Title	最適層別とその頑健性の計算による考察
Author（s）	田栗，正章
Citation	大阪大学，1983，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／913
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．Library．osaka－u．ac．jp／

WHM CORPURATOKA COMSDERETON

OPTIMUM STRATIFICATION AND ITS ROBUSTNESS WITH COMPUTATIONAL CONSIDERATION

1983

Abstract

Optimum Stratification Points (OSP), Minimum Variances and some kinds of stratification efficiencies were computed (a) for typical four distributions, including normal and exponential, (b) under three sample allocation methods; Neyman, Equal and Proportional, (c) up to 10 strata, (d) in estimating the population mean μ and variance σ^{2}, by using nonlinear programming algorithms. The optimum stratification in estimating μ was found to be attained by Interval Optimum Stratification with 5 or less strata usually, whereas General Optimum Stratification was very effective in estimating σ^{2}, especially for a symmetric distribution.

Based on these results, some sampling procedure was proposed, which was effective in decreasing the standard error of the estimator for μ in some representative practical examples by about $30-60 \%$ compared with the traditional procedure.

The author pointed out the importance of evaluating the robustness of the optimum stratification method with respect to a small change of (i) the distribution, (ii) sample sizes in respective strata and (iii) stratification points, and gave some formulae for the evaluation. Numerical studies with practical examples showed that (1) each of the measures of the three kinds of robustness was so small as less than 10%, (2) the proposed procedure, therefore, might be useful in practical fields, (3) Equal Allocation is recommendable for its simplicity, robustness and similarity to the Neyman allocation, and (4) symmetric distributions were more robust than unsymmetric distributions.

CONTENTS

Page
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. NOTATIONS AND PRELIMINARIES 5
2.1. Quantities of Population 5
2.2. Stratification Method 6
2.3. Quantities Obtained from Sample 6
2.4. Sample Allocation Method 7
2.5. Some Efficiencies 10
2.6. Conditions of Our Study 11
CHAPTER 3. OSP, Min.Var. AND SOME EFFICIENCIES IN ESTIMATING THE POPULATION MEAN 13
3.1. Formulation as a Nonlinear Programming Problem 13
3.2. Algorithm for Obtaining General Optimum Stratification 14
3.3. Computational Scheme 17
3.4. Results 19
3.4.1. Interval Optimum Stratification 19
3.4.2. General Optimum Stratification 19
3.4.3. Comparison of NA and PA 20
3.5. Optimal Relation between Sample Size and Number of Strata 21
CHAPTER 4. OSP, Min.Var. AND SOME EFFICIENCIES IN ESTIMATING THE POPULATION VARIANCE 24
4.1. Computation 24
4.2. Results 25
4.2.1. Asymptotic Interval Optimum Stratification and Asymptotic General Optimum Stratification 25
4.2.2. Comparison of $A I O S$ and $A G O S$ 25
CHAPTER 5. APPLICATIONAL SCHEME OF OUR RESULTS AND SOME
REPRESENTATIVE EXAMPLE 27
5.1. Working Procedure 27
5.2. Representative Example of Application 28
5.2.1. Sampling Procedure 28
5.2.2. Fitting of a Distribution 29
5.2.3. Construction of Strata and Allocation of Sample 31
5.2.4. Comparison of the Proposed and the Traditional Method 32
5.2.5. The Influence on $S(\bar{X})$ by Small Change of z_{i}^{*} and n_{i}^{*} 32
CHAPTER 6. PROBLEM OF ROBUSTNESS IN OPTIMUM STRATIFICATION 34
6.1. Bias of the Estimator \bar{X} 35
6.2. Formulation of the Problem of Robustness 39
6.3. Expression of $g(x)$ by Using $f(x)$ 41
6.4. Some Lemma 42
CHAPTER 7. ROBUSTNESS ON DISTRIBUTIONS 43
7.1. Computational Scheme for R_{11} 43
7.2. Analytical Examination for R_{12} 44
7.3. Results for q 44
7.4. Results for Q_{1} 45
7.5. Some Practical Example 47
CHAPTER 8. ROBUSTNESS ON SAMPLE SIZES IN RESPECTIVE STRATA 48
8.1. Analytical Examination 48
8.2. Results 51
8.3. Some Practical Example 53
CHAPTER 9. RCBUSTNESS ON STRATIFICATION POINTS 55
9.1. Analytical Examination 55
9.2. Results 58
9.3. Some Practical Example 60
CHAPTER 10. CONCLUSION 62
ACKNOWLEDGEMENTS 67
REFERENCES 68
TABLES 73
FIGURES 99

CHAPTER 1

INTRODUCTION

Stratified random sampling is frequently employed in various fields
in order to reduce the variance of some estimator of a population
parameter. Many research workers therefore have studied "Optimum
Stratification Problem". Technical problems in this subject are as
follows:
(a) the choice of sampling design within strata - Kitagawa[26],
(b) the choice of a population parameter to be estimated - Wakimoto[45] - [47] and Taga et al.[34],
(c) the choice of stratification variable - Ericson[14] and Taga[33],
(d) the allocation of sample size - Aoyama[1], [2] and Cochran[5],
(e) The choice of the number of strata - Murthy[29] and Taguri et al. [41],
(f) the location of the boundary points of stratification - Hayashi et al. [18], [19], Dalenius[7], Isii et al.[23], [24], Taga[33], Sethi [32], Taguri et al.[36], [41] and so on,
(g) the estimation of expected gains from stratification - Taguri et al.[41].

The best method of stratified random sampling may consist of determining an optimal choice of a solution to the problems stated above, since they are interdependent.

Earlier studies on the stratified random sampling were, however, mainly restricted to the area of the allocation of sample size and the
determination of Optimum Stratification Points (OSP). Hayashi et al.[18], [19] and Dalenius[7] suggested the significance of the determination problem of OSP and considered the simultaneous nonlinear equations to be satisfied by OSP. Various practical procedures or rules for attaining the approximate OSP were proposed by Dalenius et al.[8] - [10], Durbin[11], Eckman [12] and Kpedekpo[28]. Actually Sethi[32] and Taguri et al.[36], [41] computed OSP for some typical distributions by using iterative approaches or mathematical programming techniques. Comparison of several iterative procedures were reported by Cochran[4] and Hess et al.[20]. On the other hand, Ghosh[15] considered the bi-variate cases and Isii et al.[24] has extended the results of Ghosh. Furthermore, another optimum stratification were proposed by Isii[23] and extended by Taga[33], which were more general stratification than the traditional interval stratification.

As for the allocation of sample size, Neyman suggested the problem and many research workers have discussed it. Cochran[4] discovered the fact that Neyman Allocation was nearly equivalent to Equal Allocation. Although this has been numerically ascertained by Sethi [32] and Taguri et al.[41], it is not yet proved theoretically. Ghosh[16], Aoyama[2] discussed the multivariate case using concomitant variable. On the other hand, Jagannathan [25] and Nordbotten[30] suggested the formulation of the allocation problem as a mathematical programming problem and Bracken et al.[3] actually solved some optimum sample allocation problem. However, it may be said that this approach has, in general, received little attention up to this time, partly because of the statisticians' unfamiliarity with mathematical programming theory.

In almost all studies stated above, the population parameter to be estimated was the population mean. Wakimoto[45]-[47] suggested the problem to estimate the population variance, covariance and correlation coefficient, and Taguri[36] numerically gave OSP in estimating the population variance.

As for the number of strata and the gain from stratification, Murthy[29] and Taguri et al.[41] discussed the optimum number of strata under some appropriate cost function.

These studies were done mainly from the theoretical point of view. On the other hand, in practical sample surveys, stratification has been usually used without any consideration of theoretical results on optimum stratification. So I have studied this problem in order to apply the theoretical results to practical problems.

At the beginning of sample design, the information needed to perform it is assumed to be given. Therefore population distribution F is definitely specified from past surveys or a pilot survey. Although F could be different from the actual distribution, we can only apply our design to such specified F. For this reason, we will assume that F is known. Then it will make the sampling design more efficient to offer Optimum Stratification Points and Minimum Variances of the estimator for some typical distributions numerically, so as to provide approximate optimum stratification points through specifying the population distribution F. In many practical problems, we may be able to guess the type of distribution approximately even if the true distribution itself is not obtainable.
(i) From this standpoint, we firstly make tables giving Optimum Stratification Points (OSP), Minimum Variances (Min.Var.) and some sorts of efficiencies for some distributions (Taguri[36], [41]).
(ii) Secondly we propose a method how to use these tables, and then apply our method to actual data sets; Current Survey on Petroleum Products Demand and Supply which was performed by the Ministry of International Trade and Industry (MITI) in 1981 (Taguri [37]).
(iii) Now in applying the tables to practical problems, the optimum values in stratification will not be always practicable because of various constraints in practical fields. So it may be important to analyse the problem how much the value of an objective function (the variance of an estimator) is influenced by small deviation of a distribution function (Taguri [38]), sample sizes in respective strata (Taguri[40]) and/or stratification points (Taguri[39]). Therefore we, finally, investigate these facets of robustness analytically and numerically.

Through these studies, the theoretical results on optimum stratification could be effectively useful in many practical jobs.

CHAPTER 2

NOTATIONS AND PRELIMINARIES

2.1. Quantities of Population

Throughout the present paper, the distribution function $F(x)$ corresponding to the population Π is assumed to be absolutely continuous and to have finite fourth order moment. Let Π be decomposed into ℓ strata Π i ($i=1,2, \ldots, \ell$), where ℓ is a preassigned positive integer. Corresponding to $\Pi_{i}, F(x)$ can be decomposed into $F_{i}(x)(i=1,2, \ldots, \ell)$ satisfying the following relation;

$$
F(x)=\sum_{i=1}^{\ell} F_{i}(x) \quad \text { for } x \in R^{1}
$$

where $\mathrm{F}_{\mathrm{i}}(\mathrm{x})$ is non-negative and non-decreasing in x for $\mathrm{i}=1,2, \ldots, \ell$. This is called "an ℓ-decomposition of F ". Put $w_{i}=\lim _{x \rightarrow \infty} F_{i}(x)-\lim _{X \rightarrow-\infty} F_{i}(x)$, then w_{i} represents the weight of Π_{i} and $F_{i}(x) / w_{i}$ is a distribution function of Π_{i}. Let us denote the population mean and variance by $\mu, \sigma^{2}(\sigma>0)$ and the mean and variance of the $i-t h$ stratum by $\mu_{i}, \sigma_{i}^{2}\left(\sigma_{i}>0\right)$ respectively;

$$
\begin{aligned}
\mu_{i} & =\int_{-\infty}^{\infty} x d F_{i}(x) / w_{i} \\
\sigma_{i}^{2} & =\int_{-\infty}^{\infty}\left(x-\mu_{i}\right)^{2} d F_{i}(x) / w_{i},
\end{aligned}
$$

The assumption implies that there exist the moments $r_{\nu i}$ up to the 4-th order of the i-th stratum;

$$
\begin{equation*}
r_{\nu i}=\int_{-\infty}^{\infty} x \nu d F_{i}(x)<\infty \quad(\nu=0,1,2,3,4) . \tag{2.1}
\end{equation*}
$$

Since the population distribution is absolutely continuous by the assumption, there exists the probability density function (p.d.f.) $f(x)$.

2.2. Stratification Method

Now for any ℓ-decomposition $\left\{F_{i}\right\}$ there corresponds the following vector-valued function $\phi=\left(\phi_{1}, \phi_{2}, \ldots \ldots, \phi_{\ell}\right)$ defined uniquely except for F-measure O (see Taga[33]);

$$
\phi_{i}(x) \geq 0 \quad(i=1,2, \ldots, \ell) ; \quad \sum_{i=1}^{\ell} \phi_{i}(x)=1 \quad \text { for a.e. } F \text {, }
$$

where $\phi_{i}(x)$ is the Radon-Nikodym derivative $d F_{i} / d F$ of the measure F_{i} with respect to the measure F. Therefore we may take such a vector-valued function $\phi(x)$ for a stratification or "a General Stratification (GS)" and designate a stratification by ϕ instead of $\left\{F_{i}(x)\right\}$ hereafter.

Let U be the set of all open, half open or closed intervals in R^{1}. Let ε be the empty set. If $\phi(x)$ satisfies

$$
\phi_{i}(x)=\left\{\begin{array}{l}
1 \text { on } I_{i} \varepsilon \ell, \\
0 \text { on } R^{1}-I_{i},
\end{array} \quad(i=1,2, \ldots, \ell) ; U_{i=1}^{\ell} I_{i}=R^{1} ; \quad I_{i} \cap I_{j}=\varepsilon \text { if } i \neq j,\right.
$$

then we call it "Interval Stratification (IS)". If the F-measure for the set $\left\{x ; 0<\phi_{i}(x)<1\right\}$ is positive for some $i \varepsilon\{1,2, \ldots, l\}$, then we call it "Randomized Stratification (RS)".

2.3. Quantities Obtained from Sample

Let ($X_{i 1}, X_{i 2}, \ldots \ldots, X_{i n_{i}}$) be a random sample with size n_{i} drawn from the i-th stratum Π_{i} for $i=1,2, \ldots, \ell$. Total sample size is fixed and

$$
n=\sum_{i=1}^{\ell} n_{i} .
$$

Throughout this paper, we consider the following estimator of the population mean μ based on the stratified random sample:

$$
\begin{equation*}
\bar{x}=\sum_{i=1}^{\ell} w_{i} \bar{x}_{i} ; \quad \bar{x}_{i}=\sum_{j=1}^{n_{i}} x_{i j} / n_{i} \quad(i=1,2, \ldots, \ell) . \tag{2.2}
\end{equation*}
$$

The estimator \bar{X} is unbiased provided that the weights w_{i} are known(see Section 6.1). We also consider the following estimator of the population variance σ^{2}.

$$
\begin{gathered}
U_{s t}=\sum_{i=1}^{\ell} w_{i} U_{i}+\sum_{i=1}^{\ell} w_{i}\left(\bar{X}_{i}-\bar{X}\right)^{2}-\sum_{i=1}^{\ell} w_{i}\left(1-w_{i}\right) U_{i} / n_{i}, \\
U_{i}=\sum_{j=1}^{n_{i}}\left(X_{i j}-\bar{X}_{i}\right)^{2} /\left(n_{i}-1\right) \quad(i=1,2, \ldots, \ell)
\end{gathered}
$$

If a stratification method ϕ and an allocation method $\left\{n_{i}\right\}$ of sample sizes in respective strata are determined, then the variance $V(\bar{X} \mid \phi)$ of the estimator $\overline{\mathrm{X}}$ is given by

$$
\begin{align*}
V(\bar{X} \mid \phi) & =\sum_{i=1}^{\ell} w_{i}^{2} \sigma_{i}^{2} / n_{i} \\
& =\sum_{i=1}^{\ell}\left[\int_{-\infty}^{\infty} \phi_{i}(x) d F(x) \int_{-\infty}^{\infty} x^{2} \phi_{i}(x) d F(x)-\left\{\int_{-\infty}^{\infty} x \phi_{i}(x) d F(x)\right\}^{2}\right] / n_{i} . \tag{2.3}
\end{align*}
$$

2.4. Sample Allocation Method

Let us consider the following three sample allocation methods:

$$
\begin{array}{ll}
\text { Neyman Allocation } & (N A): n_{i}=n w_{i} \sigma_{i} / \sum_{j=1}^{\ell} w_{j} \sigma_{j}, \\
\text { Equal Allocation } & (E A): n_{i}=n / \ell, \\
\text { Proportional Allocation (PA) }: n_{i}=n w_{i},
\end{array} \quad(i=1,2, \ldots, \ell) .
$$

Then the variance of the estimator \bar{X} is given by

$$
\begin{array}{ll}
V_{N}(X \mid \phi)=\left(\sum_{i=1}^{\ell} w_{i} \sigma_{i}\right)^{2 / n} & \text { for } N A, \\
V_{E}(X \mid \phi)=\ell \sum_{i=1}^{\ell} w_{i}^{2} \sigma_{i}^{2} / n & \text { for } E A, \\
V_{P}(X \mid \phi)=\sum_{i=1}^{\ell} w_{i} \sigma_{i}^{2} / n & \text { for PA. }
\end{array}
$$

If we decide a number of strata ℓ and a total sample size n, the problem of optimum stratification for the population parameter μ is reduced to determining the stratification method ϕ under a given allocation method so as to minimize the variance of \bar{X}. Therefore we may adopt the following functions $\Psi(\phi)$ as our objective functions to be minimized:

$$
\begin{array}{ll}
\Psi_{N}(\phi)=n V_{N}(\bar{X} \mid \phi)=\left(\sum_{i=1}^{\ell} w_{i} \sigma_{i}\right)^{2} & \text { for } N A, \\
\Psi_{E}(\phi)=n V_{E}(\bar{X} \mid \phi)=\ell \sum_{i=1}^{\ell} w_{i}^{2} \sigma_{i}^{2} & \text { for } E A, \\
\Psi_{P}(\phi)=n V_{P}(\bar{X} \mid \phi)=\sum_{i=1}^{\ell} w_{i} \sigma_{i}^{2} & \text { for PA. } \tag{2.6}
\end{array}
$$

In estimating the population variance σ^{2}, we consider only the case of PA for the simplicity of computation. Then the estimator $U_{s t}$ is unbiased and its variance is given by

$$
\begin{aligned}
V\left(U_{s t} \mid \delta\right) & =\frac{1}{n}\left[\sum _ { i = 1 } ^ { \ell } w _ { i } \left[\int_{-\infty}^{\infty}\left(x-\mu_{i}\right)^{4} \phi_{i}(x) d F(x)-\sigma_{i}^{4}+4\left(\mu_{i}-\mu\right) \int_{-\infty}^{\infty}\left(x-\mu_{i}\right)^{3} \phi_{i}(x) d F(x)\right.\right. \\
& \left.\left.+4\left(\mu_{i} \mu\right)^{2} \sigma_{i}^{2}\right\}+\frac{2}{n}\left(\sum_{i=1}^{\ell} w_{i} \sigma_{i}^{2}\right)^{2}+\frac{2}{n^{2}} \sum_{i=1}^{\ell} w_{i}^{2} \sigma_{i}^{4} /\left(n_{i}-1\right)\right] .
\end{aligned}
$$

It is proved by Wakimoto [45] that

$$
\begin{align*}
& V(U)-V\left(U_{s t} \mid \phi\right)=\frac{1}{n} \sum_{i<j}^{\ell} w_{i} w_{j}\left\{\sigma_{i}^{2}-\sigma_{j}^{2}+\left(\mu_{i}-\mu\right)^{2}-\left(\mu_{j}-\mu\right)^{2}\right\}^{2} \\
& +\frac{2}{n^{2}}\left\{\sigma^{4}-\left(\sum_{i=1}^{\ell} w_{i} \sigma_{i}^{2}\right)^{2}\right\}+\frac{1}{n^{3}}\left\{\sum_{i=1}^{\ell} w_{i}\left(\sigma^{4}-\sigma_{i}^{4}\right)+\sum_{i=1}^{\ell}\left(\frac{\sigma^{4}}{n-1}-\frac{\sigma_{i}^{4}}{n_{i}}\right)\right\}, \tag{2.7}
\end{align*}
$$

where U is an unbiased estimator of σ^{2} based on a simple random sample $\left(X_{1}, X_{2}, \ldots . ., x_{n}\right)$ and is given by $U=\sum_{i=1}^{n}\left(X_{i}-\overline{\bar{X}}\right)^{2} /(n-1) \quad\left(\overline{\bar{X}}=\sum_{i=1}^{n} X_{i} / n\right)$. Provided that a number of strata ℓ and total sample size n are given, minimizing $V\left(U_{s t} \mid 6\right)$ is equivalent to maximizing (2.7) because of $V(U)$ being constant. If n is so large that the last two terms of the right-hand of (2.7) may be neglected, the Asymptotic General Optimum Stratification (AGOS) $\phi^{* *}$ is given by one which attains the supremum of $\sum_{i<1} j_{j} w_{i} w_{j}\left\{\sigma_{i}^{2}-\sigma_{j}^{2}+(\mu\right.$ $\left.\left.i_{i}-\mu\right)^{2}-\left(\mu_{j}-\mu\right)^{2}\right\}^{2}$. Therefore we will take up the following as the objective function to be maximized;

$$
\begin{equation*}
\Psi_{S}(\phi)=\sum_{i<j}^{\ell} w_{i} w_{j}\left\{\sigma_{i}^{2}-\sigma_{j}^{2}+\left(\mu_{i}-\mu\right)^{2}-\left(\mu_{j}-\mu\right)^{2}\right\}^{2} \tag{2.8}
\end{equation*}
$$

Let us briefly summarize main results obtained up to now as to the optimum stratification method $\phi^{*}=\left(\phi_{1}^{*}, \phi_{2}^{*}, \ldots, \phi_{l}^{*}\right)$ in estimating μ. We denote OSP by x_{i}^{*} for $i=0,1, \ldots, M\left(x_{i-1}^{*}<x_{i}^{*}\right.$ for $\left.i=1,2, \ldots, M\right)$, where x_{0}^{*} and
x_{M}^{*} are the both end points of the domain of a distribution including $\pm \infty$. w_{i}^{*}, μ_{i}^{*} and $\sigma{\underset{i}{2}}_{2}$ are the weight, mean and variance of the $i-t h$ stratum corresponding to ϕ^{*}.
(a) In the case of NA (Isii[23])

There exists some ϕ^{*} attaining inf $\Psi_{N}(\phi)$ such as

$$
\phi_{i}^{*}(x)=\left\{\begin{array}{ll}
1 & \text { if } g_{i}(x)<g_{j}(x) \text { for all } j \neq i \tag{2.9}\\
0 & \text { if } g_{i}(x)>g_{j}(x) \text { for some } j \neq i
\end{array} \quad(i=1,2, \ldots, \ell)\right.
$$

where

$$
\begin{equation*}
g_{i}(x)=\frac{1}{\sigma_{i}^{*}}\left(x-\mu_{i}^{*}\right)^{2}+\sigma_{i}^{*} \quad\left(\sigma_{i}^{*} 0\right), \quad(i=1,2, \ldots, \ell) \tag{2.10}
\end{equation*}
$$

Therefore in general, ϕ^{*} is GS. If we limit a stratification method to IS, then x_{i}^{*} should satisfy the following relations (Dalenius[7]);

$$
\begin{equation*}
\frac{1}{\sigma_{i}^{*}}\left(x_{i}^{*}-\mu_{i}^{*}\right)^{2}+\sigma_{i}^{*}=\frac{1}{\sigma_{i+1}^{*}}\left(x_{i}^{*}-\mu_{i+1}^{*}\right)^{2}+\sigma_{i+1}^{*} \quad(i=1,2, \ldots, \ell-1) \tag{2.11}
\end{equation*}
$$

(b) In the case of EA

If we limit a stratification method to IS, it is easily shown by differentiating (2.5) by x_{i} that x_{i}^{*} should satisfy

$$
\begin{equation*}
w_{i}^{*}\left\{\left(x_{i}^{*}-\mu_{i}^{*}\right)^{2}+\sigma_{i}^{*}\right\}_{i}^{2}=w_{i+1}^{*}\left\{\left(x_{i}^{*}-\mu_{i+1}^{*}\right)^{2}+o_{i+1}^{*}\right\} \quad(i=1,2, \ldots, \ell-1) . \tag{2.12}
\end{equation*}
$$

(c) In the case of PA (Taga[33])

There exists some ϕ^{*} attaining inf $\Psi_{P}(\phi)$ such as

$$
\phi_{i}^{*}(x)= \begin{cases}1 & \text { if } x_{i-1}^{*} \leqslant \mu_{i}^{*}<x_{i}^{*}, \quad(i=1,2, \ldots, l) . \\ 0 & \text { otherwise },\end{cases}
$$

That is, ϕ^{*} is nothing but IS, and x_{i}^{*} satisfies the following (Hayashi et al.[18], Dalenius[7]);

$$
\begin{equation*}
x_{i}^{*}=\frac{1}{2}\left(\mu_{i}^{*}+\mu_{i+1}^{*}\right) \quad(i=1,2, \ldots, \ell-1) \tag{2.13}
\end{equation*}
$$

In the case of estimating σ^{2}, there exists some AGOS $\phi^{* *}=\left(\phi_{1}^{*}, \ldots \ldots\right.$, $\left.\phi_{l}^{* *}\right)$ attaining $\sup \Psi_{S}(\phi)$ such as

$$
\phi_{i}^{* *}(x)=\left\{\begin{array}{ll}
1 & \text { if } h_{i}(x)>h_{j}(x) \text { for all } j \neq i, \\
0 & \text { if } h_{i}(x)<h_{j}(x) \text { for some } j \neq i,
\end{array} \quad(i=1,2, \ldots \ldots, \ell),\right.
$$

where

$$
\begin{align*}
h_{i}(x) & =a_{i}\left\{(x-\mu)^{2}-a_{i} / 2\right\}, \tag{2.14}\\
a_{i} & =\int_{-\infty}^{\infty}(t-\mu)^{2} \phi_{i}^{* *}(t) d F(t) / \int_{-\infty}^{\infty} \phi_{i}^{* *}(t) d F(t) .
\end{align*}
$$

[Remark 2.1] In the optimum stratification problem, we need not consider Randomized Stratification (RS) as stated above. So hereafter, RS is excluded from our consideration.

2.5. Some Efficiencies

Let us define some efficiencies in estimating μ :

$$
\begin{array}{ll}
e_{N}(l)=\left\{V_{N}^{*}(1)-V_{N}^{*}(l)\right\} / V_{N}^{*}(1) & \text { for } N A, \\
e_{E}(l)=\left\{V_{E}^{*}(1)-V_{E}^{*}(l)\right\} / V_{E}^{*}(1) & \text { for } E A, \\
e_{P}(l)=\left\{V_{P}^{*}(1)-V_{P}^{*}(l)\right\} / V_{P}^{*}(1) & \text { for } P A,
\end{array}
$$

where $V_{*}^{*}(\ell)$ is the variance of \bar{X} under the optimum stratification ϕ^{*} with l strata. e.(l) therefore shows the relative efficiency of stratified random sampling with ℓ strata to simple random sampling under each sample allocation method. Moreover we will define the following efficiency which represents the degree of relative improvement of NA to EA or PA:

$$
\begin{array}{ll}
c_{E}(\ell)=\left\{V_{E}^{*}(\ell)-V_{N}^{*}(\ell)\right\} / V_{N}^{*}(\ell) & \text { for } E A \\
c_{P}(\ell)=\left\{V_{P}^{*}(\ell)-V_{N}^{*}(\ell)\right\} / V_{N}^{*}(\ell) & \text { for PA. }
\end{array}
$$

In the case of estimating σ^{2}, the following two kinds of efficiencies are defined:

$$
\begin{aligned}
& e_{I}(\ell)=\left\{V_{I}^{* *}(1)-V_{I}^{* *}(\ell)\right\} / V_{I}^{* *}(1), \\
& e_{G}(\ell)=\left\{V_{G}^{* *}(1)-V_{G}^{* *}(\ell)\right\} / V_{G}^{* *}(1), \\
& c_{S}(\ell)=\left\{V_{I}^{* *}(\ell)-V_{G}^{* *}(\ell)\right\} / V_{I}^{* *}(\ell),
\end{aligned}
$$

where $V_{I}^{* *}(\ell)$ and $V_{G}^{* *}(\ell)$ are the variances of $U_{s t}$ under Asymptotic Interval Optimum Stratification (AIOS) and AGOS in the case of ℓ strata, respectively. e. (l) therefore shows the relative efficiency of stratified random sampling with ℓ strata to simple random sampling under each stratification method, and $c_{S}(l)$ represents the degree of relative improvement of AGOS to AIOS.

2.6. Conditions of Our Study

Our study was performed under the following conditions:
(A) Types of distributions
1° Equilateral triangular distribution $: f(x)=1-|x|, \quad-1 \leq x \leq 1$. 2° Normal distribution $\quad: f(x)=e^{-x^{2} / 2} / \sqrt{2 \pi}, \quad-\infty<x<\infty$. 3° Rightangled triangular distribution : $f(x)=1-x / 2, \quad 0 \leq x \leq 2$. 4° Exponential distribution $\quad: f(x)=e^{-x}, \quad 0 \leq x<\infty$. The reason why we have selected these four types of distributions are as follows: First we adopt the distribution 1° or 2° as an example of a symmetric one, while 3° or 4° as an unsymmetric one. Furthermore the distribution 1° or 3° is considered as an example of a straight line type distribution, and 2° or 4° as a curved line type one. In some papers of
the author([36], [41]), truncated versions of $2^{\circ}, 4^{\circ}$ and a (truncated) gamma distribution were also taken into consideration in addition to these four distributions.
(B) Population parameters to be estimated
1° The population mean μ
2° The population variance σ^{2}
In Chapter 6-9, we consider only μ in discussing the problem of robustness.
(C) Stratification methods
1° Interval Optimum Stratification (IOS)
2° General Optimum Stratification (GOS)
In estimating σ^{2}, Asymptotic IOS or GOS is considered.
(D) Sample allocation methods
1° Neyman Allocation (NA)
2° Equal Allocation (EA)
3° Proportional Allocation (PA)
In estimating σ^{2}, only PA is taken into consideration.
(E) Number of strata ℓ $\ell=2,3, \ldots \ldots, 10$.

Under GOS, we consider only the case of $\ell=2,3,4$.

CHAPTER 3

OSP, Min.Var. AND SOME EFFICIENCIES
IN ESTIMATING THE POPULATION MEAN

3.1. Formulation as a Nonlinear Programming Problem

As stated in Section 2.4 , the optimum stratification problem can be formulated as a problem to minimize the appropriate objective function under some constraints:

$$
\begin{equation*}
\text { Minimize } \Psi(x) \quad \text { subject to } x_{0} \leq x_{1} \leq \cdots \leq x_{M} \tag{3.1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots \ldots, x_{M-1}\right)$ and $\Psi(x)$ is given by (2.4), (2.5) or (2.6) according to each sample allocation method.

This formulation and its direct solution have received little attention as reviewed in Chapter 1. However, we are convinced that this formulation as a mathematical programming problem is superior to alternative approaches (for example, [8] - [12]), since it is simpler and easier in describing the whole environments of the problem.

Then we applied a general iterative nonlinear programming algorithm and successfully solved the optimum stratification problem for some typical distributions as shown later. The nonlinear programming algorithms could treat quite easily the problem with many strata, while approximate procedures are, in general, very cumbersome. It should be noted that superiority of the use of nonlinear programming techniques is clear as the number of strata grows larger.

3.2. Algorithm for Obtaining General Optimum Stratification

Let us examine feasible decompositions in General Stratification. The number of intersecting points of quadratic functions (2.10) is at most $\ell_{2} \mathrm{C}_{2}=\ell(\ell-1)$, but from (2.9) the number of points being significant to GOS is easily shown by mathematical induction to be at most $2(\ell-1)$. Therefore R^{1} must be decomposed into at most $2 \ell-1$ intervals. Since GOS having just \& intervals is nothing but IOS, the number M of intervals corresponding to GOS except for $I O S$ is given by

$$
\begin{equation*}
\ell+1 \leqq M \leqq 2 \ell-1 . \tag{3.2}
\end{equation*}
$$

Hereupon let us denote the coefficient of the term x^{2} in $g_{i}(x)$ by c_{i} $(i=1,2, \ldots, \ell)$ and $M-1$ stratification points by $x_{1}, x_{2}, \ldots, x_{M-1}\left(x_{1}<x_{2}\right.$ $<\ldots<x_{M-1}$). Moreover, without loss of generality we may assume that $c_{1} \geq c_{2}$ $\geqq \cdots \geqq c_{\ell}$. If $c_{1}>c_{2}$ is satisfied, then

$$
\left\{\begin{array}{l}
\phi_{1}(x)=1, \tag{3.3}\\
\phi_{i}(x)=0 \quad \text { for }-\infty<x \leqq x_{1} \text { or } x_{M-1}<x<\infty,
\end{array}\right.
$$

hold. Hence it is obvious from (3.2) and (3.3) that the interval (x_{1}, x M-1) should be decomposed into sub-intervals the number of which is from l-1 to $2 \ell-3$. The case of $c_{1}=c_{2}$ is excluded from our examination formally but is taken into consideration in our computational process.

Now let us assign number α to the interval $\left(x_{i}, x_{i+1}\right)$ when $\phi_{\alpha}(x)=1, x_{i}<x_{\leq} x_{i+1}(i=1,2, \ldots, M-2)$ for $\alpha=1,2, \ldots ., \ell$. Then our problem of examining feasible decompositions reduces to finding all possible sequences of stratum numbers $1,2, \ldots ., \ell$ assigned to M intervals corresponding to feasible GOS's. It is easily shown from our assumptions that any sequence corresponding to feasible GOS must satisfy the following five conditions:
(i) Each number $1,2, \ldots, \ell$ should be assigned to at least one interval.
(ii) The same number should not be assigned to adjacent intervals.
(iii) The number ℓ should appear only once: This is derived from the assumption that c_{ℓ} is minimum among $c_{1}, c_{2}, \ldots, c_{\ell}$.
(iv) For any positive integer β, the number β must be adjacent each other in a new sequence obtained by eliminating numbers greater than or equal to $\beta+1(\beta=1,2, \ldots, \ell-1)$ from the original one: This is derived from the assumption of $c_{1} \geqq c_{2} \geqq \cdots \geqq c_{\ell}$. For example, consider the sequence 1213421 in the case of $\ell=4, M=7$. If we eliminate the numbers greater than or equal to 3 , then the obtained sequence is 12121. In this one the number 2 is not adjacent, therefore the original sequence is not feasible. On the contrary the sequence 1213431 is feasible, for example.
(v) Remove the sequence that is equivalent to another by interchanging stratum numbers.

Hereupon let us examine the case that the decomposed region is finite. For example, consider the sequence 1213141 in the case of $\ell=4$, $M=7$ for the distribution 1°. In this case the decomposed region being finite, the feasible sequence may be 121314, 213141 or 21314 . However from Table 3.13, the leftmost and rightmost intervals of OSP corresponding to the sequence 1213141 are both degenerate. Therefore these cases are taken into consideration in our computational process. For the next example, consider another sequence 123241. In this case the feasible sequence may be 12324,23241 or 3241 . As the interval corresponding to the leftmost number 1 is degenerate from Table 3.13 , the sequence 23241
has become the object of our computation. As for the sequence 12324, by interchanging the stratum number, it can be equivalent to 21314 which is already considered in the first example. The sequence 3241 may be excepted from our examination because this case is nothing but IS. In this manner we can show that all the case of the decomposed domain being finite is taken into consideration in our computational process.

Now let us give some examples in which x_{0} and $x_{M}(M=3,4, \ldots, 7)$ denote both end points of the domain for each distribution.

[Example 3.1]

When $\ell=2$, (3.2) implies $M=3$. Therefore the sequence corresponding to $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right),\left(x_{2}, x_{M}\right)$ is 121.
[Example 3.2]
When $\ell=3$, (3.2) implies $M=4$ or 5. Although the sequences satisfying the constraints (i) - (iv) are 1231 and 1321 in case of $M=4$, from (v) it is only 1231. On the other hand, in case of $M=5$, though the sequences satisfying the constraints (i) - (iv) are 12131, 12321 and 13121, from (v) the sequence 13121 is rejected. Therefore it is sufficient to consider only two sequences; 12131 and 12321.

[Example 3.3]

When $\ell=4$, (3.2) implies $M=5$, 6 or 7. Examining feasible decompositions by the same procedure as in [Example 3.2], the resulting sequences are as follows;

```
    12341 for M=5,
    121341, 123141, 123241, 123421, 123431 for M=6
    1213141, 1213431, 1232141, 1232421, 1234321 for M=7.
```

If we examine all of these decompositions, the GOS should exist among them. In our computation, this will be performed; to save space only a part of them will be represented though.

3.3. Computational Scheme

In order to solve the problem (3.1), we used the nonlinear programming algorithm proposed by Sakakibara[31] and Hooke-Jeeves[22]. Initial values in optimization process were determined by the modified Monte Carlo method given by Taguri[35]. This strategy gave quite satisfactory solutions within reasonable computing time for each distribution. In order to improve hopefully the solutions in the case of IS, we optimized the same objective function $\Psi(x)$ under the equality constraints (2.11), (2.12) and (2.13) in addition to the inequality constraints as x $0 \leq \mathrm{x}_{1} \leqq \cdots \leq \mathrm{x}_{\mathrm{M}}$ by using the same solution strategy. This did give the slight improvement of Min.Var. and the difference between the two sides in each of (2.11), (2.12) or (2.13) was reduced by the factor about 10^{-2}.

Our computation was mostly performed on HITAC-8700/8800 of Tokyo University Computer Center and on M-170 of Chiba University Computer Center.

Since the values w_{i} and σ_{i}^{2} for the standard normal distribution $N(0,1)$ can not be calculated analytically, the following scheme given in Erdelyi[13] was employed in the optimization process:

$$
\begin{align*}
\int_{0}^{x} e^{-t^{2} / 2} d t & =\frac{1}{\sqrt{2}} \int_{0}^{x^{2} / 2} y^{1 / 2-1} e^{-y} d y \\
& \doteqdot \frac{1}{\sqrt{2}} \sum_{j=0}^{25}(-1)^{j}\left(x^{2} / 2\right)^{1 / 2+j} /\{j!(1 / 2+j)\} \text { for } x \geq 0 \tag{3.4}
\end{align*}
$$

The error of approximation in (3.4) is less than 2×10^{-11}, as is easily seen from the fact that $\int_{0}^{x_{t} \alpha^{-1}} e^{-t} d t=\sum_{j=0}^{\infty}(-1)^{j} x^{\alpha+j} /\{j!(\alpha+j)\}$ is a converging alternating series. Therefore after some calculation, it is seen that the truncation error in our objective function induced by this approximation is less than 2×10^{-6} for all cases. The value μ_{i} for $N(0,1)$ and the values w_{i}, μ_{i} and σ_{i}^{2} for any other distribution can be derived analytically.

As for the round-off error, we use double precision arithmetics during the optimization process and the error of each term in our objective function is less than 10^{-18}. Consequently our computational schemes are expected to give sufficient precision.
[Remark 3.1] In the computation of w_{i} for $N(0,1)$, we also employed the polynomial approximation originally proposed by Hastings[17] and improved by Toda et al.[42]-[44]. To evaluate σ_{i}^{2} for $N(0,1)$, we examined several approaches such as the use of numerical integration, series expansion of the incomplete gamma function or application of the spline function. As the numerical integration is expected to require heavy computational works, it is not tested in practice. In this paper, we present the results by using series expansion for the incomplete gamma function, since it gives quite satisfactory values for each computation. Application of the spline function is also recommendable as it gives enough accuracy for practical use and requires less computation time than the series expansion.

3.4. Results

3.4.1. Interval Optimum Stratification

OSP $x_{i}^{*}(i=0,1, \ldots, 10)$, the value of the objective function Ψ_{*}^{*} and the efficiency e.(ℓ) for $\ell=1,2, \ldots, 10$ are listed in Table 3.1 - Table 3.12 for the four distributions(see [Remark 3.2]). The first column of the table shows the number indicating individual distribution stated in Section 2.6, (A). Ψ^{*} means the value of $n V\left(\bar{X} \mid \phi^{*}\right)$ for $\ell=1,2, \ldots, 10$.

These tables show that the relative efficiency e.(l) does not much depend on the type of distributions. The relative efficiency for the straight line type distribution 3° is greater than for the curved line type one 4°, and the same conclusion is also true in the comparison of 1° and 2°. This tendency is remarkable in the case of PA. Besides, the relative efficiency for the unsymmetric distribution 3° is greater than for the symmetric one 1°, and the same tendency is observed between 2° and 4°. This is remarkable in the case of NA or EA. Generally speaking, the degree of the improvement of the relative efficiency owing to stratification is considerably large, and it is most remarkable in the case of $\ell=2$.
[Remark 3.2.] We have also computed OSP, $\Psi *$ and $e .(\ell)$ for some other distributions; truncated normal, truncated exponential and (truncated) gamma distribution. However to save space, they are not shown in this paper(see Section 2.6, (A)).

3.4.2. General Optimum Stratification

The results of our computation are tabulated in Table 3.13 and Table 3.14. The sequences in the second column of these tables express those
considered in Section 3.2. In each sequence in Table 3.13, some decomposed intervals are degenerate. Changing the stratum number, this is equal to the case of IOS, besides the value of Min. Var. under GOS is equal to the one under IOS. For example, consider the sequence 12321 on the case of $\ell=3, M=5$. As shown in Table 3.13, the leftmost two intervals are both degenerate. Therefore the original sequence 12321 is reduced to the sequence 321 , which is nothing but the case of IS. Moreover the value 0.02556 of Ψ_{G}^{*} in Table 3.13 is equal to the one of Ψ_{N}^{*} in Table 3.1. Consequently for the distribution 1°, GOS should coincide with IOS.

For all the other distributions and numbers of strata treated in this paper, the same discussion can be true as partly shown in Table 3.14. Therefore it is scarcely needed in practice to consider GOS and we may deal with only IOS. The theoretical investigation of this issue is an open problem.

3.4.3. Comparison of NA and PA

Let us study differences between the sample allocation methods. From Section 3.4 .2 , since GOS can be regarded to approximately coincide with IOS in the case of NA, we will consider only IOS hereafter. The values $c_{E}(\ell)$ and $c_{P}(\ell)$ are shown in Table 3.15. From this table, it may be concluded that NA and EA give quite similar results for all the distributions considered here, since the values $c_{E}(\ell)$ are very small. So let us investigate the difference between NA and PA in the following.

Firstly, it is shown in Table 3.15 that as expected theoretically $V_{\mathrm{P}} \geqq \mathrm{V}_{\mathrm{N}}^{*}$ for all ℓ and for all distributions and the equality sign holds if and only if $\ell=2$ for the symmetric distribution.

Next from Table 3.15, we can see that the degree of relative improvement $c_{P}(\ell)$ for the curved line type distribution 2° or 4° is a little greater than the one for the straight line type one 1° or 3°. And $c_{P}(\ell)$ for the unsymmetric distribution 3° or 4° is considerably larger than the one for the symmetric distribution 1° or 2°. Therefore we may expect that the effect depending upon the difference of allocation methods is large when the form of a distribution is curved and unsymmetric.

The values of $c_{p}(\ell)$ show that $P A$ reveals quite different behaviors, since the differences are significant and grow larger as the number of strata increases. EA may, therefore, be the best allocation method for practical uses.

3.5. Optimal Relation between Sample Sizes and Number of Strata

In this section, we consider the determination problem of the sample size n and the number of strata ℓ under some simple cost model. Assume that the sampling cost is expressed as

$$
\begin{equation*}
C=c_{0}+c_{1} n+c_{2} \ell^{\alpha}, \quad\left(c_{0}, c_{1}, c_{2}>0 ; \alpha \geqq 1\right), \tag{3.5}
\end{equation*}
$$

where C is the total cost, c_{0} is the fixed cost for sampling and does not depend on n nor $\ell . \quad c_{1}$ and c_{2} are unit cost relative to the total sample size and the number of strata, respectively. As EA is the useful allocation from the practical view-point, we consider EA in the following discussions. Same discussions as below are possible in case of NA or PA.

In the case of EA, (2.5) gives

$$
\begin{equation*}
V_{E}(\bar{X})=\frac{1}{n} \psi_{E}(x) \tag{3.6}
\end{equation*}
$$

Let us assume that the total sampling cost C must not exceed the available total cost C^{*}. That is,

$$
c_{0}+c_{1} n+c_{2} l^{\alpha} \leq c^{*}
$$

Then the problem can be described as the following optimization problem:

$$
\text { Minimize } V_{E}(\bar{X}) \text { subject to } c_{0}+c_{1} n+c_{2} \ell^{\alpha} \leq c^{*},
$$

where n and ℓ are both positive integers.
It is known that the objective function $V_{E}(\bar{X})$ is monotone decreasing with respect to n and ℓ. Let $C^{* *}$ be total cost for appropriate integer n, l. Then we can derive the following relation by combining (3.6) and the equation for $C^{* *}$.

$$
\operatorname{Minjmum}_{n, X, x} V_{E}(\bar{X})=\mathbb{M i n i m u m}_{, \ell, X}\left(c_{1} / c_{2}\right) /\left\{\left(c^{* *}-c_{0}\right) / c_{2}-\ell^{\alpha}\right\} \cdot \Psi_{E}(x)
$$

Namely, in order to solve the minimization problem (3.7), it is sufficient to consider the minimization of

$$
\psi_{\alpha}(\ell)=\frac{1}{k-\ell^{\alpha}} \psi_{E}(x)
$$

with respect to the integral value of ℓ and the appropriate value of \mathbf{x}, where $k=\left(C^{* *}-c_{0}\right) / c_{2}$.

When k is specified, we can compute the minimum value of $\psi_{\alpha}(l)$ for the typical distributions in Section 2.6 , (A), since we have computed the minimum values of $\Psi_{E}(x)$. For some values of k and for $\alpha=1$ and $\alpha=2$, minimum values of $\psi_{\alpha}(\ell)$ with respect to ℓ are summarized in Table 3.16-Table 3.23, where $\min _{\ell} \psi_{\alpha}(\ell)$ are marked by the underlines. Judging from these tables, if $\alpha=1$, it may be said that the number of strata should be selected as large as possible in so far as the value of k is not so small.

In other words, to increase the number of strata is beneficial as far as the stratification cost is not so expensive. On the other hand, if $\alpha=2$, it may be sufficient to take the number of strata less than or equal to 5 or 6 so far as the stratification cost is not very cheap.

CHAPTER 4

OSP, Min.Var. AND SOME EFFICIENCIES

IN ESTIMATING THE POPULATION VARIANCE

4.1. Computation

The optimum stratification problem in estimating the population variance σ^{2} can be also described as the following mathematical programming problem;

$$
\begin{equation*}
\text { Maximize } \Psi_{S}(x) \quad \text { subject to } x_{0} \leq x_{1} \leqq \cdots \cdots \leq x_{M} \text {, } \tag{4.1}
\end{equation*}
$$

where $\Psi_{S}(x)$ is given by (2.8) and $x=\left(x_{1}, x_{2}, \ldots, x_{M-1}\right)$.
Let us consider feasible AGOS by the same procedure as in Section 3.2. In this case, since the axes of ℓ quadratic functions $h_{i}(x)=a_{i}\left\{(x-\mu)^{2}\right.$ $\left.-a_{i} / 2\right\}$ in (2.14) are common(that is, $x=\mu$), feasible decompositions for $\ell=2,3,4$ are; 121 for $\ell=2(M=3)$, 12321 for $\ell=3(M=5)$ and 1234321 for $\ell=4(M=7)$. Therefore examining these decompositions, AGOS should exist among them. In Section 4.2, calculation for such cases is carried out.

The nonlinear programming algorithm used for solving (4.1) is Hooke-Jeeves' [22] and initial values are determined by the modified Monte Carlo method(Taguri[35]). The values w_{i} and σ_{i}^{2} for the standard normal distribution were computed by using the approximation formula (3.4) with the same truncation and round-off errors as in Section 3.3.

4.2. Results

4.2.1. Asymptotic Interval Optimum Stratification and Asymptotic General Optimum Stratification

OSP $x_{i}^{* *}(i=0,1, \ldots, 5)$, the value of the variance of $U_{S t}, V_{I}^{* *}=n$.inf $V(U$ st $\left.\mid b^{* *}\right)$, and the efficiency $e_{I}(\ell)$ for $\ell=1,2, \ldots, 5$ in the case of AIOS are shown in Table 4.1, where $V_{I}^{* *}$ for $\ell=1$ means an approximate value of $n V(U)$ in (2.7).

This table shows that the relative efficiency in the unsymmetric distribution 3° or 4° is much greater than the one in the symmetric distribution 1° or 2°. In case of the unsymmetric distributions, the effect of stratification in the curved line type distribution 40 is greater than the one in the straight line type distribution 3°. On the other hand, in case of the symmetric distributions the relative efficiency is fairly bad when $\ell=2$, because the stratification method is restricted to AIOS and AGOS is not taken into consideration.

In the case of AGOS, the results are summarized in Table 4.2, which shows that AGOS does not always coincide with AIOS in estimating σ^{2}.

4.2.2. Comparison of AIOS and AGOS

Let us compare the value $V_{I}^{* *}$ with $V_{G}^{* *}$ when the number of strata $\hat{\ell}$ is fixed. The last column of Table 4.1 shows the value of $c_{I}(\ell)$.

Firstly for the symmetric distribution 1° or 2°, the relative efficiency in AGOS is far greater than the one in the case of AIOS, and therefore it is much effective to consider the case of AGOS. Hereupon the remarkable point is that for these distributions, $V_{13}^{*}=V_{G 2}^{*}$ and $V_{I 5}^{*}=V_{G 3}^{* *}$, where $V_{\cdot}^{* *}$ represents the value of $V_{*}^{* *}$ in the case of ℓ strata. This means that each decomposed interval under AGOS has the effect equivalent to each stratum under AIOS. The theoretical study of this point is an open problem. Furthermore it is corrobolated from Table 4.2 that the stratification given by symmetric pairs of intervals around μ is optimum, that is theoretically proved by Wakimoto[45].

Secondly, for the distribution 3°, AGOS coincides with AIOS in case of $\ell=2$ but not in case of $\ell=3$ or 4. For example in case of $\ell=3, V_{G 3}^{* *}$ is slightly greater than $V_{I}^{*}{ }_{4}^{*}$ and much smaller than $V_{I 3}^{* *}$. This may be caused by the fact that AGOS has much information in estimating σ^{2} compared with AIOS. Now the sequence 12321 in this case degenerates to 2321. Moreover $\frac{1}{2}\left(x_{2}^{* *}+x_{3}^{* *}\right)=0.667$ holds and this is nearly equal to the mean value 0.66667 . This fact is consistent with above-mentioned theoretical result given in Wakimoto[45]. The same discussion holds also in case of $\ell=4$.

Thirdly, for the distribution 4°, AGOS exactly coincides with AIOS. Therefore we may only consider the case of AIOS for this distribution.

CHAPTER 5

APPLICATIONAL SCHEME OF OUR RESULTS AND SOME REPRESENTATIVE EXAMPLE

5.1. Working Procedure

In the following, we will only consider the estimation of the population mean. In actual sample surveys, the procedure of application of the tables giving OSP and Min.Var. should be carried out by the following steps:
1° Guess the type of a distribution for a given practical problem, and decide the type of distribution among those shown in Section 2.6, (A) which should be fitted to the histogram made from the given data.
2° Determine the population parameters of the fitted distribution under some criterion of goodness of fit by using the information of past surveys or a pilot survey.
3° Compute optimum values of a number of strata and a total sample size with or without using a cost function such as (3.5).
4° From the tables giving OSP, compute approximate values of OSP for the given distribution, and construct strata.
5° Compute values of w_{i} and/or σ_{i}, and then determine sample sizes in respective strata.
6° Of cource, it is necessary to proceed random sampling within each stratum, and to estimate the population parameters and their estimated standard error by ordinary methods.

If strata are determined in advance, the steps $2^{\circ}-4^{\circ}$ are needless. If we should compute OSP by using some auxiliary information, it is required to get an approximate regression function from some information before the step $4^{\circ}($ see Taga[33]).

Since the four distributions given in Section 2.6, (A) are all represented in standardized form, we have to make some appropriate variable transformation in practical situations(see Section 5.2.2).

5.2. Representative Example of Application

In this section, we will apply our procedure stated in the previous section to the data of "Current Survey on Petroleum Product Demand and Supply", which was performed by the Ministry of International Trade and Industry (MITI) in Japan. Our working procedure is applicable to any data of a similar kind as this example(for example, to the data of "The Current Statistics of Commerce").

Now in order to estimate the sale of some kinds of petroleum, MITI had a plan to do a stratified random sampling in 1981. Let us consider the estimation of the sales of LPG and benzine.

5.2.1. Sampling Procedure

In the case of estimating the sale of LPG, we omit establishments whose sale are 0 , and the stratification variable is the sale of LPG. For the establishments with the LPG sale being 0 , the stratification is done by the sale of benzine, where we omit establishments whose sale of benzine are 0. In the traditional procedure which has been used up to this time,
the strata are constructed as in Table 5.1 for LPG and benzine, respectively. The sample allocation method is the Neyman allocation by utilizing the values of the within-strata weight w_{i} and variance σ_{i}^{2} in the sample survey performed in March 1980, which was a pilot survey for 1981. Now the strata shown in Table 5.1 have been used without any theoretical consideration. Let us stratify the population over again by our procedure proposed in Section 5.1 and compare this with the traditional one, where the number of strata ℓ and the total sample size n are the same as before.

5.2.2. Fitting of a Distribution

1

MITI performed pilot surveys on some kinds of petroleum in March 1978 and March 1980. Table 5.2 and Table 5.3 show the data obtained, which are classified into three types; TYPE I, II and III. The data of TYPE III are the sale of LPG for the establishments dealing only LPG, and the data of TYPE II are for the establishments dealing some kinds of oils including LPG. The data of TYPE I are the total of TYPE II and TYPE III. Some histograms of these data are shown in Figure 5.1 and Figure 5.2. The K-th(right-most) class is constructed by $\left[z_{K-1}, z_{K}\right)$, where $z_{K}=z_{K-1}+2\left(m_{K}-z\right.$ $K-1$). m_{K} is the mean of the $K-t h$ class and was given from the results of sample survey. The value of m_{K} is shown in Table 5.2 and Table 5.3. From these figures and/or tables, it can be seen that the distribution is skew, with its mode at the lower part, and is monotone decreasing, roughly speaking. We, therefore, may fit the exponential or gamma (or their
truncated) distribution to the data(see [Remark 3.2] and [Remark 5.1]). In this section, let us adopt the untruncated exponential distribution among these, because the degree of goodness of fit is slightly better than in other cases. The variable transformation $x=\beta z(\beta>0)$ is done, since OSP were given for the standardized probability density function (p.d.f.) $f(x)$ in Section 3.4.1(see Section 5.1). Then the p.d.f. of z is $f_{z}(z)=\beta f(\beta z)$ $(0<z<\infty)$. We will use the following T as the criterion of goodness of fit between two distributions(see [Remark 5.2]);

$$
T=\sum_{j=1}^{K+1} \int_{z}^{z}\left[\left\{f_{z-1}(z)-h(z)\right\} / f_{z}(z)\right]^{2} f_{z}(z) d z
$$

where $h(z)$ represents the p.d.f. of the histogram and K is the number of class. z_{j-1} or $z_{j}\left(z_{j-1}<z_{j}\right)$ is the lower or upper end point of the j-th class respectively, and $h(z)=q_{j}$ on $\left[z_{j-1}, z_{j}\right)$ for $j=1,2, \ldots, k\left(z_{0}=0\right)$. In order to let the domains of $h(z)$ and $f_{z}(z)$ coincide, let us consider the $K+1$-th class $\left[z_{K}, z_{K+1}\right.$), on which $h(z)=q_{K+1}=0$. Then T is given by

$$
T=\sum_{j=1}^{K+1} \int_{z}^{z}{ }_{j-1}\left\{f_{z}(z)-h(z)\right\}^{2} / f_{z}(z) d z
$$

$$
\begin{equation*}
=\sum_{j=1}^{K} q_{j}^{2}\left(e^{\beta z} j-e^{\beta z} j-1\right) / \beta^{2}-1 \tag{5.1}
\end{equation*}
$$

The most-fitted distribution $f_{Z}^{*}(z)$ to $h(z)$ can be determined under this criterion if the value of β minimizing (5.1) is obtained. T is unimodal on β since $\lim _{\beta \rightarrow+0} \partial T / \partial \beta=-\infty, \lim _{\beta \rightarrow \infty} \partial T / \partial \beta=\infty$ and $\partial^{2} T / \partial \beta^{2}>0$. The optimum value β^{*} is, therefore, obtainable by using the linear search(for example, Golden section method). The values of β^{*} in the eight cases are given in the bottom row of Table 5.2 and Table 5.3. We may, then, fit the p.d.f. $f_{z}^{*}(z)=\beta^{*} e^{-\beta^{*} z}$ to $h(z)$, which is shown in Figure 5.1 and Figure 5.2.
[Remark 5.1] From the standpoint of fitting a distribution, we should fit some other one; for example, a beta distribution in the Pearson system. Our objective is, however, to stratify the population by using OSP computed in advance. In the preceding section, we gave OSP for some distributions, only which can be now utilized for us. We, therefore, should fit the exponential or gamma distribution among them.
[Remark 5.2] As the criterion of goodness of fit, we may adopt the traditional x^{2}. However, by our preliminary computation, obtained result is more preferable in the case of using T than in the case of using χ^{2}; that is, the variance of the estimator is smaller. We, therefore, decide to use the criterion T instead of χ^{2}.

5.2.3. Construction of Strata and Allocation of Sample

Let x_{i}^{*} and z_{i}^{*} be OSP for $f(x)$ and $f_{z}^{*}(z)$ respectively, then $z_{i}^{*}=x_{i}^{*} / \beta^{*}$. The i-th stratum Π_{i} may be constructed by $\Pi_{i}=\left[z_{i-1}^{*}, z_{i}^{*}\right)\left(i=1,2, \ldots, \ell ; z_{0}^{*}=0\right.$, $z_{\ell}^{*}=\infty$. Computational results are shown in Table 5.4 , which shows that the stratification points $\left\{z_{i}^{*}\right\}$ considerably differ from the traditional ones(cf. Table 5.1).

Next we will determine the sample size n_{i}^{*} in the i-th stratum by Neyman allocation. Let n be the total sample size, then n_{i}^{*} is given by the following;

$$
\begin{equation*}
n_{i}^{*}=n w_{i}^{*} \sigma_{i}^{*} / \sum_{i=1}^{\ell} w_{i}^{*} \sigma_{i}^{*} \tag{5.2}
\end{equation*}
$$

where w_{i}^{*} and σ_{i}^{*} are the weight and standard deviation of $f_{z}^{*}(z)$ in the $i-$ th stratum. The values of n_{i}^{*} are also summarized in Table 5.4.

5.2.4. Comparison of the Proposed and Traditional Method

Let us compare the proposed method with the traditional one. The comparison of the two methods is impossible in the strict sense, since the true distribution $g(z)$ in the practical field is unknown for us. We, therefore, assume that the histogram $h(z)$ is satisfactorily near to the true distribution $g(z)$, and investigate this problem. Let w_{i} and σ_{i} be the weight and standard deviation of $h(z)$ in the $i-t h$ stratum Π_{i} respectively. The standard error of the estimator $\overline{\mathrm{x}}$ given by (2.2) is $S(\bar{X})=\sqrt{\sum_{i=1}^{l} w_{i}^{2} \sigma_{i}^{2} / n_{i}}$. In the case of our proposed method, the standard error of $\overline{\mathrm{X}}$ is given by (2.3) as

$$
S_{1}=\sqrt{\frac{1}{n} \sum_{i=1}^{\ell} w_{i}^{*} \sigma_{i}^{*} \sum_{i=1}^{\ell}\left(w_{i}^{2} \sigma_{i}^{2} / w_{i}^{*} \sigma_{i}^{*}\right)} .
$$

In the case of the traditional method, the standard error of \bar{X} is

$$
S_{2}=\sum_{i=1}^{\ell} w_{i} \sigma_{i} / \sqrt{n},
$$

since $n_{i}=n w_{i} \sigma_{i} / \sum_{i=1}^{\ell} w_{i} \sigma_{i}$. Computational results of the values S_{1} and S_{2} are given in Table 5.4, which shows that our method decreases the standard error of \bar{X} by about $30-60 \%$ compared with the traditional method, in this example.

5.2.5. The Influence on $S(\bar{X})$ by Small Change of z_{i}^{*} and n_{i}^{*}

OSP \{ $\left.z_{i}^{*}\right\}$ obtained in Section 5.2 .3 were computed from the theoretical point of view. On the contrary, the list of establishments is classified in the classes given in Table 5.2 or Table 5.3. Therefore we have to utilize the end point of some class near to z_{i}^{*} in place of the exact z_{i}^{*}.

Moreover n_{i}^{*} given by (5.2) is not generally integer or we usually round off n_{i}^{*} appropriately for the sake of the computational convenience.

Thus, how is the standard error of \bar{X} influenced by small change of z_{i}^{*} and n_{i}^{*} ? Let $z_{i}^{* *}$ and $n_{i}^{* *}$ be the stratification point and sample size in the i-th stratum after small change, and S_{3} be the value of $S(\bar{X})$ in this case. Computational results are given in Table 5.5. The influence on $S(\bar{X})$ is about less than 10% and is considered not to be serious.

CHAPTER 6

PROBLEM OF ROBUSTNESS IN OPTIMUM STRATIFICATION

We found in the previous section that the proposed method might be useful in practical sample surveys. However there have been some important unsolved problems for further study. For example, as shown in the preceding example, OSP are usually impracticable from the constraint of sampling frame and the optimum sample sizes in respective strata may be changed for the sake of convenience in the analysis. As for the weights $\left\{w_{i}\right\}$, they are generally unknown for $u s$. Moreover the distribution in a given practical problem is different from the distribution fitted to it. Thus, strictly speaking, the optimum stratification is almost always impracticable. We should therefore make a study of so-called "problem of robustness in optimum stratification". Through this study, theoretical results on optimum stratification are effectively useful in many practical jobs.

Now situations in which the optimum stratification can not be executed in practice are classified as follows:
(a) The type of a fitted distribution is different from that of an actual distribution.
(b) The parameters of an actual distribution must be estimated.
(c) For convenience' sake of the ensuing analysis, sample sizes in respective strata may be changed from their optimum values.
(d) From the constraint of sampling frame or for the sake of computational convenience, stratification points may be changed from the computed OSP.

6.1. Bias of the Estimator $\overline{\mathrm{X}}$

The estimator of the population mean μ is usually given by (2.2), in which w_{i} has been assumed to be known in the preceding section. However in practical stratified random sampling, w_{i} is usually not available in advance. For instance, as the value of w_{i} is out of date in the preceding example, it differs from the true value w_{i}^{0}. It is generally impossible to obtain a complete list for sampling, so that there often exist cases in which w_{i} is not precisely equal to w_{i}^{0}.

Let us denote the difference between w_{i} and w_{i}^{0} by v_{i}, that is, $w_{i}=w_{i}^{0}+v_{i}, \quad(i=1,2, \ldots, \ell)$.

In this case, \bar{X} is not an unbiased estimator of μ in general. Therefore we should adopt the Mean Square Error $\operatorname{MSE}(\bar{X})$ of \bar{X} as our objective function to be minimized and should not adopt the variance $V(\bar{X})$ as in Section 2.4. But if the bias term is small, the optimum stratification may be approximately attained by the stratification method, minimizing $V(\bar{X})$. In the following we will examine a condition under which the bias term is small compared to $V(\bar{X})$.

Practically in almost all cases, we might have some information as to an upper bound of $\left|v_{i} / w_{i}\right|$. Therefore suppose that a value of λ satisfying the following is known;

$$
\left|v_{i}\right| w_{i}^{0} \mid \leqq \lambda \quad(\lambda>0), \quad(i=1,2, \ldots, \ell)
$$

$\operatorname{MSE}(\bar{X})$ is given by

$$
\operatorname{MSE}(\bar{X})=V(\bar{X})+\left(\sum_{i=1}^{\ell} v_{i} \mu_{i}\right)^{2}
$$

where μ_{i} is the mean of the $i-t h$ stratum.

Now let us examine the condition that

$$
\begin{equation*}
\operatorname{MSE}(\bar{X})-V(\bar{X}), V(\bar{X})=\left(\sum_{i=1}^{\ell} v_{i} \mu_{i}\right)^{2} / V(\bar{X})<\delta^{2} \tag{6.1}
\end{equation*}
$$

for a preassigned value $\delta(0<\delta<1)$. For this purpose we will find an upper bound of $\left|\sum_{i=1}^{\ell} v_{i} \mu_{i}\right|$. This problem reduces to that of linear programming with linear constraints;

$$
\begin{align*}
& \text { Maximize or minimize } \quad \phi\left(v_{1}, v_{2}, \ldots, v_{\ell}\right)=\sum_{i=1}^{\ell} \mu_{i} v_{i} \tag{6.2}\\
& \text { subject to }\left\{\begin{array}{l}
-\lambda w_{i}^{0} \leqq v_{i} \leqq \lambda w_{i}^{0},(i=1,2, \ldots, \ell) \\
\sum_{i=1}^{\ell} v_{i}=0
\end{array}\right.
\end{align*}
$$

In order to solve this problem, we prepare the following lemma.
[Lemma 6.1]
The solution of the problem;
$\operatorname{Maximize} \quad \Phi\left(\xi_{1}, \xi_{2}, \ldots, \xi_{\ell}\right)=\sum_{i=1}^{\ell} a_{i} \xi_{i}$,

$$
\text { subject to }\left\{\begin{array}{l}
k_{i} \leqq \xi_{i} \leqq K_{i}, \quad(i=1,2 ;, \ldots, \ell) \tag{6.3}\\
\sum_{i=1}^{\ell} \xi_{i}=\xi_{0}
\end{array}\right.
$$

is given by the following:
(Solution) Rearrange $a_{1}, a_{2}, \ldots, a_{l}$ in a descending order of magnitude and put $a_{(1)} \geqq{ }^{a}(2) \geqq \cdots \cdots{ }^{2}{ }_{(\ell)}$. Let $\xi_{(i)}, k_{(i)}, K_{(i)}$ be the value of ξ_{i}, k_{i}, K_{i} corresponding to $a_{(i)}$ respectively, then the optimal solution $\xi_{(i)}^{*}$ is given by

$$
\begin{cases}\xi_{(i)}^{*}=K_{(i)}, & \left(i=1,2, \ldots, \ell_{1}-1\right) \\ \xi_{\left(\ell_{1}\right)}^{*}=\xi_{0}-\sum_{i=1}^{\ell_{1}-1} K_{(i)}-\sum_{i=\ell_{1}+1}^{\ell} k_{(i)} \\ \xi_{(i)}^{*}=k_{(i)}, & \left(i=\ell_{1}+1, \ldots, \ell\right)\end{cases}
$$

where l_{1} is the integer satisfying the followings simultaneously;

$$
\left\{\begin{array}{l}
\sum_{i=1}^{\ell_{1}-1} K_{(i)}+\sum_{i=\ell_{1}}^{\ell} k_{(i)} \leqq \xi_{0} \tag{6.4}\\
\sum_{i=1}^{\ell_{1}} K_{(i)}+\sum_{i=\ell_{1}+1}^{\ell} k_{(i)}>\xi_{0}
\end{array}\right.
$$

The probem; minimize $\Phi\left(\xi_{1}, \xi_{2}, \ldots, \xi_{\ell}\right)=\sum_{i=1}^{\ell} a_{i} \xi_{i}$, subject to (6.3), can be transformed to the maximizing problem in the above lemma by replacing the objective function Φ with $-\Phi$.

Now let us solve the problem (6.2) by using this lemma. The continuous function $\phi\left(v_{1}, v_{2}, \ldots, v_{\ell}\right)$, defined on the hyperplane in the ℓ-dimensional closed interval, must have a maximum value ϕ_{U} and a minimum value ϕ_{L}. Let us calculate ϕ_{U} :

In [Lemma 6.1], put

$$
\left\{\begin{array}{ll}
\Phi=\phi, & k_{i}=-\lambda w_{i}^{0}, \\
a_{i}=\mu_{i}, & K_{i}=\lambda w_{i}^{0}, \\
\xi_{i}=v_{i}, & \xi_{0}=0 .
\end{array} \quad(i=1,2, \ldots, \ell)\right.
$$

Without loss of generality, we may assume that the relation $\mu_{1}<\mu_{2}<\ldots \ldots<\mu_{\ell}$ is satisfied in this problem. Now let us obtain the integer ℓ_{1} satisfying (6.4), then

$$
\left\{\begin{array}{l}
\sum_{i=\ell-\ell_{1}+2}^{\ell} w_{i}^{0}-\sum_{i=1}^{\ell-\ell_{1}+1} w_{i}^{0}<0, \\
\sum_{i=\ell-\ell_{1}+1}^{\ell} w_{i}^{0}-\sum_{i=1}^{\ell-\ell_{1}} w_{i}^{0} \geqq 0
\end{array}\right.
$$

must hold simultaneously. Therefore l_{1} is the integer satisfying

$$
\begin{equation*}
\sum_{i=1}^{\ell-\ell_{1}} w_{i}^{0} \leqq 1 / 2<\sum_{i=1}^{\ell-l_{1}+1} w_{i}^{0}, \tag{6.5}
\end{equation*}
$$

and is uniquely determined.
[Rmark 6.1] In the case of symmetric distributions, $\ell_{1}=[(\ell+1) / 2]$ holds, where [x] expresses the maximum integer smaller than or equal to x .

Then the optimal solution is given by

$$
\left\{\begin{array}{lr}
v_{i}^{*}=-\lambda w_{i}^{0}, & \left(i=1,2, \ldots, \ell-\ell_{1}\right) \\
v_{\ell-\ell_{1}+1}^{*}=\lambda\left(\sum_{i=1}^{\ell-\ell_{1}} w_{i}^{0}-\sum_{i=\ell-\ell_{1}+2}^{\ell} w_{i}^{0}\right) \\
v_{i}^{*}=\lambda w_{i}^{0}, & \left(i=\ell-\ell_{1}+2, \ldots, \ell\right)
\end{array}\right.
$$

and ϕ_{U} is

$$
\begin{aligned}
\phi_{U} & =\sum_{i=1}^{\ell} \mu_{i} v_{i}^{*}=\sum_{i=1}^{\ell-\ell_{1}}\left(-\lambda w_{i}^{0}\right) \mu_{i}+\lambda\left(\sum_{i=1}^{\ell-\ell_{1}} w_{i}^{0}-\sum_{i=\ell-\ell_{1}+2}^{\ell} w_{i}^{0}\right) \mu_{\ell-\ell_{1}+1}+\sum_{i=\ell-\ell_{1}+2}^{\ell} \lambda w_{i}^{0} \mu_{i} \\
& =\lambda\left\{\sum_{i=\ell-\ell_{1}+2}^{\ell} w_{i}^{0}\left(\mu_{i}-\mu_{\ell-\ell_{1}+1}\right)-\sum_{i=1}^{\ell-\ell_{1}} w_{i}^{0}\left(\mu_{i}-\mu_{\ell-\ell_{1}+1}\right)\right\} \equiv \lambda M_{\mathrm{U}},
\end{aligned}
$$

where ℓ_{1} is the integer satisfying (6.5).
Next by the same procedure as mentioned above, ϕ_{L} is given by

$$
\phi_{L}=\lambda\left\{\sum_{i=1}^{\ell_{1}-1} w_{i}^{0}\left(\mu_{i}-\mu_{\ell_{1}}\right)-\sum_{i=\ell_{1}+1}^{\ell} w_{i}^{0}\left(\mu_{i}-\mu_{\ell_{2}}\right)\right\} \equiv \lambda M_{L},
$$

where ℓ_{1} is the integer satisfying $\sum_{1=1}^{\ell} w_{i}^{0}<1 / 2 \leqq \sum_{i=1}^{\ell} w_{i}^{0}$. Therefore in both cases the following is satisfied;

$$
\left|\sum_{i=1}^{\ell} v_{i} \mu_{i}\right| \leqq \lambda M,
$$

where $M=\max \left(M_{U},-M_{L}\right)$. After all these calculations, a sufficient condition satisfying (6.1) is given by

$$
\lambda<\delta \sqrt{V(\bar{X})} / M
$$

where $V(\bar{X})$ is the variance of \bar{X} in the case of ℓ strata.
Let λ_{u} be an upper bound of λ, where $\lambda_{u}=\delta \sqrt{V(X)} / M$. We compute the values of λ_{u} for the three sample allocation methods and for the four distributions; the equilateral triangular, the normal, the rightangled triangular and the exponential distribution. Table 6.1 gives the values of λ_{u} in case of the rightangled triangular distribution under NA, for which λ_{u} is smallest among all cases. On the other hand Table 6.2 gives the values of λ_{u} in case of the exponential distribution under PA, when λ_{u} is largest among all cases.

6.2. Formulation of the Problem of Robustness

In general, under a fixed total sample size and a p.d.f. $h(x)$, our objective function Ψ to be minimized is a function of a stratification method ϕ_{h} and an allocation method A_{h}. Let us express the objective function by $\Psi\left(\sigma_{h}, A_{h} ; h\right)$. The true p.d.f. in a particular problem is denoted by $g(x)$ and the p.d.f. fitted to it by $f(x)$. Ideally, we should execute the optimum stratification method ϕ_{g}^{*} and the optimum allocation method A_{g}^{*} for $g(x)$. However, it is impossible in practice because $g(x)$ is unknown. Then we perform the stratification by using the optimum stratification method ϕ_{f}^{*} and the optimum allocation method A_{f}^{*} for some $f(x)$ which is available and approximates $g(x)$. But in many practical works, even this stratification is often not practical enough as stated above. In such situations, we would have to be content with a stratification method ϕ_{f} and an allocation method A_{f} which approximate ϕ_{f}^{*} and A_{f}^{*}, respectively. Therefore, in general, we have to evaluate the quantity R_{0} given by

$$
R_{0}=\Psi\left(\phi_{f}, A_{f} ; g\right)-\Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right)
$$

(see Figure 6.1). If we put

$$
\left\{\begin{array}{l}
R_{1}=\Psi\left(\boldsymbol{\phi}_{f}^{*}, A_{f}^{*} ; g\right)-\Psi\left(\boldsymbol{\phi}_{g}^{*}, A_{g}^{*} ; g\right), \tag{6.6}\\
R_{2}=\Psi\left(\boldsymbol{\phi}_{f}^{*}, A_{f} ; g\right)-\Psi\left(\boldsymbol{\phi}_{f}^{*}, A_{f}^{*} ; g\right), \\
R_{3}=\Psi\left(\boldsymbol{\phi}_{f}, A_{f} ; g\right)-\Psi\left(\boldsymbol{\phi}_{f}^{*}, A_{f} ; g\right),
\end{array}\right.
$$

then

$$
R_{0}=R_{1}+R_{2}+R_{3}
$$

From the practical point of view, it is convenient to give the efficiency of $R_{j}(j=0,1,2,3)$ against the optimum value $\Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right)$. However the
latter can be represented by using the values $\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)$ and q defined by (7.1) and (7.3) in Chapter 7 as follows;

$$
\begin{equation*}
\Psi\left(\phi_{g}^{*} ; A_{g}^{*} ; g\right)=(1-q) \Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right) . \tag{6.7}
\end{equation*}
$$

Therefore we may calculate the efficiency Q_{j} which is defined by

$$
\begin{equation*}
Q_{j}=R_{j} / \Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right) \quad(j=0,1,2,3) \tag{6.8}
\end{equation*}
$$

instead of $Q_{j}^{*}=R_{j} / \Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right)$. The reason of this is as follows: (1) We are interested in the value of q itself. (2) The value of $\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)$ is independent on a small change of distributions and the value of q is not so large on the whole. We, therefore, consider that it is convenient to give the value of Q_{j} instead of Q_{j}^{*} in order to roughly estimate the degree of robustness.

Now Q_{1} means the degree of the effect caused by changing a p.d.f. from $g(x)$ to $f(x)$, that is to say, Q_{1} represents the degree of robustness on distributions. In order to evaluate the influence deriving from the cause (a) or (b), described in the first part of Chapter 6, we may calculate the value Q_{1}. Next Q_{2} means the effect caused by changing an allocation method from A_{f}^{*} to A_{f}, that is, it represents the degree of robustness on sample sizes in respective strata. Calculation of Q_{2} is needed for evaluating the influence deriving from the cause (c). Similarly, Q_{3} represents the degree of robustness on stratification points, and calculation of Q_{3} is needed for evaluating the influence deriving from the cause (d).

Thus the problem of evaluating Q_{0} is decomposed into three sub-problems on robustness, which will be examined in the following chapters:

$$
Q_{0}=Q_{1}+Q_{2}+Q_{3}
$$

6.3. Expression of $g(x)$ by Using $f(x)$

In the preceding section, we considered some typical distributions $f(x)$ defined on some interval $\left(x_{0}, x_{M}\right)$. In many applied fields, however, we often need to encounter p.d.f.'s which are slightly different from $f(x)$. It is then natural to express $g(x)$ in a series of orthonormal polynomials;

$$
\begin{equation*}
g(x)=f(x)\left\{1+a_{1} P_{1}(x)+a_{2} P_{2}(x)+\ldots .\right\} \tag{6.9}
\end{equation*}
$$

where the a_{i} 's are constant coefficients, whereas $P_{i}(x)$ is the orthonormal polynomial of degree i with respect to the weight function $f(x)$ over the interval $\left(x_{0}, x_{M}\right)$ and has the following form:

$$
P_{i}(x)=b_{i O}+b_{i 1} x+\ldots \ldots+b_{i i} x^{i}
$$

Let us take the terms up to $P_{2}(x)$ in (6.9) into consideration for the sake of computational convenience. Assume that the mean and variance of $g(x)$ are different from the mean μ_{f} and the variance σ_{f}^{2} of $f(x)$ by $100 \alpha \%$ and $100 \mathrm{~B} \%$ respectively, then it is easily shown that a_{1} and a_{2} are represented as follows:

$$
\left\{\begin{array}{l}
a_{1}=\int_{x_{0}}^{x_{M_{1}}}(x) g(x) d x=b_{10}+b_{11}(1+\alpha) \mu_{f}, \tag{6.10}\\
a_{2}=\int_{x_{0}}^{x_{P_{2}}}(x) g(x) d x=b_{20}+(1+\alpha) \mu_{f}\left\{b_{21}+b_{22}(1+\alpha) \mu_{f}\right\}_{+b_{22}}(1+\beta) \sigma_{f}^{2}
\end{array}\right.
$$

Note that the p.d.f. $f(x)$ and the values of α, β are given, and then the p.d.f. $g(x)$ is uniquely determined. This p.d.f. $g(x)$ is slightly different from the p.d.f. $f(x)$. In the following discussion, only such $g(x)$'s are taken into consideration. Now for the convenience' sake of the analysis in the later chapters, let us rewrite $g(x)$ as follows;

$$
\begin{equation*}
g(x)=f(x) \cdot\left(C_{0}+C_{1} x+C_{2} x^{2}\right) \tag{6.11}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=1+a_{1} b_{10}+a_{2} b_{20}, \quad c_{1}=a_{1} b_{11}+a_{2} b_{21}, \quad c_{2}=a_{2} b_{22} \tag{6.12}
\end{equation*}
$$

6.4. Some Lemma

We will give some lemma used effectively in the following chapters.
[Lemma 6.2] (Mean value theorem for the function of many variables)
Let $f\left(x_{1}, \ldots, x_{p}\right)$ be a real-valued function of p variables. If $f\left(x_{1}\right.$ $\left., \ldots, x_{p}\right)$ has partial derivatives $f_{x_{i}}\left(x_{1}, \ldots, x_{p}\right)=\partial f\left(x_{1}, \ldots, x_{p}\right) / \partial x_{i}$ for $i=1,2, \ldots, p$ in a neighbourhood $U\left(x_{1}^{0}, \ldots, x_{p}^{0}\right)$ of $\left(x_{1}^{0}, \ldots, x_{p}^{0}\right)$, then for any $\left(x_{1}, \ldots, x_{p}\right) \in U\left(x_{1}^{0}, \ldots, x_{p}^{0}\right)$ there exists some real value θ such that
$f\left(x_{1}, \ldots, x_{p}\right)=f\left(x_{1}^{0}, \ldots, x_{p}^{0}\right)+\sum_{i=1}^{p} h_{i} f_{x_{i}}\left(x_{1}^{0}, \ldots, x_{i-1}^{0}, x_{i}^{0}+h_{i}^{\theta}, x_{i+1}, \ldots, x_{p}\right) ; 0<\theta<1$,
where

$$
x_{i}=x_{i}^{0}+h_{i} \quad(i=1,2, \ldots, p)
$$

For a proof of this lemma, see e.g. Coffman [6] or Hitotsumatsu[21].

CHAPTER 7

ROBUSTNESS ON DISTRIBUTIONS

In this section, we will evaluate the quantity R_{1} defined by (6.6). Let us decompose R_{1} as follows:

$$
\begin{align*}
& R_{1}=R_{11}+R_{12} \tag{7.1}\\
& \left\{\begin{array}{l}
R_{11}=\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)-\Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right) \\
R_{12}=\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; g\right)-\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)
\end{array}\right.
\end{align*}
$$

These are evaluated in the followings.

7.1. Computational Scheme for R_{11}

Let us describe a method of evaluating numerically the quantity R_{11} defined by (7.1), since the analytical evaluation of R_{11} is difficult and is an open problem. Now the values of $\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)$ in (7.1) have already been computed in Section 3.4.1. Therefore we should compute the values of $\Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right)$ under the given values of α, β in (6.10). This problem can be formulated as a nonlinear programming problem as shown in Section 3.1, and could be successfully solved for the four distributions by the nonlinear programming algorithm utilizing augmented Lagrangian function(see Konno et al.[27]).

In order to compute the v-th moments $r_{\nu_{i}}$ in respective strata for $v=0,1,2,3,4$, the same approximation formula as (3.4) is employed in the optimization processes for the standard normal distribution. For the other distributions, analytical expressions of $r_{\nu_{i}}$ are easily derived. These computational schemes are expected to give sufficient precision if we use
double precision arithmetics during the optimization process (see Section 3.3).

7.2. Analytical Examination for R_{12}

From the definition (7.1) of R_{12}, we consider the case where the stratification method is ϕ_{f}^{*} and the allocation method of sample sizes is A_{f}^{*}. Let ξ_{i} be the i-th optimum stratification point for $f(x)$, then R_{12} is represented as follows;

$$
\begin{aligned}
& R_{12}=\sum_{i=1}^{\ell} \frac{1}{n_{i}}\left[\int_{\xi_{i-1}}^{\xi_{i}} g(t) d t \int_{\xi_{i-1}}^{\xi_{i}} t^{2} g(t) d t-\left\{\int_{\xi_{i-1}}^{\xi_{i}} \operatorname{tg}(t) d t\right\}^{2}\right]- \\
& \sum_{i=1}^{\ell} \frac{1}{n_{i}}\left[\int_{\xi_{i-1}}^{\xi_{i}} f(t) d t \int_{\xi_{i-1}}^{\xi_{i}} t^{2} f(t) d t-\left\{\int_{\xi_{i-1}}^{\xi_{i}} t f(t) d t\right\}^{2}\right] .
\end{aligned}
$$

From (2.1) and (6.11),

$$
\int_{\xi_{i-1}}^{\xi_{i}} t^{\nu} g(t) d t=\int_{\xi_{i-1}}^{\xi_{i}} t^{\nu}\left(C_{0}+C_{1} t+C_{2} t^{2}\right) f(t) d t=C_{0} \gamma_{v i}+C_{1} \gamma_{\nu+1 i}+C_{2} \gamma_{v+2 i}
$$

holds for $v=0,1,2$. Then we get

$$
\begin{array}{r}
R_{12}=\sum_{i=1}^{\ell} \frac{1}{n_{i}}\left\{\left(C_{0} \gamma_{\mathrm{c} i}+C_{1} \gamma_{1 i}+C_{2} \gamma_{2 i}\right)\left(C_{0} \gamma_{2 i}+C_{1} \gamma_{3 i}+C_{2} \gamma_{4 i}\right)-\right. \tag{7.2}\\
\left.\left(C_{0} \gamma_{1 i}+C_{1} \gamma_{2 i}+C_{2} \gamma_{3 i}\right)^{2}-\left(\gamma_{0 i} \gamma_{2 i}-\gamma_{1 i}^{2}\right)\right\}
\end{array}
$$

where $r_{v_{i}}$ and C_{1}, C_{2} are given by (2.1) and (6.10), (6.12). Since n_{i} and $r_{v_{i}}$ are obtainable, the value of R_{12} can be computed for given values of α and β in (6.10).

7.3. Results for q

As stated in Section 6.2 , we need to represent $\Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right)$ by using $\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)$. For this purpose, the quantity R_{11} is numerically examined in this section. The efficiency of R_{11} is now denoted by q and is defined as follows;

$$
\begin{equation*}
\mathrm{q}=\mathrm{R}_{11} / \Psi\left(\boldsymbol{\phi}_{\mathrm{f}}^{*}, \mathrm{~A}_{\mathrm{f}}^{*} ; \mathrm{f}\right) \tag{7.3}
\end{equation*}
$$

This quantity q is computed for some values of α and β (see [Remark 7.1]), and is shown in Table 7.1 - Table 7.4. From these tables, the followings are ascertained:
(i) The differences of the values of q under NA and EA are less than 0.1%.
(ii) On the whole, the value of q under PA is slightly smaller than the one under NA in the range of α, β treated here.
(iii) q is fairly robust with respect to the variation of α, β. If $\mid \alpha \leqq 0.2$ and $|\beta| \leq 0.3$, then $|q|$ are less than 0.25 except for a few cases. Therefore we may conclude that the difference of the optimum stratification for $g(x)$ and that for $f(x)$ is not so remarkable.
(iv) For the distribution 3°, we need to pay much attention because of the singular behaviours of q. For example, when $\alpha=-0.1$ and $\beta=-0.01, q$ are large and nearly equal to 0.20 for all $\ell=2-10$.
[Remark 7.1] The values of α and β are determined as follows: As for the value of α, we take up the cases $\alpha= \pm 0.1$ and $\beta= \pm 0.2$. The value of β is determined so that the ratio of the variance against the mean of $g(x)$ is equal to ± 0.1. Our computation is intended to perform for all combination of these values. However for some values of (α, β), the p.d.f. $g(x)$ defined by (6.11) and (6.12) is negative on some interval in (x_{0}, x_{M}). We, therefore, omit such values out of our computation.

7.4. Results for Q_{1}

In the preceding section, we have computed the value of R_{11} and the quantity R_{12} has been evaluated by (7.2). We can now compute the value of
Q_{1} by using the relation (7.1). These computational results are summarized in Table 7.5 - Table 7.8 , where the efficiency Q_{1} defined by (6.8) is given for some values of α and β (see [Remark 7.1]). From these tables, the followings are ascertained:
(i) As expected theoretically, $Q_{1} \geq 0$ is satisfied under NA for all cases, where the equality sign holds if and only if $\ell=2$ for the symmetric distributions.
(ii) The differences of the values of Q_{1} under $N A$ and $E A$ are quite small and less than 0.4%.
(iii) On the whole, the value of Q_{1} under $N A$ is more robust than the one under PA with respect to the variation of α, β. The value of Q_{1} under PA for the case of $\alpha>0, \beta>0$, is fairly large compared with the one under NA.
(iv) The value of Q_{1} under NA is fairly robust with respect to the variation of α, β. If $|\alpha| \leqq 0.2$ and $|\beta| \leqq 0.3$, then they are less than 0.2 except for the case of $\alpha=0.2, \beta=0.32$ for the distribution 3°.
(v) For the unsymmetric distribution under PA, even if the values of $|\alpha|$, $|B|$ are small $(\alpha=-0.1, \beta=-0.01)$, the value of Q_{1} may be fairly large $\left(Q_{1}=0.213\right.$ for the distribution $\left.4^{\circ}\right)$. On the contrary, even if the values of $|\alpha|,|\beta|$ are large $(\alpha=-0.2, \beta=-0.28)$, there exists a case when $\left|Q_{1}\right|$ is fairly small ($Q_{1}=-0.087$ for the distribution 4°).
(vi) In general, Q_{1} is more robust for symmetric distributions than for unsymmetric ones with respect to the variation of α, β.

As a conclusion, it may be seen that the method proposed in Section 5.1 is practicable. In the analysis of a given practical problem we may fit $f(x)$ to $g(x)$ and then apply the optimum stratification for $f(x)$, where NA or EA should be used as the allocation method of sample sizes.

7.5. Some Practical Example

Consider the frequency distribution of the sale of benzine shown in Table 5.3, Case 8. In Section 5.2.2, we fitted the exponential distribution $f_{z}^{*}(z)=\beta^{*} e^{-\beta^{*} z}\left(\beta^{*}=0.00309\right)$ to the histogram $g_{z}(z)$, where the number of strata ℓ was 6 and the sample allocation method was Neyman Allocation. Let $u s$ examine the values of q, Q_{1} in this case.

The distribution $g(x)$ standardizing the histogram $g_{z}(z)$ is given by $g(x)=g_{z}\left(x / \beta^{*}\right) / \beta^{*}$. The mean μ_{g}, variance σ_{g}^{2} for $g(x)$ and the mean μ_{f}, variance σ_{f}^{2} for $f(x)$ are

$$
\mu_{g}=0.879, \sigma_{g}^{2}=1.010 ; \mu_{f}=1.000, \sigma_{f}^{2}=1.000
$$

respectively, so

$$
\alpha=\mu_{g} / \mu_{f}-1=-0.121, \beta=\sigma_{g}^{2} / \sigma_{f}^{2}-1=0.010
$$

We will consider that $\alpha \doteq-0.1, B \fallingdotseq-0.01$, then from Table 7.4 and Table 7.8 $q=0.039, \quad Q_{1}=0.035$.

The efficiency Q_{1}^{*}, which is the ratio of R_{1} against the optimum value $\Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right)$ is given as follows from (6.7) and (6.8);

$$
Q_{1}^{*}=Q_{1} /(1-q)=0.036 .
$$

Therefore we may conclude that the loss owing to fitting $f(x)$ to $g(x)$ is very small.

CHAPTER 8

ROBUSTNESS ON SAMPLE SIZES IN RESPECTIVE STRATA

8.1. Analytical Examination

In this section, we analytically evaluate the quantity R_{2} defined by (6.6). This problem is formulated as follows:
[Problem] Calculate the degree of the influence on our objective functions (2.4) - (2.6) caused by changing a sample size $n_{i}(\geq 1)$ in the $i-$ th stratum to $n_{i}+m_{i}(\geq 1)$, where total sample size n is fixed.

From the definition of R_{2}, we may discuss the case where a p.d.f. is $g(x)$ and a stratification method is ϕ_{f}^{*}. Then our objective function being a function of only sample sizes in respective strata, we will denote it by $\Psi\left(n_{1}, \ldots ., n_{\ell}\right)$ In (2.4)-(2.6), note that w_{i} and σ_{i}^{2} are the weight and variance of the $i-t h$ stratum for $g(x)$, and a stratification method is the optimum method ϕ_{f}^{*} for $f(x)$. Suppose that sample sizes in respective strata change from n_{i} to $n_{i}+m_{i}$. Since $\sum_{i=1}^{\ell} n_{i}=\sum_{i=1}^{\ell}\left(n_{i}+m_{i}\right)=n$. by the assumption,

$$
\begin{equation*}
\sum_{i=1}^{\ell} m_{i}=0 \tag{8.1}
\end{equation*}
$$

must be satisfied. Then the given problem is to evaluate

$$
\begin{equation*}
R_{2}=\Psi\left(n_{1}+m_{1}, \ldots ., n_{\ell}+m_{\ell}\right)-\Psi\left(n_{1}, \ldots, n_{\ell}\right) \tag{8.2}
\end{equation*}
$$

under the condition (8.1), where n_{i} is determined by the allocation method for $f(x)$. For this quantity, the following lemma holds:
[Lemma 8.1]

$$
\begin{equation*}
R_{2}=\sum_{i=1}^{\ell-1} m_{i}\left\{w_{\ell}^{2} \sigma_{\ell}^{2} / n_{\ell}^{2}\left(1-\beta_{i} \theta \cdot \beta_{i+1}-\cdots-\beta_{\ell-1}\right)^{2}-w_{l}^{2} \sigma_{i}^{2} / n_{i}^{2}\left(1+\alpha_{i} \theta\right)^{2}\right\} \text {, for some } \theta(0<\theta<1) \tag{8.3}
\end{equation*}
$$

and

$$
\alpha_{i}=m_{i} / n_{i}, \quad \beta_{i}=m_{i} / n_{\ell}, \quad(i=1,2, \ldots,, \ell-1)
$$

(Proof) Substituting the relation $\sum_{i=1}^{\ell} n_{i}=n$ into (2.3), we obtain

$$
\Psi\left(n_{1}, \ldots, n_{\ell}\right)=n\left\{\sum_{i=1}^{\ell-1} w_{i}^{2} \sigma_{i}^{2} / n_{i}+w \chi^{2} \sigma_{\ell}{ }^{2} /\left(n-\sum_{j=1}^{\ell-1} n_{j}\right)\right\} .
$$

Treating n_{i} 's as continuous arguments, we have

$$
\frac{\partial}{\partial n_{i}} \Psi\left(n_{1}, \ldots, n_{\ell}\right)=n\left\{w_{\ell}^{2} \sigma_{\ell}^{2} /\left(n_{j=1}^{\ell-1} \sum_{j}\right)^{2}-w_{i}^{2} \sigma_{i}^{2} / n_{i}^{2}\right\},(i=1,2, \ldots, \ell, \ell-1)
$$

Since it is possible to expand ${ }^{\Psi}\left(n_{1}+m_{1}, \ldots, n_{\ell}+m_{\ell}\right)$ in a neighbourhood of the point ($n_{1}, \ldots \ldots, n_{\ell}$), by using [Lemma 6.2] we obtain

$$
\begin{aligned}
R_{2} & =n \sum_{i=1}^{\ell-1} m_{i}\left\{w_{\ell}{ }^{2} \sigma_{\ell}{ }^{2} /\left(n-\sum_{j=1}^{\ell-1} n_{j}-m_{i} \theta-m_{i+1}-\cdots-m_{\ell-1}\right)^{2}-w_{i}{ }^{2} \sigma_{l}^{2} /\left(n_{i}+m_{i} \theta\right)^{2}\right\} \\
& =n \sum_{i=1}^{\ell-1} m_{i}\left\{w_{\ell}{ }^{2} \sigma_{l}{ }^{2} / n_{\ell}^{2}\left(1-\beta_{i} \theta-\beta_{i}+1-\cdots-\beta \ell-1\right)^{2}-w_{l}^{2} \sigma_{l}^{2} / n_{l}^{2}\left(1+\alpha_{i} \theta\right)^{2}\right\} .
\end{aligned}
$$

The proof is completed.
To evaluate R_{2}, we use the inequality $0<\theta<1$ and obtain the following theorem:

[Theorem 8.1]

If

$$
\left\{\begin{array}{l}
1-\sum_{i=k}^{\ell-1} \beta_{i}>0, \quad(k=1,2, \ldots, \ell-1) \tag{8.4}\\
1+\alpha_{i}>0, \quad(i=1,2, \ldots, \ell-1)
\end{array}\right.
$$

are satisfied simultaneously, then the following relation holds;

$$
\begin{equation*}
\mathrm{t}<\mathrm{R}_{2}<\mathrm{T}, \tag{8.5}
\end{equation*}
$$

where

$$
\left\{\begin{align*}
t & =\sum_{i=1}^{\ell-1} \frac{m_{i}}{n}\left\{w_{\ell}^{2} \sigma_{\ell}^{2} /\left(\frac{n_{\ell}}{n}\right)^{2}\left(1-\beta_{i+1}-\ldots-\beta_{\ell-1}\right)^{2}-w_{i}^{2} \sigma_{i}^{2} /\left(\frac{n_{i}}{n}\right)^{2}\right\}, \tag{8.6}\\
T & =\sum_{i=1}^{\ell-1} \frac{m_{i}}{n}\left\{w_{\ell}^{2} \sigma_{\ell}^{2} /\left(\frac{n_{\ell}}{n}\right)^{2}\left(1-\beta_{i}-\ldots-\beta_{\ell-1}\right)^{2}-w_{i}^{2} \sigma_{i}^{2} /\left(\frac{n_{i}}{n}\right)^{2}\left(1+\alpha_{i}\right)^{2}\right\}
\end{align*}\right.
$$

(Proof) Let us consider R_{2} in (8.3) as a function of θ, and write it as $R_{2}(\theta)$. Then

$$
\frac{\partial R_{2}(\theta)}{\partial \theta}=2 n \sum_{i=1}^{\ell-1} m_{i}^{2}\left\{w_{l}^{2} \sigma_{l}^{2} / n_{\ell}^{3}\left(1-\beta_{i} \theta-\beta_{i+1}-\ldots-\beta_{\ell-1}\right)^{3}+w_{l}^{2} \sigma_{i}^{2} / n_{l}^{3}\left(1+\alpha_{i} \theta\right)^{3}\right\}
$$

Therefore from the given conditions (8.4), $\partial R_{2}(\theta) / \partial \theta>0$ is obtained in the limit of $0 \leqq \theta \leq 1$, and $R_{2}(\theta)$ is a strictly monotone increasing function with respect to θ. From the definition (8.6), we see that $t=R_{2}(0)$ and $T=R_{2}(1)$. Therefore

$$
t<R_{2}(\theta)<T, \quad \text { for } 0<\theta<1
$$

and the proof is complete.
In (8.6), $w_{i}^{2} \sigma_{i}^{2}$ and n_{i} / n are known for us as follows: Firstly $w_{i}^{2} \sigma_{i}^{2}$ is expressed by

$$
\begin{equation*}
w_{l}^{2} \sigma_{l}^{2}=\int_{-\infty}^{\infty} \phi_{i}(x) g(x) d x \int_{-\infty}^{\infty} x^{2} \phi_{i}(x) g(x) d x-\left\{\int_{-\infty}^{\infty} x \phi_{i}(x) g(x) d x\right\}^{2} . \tag{8.7}
\end{equation*}
$$

From (6.11),

$$
\int_{-\infty}^{\infty} x^{\nu} \phi_{i}(x) g(x) d x=\int_{-\infty}^{\infty} x^{\nu}\left(c_{0}+c_{1} x+c_{2} x^{2}\right) \phi_{i}(x) f(x) d x=c_{0} \gamma_{v i}+c_{1} \gamma_{v+1 i}+c_{2} \gamma_{v+2 i}
$$

holds for $v=0,1,2$, where $r_{\nu_{i}}$ is defined by (2.1). If we substitute this into (8.7), the following is obtained;

$$
w_{l}^{2} \sigma_{l}^{2}=\left(c_{0} \gamma_{0 i}+c_{1} \gamma_{1 i}+c_{2} \gamma_{2 i}\right)\left(c_{0} \gamma_{2 i}+c_{1} \gamma_{3 i}+c_{2} \gamma_{4 i}\right)-\left(c_{0} \gamma_{1 i}+c_{1} \gamma_{2 i}+c_{2} \gamma_{3 i}\right)^{2} .
$$

Secondly, n_{i} / n is given as follows according to the three allocation methods;

$n_{i} / n=\sqrt{\gamma_{0 i} \gamma_{2 i}-\gamma_{1 i}^{2}} / \sum_{j=1}^{\ell} \sqrt{\gamma_{0 j} \gamma_{2 j}-\gamma_{1} j^{2}}$	under NA,
$n_{i} / n=1 / \ell$	under EA,
$n_{i} / n=\gamma_{0 i}$	under PA.

Therefore the values of t and T are computable if we determine the values of m_{i} and α, β given in (6.10).

8.2. Results

In order to estimate the efficiency Q_{2} roughly, we will compute it in some special case, that is, in the case of $g(x)=f(x)$. The computational results are summarized in Table 8.1 - Table 8.4.

In the first row of the tables, we show the value of $\left|\alpha_{i}\right|$. The value of β_{i} is determined by the relation $\beta_{i}=\alpha_{i} n_{i} / n$. As for α_{i}, (8.1) implies $\sum_{i=1}^{\ell} \alpha_{i}=0$ under EA. Moreover by our empirical results the value of $w_{i} \sigma_{i}$ are approximately equal to each other under NA (see Chapter 1). Then $\sum_{i=1}^{\ell}$ $\alpha_{i} \doteqdot 0$. Therefore we suppose $\alpha_{i}>0$ for $i=1,3, \ldots, \ell-1$ and $\alpha_{i}<0$ for $i=2,4, \ldots, \ell$. For the sake of computational convenience, we assumed that $\left|\alpha_{i}\right|$ were constant for any stratum. Our computation has been performed for the case of $\left|\alpha_{i}\right|=0.01,0.05,0.07,0.10,0.15$ and 0.20 . We give the value of $u=t / \Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)$ in the upper row and the value of $U=T / \Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)$ in the lower row. From these computational results for the four distributions, we obtained the followings:
(i) The difference of the values of u and U is not so remarkable under NA or EA; If $\left|\alpha_{i}\right| \leqq 0.10$, then $U-u<0.04$ and if $\left|\alpha_{i}\right| \leqq 0.20$, then $U-u \leq 0.17$.
(ii) The value of Q_{2} under NA is nearly independent of distributions (see [Remark 8.1]).
(iii) For all cases, the value of Q_{2} under $E A$ is nearly equal to that under NA. In the case of PA, the value of Q_{2} is largest.
(iv) If $\left|\alpha_{i}\right| \leqq 0.10$ holds under NA or $E A$, then the value of Q_{2} is less than about 0.03 and if $\left|\alpha_{i}\right| \leqq 0.20$, then $Q_{2} \leqq 0.13$. Therefore in such cases there may be no riskiness from the practical point of view.
(v) For the unsymmetric distributions under $P A$, even if the values of $\left|\alpha_{i}\right|$ and ℓ are small $\left(\left|\alpha_{i}\right|=0.07, \ell=4\right)$, the value of Q_{2} may be fairly large ($U=5.029$ for the distribution 4°).
(vi) In general, the value of Q_{2} for the symmetric distribution is more robust than the one for the unsymmetric distribution with respect to α_{i} under PA.

In the preceding Section 7.4 , we described that NA or EA should be used in practical fields, because the efficiency $Q_{1}=R_{1} / \Psi\left(\boldsymbol{\phi}_{f}^{*}, A_{f}^{*} ; f\right)$ is small. From the above-mentioned results, the efficiency Q_{2} is also small in the case of NA or EA.
[Remark 8.1] In the case of NA, $n_{i}=n w_{i} \sigma_{i} / \sum{ }_{j=1}^{\ell} w_{j} \sigma_{j}$ holds. On the other hand, the values of $w_{i} \sigma_{i}$ are approximately equal to each other under NA by our empirical results. Therefore $n_{i}=n / \ell$ and $\beta_{i}=\alpha_{i}$ are approximately satisfied. Substituting these relation into (8.6), the following is obtained provided that (8.4) holds;

$$
u_{N A}<Q_{2}<U_{N A},
$$

where

$$
\mathrm{u}_{\mathrm{NA}}=\sum_{i=1}^{\ell-1} \alpha_{i}\left\{1 /\left(1-\alpha_{i+1}-\ldots-\alpha_{\ell-1}\right)^{2}-1\right\} / \ell, \quad \mathrm{U}_{\mathrm{NA}}=\sum_{i=1}^{\ell-1} \alpha_{i}\left\{1 /\left(1-\alpha_{i}-\ldots-\alpha_{\ell-1}\right)^{2}-1 /\left(1+\alpha_{i}\right)^{2}\right\} / \ell
$$

Therefore the values of $u_{N A}$ and $U_{N A}$ are approximately independent of distributions.

8.3. Some Practical Example

We will take up once more the frequency distribution of the sale of benzine in Table 5.3, Case 8. The values of n_{i}^{\prime} 's under Neyman Allocation are given in the second column of Table 8.5. In Section 5.2 .5 , we rounded off n_{i} for the sake of computational convenience and numerically examined this influence. Let us compute the value of Q_{2} evaluated by (8.5) in this example.

[Example 8.1]

In Section 5.2 .5 , we changed the values of n_{i} such as shown in the third column of Table 8.5 , where the values of m_{i} are given in the fourth column of this table. The distribution $g(x)$ standardizing the histogram $g_{z}(z)$ is given by $g(x)=g_{z}\left(x / \beta^{*}\right) / \beta^{*}$. The mean μ_{g}, variance σ_{g}^{2} for $g(x)$ and the mean μ_{f}, variance σ_{f}^{2} for $f(x)$ are

$$
\mu_{g}=0.879, \quad \sigma_{g}^{2}=1.010 ; \quad \mu_{f}=1.000, \quad \sigma^{2} f=1.000
$$

respectively, so

$$
\alpha=\mu_{g} / \mu_{f}-1=-0.121, \beta=\sigma_{g}^{2} / \sigma_{f}^{2}-1=0.010
$$

If these values are substituted into (8.6), then we obtain

$$
t=0.0^{4} 695, \quad T=0.0^{4} 762
$$

Let us denote the variances of \bar{X} in the cases of $\left\{n_{i}\right\}$ and $\left\{n_{i}+m_{i}\right\}$ by $V_{N A}$ and $V_{N A}^{\prime}$ respectively, then
$\left(1 / \beta^{*}\right)^{2} \cdot t / n<V^{\prime} N A-V_{N A}<\left(1 / \beta^{*}\right)^{2} \cdot T / n$
from (2.3) and (8.2). These values are computed as follows;

$$
0.00170<\mathrm{V}_{\mathrm{NA}}^{\prime}-\mathrm{V}_{\mathrm{NA}}<0.00187
$$

Since $V_{N A}=0.618$, the value of $Q_{2}^{\prime}=\left(V_{N A}^{\prime}-V_{N A}\right) / V_{N A}$ is given by

$$
0.00276<Q_{2}^{1<0.00302}
$$

The value of Q_{2} defined by (6.8) is evaluated as follows:

$$
0.00198<Q_{2}<0.00217
$$

Therefore we may conclude that the loss owing to changing $\left\{n_{i}\right\}$ to $\left\{n_{i}+m_{i}\right\}$ is very small.
[Example 8.2] (Equal Allocation)

Let us examine the influence owing to changing allocation method from $N A$ to EA. The values of $n_{i}+m_{i}$ and m_{i} are given in the fifth and sixth column of Table 8.5 , respectively. By a similar computation as in [Example 8.1], we obtain
$t=0.0^{3} 460, \quad T=0.0^{3} 538$.
If we denote the variance of \bar{X} under $E A$ by $V_{E A}$, then the value of $Q_{2}^{\prime \prime}=\left(V_{E A}\right.$ $\left.-\mathrm{V}_{\mathrm{NA}}\right) / \mathrm{V}_{\mathrm{NA}}$ is given by

$$
0.0183<Q_{2}^{\prime}<0.0213
$$

The value of Q_{2} in this case is
$0.0132<Q_{2}<0.0153$.
Therefore we may use Equal Allocation in practical sample survey.

ROBUSTNESS ON STRATIFICATION POINTS

9.1. Analytical Examination

In this section we analytically evaluate the quantity R_{3} defined by (6.6). This problem is formulated as follows:
[Problem] Calculate the degree of the influence on the objective functions (2.4)-(2.6) caused by changing the stratification points ξ_{i} to $\xi_{i}+\eta_{i}$ in the $i-t h$ stratum.

From the definition of R_{3}, we consider the case where a p.d.f. and an allocation method of sample sizes under our consideration are $g(x)$ and A_{f}, respectively. Suppose that $x_{1}, x_{2}, \ldots ., x_{\ell-1}$ are the x-coordinates of stratification points and satisfy the relation $x_{0}<x_{1}<\ldots<x_{\ell}$, where the domain of $g(x)$ is $\left(x_{0}, x_{\ell}\right)$. Since our objective function is a function of only stratification points in this problem, we denote it by $\Psi\left(x_{1}, \ldots, x_{\ell-1}\right)$ and obtain

$$
\Psi\left(x_{1}, \ldots, x_{\ell-1}\right)=n \sum_{i=1}^{\ell}\left[\int_{x_{i-1}}^{x_{i}} g(t) d t \int_{x_{i-1}}^{x_{i}} t^{2} g(t) d t-\left\{\int_{x_{i-1}}^{x_{i}} t g(t) d t\right\}^{2}\right] / n_{i}
$$

Let $\Psi_{x_{i}}\left(x_{1}, \ldots, x_{\ell-1}\right)$ be a partial derivative of $\Psi\left(x_{1}, \ldots, x_{\ell-1}\right)$ with respect to the variable x_{i}, then it is given by

$$
\Psi x_{i}\left(x_{1}, \ldots, x_{\ell-1}\right)=n g\left(x_{i}\right)\left\{\int_{x_{i-1}}^{x_{i}}\left(t-x_{i}\right)^{2} g(t) d t / n_{i} \int_{x_{i}}^{x_{i+1}}\left(t-x_{i}\right)^{2} g(t) d t / n_{i+1}\right\} .
$$

From [Lemma 6.2], we can write for some $\theta(0<\theta<1)$,

$$
\begin{aligned}
R_{3} & =\Psi\left(\xi_{1}+\eta_{1}, \ldots, \xi_{\ell-1}+\eta_{\ell-1}\right)-\Psi\left(\xi_{1}, \ldots, \xi_{\ell-1}\right) \\
& ={ }_{i=1}^{\ell-1} \eta_{i} \Psi_{x_{i}}\left(\xi_{1}, \ldots, \xi_{i-1}, \xi_{i}+\eta_{i} \theta, \xi_{i+1}+\eta_{i+1}, \ldots, \xi_{\ell-1}+\eta_{\ell-1}\right)
\end{aligned}
$$

where

$$
\begin{align*}
& \Psi_{x_{i}}\left(\xi_{1}, \ldots, \xi_{i-1}, \xi_{i}+\eta_{i} \theta, \xi_{i+1}+\eta_{i+1}, \ldots, \xi_{\ell-1}+\eta_{\ell-1}\right) \\
& \quad=n g\left(\xi_{i}+\eta_{i} \theta\right)\left\{\int_{\xi_{i-1}}^{\xi_{i}+\eta_{i} \theta}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t / n_{i}-\int_{\xi_{i}+\eta_{i} \theta}^{\xi_{i+1}+\eta_{i+1}}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t / n_{i+1}\right\} \tag{9.1}
\end{align*}
$$

with $\eta_{\ell}=0$. Evaluating each term in (9.1), we can obtain the following lemma:

[Lemma 9.1]

If we neglect the terms of order η_{i}^{3}, then R_{3} is given by

$$
R_{3}=n \sum_{i=1}^{\ell-1} \eta_{i} g\left(\xi_{i}+\eta_{i} \theta_{0}\right)\left[\left\{C_{2} S_{4 i}+\left(C_{1}-2 \xi_{i} C_{2}\right) S_{3 i}-\xi_{i}\left(2 C_{1}-\xi_{i} C_{2}\right) S_{2 i}+\xi_{i}^{2} C_{1} S_{1 i}\right\}\right.
$$

$$
-2 \eta_{i} \theta_{0}\left\{C_{2} S_{3 i}+\left(C_{1}-\xi_{i} C_{2}\right) S_{2 i}+\left(C_{0}-\xi_{i} C_{1}\right) S_{1 i}-\xi_{i} C_{0} S_{0 i}\right\}
$$

$$
\left.-\eta_{i+1} d_{i+1}^{2} g\left(\xi_{i+1}+\eta_{i+1} \theta_{1}\right) / n_{i+1}\right], \quad S_{\nu i}=\gamma_{\nu i} / n_{i}-\gamma_{\nu . i+1} / n_{i+1},(\nu=0,1,2,3,4)
$$

$$
\begin{equation*}
0<\theta_{k}<1, \quad(k=0,1) \tag{9.2}
\end{equation*}
$$

(Proof) The first term in the right-hand side of (9.1) can be decomposed so that

$$
\begin{align*}
\int_{\xi_{i-1}}^{\xi_{i}+\eta_{i} \theta}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t & =\int_{\xi_{i-1}}^{\xi_{i}}\left(t-\xi_{i}\right)^{2} g(t) d t-2 \eta_{i} \theta \int_{\xi_{i-1}}^{\xi_{i}}\left(t-\xi_{i}\right) g(t) d t \\
& +\left(\eta_{i} \theta\right)^{2} \int_{\xi_{i-1}}^{\xi_{i}} g(t) d t+\int_{\xi_{i}}^{\xi_{i}+\eta_{i} \theta}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t \tag{9.3}
\end{align*}
$$

The first two terms in (9.3) is calculated as follows by using (6.11):

$$
\begin{align*}
\int_{\xi_{i-1}}^{\xi_{i}}\left(t-\xi_{i}\right)^{2} g(t) d t & =\int_{\xi_{i-1}}^{\xi_{i}}\left(t-\xi_{i}\right)^{2}\left(C_{0}+C_{1} t+C_{2} t^{2}\right) f(t) d t \\
& =C_{2} \gamma_{4 i}+\left(C_{1}-2 \xi_{i} C_{2}\right) \gamma_{3 i}+\left(C_{0}-2 \xi_{i} C_{1}+\xi_{i}^{2} C_{2}\right) \gamma_{2 i} \\
& +\left(\xi_{i}^{2} C_{1}-2 \xi_{i} C_{0}\right) \gamma_{1 i}+\xi_{i}^{2} C_{0} \gamma_{0 i} \tag{9.4}\\
\int_{\xi_{i-1}}^{\xi_{i}}\left(t-\xi_{i}\right) g(t) d t & =\int_{\xi_{i-1}}^{\xi_{i}}\left(t-\xi_{i}\right)\left(C_{0}+C_{1} t+C_{2} t^{2}\right) f(t) d t \\
& =C_{2} \gamma_{3 i}+\left(C_{1}-\xi_{i} C_{2}\right) \gamma_{2 i}+\left(C_{0}-\xi_{i} C_{1}\right) \gamma_{1 i}-\xi_{i} C_{0} \gamma_{0 i} \tag{9.5}
\end{align*}
$$

The third term in the right-hand side of (9.3) is clearly of order η_{i}^{2}. As for the last term in (9.3), transform the variable t to $t-\xi_{i}$ and apply the mean value theorem, then it is seen that the term is of order η_{i}^{2}. Therefore by substituting (9.4) and (9.5) into (9.3), the following can be obtained;

$$
\begin{align*}
& \int_{\xi_{i-1}}^{\xi_{i}+\eta_{i} \theta}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t=C_{2} \gamma_{4 i}+\left(C_{1}-2 \xi_{i} C_{2}\right) \gamma_{3 i}+\left(C_{0}-2 \xi_{i} C_{1}+\xi_{i}^{2} C_{2}\right) \gamma_{2 i} \\
&+\left(\xi_{i}^{2} C_{1}-2 \xi_{i} C_{0}\right) \gamma_{1 i}+\xi_{i}^{2} C_{0} \gamma_{0 i}-2 \eta_{i} \theta\left\{C_{2} \gamma_{3 i}+\left(C_{1}-\xi_{i} C_{2}\right) \gamma_{2 i}\right. \\
&\left.+\left(C_{0}-\xi_{i} C_{1}\right) \gamma_{1 i}-\xi_{i} C_{0} \gamma_{0 i}\right\}+O\left(\eta_{i}^{2}\right) \tag{9.6}
\end{align*}
$$

Secondly, we will calculate the second term in the right-hand side of (9.1) by similar way. Now the following holds;

$$
\begin{align*}
\int_{\xi_{i}+\eta_{i} \theta}^{\xi_{i+1}+\eta_{i+1}}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t & =\int_{\xi_{i}}^{\xi_{i+1}}\left(t-\xi_{i}\right)^{2} g(t) d t-2 \eta_{i} \theta \int_{\xi_{i}}^{\xi_{i+1}}\left(t-\xi_{i}\right) g(t) d t \\
& +\left(\eta_{i} \theta\right)^{2} \int_{\xi_{i}}^{\xi_{i+1}} g(t) d t \\
& -\int_{\xi_{i}}^{\xi_{i}+\eta_{i} \theta}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t \\
& +\int_{\xi_{i+1}}^{\xi_{i+1}+\eta_{i+1}}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t \tag{9.7}
\end{align*}
$$

The last term in (9.7) is calculated as follows by transforming the variable t to $u=t-\xi_{i+1}$ and applying the mean value theorem;

$$
\begin{align*}
\int_{\xi_{i+1}}^{\xi_{i+1}+\eta_{i+1}}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t & =\int_{0}^{\eta_{i+1}}\left(d_{i+1}+u-\eta_{i} \theta\right)^{2} g\left(u+\xi_{i+1}\right) d u \\
& =\eta_{i+1} d_{i+1}^{2} g\left(\xi_{i+1}+\eta_{i+1} \theta^{\prime}\right)+O\left(\eta_{i}^{2}\right), \\
d_{i+1} & =\xi_{i+1}-\xi_{i}, \quad 0<\theta^{\prime}<1, \tag{9.8}
\end{align*}
$$

where we should define $\eta_{\ell}=0$ since the value of (9.8) must be for $i=\ell-1$. Therefore if we neglect the terms of order η_{i}^{2} in (9.7), then we can obtain

$$
\begin{align*}
\int_{\xi_{i}+\eta_{i} \theta}^{\xi_{i+1}^{+\eta_{i+1}}\left(t-\xi_{i}-\eta_{i} \theta\right)^{2} g(t) d t}= & C_{2} \gamma_{4 i+1}+\left(C_{1}-2 \xi_{i} C_{2}\right) \gamma_{3 i+1}+\left(C_{0}-2 \xi_{i} C_{1}\right. \\
& \left.+\xi_{i}^{2} C_{2}\right) \gamma_{2 i+1}+\left(\xi_{i}^{2} C_{1}-2 \xi_{i} C_{0}\right) \gamma_{1 \cdot i+1}+\xi_{i}^{2} C_{0} \gamma_{0 \cdot i+1} \\
& -2 \eta_{i} \theta\left\{C_{2} \gamma_{3 i+1}+\left(C_{1}-\xi_{i} C_{2}\right) \gamma_{2 \cdot i+1}\right. \\
& \left.+\left(C_{0}-\xi_{i} C_{1}\right) \gamma_{1 i+1}-\xi_{i} C_{0} \gamma_{0 . i+1}\right\} \\
& +\eta_{i+1} d_{i+1}^{2} g\left(\xi_{i+1}+\eta_{i+1} \theta^{\prime}\right)+O\left(\eta_{i}^{2}\right) \\
& 0<\theta<1, \quad 0<\theta^{\prime}<1 \tag{9.9}
\end{align*}
$$

If we substitute (9.6), (9.9) into (9.1) and use the relation (2.12), then (9.2) can be obtained by using [Lemma 6.2]. The proof is completed.

Since unknown constants θ_{0}, θ_{1} are included in (9.2), we can not compute the value of R_{3} in practice. If we assume that η_{i} is small for $i=1,2, \ldots, \ell-1$ and $g(x)$ has not any sudden changes in the function value, then we may make the following approximations;

$$
\begin{equation*}
g\left(\xi_{i}+\eta_{i} \theta_{k}\right) \fallingdotseq g\left(\xi_{i}+\eta_{i} / 2\right), \quad(k=0,1 ; i=1,2, \cdots, \ell-1) \tag{9.10}
\end{equation*}
$$

Furthermore if $\eta_{i} \theta_{k}$ is small, then

$$
\begin{equation*}
\eta_{i} \theta_{k} \doteqdot \eta_{i} / 2, \quad(k=0,1 ; i=1,2, \ldots, \ell-1) \tag{9.11}
\end{equation*}
$$

may be satisfied approximately. Substituting (9.10) and (9.11) into (9.2), we can obtain the following theorem:
[Theorem 9.1]
R_{3} can be approximately evaluated as follows;

$$
\left.\begin{array}{rl}
R_{3} \fallingdotseq n & \sum_{i=1}^{\ell-1} \eta_{i} g\left(\xi_{i}+\eta_{i} / 2\right)
\end{array}\right]\left\{C_{2} S_{4 i}+\left(C_{1}-2 \xi_{i} C_{2}\right) S_{3 i}-\xi_{i}\left(2 C_{1}-\xi_{i} C_{2}\right) S_{2 i}+\xi_{i}^{2} C_{1} S_{1 i}\right\}, \begin{aligned}
& -\eta_{i}\left\{C_{2} S_{3 i}+\left(C_{1}-\xi_{i} C_{2}\right) S_{2 i}+\left(C_{0}-\xi_{i} C_{1}\right) S_{1 i}-\xi_{i} C_{0} S_{0 i}\right\} \\
& \\
& \left.-\eta_{i+1} d_{i+1}^{2} g\left(\xi_{i+1}+\eta_{i+1} / 2\right) / n_{i+1}\right] ; \eta_{\ell}=0 \tag{9.12}
\end{aligned}
$$

Since various quantities in (9.12) except for $\eta_{1}, n_{2}, \ldots, \eta_{l-1}$ are obtainable if we determine the values of α and β given in (6.10), an approximate value of R_{3} can be computed by (9.12) if we give values of $\eta_{1}, n_{2}, \ldots, n$ $\ell-1$ •

9.2. Results

In this section we will make tables giving approximate values of Q_{3} defined by (6.8), which may be useful in practical fields. As the value of Q_{3} depends upon the values of α and β in (6.10), there are many cases according to the combination of the values of α and β. So in order to find the value of Q_{3} roughly, we will make the tables giving Q_{3} for the
case of $g(x)=f(x)$ under A_{f}^{*}. In the case that $g(x)$ differs from $f(x)$, an approximate value of Q_{3} can be computed by using (6.8) and (9.12).

Examples of computational results are partly shown in Table 9.1 Table 9.4. In these tables, the notation PLUS, MINUS and ALTERNATING have the following meanings, respectively;

PLUS	$: \eta_{i}>0$	$(i=1,2, \ldots, \ell-1)$.
MINUS	$: \eta_{i}<0$	$(i=1,2, \ldots, \ell-1)$.
ALTERNATING $: \eta_{i}>0$	$(i=1,3, \ldots, \ell-1) ; \quad \eta_{i}<0 \quad(i=2,4, \ldots, \ell-2)$.	

In the second row, we show the values of $\left|\eta_{i}\right|$ which is equal to 0.01σ, 0.05σ or 0.10σ, where σ represents the standard deviation of $f(x)$. For the sake of computational convenience we assumed that $\left|\eta_{i}\right|$ was constant for any stratum and a number of strata ℓ was even. From these computational results for the four distributions, we obtain the followings:
(i) For all cases, the value of Q_{3} under $E A$ is nearly equal to that under NA.
(ii) In the case of ALTERNATING, the value of Q_{3} is fairly large.
(iii) In the case of ALTERNATING, the value of Q_{3} under PA is smallest and in other cases the differences of the values of Q_{3} under three allocation methods are not so remarkable as in the case of ALTERNATING.
(iv) In the case of ALTERNATING, if $\ell=10$ and $\left|\eta_{i}\right|=0.10 \sigma$, then the value of Q_{3} is nearly equal to 1 for some distributions.
(v) In the case of PLUS or MINUS if $\left|\eta_{i}\right| \leqq 0.05 \sigma$, then the value of Q_{3} is less than 0.13 . Therefore in such cases there may be no riskiness from the practical point of view.
(vi) In general Q_{3} is more robust for symmetric distributions than for unsymmetric ones with respect to η_{i}.
(vii) The value of Q_{3} for the normal distribution is smallest among those for the four distributions.

9.3. Some Practical Example

As in Section 7.5 and Section 8.3, let us take up the frequency distribution of the sale of benzine shown in Table 5.3, Case 8. In this case, computed optimum stratification points z_{i}^{*} 's are as follows;

$$
z_{1}^{*}=114.5, \quad z_{2}^{*}=253.8, \quad z_{3}^{*}=431.7, \quad z_{4}^{*}=678.6, \quad z_{5}^{*}=1086.3 .
$$

Let us change z_{i}^{*} as follows owing to the constraint of sampling frame (see Table 5.5), and evaluate the influence of this change by using (9.12);

$$
z_{1}=120, \quad z_{2}=260, \quad z_{3}=500, \quad z_{4}=700, \quad z_{5}=1100
$$

The distribution $g(x)$ standardizing the histogram $g_{z}(z)$ is given by $g(x)=g_{z}\left(x / \beta^{*}\right) / \beta^{*}$. The mean μ_{g}, variance σ_{g}^{2} for $g(x)$ and the mean μ_{f}, variance σ_{f}^{2} for $f(x)$ are

$$
\mu_{g}^{\prime}=0.8787, \quad \sigma_{g}^{2}=1.0100 ; \mu_{f}=1.0000, \quad \sigma_{f}^{2}=1.0000
$$

respectively, so

$$
\alpha=\mu_{g} / \mu_{f}-1=-0.1213, \quad \beta=\sigma^{2} g / \sigma_{f}^{2}-1=0.0100
$$

The values of ξ_{i} in (9.12) are given by the followings (see Table 3.10);

$$
\begin{array}{ll}
\xi_{1}=0.3543, & \xi_{2}=0.7853, \\
\xi_{4}=2.0999, & \xi_{5}=3.3618
\end{array}
$$

The values of η_{i} are obtained as follows by the relation $\eta_{i}=\beta_{i}^{*}\left(z_{i}-z_{i}^{*}\right)$;

$$
\begin{array}{lll}
\eta_{1}=0.01706, & \eta_{2}=0.01928, & \eta_{3}=0.21108 \\
\eta_{4}=0.06627, & \eta_{5}=0.04228
\end{array}
$$

Since $\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)=0.03507$ from Table 3.10 , we have

$$
Q_{3}=0.1607
$$

If we consider that $\alpha \fallingdotseq-0.1$ and $R \div-0.01$, then the value of q in (6.7) is $q=0.039$ from Table 7.4. The efficiency Q_{3}^{*}, which is the ratio of R_{3} against the optimum value $\Psi\left(\phi_{g}^{*}, A_{g}^{*} ; g\right)$, is given as follows from (6.7) and (6.8);

$$
Q_{3}^{*}=Q_{3} /(1-q)=0.174
$$

Therefore we may conclude that the loss owing to changing z_{i}^{*} to z_{i} is small and there is no riskiness from the practical point of view.

CHAPTER 10

CONCLUSION

We will now summarize the main results obtained in this paper.

In Chapter 3, we considered the estimation of the population mean μ, and obtained the followings:
(3-1) Optimum Stratification Points (OSP) and Minimum Variances (Min.Var.) for typical four distributions under three sample allocations were computed by using nonlinear programming algorithms up to 10 strata.
(3-2) Gains of the increase of the number of strata and efficiencies of each allocation were investigated for the above cases.
(3-3) Neyman Allocation (NA) and Equal Allocation (EA) turned out to give quite similar results.
(3-4) General Optimum Stratification (GOS) could be regarded to coincide with Interval Optimum Stratification (IOS).
(3-5) A method for determining the sample size and the number of strata were given under the assumption that the total sampling cost was constant.

In chapter 4, we considered the estimation of the population variance σ^{2}, and obtained the followings:
(4-1) OSP and Min.Var. for typical four distributions under Proportional Allocation (PA) were computed by using general nonlinear programming algorithm up to 4 or 5 strata.
(4-2) Gains of the increase of the number of strata and efficiencies of each stratification method were investigated for the above four distributions.
(4-3) Asymptotic GOS (AGOS) did not always coincide with Asymptotic IOS (AIOS), especially AGOS was much better than AIOS in case of the symmetric distributions.

Applicational scheme of the above-mentioned results to practical sample surveys was proposed in Chapter 5, and we applied it to the data of "Current Survey on Petroleum Products Demand and Supply" as representative examples.- By these examples, it could be shown that our proposed procedure decreased the standard error of the estimator \bar{X} for μ by about $30-60 \%$ compared with the traditional procedure, and the influence on the standard error of \bar{X} owing to small change of sample sizes in respective strata and stratification points was about less than 10% and might not be serious.

In Chapters 7, 8 and 9 , we discussed three sub-problems of robustness in optimum stratification based on the formulation given in Chapter 6.

As for the robustness on distributions, we obtained the followings in Chapter 7:
(7-1) The value of Q_{1} under NA or EA was more robust than that under PA with respect to some kind of changes of distributions.
(7-2) The value of Q_{1} under NA or $E A$ was fairly robust and it was less than 20% in usual cases.
(7-3) In general, the value of Q_{1} was more robust for a symmetric distribution than for an unsymmetric one with respect to the change of a distribution. Especially for an unsymmetric distribution, PA is not recommendable, because the value of Q_{1} for such a case may be large.

As for the robustness on sample sizes in respective strata, we obtained the followings in Chapter 8:
(8-1) The value of Q_{2} under NA was nearly independent on a distribution.
(8-2) The value of Q_{2} under NA or EA was more robust than that under PA.
(8-3) The value of Q_{2} under NA or EA was very robust and was less than 3% in usual cases.
(8-4) In general, the value of Q_{2} under PA for a symmetric distribution was more robust than that for an unsymmetric distribution, and so PA is not recommendable for an unsymmetric distribution.

As for the robustness on stratification points, we obtained the followings in Chapter 9:
(9-1) Although the value of Q_{3} under PA was the smallest in the case of ALTERNATING, that under NA or EA was not so large. In other cases (PLUS or MINUS), the differences of the values of Q_{3} under three allocations were not remarkable.
(9-2) We should pay much attention to the cases of ALTERNATING because the value of Q_{3} was too large for some distributions. On the contrary, in the cases of PLUS or MINUS the value of Q_{3} was usually less than 13%, so there may be no riskiness from the practical point of view.
(9-3) The value of Q_{3} was more robust for a symmetric distribution than that for an unsymmetric distribution. Especially in the case of the normal distribution, the value of Q_{3} was most robust.
Through all these discussions, EA gave quite similar results with NA as reported in Chapter 1.

In the chapters dealing with three kinds of robustness, we gave some practical examples. Now let us summarize these examples:

[Example 10.1]

Consider the data shown in Table 5.3, Case 8. In Section 5.2 we applied our proposed working procedure to this data, and then changed sample sizes in respective strata and stratification points as shown in the last two rows of Table 5.5. In Chapters 7,8 and 9 we have evaluated the influence of such change, and have obtained

$$
Q_{1}=0.035, \quad Q_{2}=0.002, \quad Q_{3}=0.161
$$

So the theoretical consideration yields

$$
Q_{0}=0.198
$$

On the other hand as shown in Chapter 5 , we have obtained

$$
S_{1}=0.786, \quad S_{3}=0.871
$$

Since S_{1}^{2} and S_{3}^{2} may be nearly equal to $\Psi\left(\phi_{f}^{*}, A_{f}^{*} ; g\right) /\left\{n\left(\beta^{*}\right)^{2}\right\}$ and $\Psi\left(\phi_{f}, A_{f}\right.$ $; g) /\left\{n(\beta *)^{2}\right\}$ respectively, the value of Q_{0} can be given as follows by using $n=4272, B^{*}=0.00309, \Psi\left(\phi_{f}^{*}, A_{f}^{*} ; f\right)=0.035068$ and $Q_{1}=0.035$;

$$
Q_{0}=Q_{1}+Q_{2}+Q_{3}=Q_{1}+n\left(B^{*}\right)^{2}\left(S_{3}^{2}-S_{1}^{2}\right) / \Psi\left(\phi_{f, r}^{*} A_{f}^{*} ; f\right)=0.199
$$

This value is almost the same as that obtained above. It may, therefore, be concluded that the evaluation methods for Q_{1}, Q_{2} and Q_{3} given in Chapters 7, 8 and 9 are useful in practice.

As a conclusion, we may apply our working procedure proposed in Section 5.1 in designing stratified random sampling to estimate the population mean, if the population distribution can be approximated by
either of the distributions shown in Section 2.6, (A). As a stratification method, we could use Interval Optimum Stratification (IOS) because General Optimum Stratification (GOS) coincided with IOS in the range of the cases treated in this paper (cf. GOS was very effective in estimating the population variance, especially for symmetric distributions). The robustness of a sample design should be evaluated by using the tables given in Chapters 7, 8 and 9 or by the formulae (7.2), (8.5) and (9.12). The value of Q_{0}, which indicates the degree of robustness, is usually not so large. As for a sample allocation method, Equal Allocation is recommendable since it is simpler, more robust than Proportional Allocation and gives quite similar effects with the optimal allocation, Neyman Allocation. The number of strata may be sufficient to be less than or equal to 5 so far as the stratification cost is not so cheap, and then we can get satisfactory effect of stratification. The author hopes that the results given in this paper are effectively utilized in practical sample surveys.

ACKNOWLEDGEMENTS

The author is deeply grateful to Professor M. Okamoto, Osaka University, for his guidance and many valuable suggestions. He also wishes to express his gratitude to Professor A. Asai, Chiba University, for his continuous supports and encouragements. His hearty thanks are extended to Professor N. Inagaki, Osaka University, for his valuable comments. Furthermore the author wishes to thank Professor Y. Taga, Yokohama Municipal University, and Mr. O. Sakakibara, for their helpful suggestions and discussions.

REFERENCES

[1] Aoyama, H.(1954): A study of stratified random sampling, Ann. Inst. Statist. Math., Vol.6, pp.1-36.
[2] Aoyama, H.(1963): Stratified random sampling with optimum allocation for multivariate population, Ann. Inst. Statist. Math., Vol.14, pp.251-258.
[3] Bracken, J. \& McCormick, G.P.(1968): Selected Applications of Nonlinear Programming, John Wiley \& Sons, Inc., New York, pp.101-105.
[4] Cochran, W.G.(1961): Comparison of methods for determinating stratum boundaries, Bull. Inter. Statist. Inst., Vol.38, pp.345-358.
[5] Cochran, W.G.(1963): Sampling Techniques, John Wiley \& Sons, Inc., New York, pp.87-153.
[6] Coffman, C.(1965): Calculus of Several Variables, Harper \& Row, New York, pp.55-56.
[7] Dalenius, T.(1950): The problem of optimum stratification - I, Skand. Aktuarietidskr., Vol.33, pp.203-213.
[8] Dalenius, T. \& Gurney, M.(1951): The problem of optimum stratification - II, Skand. Aktuarietidskr., Vol.34, pp.133-148.
[9] Dalenius, T. \& Hodges, J.L.(1957): The choice of stratification points, Skand. Aktuarietidskr., Vol.40, pp.198-203.
[10] Dalenius, T. \& Hodges, J.L.(1959): Minimum variance stratification, Skand. Aktuarietidskr., Vol.54, pp.88-101
[11] Durbin, J.(1959): Review of "Sampling in Sweden", Jour. Roy. Statist. Soc., A, Vol.122, pp.246-248.
[12] Eckman, G.(1959): An approximation usef'ul in univariate stratification, Ann. Math. Statist., Vol.30, pp.219-229.
[13] Erdelyi, A.(1953): Higher Transcendental Functions, Vol.II, McGrawHill Book Co. Inc..
[14] Ericson, W.A.(1965): Optimum stratified sampling using prior information, Jour. Amer. Statist. Ass., Vol.60, pp.750-771.
[15] Ghosh, S.P.(1963): Optimum stratification with two characters, Ann. Math. Statist., Vol.34, pp.866-872.
[16] Ghosh, S.P.(1965): Optimum allocation in stratified sampling with replacement, Metrika, Vol.9, pp.212-221.
[17] Hastings, C.Jr.(1955): Approximations for Digital Computers, Princeton University Press.
[18] Hayashi, C. \& Maruyama, F.(1948): On some method for stratification (in Japanese), Res. Mem. Inst. Statist. Math., Vol.4, pp.399-411.
[19] Hayashi, C., Maruyama, F. \& Isida, M.D.(1951): On some criteria of stratification, Ann. Inst. Statist. Math., Vol.2, pp.77-86.
[20] Hess, I., Sethi, V.K. \& Balkrishna, T.R.(1966): Stratification: A practical investigation, Jour. Amer. Statist. Ass., Vol.61, pp.74-90.
[21] Hitotsumatsu, S.(1964): Kaiseki-gaku Josetsu (Introduction to Analysis), Vol.II, Shokabo, Tokyo, pp.9-10.
[22] Hooke, R. \& Jeeves,T.A.(1961): Direct search solution of numerical and statistical problems, Jour. Ass. Comput. Mach., Vol.8, pp.212.
[23] Isii, K.(1966): Mathematical programming and statistical inference (in Japanese), Sugaku (Mathematics), Vol.18, pp.85-95.
[24] Isii, K. \& Taga, Y.(1969): On optimal stratifications for multivariate distributions, Skand. Aktuarietidskr., Vol.52, pp.24-38.
[25] Jagannathan, R.(1965): The programming approach in multiple character studies, Econometrica, Vol.33, pp.236-237.
[26] Kitagawa, T.(1956): Some contributions to the design of sample surveys, Part IV, V \& VI, Sankhya, Vol.17, pp.1-36.
[27] Konno, H. \& Yamashita, H.(1978): Hisenkei Keikaku-ho (Nonlinear Programming Algorithms), Nikka-Giren, Tokyo, pp.237-244.
[28] Kpedekpo, G.M.K.(1973): Recent advances on some aspects of stratified sample design. A review of the literature, Metrika, Vol.20, PP.54-64.
[29] Murthy, M.N.(1967): Sampling Theory and Methods, Statist. Pub. Soc., Calcutta, pp.233-292.
[30] Nordbotten, S.(1956): Allocation in stratified sampling by means of linear programming, Skand. Aktuarietidskr., Vol.39, pp.1-6.
[31] Sakakibara, O.(1973): NLP - User's Manual, Nippon Univac Sogo Kenkyusho, Inc., Tokyo.
[32] Sethi, V.K.(1963): A note on optimum stratification of populations for estimating the population means, Aust. Jour. Statist., Vol.5, pp.20-33.
[33] Taga, Y.(1967):On optimum stratification for the objective variable based on concomitant variable using prior information, Ann. Inst. Statist. Math., Vol.19, pp.101-129.
[34] Taga, Y., Wakimoto, K. \& Yanagawa, T.(1973): Generalized U statistics for stratified random samples, Skand. Aktuarietidskr., Vol.1, pp.30_ 51.
[35] Taguri, M.(1975): Some modified Monte Carlo method to solve nonlinear optimization problems, Jour. Jap. Statist. Soc., Vol.5, pp.65-76.
[36] Taguri, M.(1980): Optimum stratification points for five typical distributions, Rep. Statist. Appl. Res., JUSE, Vol.27, pp.37-53.
[37] Taguri, M.(1982): Optimum stratification and its robustness (I) Representative example and basic idea, Rep. Statist. Appl. Res., JUSE, Vol. 29 , No.1, pp.7-18.
[38] Taguri, M.(1982): Optimum stratification and its robustness (II) Robustness on distributions, Rep. Statist. Appl. Res., JUSE, Vol.29, No.1, pp.19-29.
[39] Taguri, M. (1982): Optimum stratification and its robustness (III) Robustness on sample sizes in respective strata, Rep. Statist. Appl. Res., JUSE, Vol.29, No.2, pp.19-31.
[40] Taguri, M.(1982): Optimum stratification and its robustness (IV) Robustness on stratification points, Rep. Statist. Appl. Res., JUSE, Vol.29, No.2, pp.32-41.
[41] Taguri, M. \& Sakakibara, O.(1976): Application of nonlinear programming algorithms to some optimum stratification problem, Behaviormetrika, No.3, pp.57-72.
[42] Toda, H., Shimizu, R. \& Takeuchi, J.(1968.9): Tokei-bunpu to denshikeisanki (1) (Statistical distributions and computer (1)), Hyojunka to Hinshitsu Kanri, pp.59-64.
[43] Toda, H.; Shimizu, R. \& Takeuchi, J.(1968.11): Tokei-bunpu to denshi-keisanki (2) (Statistical distributions and computer (2)), Hyojunka to Hinshitsu Kanri, pp.45-52.
[44] Toda, H., Shimizu, R. \& Takeuchi, J.(1968.12): Tokei-bunpu to denshi-keisanki (3) (Statistical distributions and computer (3)), Hyojunka to Hinshitsu Kanri, pp.35-42.
[45] Wakimoto, K.(1971): Stratified random sampling (I), Estimation of the population variance, Ann. Inst. Statist. Math., Vol.23, pp.233-252.
[46] Wakimoto, K.(1971): Stratified random sampling (II), Estimation of the population covariance, Ann. Inst. Statist. Math., Vol.23, pp.327-337.
[47] Wakimoto, K.(1971): Stratified random sampling (III), Estimation of the correlation coefficient, Ann. Inst. Statist. Math., Vol.23, pp.339-353.

Table 3.1. OSP, Ψ_{N}^{*} and e_{N} for the equilateral triangular distribution

l	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	χ_{*}^{*}	x_{5}^{*}	$\Psi * *$	e_{N}
1						0.1666667	0.000
2	0.00000					0.0555551	0.667
3	-0.23132					0.0255607	0.847
4	-0.35425	0.00000				0.0150372	0.910
5	-0.44226	-0.13629				0.0097277	0.942
6	-0.50263	-0.22978	0.00000			0.0068784	0.959
7	-0.55072	-0.30425	-0.09669			0.0050797	0.970
8	-0.58745	-0.36112	-0.17052	0.00000		0.0039271	0.976
9	-0.61836	-0.40900	-0.23268	-0.07497		0.0031123	0.981
10	-0.64342	-0.44780	-0.28306	-0.13567	0.00000	0.0025363	0.985

Table 3.2. OSP, Ψ_{E}^{*} and e_{E} for the equilateral triangular distribution

ℓ	x_{1}^{*}	${ }^{*}$	x_{3}^{*}	${ }_{4}^{*}$	${ }_{5}^{*}$	$\Psi_{\text {E }}^{*}$	e_{E}
1						0.1666667	0.000
2	0.00000		-			0.0555551	0.667
3	-0.23207					0.0255610	0.847
4	-0.35915	0.00000				0.0150434	0.910
5	-0.44668	-0.13656				0.0097309	0.942
6	-0.50789	-0.23207	0.00000			0.0068811	0.959
7	-0.55551	-0.30641	-0.09681			0.0050814	0.970
8	-0.59243	-0.36401	-0.17183	0.00000		0.0039285	0.976
9	-0.62304	-0.41173	-0.23393	-0.07499		0.0031133	0.981
10	-0.64812	-0.45087	-0.28490	-0.13652	0.00000	0.0025371	0.985

Table 3.3. OSP, Ψ_{P}^{*} and e_{P} for the equilateral triangular distribution

l	${ }_{1}^{*}$	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	Ψ_{P}^{*}	e_{P}
1						0.1666667	0.000
2	0.00000					0.0555552	0.667
3	-0.25000					0.0260417	0.844
4	-0.38197	0.00000				0.0154800	0.907
5	-0.47444	-0.14963				0.0100775	0.940
6	-0.53734	-0.25139	0.00000			0.0071608	0.957
7	-0.58679	-0.33141	-0.10688			0.0053049	0.968
8	-0.62427	-0.39205	-0.18789	0.00000		0.0041128	0.975
9	-0.65551	-0.44260	-0.25541	-0.08315		0.0032656	0.980
10	-0.68066	-0.48330	-0.30979	-0.15010	0.00000	0.0026661	0.984

Table 3.4. OSP, Ψ_{N}^{*} and e_{N} for the normal distribution

l	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	Ψ_{N}^{*}	e_{N}
1						1.000000	0.000
2	0.00000					0. 363380	0.637
3	-0.54981					0.182473	0.818
4	-0.87569	0.00000				0.109128	0.891
5	-1.10410	-0.33585				0.072461	0.928
6	-1.27825	-0.57560	0.00000			0.051569	0.948
7	-1.41805	-0.76055	-0.24280			0.038556	0.961
8	-1.53427	-0.91021	-0.43182	0.00000		0.029909	0.970
9	-1.63339	-1.03532	-0.58579	-0.19034		0.023873	0.976
10	-1.71955	-1.14244	-0.71516	-0.34622	0.00000	0.019495	0.981

Table 3.5. OSP, Ψ_{E}^{*} and e_{E} for the normal distribution

l	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	${ }_{\Psi}^{\Psi}{ }_{\text {P }}^{*}$	e_{E}
1		*				1.000000	0.000
2	0.00000					0.363380	0.637
3	- -0.56888					0.182704	0.817
4	-0. 90091	0.00000				0.109294	0.891
5	-1. 13189	--0.34326				0.072570	0.927
6	-1.30729	-0.58671	0.00000			0.051643	0.948
7	-1.44770	-0.77377	-0.24674			0.038607	0.961
8	-1.56422	-0.92473	-0.43813	0.00000		0.029946	0.970
9	-1.66343	-1.05069	-0. 59364	-0.19278		0.023901	0.976.
10	-1.74960	-1.15838	-0.72407	-0.35031	0.00000	0.019516	0.980

Table 3.6. OSP, Ψ_{P}^{*} and e_{P} for the normal distribution

l	x_{1}^{*}	x_{2}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	$\Psi{ }_{P}^{*}$	e_{P}
1						1.000000	0.000
2	0.00000					0.363380	0.637
3	-0.61201					0.190175	0.810
4	-0.98158	0.00000				0.117483	0.883
5	-1.24435	-0.38228				0.079943	0.920
6	-1.44684	-0.65891	0.00000			0.057979	0.942
7	-1.61075	-0.87436	-0.28029			0.044001	0. 956
8	-1.74792	-1.04995	-0. 50055	0.00000		0.034549	0.965
9	-1.86552	-1.19759	-0.68122	-0.22182		0.027854	0.972
10	-1.96821	-1.32457	-0.83384	-0.40474	0.00000	0.022938	0.977

Table 3.7. OSP, Ψ_{N}^{*} and e_{N} for the rightangled triangular distribution

l	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{1}^{*}	x_{5}^{*}	x_{6}^{*}	x_{7}^{*}	x_{8}^{*}	x_{9}^{*}	Ψ_{*}^{*}	e_{N}
1											0.2222222
2	0.75850							0.000			
3	0.45956	1.00526								0.0601488	0.729
4	0.34105	0.72225	1.17489							0.0275137	0.876
5	0.27133	0.56611	0.89559	1.28683				0.0157086	0.929		
6	0.22534	0.46610	0.72767	1.02003	1.36718					0.0101453	0.954
7	0.19271	0.99634	0.61390	0.85026	1.11445	1.42816				0.0070887	0.968
8	0.16834	0.34483	0.53132	0.73057	0.94704	1.18899	1.47629			0.0052311	0.977
9	0.14945	0.30522	0.46852	0.64107	0.82543	1.02573	1.24960	1.51543		0.0040184	0.982
10	0.13438	0.27379	0.41909	0.57142	0.73238	0.90436	1.09120	1.30002	1.54799	0.0031833	0.986

Table 3.8. OSP, Ψ_{E}^{*} and e_{E} for the rightangled triangular distribution

ℓ	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	x_{6}^{*}	x_{7}^{*}	x_{8}^{*}	x_{9}^{*}	Ψ_{E}^{*}	e_{E}
l										0.2222222	0.000
2	0.71831									0.0601734	0.729
3	0.46412	1.01574								0.0275245	0.876
4	0.34366	0.7206	1.18489							0.0157140	0.929
5	0.27302	0.56980	0.90174	1.29624			0.010144	0.954			
6	0.22656	0.46870	0.73187	1.02624	1.37604					0.0070906	0.968
7	0.19357	0.3917	0.61685	0.85454	1.12037	1.43631				0.0052324	0.976
8	0.16902	0.34627	0.53362	0.73387	0.95150	1.19485	1.48403			0.0040193	0.982
9	0.14997	0.30631	0.47025	0.64356	0.82880	1.03012	1.25525	2.52279		0.0031840	0.986
10	0.13486	0.27479	0.42065	0.57360	0.73527	0.90803	1.09575	1.30564	1.55508	0.0025844	0.988

Table 3.9. OSP, Ψ_{P}^{*} and e_{P} for the rightangled triangular distribution

l	${ }^{*}$	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{6}^{*}	x_{6}^{*}	x_{7}^{*}	x_{6}^{*}	x_{8}^{*}	Ψ_{P}^{*}	e_{P}
1										0.2222222	0.000
2	0.76397									0.0619201	0.721
3	0.50279	1.07467								0.0286434	0.871
4	0.37577	0. 78409	1. 24853							0.0164512	0.926
5	0.30021	0.61958	0.96661	1. 36133						0.0106643	0.952
6	0.25002	0.51271	0.79215	1.09580	1.44117					0.0074701	0.966
7	0.21423	0.43747	0.67201	0.92152	1. 19264	1.50103				0.0055226	0.975
8	0.18742	0.38158	0.58390	0.79646	1.02259	1.26830	1.54779			0.0042482	0.981
9	0.16659	0.33840	0. 51639	0. 70185	0.89671	1.10400	1.32925	1.58545		0.0033690	0.985
10	0.14992	0.30402	0. 46295	0. 62760	0.79916	0.97941	1.17116	1.37953	1.61653	0.0027370	0.988

Table 3.10. OSP, Ψ_{N}^{*} and e_{N} for the exponential distribution

l	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	x_{6}^{*}	x_{7}^{*}	x_{8}^{*}	x_{9}^{*}	Ψ_{N}^{*}	e_{N}
1											1.000000
	1.26191									0.000	
3	0.76396	2.02587								0.285434	0.715
4	0.55065	1.31461	2.57652							0.133225	0.867
5	0.43103	0.98167	1.74563	3.00754					0.076868	0.923	
6	0.35428	0.78531	1.33595	2.09992	3.36182					0.049969	0.950
7	0.30001	0.65509	1.08612	1.63673	2.40073	3.66263				0.035068	0.965
8	0.26139	0.56220	0.91648	1.34751	1.89815	2.66212	3.92403			0.025961	0.974
9	0.23112	0.49252	0.79333	1.14761	1.57864	2.12928	2.89325	4.15515		0.019991	0.980
10	0.20715	0.43827	0.69967	1.00048	1.35476	1.78579	2.33643	3.10040	4.36230	0.015867	0.984

Table 3.11. OSP, Ψ_{E}^{*} and e_{E} for the exponential distribution

l	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	x_{6}^{*}	x_{7}^{*}	x_{8}^{*}	x_{9}^{*}	Ψ_{E}^{*}	e_{E}
1										1.000000	0.000
2	1.30008									0.285810	0.714
3	0.77906	2.07914								0.133378	0.867
4	0.55875	1.33781	2.63789							0.076946	0.923
5	0.43609	0.99485	1.77391	3.07399						0.05013	0.950
6	0.35774	0.79383	1.35253	2.13164	3.43172					0.035096	0.965
7	0.30332	0.6610	1.09716	1.65591	2.33496	3.73504				0.025980	0.974
8	0.26331	0.56664	0.92439	1.36048	1.91923	2.69830	3.99837			0.020004	0.980
9	0.23264	0.49595	0.79928	1.15703	1.59313	2.15188	2.93095	4.23102		0.01589	0.984
10	0.20836	0.44098	0.70429	1.00761	1.36536	1.80145	2.36020	3.13926	4.43933	0.012905	0.987

Table 3.12. OSP, Ψ_{P}^{*} and e_{P} for the exponential distribution

$\therefore 1$	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	χ_{5}^{*}	x_{6}^{*}	x_{7}^{*}	x_{B}^{*}	x_{9}^{*}	$\Psi{ }^{*}$	e_{P}
1										1.000000	0.000
2	1. 59359									0. 352390	0.658
3	1.01758	2.61120								0.179737	0.820
4	0. 75403	1. 77161	3. 36523							0.108952	0.891
5	0.60043	1.35447	2.37205	3. 96567						0.073090	0.927
6	0.49932	1.09976	1.85379	2.87137	4.46500					0.052427	0.948
7	0. 42757	0. 92689	1. 52733	2.28137	3.29895	4.89257				0.039439	0.961
8	0.37394	0.80152	1. 30085	1.90128	2.65532	3.67290	5. 26652			0.030745	0.969
9	0. 33233	0.70629	1.13387	1.63321	2.23365	2.98769	4.00527	5.59890		0.024640	0.975
10	0.29906	0.63137	1.00531	1.43289	1. 93219	2.53262	3.28660	4.30423	5.89786	0.020189	0.980

Table 3.13. OSP, Ψ_{G}^{*} for the equilateral triangular distribution

ℓ							x_{0}^{*}	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	x_{6}^{*}	x_{*}^{*}	Ψ_{G}^{*}
2			2				-1.000	0.00θ	1.000	1.000					0.05556
3			2				-1.000	-1.000	-0.231	0.231	1.000				0.02556
			2				-1.000	-1.000	-0.231	0.231	1.000	1.000			0.02556
			2		1		-1.000	-1.000	-1.000	-0.231	0.231	1.000			0.02556
4			2		1		-1.000	-0.354	0.000	0.354	1.000	1.000	1.000	0.01504	
			2	-	4		-1.000	-1.000	-0.354	0.000	0.354	1.000			0.01504
			2		4		-1.000	-0.354	0.000	0.354	0.354	1.000	1.000		0.01504
			2		4		-1.000	-1.000	-1.000	-0.354	0.000	0.354	1.000		0.01504
			2		2		-1.000	-1.000	-1.000	-0.354	0.000	0.354	1.000		0.01504
			2		3		-1.000	-0.354	0.000	0.354	1.000	1.000	1.000		0.01504
			2		1	4	-1.000	-1.000	-0.354	-0.354	0.000	0.354	1.000	1.000	0.01504
			2		4	3	-1.000	-1.000	-0.354	0.000	0.354	1.000	1.000	1.000	0.01504
			2		1	4	-1.000	-1.000	-1.000	-0.354	0.000	0.354	1.000	1.000	0.01504
			2		4	2	-1.000	-0.354	0.000	0.354	0.354	1.000	1.000	1.000	0.01504
		,	2		3	2	-1.000	-0.354	0.000	0.354	1.000	1.000	1.000	1.000	0.01504

Table 3.14. OSP, Ψ_{G}^{*} for the normal, rightangled triangular and exponential distribution

	ℓ		x_{0}^{*}	x_{1}^{*}	x_{2}^{*}	x_{3}^{*}	x_{4}^{*}	x_{5}^{*}	$\Psi_{\text {世 }}^{*}$
2°	2	121	-3.000	-3.000	0.000	3.000			0.34741
	3	1231	-3.000	-3.000	-0.545	0.545	3.000		0.17256
	4	12341	-3.000	-3.000	-0.866	0.000	0.866	3.000	0.10236
3°	2	121	0.000	0.709	2.000	2.000			0.06015
	3	1231	0.000	0.460	1.005	2.000	2.000		0.02751
	4	12341	0.000	0.341	0.722	1.175	2.000	2.000	0.01571
4°	2	121	0.000	1.225	6.000	6.000			0.25323
	3	1231	0.000	0.741	1.938	6.000	6.000		0.11639
	4	12341	0.000	0.533	1.262	2.430	6.000	6.000	0.06647

Table 3.15. c_{E} and c_{P} for the four distributions

| Name of distribution | c_{c}^{l} | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equilateral
 triangular distribution | c_{E} | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| | c_{P} | 0.000 | 0.019 | 0.029 | 0.036 | 0.041 | 0.043 | 0.047 | 0.049 | 0.051 |
| Normal distribution | c_{E} | 0.000 | 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| | c_{P} | 0.000 | 0.042 | 0.058 | 0.103 | 0.124 | 0.141 | 0.155 | 0.167 | 0.176 |
| Rightangled | c_{E} | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| triangular distribution | c_{P} | 0.029 | 0.041 | 0.047 | 0.051 | 0.054 | 0.056 | 0.057 | 0.058 | 0.059 |
| Exponential | c_{E} | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| distribution | c_{P} | 0.235 | 0.349 | 0.417 | 0.463 | 0.495 | 0.519 | 0.538 | 0.553 | 0.565 |

Table 3.16. $\psi_{1}(\ell)$ for the equilateral triangular distribution

Table 3.17. $\psi_{2}(\ell)$ for the equilateral triangular distribution

Table 3.18. $\psi_{1}(\ell)$ for the normal distribution

										$\left(\times 10^{-6}\right)$	
$1 / k$	k	1	2	3	4	5	6	7	8	9	10
0.010	100	10101	3708	1884	1138	764	549	415	326	263	217
0.020	50	20408	7570	3887	2376	1613	1174	898	713	583	488
0.033	30	34482	12978	6767	4204	2903	2152	1679	1361	1138	$\underline{976}$
0.040	25	41667	15799	8305	5204	3629	2718	2145	1762	1494	1301
0.050	20	52632	20188	10747	6831	4838	3689	2970	2496	2173	1952
0.067	15	71429	27952	15225	9936	7257	5738	4826	4278	3984	3903
0.100	10	111111	45423	26101	18216	14514	12911	12869	14973	23901	
0.111	9	125000	51911	30451	21859	18143	17214	19304	29946		
0.125	8	142857	60563	36541	27324	24190	25822	38607			
0.143	7	166667	72676	45674	36431	36285	51643				
0.167	6	200000	90845	60901	54647	72570					
0.200	5	250000	121127	91352	109294						
0.250	4	333333	181690	182704							
0.333	3	500000	363380								
0.500	2	1000000									

Table 3.19. $\psi_{2}(\ell)$ for the normal distribution

1/k	${ }_{k}{ }^{2}$	1	2	3	4	5	6	7.	8	9
0.010	100	10101	3785	2008	1301	968	807	757	832	2173
0.020	50	20408	7900	4456	3215	2903	-3689	$38 \widehat{607}$		
0.033	30	34483	13976	8700	7807	$1 \overline{4514}$				
0.040	25	41667	17304	11419	12144					
0.050	20	52632	22711	16609	27324°					
0.067	15	71429	33035	30451						
0.100	10	111111	60563	182704						
0.111	9	125000	72676							
0.125	8	142857	90845							
0.143	7	166667	121127		,					
0.167	6	200000	181690							
0.200	5	250000	363380				,			
0.250	4	333333								
0.333	3	500000								
0.500	2	1000000								

Table 3.20. $\psi_{1}(\ell)$ for the rightangled triangular distribution

$1 / k$	k	l	1	2	3		4	5	6	7	8	9

Table 3.21. $\psi_{2}(\ell)$ for the rightangled triangular distribution

									$\left(\times 10^{-7}\right)$	
1/k	k^{ℓ}	1	2	3	4	5	6	7	8	9
0.010	100	22447	6268	3025	1871	1353	1108	1026	1116	1676
0.020	50	45351	13081	6713	4622	4059	5065	523		
0.033	30	76628	23144	13107	11224	20297		,		
0.040	25	92593	28654	17203	17460					
0.050	20	116959	37608	25022	39285					
0.067	15	158730	54703	45874						
0.100	10	246914	100289	275245						
0.111	9	277778	120347							
0.125	8	317460	150434							
0.143	7	370370	200578							
0.167	6	444444	300867				,			
0.200	5	555556	601734							
0.250	4	740741								
0.333	3	1111111								
0.500	2	2222222								

Table 3.22. $\psi_{1}(\ell)$ for the exponential distribution

Table 3.23. $\psi_{2}(\ell)$ for the exponential distribution

1/k	$k{ }^{8}$	1	2	3	4	5	6	7	8	9
0.010	100	10101	2977	1466	916	667	548	509	556	1443
0.020	50	20408	6213	3253	2263	2001	2507	25980		
0.033	30	34483	10993	6351	5496	$1 \overline{0003}$				
0.040	25	41667	13610	8336	8550					
0.050	20	52632	17863	12125	19237					
0.067	15	71429	25983	$\underline{22230}$						
0.100	10	111111	47635	$13 \overline{3378}$:					
0.111	9	125000	57162							
0.125	8	142857	71453							
0.143	7	166667	$\underline{95270}$, •			,
0.167	6	200000	$1 \overline{42905}$,
0.200	5	250000	285810							
0.250	4	333333								
0.333	3	500000								
0.500	2	1000000								

Table 4.1. OSP, $V_{I}^{* *}, e_{I}$ and c_{S} for the four distributions

	ℓ	$x_{0}^{* *}$	$x_{1}^{* *}$	$x_{2}^{* *}$	$x_{3}^{* *}$	$x_{4}^{* *}$	$x_{5}^{* *}$	$V_{I}^{* *}$	e_{I}	c_{S}
1	1	-1.000	1.000					0.03889	0.000	0.000
	2	-1.000	0.570	1.000				0.02624	0.325	0.604
	3	-1.000	-0.529	0.529	1.000			0.01038	0.733	0.547
	4	-1.000	-0.518	0.423	0.677	1.000		0.00765	0.803	0.651
	5	-1.000	-0.668	-0.405	0.405	0.668	1.000	0.00470	0.879	
2	1	-3.000	3.000					1.73269	0.000	0.000
	2	-3.000	-1.515	3.000				1.18517	0.316	0.537
	3	-3.000	-1.423	1.423	3.000			0.54928	0.683	0.527
	4	-3.000	-1.394	1.130	1.893	3.000		0.40950	0.764	0.635
	5	-3.000	-1.867	-1.084	1.084	1.867	3.000	0.25997	0.850	
3°	1	0.000	2.000					0.06914	0.000	0.000
	2	0.000	1,382	2.000				0.02484	0.641	0.000
	3	0.000	0.205	1.351	2.000			0.01751	0.747	0.429
	4	0.000	0.226	1.198	1.554	2.000		0.00894	0.871	0.319
	5	0.000	0.235	1.121	1.399	1.653	2.000	0.00605	0.912	
4°	1	0.000	6.000					4.41936	0.000	0.000
	2	0.000	3.309	6.000				1.35384	0.694	0.000
	3	0.000	2.674	4.156	6.000			0.65524	0.852	0.000
	4	0.000	2.375	3.449	4.598	6.000		0.40864	0.908	0.000
	5	0.000	2.201	3.058	3.920	4.870	6.000	0.29656	0.933	

Table 4.2. OSP, $V_{G}^{* *}$ and e_{G} for the four distributions

	ℓ		$x_{0}^{* *}$	$x_{1}^{* *}$	$x_{2}^{* *}$	$x_{3}^{* *}$	$x_{4}^{* *}$	$x_{5}^{* *}$	$x_{6}^{* *}$	$x_{7}^{* *}$	$V_{G}^{* *}$	${ }^{e} G$
1°	2	121	-1.000	-0.529	0.529	1.000					0.01038	0.733
	3	12321	-1.000	-0.668	-0.405	0.405	0.668	1.000			0.00470	0.879
	4	1234321	-1.000	-0.739	-0.547	-0.337	0.337	0.547	0.739	1.000	0.00267	0.931
2°	2	121	-3.000	-1.423	1.423	3.000					0.54928	0.683
	3	12321	-3.000	-1.867	-1.084	1.084	1.867	3.000			0.25997	0.850
	4	1234321.	-3.000	-2.110	-1.493	-0.900	0.900	1.493	2.110	3.000	0.14956	0.914
3°	2	121	0.000	0.000	1.382	2.000					0.02484	0.641
	3	12321	0.000	0.000	0.205	1.128	1.490	2.000			0.00999	0.856
	4	1234321	0.000	0.000	0.000	0.232	1.102	1.378	1.642	2.000	0.00609	0.912
4°	2	121	0.000	3.309	6.000	6.000					1.35384	0.694
	3	12321	0.000	2.674	4.156	6.000	6.000	6.000			0.65524	0.852
	4	1234321	0.000	2.375	3.449	4.598	6.000	6.000	6.000	6.000	0.40864	0.908

Table 5.1. The traditional strata

Stratum No.	Sale of LPG (ton)	Sale of benzine (K1)
1	$1 \sim 49$	$1 \sim 49$
2	$50 \sim 99$	$50 \sim 99$
3	$100 \sim 199$	$100 \sim 199$
4	$200 \sim 249$	$200 \sim 259$
5	$250 \sim$	$260 \sim 499$
6		$500 \sim$

Table 5.2. The sale of LPG and the optimum value β^{*}

$\begin{array}{ll} \hline \text { Class } & \text { Case No. } \\ \hline \end{array}$	1	2	3	4	5	6
$1 \sim 4$	240	215	230	205	10	7
$5 \sim 9$	260	246	240	226	20	19
10~19	438	426	324	310	114	109
20~29	237	228	159	146	78	77
$30 \sim 49$	233	222	165	150	68	66
$50 \sim 69$	117	114	80	77	37	35
$70 \sim 99$	114	111	75	73	39	37
$100 \sim 119$	54	51	37	31	17	15
$120 \sim 139$	41	39	30	29	11	10
$140 \sim 159$	50	48	35	31	15	15
$160 \sim 179$	44	44	29	29	15	13
$180 \sim 199$	31	30	16	15	15	14
$200 \sim 249$	101	94	51	48	50	43
250~	491	471	268	247	223	209
m_{K}^{\prime}	785	765	785	765	740	750
β^{*}	0.00432	0.00429	0.00490	0.00491	0.00329	0.00332
[Remark] Case $1:$ LPG (Type I), 1978 Case $2:$ LPG (Type I), 1980 Case $3:$ LPG (Type II), 1978 Case $4:$ LPG (Type II), 1980 Case 5: LPG (Type III), 1978 Case 6: LPG (Type III), 1980						

Table 5.3. The sale of benzine and the optimum value β^{*}

Class Case No.	7	8
$1 \sim 9$	132	106
$10 \sim 19$	89	85
$20 \sim 29$	162	159
$30 \sim 39$	239	234
$40 \sim 49$	268	263
$50 \sim 59$	245	239
$60 \sim 79$	369	360
$80 \sim 99$	256	253
$100 \sim 119$	221	218
$120 \sim 139$	165	163
$140 \sim 159$	129	126
$160 \sim 179$	121	117
$180 \sim 199$	127	124
$200 \sim 219$	123	120
$220 \sim 239$	130	129
$240 \sim 259$	134	134
$260 \sim 279$	109	108
$280 \sim 299$	91	91
$300 \sim 349$	197	196
$350 \sim 399$	175	171
$400 \sim 499$	246	243
$500 \sim$	643	633
m_{K}	1045	1075
β^{*}	0.00311	0.00309

[Remark] Case 7: Benzine, 1978
Case 8: Benzine, 1980

Table 5.4. $\operatorname{OSP}\left\{\mathbf{z}_{i}^{*}\right\}$, sample sizes $\left\{n_{i}^{*}\right\}$, the standard errors S_{1}, S_{2} and some efficiency

Table 5.5. Changed $\operatorname{OSP}\left\{z_{i}^{* *}\right\}$, sample sizes $\left\{n_{i}^{* *}\right\}$, the standard error S_{3} and some efficiencies

Table 6.1. λ_{u} for the rightangled triangular distribution under NA

ℓ	0.05	0.10	0.15	0.20
2	0.174	0.246	0.301	0.347
4	0.076	0.108	0.132	0.153
6	0.050	0.070	0.086	0.099
8	0.037	0.052	0.064	0.074
10	0.029	0.041	0.051	0.058

Table 6.2. λ_{u} for the exponential distribution under PA

δ	0.05	0.10	0.15	0.20
	0.327	0.462	0.566	0.653
	0.110	0.156	0.192	0.220
6	0.078	0.110	0.135	0.156
8	0.058	0.082	0.101	0.116
10	0.046	0.066	0.080	0.093

Table 7.1. q for the equilateral triangular distribution

Allocation method	\cdots	β	Number of strata \&								
			2	3	4	5	6	7	8	9	10
NA	-0.2	-0.12	0.095	0.084	0.080	0.077	0.076	0.075	0.074	0.074	0.073
	-0.1	-0.19	0.159	0.143	0.138	0.133	0.131	0.129	0.128	0.127	0.126
	-0.1	-0.01	0.007	0.006	0.006	0.006	0.006	0.006	0.006	0.005	0.005
	0.1	-0.01	0.007	0.006	0.006	0.006	0.006	0.006	0.006	0.005	0.005
	0.1	0.21	-0.121	-0.102	-0.099	-0.096	-0.096	-0.095	-0.094	-0.094	-0.094
	0.2	0.08	-0.053	-0.045	-0.043	-0.042	-0.041	-0.041	-0.041	- 0.040	-0.040
	0.2	0.32	-0.662	-0.139	-0.136	-0.132	-0.132	-0.130	-0.130	-0.129	-0.130
PA	-0.2	-0.12	0.095	0.079	0.073	0.067	0.065	0.063	0.061	0.060	0.059
	-0.1	-0.19	0.159	0.137	0.127	0.119	0.115	0.111	0.109	0.106	0.105
	-0.1	-0.01	0.007	0.006	0.005	0.005	0.005	0.004	0.004	0.004	0.004
	0.1	-0.01	0.007	0.006	0.005	0.005	0.005	0.004	0.004	0.004	0.004
	0.1	0.21	-0.121	-0.092	-0.084	-0.078	-0.076	-0.073	-0.072	-0.071	-0.070
	0.2	0.08	-0.053	-0.041	-0.037	-0.034	-0.033	-0.032	-0.032	-0.031	-0.031
	0.2	0.32	-0.162	-0.124	-0.114	-0.106	-0.103	-0.099	-0.098	-0.096	-0.096

Table 7.2. q for the normal distribution

Ailoca- tion method	α	β	Number of strata ℓ									
	0.1	0.21	-0.191	-0.188	-0.186	-0.187	-0.186	-0.186	-0.186	-0.186	-0.186	
	0.2	0.08	-0.077	-0.077	-0.076	-0.076	-0.076	-0.076	-0.076	-0.076	-0.076	
	0.2	0.32	-0.275	-0.271	-0.270	-0.270	-0.270	-0.270	-0.271	-0.271	-0.271	
EA	0.1	0.21	-0.191	-0.188	-0.187	-0.187	-0.187	-0.186	-0.186	-0.186	-0.186	
	0.2	0.08	-0.077	-0.077	-0.076	-0.076	-0.076	-0.076	-0.076	-0.076	-0.076	
	0.2	0.32	-0.275	-0.271	-0.270	-0.270	-0.270	-0.270	-0.271	-0.271	-0.271	
	0.1	0.21	-0.191	-0.184	-0.180	-0.178	-0.177	-0.176	-0.175	-0.174	-0.174	
PA	0.2	0.08	-0.077	-0.076	-0.075	-0.075	-0.074	-0.074	-0.074	-0.074	-0.074	
	0.2	0.32	-0.275	-0.262	-0.256	-0.253	-0.250	-0.249	-0.247	-0.247	-0.246	

Table 7.3. q for the rightangled triangular distribution

Allocation method	α	β	Number of strata ℓ								
			2	3	4	5	6	7	8	9	10
NA	-0.2	-0.12	0.106	0.131	0.139	0.142	0.144	0.145	0.146	0.146	0.147
	-0.1	-0.01	0.213	0.202	0.197	0.195	0.193	0.192	0.191	0.190	0.190
	0.1	-0.01	0.026	0.043	0.048	0.050	0.052	0.052	0.053	0.053	0.053
	0.1	0.21	-0.325	-0.113	-0.107	-0.105	-0.104	-0.108	-0.102	-0.102	-0.102
	0.2	0.08	-0.107	-0.113	-0.115	-0.116	-0.116	-0.117	-0.117	-0.117	-0.117
	0.2	0.32	-0.163	-0.156	-0.150	-0.147	-0.145	-0.144	-0.144	-0.143	-0.143
PA	-0.2	-0.12	0.064	0.083	0.089	0.091	0.093	0.094	0.095	0.096	0.096
	-0.1	-0.01	0.214	0.199	0.192	0.187	0.184	0.182	0.181	0.180	0.179
	0.1	-0.01	0.005	0.019	0.024	0.027	0.028	0.029	0.030	0.031	0.031
	0.1	0.21	-0.115	-0.097	-0.088	-0.084	-0.082	-0.080	-0.079	-0.078	-0.078
	0.2	0.08	-0.083	-0.084	-0.083	-0.083	-0,083	-0.083	-0.083	-0.083	-0.083
	0.2	0.32	-0.145	-0.126	-0.119	-0.114	-0.111	-0.109	-0.108	-0.107	-0.106

Table 7.4. q for the exponential distribution

Allocation method	α	β	Number of strata ℓ								
			2	3	4	5	6	7	8	9	10
NA	-0.2	-0.28	0.259	0.253	0.253	0.255	0.257	0.259	0.261	0.262	0.263
	-0.2	-0.12	0.109	0.135	0.154	0.164	0.169	0.171	0.172	0.172	0.172
	-0.1	-0.19	0.189	0.189	0.188	0.188	0.188	0.188	0.188	0.188	0.188
	-0.1	-0.01	0.013	0.024	0.032	0.036	0.039	0.041	0.042	0.043	0.043
	0.1	0.21	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209
EA	-0.2	-0.28	0.258	0.253	0.254	0.256	0.258	0.260	0.261	0.263	0.264
	-0.2	-0.12	0.110	0.135	0.155	0.165	0.169	0.171	0.172	0.172	0.172
	-0.1	-0.19	0.189	0.189	0.188	0.188	0.188	0.188	0.188	0.188	0.188
	-0.1	-0.01	0.014	0.025	0.033	0.037	0.040	0.041	0.042	0.043	0.043
	0.1	0.21	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209	-0.209
PA	-0.2	-0.28	0.210	0.172	0.158	0.155	0.155	0.156	0.156	0.156	0.156
	-0.2	-0.12	-0.025	-0.017	-0.010	-0.009	-0.008	-0.007	-0.006	-0.005	-0.005
	-0.1	-0.19	0.189	0.187	0.186	0.186	0.185	0.184	0.184	0.183	0.183
	-0.1	-0.01	-0.067	-0.079	-0.079	-0.079	-0.078	-0.077	-0.077	-0.076	-0.076
	0.1	0.21	-0.209	-0.208	-0.208	-0.207	-0.207	-0.207	-0.207	-0.206	-0.206

Table 7.5. Q_{1} for the equilateral triangular distribution

$\begin{gathered} \text { Alloca- } \\ \text { tion } \\ \text { method } \end{gathered}$	α	β	Number of stratal ℓ								
			2	3	4	5	6	7	8	9	10
NA	-0.2	-0.12	0.000	0.010	0.015	0.017	0.019	0.021	0.021	0.022	0.022
	-0.1	-0.19	0.000	0.026	0.039	0.046	0.050	0.054	0.055	0.057	0.058
	-0.1	-0.04	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000
	0.1	-0.01	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000
	0.1	0.21	0.000	0.025	0.038	0.047	0.052	0.055	0.059	0.060	0.062
	0.2	0.08	0.000	0.004	0.006	0.007	0.008	0.808	0.008	0.009	0.009
	0.2	0.32	0.000	0.054	0.085	0.105	0.118	0.127	0.133	0.138	0.141
PA	-0.2	-0.12	0.000	-0.004	-0.006	-0.009	-0.011	-0.011	-0.013	-0.014	-0.015
	-0.1	-0.19	0.000	0.006	0.007	0.007	0.006	0.008	0.005	0.004	0.004
	-0.1	-0.01	0.000	-0.001	-0.002	- 0.002	-0.002	-0.0013	-0.003	-0.003	-0.003
	0.1	-0.01	0.000	-0.001	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003	-0.903
	0.1	0.21	0.000	0.054	0.083	0.102	0.114	0.123	0.129	0.133	0.137
	0.2	0.08	0.000	0.014	0.022	0.028	0.031	0.033	0.034	0.036	0.036
	0.2	0.32	0.000	0.099	0.155	0.192	0.216	0.233	0.245	0.254	0.260

Table 7.6. Q_{1} for the normal distribution

Allocation method	*	3	Number of strata Q								
			2	3	4	5	6	7	8	9	10
NA	0.8	0.21	0.000	0.022	0.039	0.050	0.060	0.067	0.072	0.076	0.081
	0.2	0.08	0.000	0.003	0.006	0.008	0.009	0.010	0.011	0.012	0.012
	0.2	0.32	0.000	0.049	0.085	0.112	0.133	0.149	0.161	0.171	0.180
EA	0.1	0.21	0.000	0.023	0.039	0.051	0.060	0.068	0.073	0.078	0.082
	0.2	0.08	0.000	0.003	0.006	0.008	0.009	0.010	0.011	0.012	0.012
	0.2	0.32	0.000	0.050	0.088	0.115	0.136	0.152	0.164	0.174	0.183
PA	0.1	0.21	0.000	0.058	0.107	0.145	0.175	0.201	0.222	0.241	0.256
	0.2	0.08	0.000	0.016	0.029	0.039	0.047	0.054	0.059	0.063	0.067
	0.2	0.32	0.000	0.108	0.199	0.271	0.331	0.379	0.421	0.455	0.485

Table 7.7. Q_{1} for the rightangled triangular distribution

Aliocation method	α	β	Number of strata 2								
			2	3	4	5	6	7	8	9	10
NA	-0.2	-0.12	0.076	0.106	0.124	0.132	0.138	0.141	0.144	0.145	0.147
	-0.1	-0.01	0.207	0.191	0.189	0.189	0.188	0.188	0.188	0.188	0.188
	0.1	-0.01	0.034	0.091	0.107	0.114	0.120	0.122	0.124	0.125	0.126
	0.1	0.21	0.017	0.086	0.123	0.144	0.157	0.161	0.173	0.177	0.180
	0.2	0.08	0.073	0.126	0.135	0.139	0.142	0.143	0.144	0.145	0.145
	0.2	0.32	0.073	0.252	0.356	0.417	0.455	0.480	0.497	0.510	0.520
PA	-0.2	-0.12	-0.022	0.014	0.032	0.041	0.048	0.052	0.055	0.058	0.060
	-0.1	-0.01	0.211	0.170	0.169	0.168	0.167	0.167	0.168	0.168	0.168
	0.1	-0.0t	0.045	0.084	0.099	0.106	0.108	0.112	0.115	0.116	0.117
	0.1	0.21	0.073	0.166	0.223	0.256	0.276	0.291	0.302	0.309	0.314
	0.2	0.08	0.175	0.217	0.236	0.245	0.249	0.253	0.256	0.257	0.258
	0.2	0.32	0.176	0.422	0.562	0.647	0.699	0.737	0.762	0.781	0.795

Table 7.8. Q_{1} for the exponential distribution

Allocation method	α	β	Number of strata \&								
			2	3	4	5	6	7	8	9	10
NA	-0.2	-0.28	0.062	0.066	0.069	0.072	0.074	0.076	0.079	0.080	0.082
	-0.2	-0.12	0.023	0.040	0.058	0.074	0.088	0.100	0.112	0.123	0.134
	-0.1	-0.19	0.025	0.033	0.036	0.038	0.039	0.040	0.041	0.041	0.041
	-0.1	-0.01	0.003	0.010	0.019	0.027	0.035	0.042	0.049	0.055	0.060
	0.1	0.21	0.028	0.041	0.048	0.053	0.056	0.059	0.061	0.063	0.064
EA	-0.2	-0.28	0.061	0.067	0.070	0.072	0.075	0.077	0.079	0.081	0.083
	-0.2	-0.12	0.022	0.038	0.059	0.076	0.090	0.103	0.115	0.127	0.138
	-0.1	-0.19	0.025	0.033	0.036	0.038	0.039	0.040	0.041	0.041	0.042
	-0.1	-0.01	0.003	0.010	0.020	0.029	0.037	0.044	0.050	0.057	0.062
	0.1	0.21	0.029	0.041	0.049	0.053	0.057	0.060	0.062	0.063	0.065
PA	-0.2	-0.28	-0.076	-0.120	-0.134	-0.133	-0.126	-0.117	-0.107	-0.097	-0.087
	-0.2	-0.12	-0.186	-0.172	-0.118	-0.050	0.027	0.107	0.188	0.267	0.343
	-0.1	-0.19	-0.035	-0.050	-0.057	- 0.060	-0.064	-0.066	-0.067	-0.069	-0.070
	-0.1	-0.01	-0.102	-0.093	-0.053	-0.008	0.040	0.087	0.131	0.174	0.213
	0.1	0.21	0.120	0.177	0.230	0.262	0.286	0.304	0.319	0.333	0.344

Table 8.1. Q_{2} for the equilateral triangular distribution

Allocation method	ℓ	$\left\|\alpha_{i}\right\|$					
		0.01	0.05	0.07	0.10	0.15	0.20
NA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.005	0.010	0.020	0.047	0.087
	4	0.000	-0.001	-0.002	-0.005	-0.013	-0.025
		0.000	0.006	0.012	0.026	0.060	0.111
	6	0.000	-0.002	-0.003	-0.007	-0.017	-0.033
		0.000	0.007	0.013	0.027	0.064	0.120
	8	0.000	-0.002	-0.004	-0.008	-0.019	-0.037
		0.000	0.007	0.014	0.028	0.066	0.124
	10	0.000	-0.002	-0.004	-0.008	-0.021	-0.040
		0.000	0.007	0.014	0.029	0.068	0.127
EA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.005	0.010	0.020	0.047	0.087
	4	0.000	-0.001	-0.003	-0.006	-0.015	-0.029
		0.000	0.006	0.013	0.026	0.062	0.116
	6	0.000	-0.002	-0.004	-0.008	-0.020	-0.039
		0.000	0.007	0.014	0.028	0.067	0.126
	8	0.000	-0.002	-0.004	-0.009	-0.022	-0.044
		0.000	0.007	0.014	0.030	0.070	0.131
	10	0.000	-0.002	-0.005	-0.010	-0.024	-0.047
		0.000	0.007	0.014	0.030	0.071	0.134
PA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.005	0.010	0.020	0.047	0.087
	4	0.000	-0.004	-0.008	-0.018	-0.047	-0.100
		0.000	0.009	0.018	0.038	0.094	0.187
	6	0.000	-0.007	-0.014	-0.031	-0.079	-0.166
		0.000	0.012	0.024	0.051	0.126	0.253
	8	0.000	-0.010	-0.020	-0.044	-0.115	-0.248
		0.001	0.015	0.030	0.064	0.163	0.335
	10	0.000	-0.012	-0.025	-0.056	-0.147	-0.317
		0.001	0.017	0.035	0.076	0.194	0.403

Table 8.2. Q_{2} for the normal distribution

Allocation method	ℓ	$\left\|\alpha_{i}\right\|$					
		0.01	0.05	0.07	0.10	0.15	0.20
NA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.005	0.010	0.020	0.047	0.087
	4	0.000	-0.001	-0.002	-0.005	-0.011	-0.022
		0.000	0.006	0.012	0.025	0.058	0.109
	6	0.000	-0.001	-0.003	-0.006	-0.016	-0.030
		0.000	0.007	0.013	0.027	0.063	0.117
	8	0.000	-0.002	-0.003	-0.007	-0.018	-0.035
		0.000	0.007	0.013	0.028	0.065	0.122
	10	0.000	-0.002	-0.004	-0.008	-0.020	-0.039
		0.000	0.007	0.014	0.029	0.067	0.126
EA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.005	0.010	0.020	0.047	0.087
	4	0.000	-0.001	-0.003	-0.006	-0.015	-0.029
		0.000	0.006	0.013	0.027	0.062	0.116
	6	0.000	-0.002	-0.004	-0.008	-0.020	-0.040
		0.000	0.007	0.014	0.029	0.067	0.126
	8	0.000	-0.002	-0.004	-0.009	-0.022	-0.044
		0.000	0.007	0.014	0.030	0.070	0.131
	10	0.000	-0.002	-0.004	-0.009	-0.023	-0.045
		0.000	0.007	0.014	0.030	0.070	0.131
PA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.005	0.010	0.020	0.047	0.087
	4	0.000	-0.007	-0.015	-0.034	-0.095	-0.219
		0.000	0.012	0.025	0.054	0.142	0.306
	6	-0.001	-0.019	-0.041	-0.094	-0.273	-0.671
		0.001	0.024	0.051	0.115	0.320	0.758
	8	-0.001	-0.039	-0.084	-0.200	-0.640	-1.991
		0.002	0.044	0.094	0.220	0.687	2.078
	10°	-0.002	-0.065	-0.142	-0.357	-1.390	-7.780
		0.002	0.070	0.151	0.377	1.437	7.867

Table 8.3. Q_{2} for the rightangled triangular distribution

Allocation method	ℓ	$\left\|\alpha_{i}\right\|$					
		0.01	0.05	0.07	0.10	0.15	0.20
NA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.006	0.012	0.025	0.059	0.111
	4	0.000	-0.001	-0.002	-0.005	-0.013	-0.025
		0.000	0.006	0.012	0.025	0.058	0.108
	6	0.000	-0.002	-0.003	-0.007	-0.017	-0.033
		0.000	0.007	0.013	0.027	0.063	0.117
	8	0.000	-0.002	-0.004	-0.008	-0.019	-0.038
		0.000	0.007	0.013	0.028	0.065	0.122
	10	0.000	-0.002	-0.004	-0.009	-0.021	-0.040
		0.000	0.007	0.014	0.029	0.067	0.125
-EA	2	0.000	0.001	0.002	0.002	0.003	0.005
		0.000	0.006	0.012	0.023	0.051	0.092
	4	0.000	-0.001	-0.002	-0.005	-0.013	-0.027
		0.000	0.007	0.014	0.028	0.064	0.119
	6	0.000	-0.001	-0.003	-0.007	-0.019	-0.037
		0.000	0.007	0.014	0.029	0.068	0.128
	8	0.000	-0.002	-0.004	-0.009	-0.022	- 0.043
		0.000	0.007	0.015	0.030	0.071	0.132
	10	0.000	-0.002	-0.004	-0.009	-0.023	-0.046
		0.000	0.008	0.015	0.031	0.072	0.135
PA	2	0.004	0.019	0.026	0.037	0.056	0.074
		0.004	0.029	0.046	0.081	0.168	0.304
	4	0.003	0.008	0.007	0.000	-0.030	-0.094
		0.003	0.031	0.053	0.102	0.233	0.460
	6	0.002	0.000	-0.007	-0.030	-0.104	-0.251
		0.003	0.034	0.062	0.123	0.299	0.625
	8	0.002	-0.006	-0.020	-0.057	-0.176	-0.417
		0.003	0.038	0.071	0.145	0.368	0.808
	10	0.001	-0.013	-0.033	-0.084	-0.252	-0.604
		0.003	0.042	0.080	0.170	0.444	1.022

Table 8.4. Q_{2} for the exponential distribution

Allocation method	ℓ	$\left\|\alpha_{i}\right\|$					
		0.01	0.05	0.07	0.10	0.15	0.20
NA	2	0.000	0.000	0.000	0.000	0.000	0.000
		0.000	0.004	0.009	0.018	0.041	0.074
	4	0.000	-0.001	-0.002	-0.005	-0.012	-0.023
		0.000	0.006	0.012	0.024	0.056	0.103
	6	0.000	-0.002	-0.003	-0.007	-0.016	-0.031
		0.000	0.006	0.013	0.026	0.061	0.113
	8	0.000	-0.002	-0.003	-0.007	-0.018	-0.035
		0.000	0.007	0.013	0.027	0.063	0.118
	10	0.000	-0.002	-0.004	-0.008	-0.019	-0.037
		0.000	0.007	0.013	0.028	0.065	0.121
EA	2	0.000	0.002	0.003	0.004	0.006	0.008
		0.001	0.007	0.013	0.024	0.053	0.096
	4	0.000	0.000	-0.001	-0.004	-0.012	-0.026
		0.000	0.007	0.014	0.029	0.066	0.121
	6	0.000	-0.001	-0.003	-0.007	-0.019	-0.037
		0.000	0.008	0.015	0.030	0.070	0.130
	8	0.000	-0.002	-0.004	-0.008	-0.022	-0.043
		0.000	0.008	0.015	0.031	0.072	0.135
	10	0.000	-0.002	-0.004	-0.009	-0.024	-0.047
		0.000	0.008	0.015	0.031	0.073	0.137
PA	2	0.018	0.092	0.129	0.184	0.276	0.368
		0.020	0.156	0.275	0.577	1.952	9.659
	4	0.025	-0.004	-0.105		-	-
		0.047	1.087	5.029			
	6	0.010	-	-	-	-	-
		0.110					
	8	-0.052	-	-	-	-	-
		0.276					
	10	-0.223	-	-	-	-	-
		0.743					

(*) - means that the condition (8.4) is not satisfied.

Table 8.5. Change of sample sizes $\left\{n_{i}\right\}$

Stratum No.	n_{i}	[Example 8.1]		[Example 8.2]	
		$m i$	$n_{i}+m_{i}$	m_{i}	
1	693.8	700	6.2	712	18.2
2	694.2	700	5.8	712	17.8
3	694.8	700	5.2	712	17.2
4	696.4	700	3.6	712	15.6
5	701.8	700	-1.8	712	10.2
6	791.0	772	-19.0	712	-79.0

Table 9.1. Q_{3} for the equilateral triangular distribution

Allocation method		PLUS			MINUS			ALTERNATING		
		0.01	0.05	0.10	0.01	0.05	0.10	0.01	0.05	0.10
NA	2	0.000	0.005	0.020	0.000	0.005	0.020	0.000	0.005	0.020
	4	0.001	0.016	0.064	0.001	0.016	0.064	0.001	0.034	0.137
	6	0.001	0.034	0.135	0.001	0.034	0.135	0.003	0.085	0.339
	8	0.002	0.058	0.233	0.002	0.058	0.233	0.006	0.156	0.623
	10	0.004	0.089	0.357	0.004	0.089	0.357	0.010	0.248	0.989
EA	2	0.000	0.005	0.020	0.000	0.005	0.020	0.000	0.005	0.020
	4	0.001	0.016	0.064	0.001	0.016	0.064	0.001	0.034	0.135
	6	0.001	0.034	0.134	0.001	0.034	0.134	0.003	0.084	0.335
	8	0.002	0.058	0.231	0.002	0.058	0.231	0.006	0.155	0.617
	10	0.004	0.089	0.355	0.004	0.089	0.355	0.010	0.246	0.981
PA	2	0.000	0.005	0.020	0.000	0.005	0.020	0.000	0.005	0.020
	4.	0.001	0.015	0.061	0.001	0.015	0.061	0.001	0.031	0.123
	6	0.001	0.031	0.125	0.001	0.031	0.125	0.003	0.075	0.300
	8	0.002	0.053	0.213	0.002	0.053	0.213	0.006	0.138	0.549
	10	0.003	0.081	0.324	0.003	0.081	0.324	0.009	0.218	0.870

Table 9.2. Q_{3} for the normal distribution

Table 9.3. Q_{3} for the rightangled triangular distribution

Allocation method	五in	PLUS			minus			Alternating		
		0.01	0.05	0.10	0.01	0.05	0.10	0.01	0.05	0.10
NA	2	0.000	0.005	0.018	0.000	0.005	0.019	0.000	0.005	0.018
	4	0.001	0.019	0.075	0.001	0.019	0.076	0.002	0.038	0.150
	6	0.002	0.042	0.167	0.002	0.042	0.169	0.004	0.098	0.391
	8	0.003	0.074	0.294	0.003	0.074	0.297	0.007	0.086	0.741
	10	0.005	0.115	0.458	0.005	0.116	0.461	0.012	0.301	1.199
EA.	2	0.000	0.005	0.019	0.000	0.005	0.019	0.000	0.005	0.019
	4	0.001	0.019	0.075	0.001	0.019	0.076	0.001	0.037	0.149
	6	0.002	0.042	0.166	0.002	0.042	0.168	0.004	0.098	0.389
	8	0.003	0.074	0.293	0.003	0.074	0.295	0.007	0.185	0.736
	10	0.005	0.115	0.456	0.005	0.115	0.459	0.012	0.300	1.193
PA	2	0.000	0.005	0.018	0.000	0.005	0.019	0.000	0.005	0.018
	4	0.001	0.017	0.069	0.001	0.017	0.070	0.001	0.034	0.136
	6	0.002	0.06	0.150	0.002	0.038	0.152	0.003	0.088	0.350
	8	0.003	0.066	0.263	0.003	0.067	0.266	0.007	0.166	0.660
	10	0.004	0.103	0.408	0.004	0.103	0.412	0.011	0.268	1.066

Table 9.4. Q_{3} for the exponential distribution

Figure 5.1. The histogram of Case 6 [LPG(Type III), 1980]

Figure 5.2. The histogram of Case 8 [Benzine, 1980]

Figure 6.1. Decomposition of robustness

