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                              ABSTRACT 

     Optimum Stratification Points (OSP) , Minimum Variances and some kinds 

of stratification efficiencies were computed (a) for typical four 

distributions, including normal and exponential, (b) under three sample 

allocation methods; Neyman, Equal and Proportional, (c) up to 10 strata, 

(d) in estimating the population mean p and variance af 2, by using 

nonlinear programming algorithms. The optimum stratification in estimat-

ing jj was found to be attained by Interval Optimum Stratification with 5 

or less strata usually, whereas General Optimum Stratification was very 

effective in estimating a 2 , especially for a symmetric distribution. 

     Based on these results, some sampling procedure was proposed, which 

was effective in decreasing the standard error of the estimator for P in 

some representative practical examples by about 30-60% compared with the 

traditional procedure. 

     The author pointed out the importance of evaluating the robustness of 

the optimum stratification method with respect to a small change of (i) 

the distribution, (ii) sample sizes in respective strata and (iii) 

stratification points, and gave some formulae for the evaluation. 

Numerical studies with practical examples showed that (1) each of the 

measures of the three kinds of robustness was so small as less than 10%, 

(2) the proposed procedure, therefore, might be useful in practical 

fields, (3) Equal Allocation is recommendable for its simplicity, 

robustness and similarity to the Neyman allocation, and (4) symmetric 

distributions were more robust than unsymmetric distributions.
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                             CHAPTER 1 

                            INTRODUCTION 

     Stratified random sampling is frequently employed in various fields 

in order to reduce the variance of some estimator of a population 

parameter. Many research workers therefore have studied "Optimum 

Stratification Problem". Technical problems in this subject are as 

follows: 

(a) the choice of sampling design within strata - Kitagawa[26], 

(b) the choice of a population parameter to be estimated - Wakimoto[45] 

   - [47 1 and Taga et al . [34 ], 

(c) the choice of stratification variable - Ericson[14] and Taga[33], 

(d) the allocation of sample size Aoyama[l], [2] and Cochran[5], 

(e) The choice of the number of strata - Murthy[29 ] and Taguri et 

    al. [41 

(f) the location of the boundary points of stratification Hayashi et 

   al.[18], [19 Dalenius[7], Isii et al.[23], [24], Taga[33], 

   Sethi[32], Taguri et al.[36], [41] and -so on, 

(g) the estimation of expected gains from stratification - Taguri et 

   al.[411. 

The best method of stratified random sampling may consist of determining 

an optimal choice of a solution to the problems stated above, since they 

are interdependent. 

     Earlier studies on the stratified random sampling were, however, 

mainly restricted to the area of the allocation of sample size and the

- 1 -



determination of Optimum Stratif ication Points (OSP) . Hayashi et al. 1181 , 

[191 and Dalenius[7] suggested the significance of the determination 

problem of OSP and considered the simultaneous nonlinear equations to be 

satisfied by OSP. Various practical procedures or rules for attaining the 

approximate OSP were proposed by Dalenius et al.[8] - [10], Durbin[11], 

Eckman[121 and Kpedekpo[281. Actually Sethi[321 and Taguri ,,,et al.[36], 

[411 computed OSY for some typical distributions by using iterative 

approaches or mathematical programming techniques. Comparison of several 

iterative procedures were reported by Cochran[4] and Hess et al.[20]. On 

the other hand, Ghosh[15] considered the bi-variate cases and Isii et 

al.[24] has extended the results of Ghosh. Furthermore, another optimum 

stratification were proposed by Isii[23] and extended by Taga[33], which 

were more general stratification than the traditional interval stratifi-

cation. 

     As for the allocation of sample size, Neyman suggested the problem 

and many research workers have discussed it. Cochran[4] discovered the 

fact that Neyman Allocation was nearly equivalent to Equal Allocation. 

Although this has been numerically ascertained by Sethi[32] and Taguri et 

al.[ 41] , it is not yet proved theoretically. Ghosh [16 ], Aoyama( 2] 

discussed the multivariate case using concomitant variable. On the other 

hand, Jagannathan[25] and Nordbotten[30] suggested the formulation of the 

allocation problem as a mathematical programming problem and Bracken et 

al.[3] actually solved some optimum sample allocation problem. However, 

it may be said that this approach has, in general, received little 

attention up to this time, partly because of the statisticians, unfamili-

arity with mathematical programming theory. 

                                      - 2



     In almost all studies stated above, the population parameter to be 

estimated was the population mean. Wakimoto[451 - [471 suggested the 

problem to estimate the population variance, covariance and correlation 

coefficient, and Taguri[361 numerically gave OSP in. estimating the 

population variance. 

     As for the number of strata and the gain from str'ati f i cation, 

Murthy[291 and Taguri et al.[411 discussed the optimum number of strata 

under some appropriate cost function. 

     These studies were done mainly from the theoretical point of view. 

On the other hand, in practical sample surveys, stratification has been 

usually used without any consideration of theoretical results on optimum 

stratification. So I have studied this problem in order to apply the 

theoretical results to practical problems. 

     At the beginning of sample design, the information needed to perform 

it is assumed to be given. Therefore population distribution F is 

definitely specified from past surveys or a pilot survey. Although F 

could be different from the actual distribution, we can only apply our 

design to such specified F. For this reason, we will assume that F is 

known. Then it will make the sampling design more efficient to offer 

Optimum Stratification Points and Minimum Variances of the estimator for 

some typical distributions numerically, so as to provide approximate 

optimum stratification points through specifying the population distribu-

tion F. In many practical problems, we may be able to guess the type of 

distribution approximately even if the true distribution itself is not 

obtainable.
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W From this standpoint, we firstly make tables giving Optimum Stratifi-

    cation Points (OSP) , Minimum Variances (Min.Var.) and some sorts of 

    efficiencies for some distributions (Taguri[36], [41]). 

(ii) Secondly we propose a method how to use these tables, and then apply 

    our method to actual data sets; Current Survey on Petroleum Products 

    Demand and Supply which was performed by the Ministry of International 

   Trade and Industry (MITI) in 1981 (Taguri[37]). 

(iii) Now in app~ying the tables to practical problems, the optimum 

    values in stratification will not be always practicable because of 

    various constraints in practical fields. So it may be important to 

    analyse the problem how much the value of an objective function (the 

    variance of an estimator) is influenced by small deviation of a 

    distribution function (Taguri[38]), sample sizes in respective strata 

    (Taguri[40 ]) and/or stratification points (Taguri[39] ). Therefore we, 

    finally, investigate these facets of robustness analytically and 

    numerically. . 

Through these studies, the theoretical results on optimum stratification 

could be effectively useful in many practical jobs.

I
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                            CHAPTER 2 

                    NOTATIONS AND PRELIMINARIES 

2.1. Quantities of Population 

     Throughout the present paper, the distribution function F(x) corres-

ponding to the population H is assumed to be absolutely continuous and to 

have finite fourth order moment. Let 11 be decomposed into 9, strata 11 

                where Z is a preassigned positive integer. Corresponding 

to H F(x) can be decomposed into F i (x)(i=l,2,...,k) satisfying the 

following relation; 

              91        F(x)=Z,=l F i (x) for xcR 
where F i (x) is non-negative and non-decreasing in x for This 

is called "an Z -decomposition of F". Put w.=lim F (x)-lim F (x) , then w. 
                                                                 1 X->W i X-*-Co i 1 

represents the weight of IT 
i and F i W/w i is a distribution functiorl 01 

H Let us denote the , population mean and variance by 1j, cr 2 (c,-O) and the 

mean and variance of the i-th stratum by Ij
,,Cj 2 (G,>O) respectively; i 

      V, f xdF (x)/wi, 
       2 f 00 (x)/w. 

              i -00 1 1 1 

The assumption implies that there exist the moments r 
Vi up to the 4-th 

order of the i-th stratum; 

       r . = fco xVdF (x) < 00 (V =0, 1, 2,3,4) (2.1)              V1 __W i 

Since the population distribution is absolutely continuous by the 

assumption, there exists the probability density function (p.d.f.) f(x).
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2.2. Stratification Method 

     Now for any P, -decomposition f F i } there corresponds the following 

vector-valued func tion 4=(41,4 2P ...... 4 defined uniquely except for 

F-measure 0(see Taga[331); 

        4 W.~;-o (x)=l for a.e. F, i 

where W is the Radon-Nikodym derivative dF 
i /dF of the measure F i with 

respect to the measure F. Therefore we may take such a vector-valued 

function 4W for a stratification or "a General Stratification (GSPI and 

designate a stratification by 16 instead off F i WJ hereafter. 

     Let LP be the set of all open, half open or closed intervals in R 

Let E be the empty set. If 4(x) satisfies 

 4 W= 1 on I i P- LQ, (i=l, 2,. R) ; U I =R I I k if i~j  i f 1, i in j= 
        0 on R 71i 

then we call it "Interval Stratification (IS)". If the F-measure for the 

set {x; 0 <6 i (x)<l} is positive for some then we call it 

"Randomized Stratification (RS)II . 

2.3. Quantities Obtained from Sample 

     Let (Xil YX i2* ....,X i
n. be a random sample with size n i drawn from 

the i-th stratum H i for Total sample size is fixed and 

        n n               i, 

     Throughout this paper, we consider the following estimator of the 

population mean based on the stratified random sample: 

            Z W.X.; IX,j/n, (2.2)               =1 I i I j=l
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The estimator X is unbiased provided that the weights w 
i are known(see 

Section 6.1). We also consider the following estimator of the population 

2 variance a 

                        yiPlwi(- - 2 klwi(        U st Yi=l w i U i + x i-X) - yi= l-W i )U i /ni, 

              U ni (x 2/ (n -1) (i=l.,2, Y,)              i j
=1 ij i 

     If a stratification method 4 and an allocation method n. of sample 

sizes in respective strata are determined, then the variance V(710) of the 

estimator X is given by 

V(XI4)=Yi k w 2 cy 2 /n 
         =1 i i i 

     =Yi Z [fm 4 (x)dF(x) f- x 24 (x) dF (x) - f 00 x~. (x) dF (x) }2] /n (2-3)                  =1 ---CO i i 

2.4. Sample Allocation Method 

     Let us consider the following three sample allocation methods: 

   Neyman Allocation (NA) : n.=nw.a./X.k w.cy., 
                                        1 1 1 J=l J J 

   Equal Allocation (EA) : n i =n/k, (i=1,2 ....... P,). 

   Proportional Allocation (PA) : n i =nwi, 

Then the variance of the ~?stimator X is given by 

  V (-X1J6)=(yi1Jwiai)2 /n for NA, 

N 

  V Cx- J,6)='ZJi1lW 2 a 2 /n for EA, 

E 

  V (-X1i6)=Yik1wiG 2 /n for PA. 
   P i 

If we decide a number of strata k and a total sample size n, the problem 

of optimum stratification for the population parameter 11 is reduced to 

determining the stratification method j6 under a given allocation method so 

as to minimize the variance of Therefore we may adopt the following 

functions TW as our objective functions to be minimized: 

7



  T (j6)=nV (-XJ4)=(Yi k w a ) 2 f or NA, (2.4) 
    N N =1 i i 

  T (4)=nV ZY Z 2 2 for EA, (2-5)    E E(Xl~)= i =lwicyi 

  T (4)=nV (XI 4) =1 il- W.G 2 f or PA. (2.6)     P P =1 I i 

     In estimating the population variance c7 2 , we consider only the case 

of PA for the simplicity of computation. Then the estimator U 
st is 

unbiased and its variance is given by 

  V(U x 4 (x)dF(x)-G 4 +4(lj
,-,,) (x-V,) 3 4,(x)dF(x)      st n[Yi=lwi1-f_oo( -Pi) ~i i f Moo 

          +4 (p . --p ) 2 a 2 1+ ~!(Y,z1w,cY2)2 2 ~ P, w 2 a 4 /(n 1)]                  1 1 n i +___2Ki=1 i i i-
n It is proved by Wakimoto[451 that 

                 1 P, 2 2 2 2 2   V(U)-V(U sti J6)= n Yi <jwiwj I Cr i Gj+(J1i_P) -(Pj-11) 1 4 4 
        2 4 2 2 1 Y, 4 4 Y- 2 - ---Ii-)      + fa Cy ) J+__7fYi=1wi(G _'ai)+Yi=l(_n-1 n .-1 (2-7)       2 Q ik=lwi i 3 

      n n 2 

where U is an unbiased estimator of based on a simple random sample 

                                U=yinl(Xi ~ 2 n (Xl1X 2F ...... X 
n and is given by _X) /(n-1) X i /n). 

Provided that a number of strata Y, and total sample size n are given, 

minimizing V(U st 14) is equivalent to maximizing (2.7) because of V(U) 
being constant. If n is so large that the last two terms of the right-hand 

of (2.7) may be neglected, the Asymptotic General Optimum Stratification 

(AGOS) 4** is given by one which attains the supremum of Z 2 2 +                                                           f~ j wiwjl Cl
i - C'. J 

    2 2 1 2 Th
erefore we will take up the following as the objective 

function to be maximized; 

       T (16)=Yik w w 2 2 +(Pi-P) 2_ (Pj-~J) 2 ) 2.         S <j i ilcy i-a i (2.8) 

     Let us briefly summarize main results obtained up to now as to the 

optimum stratification method in estimating We 
                                  1 2 Y, 

denote OSP by for i=0,1,...,M (x! _,~x! for i=1,2,...,M), where x* and                 Xi* 0



x* are the both end points of the domain of a distribution including M 

w'~, ~jt and at 2 are the weight, mean and variance of the i-th stratum  1 1 1 

corresponding to 

(a) In the case of NA (Isii[231) 

     There exists some j6* attaining inf T N such as 

    (x)= 1 if g i (x)<g (x) for all j~i, (2.9)        10 if g i (x)>g W for some j4i, 
where 

    9 (a*> 0) , (2.10) 

i Therefore in general, is GS. If we limit a stratification method to 

IS, then x1! should satisfy the following relations (Dalenius[71); 

   1 j x~-P!) 2 +at=- 1 2 (2.11)                    ) + 
   CY i 1 1 1 CF i +l 1 1+1 1+1 

(b) In the case of EA 

     If we limit a stratification method to IS, it is easily shown by 

differentiating (2.5) by x that x~ should satisfy                       i I 

   W*J (X~ -]I!) 2+CF*2 J= W! ) 2 + 2                         f (x!l 0* (2 .12) 
                  1 1+1 1 1+1 1+1 

(c) In the case of PA (Taga[33]) 

     There exists some 4* attaining inf T P (16) such as 

               1 if xl~-,~P'!<X~1'                                  1 1 1 (
i=1,2 ....... 

               0 otherwise, 

That is, is nothing but IS, and x~ satisfies the following (Hayashi et 

al.[18], Dalenius[7]); 

         xt'= 1 (jjt+Pt (i=1,2 ....... z-1). (2-13) 
          1 2 1 1+1
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2       I
n the case of estimating G , there exists some AGOS ....... 

     attaining sup T (4) such as S 

             1 if h i (x)>h (x) for all j9i, 

            ~O if h i (x)<h (x) for some j9i, 
where 

        h (x)=a i QX-11) 2_a i /2}, (2.14) 

            a i= fCO - W 2 0              -.(t ~t*(t)dF(t)/fO.Ot*(t)dF(t).                             I I 

[Remark 2.11 In the optimum stratification problem, we need not consider 

Randomized Stratification (RS) as stated above. So hereafter, RS is 

excluded from our consideration. 

2.5. Some Efficiencies 

     Let us define some efficiencies in estimating1j: 

       • (k)=TV*(1)-V*(k)1/V*(1) for NA,         N N N N 

       • (k)=fV*(1)-V*(W/V*(1) for EA,         E E E E 

       • (Y.)=fV*(1)-V*(k)T1V*(l) for PA,         P P P P 

where Vt(Z) is the variance of K- under the optimum stratification with 

k strata. e.(P,) therefore shows the rel ative efficiency of stratified 

random sampling with k strata to simple random sampling under each sample 

allocation method. Moreover we will define the following efficiency which 

represents the degree of relative improvement of NA to EA or PA: 

       c (Z)={V*W-V*(Y'))/V*W for EA,         E E N N 

        c for PA.         P P N N

- 10 -



2      In the case of estimating a 
, the following two kinds of efficiencies 

are defined: 

         e I (Y-)= {V I -(1)-V I /V 1 --(1), 

e 

         G G G G 

c          S I G I 

where V**M and V**(k) are the variances.,of U under Asymptotic Interval        I G 
st 

Optimum Stratificat lion (AIOS) and AGOS in the case of strata, 

respectively. e.W therefore shows the relative efficiency of stratified 

random sampling with k strata to simple random sampling under each 

stratification method, and c S M represents the degree of relative 

improvement of AGOS to AIOS. 

2.-6. Conditions of Our Study 

     Our study was performed under the following conditions: 

(A) Types of distributions 

10 Equilateral triangular distribution : f (x)=l- I x 
                                    2 /2 

20 Normal distribution : f (x) = e-x /,/2 Tr, --W <X< Co. 

30 Rightangled triangular distribution :f(x)=l-x/2 , 0-<x-<2. 

x 40 Exponential distribution f (x)=e- O<x < CO. 

The reason why we have selected these four types of distributions are as 

follows: First we adopt the distribution 10 or 20 as an example of a 

symmetric one, while 30 or 4' as an unsymmetric one. Furthermore the 

distribution 11 or 3' is considered as an example of a straight line type 

distribution, and 20 or 40 as a curved line type one. In some papers of
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the author([361, [411), truncated versions of 20, 40 and a (truncated) 

gamma distribution were also taken into consideration in addition to these 

four distributions. 

(B) Population parameters to be estimated 

 1' The population mean ~i 

 20 The population variance a 2 

In Chapter 6 - 9, -we consider only V in discussing the problem of 

robustness. 

(C) Stratification methods 

 11 Interval Optimum Stratification (IOS) 

 21 General Optimum Stratification (GOS) 

2 in estimating a , Asymptotic IOS or GOS is considered. 

(D) Sample allocation methods 

 10 Neyman Allocation (NA) 

 20 Equal Allocation (EA) 

 3' Proportional Allocation (PA) 

2 In estimating a , only PA is taken into consideration. 

(E) Number of strata k 

      k = 2, 3 ......... 10. 

Under GOS, we consider only the case of k = 2, 3, 4.

- 12 -



                             CHAPTER 3 

                   OSP, Min.Var. AND SOME EFFICIENCIES 

                  IN ESTIMATING THE POPULATION MEAN 

3.1. Formulation as a Nonlinear Programming Problem 

     As stated in Section 2.4, the optimum stratification problem can be 

formulated as a problem to minimize the appropriate objective function 

under some constraints: 

        Minimize T(x) subject to x -<x :~ ..... :SxM (3-1) 
                                       CF 1 

where x=(xi,x 2 ....... x M-1 ) and T (x) is given by (2.4), (2.5) or (2.6) 

according to each sample allocation method. 

     This formulation and its direct solution have received little 

attention as reviewed in Chapter 1. However, we are convinced that this 

formulation as a mathematical programming problem is superior to alter-

native approaches (for example, [8] - [121), since it is simpler and 

easier in describing the whole environments of the problem. 

     Then we applied a general iterative nonlinear programming algorithm 

and successfully solved the optimum stratification problem for some 

typical distributions as shown later. The nonlinear programming algo-

rithms could treat quite easily the problem with many strata, while 

approximate procedures are, in general, very cumbersome. It should be 

noted that superiority of the use of nonlinear programming techniques is 

clear as the number of strata grows larger.

- 13 -



3.2. Algorithm for Obtaining General Optimum Stratification 

     Let us examine feasible decompositions in General Stratification. 

The number of intersecting points of quadratic functions (2.10) is at most 

k C 2 x2=k(Y,-1), but from (2.9) the number of points being significant to GOS 

is easily shown by mathematical induction to be at most 2(k-1). Therefore 

R 1 must be decomposed into at most 2k-1 intervals. Since GOS having just 

Z intervals is nothing but IOS, the number M of intervals corresponding to 

GOS except for IOS is given by 

           P,+ 1, j~- M _< 2 Y,-1 . (3.2) 

Hereupon let us denote the coefficient of the term x 2 in a i (x) by c i 

(i=1,2,...,9,) and M-1 stratification points by xi, x 20 ..... 1 x M-1 (x 1 <X 2 

< ...<X M-1 ). Moreover, without loss of generality we may assume that c 1 ;-> c 2 

    2:c If c ?C2 is satisfied, then 

             1 f or -<x-<x or x <X<00 (3-3) 

          i (x)=o (i-7~1) , 1 M-1 

hold. Hence it is obvious from (3.2) and (3.3) that the interval (x
i, X 

M-1 ) should be decomposed into sub-intervals the number of which is from 

k-1 to 29,-3. The case of c 1 =c 2 is excluded from our examination formally 

but is taken into consideration in our computational process. 

     Now let us assign number a to the interval (x
i, X i+1 when 

   (x)=l, x i <x-<x i+l (i=1,2,...,M-2) for a =1,2 ....... Z. Then our problem of 

examining feasible decompositions reduces to finding all possible sequen-

ces of stratum numbers 1,2 ....... k assigned to M intervals corresponding 

to feasible GOS's. It is easily shown from our assumptions that any 

sequence corresponding to feasible GOS must satisfy the following five 

conditions:
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(i) Each number 1,2,...,k should be assigned to at least one interval. 

(ii) The same number should not be assigned to adjacent intervals. 

(iii) The number P should appear only once: This is derived from the 

    assumption that c k is minimum among c1,C 2"' .,c V 

(iv) For any positive integer B , the number ~ must be adjacent each other 

    in a new sequence obtained by eliminating numbers greater than or 

    equal to from the original one: This is derived 

    from the assumption of c 
1 f-= C 2 k.. .2:c V For example, consider the 

    sequence 1213421 in the case of k=4, M=7. If we eliminate the numbers 

    greater than or equal to 3, then the obtained sequence is 12121. In 

    this one the number 2 is not adjacent, therefore the original sequence 

    is not feasible. On the contrary the sequence 1213431 is feasible, 

    for example. 

(v) Remove the sequence that is equivalent to another by interchanging 

    stratum numbers. 

     Hereupon let us examine the case that the decomposed region is 

finite. For example, consider the sequence 1213141 in the case of k=4, 

M=7 for the distribution 10. In this case the decomposed region being 

finite, the feasible sequence may be 121314, 213141 or 21314. However 

from Table 3.13, the leftmost and rightmost intervals of OSP corresponding 

to the sequence 1213141 are both degenerate. Therefore these cases are 

taken into consideration in our computational process. For the next 

example, consider another sequence 123241. In this case the feasible 

sequence may be 12324, 23241 or 3241. As the interval corresponding to 

the leftmost number 1 is degenerate from Table 3.13, the sequence 23241 
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has become the object of our computation. As for the sequence 12324, by 

interchanging the stratum number, it can be equivalent to 21314 which is 

already considered in the first example. The sequence 3241 may be 

excepted from our examination because this case is nothing but IS. In 

this manner we can show that all the case of the decomposed domain being 

finite is taken into c6nsideration in our computational process. 

     Now let us give some examples in which x 0 and x M (M=3,4,...,7) denote 

both end points of the domain for each distribution. 

[Example 3.1] 

   When p,=2, (3.2) implies M=3. Therefore the sequence corresponding to 

  NIX 1 ), (xiox 2 ), (X 29 X M ) is 121. 

[Example 3.2] 

  When y,=3, (3.2) implies M=4 or 5. Although the sequences satisfying 

   the constraints (i) - (iv) are 1231 and 1321 in case of M=4, from (v) 

   it is only 1231. On the other hand, in case of M=5, though- the 

   sequences satisfying the constraints (i) - (iv) are 12131, 12321 and 

  13121, from (v) the sequence 13121 is rejected. Therefore it is 

   sufficient to consider only two sequences; 12131 and 12321. 

[Example 3.3] 

  When k=4, (3.2) implies M=5, 6 or 7. Examining feasible decompositions 

   by the same procedure as in [Example 3.2], the resulting sequences are 

   as follows; 

     12341 for M=5, 

     121341, 123141, 123241, 123421, 123431 for M=6 

     1213141, 1213431, 1232141, 1232421, 1234321 for M=7. 
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If we examine all of these decompositions, the GOS should exist among 

them. In our computation, this will be performed; to save space only a 

part of them will be represented though. 

3.3. .Computational Scheme 

     In order to solve the problem (3.1), we used the nonlinear 

programming algorithm proposed by Sakakibara[311 and Hooke-Jeeves[221. 

Initial values in optimization process were determined by the modified 

Monte Carlo method given by Taguri[351. This strategy gave quite 

satisfactory solutions within reasonable computing time for each distribu-

tion. In order to improve hopefully the solutions in the-case of IS, we 

optimized the same objective function T (x) under the equality constraints 

(2.11), (2.12) and (2.13) in addition to the inequality constraints as x 

 <x <.. .<x 'by using the same solution strategy . This did give the slight O= I-- M 

improvement of Min.Var. and the difference between the two sides in each 

2 Of (2.11), (2.12) or (2.13) was reduced by the factor about 10-

     Our computation was mostly performed on HITAC-8700/8800 of Tokyo 

University Computer Center and on M-170 of Chiba University Computer 

Center. 

     Since the values w. and a 2 for the standard normal distribution 

N(0,1) can not be calculated analytically, the following scheme given in 

Erdelyi[13] was employed in the optimization process: 

      f x e-t 2 /2 dt= lfx 2 /2 y 1/2-1 e-ydy        0 7-2 0 
                 1 25 (-l)'(x 2 /2) 1/2+j /fj!(1/2+j)) for x>-O. (3.4)                 =72-yj=o
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The error of approximation in (3.4) is less than 2xlO_ll' as is easily 

seen from the fact that f xtct_1e_tdt=Jj_ (-l)jxo'+j/fj! (a+j)} is a conver-
                                   0 =0 

ging alternating series. Therefore after some calculation, it is seen that 

the truncation error in our objective function induced by this approxi-

mation is less than 2xlO_6 for all cases. The value for N(O, 1) and the 

2 values w 
Pi and a i for any other distribution can be derived 

analytically. 

     As for the round-off error, we use double precision arithmetics 

during the optimization process and the error of each term in our 

objective function is less than 10-18. Consequently our computational 

schemes are expected to give sufficient precision. 

[Remark 3.1] In the computation of w i for N(0,1) , we also employed the 

polynomial approximation originally proposed by Hastings[17] and improved 

by Toda et al. [42 ]- [44 ]. To evaluate . cF 2 for N(0,1), we examined several 

~Lpproaches such as the use of numerical integration, series expansion of 

the incomplete gamma function or application of the spline function. As 

the numerical integration is expected to require heavy computational 

works, it is not tested in practice. In this paper, we present the 

results by using series expansion for the incomplete gamma function, since 

it gives quite satisfactory values for each computation. Application of 

the spline function is also recommendable as it gives enough accuracy for 

practical use and requires less computation time than the series 

expansion.
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3.4. Results 

3.4.1. Interval Optimum Stratification 

     OSP )T (i=0,1, . ..,10) , the value of the objective function T and the 

efficiency e.(k) fork=1,2,...,10 are listed in Table 3.1 - Table 3.12 for 

the four distributions (see [Remark 3.21). The first column of the table 

shows the number indicating individual distribution stated in Section 2.6, 

(A). means the value of nV(XI4*) for Z=l,2,...,10. 

     These tables show that the relative efficiency e.(Z) does not much 

depend on the type of distributions. The relative efficiency for the 

straight line type distribution 30 is greater than for the curved line 

type one 40, and the same conclusion is also true in the comparison of V 

and 2). This tendency is remarkable in the case of PA. Besides, the 

relative efficiency for the unsymmetric distribution 30 is greater than 

for the symmetric one and the same tendency is, observed between 20 and 

40. This is remarkable in the case of NA or EA. Generally speaking, .the, 

degree of the improvement of the relative efficiency owing to stratifica-

tion is considerably large, and it is most remarkable in the case ofk =2. 

[Remark 3.2.] We have also computed OSP, T and e. (PQ for some other 

distributions; truncated normal, truncated exponential and (truncated) 

gamma distribution. However to save space, they are not shown in this 

paper(see Section 2.6, (A)). 

3.4.2. General Optimum Stratification 

     The results of our computation are tabulated in Table 3.13 and Table 

3.14. The sequences in the second column of these tables express those

- 19 -



considered in Section 3.2. In each sequence in Table 3.13, some decomposed 

intervals are degenerate. Changing the stratum number, this is equal to 

the case of IOS, besides the value of Min.Var. under GOS is equal to the 

one under IOS. For example, consider the sequence 12321 on the case of 

Z= 3, M= 5. As shown in Table 3.13, the leftmost two intervals are both 

degenerate. Therefore the original sequence 12321 is reduced to the 

sequence 321, which is nothing but the case of IS. Moreover the value 

0.02556 of T* in Table 3.13 is equal to the one of T* in Table 3.1.             G N 

Consequently for the distribution 10, GOS should coincide with IOS. 

      For all the other distributions and numbers of strata treated in this 

paper, the same discussion can be true as partly shown in Table 3.14. 

Therefore it is scarcely needed in practice to consider GOS and we may 

      with only IOS. The theoretical investigation of this issue is an 

open problem. 

3.4.3. Comparison of NA and PA 

      Let us study differences between the sample allocation methods. From 

Section 3.4.2, since GOS can be regarded to approximately coincide with 

IOS in the case of NA, we will consider only IOS hereafter. The values 

c E ( .0 and c P (Y,) are shown in Table 3.15. From this table, it may be 

concluded that NA and EA give quite similar results for all the 

distributions considered here, since the values c E (k ) are very small. So 

let us investigate the difference between NA and PA in the following. 
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     Firstly, it is shown in Table 3.15 that as expected theoretically 

V?~~V* for all k and for all distributions and the equality sign holds if 

N and only if k=2 for the symmetric distribution. 

     Next from Table 3.15, we can see that the degree of relative 

improvement c P M for the curved line type distribution 20 or 40 is a 

little greater than the one for the straight line type one f or 30. And 

c P M , for the unsymmetric distribution 30 or 40 is considerably larger 

than the one for the symmetric distribution f or 20. Therefore we may 

expect that the effect depending upon the difference of allocation methods 

is large when the form of a distribution is curved and unsymmetric. 

     The values of c P M show that PA reveals quite different behaviors, 

since the differences are significant and grow larger as the number of 

strata increases. EA may, therefore, be the best allocation method for 

practical uses. 

3.5. Optimal Relation between Sample Sizes and Number of Strata 

     In this section, we consider the determination problem of the sample 

size n and the number of strata k under some simple cost model. Assume 

that the sampling cost is expressed as 

a         C=c 0 +C 1 n+c 2 k , (COVC19c 2 >0 (3-5) 

where C is the total cost, c 0 is the fixed cost for sampling and does not 

depend on n nor k . c 1 and c 2 are unit cost relative to the total sample 

size and the number of strata, respectively. As EA is the useful 

allocation from the practical view-point, we consider EA in the following 

discussions. Same discussions as below are possible in case of NA or PA.
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     In the case of EA, (2.5) gives 

      V (X)=! (3.6)         E n YE (x) -

Let us assume that the total sampling cost C must not exceed the available 

total cost C*. That is, 

          c 0 +C 1 n+c 2 Y, a.<C*. 

Then the problem can be described as the following optimization problem: 

                                                              (X 
        Minimize V (X) subject to c +C n+c                  E 0 1 2 

where n and Z are both positive integers. 

     It is known that the objective function V E (X) is monotonedecreasing 

with respect to n and Z. Let C** be total cost for appropriate integer n, 

Z. Then we can derive the following relation by combining (3.6) and the 

equation for C**. 

   Mi V um Z a}.-Y (X).     n~lm'xum E(X) = ~19',m,,x (cl/c2)/T(C**-cO)/c2 E 
Namely, in order to solve-the minimization problem (3.7), it is sufficient 

to consider the minimization of 

          (Y --L-T (X)           a k-k a E 
with respect to the integral value of Y, and the appropriate value of x, 

where k=(C**-c OVC2' 

     When k is specified, we can compute the minimum value of (Y,) for 

the typical distributions in Section 2.6, (A), since we have computed the 

minimum values of T E (x). For some values of k and for a=1 and a=2, minimum 

values of ~ U) with respect to k are summarized in Table 3.16 - Table 

3.23, where min 
Z a (Y ) are marked by the underlines. Judging from these 

tables, if a=l, it may be said that the number of strata should be 

selected as large as possible in so far as the value of k is not so small.
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                             CHAPTER 4 

                   OSP, Min.Var. AND SOME EFFICIENCIES 

                IN ESTIMATING THE POPULATION VARIANCE 

4.1. Computation 

     The optimum stratification problem in estimating the population 

variance C' 2 can be also described as the following mathematical program-

ming problem; 

        Maximize T (x) subject to x MI (4.1)                       S dtxi~ ..... S_x 

where T S (x) is given by (2.8) and x=(xi,X 29 ... ' x M-1 

     Let us consider feasible AGOS by the same procedure as in Section 

3.2. In this case, since the ax es of Z quadratic functions h i (x)=a i f(x-p) 2 

-a 
i /2} in (2.14) are common(that is, x=P) , feasible decompositions for 

~_-2,3,4 are; 121 for Z=2(M=3), 12321 for P,=3(M=5) and 1234321 for 

~_-4(M=7). Therefore examining these decompositions, AGOS should exist 

among them. In Section 4.2, calculation for such cases is carried out. 

     The nonlinear programming algorithm used for solving (4.1) is 

Hooke-Jeeves'[221 and initial values are determined by the modified Monte 

Carlo method(Taguri[351). The values w. and G 2 for the standard normal 

distribution were computed by using the approximation formula (3.4) with 

the same truncation and round-off errors as in Section 3.3.
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4.2. Results 

4.2.1. Asymptotic Interval Optimum Stratification and Asymptotic General 

       Optimum Stratification 

     OSP x~-(i=O,1,...,5), the value of the variance of U V**=n.inf V(U 
            1 st, 1 -0-

StIJ6**), and the efficiency e I (k) for k=1,2,...,5 in the case of AIOS are 
shown in Table 4.1, where V** for Z=1 means an approximate value of nV(U) 

in (2.7). 

     This table shows that the relative efficiency in the unsymmetric 

distribution 30 or 40 is much greater than the one in the symmetric 

distribution 10 or 20. In case of the unsymmetric distributions, the 

effect of stratification in the curved line type distribution 40 is 

greater than the one in the straight line type distribution 30. On the 

other hand, in case of the symmetric distributions the relative efficiency 

is fairly bad when k=2, because the stratification method is restricted to 

AIOS and AGOS is not taken into consideration. 

     In the case of AGOS, the results are summarized in Table 4.2, which 

shows that AGOS does not always coincide with AIOS in estimating a 2 

4.2.2. Comparison of AIDS and AGOS 

     Let us compare the value V** with V** when the number of strata Z is 
                           I G 

fixed. The last column of Table 4.1 shows the value of c I(k).
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     Firstly for the symmetric distribution 10 or 20, the relative 

efficiency in AGOS is far greater than the one in the case of AIOS, and 

therefore it is much effective to consider the case of AGOS. Hereupon the 

remarkable point is that for these distributions, V**=V** and V**-V**                                                 13 G2 I5_ G3' 

where V** represents the value of V!* in the case of k strata. This means 

that each decomposed interval under AGOS has the effect equivalent to each 

stratum under AIOS. The theoretical study of this point is an open 

problem. Furthermore it is corrobolated from Table 4.2 that the stratifi-

cation given by symmetric pairs of intervals around p is optimum, that is 

theoretically proved by Wakimoto[45]. 

     Secondly, for the distribution 3', AGOS coincides with AIOS in case 

of ),=2 but not in case of t=3 or 4. For example in case of Z=3, V** is                                                            G3 

slightly greater than V** and much smaller, than V**. This may be caused                    14 13 

by the fact that AGOS has much information in estimating a 2 compared with 

AIOS. Now the sequence 12321 in this case degenerates to 2321. Moreover 

1  (
x**+x**)=0.667 holds and this is nearly equal to the mean value 0.66667. 2 2 3 

This fact is consistent with above-mentioned theoretical result given in 

Wakimoto[45]. The same discussion holds also in case of k=4. 

     Thirdly, for the distribution 40, AGOS exactly coincides with AIOS. 

Therefore we may only consider the case of AIOS for this distribution.
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                             CHAPTER 5 

                 APPLICATIONAL SCHEME OF OUR RESULTS 

                   AND SOME REPRESENTATIVE EXAMPLE 

5.1. Working Procedure 

     In the following, we will only consider the estimation of the 

population mean. In actual sample surveys, the procedure of application 

of the tables giving OSP and Min.Var. should be carried out by the 

following steps: 

10 Guess the type of a distribution for a given practical problem, and 

   decide the type of distribution among those shown in Section 2.6, (A) 

   which should be fitted to the histogram made from the given data. 

2' Determine the population parameters of the fitted distribution under 

   some criterion of goodness of fit by using the information of past 

   surveys or a pilot survey. 

30 Compute optimum values of a number of strata and a total sample size 

   with or without using a cost function such as (3.5). 

40 From the tables giving OSP, compute approximate values of OSP for the 

   given distribution, and construct strata. 

50 Compute values of w i and/or ai, and then determine sample sizes in 

   respective strata. 

6' Of cource, it is necessary to proceed random sampling within each 

   stratum, and to estimate the population parameters and their estimated 

   standard error by ordinary methods.
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If strata are determined in advance, the steps 20-40 are needless. If we 

should compute OSP by using some auxiliary information, it is required to 

get an approximate regression function from some information before the 

step 40(see Taga[331). 

     Since the four distributions given in Section 2.6, (A) are all 

represented in standardized form, we have to make some appropriate 

variable transformation in practical situations(see Section 5.2.2). 

5.2. Representative Example of Application 

     In this section, we will apply our procedure stated in the previous 

section to the data of "Current Survey on Petroleum Product Demand and 

Supply", which was performed by the Ministry of International Trade and 

Industry (MITI) in Japan. Our working procedure is applicable to any data 

of a similar kind as thi's example(for example, to the data of "The Current 

Statistics of Commerce"). 

     Now in order to estimate the sale of some kinds of petroleum, MITI 

had a plan to do a stratified random sampling in 1981. Let us consider 

the estimation of the sales of LPG and benzine. 

5.2.1. Sampling Procedure 

     In the case of estimating the sale of LPG, we omit establishments 

whose sale are 0, and the stratification variable is the sale of LPG. For 

the establishments with the LPG sale being 0, the stratification is done 

by the sale of benzine, where we omit establishments whose sale of benzine 

are 0. In the traditional procedure which has been used up to this time,
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the strata are constructed as in Table 5.1 for LPG and benzine, 

respectively. The sample allocation method is the Neyman allocation by 

2 utilizing the values of the 
within-strata weight w i and variance a 

i in the 

sample survey performed in March 1980, which was a pilot survey for 1981. 

     Now the strata shown in Table 5.1 have been used without any 

theoretical consideration. Let us stratify the population over again by 

our procedure proposed in Section 5.1 and compare this with the 

traditional one, where the number of strata k and the total sample size n 

are the same as before. 

5.2.2. Fitting of a Distribution 

     MITI performed pilot surveys on some kinds of petroleum in March 1978 

and March 1980. Table 5.2 and Table 5.3 show the data obtained, which are 

classified into three types; TYPE I, II and III. The data of TYPE III are 

the sale of LPG for the establishments dealing only LPG, and the data of 

TYPE II are for the establishments dealing some kinds of oils including 

LPG. The data of TYPE I are the total of TYPE II and TYPE III. Some 

histograms of these data are shown in Figure 5.1 and Figure 5.2. The 

K-th(right-most) class is constructed by [z K-1' z K ), where z K =z K-1 +2(mK-z 

K-1 mK is the mean of the K-th class and was given from the results of 

sample survey. The value of mK ' s shown in Table 5.2 and Table 5.3. From 

these figures and/or tables, it can be seen that the distribution is skew, 

with its mode at the lower part, and is monotone decreasing, roughly 

speaking. We, therefore, may fit the exponential or gamma (or their
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truncated) distribution to the data(see [Remark 3.2 ] and [ Remark 5. 1] 

In this section, let us adopt the untruncated exponential distribution 

among these, because the degree of goodness of fit is slightly better than 

in other cases. The variable transformation x=~z (~>O) is done, since OSP 

were given for the standardized probability density function (p.d.f.) f(x) 

in Section 3.4.1(see Section 5.1). Then the p.d.f. of z is f z (Z)=~f 0z) 

(O<z<-) . We will use the following T as the criterion of goodness of fit 

between two'distributions(see [Remark 5.2]); 

         XK+1 Z' 2        T= j=lf Z J [Jfz(z)-h(z)l/fz(z)] f z (z)dz, 
                    j-1 

where h(z) represents the p.d.f. of the histogram and K is the number of 

class. z. or z (z -,<Zj) is the lower or upper end point of the j-th          J-1 i i 

class respectively, and h(z)=q i on [z j -1, zj ) for j=1,2,...,K (z 0 =0). In 

order to let the domains of h(z) and f 
z (z) coincide, let us consider the 

K+1-th class [z K7 z K+1 ), on which h(z)=q K+1=0. Then T is given by 
          K+1 z j 2        T=j 

j=1 z J ff z (z)-h(z)} If z (z)dz                    j-1 

           K 2 ~z j ~z J-1 2 
           J=1 q J (e -e (5-1) 

The most-fitted distribution f*(z) to h(z) can be determined under this 

z criterion if the value of ~ minimizing (5.1) is obtained. T is unimodal 

on ~ since lim DT/a~=-o., lim 9T/3~=co and ~ 2 T/~ ~2> 0. The optimum value                 ~-++ 0 ~-)-M 

is, therefore, obtainable by using the linear search(for example, Golden 

section method). The values of ~* in the eight cases are given in the 

bottom row of Table 5.2 and Table 5.3. We may, then, fit the p.d.f. 

f*(z)= ee- 5*z to h(z), which is shown in Figure 5.1 and Figure 5.2.
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[Remark 5.11 From the standpoint of fitting a distribution, we should fit 

some other one; for example, a beta distribution in the Pearson system. 

Our objective is, however, to stratify the population by using OSP 

computed in advance. In the preceding section, we gave OSP for some 

distributions, only which can be now utilized for us. We, therefore, 

should fit the exponential orgamma distribution among them. 

[Remark 5.21, As the criterion of goodness of fit, we may adopt the 

2 traditional X However, by our preliminary computation, obtained result 

2 is more preferable in the case of using T than in the case of using X ; 

that is, the variance of the estimator is smaller. We, therefore, decide 

2 t
o use the criterion T instead of X 

5.2.3. Construction of Strata and Allocation of Sample 

     Let x~ and z!l be OSP for f(x) and f*(z) respectively, then zt=xt/~*. 
                                    1. z 

The i-th stratum H. may be constructed by H =[zf zf) (i=1,2,...,k;z-=O 
                        I i I _1P 1 0 

Z*=-) Computational results are shown in Table 5.4, which shows that the  P
, 

stratification points {zltl considerably differ from the traditional 

ones(cf. Table 5.1). 

     Next we will determine the sample size nl?~ in the i-th stratum by 

Neyman allocation. Let n be the total sample size, then nt is given by 

the following; 

                           W* CY* , (5.2)         nt = nwto*/Ii 1 1 1 
where w~ and a~ are the weight and standard deviation of f* (z) in the i-th 

        1 1 z 

stratum. The values of n~ are also summarized in Table 5.4. 
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5.2.4. Comparison of the Proposed and Traditional Method 

     Let us compare the proposed method with the traditional one. The 

comparison of the two methods is impossible in the strict sense, since the 

true distribution g(z) in the practical field is unknown for us. We, 

therefore, assume that the histogram h(z) is satisfactorily near to the 

true distribution g(z), and investigate this problem. Let w 
i and a be 

the weight and standard deviation of h(z) in the i-th stratum 1I 

respectively. The standard error of the estimator X given by (2.2) is 

S w 2 a 2 /n.. In the case of our proposed method, the standard error            i 
1 1 

of is given by (2.3) as 

      S =Ali k w! cr* Z 2 2                   I I Yi=l (wi Cf. /w~ 0*)           1 n =1 1 1 1 

In the case of the traditional method, the standard error of X is 

        S k w a lf n-,         2=li=l i i 
since n.=nw G /E X w a Computational results of the values S and S 2 

are given in Table 5.4, which shows that our method decreases the standard 

error of -R by about 30 - 60 % compared with the traditional method, in 

this example. 

5.2.5. The Influence on S(X-) by Small Change of z'! and n* 

     OSP fz~j obtained in Section 5.2.3 were computed from the theoretical 

point of view. On the contrary, the list of establishments is classified 

in the classes given in Table 5.2 or Table 5.3. Therefore we have to 

utilize the end point of some class near to z! in place of the exact z!. 
                                                          1 1
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Moreover nt given by (5.2) is not generally integer or we usually round 

1 off nt appropriately for the sake of the computational convenience. 1 

     Thus, how is the standard error of X influenced by small change of z~ 
1 

and nt? Let zt* and n-t* be the stratification point and sample size in 
      1 1 1 

the i-th stratum after small change, and S 3 be the value of S(R) in this 

case. Computational results are given in Table 5.5. The influence on 

S(X) is about less than 10% and is considered not to be serious.



                             CHAPTER 6 

            PROBLEM OF ROBUSTNESS IN OPTIMUM STRATIFICATION 

     We found in the previous section that the proposed method might be 

useful in practical sample surveys. However there have been some 

important unsolved problems for further study. For example, as shown in 

the preceding example, OSP are usually impracticable from the constraint 

of sampling frame and the optimum sample sizes in respective strata may be 

changed for the sake of convenience in the analysis. As for the weights 

{w i ), they are generally unknown for us. Moreover the distribution in a 

given practical problem is different from the distribution fitted to it. 

Thus, strictly speaking, the optimum stratification is almost always 

impracticable. We should therefore make a study of so-called "problem of 

robustness in optimum stratification". Through this study, theoretical 

results on optimum stratification are effectively useful in many practical 

jobs. 

     Now situations in which the optimum stratification can not be 

executed in practice are classified as follows: 

(a) The type of a fitted distribution is dif~erent from that of an actual 

    distribution. 

(b) The parameters of an actual distribution must be estimated. 

(c) For convenience' sake of the ensuing analysis, sample sizes in 

    respective strata may be changed from their optimum values. 

(d) From the constraint of sampling frame or for the sake of computational 

    convenience, stratification points may be changed from the computed 

   OSP.
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6.1. Bias of the Estimator X 

     The estimator of the population mean 1i is usually given by (2.2), in 

which w 
i has been assumed to be known in the preceding section. However in 

practical stratified random sampling, w i is usually not available in 

advance. For instance, as the value of w. is out of date in the preceding 

0 example, it differs from the true value w It is generally impossible to 

obtain a complete list for sampling, so that there often exist cases in 

which w. is not precisely equal to w 0        1 i* 

      Let us denote the difference between w and w 0 by v
i, that is, i 

          Wi ~Wlp + Vi, (i 

In this case, is not an unbiased estimator of in general. Therefore 

we should adopt the Mean . Square Error MSE(:Z) of 3~ as our objective 

function to be minimized and should not adopt the variance V(5~) as in 

Section 2.4. But if the bias term is small, the optimum stratification 

may be approximately attained by the stratification method 
1 minimizing 

V(-X). In the following we will examine a condition under which the bias 

term is small compared to V(-X). 

      Practically in almost all cases, we might have some information as to 

an upper bound of IV NO. 1. Therefore suppose that a value of X satisfying 

i the following is known; 

         V WIP (X > 0), 

MSE(X--) is given by 

       MSE V(Y) +                        Z vipi) 
                                 i=1 

where is the mean of the i-th stratum.
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     Now let us examine the condition that 

       MSE (X) - V(Y) V(Y) I V,,U, )2 / V(Y) < 5 2 (6 .1) 

for a preassigned value 5 (0<6<1). For this purpose we will find an upper 

bound of k v 11 This problem reduces to that of linear programming                =1 i 

with linear constraints; 

Q          Maximize or minimize V1, V2'...' VQ)=E Ai vi, (6.2) 

                                         XWJ-o<=VJ<=XW-o' 

             su bject to 

                                   Vi=o. 

In order to solve this problem, we prepare the following lemma. 

[Lemma 6.1] 

     The solution of the problem; 

        Maximize aiti, 
                                                     i=1 

             subject to ki :-5't i ~-5 Ki , 1, 2 R), (6-3) 

                           ti = to 

is given by the following: 

   (Solution) Rearrange al, a 29 ..... I a in a descending order of 

  magnitude and put a(,)~~a (2)2-'* ...2a(,). Let ~ (i), k(,), K(,) be the 

   value of Ei, kip K i corresponding to a W respectively, then the 

   optimal solution ~ * is given by W 

              t(*) =K(j), 1,2, 2, -1 

                to K(i) Z k(i), 
                                                 +1 

   where k 1 is the intege r satisfying the followings simultaneously; 

Q 
k                 K(i) + 1 (1) <to, 

                       i=Q1 (6.4) 

                    Q1 Q 
             Z K(j) + E k i) >to. 

                                j=21 +1 
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     The probem; minimize 4)(~ E .... E )=X a Ei, subject to (6.3), can                                   1 2Y Y, i=l i 

be transformed to the maximizing problem in the above lemma by replacing 

the objective function 0 with -(D. 

     Now let us solve the problem (6.2) by using this lemma. The 

continuous function 4(vi,V 22 ...'v k ), defined on the hyperplane in the 

k-dimensional closed interval, must have a maximum value ~ U and a minimum 

value 4 L' Let us calculate ~ U 

     In [Lemrda 6.1], put 

                        ki -X wiO 

                ai =.pi, W 1 0 

            ~i = V i, ~O =0. 

Without loss of generality, we may assume that the relation P 1 <P 2 < ..... <P 

is satisfied in this problem. Now let us obtain the integer Z 1 satisfying 

(6.4), then 

                                0 2-22 +1                     W
i Z WiO < 0' 

                       +2 i=1 

                          0 O>                         W
i Wi -0 

must hold simultaneously. Therefore k 1 is the integer satisfying 

               Q-Q1 2-21 +1 
        2; W'<1/2<2;                            wiO (6 -5) 

and is uniquely determined. 

[Rmark 6.1] In the case of symmetric distributions, k 1 =[(Z+1)/2] holds, 

where [x] expresses the maximum integer smaller than or equal to x. 

     Then the optimal solution is given by 

                V -XW1.0, (i = 1,2,..., R41 

                            (2-21 WO-Q 0           V* I Wi 
                                              i=Q-Qz +2 

              Vi* XWiO' (i = R-ki +2.... YR), 
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and is U 

             0U=Q 2-21 0 Q-QI 0 2 2                  Mi V i (-Xwi ) Ili + X (Y- Wi - ~ WIP)JUR-22 +1+ z XWi0pi 
                                                       i= I 1=2-R, +2 i= Q-QI +2 

                          Ivio (Pi -X2-2~ +I) Wi0CUi-P2-2'+I) -XMU, 
                        i=R-21 +2 

where Z 1 is the integer satisfying (6.5). 

      Next by the same procedure as mentioned above, 0 L is given by 

                      2, -1 2 
wio           OL =X z wio (Pi - 112~ ) - z (4i - A2~ XML              Ii=I i=QI +I 

where Z is the integer satisfying ~Yl-lwo<112-1,y Z1 0 Therefore in both        1 1=1 i i=1wi 
cases the following is satisfied; 

2 
           Y, P M, 

where M=max(MU, -ML). After all these calculations, a sufficient 

condition satisfying (6.1) is given by 

          X < 5 if-V M, 

where V(X) is the variance of X in the case of k strata. 

     Let X 
u be an upper bound of X, where X u =6VV(X)1M. We compute the 

values of X 
u for the three sample allocation methods and for the four 

distributions; the equilateral triangular, the normal, the rightangled 

triangular and the exponential distribution. Table 6.1 gives the values 

of X 
u in case of the rightangled triangular distribution under NA, for 

which X 
u is smallest among all cases. On the other hand Table 6.2 gives 

the values of X 
u in case of the exponential distribution under PA, when X u 

is largest among all cases.
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6.2. Formulation of the Problem of Robustness 

     In general, under a fixed total sample size and a p.d.f. h(x), our 

objective function T to be minimized is a function of a stratification 

method 4 h and an allocation method A h* Let us express the objective 

function by T(4 hp A h ;h). The true p.d.f. in a particular problem is 

denoted by g(x) and the p.d.f. fitted to it by f(x) . Ideally, we should 

execute the optimum stratification method 
9 and the optimum allocation 

method A * for g(x). However, it is impossible in practice because g(x) is 
9 

unknown. Then we perform the stratification by using the optimum 

stratification method 4* and the optimum allocation method A* for some                      f f 

f(x) which is available and approximates g(x) . But in many practical 

works, even this stratification is often not practical enough as stated 

above. In such situations, we would have to be content with a 

stratification method '4 and an allocation method A which approximate 4*                     f f f 

and A*, respectively. Therefore, in general, we have to evaluate the f 

quantity R 0 given by 

        R =T(4fpA ;g)-T(4*,A*;g)         0 f 
9 9 

(see Figure 6.1). If we.put 

         R = T(4* A-~;g)-T(4*,A*;-),           i f, f 
g g -

        R = T(4~,A ;g)-T(4*,A*;g), (6.6) 
         2 f f f f 

        R = T(4f9A ;g)-T(4*,A ;g),          3 f f f 

then 

        R 0 =R 1 +R 2 +R 3* 

From the practical point of view, it is convenient to give the efficiency 

of R (j=0,1,2,3) against the optimum value T(4*,A*;g). However the 
                                            9 9 
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latter can be represented by using the values T(4*,A*;f) and q defined by                                              f f 

(7.1) and (7.3) in Chapter 7 as follows; 

       T(4*,A*;g)=(l-q) T(j6*,A*;f) . (6-7) 
         9 9 f f 

Therefore we may calculate the efficiency Q which is defined by 

       Q =R /T(4*,A*;f) (j=0,1,2,3) (6.8)       i i f f 

instead of Q~=R /T(16*,A*;g) . The reason of this is as follows: (1) We 
           1 9 9 

are interested in the value of q itself. (2) The value of T(4*,A*;f) is                                                        f f 

independent on a small change of distributions and the value of q is not 

so large on the whole. We, therefore, consider that it is convenient to 

give the value of Q instead of Q~ in order to roughly estimate the degree 

of robustness. 

     Now Q 1 means the degree of the effect caused by changing a p.d.f. 

from g(x) to f(x), that is, to say, Q 1 represents the degree of robustness 

on distributions. In order to evaluate the influence deriving from the 

cause (a) or (b) , .described in the first part --of Chapter 6, we may 

calculate the value Q 1, Next Q 2 means the effect caused by changing an 

allocation method from A* to Afy that is, it represents the degree of f 

robustness on sample sizes in respective strata. Calculation of Q 2 is 

needed for evaluating the influence deriving from the cause (c). 

Similarly, Q 3 represents the degree of robustness on stratification 

points, and calculation of Q 3 is needed for evaluating the influence 

deriving from the cause (d). 

     Thus the problem of evaluating Q 0 is decomposed into three sub-prob-

lems on robustness, which will be examined in the following chapters: 

       Q0 =Q 1 +Q 2 +Q 3*
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6.3. Expression of g(x) by Using f(x) 

     In the preceding section, we considered some typical distributions 

f(x) defined on some interval NY x M ). In many applied fields, however, 

we often need to encounter p.d.f.'s which are slightly different from 

f(x). It is then natural to express g(x) in a series of orthonormal 

polynomials; 

        g(x)=f (x)f 1+a 1 P 1 (x)+a 2 P 2 (x) ...... (6.9) 

where the a i Is are constant coefficients, whereas P i (x) is the orthonormal 

polynomial of degree i with respect to the weight function f (x) over the 

interval (xO9 X M ) and has the following form: 

         P i (x)=b io +b ii x ...... +b il x i . 

Let us take the terms up to P 2 (x) in (6.9) into consideration for the sake 

of computational convenience. Assume that the mean and variance of g(x) 

are different from the mean and the variance a 2 of f (x) by 100a% and                           f f 

100~% respectively, then it is easily shown that a 1 and a 2 are represented 

as follows: 
X 

        a 1= fx 0 P1 (x)g(x)dx=b 10 +b 11 (1+a) ]if 
(6.1o) 

        .a P (X)g(x)dx=b +(l+a)p Tb +b (1+C01j }+b (1+*Y 2         2=0 2 20 f 21 22 f 22 f* 

0 

     Note that the p.d.f. f(x) and the values of a, a are given, and then 

the p.d.f. g(x) is uniquely determined. This p.d.f. g(x) is slightly 

different from the P.d.f. f(x). In the following discussion, only such 

g(x)Is are taken into consideration. Now for the convenience' sake of the 

analysis in the later chapters, let us rewrite g(x) as follows; 

       g(x)=f(x)-(c 0 +C 1 X+C 2 x 2 (6.11) 

where 

        C 0 =1+a 1 b 10 +a 2 b 20' C 1 =a 1 b 11 +a 2 b 21' C 2 =a 2 b 22* (6.12) 
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6.4. Some Lemma 

     We will give some lemma used effectively in the following chapters. 

[Lemma 6.21 (Mean value theorem for the function of many variables) 

    Let f (xi I ... Ix 
p ) be a real-valued function of p variables. If f(x 

1 ... Ix p has partial derivatives f X. (xl,...Ix p )=Df(xl? .... x p )A xi for                                                1 0 
i=1,2,. p in a neighbourhood U(xo,. x ) of (xO'...'xO), then for any                               1 P 1 

P 

(x '...'x )EU(xO1...1xO) there exists some real value 6 such that 
        p P 

                                  0 0 0   f(xll...,x )=f(xo,...,Xo)+Y P h f (Xll..,x x +h e,x );O<e<l, 
             p p i=l i xi i-11 i i i+l"*,Xp 

where 

         x =x 0 +h (i=1,2,...,p).         i i 

For a proof of this lemma, see e.g. Coffman[61 or Hitotsumatsu[211.
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                             CHAPTER 7 

                     ROBUSTNESS ON DISTRIBUTIONS 

     In this section, we will evaluate the quantity R 1 defined by (6.6). 

Let us decompose R 1 as follows: 

          R, ~Rj I +R12 (7-1) 

          R, 4, (Of*, A *;f) - q/ (Og , A;;g), 

f 

            R12=*(Of, A*;9)-*(O*,A*;f)-                 f f f 

These are evaluated in the followings. 

7.1. Computational Scheme for R 

     Let us describe a method of evaluating numerically the quantity R 

defined by (7.1), since the analytical evaluation of R 11 is difficult and 

is an open problem. Now the values of T(O*,A*;f) in (7.1) have already                                         f f 

been computed in Section 3.4.1. Therefore we should compute the values of 

y(16*,A*;g) under the given values" of a, ~ in (6.10). This problem can be   9 9 

formulated as a nonlinear programming problem as shown in Section 3.1, and 

could be successfully solved for the four distributions by the nonlinear 

programming algorithm utilizing augmented Lagrangian function(see Konno et 

al.[27]). 

     In order to compute the v-th moments r., in respective strata for 

V=0,1,2,3,4, the same approximation formula as (3.4) is employed in the 

optimization processes for the standard normal distribution. For the other 

distributions, analytical expressions of rVi a re easily derived. These 

computational schemes are expected to give sufficient precision if we use
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double precision arithmetics during the optimization process (see Section 

3.3). 

7.2. Analytical Examination for R 12 

     From the definition (7.1) of R 12' we consider the case where the 

stratification method is 0* and the allocation method of sample sizes is f 

A*. Let be the i-th optimum stratification point for f(x), then R is  f 12 

represented as follows; 

                I t i t i 2 21 _         R12 ~ I -[f g Q) dt f t g (t) dt - f tg (t) dt              i=1 ni ei ti.1 I ti-I 
                                 2 1 tZ ti 2 2                          Z_[f f(t)dt f t f(t)dt - f t tf(t) dt 

                                       i=Inj ti-I ti-1 

From (2.1) and (6.11), 

         f ti tPg (t) dt f tv (C, +C,t+C2t2)f(t)dt=CO'YVi+Cl fV+li+C27V+2i 
              ti-I ti-I 

holds forl)=0,1,2. Then we get 

2 
          R,2 = I - (CO-rj+C, /I,+C2^f2i) (CO-t2i+C1-t3i+C'2-f4i) 

               i=1 ni (7 .2) 
                                      (CO -f 1, + C1 72, + C2 ̂ t3,)2 

where r., and Cl, C 2 are given by (2.1) and (6.10), (6.12). Since n 
i and 

r., are obtainable, the value of R 12 can be computed for given values of 

a and ~ in (6.10). 

7.3. Results for q 

     As stated in Section 6.2, we need to represent T(4*,A*;g) by using 
                                                  9 9 

T(4*,A*;f). For this purpose, the quantity R is numerically examined in    f f 
11 

this section. The efficiency of R 11 is now denoted by q and is defined as 

follows; 
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       q=R IT(4*,A*;f). (7-3) 
         11 f f 

This quantity q is computed for some values of a and ~ (see [Remark 7.11), 

and is shown in Table 7.1 - Table 7.4. From these tables, the followings 

are ascertained: 

(i) The differences of the values of q under NA and EA are less than 0.1%. 

(ii) On the whole, the value of q under PA is slightly smaller than the 

    one under NA in the range of a, ~ treated here. 

(iii) q is fairly robust with respect to the variation of a, if 

    jai--,0.2 and 1~1:~O.3, then jqj are less than 0.25 except for a few 

    cases. Therefore we may conclude that the difference of the optimum 

    stratification for g(x) and that for f(x) is not so remarkable. 

(iv) For the distribution 3', we need to pay much attention because of the 

    singular behaviours of q. For example, whena=-O.l and ~=-0.01, q are 

    large and nearly equal to 0.20 for all Z=2-10. 

[Remark 7.1] The values of a and are determined as follows: As for the 

value of' a, we take up the cases a=--+O.l and ~=±O.2. The value of ~ is 

determined so that the ratio of the variance against the mean of g(x) is 

equal to ±0.1. Our computation is intended to perform for all combination 

of these values. However for some values of (a, the p. d. f . g(x) 

defined by (6.11) and (6.12) is negative on some interval in (xO1 X M 

We, therefore, omit such values out of our computation. 

7.4. Results for Q 

     In the preceding section, we have computed the value of R 11 and the 

quantity R 12 has been evaluated by (7.2). We can now compute the value of
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Q 1 by using the relation (7.1). These computational results are 

summarized in Table 7.5 - Table 7.8, where the efficiency Q 
1 defined by 

(6.8) is given for some values of a and ~ (see [Remark 7.1]). From these 

tables, the followings are ascertained: 

(i) As expected theoretically, Q 1 ~-~O is satisfied under NA for all cases, 

    where the equality sign holds if and only if Z=2 for the symmetric 

    distributions. 

(ii) The differences of the values of Q 1 under NA and EA are quite small 

    and less than 0.4%. 

(iii) On the whole, the value of Q 1 under NA is more robust than the one 

    under PA with respect to the variation of a, ~. The value of Q 
1 under 

    PA for the case of cL>O, p0, is fairly large compared with the one 

    under NA. 

(iv) The value of Q under NA is fairly robust with respect to the 

   variation of a, If I a J:S 0.2 and I k 0. 3, then they are less than 

    0.2 .except for the case of a=0.2, ~=O.32 for the distribution 30. 

(v) For the unsymmetric distribution under PA, even if the values of jal 

    W are small (cx=-O.l,-B-=-O.0l), the value of Q 1 may be fairly large 

    (Q 1 =0.213 for the distribution 40). On the contrary, even if the 

   values of lal , 1~1 are large (a=-0.2, 6=-0.28), there exists a case 

   when 1Q,1 is fairly small (Q 1 =-0.087 for the distribution 40). 

(vi) In general, Q is more robust for symmetric distributions than for 

    unsymmetric ones with respect to the variation of a,
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     As a conclusion, it may be seen that the method proposed in Section 

5.1 is practicable. In the analysis of a given practical problem we may 

fit f(x) to g(x) and then apply the optimum stratification for f(x), where 

NA or EA should be used as the allocation method of sample sizes. 

7.5. Some Practical Example 

     Consider the frequency distribution of the sale of benzine shown in 

Table 5.3, Case 8. In Section 5.2.2, we fitted the exponential 

distribution f*(z)=~*e- ~* z (~ *=O. 00309) to the histogram g (z) , where the                  z z 

number of strata k was 6 and the sample allocation method was Neyman 

Allocation. Let us examine the values of q, Q 1 in this case. 

     The distribution g(x) standardizing the histogram g 
z (z) is given by 

g(x)=g (X/~*)/~*- The mean jj , variance a 2 for g(x) and the mean ~if       z 9 9 

2 variance a_ for f(x) are 

                      1.010; Pf = 1.000, 2         pg 0.879, Oi 1.000 

respectively, so 

           a = AglAf - I = -0.121, o2 ' '2. - I =0.010.                               g / 0? 

We will consider thata 1-0.1, ~!---0.01, then from Table 7.4 and Table 7.8 

        q=0.039, Q 1 =0.035. 

The efficiency Q*, which is the ratio of R against the optimum value 

T(O*,A*;g) is given as follows from (6.7) and (6.8); 
  9 9 

        Q*=Q /(l-q)=0.036. 

Therefore we may conclude that the loss owing to fitting f(x) to g(x) is 

very small.
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                             CHAPTER 8 

            ROBUSTNESS ON SAMPLE SIZES IN RESPECTIVE STRATA 

8.1. Analytical Examination 

     In this section, we analytically evaluate the quantity R 2 defined by 

(6.6). This problem is formulated as follows: 

[Problem] Calculate the degree of the influence on our objective 

functions (2.4) - (2.6) caused by changing a sample size n i G~l) in the 

i-th stratum to n 
i +m i (~-l), where total sample size n is fixed. 

     From the definition of R 2' we may discuss the case where a p.d.f. is 

g(x) and a stratification method is 0*. Then our objective function being f 

a function of only sample sizes in respective strata, we will denote it by 

T(ni, ...... n In (2.4) - (2.6), note that w. and a 2 are the weight and 

variance of the i-th stratum for g(x) , and a stratification method is the 

optimum method 4* for f(x). Suppose that sample sizes in respective f 

strata change from n. to n.+m.. Since Zi ni=Z 1 (n i +m i )=n. by the 

assumption, 

            m =0 (8.1) 

i must be satisfied. Then the given problem is to evaluate 

         R 2= T(n 1 +ml,.....,n k +m Z )-T(nl,...,n k ) (8.2) 

under the condition (8.1), where n 
i is determined by the allocation method 

for f(x). For this quantity, the following lemma holds:
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[Lemma 8.1] 

          (W 2 a 2 (j_g,O_p,+j gQ 2 1 -0)2), for some 0 (0<0< 1)   R2=n Z m 2 22 /nQ _1)2 W1 (42/n +aj                                                         (8
-3) 

and 

    cli = Milni, Oi = MiN , (i = 1, 2 ....... 2-1). 

(Proof) Substituting the relation n i =n into (2.3), we obtain 

                                 Q-1 
Wj? UQ2 2-1                ....... n2)=n W 2 uj2 Ini + 1(n- nj+ 

i Treating nils as continuous arguments, we have 

             a 2 2 Q-1 2_ 2/n               fln, ....... nQ) = n Wk 02 1(n- Z ni) WI; ai 1; 1, (i= 1,2 ..... .. M).          ani j=I 

Since it is possible to expand T(n 1 +M19 ...... nk+m,) in a neighbourhood of 

the point (ni, ..... nk), by using [Lemma 6.21 we obtain 

           R2=n Mi W2 2 2                           02 1(n - .1 nj-miO-mi+,-.._M2_1)2_Wi2 ai2 / (ni + MjO)2 

           =n Mi fW2 2 OR 2 In2 2 (1 _pjO _gj+ I pQ _ 1)2_W 1 2 u,2/n,2 (I +a, 0)2). 

The proof is completed. 

To evaluate R 29 we use the inequality O<e<l and obtain the following 

theorem: 

[Theorem 8.11 

    if 

                          Q-1 
            I - I Oi > 0, (k 1, 2_ ~-I), 

             i=k (8 .4) 
           liaj>O, 

are satisfied simultaneously, then the following relation holds; 

       t<R 2 <T, (8-5)
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where 

                           Q-1 
             t = w Q2 2 nQ 2 

                    j=1                                           (-n 

           T = Q-1 M~WQ2 0, 2 /1 n (8.6) 

                           

, (119)2(l _gQ _W2,
i2/ n 2 +Ci)2                2; 2 _ _ 1)2               i=1 n n i (n 

(Proof) Let us consider R 2 in (8.3) as a function ofe and write it as 

R 2 (0). Then 

        8R 2 (6) Q-1              - = 2n 1 M,2 f WR 2 02 2 Ink' (I-0iO-Pi+j-... -gQ_I)I+ W I 2Uj2 Inz 3 (1 + C,,o )3 
        ao 

Therefore from the given conditions (8.4), DR 2 (8)/D8>O is obtained in the 

limit of 0--!~e:~l, and R 2 (0) is a strictly monotone increasing function with 

respect to 6. From the definition (8.6), we see that t=R 
2 (0) and T=R 2 (1). 

Therefore 

        t<R (0)<T, for 0<0<1, 2 

and the proof is complete. 

     In (8.6), w 2 a 2 and n /n are known for us as follows: Firstly w~a~ is 

i expressed by 

             - _ Oi (x)g (x) dx~7_X2 12. -7)        W, 2 91 2 =f ~i(x)g(x)dx-Q~~Oj(x)g(x)dX (8 

From (6.11), 

       ~7,~`Oi(x)g(x)dx=~~P(c. +C~ X+C2 X2 )Oi(x)f(x)dx=cO -y,,i +c17 v+ 1i +C2 , YV+21 

holds for V=0,1,2, where r., is defined by (2.1). If we substitute this 

into (8.7), the following is obtained; 

         W1 2 at 2 =(CO yo, +Cj il, +C2,y2i )(CO^t2j+Cj 73i +C-2 74i)-(Co 'Yli+Cl 72 i+C2 73 )2 . 

Secondly, n i /n is given as follows according to the three allocation 

methods; 

         nj1nV,y-Oj,y2j-,y,j1 / 1J^fOj'Y2j _,y1j2 under NA, 
                             j=1 

       niln =Ilk under EA
, 

         niln =,yoi under PA. 
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Therefore the values of t and T are computable if we determine the values 

of m i and a, ~ given in (6.10). 

8.2. Results 

     In order to estimate the efficiency Q 2 roughly, we will compute it in 

some special case, that is, in the case of g(x)=f (x) . The computational 

results are summarized in Table 8.1 - Table 8.4. 

     In the first row of the tables, we show the value of I a, The value 

of ~, is determined by the relation ~i=;a,n,/n. As for a,, (8.1) implies 

Y k 0 under EA. Moreover by our empirical results the value of w  i=iO,i= i Ili 

are approximately equal to each other under NA (see Chapter 1) . Then 

  LO. Therefore we suppose a,>O for and a,<O for ai. 

i=2,4 ...... Z. For the sake of computational convenience, we assumed that 

      were constant for any stratum. Our computation has been performed 

for the case of lail=0.01, 0.05, 0.07, 0.10, 0.15 and 0.20. We give the 

value Of u=t/T(iS*,A*;f) in the upper row and the value of U=T/T(i6*,A*;f)               f f f f 

in the lower row. From these computational results for the four 

distributions, we obtained the followings: -

(i) The difference of the values of u and U is not so remarkable under NA 

    or EA; If jaj-~O.10, then U-u<0.04 and if la,l-.50.20, then U-u~0.17. 

(ii)-The value of Q 2 under NA is nearly independent of distributions (see 

   [Remark 8.1]). 

(iii) For all cases, the value of Q under EA is nearly equal to that 2 

    under NA. In the case of PA, the value of Q 2 is largest.
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 (iv) If la, i 1-:~:0.10 holds under NA or EA, then the value of Q 2 is less than 

     about 0.03 and if ja,j:~0.20, then Q2:5'0' 13. Therefore in such cases 

     there may be no riskiness from the practical point of view. 

 (v) For the unsymmetric distributions under PA, even if the values of I a i 

     and z are small ( I oc,j =0.07, k =4) , the value of Q 
2 may be fairly large 

     (U=5.029 for the distribution 41). 

 (vi) In general, the value of Q 2 for the symmetric distribution is more 

     robust than the one for the unsymmetric distribution with respect to 

     (Xi under PA. 

      In the preceding Section 7.4, we described that NA or EA should be 

used in practical fields, because the efficiency Q =R /T(j6*,A*;f) is 
                                                    1 1 f f 

small. From the above-mentioned results, the efficiency Q 
2 is also small 

in the case of NA or EA. 

 [Remark 8.1 In the case of NA, n =nw,~ w holds. On the other                                   i i j =1 j,j 

hand, the values of w,G, are approximately equal to each other under NA by 

our empirical results. Therefore n 
i =n/k and ~ i =a i are approximately 

satisfied. Substituting these relation into (8.6), the following is 

obtained provided that (8.4) holds; 

       u NAQ2~UNA' 

where 

              Q-1 Q-1 2-1/(I+a 2 ) 1k.         u NA= UNA= 

Therefore the values of u NA and U NA are approximately independent of 

distributions.
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8.3. Some Practical Example 

     We will take up once more the frequency distribution of the sale of 

benzine in Table 5.3, Case 8. The values of n 
i Is under Neyman Allocation 

are given in the second column of Table 8.5. In Section 5.2.5, we rounded 

off n 
i for the sake of computational convenience and numerically examined 

this influence. Let us compute the value of Q 2 evaluated by (8.5) in this 

example. 

[Example 8.1] 

     In Section 5.2.5, we changed the values of n 
i such as shown in the 

third column of Table 8.5, where the values of m 
i are given in the fourth 

column of this table. The distribution g(x) standardizing the histogram 

9 (z) is given by g(x)=g (x/ The mean p , variance a 2 for g(x) and  z z 9 9 

the mean pf9 variance a 2 for f(x) are f 

          lag = 0.879, 2 = 1 .0 10 ; 'Uf = 1.000, 1.000                       C19 

respectively, so 

                   I = -0. 12 1, 2 /a2 0.010. 

If these values are substituted into (8.6), then we obtain 

        t=0.0 4 695, T=0.0 4 762. 

Let us denote the variances of X in the cases of fn i I and fn +M i I by V NA 

and V' respectively, then     NA 

       (1/,3,)2. t1n < V'NA _VNA<(llg*)2.Tln 

from (2.3) and (8.2). These values are computed as follows; 

        0.00170<V ~A-VNA<O .00187. 

Since V =0.618, the value of Ql=(VI -V )/V is given by       NA 2 NA NA NA 

       0.00276<Q~<0.00302. 
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The value of Q 2 defined by (6.8) is evaluated as follows: 

       0.00198<Q 2 <0.00217. 

Therefore we may conclude that the loss owing to changing f n to f n 
i +m 

is very small. 

[Example 8.21 (Equal Allocation) 

     Let us examine the influence owing to changing allocation method from 

NA to EA. The values of n 
i +m i and m i are given in the fifth and sixth 

column of Table 8.5, respectively. By a similar computation as in 

[Example 8.11, we obtain 

         t=O ..O 3 460, T=0.0 3 538. 

If we denote the variance of X under EA by V EA' then the value of Q ~'=(VEA 

-V 
NA )/V NA is given by 

        0.0183<Q 1 1<0.0213. 

The value of Q in this case is 2 

        0.0132<Q 2 <0.0153. 

Therefore we may use Equal Allocation in practical sample survey.
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                             CHAPTER 9 

                 ROBUSTNESS ON STRATIFICATION POINTS 

9.1. Analytical Examination 

     In this section we analytically evaluate the quantity R 3 defined by 

(6.6). This problem is formulated as follows: 

[Problem] Calculate the degree of the influence on the objective 

functions (2.4) - (2.6) caused by changing the stratification points E 
i to 

  +n in the i-th stratum. 

     From the definition of R 39 we consider the case where a p.d.f. and an 

allocation method of sample sizes under our consideration are g(x) and Aft 

respectively. Suppose that xi,x 21 ..... f 'Y
' -1 are the x-coordinates of 

stratification points and satisfy the relation x C~'l < ..... <X 
Z , where the 

domain of g(x) is (x09 x k ). Since our objective function is a function of 

only stratification points in this problem, we denote it by T(x -,X
k -1) 

and obtain 

                             k Xi Xi Xi 2 
                  1) = n If XZ . -I g(t)dtfx. 1 .2 g(t)dt- f X,-,tg(t)dt 11ni. 

     Let T x .(xi....,x k-1 be a partial derivative of T (xi 9 ... 9x with 

1 respect to the variable xi, then it is given by 

                                        X1 

                                (t_ X,)2 (t         *Xi(X1'---'XQ-1)=ng(xi) fX g(t) d t1n i- f x'+ X,)2 g(t)dtlni+ I                                                      Xi 

From [Lemma 6.2], we can write for some 6 (0<.9<1), 

          R3 = TQ1 +771 -,4-1 + 772-1 *Q1 

                                    til +'7i+ 1
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where 

         41"Al 0 

            ngQj+ 77jo ti+ 7?jO I +?7i+ I                         Q-ti-?7iO)2gQ)dt1ni-fV + n io O-ti-??i 0)2gWdt1n1- + I 1 (9-1) f 

with Tj k =0. Evaluating each term in (9.1), we can obtain the following 

lemma: 

[Lemma 9.1] 

3      If we neglect the t erms of orderq i , then R 3 is given by 
                Q-i 

     R 3 = n Z 77ig Qi + 77i 00) [ (C2 S,~ i + (C~ - 2~ iC2) S3i- tj (2C, - tiC2) S2i + ~? C, S, i 

     - 277i 00 C2 S3 i + (Cl - ~iC2) S2 i + (CO - tj C1 ) S1 j- tiCOSOi 

     - 7?i+ I di2+ 1 9 Qi+.1 + 7?j+ 1 0 I)Ini+ , 1, Sk4 ='Yvilni - yp.i+ I Ini+ I (V 0, 1, 2, 3, 4) 
                                                            (9.2)                                               0 < Ok < I (k= 0
, 1) . 

(Proof) The first term in the right-hand side of (9.1) can be decomposed 

so that 

       f ti+T?iO(t_~j_7?je)2g(t)dt=f ti (t-ti)'g(t)dt- 277iff ti (t-ti)g(t)dt 
                                         ti-i ti-I 

                      + (77i 0 )2 f ti g(t) dt + f ti+niO(t_tj_j7jO)2g(t)dt .                                ti-1 ti (9-3) 

The first two terms in (9.3) is calculated as follows by using (6.11): 

       f~i (t-ti)2g(t)dt= f~i (t _ ti)2 (CO + C, t + C2 t2 )f (t) dt 

                       C2 + (C] - 2 ~iC2 ) 73 i + (CO - 2 tiC, + t13C2 )'Y2 i 

2 

                     + iCj-2tiCO)7ji tiCoyoi . (9.4) 

       f ti Q-ti)g(t)dt= f ti (t- ~j) (CO + C1 t + C2 t2 )f(t)dt 

                        C2-Y3i+(Cl _~iC2h2i+(CO_ tiCO-fli- tiCO-10i' (9-5) 

2 The third term in the right-hand side of (9.3) is clearly of order ni . As 

for the last term in (9.3), transform the variable t to t-C 
i and apply the 

mean value theorem, then it is seen that the term is of order Tj 2                                                            i* 

Therefore by substituting (9.4) and (9.5) into (9.3), the following can be 

obtained; 
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          ti+77i 0 (
t_ ~j_ 77i 0)2 + ~2C2          f g(t)dt =C2_t4i+(C1 - 2~iC2)73i+ (CO - "tiCl i )72i 

                        + (~3C, - 2~i CO),y I i + ~2CO'Yoi - 271i 0 

                         

1 i (C273i+ (Cl - tiC2)-t2i 

                      +(Co-~icl)-Yli- ~ico-toi 1+0(,Q?).                                                         (9.6) 

     Secondly, we will calculate the second term in the right-hand side of 

(9.1) by similar way. Now the following holds; 

         f ti+ 1 +71j+ 1 (t- ~j_ TjjO)2 g(t) dt = f 1(t_ ti)2g(t )dt- 2niOf ti+ I (t- ~i)g(t)dt 

                               + (17i 0)2 f ti+ I                                    t
, g(t)dt 

                                _f (t - ~i - 77i 0)2g(t) dt 

                                 + f ti+ 1 +77j+ 1 Q_ ~j_77jo)2 g (t)dt . (9-7) 
                                       ti+ I 

The last term in (9.7) is calculated as follows by transforming the 

variable t to u=t-E i
+l and applying the mean value theorem; 

          .ti+ 1+71j+ 1 77
io)2 g(t)dt =f 11+1 (di+ I + u - 77i 0)'g (u + ti+ I)du 

0 

                                    77j+ 1 d 2 i +I 9Q i+ I + 77i+ 10') + 0 (772i 

                               di+l =~i+,-~i , 0 < e, < I , (9.8) 

where we should define -q =0 since the value of (9.8) must be 0 for i=k-l . 

2 Therefore if we neglect the terms of order Tj in (9.7), then we can obtain 

         f I I (t-ti-7?iO)'g(t)dt =C2-t4i+l+(CI-2~iC2)-t3i+)+(CO-2t;CI 

                                 +~13C2)-t2i+l+(t3Cl-2tiCO),yl.i+,+t?Co^fo-i+I 

                                  - 27?iO{C2 -Y3i+ I + (C] - ti C2)Y2 4+ 1 
                                      +(CO - ~i C, )-Y1 i+ I - ti CO-YO.i+ I 

                                     1+1 g(~,+ I + 77,+10,) + 0( 2                                 +7?i+ld? 77i), 

                                 0<0<1, 0<0'<l (9-9) 

If we substitute (9.6), (9.9) into (9.1) and use the relation (2.12) , then 

(9.2) can be obtained by using [Lemma 6.2]. The proof is completed.
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     Since unknown constants 809 6 1 are included in (9.2), we can not 

compute the value of R 3 in practice. If we assume that T1 
i is small for 

               and g(x) has not any sudden changes in the function value, 

then we may make the following approximations; 

         9Qi+'QiOk)*-_.9Qj+??j12), (k=o,i i=1,2,---j-1) . (9-10) 

Furthermore if n i e k is small,
,then 

        17 i Ok 6. 77 il 2, (k=O,l (9-11) 

may be satisfied approximately. Substituting (9.10) and (9.11) into 

(9.2), we can obtain the following theorem: 

[Theorem 9.1] 

     R 3 can be approximately evaluated as follows;                      

I Q-1        R3 n .1 '7j9Qj+'7i/2)1(C2S4i+(Cj- 2~iC2)S3i - ti(2CI- tiC2)S2i+t2CjSji 

i 

                         _"i~C2S3i+(Cl -tjC2)S2j+(CO-tjCJ)Sjj-tiCGSOi) 
                           -,7i+ldl?+Ig(ti+1+7?i+1/2)/ni+lj ; 172=0. - (,C.12) 

Since various quantities in (9.12) except for nl,T)2"'.' TIZ-1 are obtain-

able if we determine the values of a and ~ given in (6.10), an approximate 

value of R 3 can be computed by (9.12) if we give values of fll,T12, ..... ITI 

Z-l* 

9.2. Results 

     In this sectio n we will make tables giving approximate values of Q 3 

defined by (6.8), which may be useful in practical fields. As the value of 

Q 3 depends upon the values of a and ~ in (6.10), there are many cases 

according to the combination of the values of a and So in order to 

find the value of Q 3 roughly, we will make the tables giving Q 3 for the
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case of g(x)=f(x) under A*. In the case that g(x) differs from f (x) , an f 

approximate value of Q 3 can be computed by using (6.8) and (9.12). 

     Examples of computational results are partly shown in Table 9.1 -

Table 9.4. In these tables, the notation PLUS, MINUS and ALTERNATING have 

the following meanings, respectively; 

     PLUS Tj >0 .(i=1,2,. 

     MINUS Tj i <0 (i=l,2,...,9-l). 

     ALTERNATING il 
i >0 Tli <0 (i=2,4,...,k-2). 

In the second row, we show the values of In,j which is equal to 0.01a, 

0.05a or 0.10cf, where a represents the standard deviation of f(x). For the 

sake of computational convenience we assumed that IT1,1 was constant for 

any stratum and a number of strata k was even. From these computational 

results for the four distributions, we obtain the followings: 

(i) For all cases, the value of Q 3 under EA is nearly equal to that under 

   NA. 

(ii) In the case of ALTERNATING, the value of Q 3 is fairly large. 

(iii) In the case of ALTERNATING, the value of Q 3 under PA is smallest and 

    in other cases the differences of the values of Q 3 under three 

    allocation methods are not so remarkable as in the case of ALTER-

   NATING. 

(iv) In the case of ALTERNATING, if 9,=10 and IT1,1=0.10a, then the value of 

    Q3 is nearly equal to 1 for some distributions. 

(v) In the case of PLUS or MINUS if jrj,j:~0.05a, then the value of Q 3 is 

    less than 0.13. Therefore in such cases there may be no riskiness 

    from the practical point of view. 
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(vi) In general Q 3 is more robust for symmetric distributions than for 

    unsymmetric ones with respect to Tj i* 

(vii) The value of Q 3 for the normal distribution is smallest among those 

    for the four distributions. 

9.3. Some Practical"Example 

     As in Section 7.5 and Section 8.3, let us take up the frequency 

distribution of the sale of benzine shown in Table 5.3, Case 8. In this 

case, computed optimum stratification points zVs are as follows; 

          z*=114.5, z*=253.8, z*=431.7, z*=678.6, z*=1086.3.         1 2 3 4 5 

Let us change z-~ as follows owing to the constraint of sampling frame (see 

Table 5.5), and evaluate the influence of this change by using (9.12); 

         Z 1 =120, z 2=260, z 3= 500, z 4=700, z 5=1100, 

     The distribution g(x) standardizing the histogram g z (z) is given by 

g(x)=g W~*Vv. The mean p , variance a 2 for g(x) and the mean       z 9 9 

variance a 2 for f(x) are f 

        yj = 0.8787 '=1.0100 pf=1.0000, 1.0000                       199 Of 

respectively, so 

                              02g / 2          Ct = /A 9 IlAf - 0. 1213., Of 1=0.0100. 

The values of E, in (9.12) are given by the followings (see Table 3.10); 

            0.3 543, t2 = 0.7853, 1-3360, 

        t4 2.0999, ~5 = 3.3618. 

The values of Tj are obtained as follows by the relation =~tl(z -Z,!); 

         i7l = 0.0 1706, 772 = 0.01928, 713 0.21108, 
          IN = 0.06627, 175 = 0.04,228. 

                                     - 6o -



Since Y(6*,A*;f)=0.03507 from Table 3.10, we have        f f 

        Q 3=0.1607. 

If we consider that a!--.--O.l and P2--.--0.01, then the value of q in (6 

q=0.039 from Table 7.4. The efficiency Q*, which is the ratio 3 

against the optimum value fl~*,A*;g), is given as follows from (6. 
                         9 9 

(6.8); 

        Q* =Q /(l-q)=0.174.         3 3 

Therefore we may conclude that the loss owing to changing z~ to 

1 small and there is no riskiness from the practical point of view.

.7) 

of 

7) 

Z. 
1

is 

R 3 

and 

is
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                             CHAPTER 10 

                            CONCLUSION 

     We will now summarize the main results obtained in this paper. 

     In Chapter 3, we considered the estimation of the population mean V, 

and obtained the followings: 

(3-1) Optimum Stratification Points (OSP) and Minimum Variances (Min.Var.) 

      for typical four distributions under three sample allocations were 

      computed by using nonlinear programming algorithms up to 10 strata. 

(3-2) Gains of the increase of the number of strata and efficiencies of 

      each allocation were investigated for the above cases. 

(3-3) Neyman Allocation (NA) and Equal Allocation (EA) turned out to give 

      quite similar results. 

(3-4) General Optimum Stratification (GOS) could be regarded to coincide 

      with Interval Optimum Stratification (IOS'). 

(3-5) A method for determining the sample size and the number of strata 

      were given under the assumption that the total sampling cost was 

       constant. 

     In chapter 4, we considered the estimation of the population variance 

a 2 , and obtained the followings: 

(4-1) OSP and Min.Var. for typical four distributions under Proportional 

      Allocation (PA) were computed by using general nonlinear programming 

      algorithm up to 4 or 5 strata. 

(4-2) Gains of the increase of the number of strata and efficiencies of 

       each stratification method were investigated for the above four 

      distributions.
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(4-3) Asymptotic GOS (AGOS) did not always coincide with Asymptotic IOS 

      (AIOS), especially AGOS was much better than AIOS in case of the 

      symmetric distributions. 

     Applicational scheme of the above-mentioned results to practical 

sample surveys was proposed in Chapter 5, and we applied it to the data of 

"Current Survey on Petroleum Products Demand and Supply" as rep~esentative 

examples.:-By these examples, it could be shown that our proposed procedure 

decreased the standard error of the estimator T for 11 by about 30 - 60 % 

compared with the traditional procedure, and the influence on the standard 

error of X owing to small change of sample sizes in respective strata and 

stratification points was about less than 10 % and might not be serious. 

     In Chapters 7, 8 and 9, we discussed three sub-problems of robustness 

in optimum stratification based on the formulation given in Chapter 6. 

     As for the robustness on distributions, we obtained the followings in 

Chapter 7: 

(7-1) The value of Q 1 under NA or EA was more robust than that under PA 

      with respect to some kind of changes of distributions. 

(7-2) The value of Q under NA or EA was fairly robust and it was less 1 

      than 20% in usual cases. 

(7-3) In general, the value of Q 1 was more robust for a symmetric 

      distribution than for an unsymmetric one with respect to the change 

      of a distribution. Especially for an unsymmetric distribution, PA 

      is not recommendable, because the value of Q 1 for such a case may be 

      large.
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     As for the robustness on sample sizes in respective strata, we 

obtained the followings in Chapter 8: 

(8-1) The value of Q 2 under NA was nearly independent on a distribution. 

(8-2) The value of Q 2 under NA or EA was more robust than that under PA. 

(8-3) The value of Q 2 under NA or EA was very robust and was less than 3% 

       in usual cases. 

(8-4) In general, the value of Q under PA for a symmetric distribution 2 

      was more robust than that for an unsymmetric distribution, and so PA 

      is not recommendable for an unsymmetric distribution. 

     As for the robustness on stratification points, we obtained the 

followings in Chapter 9: 

(9-1) Although the value of Q 3 under PA was the smallest in the case of 

      ALTERNATING, that under NA or EA was not so large. In other cases 

      (PLUS or MINUS), the differences of the values of Q 3 under three 

      allocations were not remarkable. 

(9-2) We should pay much attention to the cases of ALTERNATING because the 

      value of Q 3 was too large for some distributions. On the contrary, 

      in the cases of PLUS or MINUS the value of Q 3 was usually less than 

      13%, so there may be no riskiness from the practical point of view. 

(9-3) The value of Q 3 was more robust for a symmetric distribution than 

      that for an unsymmetric distribution. Especially in the case of the 

      normal distribution, the value of Q 3 was most robust. 

     Through all these discussions, EA gave quite similar results with NA 

as reported in Chapter 1.
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     In the chapters dealing with three kinds of robustness, we gave some 

practical examples. Now let us summarize these examples: 

(Example 10.1] 

      Consider the data shown in Table 5.3, Case 8. In Section 5.2 we 

applied our proposed working procedure to this data, and then changed 

sample sizes in respective strata and stratification points as shown in 

the last two rows of Table 5.5. In Chapters 7, 8 and 9 we have evaluated 

the influence of such change, and have obtained 

         Q1=0.035, Q 2 =0.002, Q 3=0.161. 

So the theoretical consideration yields 

        Q 0 =0.198. 

     On the other hand as shown in Chapter 5, we have obtained 

         S 1 =0.786, S 3 =0.871. 

       2 2 2 Si
nce S, and S may be nearly equal to T (6*,A*;g)l{ n(~*) } and Y(6f ~A              3 f f f 

;g)/fn(~*) 2 1 respectively, the value of Q 0 can be given as follows by 

using n=4272, ~*=O.00309, T(6*,A*;f)=0.035068 and Q =0.035;                           f f 1 

                          2 2 2         Q =Q +Q +Q =Q + n(V) (S _S )/T(6*,A*;,f)=0.199. 
          0 1 2 3 1 3 1 f.- f--

This value is almost the same as that obtained above. It may, therefore, 

be concluded that the evaluation methods for Q19 Q2 and Q 3 given in 

Chapters 7, 8 and 9 are useful in practice. 

      As a conclusion, we may apply our working procedure proposed in 

Section 5.1 in designing stratified random sampling to estimate the 

population mean, if the population distribution can be approximated by 
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 either of the distributions shown in Section 2.6, (A). As a stratifica-

 tion method, we could use Interval Optimum Stratification (IOS) because 

 General Optimum Stratification (GOS) coincided with IOS in the range of 

 the cases treated in this paper (cf. GOS was very effective in estimating 

 the population variance, especially for symmetric distributions). The 

 robustness of a sample design should be evaluated by using the tables 

 given in Chapters 7, 8 and 9 or by the formulae (7.2), (8.5) and (9.12). 

 The value of Q09 which indicates the degree of robustness , is usually not 

 so large. As for a sample allocation method, Equal Allocation is 

 recommendable since it is simpler, more robust than Proportional Alloca-

 tion and gives quite similar effects with the optimal allocation, Neyman 

 Allocation. The number of strata may be sufficient to be less than or 

 equal to 5 so far as the stratification cost is not so cheap, and then we 

 can get satisfactory effect of stratification. The author hopes'that the 

 results given in this paper are effectively utilized in practical sample 

 surveys.
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Table 3.1 . OSP , T* N and e N for the equilateral triangular distribution

I

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

xx A A X* 4 x r*,

 0.00000 
-0 .23132 
-0 .35425 
-0 .44226 
-0 .50263 
-0 .55072 
-0 .58745 
-0 .61836 
-0 .64342

 0.00000 
-0 .13629 
-0 .22978 
-0 .30425 
-0 .36112 
-0 .40900 
-0 .44780

 0.00000 
-0 .09669 
-0 .17052 
-0 .23268 
-0 .28206

 0.00000 
-0

.07497 
-0 .13567 0.00000

0.1666667 
0.0555551 

0.0255607 
0.0150372 
0.0097277 
0.0068784 
0.0050797 
0.0039271 
0.0031123 
0.0025363

eN

0.000 
0.667 
0.847 
0.910 
0.942 
0.959 
0.970 
0.976 
0.981 
0.985

Table 3.2. OSP, T * and E eE for the equilateral triangular distribution

X.1 X*2 X.3 X*4 X*5
E

eE

0.1666667 0.000

2 0.00000 0.0555551 0.667

3 -0.23207 0.0255610 0 .947

4 -0.35915 0.00000 0.0150434 0 .910

5 -0-i44668 -0.13656 0.0097309 0.942

6 -0.50789 -0.23207 0.00000 0.0068811 0.959

7 -0.55551 -0.30641 -0.09681 0.0050814 0.970

a -0.59243 -0.36401 -0.17183 0.00000 0.0039285 0 .976

9 -0.62304 -0.41173 -0.23393 -0.07499 0.0031133 0 .981

10 -0 .64812 -0.45087 -0.28490 -0.136S2 0.00000 0.0025371 0 .985

Table 3.3. OSP, T * p and e p for the equilateral triangular distribution

I

1 

2 

3 

4 

5 

6 

7 

8 
9 

10

A 

2

A x*,

 0.00000 
-0 .25000 
-0 .38197 
-0 .47444 
-0 .53734 
-0 .58679 
-0 .62427 
-0 .65551 
-0 .68066

 0.00000 
-0 .14963 
-0 .25139 
-0 .33141 
-0 .39205 
-0 .41260 
-0 .48330

 0.00000 
-0 .10688 
-0 .18789 
-0 .25541 
-0 .30979

 0.00000 
-0 .08315 
-0 .15010 0. OOGOO

0.1666667 
0.0555552 
0.0260417 

0.0154800 
0.0100775 
0.0071608 

0.0053049 
0.0041128 
0.0032656 
0.0026661

ep

0.000 
0.667 
0.844 
0.907 
0. 940 
0.957 
0.968 
0.975 
0.980 
0.984
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Table 3.4. OSP, 111* 'Nand e N for the normal distribution

I

1 

2 

3 

4 

5 

6 
7 

8 

9 

10

X: A

 0.00000 
-0.54981 
-0.87569 
-1.10410 
- 1. 27825 
-1.41805 
-1.53427 

-1.63339 
-1.71955

 0.00000 
-0.33585 

-0.57560 

-0.76055 

-0.91021 

-1.03532 
-1 .14244

0 
-0 

-0 

-0 
-0

00000 
24280 
43182 

58579 
71516

 0.00000 
-0.19034 
-0 .34622 0.00000

I eN

1.000000 
0.363380 
0.182473 
0.109128 
0.072461 
0.051569 
0.038556 
0.029909 
0.023873 
0.019495

0.000 

0.637 

0.818 

0.891 

0.928 

0.948 

0.961 

0.970 

0.976 

0.981

Table 3.5. OSP  T* E and e. for the normal distribution

I

I

1 
2 
3 
4 
5 
6 
7 
8 
9 

10

A, X2* A 

3

x *, A

  0.00000 
-0. 56888 
-0.90091 
-1.13189 
-1.30729 

-1.44770 
-1.56422 
-1.66343 
-1 .74960

 0.00000 
-0.34326 

-0.58671 

-0.77377 

-0.92473 

-1-05069 
-1.15838

 0.00000 
-0.24674 

-0.43813 
-0.59364 

-0.72407

 0.00000 
-0.19278 

-0.35031 0.00000

ly I*

1.000000 
0.363380 
0.182704 
0.109294 
0.072570 
0.051643 
0.038607 
0.029946 
0.023901 
0.019516

eE

0.000 

0.637 

0.817 

0.891 

0.927 

0.948 

0.961 

0.970 

0.976 . 
0.980

Table 3.6. OSP , T*p and e p for the normal distribution

I

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

A X2 X4* As

 0.00000 
-0.61201 
-0.98158 
-1.24435 
-1.44684 
-1.61075 
-1 .74792 
-1.86552 
-1 .96821

 0.00000 
-0.38228 

-0.65891 

-0.87136 

-1.04995 

-1.19759 

-1 .32457

 0.00000 
-0.28029 

-0.50055 

-0.68122 
-0 .83384

 0.00000 
-0.22182 

-0.40474 0.00000

1.000000 
0.363380 
0.190175 
0.117483 
0.079943 
0.057979 
0.044001 
0.034549 
0.027854 
0.022938

ep

0.000 
0.637 
0.810 
0.883 
0.920 
0.942 
0.956 

0.965 
0.972 
0.977
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Table 3.7. OSP, T* and eN for N the rightangled triangular distribution

I

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

4 A xt A 

6

"r * 7 A

0.75850 
0.45956 1.00526 
0.34105 0.72225 1.17489 
0.27133 0.56611 0.89559 1.28683 
0.22534 0.46610 0.72767 1.02003 
0.19271 0.39634 0.61390 0.85026 
0.16834 0.34493 0.53132 0.73057 
0.14945 0.30522 0.46852 0.64107 
0.13438 0.27379 0.41909 0.57142

1.36718 
1.11445 
0.94704 
0.82543 
0.73238

1.42816 
1.18899 1.47629 
1.02573 1.24960 
0.90436 1.09120

1.51543 
1.30002 1.54799

T I eN

0.2222222 
0.0601488 
0.0275137 
0.0157086 
0.0101453 
0.0070887 
0.0052311 
0.0040184 
0.0031833 
0.0025839

0.000 
0.729 
0.876 
0.929 
0.954 
0.968 
0.977 
0.982 
0.986 
0.988

Table 3.8. OSP, T* and eE for E the rightangled triangular distribution

X*2 X*3 X*4 X*5 X.6 X*7 X*a X*9 T*E eE

0.2222222 0 .000

2 0.71831 0.0601734 0 .729

3 0.46412 1 .01574 0.0275245 0 .876

4 0.34366 0 .72806 1.18489 -

0.0157140 0 .929

5 0.27302 0 .56980 0.90174 1 .29624 0.0101484 0.954
6 0.22656 0 .46870 0.73187 1 .02624 1.37604 0.0070906 0 .968

7 0.19357 0 .39817 0.61685 0 .85454 1.12037 1.43631 0.0052324 0 .976

a 0.16902 0 .34627 0.53362 0 .73387 0.95150 1.19485 1.48403 0.0040193 0 .982

9 0.14997 0 .30631 0.47025 0 .64356 0.82880 1.03012 1.25525 1.52279 0.0031840 0 .986

10 0.13486 0 .27479 0.42065 0 .57360 0.73527 0.90803 1.09575 1.30564 1.55508 0.0025844 0 .988

Table 3.9. OSP, T* and e for the          p p rightangled triangular distribution

I

4 

5 

6 

7 

8 
9 

10

A X*~ A 

7

x,*

0.76397 
0.50279 1.07467 
0.37577 0.78409 1.24853 
0.30021 0.61958 0.96661 1.36133 
0.25002 0.51271 0.79215 1.09580 1.44117 
0.21423 0.43747 0.67201 0.92152 1.19264 
0.18742 0.38158 0.58390 0.79646 1.02259 
0.16659 0.33840 0.51639 0.70185 0.89671 
0.14992 0.30402 0.46295 0.62760 0.79916

1.50103 

1.26830 1.54779 
1.10400 1.32925 
0.97941 1.17116

1.58545 

1.37953 1.61653

T P* ep

0.2222222 

0.0619201 
0.0286434 

0.0164512 
0.0106643 
0.0074701 
0.0055226 
0.0042482 
0.0033690 
0.0027370

0.000 

0.721 

0.871 

0.926 

0.952 

0.966 

0.975 

0.981 

0.985 

0.988
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Table 3.10. OSP, T*N and e N for the exponential distribution

I

1 
2 
3 
4 

5 
6 
7 
8 
9 

10

x *1 X2 x,* X: x *6 x*, A

1.26191 
0.76396 2.02587 

0.55065 1.31461 2.57652 
0.43103 0.98167 1.74563 3.00754 

0.35428 0.7531 1.33595 2.09992 
0.30081 0.65509 1.08612 1.63673 

0.26139 0.56220 0.91648 1.34751 
0.23112 0.49252 0.79333 1.14761 
0.20715 0.43827 0.69967 1.00048

3.36182 
2.40073 
1.89815 
1.57864 
1.25476

3.66263 

2.66212 

2.12928 

1.78579

3.92403 
2.89325 d. 15515, 
2.33643 3.10040 4. 36230

T I

1.000000 
0.285434 
0.133225 
0.076868 
0.049969 
0.035068 
0.025961 

0.019991 
0.015867 
0.012898

e'N

0.000 
0.715 
0.867 
0.923 
0.950 
0.965 
0.974 
0.980 
0.984 
0.987

Table 3.11. OSP, and e E for the exponential distribution

I

1 
2 
3 
4 
5 
6 
7 
8 
9 

10

X*, A, X: A, A, A A 

9

1.30008 
0.77906 2.07914 

0.55875 1.33781 2.63789 
0.43609 0.99485 1.77391 3.07399 

M5774 0.79383 1.35253 2.13164 3. 
0.30332 0.66107 1.09716 1.65591 2. 
0.26331 0.56664 0.92439 1.36048 1. 
0.23264 0.49595 0.79928 1.15703 1. 
0.20836 0.44098 0.70429 1.00761 1.

43172 
43496 
91923 
59313 

36536

3.73504 

2.69830 

2.15188 

1.80145

3.99837 

2. 93095 4.23102 

2.36020 3.13926 4. 43933

-T ; I e,
1.000000 
0.285810 
0.133378 
0.076946 
0.050013 
0.035096 
0.025980 

0.020004 
0. 01587~ 
0.012905

0.000 
0.714 
0.867 
0.923 
0.950 
0.965 
0.974 
0.980 
0.984 
0.987

Table 3.12. OSP, T* and e                 P P for the exponential distribution

.- I

1 
2 

3 

4 

5 

6 

7 

8 

9 

10

A X* 3 x,* A A

1.59359 
1.01758 2.61120 
0. 75403 1.77161 3.36523 
0.60043 1.35447 2.37205 3.96567 
0.49932 1.09976 1.85379 2.87137 
0.42757 0.92689 1.52733 2.28137 
0.37394 0.80152 1.30085 1.90128 
0.33233 0.70629 1.13387 1.63321 
0.29906 0.63137 1.00531 1.43289

4.46500 
3.29895 
2.65532 
2.23365 
1.93219

4.89257 

3.67290 

2.98769 

2.53262

5.26652 

4.00527 

3.28660

5.59890 

4.30423 5.89786

y *p

1.000000 
0.352390 
0.179737 
0.108952 
0.073090 
0.052427 

0.039439 
0.030745 

0.024640 
0.020189

ep

I

0.000 

0.658 

0.820 

0.891 

0.927 

0.948 

0.961 

0.969 

0.975 
0.980
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Table 3.13. OSP, TG* for the equilateral triangular distribution

2 XQ* xf X2* X3* X.* XS* X6* X~l **G

2 1 2 1 -1 -000 0.090 1.000 1.000 0.05556

1 2 3 1 -1.000 -1-000 -0-231 0-231 1-000 0-02556

3 1 2 1 3 1 -1 .000 -1 -000 -0 .231 0-231 1.000 1-000 0.02556

1 2 3 2 1 -1.000 -1.000 -1.000 -0.231 0.231 1-000 0.02556

1 2 3 4 1 -1 -000 -0 .354 0.000 0.354 1.000 1.000 0.01504

1 2 1 -3 4 1 -1 .000 -1.000 -0.354 0-000 0.354 1.000 1 Mo 0-01504

1 2 3 1 4 1 -1 .000 -0 .354 0.000 0.354 0-354 1.000 1.000 0.01504

1 2 3 2 4 1 -1.000 -1-000 -1-000 -0.354 0.000 0.354 1.000 0.01504

1 2 3 4 2 1 - I Mo -1 .000 -1 .000 -0 -354 0.000 0.354 1.000 0.01504

4 1 2 3 4 3 1 -1 -000 -0-354 0.000 0.354 1.000 1.000 1.000 0-01504

1 2 1 3 1 4 1 -1 .000 -1 -000 -0 -354 -0.354 0.000 0.354 1.000 1.000 0.01504

1 2 1 3 4 3 1 -1-000 -1.000 -0-354 0-000 0-354 1.000 1.000 1.000 0.01504

1 2 3 2 1 4 1 -1 .000 -1 .000 -1 .000 -0 .354 0.000 0.354 1.000 1-000 0.01504

1 2 3 2 4 2 1 -1 -000 -0.354 0.000 0.354 0.354 1-000 1.000 1.000 M1504

1 2 3 4 3 2 1 -1 .000 -0 .354 0.000 0.354 1-000 1-000 1.000 1.000 0-01504
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Table 3.14. OSPI Ta 
         and

for the normal, rightangled. 

exponential distribution

triangular

2 XO* x *1 X-2* X3 X*4 x 5

2 1 2 1 -3 .000 -3 .000 0.000 3.000 0.34741

2' 3 1 2 3 1 -3 .000 -3 .000 -0 .545 0.545 3.000 0.17256

4 1 2 3 4 1 -3 .000 -0 .866 0.000 0.866 3.000 0.10236

2 1 2 1 0.000 0.709 2.000 2.000 0.06015

30 3 1 2 3 1 0.000 0.460 1.005 2.000 2.000 0.02751

4 1 2 3 4 1 0.000 0.341 0.722 1.175 2.000 2.000 0.01571

2 1 2 1 0.000 1.225 6.000 6.000 0.25323

40 3 1 2 3 1 0.000 0.741 1.938 6.000 6.000 0.11639

4 1 2 3 4 1 0.000 0.533 1.262 2.430 6.000 6.000 0.06647

Table 3.15. c. and cp for the four distributions

Name of distribution X" 2 3 5 6 7 8 9 10

Equilateral 
 triangular distribution

c E 

c p

0.000 
0.000

0.000 0.000 0.000 

0.019 0.029 0.036

0.000 
0.041

0.000 

0.043

0.000 

0.047

0.000 

0.049

0.000 

0.051

Normal distribution
c E 

c p

0.000\ 
0.000

0.001 0.002 .0.002 
0.042 0.058 0.103

0.001 
0.124

0.001 
0.141

0.001 

0.155

0.001 
0.167

0.001 

0.176

Rightangled 

 triangular distribution
c E 
c p

0.000 
0.029

0.000 0.000 0.000 
0.041 0.047 0.051

0.000 
0.054

0.000 
0.056

0.000 
0.057

0.000 
0.058

0.000 
0.059

Exponential 
distribution

c E 
c p

0.001 

0.235

0.001 0.001 0.001 

0.349 0.417 0.463

0.001 
0.495

0.001 
0.519

0.001 

0.538

0.001 

0.553

0.001 

0.565
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Table 3.16 - ~l (k) for the equilateral triangular distribution

(X 10-7)

ilk

0.010 

0.020 

0.033 

0.040 

0.050 

0.067 

0.100 

0.111 

0.125 

0.143 

0.167 

0.200 

0.250 

0.333 

0.500

I 2 3 4 5 is 7 8 9 10

100 

50 

30 

25 

20 

15 

10 

9 

8 

7 

6 

5 

4 

3 

2

16835 

34014 

57471 

69444 

87719 

119048 

185185 

208333 

238095 

277778 

333333 

416667 

555555 

833334

5669 

11574 

19841 

24154 

30864 

42735 

69444 

79364 

92592

111110 

138888 

185184 

277776 

555551

2635 

5439 
9467 

11619 

15036 

21301 

36516 

42602 

51122 

63903 

85203

1567 

3270 

5786 

7164 

9402 

13676 

25072 

30087 

37609 

50145 

75217

1024 

2162 

3891 

4864 

6485 

9728 

19455 

24319 

32426

 732 

1563 

2866 

3620 

4913 

7643 

17196 

22928

34392 
68784

 546 

1181 

2209 

2822 

3907 

6350 

16932

48639

97277

127805 150434

255610

1666667

25399 

50797

 427 

 935 

1785 

2310 

3273 

5610 

19636 

39271

 342 282 

 759 634 

1482 1268 

1945 1691 

2829 2536 

5187 5073 

31123

Table 3. 17 - *2 M for the equilateral triangular distribution

(XIO-7)

1/k X I 1 2 3 4 5 6 7 8 9

0.010 

0.020 
0.033 
0.040 

0.050 

0.067 
0.100 
0.111 

0.125 
0.143 
0.167 

0.200 
0.250 

0.333 
0.500

100 
50 

30 
25 

20 

15 
10

9 

8 
7 
6 

5 
4 

3 
2

16835 

34014 
 57471 

69444 
87719 

119048 
185186 
208333 

238095 
277778 
333333 

416667

5787 
12077 
21367 
26455 
34722 
50505 
92592

111110

2809 
6234 

12172 
15976

1791 1297 
4425 3892 

10745 19462

138888

185184

277776

23237

42602

255610

555551

16715 
37609 

\1

555556

833334

1666667

1075 

4915

 996 
50514

1091

I

1639
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Table 3.18 - ~1 (2,) for the normal distribution

(x 10-6)

ilk

0.010 

0.020 

0.033 

0.040 

0.050 

0.067 

0.100 

0.111 

0.125 

0.143 

0.167 

0.200 

0.250 

0.333 

0.500

'
kx,

100 

50 

30 

25 

20 

15 

10 

9 

8 

7 

6 

5 

4 

3 
2

I 2 3 4 5 6 7 8 9 10

 10101 

 20408 

 34482 

 41667 

 52632 

 71429 

111111 

125000 

142857 

166667 

200000 

250000 

333333 

500000 

1000000

 3708 

 7570 

12978 

15799 

20188 

27952 

45423 

51911 

60563 

72676 

90845 

121127 

181690

1884 

3887 

6767 

8305 

10747 

15225 

26101 

30451 

36541 

45674 

60901 

91352

1138 

2376 

4204 

5204 

6831 

9936 

18216 

21859 

27324 

36431 

54647

 764 

1613 

2903 

3629 

4838 

7257 

14514 

18143 

24190

36285

 549 

1174 

2152 

2718 

3689 

5738 

12911 

17214

25822 

51643

 415 

 898 

1679 

2145 

2970 

4826 

12869

72570

109294

182704

363380

19304 

38607

 326 

 713 

1361 

1762 

2496 

4278 

14973 

29946

 263 

 583 

1138 

1494 
2173 

3984 

23901

217 

488 

976 

1301 

1952

3903

Table 3. 19 - *2 00 for the normal distribution

(XIO-6 )

1/k X I I 2 3 4 5 6 7 a 9

0.010 
0.020 

0.033 
0.040 

0.050 
0.067 

0.100 
0.111 
0.125 

0.143 

0.167 
0.200 
0.250 

0.333 
0.500

100 
50 

30 
25 

20 
15 

10

9 
8 
7 

6 
5 

4 
3 
2

 10101 
 20408 

 34483 
41667 

 52632 
 71429 

iiiiii 
125000 

142857 
166667 

200000 
250000

3785 

7900 

13976 
17304 
22711 

33035 
60563

2008 
4456 

8700 
11419
16609

1301 968 
3215 2903 

.7807 1 ~ 5-1-4 
12144 
27324-

72676
90845

121127

181690
363380

30451

182704

333333
500000

1000000

 807 
'3689

I

 757 
3 8 TO-7

832 2173
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Table 3. 20 . .Yfl for the rightangled triangular distribution

(X 10-7)

1/h

0.010 

0.020 

0.033 

0.040 

0.050 

0.067 

0.100 

0.111 

0.125 

0.143 

0.167 

0. 200 

0.250 

0.333 

0.500

7,

100 

50 

30 

25 

20 

15 

10 

9 

8 

7 

6 

5 

4 

3 

2

1 2 a 4 5 6 7 8 9 10

 22447 

 45351 

 76628 

 92593 

116959 

158730 

246914 

277778 

317460 

370370 

444444 

555555 

740741 

1111111

6138 

12531 

21482 

26152 

33416 

46268 

75186 

85927

100248 

120298 

150372 

200496 

300744 

601488

2836 

5854 

10190 

12506 

16185 

22928 

39305 

45856 

55027 

68784 

91712

1636 

3415 

6042 

7480 

9818 

11281 

26181 

31417 

39272 

52362 
78543

1068 

2255 

4058 

5073 

6764 

10145 

20291 

25363 

33818

50727

 754 

1611 

2594 

3731 

5063 

7876 

17722 

23629

 562 

1217 

2274 

2906 

4024 

6539 

17437

101453

137569

35444 

70887

26156

157086

275137

P222222

 437 

 957 

1827 

2364 

3349 

5741 

20092 

40184

 350 

 776 

1516 

1990 

2894 

5306 

31833

287 

646 

1292 

1723 

2584 

5168

Table 3. 21 - ~2 M for the ri ghtangled triangular distribution

(X10-7 )

1/k I 2 3 4 5 6 7 a 9

0.010 
0.020 

0.033 

0.040 
0.050 

0.067 
0.100 
0.111 

0.125 
0.143 

0.167 
0.200 

0.250 
0.333 

0.500

100 
50 

30 

25 
20 

15 
10

9 

8 
7

22447 
45351 

76628 

92593 
116959 

158730 
246914 
277778 

317460 
370370 

444444 
555556

6268 
13081 

23144 

28654 
37608 
54703

 3025 
 6713 

17203

1871 
4622 

11224

1353 
4059 

20297

1108 
5065

25022

45874

100289 275245

17460 
39285

120347

150434
200578

300867

601734

1026 
52324 

1

1116

I

740741

1111111

2222222

1676
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Table 3. 22 - ~1 M for the exponential distribution

(X

1/h

0.010 

0.020 

0.033 

0.040 

0.050 

0.067 

0.100 

0.111 

0.125 

0.143 

0.167 

0.200 

0.250 

0.333 

0.500

100 

50 

30 

25 

20 

15 

10 

9 

8 

7 

6 

5 

4 

3 

2

I 2 3 4 5 6 7 8 9 10

 10101 

 20408 

 34482 

 41667 

 52632 

 71429 

111111 

125000 

142857 

166667 

200000 

250000 

333333 

500000 

1000000

2916 

5954 

10208 

12427 

15878 

21985 

35726 

40830 

47635 

57162 

71455 

95270

1375 

2838 

4940 

6063 

7846 

11115 

19054 

22230 

26676 

33345 

44459 

66689

142905 133378 

285810

 802 

1673 

2959 

3664 

4809 

6995 

12824 

15389 

19237 

25649 

38473

76946

 526 

1111 

2001 

2501 

3334 

5001 

10003 

12503 

16671

25007

 373 

 798 

1462 

1847 

2507 

3900 

8774 

11699

17548 

35096

50013

 279 

 604 

1130 

1443 

1998 

3248 

8660 

12990 

25980

 217 

 476 

 909 

1177 

1667 

2858 

10002 

20004

 174 

 387 

 756 

 992 

1443 

2646 

15876

143 

323 

645 

860 

1291 

2581

Table 3.23 - ~2 (k) for the exponential distribution

(XIO-6 )

1/k I 2 3 4 5 6 7 a 9

0.010 

0.020 

0.033 
0.040 

0.050 
0.067 

0.100 
0.111 

0.125 
0.143 
0.167 

0.200 
0.250 

0.333 
0.500

100 

50 

30 
25 
20 

15 

10
9 

8 
7 
6 

5 
4 

3 
2

10101 

 20408 

34483 
41667 
52632 

71429 

iiiiii 
125000 

142857 
166667 
200000 

250000

 2977 
 6213 

10993 
13610 
17863 
25983 
47635 
571~-2

1466 916 

3253 2263 

6351 5496 

8336 8550 
12125 19237

 667 
2001 

.10005

548 
2507

22230

133378

71453
95270

142905

285810

 509 
25580

556 1443

333333

500000

1000000

- (32 -



Table 4.1 . OSP   V**, e   I I and c S for the four distributions

2 xo* x X**2 x **3 X **4 X**5 V, el CS

1 -1 .000 1.000 0.03889 0.000 0.000

2 -1 .000 0.570 1.000 0.02624 0.325 0-604

1' 3 -1 .000 ~-0.529 0.529 1-000 0.01038 0.733 0.547

4 -1 .000 ~-0.518 0.423 0.677 1.000 0-00765 0.803 0.651

5 -1 .000 ~-0.668 -0 .405 0.405 0.668 1.000 0.00470 0.879

1 -3 .000 3.000 1.73269 0.000 0.000

2 -3 .000 1.5 15 3.000 1.18517 0.316 0.537

20 3 -3 .000 1.423 1.423 3.000 0.54928 0.683 0.527

4 -3 .000 1.3 94 1.130 1.893 3.000 0.40950 0.764 0.635

5 -3 .000 1.867 1.084 1.084 1.867 3.000 0.25997 OASO

1 0.000 2-000 0.06914 0.000 0.000

2 0.000 1.382 2.000 0.02484 0.641 0.000

30 3 0.000 0.205 1.351 2.000 0.01751 0.747 0.429

4 0.000 0.226 1.198 1.554 2.000 0.00894 0.871 0.319

5 0.000 0.235 1.121 1'.399 1.653 2.000 0.00605 0.912

1 0-000 6.000 4.41936 0.000 0.000

2 0.000 3.309 6.000 1.35384 0.694 0.000

4' 3 0.000 2.674 4.156 6.000 0.65524 0.852 0.000

4 0.000 2.375 3.449 4.598 6.000 0.40864 0.908 0.000

5 0.000 2.201 3.058 3.920 4.870 6.000 0.29656 0.933
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Table 4.2. OSP  V** G and eG for the four distributions

X:l x 40I X~** X**3 X.:l, X;" X:* X**7 Vb* eG

2 1 2 1 -1 .000 -0 .529 0.529 1.000 0.01038 0-733

1 3 1 2 3 2 1 -1.000 -0 .668 -0 .405 OA05 O~668 1.000 0.00470 0.879

4 1 23432 1 -1 .000 -0.739 -0.547 -0.337 0-337 0.547 0.739 1-000 0.00267 0.931

2 1 2 1 -3000 -1 .423 1.423 3.000 6-54928 0-683

2* 3 1 2321 -3.000 -1 .867 -1 .084 1.084 1.867 3.000 0.25997 0.850

4 1 2 3*43 2 1 -3000 -2 .110 -1.493 -0.900 0.900 1.493 2.110 3.000 0.14956 0-914

2 1 2 1 0.000 0.000 1.382 2.000 0.02484 0.641

3' 3 1 23 2 1 0.000 0.000 0.205 1.128 1.490 2.000 0.00999 0.856

4 1 234321 0.000 0-000 0.000 0.232 1.102 1.378 1-642 2.000 0.00609 0-912

2 1 2 1 0000 3.309 6.000 6.000 1.35384 0.694

4 . 3 1 2 3 2'J 0.000 2.674 4.156 6.000 6-000 6-000 0.65524 0.852

4 1 2343 2 1 0.000 2-375 3.449 4.598 6.000 6.000 &000 6.000 0.40864 0-908
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Table 5. 1. The traditional strata

Stratum No. Sale of LPG (ton) Sale of benzine (Kl)

1

2

3

4

5

6

1- 49
50- 99

100-199

200-249

2SO-

1- 49

50- 99

100-199

200-259

260-499
500-

Table 5.2. The sale of LPG and the optimum value B *

Case No.
1 2 3 4 5 6

Class

1 - 4 240 215 230 205 10 7

5 - 9 260 246 240 226 20 19

10- 19 438 426 324 310 114 109

20- 29 237 228 159 146 78 77

30- 49 233 222 165 150 68 66

50- 69 117 114 80 77 37 35

70- 99 114 ill 75 73 39 37

100- 119 54 51 37 31 17 15

120- 139 41 39 30 29 11 10

140- 159 50 48 35 31 15 is

160-179 44 44 29 29 15 13

180- 199 31 30 16 15 is 14
200 ~ 249 101 94 51 48 50 43

250- 491 471 268 247 223 209

mrL4 785 765 785 765 740 750

0 0.00432 0.00429 0.00490 0.00491 0.00329 0.00332

[Remark] Case I 
Case 2 
Case 3 

Case 4 
Case 5 
Case 6

LPG 
LPG 
LPG 

LPG 
LPG 
LPG

(Typef), 1978 
(Type 1), 1980 
(Type If), 1978 
(Type 11), 1980 
(Type 111), 1978 
(Type 111), 1980

Table 5.3. The sale of benzine and the optimum value

,,,;----_Ca- No,ass 7 8

I - 9 132 106

10 - 19 89 85

20- 29 162 159

30- 39 239 234

40- 49 268 263
so- 59 245 239

60 - 79 369 360

80 - 99 256 253

100- 119 221 218

120 - 139 165 163

140- 159 129 126

160- 179 121 117

180 - 199 127 124

200- 219 123 120

220- 239 130 129

240 - 259 134 134

260- 279 109 108

280 - 299 91 91

300- 349 197 196

350-399 175 171

400-499 246 243

500- 643 633

MK 1045 1075

0. 0.00311 0.00309

[Remark] Case 
Case

7 
8

Benzine, 
Benzine,

1978 
1980
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Table 5. 4. OSP{zl!l 

1

sample 

  and

sizesf n*j, the 

I some efficiency

standard errors Sits
2

Z", ni,
5 1 1 2 1 3 1 4 1 5 1 6

M S. 5,
S~ S.Z., a 0 Z,. Z,* I Z,* Z.* I Z,* I Z.* - -

S,
n,' I n n,' I n n,* n.'

z 0' 99.8 227.3 1 404.1 6%.3
n 47S.5 1 476.0 1 477.0 1 480.7 1 541.8 2451

2
z 0 1 221 406 70041 o').4 1 6 .5 1

1 1 1.241 1.995-339
0.392

n 453.8 1 454 .- 1 455 - 1 458.7 1 517.o
z 200.4 1 356.4 1 614.101&8.0

1739 1.331
1.829 0.2733

n 7.4 1337.7 1 338.5 1 341.1 1 394.4 133

4
z 87.7 1 1998 355-3 6 12 *21101i1

1.3781617 1.898 0.270
l

.

1 1 4 1 31.1 1 13.7 314A 31-7 7 357Ai 31

5
Z 4A,
-: 0 19 .5 1 530.7 1 9 18 2.172712 5A68 0.603

n "17.: 138.1 138.3 1138,6 i 139.6
2

. 0 1 129.9 1 295.9 1 516.2 1 906.7
2.136669 S.S160,11

119.8 129.9 j 130.2 1 131.2 j 147.9

7
z (1 1 114.1 1 252.9 1 430.2 676.2 1082.6

0.7774371
- i

IA74 0.473
n 709.9 9 '1 7 J~ .6 1 719.0 1 809.2710.3 j 710

8
Z ? 114.5 253 .8 ! 431.7 1 678 .6 1096.30 111

4271 1 0796 1501 0.476
n a1693 694- 1 694 8 1 6 %.4 1 701.8 1 791.0

Table 5.5. Changed OSPJZI!* 1, 

      and

sample sizes fnl!* 1, 

1 some efficiencies

the standard error S
3

N,,

! 2 3 1 1 6

n S,
S, S,

1
sS~.,I Z, - I z,'* I z,'* Z.- z I z **=

-

n, n. n.- n.** n..
S, S,

I
I I M 250 1 400 7-

.11 1
1 1~7 WM7 U?

n, 480 4M 49a 48a 531

2
z

2339
1.223

fill 1 455 4S5 455 4M 519

I
'i : W0 ' 2' a 1 6. 1

1739
1 A36 0.079 0.115

n f- 14. W Ua 34U 379

0i 310 601
1617

1 A R4 0..77 0.214
n 3S 31 3 S,

0 141~ 3M 55 900

712
2.1. 0.1- 0.597

n,*' '40 141' 140 1 140 152

14~ 3M 550 1 900

669ni*: "0 '30 30 130 149

Zi . 11 1 N 26~ 1 700 lim
0.415

Fn,*' 711) 71C 710 71D 1 72a 4371
0.%3 0.111 ii

12()L- 261) SM 70 11 00

4272
0,871 1 B 4 11.

n, 700 71. 11. (.,7 7 ~~ 771
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Table 6.1 . ;k for the rightangled triangular distribution under NA

0.05 0.10 0.15 0.20

2 0.174 0.246 0.301 0.347
4 0.076 0.108 0.132 0.153
6 0.050 0.070 0.086 0.099
a 0.037 0.052 0.064 0.074

10 0.029 0.041 O.Osl GASS

Table 6.2. ;k for the exponential distribution under PA

0.05 0.10 0.15 0.20

2 0.327 0.462 0.566 0.653
4 0.110 0.156 0.192 0.220

6 0.078 0.110 0.135 0.156

a 0.058 0.082 0.101 0.116
10 0.046 0.066 0.080 0.093
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Table 7. 1. q for the equilateral triangular distribution

Allo-- NumbeT of stmu 9

tion 0
m.thod 2 3 4 5 6 1 a 9 10

-0.2 -0.12 0.095 0.094 0.080 0.077 0.076 0.075 0.074 0.074 0.073

-0.1 -0.19 0.159 0.143 0.138 0.133 0.131 0.129 0.129 0.12') 0.126

-0.1 -0.01 0.007 0006 0.006 0.006 0.006 0.006 O.Om 0.005 0.005

NA 0.1 -0.01 0.007 0.006 0.006 0.006 0.006 ObO6 0.006 0.005 0.005

0.1 0.21 -0.121 -0.102 -0.099 -0 .096 -0 .096 -0 .095 -0 .094 - O-CIN -0.094

0.2 0.08 -O.OS3 -0.045 -0.043 -0.042 -0.041 -0.041 -0.041 -0.040 -0.040

0.2 0.32 -0.162 -0.139 -0.136 -0.132 -0.132 -0.130 -0.130 -0.129 -0.130

-0.2 - OA2 0.095 0.079 O~073 0.067 0.065 0.063 0.061 0.060 0.059

-0.1 - OA9 0.159 0.137 0.127 0.119 0.115 0.111 0.109 0.106 0.105

-0.1 -0.01 0.007 0.006 0.005 0.005 0.005 0.004 0.004 0.004 0.004

PA 0.1 -JD.01 0.007 0.006 0.005 &005 0005 0.004 O~004 0.004 0.004

0.1 0.21 - OA21 -0.092 -0.094 -0.078 -0.076 -0.073 -0.072 -0.071 -0.070

0.2 0.08 -0.053 -0 .041 -0.037 -0.034 -0.033 -0.032 -0.032 -0.031 -0.031

0.2 0.32 -0.162 -0.124 -0.114 -0.106 -0.103 -0.099 -0.098 -0.096 -0.096

Table 7.2. q for the normal distribution

All- Number of stmta 2
tion a a

method 1 3 4 5 6 1 a 9 10

0.1 0.21 -0.191 -0.198 -0.186 -0.197 -0.196 -0.186 -0.186 -0 .186 -0.186

NA 0.2 0.08 -0.077 -0.077 -0.076 -0.076 -0.076 -0.076 -0 .076 -0.076 -0.076

0.2 0.32 -0.275 -0.271 -0.270 -0.270 -0 .270 -0 .270 -0.271 -0.271 -0.271

01 0.21 -0.191, -0.188 -0.187 -0-187 -0-197 -0.186 -0 .186 -0 .196 -0.186

EA 0.2 0.08 -0.077 -0.077 -0.076 -0.076 -0.076 -0 .076 -0 .076 -0 .076 -0.076

0.2 0.32 -0.275 -0.271 -0270 -0.270 -0.270 -0 .27f) -0 .271 -0.271 -0.271

0.1 021 -0191 -0.194 -0.180 -0.178 -0.177 -0.176 -0.175 -0.174 -0 .174

PA 0.2 0.08 -0.077 -0.076 -0.075 -0075 -0.074 -0.074 -0.074 -0.074 -0 .074

0.2 0.32 -0.275 -0.262 - 0~2S6 -0.253 -0.250 -0.249 -0.247 -0.247 -0 .246
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Table 7.3. q for the rightangled tri,-.mgular distribution

Aft- Numbet of strata 9

firm a a
method 2 3 4 5 6 7 8 9 10

-0.2 -0.12 0.106 0-131 0.139 0.142 0.1" 0.145 0.146 0.146 0.147

-0.1 -0.01 0.213 0.202 0.197 0.195 0.193 0.192 0.191 0.190 0.190

0.1 -0.01 0.026 0.043 0.048 0.050 0.052 0.052 0.053 0.053 0.053

NA

0.1 0.21 -0.125 -0.113 -0 .107 -0.105 -0.104 -0.108 - OA02 -0-102 -0.102

01 0.08 -0.101 -0113 -0.115 -0.116 -0 .116 -0.117 -0.117 -0.117 -0.117

0.2 0.32 -0.163 -0.156 -0 .150 -0.147 -0.145 -0.144 -0.144 -0.143 -0.143

-0.2 -0.12 0.064 0.083 0.089 0.091 0.093 0.094 0.095 0.096 0.096

-0.1 -0.01 0.214 0.199 0.192 0.187 0.194 0.191 0.181 0.180 0.179

0.1 -001 0.005 0.019 0.024 0.027 0.028 0.029 0.030 0.031 0.031

PA

OA 0.21 -0.115 -0.097 -0.098 -0094 -0.082 -0 .080 -0.079 -0.078 -0.078

0A 0.08 -0.083 -0.094 -0.083 -0 .083 -0.083 -0.083 -0.1083 -0.083 - OM3

0.2 0.32 -0.145 -0.126 -0.119 -0.114 -0.111 -0.109 -0.108 -0.107 -0.106

Table 7.4. q for the exponential distribution

AH.- Numb~ of stmta

tion
.ethod

a 0
2 3 4 5 6 7 a 9 10

-0.2 -0 .28 0.259 0.253 0.253 0.255 0.257 0.259 0.261 0.262 0.263

-0 .2 -0 .12 0109 0.135 0.154 0164 0.169 0.171 0.172 0-172 0.172

NA -0.1 -0.19 0189 0199 0.188 0.188 0.188 0.188 0.188 0.188 0.188

-0-1 -001 0.013 0.024 0.032 0.036 0.039 0.041 0.042 0.043 0.043

0.1 0.21 -0 .209 -0.209 - 0~209 O~209 -0.209 -0.209 -0.209 -0.209 -0.209

-0.2 -0.28 0258 0.253 0.254 0.256 0.258 0.260 0.261 0.263 0.264

-0.2 -0.12 0.110 0.135 0.155 0.165 0.169 0.171 0.172 0.172 0.172

EA -0.1 -019 0.189 0.189 0.188 0.188 0.188 0.188 0.188 0.188 0.198

-0.1 -0.01 OA14 0.025 0.033 0.037 0.040 0.041 0.042 0.043 0.043

0.1 021 -0.209 -0 .209 -0.209 -0.209 -0.209 -0.209 -0.209 -0.209 -0.209

-0.2 -0.28 0.210 0.172 0.158 0.155 0.155 0.156 0.156 0.156 0.156

-0.2 -0.12 -0.025 -0 .017 -0.010 - Om9 -0.008 -0.007 -0.006 -0.005 -0.00S

?A - OJ -019 0.189 0.187 0.186 0.186 0.185 0.184 0.184 0.183 0.183

-0.1 -0.01 -0.067 -0.079 -0.079 -0.079 -0.078 -0.077 -0.077 -0.076 -0 .076

0.1 OM -0.209 -0208 -0 .208 - 0107 -0.207 -0.201 -0.207 -0.206 -0 .206
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Table .5. Q 1 for the equilateral triangular distribution

AU-- N..b.~ f

_th,d 2 3 4 5 6 7

-0.2 1 -- * :, - .- 0-0- 1 1 0.021 OM2 0.021

-0.1 -0. 9 0.000 0.026 0.039 0.046 OMO 0.054 0051 0057 0.058

-o .1 -0. 1 0.000 O.Ow 0.000 G-wo 0001 0.001 0.061 o.000 0.000
NA i

0.1 -0.01 0000 O.Ow 0.00f) 0.000 0.001 0.001 0.001 0.000 0000

0.1 021 0.000 0.025 0.038 0.041 0057 0.055 0.059 0.060 0061

0.2 0.08 0.000 0.004 0.006 0.007 0.00S 0.008 0.009
i 0.009

0.2 0.32 0.000 0.054 0.085 0.105 0.118 0.127 0.133 0.138
j
1 0.141

-0.1 -012 0000 -0004 -0006 -0009 -0011 -0.011 -0.013 -0.014 -0.015

-0-1 -019 0000 0.006 0007 0.007 0.006 0.006 0.005 J~ 0.004 0.004

-0-1 -0.01 0.000 -0.001 -0 .002 -0 -002 -0.001 - (MR13 -0.003 1 -0.003-0-()03

PA 01 -0.01 0.000 -0.001 -0,002 -0.002 1 -0.002 -0.003 -0.003 -0.003 -0.003

0.1 0.21 O.Ow O.OS4 0.093 0102 ! 0114 0.123 U129 0133 0.131

0.2 0.08 O.Wo 0.014 0.022 0.028 1 0.031 0.033 0.034 0036 0036

0.2 0.32 0.000 0.0" 0155 0192 1 0.216 0.233i 0245 0.254 0.260

I I

Table 7.6. Q 1 for the normal distribution

..,h.d 2 3 4 5 6 1 a 9 ic

0.1 0.21 0.000 1 0.022 0.039 0.050 0.060
I

0.067 0.072 0.076 0.091

NA 0.2 0.08 0 , 000 0003' 0.006 0000 0.009 0410 0.011 0.012 0.012

0.2 0.32 0000 1 0.049 0.093 0.112 0.133 0149 0.161 0.171 0.180

01 Oll 0.000 0.023 0.039 0.051 OAJ60 0.069 0.073 0078 0.082

EA 0.2 0.08 O.Ow 0.003 0.006 0.001 0.009 0.010 0.011 0.012 0.012

M 0.32 0.000 0.050 0.098 0.115 013 0.152 1 0.164 0.174 0.183

0.1 0.21 a." 0.051 0.101 0.145 0 1 7 0.201 0 222 0.241 0256

PA 0.1 0.08 0000 0.016 0.029 0.039 0.047 004 0.059 0.063 0.067

02 0.32 OA00 0.108 0.199 0271 0.331 0.379 QA21 0.455 0.485
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Table 7.7. Q1 for the rightangled. triangular distribution

Alloca. Number of strata 9

two a
method 2 3 4 5 6 7 8 9 10

-0.2 - OAl 0.076 0.106 0.124 0.132 0.138 0.141 0.144 0.145 O.W

-0.1 -0.01 0.201 0191 0189 0.189 0.188 0.188 0.188 0.188 0.188

01 -0.01 0.034 0.091 0.107 0.114 0.120 0.122 0.124 0.125 0.126

NA

0.1 0.21 0.017 0.086 0.123 0.144 OASI 0161 0.173 0.177 0.180

0.2 0.08 0.073 0.126 0.135 0.139 0.142 OA43 0.144 0.145 0.145

0.2 0.32 0073 0.257 0.356 0417 0.455 0.490 OA97 0.510 0-520

-0.2 -012 OA22 0.014 0.032 0.041 0.048 0.052 0.055 0.058 0.060

-0.1 -0.01 0.211 0.170 0.169 0.168 0.167 0.167 0.168 0168 0.168

0.1 -001 0.045 0.084 0099 0.106 0.108 0112 0115 0.116 0.117

PA

01 0.21 0.073 0.166 0.223 0256 O~276 0.291 0.302 0.309 0.314

0.2 0.08 0173 0.217 0.236 0145 0.249 0.253 0256 0.257 0.258

0.2 0.32 0.176 OA22 0562 0.647 0.699 0.737 0.762 0.781 0.795

I

Table 7.8. Q 1 for the exponential

I

distribution

Alloca- Number of Orata Q

tion

method

0

2 3 4 5 6 1 a 9 to

-0.2 -028 0.062 0.066 O.D69 0.072 0.074 0.076 0.019 0.080 0.082

-0.2 -0.12 0023 0.040 0.058 0.074 0.088 0.100 0.112 0.123 0.134

NA -0.1 -0.19 0.025 0033 0.036 0.038 0.339 0.040 &041 0.041 0.041

-0.1 -001 0.003 0.010 0.019 0.027 0.035 0.042 0.049 0.055 0-060

0.1 021 0.028 0041 0.048 0.053 0.056 0059 0.061 &063 0.064

-0.2 -028 0.061 0067 0070 0.072 0.075 0077 0079 0.081 0.083

-0.2 -0.12 0.022 0.038 0.059 0.076 0.090 0.103 0.115 0127 0.138

'

EA -0.1 -0.19 0025 0.033 0036 0.0390.038 1 0.040 0.041 0.041 O.D42

-0.1 -0 .01 0.003 0.010 0.020 0.029 0.037 0.044 0.050 O.osl 0.062

0.1 0.21 0.029 0041 0.049 0.053 0.057 0.060 0.062 0.063 0.065

-0-2 -0.28 -0.076 -0.120 -0.134 0.133 -0.126 -0.117 -0.107 -0.097 -0087

-0.2 -0.12 -0.186 -0 .172 -0118 -0.050 0.027 0.107 0.188 0.267 0.343

PA -0.1 -0.19 -0.035 -0 .050 -0 .051 -0 .060 -0.064 -0.066 -0.067 -0.069 -0.070

-0.1 -0.01 -0.102 -0.093 -0 .053 -0 .008 0.040 0.087 0.131 0.174 0.213

0.1 0.21 0120 0.177 0230 0.262 0.286 0.304 0.319 0.333 0.344
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Table 8.1. Q 2 for the equilateral triangular distribution

AHocation
method

ai I

0.01 0.05 0.07 0.10 0.15 0.20

NA 6

2

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.005 0.010 0.020 0.047 0.087

0.000 -0 .001 -0.002 -0.005 -0 .013 -0.025

0.000 0.006 0.012 0.026 0.060 0""

0.000 -0.002 - O.GO3 -0 .007 -0.01 7 -0.033

0.000 0.007 0.013 0.027 0.064 0.120

0.000 -0 .002 -0 .004 -0.008 -0.019 -0.037
8

0.000 OM7 0.014 0.028 0.066 0.124

10

0.000 -0.002 -0.004 -0 .008 -0.021 -0.040

0.000 0.007 0.014 0.029 0,068 0.127

2

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.005 0.010 0.020 0.047 0.087

4

0.000 -0.001 -0.003 -0.006 -0 .015 -0.029

EA

OMO 0.006 0.013 0.026 0.062 0.116

6

0.000 -0.002 -0.004 -0.008 -0 .020 -0.039

0.000 0.007 0.014 0.028 0.067 0.126

8

0.000 -0.002 -0.004 -0.009 -0 .022 -0.044

0.000 i 0.007 0.014 0.030 0.070 0.131

10

0.000 -0.002 -0 .005 -0.010 -0.024 -0 .047

0.000 0.007 0.014 0.030 0.071 0.134

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.005 0.010 0.020 0.047 0.087

4

0.000 -0.004 -0 .008 -0 .018 -0.047 -0 .100

PA

0.000 0.009 0.018 0.038 0.094 0.187

6

0600 -0 .007 -0 .014 -0.031 -0.079 -0 .166

0.000 0.012 0.024 0.051 0.126 0.253

8

0000 -0 .010 -0 .020 -0.044 -0.115 -0 .248

0.001 0.015 0.030 1 0.064 0.163 0.335

10

0.000 -0 .012 1
- i

- 0025 -0.056 -0147 -0 .317

0.001 0.017 0.035 0.076 0.194 0.403

- 92 -



Table 8.2. Q2 for the normal distribution

Aflocation

method
Q

I ai I

0.01 0.05 0.07 0.10 0.15 0.20

NA

2

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.005 0.010 0.020 0.047 0.087

4

0.000 -0 .001 -0 -002 -0.005 -0.011 -0 .022

0.000 0.006 0.012 0.025 0.058 0.109

6

0.000 -0.001 -0.003 -0.006 -0.016 -0.030

0-000 0.007 0.013 0.027 0.063 0.117

8

O.GOO -0.002 -0.003 -0.007 - O.OtR -0.03S

0.000 0.007 0.013 0.028 0.065 0.122

10

0.000 -0.002 1 -0.004 -0.008 -0.020 -0.039

0.000 0.007 1 0.014 0.029 0.067 0.126

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.005 0.010 0.020 0.047 0.087

4

0.000 -0.001 -0.003 -0.006 -0.015 -0.029

0.000 0.006 0.013 0.027 0.062 0.116

0.000 -0.002 -0 .004 1 -0.008 -0.020 -0.0401

EA 6

0.000 0.007 0.014 0,029 0.067 0.126

8

0.000 0.002 -0.004 -0.009 -0 .022 -0 .044

0.000 0.007 0.014 0.030 0.070 0.131

10

0.000 -0.002 -0 .004 -0 .009 -0.023 -0.045

0.000 0.007 0.014 0.030 0.070 0.131

PA

2

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.005 0.010 0.020 0.047 0.087

4

0.000 -0 .007 -0 .015 -0.034 -0.095 -0.219

0.000 0.012 0.025 0.054 0.142 0.306

6

- O.GO 1 -0.019 -0.041 -0.094 -0.273 -0 .671

0.001 0.024 0.051 0.115 0.320 0.758

8

-0.001 -0.039 -0 .084 -0.200 -0.640 -1.991

0.002 0.044 0.094 0.220 0.687 2.078

10

-0.002 -0.065 -0 .142 -0.357 - 1.390 -7.780

0.002 0.070 0.151 0.377 1.437 7.867

- 93 -



Table 8.3. Q 2 for the rightangled triangular distribution

AHocation

method
2

1 ai I

0.01 0.05 0.07 0.10 0.15 0.20

NA

2

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.006 0.012 0.025 0.059 0.111

4

0.000 -0.001 -0.002 -0.005 -0.013 -0.025

0.000 0.006 0.012 0.025 0.058 0.108

6

0.000 -0.002 -0.003 -0.007 -0.017 -0.033

0.000 0.007 0.013 0.027 0.063 0.117

0.000 -0.002 -0.004 -0.008 -0.019 -0.038

0.000 0.007 0.013 0.028 0.065 0.122

10

Oboo -0-002 -0.004 -0.009 -0.021 -0.040

0-000 0.007 0.014 0.029 0.067 0.125

-EA

2

0.000 0.001 0.002 0.002 0.003 0.005

0.000 0.006 0.012 0.023 0.051 0.092

4

0.000 -0.001 -0.002 -0.005 -0.013 -0.027

0-000 0.007 0.014 0.028 0.064 0.119

F-6 0.000 -0.001 -0.003 -0.007 -0.019 -0 .037

0.000 0.007 0.014 0.029 0.068 0.128

8

0.000 -0.002 -0.004 -0.009 -0.022 - C1.043

0.000 0.007 0.015 0.030 0.071 0.132

10

0.000 -0 .002 - OM4 -0.009 -0.023 -0.046

0.000 0.008 0.015 0.031 0.072 0.135

2

0.004 0.019 0.026 0.037 0.056 0.074

0.004 0.029 0.046 0.081 0.168 0.304

4

0.003 0.008 0.007 0.000 -0.030 -0 .094

0.003 0.031 0.053 0.102 0.233 0.460

6

0.002 0.000 -0.007 -0 .030 -0 .104 -0.251

0.003 0.034 0.062 0.123 0.299 0.625

8

0.002 -0.006 -0 .020 -0.057 -0.176 -0.417

0.003 0.038 0.071 0.145 0.368 0.808

10

Gbol -0 .013 -0.033 -0.084 -0.252 -0.604

0.003 0.042 0.080 0.170 OA44 1.022
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Table 8.4. Q 2 for the exponential distribution

AHocation

method

Ictil
0.01 0.05 0.07 0.10 0.15 0.20

NA

2

0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.004 0.009 0.018 0.041 0.074

4

0.000 -0.001 -0.002 -0.005 -0.012 -0 .023

0.000 0.006 0.012 0.024 0.056 0.103

6

0.000 -0 .002 -0.003 -0.007 -0.016 -0.031

0.000 0.006 0.013 0.026 0.061 0.113

8

0.000 -0.002 -0.003 -0 .007 -0.018 -0.035

0.000 0.007 0.013 0.027 0.063 0.118

10

0.000 -0.002 -0.004 -0.008 -0 .019 -0 .037

0.000 0.007 0-013 0.028 0.065 0.121

EA

2

0.000 0.002 0.003 0.004 0.006 0.008

0.001 0.007 0.013 0.024 0.053 0.096

4

0.000 0.000 -0.001 -0.004 -0 .012 -0 .026

0.000 0.007 0.014 0.029 0.066 0.121

6
0.000 -0.001 -0.003 -0.007 -0.019 -0 .037

0.000 0.008 0.015 0.030 0.070 0.130

8

0.000 -0 .002 -0.004 -0 .008 -0.022 -0.043

0.000 0.008 0.015 0.031 0.072 0.135

10

0.000 -0.002 -0.004 -0.009 -0.024 -0.047

0.000 0.008 0.015 0.031 0.073 0.137

PA

2

0.018 0.092 0.129 0.184 0.276 0.368

0.020 0.156 0.275 0.577 1.952 9.659

4

0.025 -0.004 -0.105

0.047 1.087 5.029

6

0.010
- -

0.110

-0.052

0.276

10

-0.223

0.743

- means that the condition (8.4 ) is not sat i sf ied.
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Table 8.5. Change of sample sizes fnj}

Stratum [Example 8,11 lExample 8.21
No.

ni
ni + mi Mi ni + mi Mi

1 693.8 700 6.2 712 18.2

2 694.2 700 5.8 712 17.8

3 694.8 700 5.2 712 17.2

4 696.4 700 3.6 712 15.6

5 701.8 700 - 1 .8 712 10.2

6 791.0 772 -19 .0 712 -79 .0
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Table 9.1. Q 3 for the equilateral triangular distribution

All- i..

Ih,d

I I-\W
,I \

PLUS MINUS ALTERNATING

0., 0.05 0.01 0.05 0.10 0.01 0.05 0.10

NA

2 0.000 0.005 0.020 0.000 O.GO5 0.020 0.000 0.005 0.020

4 0.001 0.016 0.064 0.001 0.016 0.064 0.001 0.034 0.137

6 0.001 0.034 0.135 0.001 0.034 0.135 0.003 0.085 0.339

a 0.002 0.059 0.233 0.002 0.058 0.233 0.006 0.156 0.623

10 O.OD4 0.089 O-3S7 O.ON 0.099 0.351 0.010 0.249 0.98-9

EA

2 O.Ow 0.005 0.020 0.000 0.005 0.020 O.GOO 0.005 0.020

4 0.001 0.016 0.064 0.001 0.016 0.064 0.001 0.034 0.135

6 0.001 0.034 0.134 0.001 0.034 0.134 0.003 0.084 0.335

a 0.002 0.058 0.231 0.002 0.058 0.231 0.006 OASS 0.617

10 0.004 0.089 0.355 0.004 0.089 0.3S5 0.010 0.246 0.981

PA

1 0.000 0.005 0.020 0.000 0.005 0.020 0.000 0.005 0.020

4 0.001 0.015 0.061 0.001 0.015 0.061 0.001 0.031 0.123

6 0.001 0.031 0.125 0.001 0.031 0.125 0.003 0.075 0.300

a 0.002 0.053 1 0.213 0.002 0.053 0.213 0.006 0.139 0.549

10 0.003 0.091 0.324 O.GO3 0.091 0.324 0009 0219 0.970

Table 9.2. Q 3 for the normal distribution

Affmatio"

-th.d

1,111

R

PLUS MINUS ALTERNATING

001 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

NA

1 0.000 0.004 0.017 O.OGO 0.004 0.017 0.000 0.004 0.017

4 0.001 0.014 0058 0001 0.014 0.058 0.001 0.031 0.123

6 0.001 0029 0117 0.001 0.029 0.117 0003 0.075 0298

a 0002 0.050 0.198 0.002 0.050 0.198 0.005 0.135 0.539

10 0001 0.075 0.301 0.003 0.075 0.301 O.Oua 0.211 0.844

EA

7 0.000 0.004 0.017 0.000 0.004 0.011 0.000 0.004 0.017

4 0.001 0.014 0.056 0.001 0.014 0.056 0.001 0.030 0.119

6 0.001 0.029 0.115 0.001 0.029 0.115 0.003 0.073 0.291

8 0.002 0.049 0.195 0.002 0.049 0.195 0.005 0.132 0.529

la 0.003 0.074 0.297 b.003 0.074 0.297 0.008 0.208 0.833

PA

2 0.000 0.004 0.017 0.000 0.004 0.017 0.000 0.004 i 0.017

4 0001 0013 0.051 0.001 0.013 0.051 0.001 0.025 0.099

6 0.001 0.024 0.097 0.001 0.024 0.097 0.002 0.057 0.229

a 0.002 0.040 0.158 0.002 0.040 0.158 D.GO4 0.102 0.407

10 0.002 0.059 0.236 0.002 O.OS9 0.236 0.006 0.160 0.638
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Table 9.3. Q3 for the rightangled triangular distribution

Ailocation
method

PLUS MINUS L TERNATINGA

0.05 010

---

0.01 0.05 0.10 0.01 0.05 0.10

2 1 (1.000 0005 0.018 O-OGO 0.005 0.019 0.000 0.005 0.018

4 0001 0.019 0.075 0.001 .01,0 -01r,0 (1- .0, 0.0,~ 0,,(,

NA 6 0.002 0.042 0.167 1 0.002

0.003

0.042

.074

0.169 0 -004 0-098 0.391

a 0.003 0.074 0.294 0297 0007 0086 0.741

10 O~005 0.115 1 0.458 0.005 0.116 0.461 0012 0.301 1199

EA

2 0.001) 0005 0.019 0.000 0.005 0.019 0.000 0.005 0.019

4 0.001 0.019 0.075 0.001 0.019 0.076 0.001 0.037 0.149

6 0.002 0.042 0.166 i 0.002 0.042 0.168 0.004

0.007 0.185

0-300

0.098 0.389

= .3 0.074

--- -

0.293 0.003

+

0.074 . 0.295

0.459

0736

la 0.005 1 0.115 0.456 0.005 0.115 i 0.012 1.193

PA

2 0.000 0.005 0.018 0.000 0005 0.019 0.000 0005 0018

4 0001 0.017 0.069 0.001 0.017 0.070

0.152

0.266-7

0.001
t

0.034 0.136

6 0.001 006 1 OA50 0.002 -038 0.003 00 88 0350

a 0.003 0066 0.263 0.003 0.067 0.007 0.166 0-660

10 0.004 0103 OA08 0004 0.103 0.412 0011 0.268 1.066

Table 9.4. Q3 for the exponential distribution

AIIIIIt'-o 

_ hod

NA

EA

PA

9

'qi

2

a

10

2

PLUS MINUS i ALI i RNATING

0.01

0.000

0.001

0.002

0003

0.05

0004

0.020

0.045

0.10 001 0.05

0.016 0.000 

0.001 

U02 

0.003

   0004 

     0.-0-20-

t --.0- -    0 46 

t 
     0.082  i

---- --
     0.128 

     0.004 

     0.020

0.10 

0.018 

DM3

I

0.01 0.05 0.10

U4 

20 

46 

82 

04

0.000 

OMI

0.004

0.036 

0.099

0.016

0.078

0.180 0.187 

0.332 

0.561 

0.017

0.004 

0.008

0.144 

0. 9

0.081 

0.127 

0.004

0.321

0.005

0.000 1 
0001 .01,

 0.503 

 0.015

      0.005 

      0. 000 

      0.001 

      0.002 

      0.003 

      0.005

0.013 

OMO

0.191 

0:3-13 

0.004

          0. 6

-- 1 

4

4
0.076 

0.177   0.046 

  0.081 

  0.127 

  0.003 

  0.011 

  0.024

0.081

0.184 

0.324 

0.511 

0.012 

0.045 

0.095

0.001 0.035 0.140

6 0.002 1 0.045

10
- --T-

2

0.003 i 0,080 ---- - -.- t - --
0. 005 0.125

---t-
0.000

I
0003

4 00  00 0.011

0.311

a

to

I

0.002

0.002

0023

0040

0.061

0.497 

0.011 

004

009

a 158

0.242

   0.000 

   0.000

0.001

0.0102

0.002

0.040

0062

0.163 

0.249

0.004 

0.008 

0.012

4-

0.091

0.188 

0.310

0.000 

0.001 

0.002

0.003

0.004 --4-

0.020 

0050 

0.094

-L

0.006 0.151

0.385 

0.7so 

1.236 

0.011 

0.078 

0.199 

0.373

0.602

- 08



Figure 

  h(ZJX ton 

I 

   100

so

a

5.1 . The histogram of Case 6 [LPG(Type III) I

(Z)=0* e-P*z [0* =0.00332]
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5.2. The histogram of Case 8 [Benzine, 1980 ]

I f,* (Z) = 0* e-P*z [ 0* = 0.003091
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2~O 3~1 400

Z.* zl*
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Figure 6.1. Decomposition 

    0 * f

of robustness 
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