the problem with many strata, while
approximate procedures are, in general, very cumbersome. It should  be

noted that superiority of the use of nonlinear programming techniques is

clear as the number of strata grows larger.

- 13 -



3.2. Algorithm for Obtaining General Optimum Stratification

Let us examine feasible decompositions in General Stratification.
The number of intersecting points of quadratic functions (2.10) is at most
202x2=£(2—1), but from (2.9) the number of points being significant to GOS
is easily shown by mathematical induction to be at most 2(2-1). Therefore
R1 must be decomposed into at most 2¢2-1 intervals. Since GOS having just
£ intervals is nothing but IOS, the number M of intervals corresponding to
GOS except for IOS is given by

24+1°cM £28-1. (3.2)

Hereupon let us denote the coefficient of the term x2 in gi(x) by c,

(i=1,2,...,42) and M-l stratification points by X1 Xgpeneeny Xy o (xl<x2
<...<xM_l). Moreover, without loss of generality we may assume that clgc2
z..zcp. If ¢;>¢, is satisfied, then
g, (x)=1, .
for —2<XEX) Or X, <X<e (3.3)
$;(x)=0 (i#1), '
hold. Hence it is obvious from (3.2) and (3.3) that the interval (xl, X

M—l) should be decomposed into sub-intervals the number of which is from

-1 to 20-3. The case of clzc2 is excluded from our examination formally
but is taken into consideration in our computational process.

Now let us assign number g to the interval (xi, ) when

*i41
éa(x)=l, Xi<x§xi+l(i=l’2""’M-2) for @ =1,2,.....,%. Then ouf problem of
examining feasible decompositions reduces to finding all possible sequen-
ces of stratum numbers 1,2,.....,¢ assigned to M intervals corresponding
to feasible GOS's. It is easily shown from our assumptions that any

sequence corresponding to feasible GOS must satisfy the following five

conditions:

- 14 -



(i) Each number 1,2,...,% should be assigned to at least one interval.

(ii) The same number should not be assigned to adjacent intervals.

(iii) The number £ should appear only once: This is derived from the
assumption that c

is minimum among C. ,Cryeee,C .
L € C11CpreenCy

(iv) For any positive integer B, the number B must be adjacent each other
in a new sequence obtained by eliminating numbers greater than or
equal to B+1(B=l,2,...;£—1) from the original one: This is derived
from the assumption of clgc

.2C For example, consider the

Py .
sequence 1213421 in the case of =4, M=7. If we eliminate the numbers
greater than or equal to 3, then the obtained sequence is.12121. In
this one the number 2 is not adjacent, therefore the original sequence
is not feasible. On the contrary the sequence 1213431 is feasible,
for example.

(v) Remove the sequence that is equivalent to another by interchanging
stratum numbers.

Hereupon let us examine the case that the decomposed region is
finite. For example, consider the sequence 1213141 in the case of £=4,
M=7 for the distribution 1°. In this case the decomposed region being
finite, the feasible sequence may be 121314, 213141 or 21314. However
from Table 3.13, the leftmost and rightmost intervals of OSP corresponding
to the sequence 1213141 are both degenerate. Therefore these cases are
taken into consideration in our computational process. For the next
example, consider another sequence 123241. In this Case the feasible

sequence may be 12324, 23241 or 3241. As the interval corresponding to

the leftmost number 1 is degenerate from Table 3.13, the sequence 23241

- 15 -



has become the object of our computation. As for the sequence 12324, by
interchanging the stratum number,vit can be equivalent to 21314 which is
already considered in the first example. The sequence 3241 may be
excepted from our examinatién because this case is nothing but IS. In
this manner we can show that all the case of the decomposed domain being
finite is taken into consideration in our computational process.

-

Now let us give some examples in which xO and Xy (M=3,4,...,7) denote
both end points of the domain for each distribution.
[Example 3.1]
When g2=2, (3.2) implies M=3. Therefore the sequence corresponding to
(xo,xl), (xl,xz), (XZ’XM) is 121.
[Example 3.2]
When =3, (3.2) implies M=4 or 5. Although the sequences satisfying
the constraints (i) - (iv) are 1231 and 1321 in case of M=4, from (v)
it is only 1231. On the other hand, in case of M=5, though the
sequences satisfying the constraints (i) - {(iv) are 12131, 12321 and
13121, from (v) the sequence 13121 is rejected. Therefore. it is
sufficient to consider only two sequences; 12131 and 12321.
[Example 3.3]
When g=4, (3.2) implies M=5, 6 or 7. Examining feasible decompositions
by the same procedure as in [Example 3.2], the resulting seqdences are
as follows;
12341 for M=5,
121341, 123141, 123241, 123421, 123431 for M=6

1213141, 1213431, 1232141, 1232421, 1234321 for M=7.

- 16 -~



If we examine all of these decompositions, the GOS should exist among
them. In our computation, this will be performed; to save space only a

part of them will be represented though.

3.3. Computational Scheme

In order to solve the problem (3.1), we used the nonlinear
programming algorithm proposed by Sakakibara[Sl] and Hooke-Jeevesl22].
Initial values in optimization process were determined by the modified
Monte Carlo method given by Taguri{BS]. This strategy gave quite
satisfactory solutions within reasonable computing time for each distribu-
tion. In order to improve hopefully the solutions in the case of IS, we
optimized the same objective function Y (x) under the equality constraints
(2.11), (2.12) and (2.13) in addition to the ipequality constraints as x
O;xlé...gxm’by using the same solution s%ratégy. This did give the slight
improvement of Min.Var. and the difference between the two sidés in each
of (2.11), (2.12) or (2.13) was reduced by the factor about 10—2.

Our computation was mostly performed on HITAC-8700/8800 of Tokyo
University Computer Center and on M-170 of Chiba University Computer
Center.

Since the values w, and <3§ for the standard nérmal distribution
N(0,1) can not be calculated analytically, the following scheme given in
Erdelyi[13] was employed in the optimization process:

fje—tZ/Zdt=7%fgz/2yl/2—le—ydy

%yézjfg(-l)j(x2/2>1/2+3/{jz(1/2+j)} for x20. (3.4)
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The error of approximation in (3.4) is less than 2x10-11, as is easily

seen from the fact that f:ta-le_tdt=zj:b(—l)jxa+j/{J!(a+J)} is a conver—
ging alternating series. Therefore after some calculation, it is seen that
the truncation error in our objective function induced by this approxi-
mation is less than .'2)(10-6 for all cases. The value My for N(0,1) and the
values wi, My and 0? for any ofher distribution can be derived
analytically. |

As for the round-off error, we use double precision arithmetics
during the optimization process and the error of each term in  our
objective function is 1less than 10—18. Consequently our computational
schemes are expected to give sufficient precision.
[Remark 3.1] In the computation of W, for N{0,1), we also employed the
polynomial approximation originally proposed by Hastings[17] and improved
by Toda et al.[42]-[44]. To evaluatevgi for N(0,1), we examined several
approaches such as the use of numerical integration, series expansion of
the incomplete gamma function or application of the spline function. As
the numerical integration is expected to require heavy computétional
works, it is not tested in practice. In this paper, we present the
results by using series expansion for the incomplete gamma function, sinée
it gives quite satisfactory values for each computation. Application of
the spline function is also recommendable as it gives enough accuracy for
practical wuse and requires less computation time than the series

expansion.
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3.4. Results
3.4.1. Interval Optimum Stratification

015) g{ (i=0,1,...,10), the value of the objective function?¥ * and the
efficiency e.(%) forf=1,2,...,10 are listed in Table 3.1 - Table 3.12 for
the four distributions(see [Remark 3.2]). The first column of the table
shows the number indicating individual distribution stated in Section 2.6,
(A). ¥ * means thé value of nV(iIé*) for £=1,2,...,10.

These tables show that the relative efficiency e.(2) does not much
depend on the type of distributions. The relative efficiency for the
straight line type distribution 3° is greater than for the curved line
type one 4°, and the same éonclusion is also true in the comparison of 1°
and 2°. This tendency is re@arkable in the case of PA. Besides, the
relative efficiency for the‘unsymmetric distribution 3° is greater than
for the symmetric.ohe 1°, and the same tendency is observed befween 2° and
4°, This i; remarkable in the case of NA or EA. Generally speaking, .the-
degree of the improvement of the relative efficiency owing to stratifica-
tion is considerably large, and it is most remarkable in the case of £ =2.
[Remark 3.2.] We have also computed OSP, ¥ * and e.(%) for some other
distributions; truncated normal, truncated exponential and (truncated)
gamma distribution. However to save space, they are not shown in this

paper(see Section 2.6, (A)).
3.4.2. General Optimum Stratification

The results of our computation are tabulated in Table 3.13 and Table

3.14. The sequences in the second column of these tables express those
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considered‘in Section 3.2. In each sequence in Table 3.13, some decomposed
intervals are degenerate. Changing the stratum number, this is equal to
the case of I0S, besides the value of Min.Var. under GOS is equal to the
one under I0S. For example, consider the sequence 12321 on the case of
=3, M=5. As shown in Table 3.13, the leftmost two intervals are both
degenerate. Therefore the original sequence 12321 is reduced to the
sequence 321, which is nothing but the case of IS. Moreover the value
0.02556 of W?} in Table 3.13 is equal to the one of Wﬁ in Table 3.1.
Consequently for the distribution 1°, GOS should coincide with IOS.

For all the other distributions and numbers of strata treated in this
paper, the same discussion can be true as partly shown in Table 3.14.
Therefore it is scarcely needed in practice to consider GOS and we may
‘deal with only I0s. ‘The theoretical investigation of this issue is an

open problem.

3.4.3. Comparison of NA anvaA

Let us study differences between the sample allocation methods; From
Section 3.4.2, since GOS can be regarded to approximately coincide with
IOS in the case of NA, we will consider only IOS hereafter. The values
cE(g) and cP(z) are shown in Table 3.15. From this table, it may be
concluded that NA and EA give quite similar results for all the
distributions considered here, since the values cE(g) are very small. So

let us investigate the difference between NA and PA in the following.
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Firstly, it is shown in Table 3.15 that as expected theoretically
Vﬁ%Vﬁ for all 2 and for all distributions and the equality sign holds if
and only if 2=2 for the symmetric distribution.

Next from Table 3.15, we can see that the ‘degree of relative
improvement cP(E) for the curved line type distribution 2° or 4° is a
little greater than the one for the straight line type one 1° or 3°.‘ And
cP(Z) for the unsymmetric distribution 3° or 4° is considerably larger
than the one for the symmetric distribution 1° or 2°. Therefore we may
expect that the effect depending upon the difference of allocation methods
is large when the form of a distribution is curved and unsymmetric.

The values of cp(l) show that PA reveals quite different behaviors,
since the differences are significant and grow larger as the number of
strata increases. EA may, therefore, be the best allocation method for

practical uses.

3.5. Optimal Relation between Sample Sizes and Number of Strata

In this section, we consider the determination problem of the sample
size n and the number of strata £ under some simple cost model. Assume
that the sampling cost is expressed as

C=c_+c n+c22a, (c

o*c1 c2>0 ja2l), _ (3.5)

O,cl,

where C is the total cost, ¢, is the fixed cost for sampling and does not

0

depend on n nor %. cl and c, are unit cost relative to the total sample
size and the number of strata, respectively. As EA is the useful

allocation from the practical view-point, we consider EA in the following

discussions. Same discussions as below are possible in case of NA or PA.
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In the case of EA, (2.5) gives
== . 3.6
Vo (X)=2y (x) (3.6)
Let us assume that the total sampling cost C must not exceed the available
total cost C*¥. That is,
C,+C,n+C 2a<C*
0 "1 27 T

Then the problem can be described as the following optimization problem:

Minimize V_(X) subject to ¢

oL
<C*
E L RC*,

+C. n+c
1

0 2

where n and £ are both positive integers.

It is known that the objective function VE(i) is monotone decreasing
with respect to n and 2. Let C** be total cost for appropriate integer n,
2. Then we can derive the following relation by combining (3.6) and the
equation for C**,

Minjmyn v (X) = Mipipug (c /e )/ TC*x—c )/ =2 ¥ (%)
Namely, in order to solve-the minimization problem (3.7), it is sufficient
to consider the minimization of
b () = ;i;wE(x)
with respect to the integral value of & and the appropriate value of x,
where k=(C**—cO)/c2.

When k is specified, we can compute the minimum value of wa(l) for
the typical distributions in Section 2.6, (A), since we have computed the
minimum values of WE(x). For some values of k and for o=1 and o=2, minimum
values ofqa(z) with respect to % are summarized in Table 3.16 - Table
3.23, where migzwa(z) are marked by the underlines. Judging from these

tables, if g=1, it may be said that the number of strata should be

selected as large as possible in so far as the value of k is not so small.
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In other words, to increase the number of strata is beneficial as far as
the stratification cost is not so expensive. On the other hand, if a=2, it
may be sufficient to take the number of strata less than or equal to 5 or

6 so far as the stratification cost is not very cheap.
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CHAPTER 4
OSP, Min.Var. AND SOME EFFICIENCIES

IN ESTIMATING THE POPULATION VARIANCE

4.1. Computation

The optimum stratification problem in estimating the population
variance o2 can be also described as the following mathematical program-
ming problem;

Maximize ¥_(x) subject to x

5 XL Ky (L.1)

)X . ).

where Ws(x) is given by (2.8) and x=(x

17720 Xy

Let us consider feasible AGOS by the same procedure as in Section
3.2. In this case, since the axes of ‘£ quadratic functions hi(x)=ai{(x—u)2
-ai/2} in (2.14) are common(that is, x=p), feasible decompositions for
£=2,3,4 are; 121 for 4=2(M=3), 12321 for £=3(M=5) and 1234321 for
L=4(M=7). Thereforé examining these decompositions, AGOS should exist
among them. In Section 4.2, calculation for such cases is carried out.

The nonlinear programming algorithm wused for solving (4.1) is
Hooke-Jeeves'[22] and initial values are determined by the mpdified Monte
Carlo method(Taguri[35]). The values w, andlcf for the standard normal

distribution were computed by using the approximation formula (3.4) with

the same truncation and round-off errors as in Section 3.3.
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4.2. Results
4.2.1. Asymptotic Interval Optimum Stratification and Asymptotic General
Optimum Stratification

OSP x;*(i:O,l,...,S), the value of the Variénce of Ust’ VEf:n.i%f V(U
st|é**), and the efficiency eI(Z) for 2=1,2,...,5 in the case of AIOS are
shown in Table 4.1, where VE* for 2=1 means an approximate value of nV(U)
in (2.7).

This table shows that the relative efficiency in the unsymmetric
distribution 3° or 4° is much gréater than the one in the symmetric
distribution 1°© or 29°. In case of the unsymmetric distributions, the
effect of stratification in the curved 1line type distribution 4° is
greater than the one in the straight line type distribution 3°. On the
other hand, in case of the symmetric distributions the relative efficiency
is fairly bad when ¢=2, because the stratification method is restricted to
AIOS and AGOS is not taken into consideration.

In the case of AGOS, the results are summarized in Table 4.2, which

shows that AGOS does not always coincide with AIOS in estimating 02-
4.2.2. Comparison of AIOS and AGOS

Let us compare the value V%* with Vé* when the number of strata { is

fixed. The last column of Table 4.1 shows the value of cI(z).
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Firétly for the symmetric distribution 1° or 2°, the relative
efficiency in AGOS is far greater than the one in the case of AIOS, and
therefore it is much effective to consider the case of AGOS. Hereupon the
remarkable point is that for these distributions, Vf§=V§§ and‘VE§=VE§,
where V%% represents the value of V¥* in the case of £ strata. This means
that each decomposed interval under AGOS has the effect equivalent to each
stratum under AIOS. The theoretical study of this point is an open
problem. Furthermore it is corrobolated ffom Table 4.2 that the stratifi-
cation given by symmetric pairs of intervals around y is optimum, that is
theoretically proved by'Wakimoto[45].

Secondly, for the distribution 3°, AGOS coincides with AIQS in case
of %=2 but not in case of §=3 or 4. qu example in case of ¢=3, V*¥* isg

G3
slightly greater than V}ﬁ and much smaller than V#¥ This may be caused

I3°
by the fact that AGOS has much information in estimating 02 compared with
AIOS. Now the sequence 12321 in this case degenerates to 2321. Moreover
%(x§*+x§*)=0.667 holds and this is nearly equal to the méan value 0.66667.
This fact is consistent with above-mentioned theoretical result given in
Wakimoto[45]. The same discussion holds also in case of g=4.

Thirdly, for the distribution 4°, AGOS exactly coincides with AIOS.

Therefore we may only consider the case of AIOS for this distribution.
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CHAPTER 5

APPLICATIONAL SCHEME OF OUR RESULTS

AND SOME REPRESENTATIVE EXAMPLE

5.1. Working Procedure

In the following, we will only consider the estimation of the

population mean. In actual sample surveys, the procedure of application

of the tables giving OSP and Min.Var. should be carried out by the

following steps:

lO

20

30

4°

.50

60

Guess the type of a distribution for a given practical problem, and
decide the type of distribution among those shown in Section 2.6, (A)
which should be fitted to the histogram made from the‘given data.
Determine the population parameters of the fitted distribution under
some criterion of goodness of fit by using the information of past
surveys or a pilot survey.

Compute optimum values of a number of strata and a total sample size
with or without using a cost function such as (3.5).

From the tables giving OSP, compute approximate values of OSP for the
given distribution, and construct strata.

Compute values of MH. and/or Oy and then deterﬁine sample sizes in
respective strata.

Of cource, it is necessary to proceed random sampling within each
stratum, and to estimate the population parameters and their estimated

standard error by ordinary methods.
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If strata are determined in advance, the steps 2°-4° are needless. If we
should compute OSP by using some auxiliary information, it is required to
get an approximate regression function from some information before the
step 4°%(see Taga[Bé]).

Since the four distributions given in Section 2.6, (A) are all
represented in standardized for%, we have. to m;ke some appropriate

variable transformation in practical situations(see Section 5.2.2).

5.2. Representative Example of Application

In this section, we will apply our procedure stated in the previous
section to the data of "Current Survey on Petroleum Product Demand and
Supply'", which was performed by the Ministry of International Trade and
Industry (MITI) in Japan. Oﬁr working procedure is gpplicable to any data
of a similar kind as this example(for example, to the data of "The'Current
Statistiés of Cémmerce”).

Now in order to estimate the sale of some kinds of petroleum, MITI
had a plan to do a stratified random sampling in 1981. Let us consider

the estimation of the sales of LPG and benzine.

5.2.1. Sampling Pchedure

In the case of estimating the sale of LPG, we omit establishments
whose sale are 0, and the stratification variable is the sale of LPG. For
the establishments with the LPG sale being O, the stratification is done
by the sale of benzine, where we omit establishments whose sale of benzine

are 0. In the traditional procedure which has been used up to this time,
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the strata are constructed as in Table 5.1 for LPG and benzine,
respectively. The sample allocation method is the Neyman allocation by
utilizing the values of the within-strata weight ws and variance of in fhe
sample survey performed in March 1980, which was a pilot survey for 1981.
Now the strata shown in Table 5.1 have been used without any
theoretical consideration. Let us stratify the population over again by
our procedure proposed in Section 5.1 and compare this with the
traditional one, where the number of strata £ and the total sample size n

are the same as before.

5.2.2. Fitting of a Distribution Al

MITI performed pilot surveys on some kinds of petroleum in March 1978
and March 1880. Table 5.2 and Table 5.3 sﬁow the data obtained, which are
classified into three types; TYPE I; IT and III. The data of TYPE IIT are
the sale of LPG for the establishments dealing only LPG, and the data of
TYPE II are for the establishments dealing some kinds of oils including
LPG. The data of TYPE I are the total of TYPE II and TYPE III. Some
histograms of these data are shown in Figure 5.1 and Figure 5.2. The
K-th(right-most) class is constructe@ by [ZK-l’ ZK)’ where zK=zK_l¥2(mK—z
K—l)' My is the mean of the K-th class and was given from the results of
sample survey. The value of mK is shown in Table 5.2 and Table 5.3. From
these figures and/or tables, it can be seen that the distribution is skew,
with its mode at the lower part, and is monotone decreasing, roughly

speaking. We, therefore, may fit the exponential or gamma (or their
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truncated) distribution to the data{see [Remark 3.2] and [ Remark 5.1]).
In this section, 1let us adopt the untruncated exponential distribution
among these, because the degree of goodness of fit is slightly better than
in other cases. The variable transformation x=Bz (8>0) is done, since OSP
were given for the standardized probability density function (p.d.f.) f(x)
in Section 3.4.1(see Section 5.1). Then the p.d.f. of z is fz(z)=8f(Sz)
(O<z<»). We will use the following T as the cr;terion‘of goodness of fit
between two 'distributions(see [Remark 5.2]);
ZK+1I ) [{fz<z>-h(z>}/fz<z>]Zfz(z>dz,

where h(z) represents the p.d.f. of the histogram and K is the number of
class. 2z, or z. (z

Jj-1 J Ti-1

class respectively, and h(z):qj on [Zj

<Zj) is the lower or upper end point of the j-th

Zj) for j=1,2,...,K (z =0). 1In

-1 0

order to let the domains of h(z) and fz(z) coincide, let us consider the

K+l-th class [z K' Zp.q

ZK+1f ] { Z(Z)—h(z)}z/fz(z)dz

), on which h(z):qK+1=O. Then T is given by

32. BZ .
K 2 -1 2
= q (e J_e J y/g-1. (5.1)
j=1 .
The most-fitted distribution f%(z) to h(z) can be determined under this
criterion if the value of B minimizing (5.1) is obtained. T is unimodal
. . _ . _ 2 2 e %
on B since éifBaT/as~—m, %gggaT/ag_w and 3 T/38 >0. The optimum value g
is, therefore, obtainable by using the linear search(for example, Golden
section method). The values of Bg*¥ in the eight cases are given in the

bottom row of Table 5.2 and Table 5.3. We may, then, fit the p.d.f.

— p¥*
f;(z)=3*e B2 o h(z), which is shown in Figure 5.1 and Figure 5.2.
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[Remark 5.1] From the standpoint of fitting a distribution, we should fit
some other one; for example, a beta distribution in the Pearson system.
Our objective is, however, to stratify the population by using OSP
computed in advance. In the preceding section, we gave OSP for some
distributions, only which can be now utilized for us. We, therefore,
should fit the exponential or gamma distribution among them. »

[Remark 5.2]“As the criterion of goodness of fit, we may adopt t;e
traditional X2- However, by our preliminary computation, obtained result
is moré preferable in the case of using T than in the case of using X2;
that is, the variance of the estimator is smaller. We, therefore, decide

to use the criterion T instead of x2.

5.2.3. Construction of Strata and Allocation of Sample

Let x; and z; be OSP for f(x) and f;(é) respectively, then z;:x;/e*.
The i;th stratum ﬁ; may be constructed by Hi=[z;_l, z{) (i=l,2,...,£;z6=0,
zz=u9. Computational results are shown in Table 5.4, which shows that the
stratification points {z;} considerably differ from the traditional
ones(cf. Table 5.1).

Next we will determine the sample size n{ in the i-th stratum by
Neyman allocation. Let n be the total sample size, then n; is given by
the following;

nf = nvpo/i L vrols (5.2)

where w§ and 0; are the weight and standard deviation of f;(z) in the i-th

stratum. The values of n; are also summarized in Table 5.4.
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5.2.4. Comparison of the Proposed and Traditional Method

Let us compare the proposed method with the traditional one. The
comparison of the two methods is impossible in the stpict sense, since the
true distribution g(z) in the practical field is unknown for us. We,
therefore, assumevthat the histogram h(z) is satisfactorily near to the
true distribution g(z), and investigate this problem. . Let W, and o be
the we;ght and ~gtandard deviation of h(z) in the i-th stratum IIi
respectively. The standard error of the estimator.R given by (2.2) is
S(i):#iifiwioi/ni. In the case of our proposed method, the standard error

of X is given by (2.3) as

}.. Q/ * 3% 2’ 2 2 3
Sf‘/nzi=1“’i % liog (W30 /Wi op) -

In the case of the traditional method, the standard error of X is
L
SZ"Zi=1wiUi//;L

L

since n.=nw.g./%.”.W.o.. Computational results of the values S. and S
i i7i"7i=1 171 T 1

;

2

are given in Table 5.4, which shows that our method decreases the standard
error of X by about 30 - 60 % compared with the traditional method, in

this example.

5.2.5. The Influence on S(X) by Small Change of z; and n;

OSsP {z;} obtained in Section 5.2.3 were computed from the theoretical
point of view. On the contrary, the list of establishments is classified
in the classes given in Table 5.2 or Table 5.3. Thérefore we have to

utilize the end point of some class near to z; in place of the exact gf.
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Moreover n§ given by {(5.2) is not generally integer or we usually round
off n; appropriately for the sake of the computational convenience.

Thus, how is the standard error of X influenced by small change of z;
and n;? Let z§* and n?* be the stratification point and sample size in

the i-th stratum after small change, and S_ be the value of S(X) in this

3

case. Computational results are given in Table 5.5. The influence on

S(X) is about less than 10% and is considefed not to be serious.
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CHAPTER 6

PROBLEM OF ROBUSTNESS IN OPTIMUM STRATIFICATION

We found in the previous section that the proposed method might be
useful in practical sample surveys. However there have been some
important unsolved problems for further study. For example, as shown in
the preceding example, OSP are usually impracticable from the constraint

. of sampling frame and the optimum sample sizes in respective strata may be
changed for the sake of convenience in thé analysis. As fof the weights
{wi}, they are generally unknown for us. Moreover the distribution in a
given practical problem is different from the distribution fitted to it.
Thus, strictly speaking, the optimum stratification is almost always
impracticable. We should therefore make a study of so-called "problem of
robustness in optimum strafificationf. Through this study, theoretical
results on optimum stratification are effectively useful in many practical
Jjobs.

ﬁow situations in which +the optimum stratification can not be
executed in practice are classified as follows:

(a) The type of a fitted distribution is different from that of an actual
distribution.

(b) The parameters of an actual distribution must be estimated.

(c) For convenience' saké of the ensuing analysis, sample sizes in
respective strata may be changed from their optimum values.

(d) From the constraint of sampling frame or for the sake of computational
convenience, stratification points may be changed from the computed

OSP.
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6.1. Bias of the Estimator X

The estimator of the population mean u is usually given by (2.2), in
which wi has been assumed to be known in the preceding section. However in
practical stratified random sampling, w, is wusually not available in
advance. For instance, as the value of wi is Qut of date in the preceding
example, it differs from the true value wg. It is generally impossible to
obtain a complete list for sampling, so that there often exist cases in
which wi is not precisely equal to wg.

Let us denote the difference between wi and wi by Vi, that is,

wi=wp + g, (i=1,2,...,2).

In this case, X is not an unbiased estimator of p in general. Therefore
we should adopt ‘the Mean . Sqﬁar‘e Error MSE(X) of X as our objective
function to be minimized and should not adopt the variance V(X) as in
Section 2.4. But if the bias term is small, the optimum stratifiéation
may be approximately attainedr bj' the stratification methody minimizing
V(X). 1In the following we will examine a condition under which the bias
term is small compared to V(X).

Practically in almost all cases, we might have some information as to

an upper bound of lvi/wg . Therefore suppose that a value of ) satisfying

the following is known;
lvil Wil S X (A>0), (i=12,...,%).
MSE(X) is given by

MSE(X) = V(A7/+(§5 viwi)?,
=1

where ui is the mean of the i-th stratum.
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Now let us examine the condition that

| MSE(R) = VX)) [VIX)=(E vii P IVE) <57 (6.1)

for a preassigned value § (0<6<l). For this purpose we will find an upper

4
H I. This problem reduces to that of linear programming

6 |
ound of Zi:lvi i

with linear constraints;

2
Maximize or minimize S(vi,va,. .., ve)=Z Wivy, (6.2)
i=1
2w’ Sy Saw®, (=12,...,9),
subject to .
. kz V,=0
, i=1
In order to solve this problem, we prepare the following lemma.
[Lemma 6.1]
The solution of the problem;
2
Maximize ¢(£1’E2""’EQ)=.Elal‘£i$
l:
k65K, (i=12,...,2),
subject to : (6.3)
. Q
E .=
| 2t
~ is given by the following:
(Solution) Rearrange 81y Bpyecece, @y in a descending order of

magnitude and put a(l)éa(z);.....;a(g). Let E(i)’ k(i)’ K(i) be the
value of Ei' ki, Ki corresponding to a(i) respectively, then the

optimal solution Egg) is given by

i =K, (i=12,...,% 1),

Qi—l 2
£o -2 , Kwy-Z kay
l:

i=Q,+1

Eepy

Ey =k@. (i=2+1,...,9),

where zl is the integer satisfying the followings simultaneously;

b
-

T 3 ke Sk
Ly DT L =80 (6.L4)

~.
I

Q1
z

2
Kin +2 kiny > &
=1 @ i=Q: +l(l) Eo

v~
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%
1=1%4

€,

i subject to (6.3), can

The probem; minimize Q(El,iz,...,il)=z
be transformed to the maximizing problem in the above lemma by replacing
the objective function ¢ with -3,

Now let us solve the problem (6.2) by using this lemma. The
continuous function é(vl,vz,...,vﬁ), defined on the hyperplane in the
2-dimensional closed interval, musf have a maximum value éU and a minimum

value ¢L. Let us calculate éU:

In [Lemma 6.1], put

P = ¢, ki=—-aw°,
a; =i, Ki=aw°, (i=12,...,%2),
Ei=vi, §0=0.
Without loss of generality, we may assume that the relation u1<u2< ..... <U2

is satisfied in this problem. Now let us obtain the integer 21 satisfying

(6.4), then

o 2-21+1 .
i=2-2;1 +2 i=1

M

-2
w’-Z w20
-2, +1 i=1

Mo

L]

i
must hold simultaneously. Therefore 21 is the integer satisfying

'3 -Q3 +1

4
1 w,-°§1/2<§_~l w?, (6.5)

-
z
l--

and is uniquely determined.

[Rmark 6.1] In the case of symmetric distributions, £1=[(2+1)/2] holds,

where [x] expresses the maximum integer smaller than or equal to x.

Then the optimal solution is given by

V;=—'>\wio, (i=132,"-32-21):
Q-2 £

Vima SME WS-z ),
i= =8-L1 42

pi* =>‘in’ (i=2-21+2,...,2),



and éU is

oy = 2 M V, _2 (—'>\W1 )ﬂl'{')\(z wz "‘.E Wi )/J-SZ Q:+1+2 >‘Wiol“li
i=1 i=R-21 +2 2-21+2
E: 0 2-21 4 _
=AZ wi (Bi—HMe.g,+1) =2 Wi (i —pg.g,+1)} EAMy,
=

Q-Q1 42 I=1
where Kl'is the integer satisfying (6.5).

Next by the same procedure as mentioned above, 4. is given by

L

Q-1 ° |4 ° .
¢ =M Wi (Bi—pe, )—Z wi (b —pey ) SAM,
i=1 i=Q1 +1
. . . . L 21 O .
where 21 is the integer satisfying Z:% W, <1/ZSZ . Therefore in both
cases the following is satisfied;
; <
12 v 1SAM,
i=1
where Mémax(MU, —ML). After all these calculations, a sufficient

condition satisfying (6.1) is given by
ALV M,
where V(i) is the variance of X in the case of % strata.

Let Au be an upper bound of A, where Au=6/VT§77M. We compute the
values of Au for the three sample allocation methods and for the four
distributions;b the equilateral triangular, the normal, the rightangled
triangular and the exponential distribution. Table 6.1 giveé the values
of Au in case of the rightangled triangular distribution under NA, for
which Au is smallest among all cases. On thé other hand Table 6.2 gives
the values of Au in case of the exponential distribution under PA, when Au

is largest among all cases.
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6.2. Formulation of the Problem of Robustness
In general, under a fixed total sample size and a p.d.f. h(x), our
objective function Y to be minimized is a function of a stratification

method éh and an allocation method A, . Let us express the objective

h
function by W(éh Ah’h) The true p.d.f. in a particular problem is
denoted by g(x) and the p.d.f. fitted to it by f(x). Ideally, we should
execute the obtimum stratification method éz and the optimum allocation
method A; for g(x). However, it is impossible in practice because g(x) is
unknown. Then we perform the stratification by using the optimum
stratification method é; and the optimum allocation method Aé\ for some
f(x) which is available and approximates g(x). But in many practical
works, even this stratification is often not practical enough as stated
above. In such situations, we would have +to be content with a

stratification method'éf and an allocation method A_ which approximate é;

f
and A;, respectively. Therefore, in general, we have to evaluate the
quantity Ro given by
RO=W(éf,Af;g)—W(éZ’A2;g)
(see Figure 6.1). If we put
*msf,Af,g) wus* A*,g), (6.6)
—_ . B % .
R =8, A 2)- UL AL e),
then
O_R1+R2+R3

From the practical point of view, it is convenient to give the efficiency

of Rj (j=0,1,2,3) against the optimum value W(éz,Az;g). However the
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latter can be represented by using the values W(é;,A?;f) and q defined by

(7.1) and (7.3) in Chapter 7 as follows;

‘P(ég,A;;g)=(1—q)‘Y(éi"f,Ai’f;f). | (6.7)
Therefore we may calculate the efficiency Qj which is defined by |

Q =R,/ ¥UBE,ALE) (§=0,1,2,3) - (6.8)
instead of Q§=Rj/?(¢Z,AZ;g).~‘ The reason of this is as follows: (1) We
are interested in the.value of g itself. (2) The value of W(éF,Af;f) is
indépendent on a small change of distributions and the value of g is not
so large on the whole. We, therefore, consider that it is convenient to
give the value of Qj instead of Q§ in order to roughly estimate the degree
of robustness.

Now Ql means the degree of the effect causeq by changing a p.d.f.

from g(x) to f(x), that is to say, Q. represents the degree of robustness

1
on distributions. In order to evaluate the influence deriving from the

cause (a) or (b), .described in the first part ~of Chapter 6, we may

calculate the value Ql' Next Q2 means the effect caused by changing an

allocation method from A; to Af, that is, it represents the degree of
robustness on sample sizes in respective strata. Calculation of Q2 is

needed for evaluating the influence deriving from the cause (c).

Similarly, Q. represents the degree of robustness on stratification

3
points, and calculation of Q3 is needed for evaluating the influence
deriving from the cause (d).

Thus the problem of evaluating QO is decomposed into three sub-prob-

lems on robustness, which will be examined in the following chapters:
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6.3. Expression of g(x) by Using f(x)
In the preceding section, we considered some typical distributions

f(x) defined on some interval (x X..). In many applied fields, however,

0’ ™M™

we often need to encounter p.d.f.'s which are slightly different from

f(x). It is then natural to express g(x) in a series of orthonormal
polynomials;
- } (6.9)
g(x) f(x){l+alPl(x)+a2P2(x)+ ..... -

where the ai's are constant coefficients, whereas Pi(x) is the orthonormal
polynomial of degree i with respect to the weight function f(x) over the
interval (xo, xM) and has the following form:

i
Pi(x)—bio+bilx+.....+biix .

Let us take the terms up to P2(x) in (6.9) into consideration for the sake
of computational convenience. Assume that the mean and variance of g(x)

are different from the mean uf and the variance 03 of f(x) by 1000% and

1008% respectively, then it is easily shown that ay and a, are represented

as follows:

X

a =foPl(x)g(x)dx=b

1 (l+0’)u ’

o 10%P11 £
(6.10)

X
M
az‘fxopz(X>g(X>dX=b20+(1+a)uf{b21+b22

Note that the p.d.f. f(x) and the values of o, B are given, and then

2
(1+a)uf}+b22(1+8)0f.

the p.d.f. g(x) is uniquely determined. This p.d.f. g(x) is slightly
different from the p.d.f. f(x). 1In the following discussion, only such
g{x)'s are taken into consideration. Now for the convenience' sake of the
analysis in the later chapters, let us rewrite g(x) as follows;

g(x)=f(x)-(CO+Cix+sz2), ’ (6.11)
where

C.=a. b (6.12)

Co=l+a,b 210 Cp=85Pps-

1P10%8oP

C.=a.b

20’ 1=81P37 #2350
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6.4. Some Lemma

We will give some lemma used effectively in the following chapters.
[Lemma 6.2] (Mean value theorem for the function of many variables)

Let f(xl,...,xp) be a real-valued function of p variables. If f(x1

i i i e =0 ces
,...,xp) has» partial derivatives fxi(xl,. ,xp) f(xl, ,xp)/Sxi for
i=1,2,...,p in a neighbourhood U(xg,...,xg) of (xg,...,xg), then for any

(xl,...,xp)EU(xg,...,xg) there exists some real value § such that

0 0 0
PEERRE i+hie,x

PYIRY 0 p
f(xl,...,xp)_f(xl,...,xp)+z. h.f (x 117X

ve,x_);0<8<
i=1"1i X:,L ’Xp)’o l’

i+l?
where

0 .
xi=Xi+hi (i=1,2,...,p).

For a proof of this lemma, see e.g. Coffman[s] or Hitotsumatsu[21].
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CHAPTER 7

ROBUSTNESS ON DISTRIBUTIONS

In this section, we will evaluate the quantity R, defined by (6.6).

1

Let us decompose Rl as follows:
Ry=R;;1 +Ry, (7.1)
Ry =Y ($f, 47D - ¥ (45, 4g:8), |
Riz =W (87, AF;8) — ¥ ($F, AF D).

These are evaluated in the followings.

7.1. Computational Scheme for Rll

Let us describe a method of evaluating numerically the quantity Rll

defined by (7.1), since the analytical evaluation of Rll is difficult and
is an open problem. Now the values of W(é;,A;;f) in (7.1) have already
been computed in Section 3.4.1. Therefore we should compuﬁe the values of
W(ég,Ag;g) under the given values’ of o g8 in (6.10). This problem can be
formuiéted as a nonlinear programming problem as shown in Section 3.1, and
could be successfully solved for the four distributions by the nonlinear
programming algorithm utilizing augmented Lagrangian function(see Konﬁo et
al.[27]).

In order to compute the v-th moments Tys in respective strata for
v=0,1,2,3,4, the same approximation formula as (3.4) is employed in the

optimization processes for the standard normal distribution. For the other

. are easily derived. These

distributions, analytical expressions of Tyg

computational schemes are expected to give sufficient precision if we use
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double precision arithmetics during the optimization process (see Section

3.3).

7.2. Analytical Examination for Rl2

From the definition (7.1) of R we consider the case where the

12’

stratification method is ¢§ and the allocation method of sample sizes is

A}. Let Ei be the i-th optimum stratification point for f(x), then R12 is
represented as follows;
e 1. & £ -
Ry, =Z—|J ! g®dt/S ' gt de - fE' g (t)de}?] —
S N T £iq £i-1
£ £ E; 2
s List ;o I
i=21”—1:[ ii-lf(t)dt TR0 A Ei-ltf(t)dt I
From (2.1) and (6.11),
£ E;
fsf th(t)dt=fE' ' (Co +Cit+Cot?)F () dt = CoTvi + CyYv+1i+ Cy Yos2i
i-1 i-1 . . -
holds for V;O,l,z. Then we get
2 1
Riz= Z —{(Co¥eit C171;+Cy73i) (Covai+ Civ3i+ Cavai) —
i=1 N (7.2)

(Co71i +C1 i+ 0310 ~ (YoiYai — ‘Yn'z)},

where r . and Cl’ C

vi are given by (2.1) and (6.10), (6.12). Since n, and

2

r . are obtainable, the value of Rl

vi can be computed for given values of

2
o and B in (6.10).

7.3. Results for q
As stated in Section 6.2, we need to represent W(éE,Ag;g) by using

‘P(é*f*.,A’f‘.;f) . For this purpose, the quantity R is numerically examined in

11

this section. The efficiency of Rl is now denoted by g and is defined as

1

follows;
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q=R,,/ ¥#%,A%;T). (7.3)

This quantity q is computed for some values of o and B (see [Remark 7.1]),

and is shown in Table 7.1 - Table 7.4. From these tables, the followings

are ascertained:

(i) The differenoes of the values of q under NA and EA are less than 0.1%.

(ii) On the whole, the value of g under PA is slightly smaller than the
one under NA in the range of o, B treated here.

(iii) q is fairly robust with respect to the variation of o, B. If
hﬂ§0.2 and lB]gO.B, then |q| are less than 0.25 except for a few
cases. Therefore we may conclude that the difference of the optimum
stratification for g(x) and that for f(x) is not so remarkable.

(iv) For the distribution 3°, we need to pay much attention because of the
singular behaviours of q; For example, when q=-0.1 and R=-0.01, q are
large and nearly equal fo 0.20 for all 2=2-10.

[Remark 7.1] vThe values of o and B are determined as follows: As for the

value of a, we take .up the cases g=#0.1 and B=*+0.2. The value of 8 is

determined so that the ratio of the variance against the mean of g(x) is
equal to *#0.1. Our computation is intended to perform for all combination

of these values. However for some values of (ay, B), the p.d.f. g(x)

defined by (6.11) and (6.12) is negative on some interval in (xo, xM).

We, therefore, omit such values out of our computation.

7.4. Results for Ql

In the preceding section, we have computed the value of Rll and the

quantity R has been evaluated by (7.2). We can now compute the value of

12
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Q

1 by using the relation (7.1). These computational results are
summarized in Table 7.5 - Table 7.8, where the efficiency Ql defined by
(6.8) is given for some values of o and B (see [Remark 7.1]). From these
tables, the followings are ascertained:

(i) As expected theoretically, ngo is satisfied under NA for all céses,
where the gquality sign holds if and only if 2=2 for the symmetric
distributions. |

(ii) The differences of the values of Ql under NA and EA are quite small
and less than 0.4%.

(iii) On the whole, the value of Q1 under NA is more robust than the one
under PA with respect to the variation of o, 8. The value of Ql under
PA for the case of a>0, g>0, is fairly large compared with the one
under NA.

(iv). The value of Ql under NA is fairly robust with respect to the
variation of @, B. If |G|§Q.2 andlﬁlé 0.3, then they are less than
0.2 except for the case‘of(x=0.2, 8=0.32 for the distribution 3°,

{(v) For the unsymmetric distribution under PA, even if the values of]al,
Jﬁi are small (@=-0.1, B=-0.01), the value of Ql may be fairly large
(Q1=O.213 for the distribution 4°9°). On the contrary, even if the
values of [a], ]Bl ~are large (a=-0.2, §=-0.28), there exists a case
when lQll is fairly small (Q,=-0.087 for the distribution 4°).

(vi) In general, Q, is more robust for symmetric distributions than for

unsymmetric ones with respect to the variation of o, 8.
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As a conclusion, it may be seen that the method proposed in Section
5.1 is practicable. In the analysis of a given practical problem we may
fit f(x) to g(x) and then apply the optimum stratification for f(x), where

NA or EA should be used as the allocation method of sample sizes.

7.5. Some Practical Example
Consider the frequency distribution of the sale of benziﬁe shown in
Table 5.3, Case 8. In Section 5.2.2, we fitted the exponential

distribution f;(z):B*e—S*z

(B*=0.00309) to the histogram gz(z), where the
number of strata £ was 6 and the sample allocation method was Neyman

Allocation. Let us examine the values of q, Q. in this case.

1
The distribution g(x) standardizing the histogram gz(z) is given by
g(x):gz(x/B*)/B*. The mean ug, variance 02 for g(x) and the mean Heo
variance 0§ for f(x) are
fe = 0.879, 07 =1.010; = 1.060, 0f =1.000
respectively, so |

o= Hg/ly— 1 =-0.121,8=0% /g% —1=0.010.

We will consider thata %-0.1, B%-0.01, then from Table 7.4 and Table 7.8
q=0.039, Q,=0.035.

The efficiency Qf, which is the ratio of R, against the optimum value

1
?(ég,Ag;g) is given as follows from (6.7) and (6.8);
¥ -—_ =
Ql—Ql/(l q)=0.036.

Therefore we may conclude that the loss owing to fitting f(x) to g(x) is

very small.
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CHAPTER 8

ROBUSTNESS ON SAMPLE SIZES IN RESPECTIVE STRATA

8.1. Analytical Examination

In this section, we analytically evaluate the quantity R2 defined by
(6.6). This problem is formulated as follows:
[Problem ] Calculate the degree of the influence on our objéctive
functions (2.4) - (2.6) caused by changihg a sample size ni(el) in the
i-th stratum to ni+mi(31), where total sample size n is fixed.

From the definition of‘RZ, we may discuss the case where a p.d.f. is
g({x) and a stratification method is é?. Then our objective function being
a function of only sample sizes in respective strata, we will denote it by

¥(n ....,nz). In (2.4) - (2.6), note that wi_and oi are the weight and

17"
variance of the i-th stratum for g(x), and a stratification method is the
optimum method é? for f(x). Suppose that sample sizes in respective
strata change from n, to n,+m,. Since Z . n =§ % (n.+m.)=n. by the
i i i=1"1i 2i=1""1 1

assumption,

%

Zi=lmi_0 (8.1)

must be satisfied. Then the given problem is to evaluate

R2=W(nl+ml,....’,n£+m2)—W(nl,...,n£) (8.2)

under the condition (8.1), where ni is determined by the allocation method

for f(x). For this quantity, the following lemma holds:
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[Lemma 8.1]

21
Ry=n 2 mi{w of Ing (1-B;0-Bisa — - — By., ' Wi of'Inf (1+0i9)"}, for some 6 (0<0<1)
= ’

8.3)

and

oj =mjfnj, Bi=ming (i=1,2,..... ,2-1).

(Proof) Substituting the relation Xi&lnfn into (2.3), we obtain

1

21 s 5 2-1
Yn,,..... ,Ng) = n{ Z wiol/nj+wfa?/(n- T nj)}.
=1 j:l

Treating ni's as continuous arguments, we have

2-1
—a\ll(nx, ..... ,ng) = n{w,fo,f/(n— z nj)*—w}o? /nl?}, (=12,.....,%D.
anj j=1
Since it is possible to expand 'i’(nl+ml, ..... ,n2+m£) in'a neighbourhood of

the point (1r1l yeseesanig), by using [Lemma 6.2 ] we obtain
2.1 - 2-1
Ry=n i=21 mi{wg® og?/(n _j?ll =M= mjs1— . —me.1 )’ —wi o | (nj + mif)?}
2-1
=n T m; {w;f 002 Ind (1—Bi8—Bi+1—- - <— Be—1)Y—wf of In? (1+a,-6)2}.
i=1 .
The proof is completed.

To evaluate R we use the inequality 0<6<1 and obtain the following

2’
theorem:
!Theorem 8.1}

If

1-2 60, (k=1,2,....00),
':

(8.4)
Ho;>0, (=1,2,...,81)
are satisfied simultaneously, then the following relation holds;
t<R_<T, (8.5)

2
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where

t= %? "l 2 o210 )2 2.2 n;
2 SiHwd og [ (1=Biv1 —...~Bo-1)? —w] o/ 1GL)?},
= QJ_QQ 2 2 Ngy2 2 n; (8.6)

T—i=21 —L{wd og G (1-Bi-. . .~Be-1)*—w} 0,?/(7’)2(1%&')2}.
(Proof) Let us consider R2 in (8.3) as a function of g, and write it as
Rz(e). Then

R, (8) 2.1 |
a; =2ﬂ§1mf{W30§Mf(F&$¢H1mu ﬁm:f*“*afﬁf(1+wefk

Therefore from the given conditions (8.4), 8R2(6)/86>O is obtained in the
limit of 0£6s51, and RZ(B) is a strictly monotone increasing function with
respect to 8. From the definition (8.6), we see that t=R2(O) and T=R2(l).
Therefore

t<R2(6)<T, for 0<6<1,

and the proof is complete.

22

In (8.6), w?ci and ni/n are known for us as follows: Firstly wi0y is

expressed by

Wi ol =14 ()8 () ax [ x? i) g (x)dx—{ [x i (x) g (x)dx )2 (8.7)
From (6.11),

L579i(x)g(x)dx=[ x"(c, +c, x+c; X2 ) $i(x)f(x)dx=co Toi + 1%y, 1 + 2%
holds for v=0,1,2, where rVi is defined by (2.1). If we substitute this
into (8.7), the following is obtained;

w0l =(coYoi +¢1 Vi +ea72i YCoV2it ey Yait e Yai)—(Co Yai+ ey v+ ey Y3i)? .

Secondly, ni/n is given as follows according to the three allocation

methods;
- 2 2 2
nifn 'z/’)’oi Y2i-7m1i° / z Yoj Y2; =YiJ under NA,
- . J=1
Miln=1/% under EA,
ni/n = Yoi under PA.
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Therefore the values of t and T are computable if we determine the values

of mg and o, B given in (6.10).

8.2. Results

In order to estimate the efficiency Qzlroughly, we will compute it in
some special case, that is, in the case of g(x)=f(x). The computational
results are summariéed in Table 8.1 - Table 8.4.

In the first row of the tables, we show the value of |ai[. The value
of B is determined by the relation Bi=qini/n. As for P (8.1) implies
Ziilai=0 under EA. Moreover by our empirical results the value of LA
are approximately equal to each other under NA (see Chapter 1). Then ziil
ai%o. Therefore we suppose ai>0 for 1i=1,3,..,2-1 and ai<0 for
i=2,4,...,%. For the sake of computational convenience, we assumed that
Iai[ were constant for any stratum. Our computation has been performed
for the case of |ai{=0.01, 0.05, 0.07, 0.10, 0.15 and 0.20. We give the
value of u=t/w(é§,A¥;f) in the upper row and the value of U=T/W(¢},A};f)
in the 1lower row. From these computational results for the four
distributions, we obtained the followings: i
(i) The difference of the values of u and U is not so remarkable under NA

or EA; If |q, [£0.10, then U-u<0.04 and if lqiléo.zo, then U-u0.17.
(ii) -The value of Q2 under NA is nearly independent of distributions (see
[Remark 8.11]).
(iii) For all cases, the yalue of Q2 under EA is nearly equal to that

under NA. In the case of PA, the value of Q2 is largest.
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(iv) If 'qi|§0.10 holds under NA or EA, then the value of Q2 is less than
about 0.03 and if Iai|§0.20, then Q2§O.l3. Therefore in such cases
there may be no riskiness from the practical point of view.

(v) For the unsymmetric distributions under PA, even if the values of lui|
and ¢ are small (lai|=0.07, 2 =4), the value of Q2 may be fairly large
(U=5.029 for the distribution 4°).

(vi) In general, the value of Q2 for thé.symmetric distribution is more
robust than the one for the unsymmetric distribution with respect to
o4 under PA.

In the preceding Section 7.4, we described that NA or EA should be
used in practical fields, because the efficiency Q1=R1/W(é§'5§;f) is
small. From the above-mentioned results, the efficiency Q2 is also small
in the case of NA or EA.

[Remark 8.1] In the case of NA, ni=nwioi/zj£leoj holds. - On the other

hand, the values of wigi are approximately equal to each other undéf NA by

our empirical results. Therefore ni=n/g and Bizai are approximately
satisfied. Substituting these relation into (8.6), the following is
obtained provided that (8.4) holds;

Una< Q< Una

where

2-1 2-1 »
Una= 2 &G{1/(1-041—...— g -1}/2,  Upp= z o {1/(1—i —. -~ Y~1/(1+a)* } 2.
Therefore the values of Una and UNA are approximately independent of

distributions.

- 52 -



8.3. Some Practical Example

We will take up once more the frequency distribution of the sale of
benzine in Table 5.3, Case 8. The values of ni's under Neyman Allocation
are given in the second column of Table 8.5. In Section 5.2.5, we rounded
off n, for the sake of computational convenience and numerically examined
this influence. Let us compute the value of Q2 evaluated.by (8.5) in this
example.

[Example 8.1]

In Section 5.2.5, we changed the values of ng such as shown in the
third column of Table 8.5, where the values of m, are given in the fourth
column of this table. The distribution g(x) standardizing the histogram
gz(z) is given by g(x):gz(x/s*)/B*. The mean ug, variance 02 for g(x) and
the mean s variance Ui for f(x) are

Hg=0.879, of=1.010; Kr=1.000, o*f =1.000
respectively, so |
@ =pg/pr—1=-0.121, B= 6% /g% — 1 =0.010.
If these values are substituted into (8.6), then we obtain
t=O.04695, T=O.O4762.
Let us denote the variances of X in the cases of {ni} and {ni+mi} by VNA
and V&A respectively, then
(1/B)%t/n <V'NA —VNA<(1/8*)*+T/n
from (2.3) énd (8.2). These values are computed as follows;
O.OOl7O<V&A—V <0.00187.

NA

3 — | t
Since VNA-O.618, the value of QZ-(V Vv )/VN

NA™ 'NA

A i glien by

0.00276<Qé<0.00302.
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The value of Q2 defined by (6.8) is evaluated as follows:
0.00198<Q2<0.00217.

Therefore we may conclude that the loss owing to changing {ni} to {ni+mi}
is very small.
[Example 8.2] (Equal Allocation)

Let us examine the influence owing to changing allocation method from
NA to EA. Thevvalues of ng+m, and m, are given in the fifth and sixth
column of Table 8.5, respectively. By a similar computation as in

[Example 8.1], we obtain

t=0,03460, T=0.03538.
If we denote the variance of X under EA by VEA’ then the value of Qé'z(VEA
—VNA)/VNA is given by

0.0183<Qé'<0.0213.
The value of Q2 in this case is
O.Ol32<Q2<O.0153.

Therefore we may use Equal Allocation in practical sample survey.
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CHAPTER 9

ROBUSTNESS ON STRATIFICATION POINTS

9.1. Analytical Examination

In this section we analytically evaluate the quantity R3 defined by
(6.6). This problem is formulated as follows:
[Problem ] Calculate the degree of the influence on the objective

functions (2.4) - (2.6) caused by changing the stratification points gi to
£i+ni in the i-th stratum.
From the definition of R3, we consider the case where a p.d.f. and an

allocation method of sample sizes under our consideration are g{x) and A

f’
respectively. Suppose that Xy9Xpyeeeen ’Xz—l are the x-coordinates of
stratification points and satisfy the relation Ko< q<eennn <x£, where the

domain of g(x) is (xo, X2)° Since our objective function is a function of

only stratification points in this problem, we denote it by W(Xl""’xz—l)

and obtain
¥( y=n S0 g i §
Xiyen- —1J)=n _ .
1r---%¥0 -1 D2 xi—lg(t)dtfxi—lt g(t)dt {in_ltg(t)dt} 1/nj.

Let Wx.(xl,...,x
i
respect to the variable X then it is given by

) be a partial derivative of ?(xl,...,x _1) with

2-1 4

- Xi X ; '
Vs entac ) = G| L) (1-x) 8Ot i £ e - xR (Dt
From [Lemma 6.2], we can write for some g (0O<p<l),

, R3=445+”1;~3w1+"p1)—4%&,~q&—1)

-1
= i=21 NiWxi(§1s b o1 Eit150, 5 P04 g0 B0 100 ),
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where

\lel‘(gl ,---,Si-h $i+ni0yEi+]+ni+],~":£9-—l +nQ—l)

Eiv14mi+1

= ng(erni0){ 1|~ ti-ni0 e @t/ o =ti=ni0)'s(0Mfie | (9.1)
with n2=0. Evaluating each term in (9.1), we can obtain the following
lemma:

[Lemma 9.1]
A If we neglect the terms of order'qf, then R3 is given by

L -1
Rs=n 2 mig(&i+7;00) [{C; Ssi+ (Ci— 26C;) Sai- £i (201~ §iC)Sai + B €, Sui}

- 277i‘90{C2531'+ (Ci—£iC) 851+ (Co— £ C1) S1i— £iCoSoi }
- 77i+1d1?+1 g(&ivy +Misy 01)/ni+q], Svi = wvifni - 7V'i+l/~ni+l,_’, (V =0, 1’?’ 345
O<br<1, (k=0,1). (9.2)
(Proof) The first term in the right-hand side of (9.1) can be decomposed
so that
£4N;6

Sy O-E-MOg@dr=1! G-EPe@di—2m0f (-£)g(O)dr

19 §i4m:0
+ 0 2 dr + iy L Esi_ms0)2
@:8)"f, &@)dr+[ T (t-ti-n;0) g(r)dr. (9.3)
The first two terms in (9.3) is calculated as follows by using (6.11):
S 5{' -E)g(0)dr = fﬁ’f (8D (Co # Cut + o) f(1)dt
1~ 1-

= C274i +(Cy — 2§iC2) Y3i + (Co— 25 C1+ £1Cy )i

+(E1?C1—2§ico)')’xi+sl?co7oi. | (9.4)

5 -ty
i-1

f::_l (-£i) (Cot+ Ci 1+ Cot?)f(t)ar

"

C273f+(C1 =£iC)72i + (Co— £iC1)Y1i— £iCoYoi - A (9.5)

The third term in the right-hand side of (9.3) is ciearly of order n?. As
for the last term in (9.3), transform the variable t to t—ii and apply the
mean value theorem, then it is seen that the term is of order nf&
Therefore by substituting (9.4) and (9.5) into (9.3), the following can be

obtained;
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Eitn;6
fgl. l' (t-£i-ni6)*g(t)dt =Cypvaj+(C, — 25i C2)y3i+(Co— 28 Cy + £]C3)72i
i-

+(E{Cy = 261 Co)11i* £ Covoi ~ 2Mi0{Camsi+ (Cy - £i Co)mai

+(Co=£iCimii= £iCovoi }+O(M]). (9.6)
Secondly, we will calculate the second term in the right-hand side of

(9.1) by similar way. Now the following holds;

Eivy*ni £ £ |
fomg (1= Ei=Mi0)g(0)dr = 1" (= g Vg()dr- 2mp05. " (- Ee()dr
A
i+1

00 1, g(0) s

—f?”“o(t— £immi0)g(t)dt
+f;:: +Tli+1(l_ ti-n;0)2g(t)dr. (9.7)

The last term in (9.7) is calculated as follows by transforming the

variable t to u=t—£i and applying the mean value theorem;

+1

RITS RIS

tiey (- Ei-mi6)’g(r)dt =fzi+1(di+1+ u—n;0)’g (u+ ki )du
=Mir1da1g(Eiey ¥ 0441 6%) + O(0}),
disy =Eisi—k .,  0<6<1, (9.8)
where we should define n£=0 since the value of (9.8) must be 0 for i=g2-1.

Therefore if we neglect the terms of order n? in (9.7), then we can obtain

Eiv 1 +Mi+y

Jeune (@ Eimi®)8()dt =Covaivi+ (Ci~ 2£iCo)Ysiny + (Co— 2£iCy
+EC)Yais1+ EFC— 26iCo)V1de 1+ § CoYouia
- 27?1'9{C2'73i+1 +(Cy = £ Co)y2iny
+(Co—EiC1)Yis1— Eico7o.i+1}
*Midf, 8+ mi,0") o)),
0<6<1, 0<6' <1 (9.9)
If we substitute (9.6), (9.9) into (9.1) and use the relation (2.12), then

(8.2) can be obtained by using [Lemma 6.2]. The proof is completed.
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Since unknown constants 90, 91. are included in (9.2), we can not

compute the value of R_ in practice. If we assume that ni is small for

3

i=1,2,...,2-1 and g(x) has not any sudden changes in the function value,

then we may make the following approximations;
g0 5g(5i+ni/2),  (k=0,1; i=1,2,--,9-1). - (9.10)

Furthermore if nie is small, then

k
0k =M/ 2, k=0,1; i=1,2,...,0-1) _ (9.11)

-

may be satisfied approximately. Substituting (9.10) and (9.11) into
(9.2), we can obtain the following theorem:

[Theorem 9.1]

R3 can be approximately evaluated as follows;

R, "—.n::illnig(sﬁ M/2) [{Ca Sai + (C1— 26§ C2)S31 = £i (2C1— £iC2) 21 +£ €1 S14)
_ni{C2S3i+(C1 —£iC) 82 +(Co—£4C1) Sy i - Eicosoi}
—nhqdixgﬁhl+nﬂl/ﬂ/nﬂl]; Me=0. . (¢.12)

Since various quantities in (9.12) except for NysNgseeesNy 4 are obtain-

able if we determine the values of o and 8 given in (6.10), an approximate

value of R3 can be computed by (9.12) if we give values of UELPYERERRTL

-1

9.2. Results

In this sectiqn we will make tables giving approximate values of Q3
defined by (6.8), which may be useful in practical fields. As the value of
Q3 depends upon the values of g and B in (6.10), there are many cases
according to the combination of the_values of ¢ and 8. So in order to

find the value of Q3 roughly, we will make the tables giving Q3 for the
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case of g(x)=f(x) under A*. In the case that g(x) differs from f(x), an

approximate value of Q3 can be computed by using (6.8) and (9.12).
Examples: of computational results are partly shown in Table 9.1 -

Table 9.4. 1In these tables, the notation PLUS, MINUS and ALTERNATING have

the following meanings, respectively;

PLUS t 020 (i=1,2,000,8-1).
MINUS n<0 (i=1,2,...,0-1),
ALTERNATING : n.>0  (i=1,3,...,8-1); n,<0 (i=2,4,...,8~2).

In the second row, we show the values of [nil which is egual to 0.0lg,

0.050 or 0.100, where o represents the standard deviation of f(x). For the

sake of computational convenience we assumed that }nil was constant for

any stratum and a number of strata § was even. From these computational
results for the four distributions, we obtain the followings:

(i) For all cases, the value of Q3 ﬁnder EA is nearly equal to that under
NA.

(ii) In the case of ALTERNATING, the value of Q3 is fairly large.

(iii) In the case of ALTERNATING, the value of Q3 under PA is smallest and
in other cases the differences of the values of QS under three
allocation methods are not so remarkable as in the case of ALTER-
NATING.

(iv) In the case of ALTERNATING, if £=10 and |n,[=0.10g, then the value of
QS is nearly equal to 1 for some distributions.

(v) In the case of PLUS or MINUS if [niJgo.OSU, then the value of Q3 is
less than 0.13. Therefore in such cases there may be no riskiness

from the practical point of view.
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(vi) In general Q3 is more robust for symmetric distributions than for
unsymmetric ones with respect to ni.
(vii) The value of QS for the normal distribution is smallest among those

for the four distributions.

9.3. Some Practical “Example
As in Section 7.5 and Section 8.3, let us take up the frequency
distribution of the sale of benzine shown in Table 5.3, Case 8. 1In this
case, computed optimum stratification points z;'s are as follows;
ZI=114.5, z;=253.8, z§=431.7, zZ=678.6, z§=1086.3.
Let us change z§ as follows owing to the constraint of sampling frame (see
Table 5.5), and evaluate the influence of this change by using (9.12);
zl=120, z2=260, 23=500, z4=700, zs=1100,
The distribution g(x) standardizing the histégram gz(z) is given by
g(x):gz(x/g*)/s*. The mean Mg variance 52 for g{x) and the mean g

g

variance 05 for f(x) are

Hg'=08787, 0z=10100 ; pr=10000, of=1.0000
respectively, so

a=pg/pur—1=-0.1213, ﬁ=o’g'/o;~— 1=0.0100.

The values of g in (9.12) are given by the followings (see Table 3.10);
£=03543,  £,=07853, &, =13360,
£, =2.0999, £ =3.3618.

The wvalues of ni are obtained as follows by the relation ni=B;(zi—z§);

n, =001706, n, =0.01928, n, =021108,
s = 006627,  ns =0.04228.
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Since W(é},A;;f):0.0SSO? from Table 3.10, we have

Q3=O.16O7.
If we consider that a%-0.1 and R%-0.01, then the value of q in (6.7) is
g=0.039 from Table 7.4. The efficiency Q*, which is the ratio of R3
against the optimum value W(¢§,A§;g), is given as follows from (6.7) and
(6.8);

* = -q)=0. .

Q3—Q3/(1 q)=0.174
Therefore we may conclude that the loss owing to changing z; to z. is

1

small and there is no riskiness from the practical point of view.
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CHAPTER 10

CONCLUSION

We will now summarize the main results obtained in this paper.

In Chapter 3, we considered the estimation of the population mean yu,

and obtained the followings:

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

Optimum Stratification Points (OSP) and Minimum Variances (Min.Var.)
for typical four distributions under three sample allocations were
computed by using nonlinear programming algorithms up to 10 strata.
Gains of the increase of the number of strata and efficiencies of
each allocation were investigated for the above cases.

Neyman Allocation (NA) and Equal Allocation (EA) turned out to give
quite similar results. i

General Optimum Stratification (GOS) could be regarded to coincide
with Interval Optimum Stratification (IOS).

A method for determining the sample size and the number of strata
were .given under the assumption that the total sampling costVQas

constant.

In chapter 4, we considered the estimation of the population variance

02, and obtained the followings:

(4-1)

(4-2)

OSP and Min.Var. for typical four distributions under Proportional
Allocation (PA) were computed by using general nonlinear programming
algorithm up to 4 or 5 strata.

Gains of the increase of the number of strata and efficiencies of
each stratification method were investigated for the above four

distributions.
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(4-3) Asymptotic GOS:- (AGOS) did not always coincide with Asymptotic I0S
(AIOS), especially AGOS was much better than AIOS in case of the
symmetric distributions.

Aéplicational scheme of the above-mentioned results to practicél
sample surveys was proposed in Chapter 5, and we applied it to the data of
"Current Survey on Petroleum Products Demand and Supply" as repfesentative
examples. By these examples, it could bé‘shown that our proposed procedure
decreased the standard error of the estimator X for y by about 30 - 60 %
compared with the traditional procedure, and the influence on the standard
error of X owing to small change of sample sizes in respective strata and
stratification points was about less than 10 % and might not be serioqs.

In Chapters 7, 8 and 9, we discussed three sub-problems of robustness
in optimum stratification based on the formulation given in Chapter 6.

As for the robustness on distributions, we obtained the followings in
Chapter 7:

(7-1) The valu: of Ql undér NA or EA was more robust than that under PA
with respect to some kind of changes of distributions.

(7-2) The value of Ql under NA or EA was fairly robust and it was less
than 20% in usual cases.

(7-3) In general, the value of Ql was more robust for a symmetric
distribution than for an unsymmetric one with respect to the change
of a distribution. Especially for an unsymmetric distribution, PA
is not recommendable, because the value of Ql for such a case may be

large.
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As for the robustness on sample sizes in respective strata, we

obtained the followings in Chapter 8:

(8-1) The value of Q2 under NA was nearly independent on a distribution.

(8-2) The value of Q2 under NA or EA was more robust than that under PA.

(8-3) The value of Qé under NA or EA was very robust and was lgss than 3%
in usual cases.

(8-4) In general, the value of Qgtunder PA for.g symmetric distribution
was more robust than.that for an unsymmetric distribution, and so PA
is not recommendable for an unsymmetric distribution.

As for the robustness on stratification points, we obtained the

followings in Chapter 9:

(8-1) Although the value of Q3 under PA was the smallest in the case of
ALTERNATING, that under NA or EA was not so large. In other cases
(PLUS or MINUS), the differences of the values of Q3 under three
allocations were not remarkable.

(9-2) We should pay much attention to the cases of ALTERNATING because the
value of Q3 was too large for some distributions. On the contrary,
in the cases of PLUS or MINUS the value of QS was usually less than
13%, so there may be no riskiness from the practical point of view.

(9~3) The value of Q3 was more robust for a symmetric distribution than
that for an unsymmetric distribution. Especially in the case of the
normal distribution, thé value of Q3 was most robust.

Through all these discussions, EA gave quite similar results with NA

as reported in Chapter 1.
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In the chapters dealing with three kinds of robustness, we gave some
practical examples. Now let us summarize these examples:
[ Example 10.1]

Consider the data shown in Table 5.3, Case 8. In Section 5.2 we
applied our proposed working procedure to this data, and then changed
sample sizes in respective strata and stratification points as shown in
the last two -rows of Table 5.5. 1In Chapters 7, 8 and 9 we have evaluated
the influence of such change, and have obtained

Q1=O.O35, Q2=O.OO2, Q3=O.161.
So the theoretical consideration yields

QO=O.198.

On the other hand as shown in Chapter 5, we have obtained

Sl=O.786, _83=O.871.
Since S% and S% may be nearly equal to W(é;,A;;g)/{n(B*)z} and W(éf,Af
;g)/{n(B*)z} respectively, the value of QO can be given as follows by
using n=4272, B¥*=0.00309, W(é*,A;;f):0.03SO68 and Ql=0.035;

Q.=Q. +Q.+Q,=0- + n(g*)2(52-8)/y(#% ,A%;£)=0.199.

01 2 371 371 el

This value is almost the same as that obtained above. It may, therefore,
be concluded that the evaluation methods for Ql’ Q2 and Q3 given in
Chapters 7, 8 and 9 are useful in practice.

As a conclusion, we may apply our working procedure proposed in
Section 5.1 in designing stratified random sampling to estimate the

population mean, if the population distribution can be approximated by
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either of the distributions shown in Section 2.6, (A). As a stratifica-
tion method, we could use Interval Optimum Stratification (IOS) because
General Optimum Stratification (GOS) coincided with IOS in the range of
the cases treated in this paper (cf. GOS was very effective in estimating
the population variance, especially for symmetric distributions). The
robustness of a sample design should be evaluated by using the tables
given in Chapters 7, 8 and 9 or by the formulae (7.2), (8.5) and (9.12).
The value of QO’ which indicates the degree of robustness, is usually not
so large. As for a sample allocation method, Equal Allocation is
recommendable since it is simpler, more robust than Proportional Alloca-
tion and gives quite similar effects with the optimal allocation, Neyman
Allocation. The number of strata may be sufficient to be less than or
equal to 5 so far as the stratification cost is not so pheap, and then we
" can get satisfactory effect of stratification. The author hopes that the
results given in this paper are effectively utilized in practical sample

surveys.
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Table 3.1. OSP,\y§ and e, for the equilateral triangular distribution

N
! % %3 EH %4 %3 Yy ex
1 0. 1666667 0.000
2 0. 00000 0. 0555551 0. 667
3 —0.23132 0. 0255607 0.847
4 —0.35425 0.00000 0. 0150372 0.910
5 —0.44226  —0.13629 0.0097277 0.942
] —0.50263 —0.22978 0. 00000 0. 0068784 0. 959
7 =0.55072 —0.30425 —0.09669 0. 0050797 0.970
8 —0.58745 —0.36112 —0.17052 0. 00000 0.0039271 0. 976
9 —0.61836 —0.40900 —0.23268 —0.07497 0.0031123 0.981
10 —0.64342 —0.44780 —0.28306 —0.13567 0. 00000 0. 0025363 0. 985

Table 3.2. OSP;\yE and ep for the equilateral triangular distribution

* * +* r *
£ xl x‘z' x‘s* x 2 XS ¥ E eE
1 . 0.1666667 0.000
2 0.00000 0.0555551 0.667
3 -0.23207 0.0255610 0.847
4 -0.33915 0.00000 0.0150434 0.910
5 -0~ 44668 -0.13656 0.0097309 0.942
6 ~-0.50789 -0.23207 0.00000 0.0068811 0.959
7 -0.55551 -0.30641 -0.09681 0.0050814 0.970
8 -0.539243 -0.36401 -0.17183 0.00000 0.0039285 0.976
<] -0.62304 ~0.41173 -0.233%3 -0.07499% 0.0031133 0.981
10 ~0.64812 -0.45087 -0.28490 -0.13652 0.00000 0.0025371 0.985

Table 3;3. OSP,\y; and e_ for the equilateral triangular distribution

P
14 x x5 %3 P P L3 ep
1 0. 1666667 0. 000
2 0. 00000 0. 05555562 0.667
3 —0. 25000 0.0260417 0.844
4 —0.38197 0. 00000 0. 0154800 0. 907
5 —0.47444 —0.14963 0. 0100775 0. 940
6 —0.53734 —0.25139 0. 00000 0. 0071608 0. 957
7 —0.58679 —0.33141 —0.10688 0. 0053049 0. 968
8 —0.62427 —0.39205 —0.18789 0. 00000 0.0041128 | 0. 975
9 —0. 65551 —0.44260 —0.25541 —0.08315 0. 0032656 0. 980
10 —0. 68066 —0.48330 —0.30979 —0.15010 0. 00000 0. 0026661 0. 984




Table 3.4. 0OSP, qlﬁ and e for the normal distribution

*

%3

Yy

|

X2 X3 E2% ex
1 1. 000000 0.000
2 0. 00000 0. 363380 0.637
3 —0.54981 0.182473 0.818
4 —0.87569 0. 00000 0.109128 0.891
5 —-1.10410  —0.33585 0. 072461 0.928
6 -1.27825 —0.57560 0. 00000 0. 051569 0. 948
7 —1.41805 —0.76055  —0.24280 0. 038556 0.961
8 —1.53427 —0.91021  —0.43182 0. 00000 0. 029909 0. 970
9 —1.63339 --1.03532 --0.58579 —0.19034 0.023873 0.976
10 —-1.71955 —1.14244 —0.71516 —0.34622 0. 00000 0.019495 0.981

Table 3.5. OSP, tyE and eE for the normal distribution

*

1 x1 x3 x3 N %3 Vi ep
1 1.000000 0.000
2 0. 00000 0. 363380 0.637
3 ‘—0.56888 - 0. 182704 0.817
4 —0.90091 0. 00000 0. 109294 0.891
5 —1.13189  —0.34326 0.072570 0. 927
6 —1.30729 —0.58671 0.00000 0.051643 0.948
7 —1.44770  —0.77377 —0.24674 0. 038607 0. 961
8 —1.56422 —0.92473 —0.43813 0. 00000 0. 029946 0.970
9 —~1.66343 —1.05069 —0.59364 —0.19278 0. 023901 0. 976,
10 —1.74960 —1.15838 —0.72407 —0.35031 0. 00000 0.019516 0. 980
Table 3.6. OSP, q:; and e for the normal distribution
! P2 %3 x3 xy x4 v ep
1 1. 000000 0.000
2 0. 00000 0. 363380 0.637
3 —0.61201 0.190175 0.810
4 —0. 98158 0. 00000 0.117483 0.883
5 —1.24435  —0.38228 ) 0.079943 0.920
6 ~1.44684  —0.65891 0. 00000 0.057979 0. 942
7 —1.61075- —0.87436 —0.28029 0. 044001 0. 956
8 —1.74792 —1.0499%5  —0.50055 0. 00000 0. 034549 0. 965
9 | —1.86852 —-1.19759 —0.68122 —0.22182 0. 027854 0.972
10 —1.96821 —1.32457 —0.83384 —0.40474 0. 00000 0. 022938 0.977
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bTable 3.7. OSSP, yﬁ and en for the rightangled triangular distribution

1 x1 x5 x3 % P xh x3} x§ x4 vy ex

1 0.2222222( 0. 000
2 | 0.75850 0.0601488| 0.729
3 | 0.45956 1.00526 0.0275137, 0.876
4 10.34105 0.72225 1.17489 0.0157086; 0.929
5 |0.27133 0.56611 0.89559 1.28683 0.0101453] 0.954
6 [ 0.22534 0.46610 0.72767 1.02003 1.36718 ) 0.0070887, 0.968
7 10.19271 0.39634 0.61390 0.85026 1.11445 1.42816 .0.0052311f 0.977
8 |1 0.16834 0.34483 0.53132 0.73057 0.94704 1.18899 1.47629 0.0040184| 0.982
9 | 0.14945 0.30522 0.46852 0.64107 0.82543 1.02573 1.24960 1.51543 0.0031833| 0.986

10 | 0.13438 0.27379 0.41909 0.57142 0.73238 0.90436 1.09120 1.30002 1.54799 0.0025839f 0.988 .

Table 3.8. OSP, y* and ep for the rightangled triangular distribution

E

2 x* x> x* xz x§ xg x; xg xs \PE en

1 0.2222222 | 0.000
2} 0.71831 \ 0.0601734}{ 0.729
3 | 0.46412 1.01574 N 0.0275245{ 0.876
4 | 0.34366 0.72806 1.18489 0.0157140| 0.929
5 { 0.27302 0.56980 0.90174 .1.29624 0.0101484 | 0.954
6 | 0.22656 0.46870 0.73187 1.02624 1.37604 0.0070906 | 0.968
7 | 0.19357 0.39817 0.61685 0.85454 1.12037 1.43631 0.0052324 ] 0.976 ,
8 | 0.16902 0.34627 0.53362 0.73387 0.95150 1.19485 1.48403 0.0040193} 0.982
9 0.14997 0.30631 0.47025 0.64356 0.82880 1.03012 1.25525 1.52279 . -] 0.0031840| 0.986
10 | 0.13486 0.27479 0.42065 0.57360 0.73527 0.90803 1.09575 1.30564 1.55508 | 0.0025844 | 0.988

Table 3.9. OSP, y; and ep for the rightangled triangular distribution

I Pi x5 ¥y x3 x} xt P23 x4 P Y ep

1 0.22222221 0,000
2 | 0.76397 : 0.0619201] 0.721
3 | 0.50279 1.07467 0.0286434; 0.871
4 10.37577 0.78409 1.24853 0.0164512} 0. 926
5 | 0.30021 0.61958 0.96661 1.36133 0.0106643] 0.952
6 | 0.25002 0.51271 0.79215 1.09580 1.44117 0.0074701] 0. 966
7 10.21423 0.43747 0.67201 0.92152 1.19264 1.50103 0.0055226] 0.975
8 | 0.18742 0.38158 0.583%0 0.79646 1.02259 1.26830 1.54779 0.00424821 0.981
9 | 0.16659 0.33840 0.51639 0.70185 0.89671 1.10400 1.32925 1.58545 0.0033690, 0.985

10 | 0.14992 0.30402 0.46295 0.62760 0.79916 0.97941 1.17116 1.37953 1.61653} 0.0027370| 0.988
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Table 3.10. OSP, \yﬁ and ey for the exponential distribution

1 1 %3 x5 x1 P xe P24 P2 P2 v ex
1 1.000000 | 0.000
2 | 1.26191 0.285434 | 0.715
3 | 0.7639 2.02587 0.133225 | 0.867
4 | 0.55065 1.31461 2.57652 0.076868 | 0.923
5 | 0.43103 0.98167 1.74563 3.00754 0.049969 | 0.950
6 | 0.35428 0.78531 1.33595 2.09992 3.36182 0.035068 | 0.965
7 | 0.80081 0.65509 1.08612 1.63675 2.40073 3.66263 0.025961 | 0.974
8 | 0.26139 0.56220 0.91648 1.34751 1.89815 2.66212 3.92403 0.01999L | 0.980
9 |0.23112 0.49252 0.79333 1.14761 1.57864 2.12928 2.89325 4.15515 0.015867 | 0.984
10 | 0.20715 0.43827 0.69967 1.00048 1.35476 1.78579 2.33643 3.10040 4.36230] 0.012898 { 0.987
Table 3.11. OSP, \yE and ey for the exponential distribution

1 1 x3 X% P xi P2 P2 x§ x4 Y e
1 1.000000 | ©0.000
2 | 1.30008 0.285810 | 0.714
3 | 0.77906 2.07914 | 0.133378 | 0.867
4 |0.55875 1.33781 2.63789 0.076946 | 0.923
5 | 0.43609 0.99485 1.77391 3.07399 0.050013 | 0.950
6 0.35774 0.79383 1.35253 2.13164 3.43172 0.035096 | 0.965
7 | 0.30332 0.66107 1.09716 1.65591 2.43496 3.73504 0.025980 | 0.974
8 | 0.26331 0.56664 0.92439 1.36048. 1.91923 2.69830 3.99837 0.020004 | 0.980
9 |0.23264 0.49595 0.79928 1.15703 1.59313 2.15188 2.93095 4.23102 0.015875 | 0.984
10 | 0.20836 0.44098 0.70429 1.00761 1.36536 1.80145 2.36020 3.13926 4.43933{ 0.012905 | 0.987

Table 3.12. OSP, \y; and ep for the exponential distribution
w1 P x x3 P x% P2 7 x5 x4 7 ep

1 1.000000 | 0.000
2 | 1.59359 0.35239 | 0.658
3 1.01758 2.61120 0.179737 | 0.820
4 | 0.75403 1.77161 3.36523 0.108952 | 0.891
5 0.60043 1.35447 2.37205 3.96567 0.073090 | 0.927
6 | 0.49932 1.09976 1.85379 2.87137 4.46500 0.052427 | 0.948
7 | 0.42757 0.92689 1.52733 2.28137 3.29895 4.89257 0.039439 | 0.961
8 | 0.37394 0.80152 1.30085 1.90128 2.65532 3.672%0 5.26652 0.030745 | 0.969
9 | 0.33233 0.70629 1.13387 1.63321 2.23365 2.98769 4.00527 5.598%0 0.024640 | 0.975
10 0.29906 0.63137 1.00531 1.43289 1.93219 2.53262 3.28660 4.30423 5.89786 0.020189 | 0.980
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Table 3.13. OSP, \ya for the equilateral triangular distribution

x§ xt x5 x5 x x¢ x¢ x| Y
2 -1.000 0.08¢ 1.000 1.000 0.05556
2 -1.000 -1.000 -0.231 0.231 1.000 0.02556
2 —1.000 —1.000 —0.231 0.231 1.000 1.000 0.02556
2 -1.000 —1.000 -1.000 —0.231 0.231 1.000 0.0255¢
2 -1.000 -0.354 0.000 0.354 1.000 1.000 0.01504
2 -1.000 —1.000 —0.354 40.000 0.354 1.000 1.000 - 0.01504
2 —1.000 | . —.0.354 0.000 0.354 0.354 1.000 1.000 0.01504
2 —1.000 -1.000 -1.000 ;—0.354 0.000 . 0.354 1.000 0.01504
2 —1.000 —1.000 -1.000 —-0.354 0.000 0.354 1.000 0.01504
2 —1.000 -0.354 0.0GO 0.354 1.000 1.060 1.000 0.01504
2 —1.000 -1.000 -0.354 —-0.354 .} 0.000 0.354 1 .00.0 1.000 0.01504
2 —-1.000 —1.000 —0.354 0.000 0.354 1.000 1.000 1.000 0.01504
2 ' —1.000 -1.000 —-1.000 —-0.354 0.000 . 0.354 1.000 1.000 0.01504
2 —1.000 -0.354 0.000 0.354 0.354 1.000 ‘1.000 1.000 0.01504
2 —1.000 -0.354 0.000 0.354 1.000 1.000 1.000 1.000 0.01504
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Table 3.14. OSP, \yé

for the normal, rightangled triangular

and exponential distribution

2 xg x* xt x5 x% x% v
21121 —3.000 (-3.000 0.000 3.000 0.34741
2° 3 1231 —-3.000 |-3.000 |-0.545 0.545 3.000 0.17256
4112341 |-3.000 |—3.000 [|-0.866 | 0.000 0.866 | 3.000 | 0.10236
21121 0.000 0.709 2.000 2.000 0.06015
{31231 0.000 0.460 1.005 2.000 2.000 0.02751
4112341 0.000 0.341 0.722 1.175 2.000 | 2.000 | 0.01571
21121 0.000 1.225 6.000 6.000 0.25323
41311231 0.000 0.741 1.938 6.000 6.000 0.11639
4112341 0.000 0.533 1.262 2.430 6.000 | 6.000 | 0.06647
Table 3.15. g and ¢p for the four distributions
Name of distribution =\ 2 3 4 5 6 7 8 9 10
oniaguiar distribution 5 0.000 0.019 0.020 0.030 0.041 0.043 0.047 0.043 0.081
o aminerion Ce SR S 02 S oo som oo s
Rightangled g 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
triangular distribution cp 0.029 0.041 0.047 0.051 0.054 0.056 0.057 0.058 0.059
Exponential c, 0.001 0,001 0.001 0.00L 0.001 0.001 0.001 0.001 0.001
distribution c, 0.235 0.343 0.417 0.463 0.495 0.519 0.538 0.553 0.565
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Table 3.16. wl(z) for the equilateral triangular distribution

(x1077)

1/k \;\\\’ 1 2 3 4 5 8 7 8 9 10
~

0.010 | 100 | 16835 5669 2635 1567 1024 732 546 427 342 282
0.020 | 50 | 34014 11574 5439 3270 2162 1563 1181 935 759 634
0.033 | 30 | 57471 19841 0467 5786 3891 2866 2200 1785 1482 1268
0.040 | 25 | 69444 24154 11619 7164 4864 3620 2822 2310 145 1691
0.050 | 20 | 87719 30864 15036 9402 6485 4913 3907 3273 2829 2536
0.067 | 15 |119048 42735 21301 13676 9728 7643 6350 5610 5187 5073
0.100 | 10 |185185 69444 36516 25072 10455 17196 16932 19636 31123
0.111 9 |208333 79364 42602 30087 24319 22928 25399 39271 -
0.125 8 | 238095 02592 51122 37609 32426 34392 50797
0.143 7 |277778 111110 63903 50145 48639 68784
0.167 6 |333333 138888 85203 7HRLT 97277
0.200 5 | 416667 185184 127805 150434
0.250 4 | 555655 277776 255610
0.333 3 | 833334 555551
0.500 2 [1666667

Table 3.17. wz(z) for the equilateral triangular distribution

(x10—7)
1/k ;\i 1 2 3 4 5 6 7 8 9
.010 100 16835 5787 2809 1791 1297 1075 996 1091 1639

.020 50 34014 12077 6234 4425 3892 4915 50814
.033 30 57471 21367 12172 10745 18462

040 25 69444 26455 15976 16715

050 20 87719 34732 23237 37609

067 15 119048 50505 42602 N

.100 10 185186 92592 255610

111 9 - 208333 111110

COO0OQCO0OO0OOOO0OO0OO0OOOOOC

.125 8 238095 138888

143 7 277778 185184

.167 6 333333 277776

200 5 416667 555551

.250 4 555556

.333 3 833334

.500 2 1666667 A
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Table 3.18. 1})1(2) for the normal distribution

(x10-9)
1/k N 1 2 3 4 5 6 1 8 9 10
0.010 100 10101 3708 1884 1138 764 549 415 326 263 217
0.020 50 | 20408 7570 3887 2376 1613 1174 898 713 583 - 488
0.033 30 | 34482 12078 6767 4204 2903 2152 1679 1361 1138 976
0.040 25 | 41667 15799 8305 5204 3629 2718 2145 1762 1494 1301
0.050 20 | 52632 20188 10747 . 6831 4838 3689 2070 2496 = 2173 1952
0.067 15 | 71420 27952 15225 9936 7257 5738 4826 4278 3984 3903
0.100 10 | 111111 45423 26101 18216 14514 12911 12869 14973 23901
0.111 9 | 125000 51911 30451 21859 18143 17214 19304 29946
0.125 8 | 142857 60563 36541 27324 24190 25822 38607
0.143 7 | 166667 72676 45674 36431 36285 51643
0.167 6 | 200000 90845 60901 54647 72570
0.200 5 | 250000 121127 91352 109294
0.250 4 | 333333 181690 182704
0.333 3 | 500000 363380 '
0.500 2 | 1000000
Table 3.19. wz(z) for the normal distribution
(xlo's)

1/% x 1 2 3 4 5 6 7. 8 9

0.010 100 10101 3785 2008 1301 968 807 757 . 832 2173

0.020 50 20408 7900 4456 3215 2903 3689 38807

0.033 30 34483 13976 8700 7807 14514 .

0.040 25 41667 17304 11419 12144 -

0.050 20 52632 22711 16608 27324

0.067 15 71429 33035 30451

0.100 10 111111 60563 182704

0.111 9 125000 72676

0.125 8 142857 90845

0.143 7 166667 121127
. 0.167 6 200000 181630

0.200 § 250000 363380 N

0.250 4 333333

0.333 3 500000

0.500 2 1000000
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Table 3.20. 'wl(z) for the rightangled triangular distribution

, (x10-7)
1/k \;\\\\f\ 1 2 3 4 5 6 7 8 9 10
0.010 100 | 22447 6138 2836 1636 1068 754 562 437 350 287
0.020 50 | 45351 12531 5854 3415 2255 1611 1217 9§87 776 646
0.033 30 | 76628 21482 10190 6042 4058 2594 2274 1827 1516 1292
0.040 25 | 92593 26152 12506 7480 5073 3731 2906 2364 1990 1723
0.050 20 | 116959 33416 16185 9818 6764 5063 4024 3349 2894 2584
0.067 15 | 158730 46268 22928 14281 10145 7876 6539 5741 5306 5168
0. 100 10 | 246914 75186 39305 26181 20291 17722 17437 20092 31833
0.111 9 | 277778 85027 45856 31417 25363 23629 26156 40184
0.125 8 | 317460 100248 55027 39272 33818 35444 52311
0.143 7 | 370370 120298 68784 52362 50727 70887
0.167 6 | 444444 150372 91712 78543 101453
0.200 5 | 555555 200496 137569 157086
0.250 4 | 740741 300744 275137
0.333 3 1111111 601488
0. 500 2 (2222222

Table 3.21. wz(l) for the rightangled triangular distribution

(x1077)
1/% k\” 1 2 3 4 6 7 8 9
0.010 100 22447 6268 3025 1871 1353 1108 1026 1116 1676
0.020 50 45351 13081 6713 4622 4059 5065 52324 .
0.033 30 76628 23144 13107 11224 20297 .
0.040 25 92593 28654 17203 17460
0.050 20 116959 37608 25022 39285
0.067 15 158730 54703 45874
0.100 10 246914 100289 275245
0.111 9 277778 120347
0.125 8 317460 150434
0.143 7 370370 200578
0.167 6 444444 300867 \
0.200 5 555556 601734
0.250 4 740741
0.333 3 1111111
0.500 2 2222222
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Table 3.22. wl(z) for the exponential distribution

(x10-9)
1/ N 1 2 3 4 5 6 7 8 9 10
0.010 100 10101 2916 1375 802 526 373 279 217 174 143
0.020 50 20408 5954 2838 1673 1111 798 604 476 387 323
0. 033 30 34482 10208 4940 2959 2001 1462 1130 909 756 = 645
0.040 25 | 41667 12427 6063 3664 2501 1847 1443 1177 992 860
0.050 20 52632 15878 7846 4809 3334 2507 1998 1667 1443 1291
0.067 15 | 71429 21985 11115 6995 5001 3900 3248 2858 2646 2581
0.100 10 |111111 35726 19054 12824 10003 8774 8660 10002 15876
0.111 9 1125000 40830 22230 15389 12503 11699 12990 20004
0.125 8 | 142857 47635 26676 19237 16671 17548 25980
0.143 7 | 166667 57162 33345 25649 25007 35096
0.167 6 | 200000 71455 44459 38473 50013
0.200 5 | 250000 95270 66689 76946
0.250 4 | 333333 142905 133378
0.333 3 | 500000 285810
0.500 2 |1000000
Table 3.23. wz(z) for the exponential distribution
(x107%)
1/k ;\f 1 2 3 4 5 6 7 8 9

0.010 100 10101 2077 ~ 1466 916 667 548 509 556 1443

0.020 50 20408 6213 3263 2263 2001 2507 . 25380

0.033 30 34483 10993 6351 5496 10003

0.040 25 41667 13610 8336 8550

0.050 20 52632 17863 12125 19237

0.067 15 71429 25983 22230

0.100 10 111111 47635 133378

0.111 9 125000 57162

0.125 8 142857 71453

0.143 7 166667 95270 \

0.167 6 200000 142905

0.200 5 250000 285810

0.250 4 333333

0.333 3 500000

0.500 2 1000000
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Table 4.1. OSP, V%¥*

e

for the four distributions

LA and cg

2 x;* x* | xPF | xF | x| x¥ v ey cg

1 {-1.000 1.000 0.03889 | 0.000 0.000
2 |-1.000 | 0.570 | 1.000 0.02624 | 0.325 0.604
3 1—1.000 }-0.529 | 0.529 | 1.000 0.01038 | 0.733 0.547
4 {—-1.000 0518 | 0.423 | 0.677 | 1.000 0.00765 | 0.803 0.651
5 |-—-1.000 |-0.668 {-0.405 | 0.405 | 0.668 | 1.000 | 0.00470 | 0.879

1 {—3.000 | 3.000 1.73269 | 0.000 0.000
2 |-3.000 1.515 | 3.000 1.18517 | 0316 0.537
31-3.000 1423 | 1423 | 3.000 0.54928 | 0.683 0.527
4 1-3.000 }-1.394 | 1.130 | 1.893 | 3.000 0.40950 | 0.764 0.635
51{-3.000 |-1.867 ~1.084 | 1.084 | 1.867 | 3.000 {0.25997 | 0.850

1] 0.000 | 2.000 0.06914 | 0.000 0.000
2| 0.000 | 1.382 | 2.000 0.02484 | 0.641 0.000
3| 0.000 | 0.205 | 1.351 | 2.000 0.01751| 0.747 0.429
4] 0.000 | 0.226 | 1.198 | 1.554 | 2.000 0.00894 | 0.871 0.319
5§ 0.000 | 0.235 | 1.121 | 1.399 | 1.653 | 2.000 | 0.00605} 0.912

1{ 0000 | 6.000 441936 | 0.000 0.000
2| 0.000 | 3.309 | 6.000 1.35384 | 0.694 0.000
3] 0000 | 2674 | 4.156 | 6.000 0.65524 | 0.852 0.000
41 0.000 2375 | 3.449 | 4.598 | 6.000 0.40864 | 0.908 0.000
S| 0.000 | 2201 | 3.058 | 3.920 | 4.870 | 6.000 | 0.29656| 0.933




Table 4.2. OSP, Va* and € for the‘ four distributions
x> x* x x X xM x X Vet eg
121 —~1.000 |-0.529 0.529 1.000 0.01038 0.733
1° 12321 —1.000 |—-0.668 |—0.405 0405 | 0.668 | 1.000 0.00470 0.879
1234321 {—1.000 |-0739 |[-0.547 |-0337 | 0337 | 0547 | 0.739 | 1.000 | 0.00267 0.931
121 —3.000 |-1.423 1.423 3.000 0.54928 0.683
2° 12321 -3.000 |-1.867 |—1.084 1.084 | 1.867 | 3.000 0.25997 0.850
1234321 |-3000 |-2.110 |-1493 |-0.900 | 0.900 | 1493 | 2.110 33.000 0.14956 0.914
121 0.000 0.000 1.382 2.000 0.02484 0.641
3° 12321 0.000 0.000 0.205 1.128 | 1.490 | 2.000 000999 | 0.856
1234321 | .0.000 0.000 0.000 | 0232 | 1.102 | 1.378 | 1.642 | 2.000 | 0.00609 0.912
121 0.000 3.309 6.000 6.000 1.35384 0.694
4° 123271 0.000 2.674 4.156 6.000 | 6.000 | 6.000 0.65524 0.852
1234321 0.006 2.375 3449 | 4598 | 6.000 | 6.000 | 6.000 | 6.000 | 0.40864 0.908
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Table 5.1. The traditional strata

Sale of LPG (ton)

Stratum No. Sale of benzine (K1)
1 1~ 49 1~ 49
2 50~ 99 50~ 99
3 100~ 199 100 ~ 199
4 200 ~ 249 200 ~ 259
S 250 ~ 260 ~ 499
6 500 ~

Table 5.2. The sale of LPG and the optimum value g*

Case No.

Class 1 2 3 4 5 6
1~ 4 240 215 230 205 10 7
S~ 9 260 246 240 226 20 19

10~ 19 438 426 324 310 114 109
20~ 29 237 228 159 146 78 77
30~ 49 233 222 165 150 68 66
50~ 69 117 114 80 77 37 35
70~ 99 114 111 75 73 39 37
100 ~ 119 54 51 37 31 17 15
120 ~ 139 41 39 30 29 11 10
140 ~ 159 50 48 35 31 15 15
160 ~ 179 44 44 29 29 15 13
180 ~ 199 31 30 16 15 15 14
200 ~ 249 101 94 51 48 50 43
250 ~ 491 471 268 247 223 209
my 785 765 785 765 740 750

8* 0.00432 0.00429 0.00490 0.00491 0.00329 0.00332
[Remark] Casel: LPG (Typel), 1978

Case 2 :
Case 3 :
Case 4 :
Case 5 :
Case 6 :

LPG (Type D), 1980

LPG (Type 1), 1978
LPG (Type ID), 1980
LPG (Type Ifl), 1978
LPG (Type Ii1), 1980

Table 5.3. The sale of benzine and the optimum value g*

Class Case No. 7 8
I~ 9 132 106
10~ 19 89 85
20~ 29 162 159
30~ 39 239 234
40 ~ 49 268 263
50~ S§9 245 239
60~ 79 369 360
80~ 99 256 253
100 ~ 119 221 218
120 ~ 139 165 163
140 ~ 159 129 126
160 ~ 179 121 117
180 ~ 199 127 124
200 ~ 219 123 120
220 ~ 239 130 129
240 ~ 259 134 134
260 ~ 279 109 108
280 ~ 299 91 91
300 ~ 349 197 196
350~ 399 175 171
400 ~ 499 246 243
500 ~ 643 633
mg 1045 1075
8* 0.00311 0.00309

[Remark] Case 7: Benzine, 1978

Case 8 :

Benzine, 1980

- 85 -



Table 5.4._OSP{z;}, sample sizes{n;}, the standard errors S

and some efficiency

s S

1’ "2

Stratum 1 [ 2 1 3 | 4 t s [ 6
Case ztn 2 =0 z” [ z7 |z T " z7 [z [z7-- n s, s, oS
o A N AR AN I S >
H - 2 )
:: : 4715.5 ]993 47%,0 .17.3 47]7.0 “i“ csLJ 69[“ s4i|.a T I 2451 189 1953 0391
M 2
rf:‘ ° 4513.3 1100.4 45‘43 -TM 4s|s,z “lm 45L.7 77“ 51}1.0 ‘[' l 2339 1 1998 0392
; 3 -
il, > sslu ]m;-D 337.7 (])M 33185 JT“ 344%1 “[“ 3314.4 T [ 1739 1331 1-829 0273
H 2. -
rzx:' : 3]3.7 Ixm 31]40 1(];9.3 3||4.1 3}53 n‘u 6‘[ ! J};A T L 1617 1378 858 010
H 2 -
::: : l}ls.l lfm n}ss .7“ 13}86 STU 13Eu ”IM 15[7.4 i - 712 i s468 0603
s 3 T -
::‘ . 1298 329.9 11199 ‘{)“ 13!3.1 sis.z 1311.1 QTJ 14l749 [ [ 669 223 5916 059
3 357 3 - -
rzl:‘ : 70L.9 l[l“ 7110.; —?3 ﬂ'lo.q uio_ 7:{25 6;6.2 nls.o 10?2. s&%,z 437t 0777 1474 0473
¥ 2 -
,z,: 2 69]3_3 1114.5 sl_’ -TJ - 69’4_3 4?1.1 saL.a 67[36 1qu3 lm]m- 7sl|.o 4272 0786 1501 0476

Table 5.5. Changed OSP{z;*},

and

sample sizes{n;*}, the standard error S

some efficiencies

| I P T [ s I
AT A A A Al B A E AT n s s,s s, s,s s,
PR BTN N B B R i : X 7
[ 100 | 250 400 700 - i )
480 I 480 | 480 | 480 | s31 T ast MY 00 i 0:387
[ 00 T e 400 700 - T ! ! i
5 a5 [ s ] ass | s T 1 g 1B ook, 037
0 100 | 200 | 350 | 600 - 1 T i I
30 | 340 [ a0 340 ] 315 ] e, 009 408
[ 190 [ 200 | 350 [ 600 | - T i .
315 [ 315 1 s ] 35 | 387 | L1817 | 1ane 0077 | 0
o] 140 | 300 | ss0 | 900 | - I i 1
140/ i 140 | 140 | 140 | 152 | ! n | ™ 006 0.597
o] o T e ] sso | s T T I 2,261 001 0.590
130 | 10 | 30 | 18 | 19 | 669 .
0| 120 | 20 | se0 | 100 | 1100 - 0863 ot a1
7(0 [ o [ me [ ne [ "7 I 81 4371 ) - i
v | 120 ] %0 ] s00 | 7100 | 10 | -
00 | w0 | te0 |__je0 | 1m0 | 772 4272 0871 10K a0
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Table 6.1. . for the rightangled triangular distribution under NA

9 8 0.03 0.10 0.15 0.20
2 0.174 0.246 0.301 0.347

4 0.076 0.108 0.132 0.153

6 0.050 0.070 0.086 0.099

8 0.037 0.052 . 0.064 0.074

10 0.029 0.041 0.051 0.058

Table 6.2. A for the exponential distribution under PA

0. s 0.05 0.10 0.15 0.20
2 0327 0462 0.566 0.653

4 0.110 0.156 0.192 0.220

6 0.078 0.110 0.135 0.156

8 0.058 0.082 0.101 0.116

10 0.046 0.066 0.080 0.093
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Table 7.1. q for the equilateral triangular distribution

Alloca~ Number of strata ®
tion « 8
method 2 3 4 5 6 7 8 9 10
~02 -0.12 0.095 0.084 0.080 0.077 0.076 0.075 0.074 0.074 0.073
-0.1 -0.19 0.159 0.143 0.138 0.133 0.131 0.129 0.128 0.127 0.126
-0.1 -~0.01 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005
NA 0.1 -0.01 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.005 0.005
0.1 021 -0.121{ ~0.102 | -0.099 | ~0.09 | -0.09 | —0.095 | —0.094 | - 0.094 | —0.094
0.2 008 | -00S3| ~0.045 | —0.043 | —-0.042 | —0.041 | - 0.041 | - 0.041 |—-0.040 | ~0.040
0.2 032 | -0.162| -0.139 | -0.136 { —-0.132 | - 0.132 | ~0.130 { —0.130 {-0.129 | -0.130
-0.2 -0.12 0.095 0.079 0.073 0.067 0.065 0.063 0.061 0.060 0.059
-0} -0.19 0.159 0.137 0.127 0.119 0.115 0.1 0.109 0.106 0.105
-0 - 0.0t 0.007 0.006 0.005 0.005 0.005 0.004 0.004 0.004 0.004
PA 0.1 -0.01 0.007 0.006 0.005 0.005 0.005 0.004 0.004 . 0.004 0.004
0.1 021 ~0.2t{ -0.092 )| —-0.084 | -0.078 | - 0.076 | —0.073 | - 0.072 |-0.07t | ~0.070
0.2 008 | -0053| —0.04f { ~0.037 { ~0.034 | -0.033 { -0.032 | -0.032 |-0.03t | -0.031
0.2 032 | -0.162) -0.124 | -0.114 | -0.106 { ~0.103 | —0.099 | —-0.098 |-0.096 { ~0.096

Table 7.2. q for the normal distribution

Alloca- Number of strata £
tion a I
method 2 3 4 H 6 7 8 9 10
0.1 0.21 -0.191 ] —0.188 | —0.186 | —0.187 | —0.186 { - 0.186 | — 0.186 | -0.186 | -0.186
NA .| 02 0.08 -0077| -0077 | —0.076 | ~0.076 | - 0.076 | - 0.076 | - 0.076 | ~0.076 | —0.076
0.2 0.32 -0275 | -0271 | -0.270 | ~0.270 { - 0.270 | - 0.270 | — 0.271 | -0.271 | - 0.271
0.1 0.21 -0.1914 -0:188 | -0.187 | ~0.187 | - 0.187 | —~0.186 | - 0.186 | —0.186 | —0.186
EA 0.2 0.08 -0077} ~0.077 | -0.076 | -0.076 | - 0.076 { — 0.076 | ~0.076 |- 0.076 | —0.076
0.2 0.32 -0.275| -0271 | -0270 | -0.270 | -0.270 | - 0.270 | - 0.271 | - 0.271 | —-0.27}
0.1 0.21 ~0.49t | ~0.184 | -0.180 | —0.178 | - 0.177 | ~0.176 | - 0.175 | -0.174 | -0.174
PA 0.2 0.08 -0077| ~-0076 | ~0.075 | -0.075 | —0.074 | -0.074 | — 0.074 |- 0.074 | -0.074
0.2 0.32 -0.275| -0.262 | -0.256 | -0.253 { ~0.250 | - 0.249 | —0.247 | -0.247 | -0.246
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Table 7.3. g for the rightangled triangular distribution

Alloca- Number of strata £
tion a 8
method 2 3 4 5 6 7 3 9 10
-02 -0.12 0.106 0.131 0.139 0.142 0.144 0.145 0.146 0.146 0.147
-0.1 -0.01 0.213 0.202 0.197 0.195 0.193 0.192 0.191 {. 0.190 0.190
0.1 - 0.0t 0.026 0.043 0.048 0.050 0.052 0.052 0.053 0.053 0.053
NA
0.1 0.21 -0.325| -0.113 | -0.107 | —0.105 [ - 0.104 | - 0.108 | -~ 0.102 | -0.102 | -0.102

0.2 008 | -0.107| —0.113 | —0.115 | —0.116 | ~0.116 | -0.117 [ -0.117 | -0.117 | -0.117

0.2 0.32 -0.163| -0.156 | —0.150 | -0.147 | - 0.145 | ~0.144 | —0.144 | -0.143 | ~0.143

-02 -0.42 0.064 0.083 0.089 0.091 0.093 0.094 0.095 0.096 0.096

-0.1 -0.01 0.214 0.199 0.192 0.187 0.184 0.182 0.181 0.180 0.179

0.1 -0.01 0.005 0.019 0.024 0.027 0.028 0.029 0.030 0.031 0.031

™ 0.} 0.21 ~0.115| —0.097 | ~0.088 | —0.084 { - 0.082 | —0.080 | - 0.079 | -0.078 | -0.078
0.2 0.08 -0.083 | -0.084 | -0.083 | —0.083 | —0,083 | -0.083 { - 0083 { —0.083 | ~0.083

0.2 0.32 ~0.145| -0.126 | -0.119 | -0.114 | -0.111 { —0.109 | - 0.108 | - 0.107 | - 0.106

_Table 7.4, q for the exponential distribution

Alloca- Number of strata £
tion « [
method 2 3 4 S 6 7 8 9 10
-0.2 -0.28 0.259 0.253 0.253 0.255 0.257 0.259 0.261 0.262 0.263
-02 -0.12 0.109 0.135 0.154 0.164 0.169 0.171 0.172 0.172 0.172
NA ~0.1 -0.19 0.189 0.189 0.188 0.188 0.188 0.188 0.188 0.188 0.188
-0.1 -0.01 0013 0.024 0.032 0.036 0.039 0.041 0.042 0.043 0.043
0.1 021 | -0.209] -0.209 | ~0.209 | ~0.209 | —0.209 | -0.209 | —0.209 |-0.209 | -0.209

-02 -0.28 0.258 0.253 0.254 0.256 0.258 0.260 0.261 0.263 0.264

-02 -0.12 0.110 0.135 0.155 0.165 0.169 0.171 0.172 0.172 0.172

EA -0.1 -0.19 0.189 0.189 0.188 0.188 0.188 0.188 0.188 0.188 0.188
-0l ~0.01 0.014 0.025 0.033 . 0.037 0.040 0.041 0.042 0.043 0.043

0.1 02! | -0209{ -0.209 | -0.209 | -0.209 | -~0.209 | —0.209 | ~0.209 |~ 0.209 | -0.209

-02 { -028 0.210 0.172 0.158 0.155 0.155 0.156 0.156 0.156 0.156

-0.2 -0.12 -0.025 | -0.017 { ~0.010 { -0.009 | —0.008 | ~0.007 | - 0.006 |-0.005 | - 0.005

PA -0.1 -0.19 0.189 .0.187 0.186 0.186 0.185 0.184 0.184 0.183 0.183
-01 -0.01 -0.067} -0.079 | -0.079 [ -0.079 | - 0.078 | - 0.077 | - 0.077 | -0.076 | -0.076

0.1 0.21 -0.209 | —0.208 | -0.208 | —-0.207 | - 0.207 | - 0.207 | - 0.207 | -0.206 | - 0.206
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Table 7.5. Ql for the equilateral triangular distribution

Alloca-T| Number of strata £
tion a 8
method 2 3 4 S 6 7 8 9 10
-0.2 -0.12 0.000 0010 0.015 0.0i7 0.019 0.021 0.021 0.022 0.022
~0.1 ~0.19 0.000 0.026 0.039 0.046 0.050 0.054 0.055 0.057 0.058
-0.1 -0.01 0.000 0.000 0.000 0.000 0.00% 0.00% 0.001 0.000 0.000
™ 0.1 -~ 0.01 0.000 0.000 0.000 0.000 0.001 0.00t 0.001 0.000 0.000°
0.1 0.21 0.000 0.025 0.038 0.047 0.052 0.055 0.059 0.060 0.062
0.2 0.08 0.000 0.004 0.006 0.007 0.008 0.008 0.008 0.009 0.009
0.2 032 0.000 0.054 0.085 0.105 0.118 0.127 0.133 0.138 0.141
-0.2 ~0.12 0000 | -0.004 | -0.006 | -0.009 | ~0.061k | — 0611 { -0.013 | -0.0i4 | -0.015
y -0 ~0.19 0.000 0.006 0.007 0.007 0.006 0.006 0.005 0.004 0.004
-0.1 ~0.01 0.000 | —000i | ~0002 | -0.002| -0.002| -0.003 | ~0.003 |{ - 0.003 | -0.003
PA 0.1 -0.01 0000 | 0001 -0.002 { - 0.002’ ~-0.002 | ~0.003 [ -0.003 | ~0.003 | —0.003
Q.1 on 0.000 0.054 0.083 0.102 0.114 0.123 0.129 0.133 0.137
0.2 0.08 0.000 0.014 0.022 0.028 0.031 0.033 0.034 0.036 0.036
02 0.32 0.000 0.099 0.155 0.§92 0.216 0.233 0.245 0.254 0.260
¢ < 7 )

Table 7.6. Q1 for the normal distribution

Alloca- Number of strata ¢
tion a 8
method 2 3 4 S 6 7 8 9 10
0.1 0.2t 0.000 0.022 0.039 0.050 0.060 0.067 0.072 0.076 0.081
NA 0.2 0.08 0.000 0.003 0.006 0.008 0.009 0.010 0.011 0.0i2 a.012

6.2 0.32 0.000 0.049 0.085 0.112 0.133 0.149 0.161 0.17¢ 0<180. i

0.1 0.21 0.000 0.023 0.039 0.051 0.060 0.068 "I 0.073 0.078 0.082
EA 0.2 0.08 0.000 0.003 0.006 0.008 0.009 0.010 0011 0012 0.012
0.2 0.32 06.000 0.050 0.088 0.115 0.136 0.152 0.164 0.174 0.183
0.t 0.21 0.000 0.058 0.107 0.145 0.175 0.201 0222 0.241 0.256
PA 0.2 0.08 0.000 0.016 0.029 0.039 0.047 0.054 0.059 0.063 0.067
0.2 0.32 0.000 0.108 0.199 0271 0.33t 0.379 0421 0455 0.485
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Table 7.7. Ql for the rightangled triangular distribution

Alioca- Number of strata 2
tion a 8 T
method ) 2 3 4 S 6 7 8 9 10
-02 -0.12 0.076 | 0.106 0.12¢ 0.132 0.138 0.141 0.144 0.145 0.147
-0.1 -0.01 0.207 | 0.191 0.189 0.189 0.188 0.188 0.188 0.188 0.188
0.1 -0.01 0.034 | 0.091 0.107 0.114 0.120 0.122 0.124 0.125 0.126
n 0.1 0.21 0.017 | 0.086 0.123 0.144 0.157 0.161 0.173 0.177 0.180
0.2 0.08 0.073 | 0.126 0.135 0.139 0.142 0.143 0.144 0.145 0.145
0.2 032 0.073 | 0.252 0.356 0417 0.455 0.480 0.497 0.510 0.520
~0.2 -0.12 | -0.022 | 0014 0.032 0.041 0.048 0.052 0.055 0.058 0.060
-90.1 -00t 0.211 | 0.170 0.169 0.168 0.167 0.167 0.168 0.168 0.168
0.1 - 0.0t 0.045 | 0.084 0.099 0.106 0.108 0.112 0.115 0.116 0.117
™ 0.1 0.2t 0.073 | 0.166 0.223 0.256 0.276 0.291 0.302 0.309 0.314
0.2 0.08 0.175 | 0217 0.236 0.245 0.249 0.253 0.256 0.257 0.258
02 0.32 0.176 { 0422 0.562 0.647 0.699 0.737 0.762 0.781 0.795
¢, . . & i

Table 7.8. Q1 for the exponentialldistribution

Alloca- Number of strata &
tion a 8
method 2 3 .4 § 6 7 8 9 10
-02 -0.28 0.062 0.066 0.069 0.072 0.074 0.076 0.079 0.080 0.082
-02 -0.12 0.023 0.040 0.058 0.074 0.088 0.100 0.t12 0.123 0.134
NA -0.1 -0.19 0.025 0.033 0.036 0.038 0.039 0.040 0.04% 0.04t 0.041
-0.1 -0.01 0.003 0.010 0.019 0.027 0.035 0.042 0.049 0.055 0.060
0.1 0.21 0.028 0.041 0.048 0.083 0.056 0.059 0.061 0.063 . 0.064
-0.2 -0.28 0.061 0.067 0.070 0.072 0.075 0.077 0.079 0.081 0.083
-0.2 -0.12 0.022 0.038 0.059 0.076 0.090 0.103 0.115 0.127 0.138
EA ~0.1 -0.19 0.025 0.033 0.036 0038 | 0039 0.040 0.041 0.041 0.042
-0.1 -001 0.003 0010 0.020 0.029 0.037 0.044 0.050 0.057 0.062
0.1 0.2t 0.029 0.041 0.049 0.053 0.057 0.060 0.062 0.063 0.065
-0.2 ~028 | ~0076 |-0.120 | -0.134 | —0.133 [-0126 | —0.117 | - 0.107 | -0.097 | - 0.087
-0.2 —0.12 | -0.186 | -0.172 | —0.118 | —0.050 0.027 0.107 0.188 0.267 0.343
PA ~0.t ~0.19 | -0.035 |-0.050 | —0.057 | -0.060 |-0.064 | ~0.066 | —0.067 | -0.069 | —0.070
-01 -001 |- 0.102‘ -0.093 | -0.0s3 | -0.008 0.040 0.087 0.13t 0.174 0.213
0.1 0.2t 0.120 0.177 0.230 |- 0.262 0.286 0.304 0.319 0.333 0.344
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Table 8.1. Q, for the equilateral triangular distribution

Allocation Q log ] —
method 0.01 0.05 0.07 0.10 0.15 0.20

0.000 0.000 0.000 0.000 0.000 . 0.000
’ 0.000 0.005 0.010 0.020 0.047 0.087
0.000 - 0.001 -0.002 - 0.005 -0.013 - -0.025
* 0.000 0.006 0.012 0.026 0.060 0.111
0.000 —-0.002 -0.003 -0.007 -0.017 -0.033

NA 6
0.000 0.007 0.013 0.027 - 0.064 0.120
0.000 ~0.002 - 0.004 —-0.008 -0.019 ~0.037
: 0.000 0.007 0.014 0.028 0.066 0.124
0.000 -0.002 |° -0.004 - 0.008 - 0.021 - 0.040
1 0.000 0.007 0014 0.029 0.068 0.127
0.000 0.000 0.000 0.000 0.000 0.000
? 0.000 0.005 0.010 0.020 0.047 0.087
0.000 - 0.001 -0.003 — 0.006 - 0.015 - 0.029
) 0.000 0.006 0.013 0.026 0.062 0.116
: 0.000 ~0.002 - 0.004 - 0.008 - 0.020 =0.039

EA 6
0.000 0.007 0.014 0.028 0.067 0.126
0.000 -0.002 - 0.004 - 0.009 -0.022 - 0.044
: 0.000 0.007 0.014 0.030 0.070 0.t31
0.000 - 0.002 - 0.005 - 0.010 - 0.024 -0.047
N 1 0.000 0.007 0.014 0.030 0.07M1 0.134
0.000 0.000 0.000 0.000 0.000 0.000
| ? 0.000 0.005 0.010 0.020 0.047 0.087
; . 0.000 ~0.004 ~0.008 —-0.018 -~ 0.047 - 0.100
0.000 0.009 0.018 0.038 0.094 0.187
0.000 - 0.007 - 0.014 -0.031 -0.079 - 0.166

PA 6
0.000 0.012 0.024 0.051 0.126 0.253
0.000 - 0.010 -0.020 - 0.044 -0.115 -0.248
’ 0.001 0.015 0.030 0.064 0.163 0.335
0.000 - 0.012 - 0.025 - 0.056 -0.147 -0317
i 0 0.001 0.017 0.035 0.076 0.194 0.403

I
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Table 8.2. QZ for the normal distribution

Allocation 2 feg i
method 0.01 0.05 0.07 0.10 0.15 0.20
0.000 0.000 0.000 0.000 0.000 0.000
? 0.000 0.005 0.010 0.020 0.047 0.087
0.000 -0.001 - 0.002 - 0.005 -0.011 -0.022
) 0.000 0.006 0.012 0.025 0.058 0.109
0.000 - 0.001 - 0.003 - 0.006 - 0.016 - 0.030
NA 6
0.000 0.007 0.013 0.027 0.063 0.117
0.000 -0.002 - 0.003 - 0.007 -0.018 - 0.035
’ 0.000 0.007 0.013 0.028 0.065 0.122
0.000 - 0.002 - 0.004 — 0.008 -0.020 —0.039
0 0.000 0.007 0.014 0.029 0.067 0.126
0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.005 0.010 0.020 0.047 0.087
0.000 -0.001 - 0.003 - 0.006 - 0.015 —0.029
' 0.000 0.006 0.013 0.027 0.062 0.116
0.600 - 0.002 - 0.004 — 0.008 -0.020 —0.040
EA 6
0.000 0.007 0.014 0.029 0.067 0.126
0.000 - 0.002 - 0.004 - 0.009 -0.022 - 0.044
i ’ 0.000 0.007 0.014 0.030 0.070 0.131
! 0.000 - 0.002 - 0.004 -~ 0.009 -0.023 -0.045
10 0.000 0.007 0.014 0.030 0.070 0.131
0.000 0.000 0.000 0.000 0.000 0.000
? 0.000 0.005 0.010 0.020 0.047 0.087
0.000 - 0.007 -0.015 -0.034 - 0.095 - 0.219
¢ 0.000 0.012 0.025 0.054 0.142 0.306
- 0.001 - 0.019 - 0.041 - 0.094 -0.273 -0.671
PA 6
0.001 0.024 0.051 0.115 0.320 0.758
-0.001 -0.039 —0.084 - 0.200 - 0.640 - 1,991
’ 0.002 0.044 0.094 0.220 0.687 2.078
) -0.002 - 0.065 —-0.142 - 0.357 -1.390 - 1.780
1 0.002 0.070 0.151 0.377 1.437 7.867
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Table

8.3. Q2 for the rightangled triangular distribution

Allocation 2 lai |
method 0.01 0.05 0.07 0.10 0.15 0.20
0.000 0.000 0.000 0.000 0.000 0.000
’ 0.000 0.006 0.012 0.025 0.059 0.111
0.000 - 0.001 - 0.002 - 0.005 -0013 | -0.025
* 0.000 0.006 0.012 0.025 0.058 0.108
0.000 - 0.002 -0.003 - 0.007 -0.017 - 0033
NA 6
0.000 0.007 0.013 0.027 0.063 0.117
0.000 - 0.002 - 0.004 - 0.008 -0.019 -0.038
’ 0.000 0.007 0.013 0.028 0.065 0122
0.000 - 0.002 —0.004 - 0.009 - 0021 ~0.040
1 0.000 0.007 0.014 0.029 0.067 0.125
0.000 0.001 0.002 0.002 0.003 0.005
? 0.000 0.006 0.012 0.023 0.051 0.092
0.000 ~0.001 - 0.002 ~0.005 ~0.013 -0.027
* 0.000 0.007 0.014 0.028 0.064 0.119
0.000 - 0.001 - 0.003 - 0.007 . -0.019 -0.037
“EA 6
0.000 0.007 0.014 0.029 0.068 0.128
0.000 - 0.002 ~0.004 - 0.009 -0022 -d.043
: 0.000 0.007 0.015 0.030 0.071 0.132
0.000 - 0.002 - 0.004 - 0.009 - 0023 - 0.046
° 0.000 0.008 0.015 0.031 0.072 0.135
0.004 0.019 0.026 0.037 0.056 0.074
2 0.004 0.029 0.046 0.081 0.168 0.304
0.003 0.008 0.007 0.000 - 0.030 ~0.094
) 0.003 0.031 0.053 0.102 0.233 0.460
0.002 0.000 - 0.007 ~0.030 -0.104 -0.251
PA 6
0.003 0.034 0.062 0.123 0.299 0.625
0.002 ~0.006 -0.020 - 0057 -0.176 —0417
’ 0.003 0.038 0.071 0.145 0.368 0.308
0.001 -0.013 -0.033 ~0.084 -0.252 - 0.604
" 0.003 0.042 0.080 0.170 0.444 1022
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Table 8.4. Q2 for the exponential distribution

Allocation Q lal
method 0.01 0.05 0.07 0.10 0.15 020
0.000 0.000 0.000 0.000 0.000 0.000
2
0.000 0.004 0.009 0.018 0.041 0.074
0.000 - 0.001 - 0.002 - 0.005 - 0012 -0.023
4
0.000 0.006 0.012 0.024 0.056 0.103
: 0.000 ~0.002 ~0.003 ~0.007 - 0.016 - 0031
NA 6
0.000 0.006 0.013 0.026 0.061 0.113
0.000 ~0.002 ~0.003 ~0.007 -0.018 ~0.035
8
0.000 0.007 0.013 0.027 0.063 0.118
0.000 —0.002 —0.004 ~0.008 —0.019 —0.037
10
0.000 0.007 0.013 0.028 0.065 0.121
0.000 0.002 0.003 0.004 0.006 0.008
2
0.001 0.007 0.013 0.024 0.053 0.096
0.000 0.000 ~0.001 - 0.004 - 0.012 -0.026
4
0.000 0.007 0.014 0.029 0.066 0121
0.000 —0.001 ~0.003 - 0.007 ~0.019 ~0.037
EA 6
0.000 0.008 0.015 0.030 0.070 0.130
0.000 0002 |. -0004 —0.008 —0022 —0.043
8 -
0.000 0.008 0.015 0.031 0.072 0.135
0.000 ~0.002 -0004 | -0.009 -0.024 -0.047
10
0.000 0.008 0.015 0.031 0.073 0137
0.018 0.092 0.129 0.184 0276 0.368
2
0.020 0.156 0275 0577 1.952 9.659
0.025 ~0.004 - 0.105 .
- ) ~ _
0.047 1.087 5.029
0.010
PA 6 - - - - -
0.110
~0.052
8 - - - - -
0.276
—0.223
10 - - - - -
: 0.743
(*¥*) — means that the condition (8.4) is not satisfied.
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Table 8.5. Change of sample sizes {ni}

Stratum ng {Example 8,1] . [Example 8,2]
No. n; +m; mi n; + nmy m;
1 693.8 700 6.2 712 18.2
2 694.2 - 700 5.8 712 17.8
3 694.8 700 5.2 712 17.2
4 696.4 700 3.6 712 15.6
5 701.8 700 - 1.8 712 10.2
6 791.0 772 -19.0 712 -179.0
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Table 9.1. Q3 for the equilateral triangular distribution

X ! PLUS MINUS ALTERNATING
method | 2 0.01 005 0.10 00 0.05 010 0.01 0.05 0.10
2 0.000 0,005 0.020 0.000 0.005 0.020 0.000 0.005 0.020
4 0.001 0.016 0.064 0.001 0.016 0.064 0.001 0.034 0.137
NA 6 0.001 0.034 0.135 0.001 0.034 0135 0.003 0.085 0.339
3 0.002 0.058 0233 0.002 0.058 0.233 0.006 0.156 0.623
10 0.004 0.089 0357 0.004 0.089 0.357 0.010 0.248 0.989
2 0.000 0.005 0.020 0.000 0.005 0.020 0.000 0.005 0.020
4 0.001 0.016 0.064 0.001 0016 0.064 0.001 0.034 0.135
EA 6 0.001 0.034 0134 0.001 0.034 0134 0.003 0.084 0335
8 0.002 0.058 0231 © 0.002 0.058 0.231 0.006 0.155 0.617
10 0.004 0.089 0355 .| 0004 0.089 0.355 0.010 0.246 0.981
2 0.000 0.005 0.020 0.000 0.005 0.020 0.000 0.005 0.020
4 0.001 0.015 0.061 0.001 0.015 0.061 0.001 0031 0123
PA 6 0.001 0.031 025 0.001 0.031 0.125 0.003 0.075 0.300
8 0.002 00s3 | 0213 0.002 0.053 0.213 0.006 0.138 0.549
10 0.003 0.081 0324 0.003 0081 0324 0.009 0.218 0.870

Table 9.2. Q3 for the normal distribution

It PLUS MINUS ALTERNATING
method | 2 001 0.05 0.10 001 005 0.10 0.01 0.05 0.10
2 0.000 0.004 0.017 0.000 0.004 0.017 0.000 0.004 0.017
4 0.001 0.014 0058 0.001 0.014 0.058 0.001 0.031 0123
NA 6 0.001 0.029 0117 0.001 0029 0117 0.003 0.075 _0.298
8 0.002 0.050 0.198 0.002 0.050 0.198 0.005 0.135 0539
10 0.003 0.075 0301 0.003 0075 0301 0.008 0.211 0.844
2 0.000 0.004 0.017 0.000 0004 | 0017 0.000 0.004 0.017
4 0.001 0.014 0.056 0001 0014 0.056 0.001 0.030 0.119
EA 3 0.001 0.029 0115 0.001 0.029 0.115 0.003 0.073 0.291
8 0.002 0049 | 0195 0002 | o004 0.195 0.00s 0132 0.529
10 0.003 0.074 0297 .003 0074 0.297 0.008 0.208 0.833
2 0.000 0.004 0017 0.000 0004 0.017 0.000 0.004 0.017
A 0.001 0.013 0.051 0.001 0013 0.0s1 0.001 0.025 0.099
PA 6 0.001 0024 0.097 0.001 0.024 0.097 0.002 0.057 0.229
8 0.002 0.040 0.158 0002 | 0040 0.158 0.004 0.102 0407
10 0.002 0.059 0.236 0.002 0.059 0.236 0.006 0.160 0.638
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Table 9.3. Q3

for the rightangled triangular distribution

I”l ! PLUS MINUS l ALTERNATING
methad | € 001 0.05 .10 0.01 0.05 o0 | oot 0.05 0.10
2 0.000 0.005 0018 0.000 0.005 0.019 0.000 0.005 0.018
4 0.001 0.019 0.075 1 0.001 0.019 0.076 0.002 0.038 0.150
NA 6 0.002 0.042 0167 | 0.042 0.169 0.004 0.098 0.391
8 0.003 0.074 0.294 ._ " 004 " 0297 0.007 008 - 0741
10 0.005 0.115 0.458 0.116 0.461 0012 | 0301 L1199
2 0.000 0.005 0.019 . 000s i 0019 0.000 0.005 0.019
4 0.001 0.019 ; 0.075 0.001 : 0.019 J{ ) 0.076 0.001 : 0.037 0.149
EA 6 0002 | 0042 | 0166 | 0002 : 0042 | 0.68 0004 . 0.098 0.389
T 0003 | o007 {029 4 0003 ‘0074 : Toass | ooor ' 0.736
10 0.005 0115 | 0456 | 000S | 015 | 0459 o012 0300 1.193
2 0.000 0005 | o018 {000 0.005 __T' 0019 0000 ! 0005 0.018
4 0.001 0.017 0.069 : 0001 | 0017 | 0070 0001 Cooos ot
PA 3 0.002 0.06 0.150 0.002 0038 | o152 :— 0003 | 0.088 0.350
8 0.003 0.066 0.263 0.003 0.067 0.266 T_ 0.007 0.166 0.660
10 0.004 0.103 0.408 0.004 0.103 0412 ‘ 0.011 0.268 1.066
Table 9.4. Q3 for the exponential distribution
ini! PLUS | MINUS i ALTERNATING
e ? T
method | £ 0.01 0.05 o180 ! oo1 | o005 ot0 | o001 | 005 0.10
2 0.000 0.004 0016 | 0000 {M 0004 | o018 | 0000 0.004 0.016
T _+__,“_ e
4 0.001 0.020 0.078 i 0.001 I 0.020 0.083 0.001 0.036 0.144
NA 6 0.002 0.045 0.180 Jlf o002 | ‘“&047;'"”:' Toist | ooeos '&iiéé_mf' 0.393
8 0.003 0.081 0321 _L 0,003 _T “Toos2 0332 0008 o191 | o6l
10 0.005 0.127 osos T Towes 1 oars 1 osel  ee1s . o313 1asi
2 0.000 0.004 0015 ;L Tooo0 ¢ 000t . o017 0000 0004 0.015
a 0.001 0.019 0076 4T_<;.d<')"i T sen  Toom L ooor 0.035 0.140
EA 6 0.002 0.045 —T" ;)AITI 0.0(;2_" . 0.046 T‘ 0.184 P 4.004 0.097 i 0.385
T e R R SO
8 0.003 0.080 0317 0003 . 0081 0324 0.008 om | 0750
10 000s | oazs | o041 | o00s |
2 | 0000 0.003 oott | oo00 0003
s 0.000 0.011 0042 | o000
rA 6 0.001 0.023 0.091 0001 0.199
8 0.002 0.040 0.158 0.002 0.373
10 0.002 0.061 0.242 0.002 0.602




Figure 5.1. The histogram of Case 6 [LPG(Type III), 1980]
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Figure 5.2. The histogram of Case 8 [Benzine, 1980]
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Figure 6.1. Decomposition of robustness
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