

Title	On categories of indecomposable modules. II
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1971, 8(2), p. 309-321
Version Type	VoR
URL	https://doi.org/10.18910/9130
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON CATEGORIES OF INDECOMPOSABLE MODULES II

Manabu HARADA

(Received October 20, 1970)

We have studied the Krull-Remak-Schmidt-Azumaya's theorem from point of view of categories in [4], §3. In this note, we shall study further properties of those categories.

We have defined an additive category $\mathfrak A$ induced from a family of completely indecomposable modules $\{M_{\alpha}\}$, namely whose objects consist of directsums of M_{α} and studied the quotient category $\mathfrak A/\mathfrak B$ with respect to the ideal $\mathfrak B$ in $\mathfrak A$ in [4].

In the first section, we characterize submodules M_0 in an object M in \mathfrak{A} , which is in \mathfrak{A} and $M_0 \equiv M \pmod{\mathfrak{F}}$, and show that every such M_0 coincides with M if and only if \mathfrak{F} is the Jacobson radical of \mathfrak{A} , (see [7] for the radical).

In the second section, we consider Conditions II and III defined in [4], which are related with exchange property defined in [1]. We change slightly the definition of exchange property in this note and show that every direct summand of objects M in $\mathfrak A$ has the exchange property in M if and only if $\mathfrak F$ is the Jacobson radical of $\mathfrak A$.

In the final section, we restrict ourselves to a case where M_{α} 's are projective. We shall show, in this case, that objects in $\mathfrak A$ are closely related to semi-perfect modules defined in [9]. Especially we show that an object $P = \sum_{I} \oplus P_{\alpha}$ in $\mathfrak A$ is perfect if and only if $\{P_{\alpha}\}$ is an elementwise T-nilpotent system defined in [4] and P is semi-perfect if and only if $\{P_{\alpha}\}$ is an elementwise semi-T-nilpotent system.

Let R be a ring with unit element and all modules in this note be unitary right R-modules. An R-module M is called *completely indecomposable* if $\operatorname{End}_R(M) = S_M$ is a (non-commutative) local ring. We assume here that indecomposable modules mean completely indecomposable.

1. Dense submodules

Let M_0 be an R-module and assume $M_0 = \sum_I \oplus M_\alpha$, where M_α 's are indecomposable modules. We have defined an additive category $\mathfrak A$ in [4] from the above decomposition as follows: The objects of $\mathfrak A$ consist of some directsums of M_α 's and the morphisms of $\mathfrak A$ consist of all R-homomorphisms. We denote

those morphisms by $[M, N']_R$ and we call $\mathfrak A$ is induced from a family $\{M_{\mathfrak a}\}$. Furthermore, we have defined an ideal $\mathfrak A$ in $\mathfrak A$ in [4] as follows: Let $N = \sum \oplus M'_{\mathfrak a}$, $N' = \sum \oplus M'_{\mathfrak b'}$ be in $\mathfrak A$. $\mathfrak A$ consists of all morphisms f in $[N, N']_R$ such that $p_{\mathfrak b'}fi_{\mathfrak b} \in [M_{\mathfrak b}, M'_{\mathfrak b'}]_R$ is not isomorphic for any β and β' , where $i_{\mathfrak b}$, $p_{\mathfrak b'}$ are injection and projection, respectively and N, N' run through all objects in $\mathfrak A$. We know from Theorem 7 in [4], that $\mathfrak A$ defines an ideal in $\mathfrak A$ and $\mathfrak A/\mathfrak A$ is a C_3 -completely reducible abelian category, (see [2] for the definition of ideals).

When we consider object N and morphism f in $\mathfrak{A}/\mathfrak{F}$, we denote them by \overline{N} and \overline{f} . Furthermore, if N is in \mathfrak{A} and $N=N_1\oplus N_2$ as R-modules, then \overline{N}_i means $\operatorname{Im} \bar{e}_i$, where e_i is a projection of N to N_i . Let S be a ring. By J(S) we denote the Jacobson radical of S and by \mathfrak{F}_M we denote $\mathfrak{F}\cap\operatorname{End}_R(M)$ for an R-module M.

Let $M \supseteq N$ be objects in $\mathfrak A$ and i the inclusion of N to M. If i is isomorphic modulo $\mathfrak F$, i.e. $\overline{M} = \overline{N}$, then we call N a dense submodule in M.

Proposition 1. Every dense submodule of M is R-isomorphic to M.

Proof. Since $\overline{M} = \overline{N}$, M and N have isomorphic direct summands by [4], Corollary 1 to Theorem 7.

Let $\{M_{\alpha}\}$ be a family of completely indecomposable modules and $\{f_{\alpha i}\}_{i=1}^{\infty}$ any sequence of non isomorphic R-homomorphisms of $M_{\alpha i}$ to $M_{\alpha i+1}$ in $\{M_{\alpha}\}$ $(M_{\alpha i+1}$ may be equal to $M_{\alpha i}$). If there exists n, which depends on the above sequence and for any element m in $M_{\alpha i}$, such that $f_{\alpha n}f_{\alpha n-1}\cdots f_{\alpha i}(m)=0$, then we call $\{M_{\alpha}\}$ a (elementwise) T-nilpotent system (cf. [4]). If the above condition is satisfied for any sequence $\{f_{\alpha i}\}$ such that $M_{\alpha i} \neq M_{\alpha j}$ if $i \neq i$, then we call $\{M_{\alpha}\}$ a (elementwise) semi-T-nilpotent system. In general, a semi-T-nilpotent system is not T-nilpotent.

Let $M=\sum_I \oplus M_{\sigma}$ and J a subset of I, then we denote a submodule $\sum_I \oplus M_{\sigma'}$ by M_J .

Proposition 2. Let M and P be in \mathfrak{A} and $\overline{M} \supseteq \overline{P}$. Then there exists a submodule P_0 in M satisfying the following conditions.

- 1 P_0 is an object in \mathfrak{A} ; $P_0 = \sum_{\tau} \oplus M_{\alpha}$.
- 2 P_{0J} is a direct summand of M for any finite subset J of I, (if $\{M_{\alpha'}\}_{J'}$ is T-nilpotent system, J' need not be finite).
 - $\bar{P}_0 = \bar{P}$.

Furthermore, if $\bar{P} = \operatorname{Im} \bar{e}$ and e is an idempotent in $S_M = \operatorname{End}_R(M)$, then we can choose P_0 in $\operatorname{Im} e$.

Proof. Let $P = \sum_{I} \oplus M_{\lambda}$. Since $\overline{M} \supseteq \overline{P}$ and $\mathfrak{A}/\mathfrak{F}$ is completely reducible, there exist $i \in [P, M]_R$ and $p \in [M, P]_R$ such that $pi \equiv 1_P \pmod{\mathfrak{F}}$. Let J be a subset of I and i_J , p_J be inclusion and projection, respectively. Since $p_J pii_J$ is

isomorphic, $p_J pii_J$ is R-isomorphic by [4], Lemma 8 and Theorem 8 if J is finite or $\{M_\lambda\}_J$ is a T-nilpotent system. Hence, $\alpha_J = ii_J$ splits, namely $\operatorname{Im} \alpha_J$ is a direct summand of M. Therefore, i is R-monomorphic. We put $P_0 = \operatorname{Im} i$ as R-module, then P_0 satisfies $1 \sim 3$. If $P = \operatorname{Im} e$, we have a relation $pei \equiv pi \equiv 1_P \pmod{\Im}$. Hence, if we take $\alpha_J = eii_J$, we know that $\operatorname{Im} ei = P_0 \subseteq eM$.

The following theorem gives a special answer for Condition III in [4].

Theorem 1. Let M be in $\mathfrak A$ and $M=\sum_K \oplus N_\gamma$ as R-module. Then each N_γ contains a submodule P_γ such that P_γ is in $\mathfrak A$ and $\sum \oplus P_\gamma$ is a dense submodule of M.

Proof. Let π_{γ} be a projection of M to N_{γ} . Then from Proposition 2 we have P_{γ} in $\mathfrak A$ such that $\bar{P}_{\gamma} = \operatorname{Im} \bar{\pi}_{\gamma} = \bar{N}_{\gamma}$. We shall show $\bar{M} = \sum_{\kappa} \oplus \bar{P}_{\gamma}$. i_{γ} , i_{γ} and i_{γ} be inculsions of P_{γ} to M, of P_{γ} to N_{γ} and of N_{γ} to M such that $i_{\gamma}=i_{\gamma}''i_{\gamma}'$, respectively. Since $\bar{P}_{\gamma}=\operatorname{Im}\bar{\pi}_{\gamma}$, there exists an R-homomorphism p_{γ} of M to P_{γ} such that $i_{\gamma}p_{\gamma}=\pi_{\gamma} \pmod{\mathfrak{J}}$. Let $\{f_{\gamma}\}$ be an element in $\prod_{\gamma} [P_{\gamma}, N]\mathfrak{A}/\mathfrak{F}$, where N is an object in $\mathfrak A$ and $f_{\gamma} \in [P_{\gamma}, N]_R$. We put $f_{\gamma}{''} = f_{\gamma} p_{\gamma} i_{\gamma}{''} \in [N_{\gamma}, N]_R$ and $f = \prod_{\kappa} f_{\gamma}{'} \in [M, N]_R$. Then we have $fi_{\gamma} = fi_{\gamma}{''}i_{\gamma}{'} = f_{\gamma}{''}i_{\gamma}{'} = f_{\gamma} p_{\gamma} i_{\gamma}$. Hence, $f_{i\gamma} \equiv f_{\gamma} \pmod{\Im}$. We shall show that f does not depend on a choice of representative f_{γ} . It is sufficient to show that if $f|P_{\gamma}=f_{i\gamma}$ is in \Im for all γ , then f is in \mathfrak{F} for any f in $[M, N]_R$. Let $N = \sum_{\delta} \bigoplus M_{\delta}$; M_{δ} 's are indecomposable. If fis not in \Im , there exists an idecomposable direct summand T of M such that $p_{\delta}'f_{i_T}$ is isomorphic, where $i_T: T \to M$, $p_{\delta}': N \to N_{\delta}$ are inclusion and projection, respectively. Since $\{\pi_{\gamma}\}_{K}$ is summable, $1_{M} = \sum_{\gamma} \pi_{\gamma}$ and $f = \sum_{\gamma} f \pi_{\gamma}$. Furthermore, since $\{p_{\gamma'}f\pi_{\gamma}i_T\}_K$ is summable and $p_{\delta'}fi_T = \sum p_{\delta'}f\pi_{\gamma}i_T$, there exists a finite subset K' in K such that $\sum_{K-K'}p_{\delta'}f\pi_{\gamma}i_T$ is not isomorphic, and $\sum_{K'}p_{\delta'}f\pi_{\gamma}i_T$ is isomorphic. Therefore, there exists γ in K' such that $p_{\delta}' f \pi_{\gamma} i_T$ is isomorphic. On the other hand $p_{\delta}' f \pi_{\gamma} i_T \equiv p_{\delta}' f i_{\gamma} \pi_{\gamma} i_T \equiv 0 \pmod{\Im}$, which is a contradiction. Conversely, we take a morphism $f \in [M, N]_{\mathfrak{A}/\mathfrak{F}}$ and $f \in [M, N]_R$. Put $f_{\gamma} = f_{i\gamma}$, then f_{γ} does not depend on a choice of f by Proposition 2 and [4], Lemma 5. Thus, we have shown that $[M, N]_{\mathfrak{A}/\mathfrak{F}} = \prod [P_{\gamma}, N]_{\mathfrak{A}/\mathfrak{F}}$.

We call such P_{γ} a dense submodule of N_{γ} .

Theorem 2. Let M be in $\mathfrak A$ induced from a family $\{M_{\omega}\}$ of completely indecomposable modules M_{ω} , and $N = \sum_{I} \bigoplus M_{\rho}'$ in $\mathfrak A$ be a submodule of M. Then the following statements are equivalent.

- 1 N is a dense submodule of M.
- 2 There exists a finite subset J of I, for any direct summand P of M, such that either $P \cap N_J \neq 0$ or $P \oplus N_J$ is not a direct summand of M.

312 M. Harada

- 3 N contains Im (1-f) for some element f in \mathfrak{F}_M and \overline{i}_N is monomorphic. In those cases $N_{J'}$ is a direct summand of M for any finite subset J' of I. Furthermore, Im (1-f) is always a dense submodule of M.
- Proof. $1\rightarrow 2$ Since every direct summand of M contains an indecomposable module by [4], Corollary 1 to Theorem 7, we may assume so is P. Since \bar{P} is a minimal object, \bar{P} is small (cf.[5], Theorem 1.4). Hence, $\bar{P}\subseteq \sum_{J}\oplus \bar{M}_{\alpha_{i}}$ for some finite set J. We assume that $P\cap N_{J}=0$ and $P\oplus N_{J}$ is a direct summand of M. Let e, f and E be projections of M to P, N_{J} and $P\oplus N_{J}$, respectively. We may assume E=e+f and ef=fe=0. We denote the inclusion of submodules to M by i. Since $\bar{P}\subseteq \bar{N}_{J}$, there exists α in $[P,N_{J}]_{R}$ such that $i_{J}\alpha\equiv i_{P}\pmod{\mathfrak{F}}$. Since $\bar{I}_{P}=\bar{e}i_{P}$ and $\bar{f}\bar{e}=0$, $\bar{I}_{P}=\bar{e}i_{J}\bar{\alpha}=\bar{0}$. Hence, P=0, which is a contradiction.
- $2 \rightarrow 1$ If $\overline{M} \neq \overline{N}$, there exists an indecomposable module P such that $\overline{P} \oplus \overline{N}_J$ is a direct summand of \overline{M} for any finite subset J of I. Since $\overline{P} \oplus \overline{N}_J$ is a direct sum of finite many of minimal objects, there exists a direct summand P_0 of M such that $P_0 \cap N_J = 0$ and $P_0 \oplus N_J$ is a direct summand of M (see the proof of Proposition 2).
- $1 \rightarrow 3$ Let *i* be an inclusion of *N* to *M*. Since *i* is isomorphic, there exists j in $[M, N]_R$ such that $i\bar{j} = \bar{1}_M$. Put f = 1 ij, then $f \in \mathfrak{F}_M$ and 1 f = ij. Since *i* is monomorphic, $N \supseteq \text{Im } (1 f)$.
- $3 \rightarrow 1$ First we shall show that $N' = \operatorname{Im} (1 f)$ is a dense submodule of M. We know from the proof of Proposition 10 in [4] that 1 f is monomorphic and hence, N' is in \mathfrak{A} . Let i be an inclusion of N' to M and 1 f = i (1 f)'; $(1 f)' \in [M, N']_R$. Since $1 \equiv 1 f \equiv i(1 f)'$ and (1 f)' is isomorphic, so is i. Therefore, N' is a dense submodule. Hence, $M \supseteq N \supseteq \operatorname{Im} (1 f)$ implies that i_N is epimorphic. In order to get the last part we put $\overline{M} = \overline{N} = \overline{P}$ in Proposition 2, then $N_{J'}$, is a direct summand of M.
- **Corollary 1.** Let M be an object in $\mathfrak A$ and P a dense submodule of M. If for a direct summand $N = \sum_{J} \bigoplus M_{\alpha'}$ of M in $\mathfrak A$, J is finite or $\{M_{\alpha'}\}$ is a T-nilpotent system, there exists an automorphism σ of M such that $\sigma(N)$ is a direct summand of P.
- Proof. P contains a submodule N_1' which is isomorphic to N_1 and is a direct summand of M by Proposition 2; say $M=N_1'\oplus N_2'=N_1\oplus N_2$. Since $N_2'\approx N_2$, we obtain the corollary.
- **Corollary 2.** Let $\{M_{\alpha}\}$ be a family of completely indecomposable modules and \mathfrak{A} the induced additive category from $\{M_{\alpha}\}$. Then the following conditions are equivalent.
 - 1 $\{M_{\alpha}\}$ is an elementwise T-nilpotent system.
 - 2 Is the Jacobson radical of A.
 - 3 Every dense submodule of any M in \mathfrak{A} coincides with M.

Proof. $1 \leftrightarrow 2$ is obtained in [4], Theorem 8.

- $1 \rightarrow 3$ Let N be a dense submodule of M. We know from 1 and Proposition 2 that N is a direct summand of M. Hence, N=M by Theorem 2.
- $3 \to 2$ Let f be in \mathfrak{F}_M and N = Im(1-f). Since N is a dense submodule by Theorem 2, N = M. Therefore, 1 f is isomorphic, which implies \mathfrak{F}_M is equal to $J(S_M)$.

REMARK. Let $M = \sum_{i=1}^{\infty} \oplus M_i$ as in Theorem 2. We assume that there exists a sequence $\{f_i\}_{i=1}^{\infty}$ of monomorphisms but not epimorphisms f_i of M_i to M_{i+1} . Then for any finite set J of I there exists a dense submodule N in M such that $N \cap M_J = (0)$. Because, we make use of matrix representation of $[M, M]_R$ and by $\{e_{im}\}$ we denote a system of matrix unites. Put $f = \sum_i \sum_{k=1}^J f_{i+k-1} f_{i+k-2} \cdots f_i e_{i+ki}$, then f is in \mathfrak{F} . Hence, $P = \operatorname{Im}(1-f)$ is a dense submodule and $P \cap M_J = (0)$.

If we use the same argument for any set I, we can give an example in which for some subset J with $|J| \le |I|$ there exists a dense submodule P in M such that $P \cap M_J = (0)$. Furthermore, we can give an example in which there exists a dense submodule P in $M = \sum_{i=1}^{\infty} \bigoplus M_i$ such that $P \cap M_i \neq (0)$ for all i and $P \neq M$.

In the above corollary, we have a situation $\mathfrak{F}_M = J(S_M)$. In this case we obtain a further result.

Lemma 1. Let M be in \mathfrak{A} and $\mathfrak{J}_M = J(S_M)$. Then for every direct summand N of M we have $\mathfrak{J}_N = J(S_N)$.

Proof. Since $\mathfrak{F}_M = J(S_M)$, N is in \mathfrak{A} by [4], Corollary 2 to Theorem 7. Put N = eM for some idempotent e in S_M . Then it is clear that $e\mathfrak{F}_M e = \mathfrak{F}_N$, since \mathfrak{F} does not depend on decompositions of M by [4], Lemma 5. Furthermore, $J(S_N) = eJ(S_M)e$. Hence, $J(S_N) = \mathfrak{F}_M$.

Theorem 3. Let P be in \mathfrak{A} and $\mathfrak{F}_P = J(S_P)$. Then every idempotent a in S/J(S) is lifted to S.

Proof. Let a be idempotent modulo \mathfrak{F}_P . Then there exist a module P_0 in \mathfrak{A} and $a' \in [P, P_0]_R$, $b' \in [P_0, P]_R$ such that $b'a' \equiv a$ and $a'b' \equiv 1_P \pmod{\mathfrak{F}}$. Since P_0 is isomorphic to a direct summand of P by [4], Theorem 7, $\mathfrak{F}_P = J(S_P)$ by Lemma 1. Hence b' is R-monomorphic and $\mathcal{E}' = a'b'$ is R-isomorphic on P_0 . We may regard P_0 as a direct summand of P via b'; $P = \operatorname{Im} b' \oplus Q$. We put $\mathcal{E} = b' \mathcal{E}'^{-1} b'^{-1} + 1_Q$, then $\mathcal{E} \equiv 1 \pmod{\mathfrak{F}}$. Put $e = \mathcal{E} b' a'$, then $e \mid P_0 = 1_P$ and $e \mid P_0 = 1_P$ and $e \mid P_0 = 1_P$. Hence, $e \mid P_0 = 1_P$ is idempotent in $P_0 = P_0$. Hence, $P_0 = P_0 = P_0$.

Corollary. Let R be a (non-commutative) local ring such that J(R) is T-nil-

314 M. Harada

potent. Let S be the ring of column finite matrices over R with any degree. Then every idempotent in S|J(S) is lifted to S.

Proof. Put $M = \sum_{I \ni \alpha} \bigoplus R_{\alpha}$; $R_{\alpha} \approx R$. Then $S = S_M$ and $J(S_M) = \mathfrak{J}_M$ by [4], Lemma 10.

2 Exchange property

We shall recall Condition II in [4]. Let $M = \sum_{I} \oplus M_{\sigma} = \sum_{I} \oplus N_{\beta}$ be decompositions of M with indecomposable modules M_{σ} , N_{β} , Condition II in [4] says that for any subset J of I, there exists a subset J' of I such that $M = \sum_{I'} M_{\sigma} \oplus \sum_{I} \oplus N_{\beta}$. However, this is a special case of exchange property defined in [1]. Furthermore, this property induces Condition III in [4], namely every direct summand of M is in \mathfrak{A} . Therefore, we shall define a weaker exchange property than one in [1]. Let M be as above (in \mathfrak{A}), and $M = \sum_{I \ni i} \oplus P_{i}$ be any direct decomposition as R-modules. We call a direct summand N of M has the |I|-exchange property in M if $M = N \oplus \sum_{I \ni i} \oplus P_{i'}$ and $P_{i'} \subset P_{i}$ for any decomposition $M = \sum_{I \ni i} \oplus P_{i}$ with |I|-factors. If N has the |I|-exchange property in M for any cardinal |I|, we call N has the exchange property in M. It is clear that if N has the exchange property in M, then N is an object of M. P. Crawley and M. B. Jónsson have shown in [1], Theorem 7.1 (and [10], Theorem 1) that if M is countably generated for all α in I, then Condition III is satisfied.

In the following we always assume that $M = \sum_{I} \bigoplus M_{\alpha} = N_{1} \bigoplus N_{2}$ with indecomposable modules M_{α} .

Lemma 2. If either N_1 is finitely generated or a dense submodule of N_1 is a T-nilpotent system, then N_i is in \mathfrak{A} , (i=1, 2).

Proof. If N_1 is finitely generated, then N_1 is a direct summand of M_J for some finite subset J of I. Hence, $N_1 \approx M_{J'}$ for some $J' \subset J$ by Krull-Remak-Schmidt's theorem. Therefore, $M = N_1 \oplus \sum \oplus M_{\varphi(\varpi)}$ by [4], Corollary 1 to Theorem 7 (Azumaya's theorem), and hence $N_2 \approx \sum \oplus M_{\varphi(\varpi)}$ is in \mathfrak{A} . Next, we assume that a dense submodule N_0 of N_1 is a T-nilpotent system. Then $N_0 = N_1$ by Proposition 2. Hence N_1 is in \mathfrak{A} . Since $\mathfrak{A}/\mathfrak{F}$ is completely reducible, $\overline{M} = 1$ $0 \oplus \sum_{K \ni \beta} \overline{M}_{\beta} = \sum_{I=K} \overline{M}_{\alpha} \oplus \sum_{K} \overline{M}_{\beta}$ for some K in I. Let p be a projection of M to $\sum_{I=K} M_{\alpha}$. Since $\overline{p} \mid \overline{N}_1$ is isomorphic and $\{M_{\alpha}\}_{I=K}$ is a T-nilpotent system, $p \mid N_1$ is an R-isomorphism of N_1 to $\sum_{I=K} \oplus M_{\alpha}$. Therefore, $M = N_1 \oplus \operatorname{Ker} p = N_1 \oplus \sum_K M_{\beta} = N_1 \oplus N_2$. Hence, $N_2 \approx \sum \oplus M_{\beta}$.

The following lemma is a special case of [1], Lemma 3.10 and [10], Proposition 1, however we shall give a proof from point of view of our categories.

Lemma 3. Let M and N, be as above. If $N_1 = \sum_{i=1}^n \bigoplus M_i'$ and $M_i' \approx M_{\alpha i}$ for all i, then N_1 has the exchange property in M.

Proof. We assume that $M=N_1\oplus N_2=\sum_{I'}\oplus Q_{\alpha}$ as R-modules. Then $M=\bar{N}_1\oplus \bar{N}_2=\sum_{I'}\oplus \bar{P}_{\alpha}$, where $P_{\alpha}=\sum_{J}\oplus P_{\alpha j}$ is a dense submodule of Q_{α} and $P_{\alpha j}$'s are indecomposable. Since $\bar{N}_1=\sum_{i=1}^n\oplus \bar{M}_i$ ' is a small object in $\mathfrak{A}/\mathfrak{F}$, there exist a finite subset I'' of I and a finite subset J_i' of J_i for $i\in I''$ such that $\bar{N}_1\subseteq\sum_{I''\ni i}\sum_{J_i\ni j}\oplus \bar{P}_{ij}$. We know from Proposition 2, 2) that $\sum_i\sum_j\oplus P_{ij}=P$ is a direct summand of M. Since I'' and J_i' are finite, $\mathfrak{F}_P=J(S_P)$ by [4], Lemma 8. Hence, P contains a direct summand N_1' such that $\bar{N}_1'=\bar{N}_1$, $(P=N_1'\oplus P')$. $M=N_1'\oplus P'\oplus\sum_{I''}\oplus Q_i'\oplus\sum_{I=I''}\oplus Q_{\alpha}$, where $Q_i=Q_i'\oplus\sum_{J_i=J_i'}\oplus P_{ij}$. Let $p_{N_1'}$ be a projection of M to N_1' in this decomposition. Since $\bar{N}_1=\bar{N}_1'$ and $\bar{N}_1\cap(\bar{P}'\oplus\sum_{I''}\oplus \bar{Q}_i'\oplus\sum_{I=I''}\oplus \bar{Q}_{\alpha})=\bar{0}$, (see the proof of Theorem 1), $\bar{p}_{N_1'}|\bar{N}_1$ is isomorphic. Therefore, $p_{N_1'}|N_1$ is isomorphic as an R-module. Thus, we obtain that $M=N_1\oplus P'\oplus\sum_{I''}\oplus Q_1'\oplus\sum_{I=I''}\oplus Q_{\alpha}$.

Theorem 4. Let $M = \sum_{I} \bigoplus M_{\alpha}$ with M_{α} completely indecomposable, and $N_{1} = \sum_{I'} \bigoplus M_{\beta'}$ be a direct summand of M; $M = N_{1} \bigoplus N_{2}$. If I' is finite or $\{M_{\beta'}\}$ is a T-nilpotent system, then N_{i} has the exchange property in M for i = 1, 2.

Proof. We know from the assumption and [4], Theorem 8 that $\mathfrak{F}_{N_1} = J(S_{N_1})$. Let $M = N_1 \oplus N_2 = \sum_J \oplus Q_{\alpha}$. Then $\bar{M} = \bar{N}_1 \oplus \bar{N}_2 = \sum \oplus \bar{P}_{\alpha}$, where P_{α} is a dense submodule of Q_{α} . We put $P_{\alpha} = \sum_{J_{\alpha} \ni i} \oplus P_{\alpha i}$ ($\in \mathfrak{A}$). Since $\mathfrak{A}/\mathfrak{F}$ is completely reducible, $\bar{M} = \bar{N}_2 \oplus \sum_J \sum_{J_{\alpha'}} \oplus \bar{P}_{\alpha i}$, where $J_{\alpha'}$ is a subset of J_{α} . The fact $\bar{N}_1 \approx \bar{P} = \sum_J \sum_{J_{\alpha'}} \oplus \bar{P}_{\alpha i}$ implies $\mathfrak{F}_P = J(S_P)$. Let p_{N_1} be a projection of M to N_1 with Ker $p_{N_1} = N_2$. Then $\bar{p}_{N_1} | \bar{P}$ is isomorphic, and hence $p_{N_1} | P$ is isomorphic as an R-module. Therefore, $M = P \oplus N_2$ and $\sum_{T'_{\alpha}} \oplus P_{\alpha i} \subseteq Q_{\alpha}$. We have shown that N_2 has the exchange property. If I' is finite, then N_2 has the exchange property from Lemma 3. Thus, we may assume that $\{M'_{\beta}\}$ is a T-nilpotent system. Noting that N_2 is an object of \mathfrak{A} by Lemma 2, first we assume $N_1 = \sum_K \oplus T_{\alpha}$, $N_2 = \sum_{K'} \oplus T'_{\beta}$ and $T_{\alpha} \neq T'_{\beta}$ for any α , β , where T_{α} and T'_{β} are indecomposable. We make use of the same notation as above. Then $\bar{M} = \bar{N}_2 \oplus \sum_i \oplus \bar{P}'_{\alpha}$ and $P'_{\alpha} \oplus P''_{\alpha} = P_{\alpha}$. Since $\sum_i \oplus P'_{\alpha} \approx N_1$, $\sum_i \oplus P'_{\alpha}$ is a direct sumindecomposable.

mand of M by Proposition 2, say $M = \sum (P_{\alpha}' \oplus P'''_{\alpha})$ and $Q_{\alpha} = P_{\alpha}' \oplus P_{\alpha}'''$. Then $\sum_{I} \oplus P'''_{\alpha}$ is an object in \mathfrak{A} by Lemma 2. Let p be a projection of M to $\sum_{I} \oplus P''_{\alpha}$ with $\ker p = \sum_{J} \oplus P'''_{\alpha}$. Then $\bar{p} \mid \bar{N}_{2}$ is isomorphic, since $\bar{N}_{1} \cap \sum \oplus \bar{P}'''_{\alpha}$ = $\bar{0}$ and $\bar{p}(\bar{N}_{2}) = \bar{0}$ by the assumption. Hence, $p \mid N_{1}$ is isomorphic as an R-module, which implies $M = N_{1} \oplus \ker p = N_{1} \oplus \sum P'''_{\alpha}$. Hence, N_{1} has the exchange property in M. In general case, we choose all direct components $T'_{\beta'}$ in N_{2} , which is isomorphic to some T_{α} in N_{1} and put $N'_{2} = \sum \oplus T'_{\beta'}$; $N_{2} = N'_{2} \oplus N''_{2}$. Then, $N'_{1} = N_{1} \oplus N'_{2}$ satisfies the assumption in the first case. Therefore, $M = N'_{1} \oplus \sum_{I} \oplus P'''_{\alpha}$ and $Q_{\alpha} = P_{\alpha'} \oplus P'''_{\alpha}$. Then $M = N'_{2} \oplus N_{1} \oplus \sum_{I} \oplus P'''_{\alpha}$. Since N'_{2} satisfies the assumption in the theorem, $N_{1} \oplus \sum_{I} \oplus P'''_{\alpha}$ has the exchange property from the beginning case. Therefore, $M = N_{1} \oplus \sum_{I} \oplus P'''_{\alpha} \oplus \sum_{I} \oplus P'''_{\alpha}$ and $Q_{\alpha} \supseteq P^{\mathrm{iv}}_{\alpha}$. Thus, we have proved that N_{1} has the exchange property in M.

Corollary. Let \mathfrak{A} be as above. Then the following statements are equivalent.

- 1 Every direct summand of object M in \mathfrak{A} has the \aleph_0 -exchange property in M.
- 2 Every direct summand of object M in $\mathfrak A$ has the exchange property in M.
- 3 $\{M_{\alpha}\}$ is an elementwise T-nilpotent system.

Proof. $1 \to 3$ Let $M = \sum_{I} \oplus M_{\alpha} = \sum_{I'} \oplus M'_{\beta'} \oplus \sum_{I''} \oplus M'_{\gamma'}$ be a direct decompositions with $|I'| \leq \aleph_0$. Since every direct summand of $\sum_{I'} \oplus M'_{\beta'}$ has the \aleph_0 -exchange property in M, it has the \aleph_0 -exchange property in $\sum_{I'} \oplus M'_{\beta'}$. Therefore, Condition II is satisfied for $\sum_{I'} \oplus M'_{\beta'}$, which implies 3 by [4], Lamma 9.

- $3 \rightarrow 2$ It is clear from the theorem and Proposition 2.
- $2 \rightarrow 1$ It is clear.

Proposition 3 ([1], [3], [6] and [10]). Let M be in \mathfrak{A} and $M=N_1 \oplus N_2$. If N_1 is countably generated, then N_1 is in \mathfrak{A} . If every M_{α} is countably generated, then every direct summand of M is in \mathfrak{A} .

Proof. We make use the argument of the proof of [1], Theorem 7.1. First, we note that for any element x in N_1 there exists a direct summand N_0 of N_1 such that $x \in N_0$ and N_0 is in $\mathfrak A$. Because, there exists a finite set J such that M_J contains x. From Theorem 4 we have $M = M_J \oplus N_1' \oplus N_2'$, $N_1 = N_1' \oplus N_1''$ and $N_2 = N_2' \oplus N_2''$, where $N_1'' = (M_J \oplus N_2') \cap N_1$ and $N_2'' = (M_J \oplus N_1') \cap N_2$, and $x \in N_1''$. If we use the same argument in [6], then we obtain the proposition.

3 Semi-perfect modules

We shall study further properties of $\mathfrak A$ in a case of semi-perfect modules defined by E. Mares in [9]. She has shown that every semi-perfect module is a direct sum of completely indecomposable semi-perfect modules ([9], Corollary 4.4). Let P be an R-module and J(P) the radical of P. If P is semi-perfect, then J(P) is small in P, $[P/J(P),P/J(P)]_{R/J(R)} \approx S_P/J(S_P)$ and J(P)=PJ(R), (see [9], §§ 2-5).

Theorem 5. Let P be a directly indecomposable projective module. Then P is completely indecomposable if and only if P is semi-perfect, (cf. [5], the proof of Theorem 2.8).

Proof. If P is semi-perfect, then P is completely indecomposable by [9], Corollary 4.4. Conversely, we assume that so is P. Since P/J(P) is R/J(R)-projective, J([P/J(P), P/J(P)]) = 0. From an exact sequence $0 \rightarrow [P, J(P)]_R \rightarrow S_P \rightarrow [P/J(P), P/J(P)]_{R/J(R)} \rightarrow 0$ we have $[P, J(P)] \supset J(S_P)$. On the other hand, $J(S_P)$ is a unique maximal ideal in S_P and $[P, J(P)] \neq S_P$. Hence, $\mathfrak{F}_P = J(S_P) = [P, J(P)]_R$. Next, we shall show that J(P) is small in P. Let N be a submodule of P such that P = J(P) + N. From the following row exact sequence

we have $f: P \to N$, which commutes the above diagram. If $N \neq P$, $f \in \mathfrak{F}_P$. Hence, Im $f \subset N \cap J(P)$, which is a contradiction. Finally, we show that J(P) is a unique maximal submodule in P. Put $\bar{P} = P/J(P)$, $\bar{R} = R/J(R)$ and $\bar{S} = S_P/\mathfrak{F}_P$. We define $\mu: \bar{P} \otimes [\bar{P}, \bar{R}]_{\bar{R}} \to \bar{S}$ by setting $\mu(p \otimes f)(p') = pf(p')$. Since $\bar{P} \neq 0$ and \bar{R} -projective, $\mu \neq 0$. Furthermore, \bar{S} is a division ring, and hence, μ is isomorphic. $\bar{P}\tau(P) = \bar{P}$ implies that there exists p in \bar{P} such that $\mu(p \otimes [\bar{P}, \bar{R}]) \neq 0$, where τ is the trace map of \bar{P} . Hence, $\mu(p \otimes f) \bar{S} = \bar{S}$ for some f in $[\bar{P}, \bar{R}]$. Therefore, $\bar{P} = \bar{S} \bar{P} = \mu(p \otimes f) \bar{S} \bar{P} \subset pf(\bar{P}) \subset p\bar{R} \subset \bar{P}$. Hence, $\bar{P} = p\bar{R} \approx \bar{e}\bar{R}$ for some idempotent \bar{e} in \bar{R} . Since $\bar{e}\bar{R}\bar{e}$ is a division ring and \bar{R} is semi-simple, \bar{P} is \bar{R} -irreducible by [8], Proposition 1 in p. 65. Hence, J(P) is unique maximal, since J(P) is the radical of P. Thus we have proved that P is semi-perfect by [9], Theorem 5.1.

Now let $\{P_{\alpha}\}$ be a family of completely indecomposable projective modules, and \mathfrak{A} the induced additive category from $\{P_{\alpha}\}$. Let $P = \sum \bigoplus P_{\alpha}$ and $P' = \sum \bigoplus P_{\beta}'$ be in \mathfrak{A} and f in $[P, P']_R$. If $f_{\alpha\beta} = p_{\alpha}f_{\beta}$ is epimorphic, then $f_{\alpha\beta}$ splits and hence $f_{\alpha\beta}$ is isomorphic. Since $J(P_{\alpha}')$ is unique maximal, Im $f_{\alpha\beta}$

 $\subseteq J(P_{\alpha}')$ is $f_{\alpha\beta}$ is not isomorphic. Hence, if f is in \Im , then $\operatorname{Im} f \subseteq \sum \bigoplus J(P_{\beta}') = J(P')$. Conversely, if $\operatorname{Im} f \subseteq J(P')$, then f is in \Im . Therefore, $[P, P']_R \cap \Im = [P, J(P')]_R$. Furthermore, $0 \to [P, J(P')]_R \to [P, P']_R \to [P/J(P), P'/J(P')]_{R/J(R)} \to 0$ is exact. Thus, for any object P in \Im , many arguments in \Im/\Im concerned with \bar{P} coincide with those as R/J(R)-modules. From this reason, we make use of terminologies in \Im/\Im , instead of ones as R/J(R)-modules, if there are no confusions.

Theorem 6. Let \mathfrak{A} be an induced category from a family of completely indecomposable projective modules $\{P_{\omega}\}$. Then an object $P = \sum_{I} \oplus P_{\gamma}$ in \mathfrak{A} is perfect if and only if $\{P_{\gamma}\}_{I}$ is an elementwise T-nilpotent system.

Proof. Let \mathfrak{F}' be a full subcategory in \mathfrak{F} which is induced from $\{P_{\gamma}\}_{I}$. If P is perfect, then every object in \mathfrak{A}' is semi-perfect. Hence, \mathfrak{F}' is equal to the Jacobson radical in \mathfrak{A}' by the above remark and [9], Theorem 2.4. Therefore, $\{P_{\gamma}\}_I$ is a T-nilpotent system by [4], Theorem 8. Conversely, we assume that $\{P_{\gamma}\}_I$ is a T-nilpotent system. Then $\mathfrak{F}_P = J(S_P)$ for every object P in \mathfrak{A}' . We shall show that J(P) is small in P for every object P in \mathfrak{A}' . Let P=Q+J(P) for some submodule Q and p_1 a projection of P to P_1 , where $P = \sum_{I'} \oplus P_{\gamma}$. Since $p_1(J(P))$ $\subset J(P_1)$ and $J(P_1)$ is small by Theorem 5, $p_1(Q)=P_1$. Hence, there exists f in $[P_1, Q]_R$ such that $p_1 f = 1_{P_1}$. Therefore, Q contains an object in \mathfrak{A}' which is a direct summand of P. Let T be the set of such objects in Q and define a pertially order in T by the inclusion. We take a totally ordered subset $Q_1 \subset Q_2 \subset \cdots$ in T. Put $Q_0 = \bigcup Q_i$, then $Q_0 = \sum \bigoplus N_\beta$; $N_\beta \approx P_{\pi(\beta)}$ by Lemma 2. Furthermore, the inclusion i_{β} : $N_{\beta} \rightarrow P$ is not zero modulo \Im , since Q_i is a direct summand of P. Hence, Q_0 is a direct summand of P by the proof of Proposi-Thus, we have a maximal element P_0 in T. $P=P_0\oplus U$ and $Q=P_0$ $\oplus Q \cap U$. Since P = Q + J(P) and $J(P) = J(P_0) \oplus J(U)$, $U = J(U) + U \cap Q$. U is also in \mathfrak{A}' by Lemma 2. If $U \neq 0$, $U \cap Q$ contains an object in \mathfrak{A}' which is a direct summand of U and hence of P. Which contradicts to the maximality of P_0 . Therefore, $P=P_0=Q$. Thus, every object in \mathfrak{A}' is semi-perfect by Theorem 5 and [9], Theorem 5.2.

In the above argument, we have used only facts that P_i are semi-perfect and $\mathfrak{F}_P = J(S_P)$. Hence, from Lemma 1, [4], Corollary 2 to Theorem 7 and [9], Theorem 2.3 we have

Proposition 4. Let $P = \sum \bigoplus P_{\alpha}$ and P_{α} semi-perfect. Then P is semi-perfect if and only if $\mathfrak{F}_P = J(S_P)$.

Theorem 7. Let P be an object in $\mathfrak A$ induced from projective, completely indecomposable modules P_{α} . Then we have the following equivalent conditions.

1 P is semi-perfect.

- 2 $\mathfrak{F}_P = J(S_P)$.
- 3 Every dense submodule of P coincides with P.
- 4 $P = \sum_{\alpha} \bigoplus P_{\alpha}$ in \mathfrak{A} , then $\{P_{\alpha}\}$ is a semi-T-nilpotent system.
- 5 P satisfies the Condition II in [4].

Proof. $1 \leftrightarrow 2$ is proved in Proposition 4.

- 1→3 Let N be a dense submodule of P. Then $N\supseteq \text{Im } (1-f)$ for some $f \in \mathfrak{F}_P$. Hence, $P\subseteq N+f(P)\subseteq N+f(P)\subseteq P$ by the remark before Theorem 6. Therefore, P=N+f(P) implies P=N, since f(P) is small.
- $3 \rightarrow 4$ Let $\{f_i\}$ be a family of non isomorphisms of P_{α_i} to $P_{\alpha_{i+1}}$ ($P_{\alpha_i} \neq P_{\alpha_{i+1}}$). Put $f = \sum (-e_{i+1}, f_i)$, where $\{e_{i,j}\}$ is a system of matrix units in S_P . Then Im (1-f) is a dense submodule of P. From the assumtion and the argument of Lemma 9 in [4], we know that $\{f_i\}$ is a T-nilpotent sequence.
 - $2 \rightarrow 5$ is proved in [4], Corollary 2 to Theorem 7.
 - $5 \rightarrow 4$ is proved in [4], Lemma 9.
 - $4 \rightarrow 1$. Let

$$P = \sum_{K \ni \alpha} \sum_{I_{\alpha} \ni \beta} \bigoplus M_{\alpha\beta} \cdots (*),$$

where $M_{\alpha\beta}$'s are indecomposable and $M_{\alpha\beta} \approx M_{\alpha\beta'}$, $M_{\alpha\beta} \approx M_{\alpha'\beta'}$ if $\alpha \neq \alpha'$. First we assume that the cardinal λ_{α} of $|I_{\alpha}|$ is finite for all α in K. We put $P_{\alpha(n)n} = \sum_{\beta=1}^{n} \bigoplus M_{\alpha\beta}$, where $n = \lambda_{\alpha}$, and show that J(P) is small in P. We assume P = N + J(P) for some submodule N of P. Let $p_{\alpha(n)n}$ be a projection of P to $P_{\alpha(n)n}$. Since λ_{α} is finite, $J(P_{\alpha(n)n})$ is small in $P_{\alpha(n)n}$. Hence, $p_{\alpha(n)n}|N$ is epimorphic, and there exists $g \in [P_{\alpha(n)n}, N]_R$ such that $(p_{\alpha(n)n}|N)g = 1_{P_{\alpha(n)n}}$. Put $P'_{\alpha(n)n} = \text{Im } g$. Since $\ker p_{\alpha(n)n} = \sum_{\alpha \neq \alpha(n)} \bigoplus P_{\alpha\beta}$,

$$P = P'_{\omega(n)} {}_n \oplus \sum_{\alpha \pm \alpha(n)} \oplus P_{\alpha\beta} \cdots (**)$$
 .

Now, we assume $N \subset M_{\alpha(n)i_1}$ and $x_1 \in M_{\alpha(n)i_1} - N$. Then $x_1 = x' + \sum y_i$ from (**), where $x' \in P'_{\alpha(n)n}$, $y_i \in P_{\alpha\beta}$. From the assumption there exists some $y_i \notin N$, since $P'_{\alpha(n)n} \subset N$. Hence, there exists x_2 in $M_{\alpha i, i_2} - N$ such that $y_i = x_2 + \sum z_j$, $z_j \in M_{\alpha ij}$ $(j \neq i_2)$. If we replace (*) by (**), we can find x_3 in $M_{\alpha jk} - N$ and $P = P'_{\alpha(n)n} \oplus P'_{\alpha(m)m} \oplus \sum \oplus P_{\alpha\beta}$. Repeating this argument, we have a sequence $\{x_j\}$ so that $x_i \in M_{\alpha i, k_i} - N$, and $f_i(x_i) = x_{i+1}$, where f_i is a projection of P to $M_{\alpha i+1}k_{i+1}$, which is a contradiction. Therefore, J(P) is small. Finally, we shall consider a general case. Let $P = \sum_{\lambda_{\alpha} \geq \aleph_0} \sum_{\beta} \bigoplus M_{\alpha\beta} \oplus \sum_{\lambda_{\alpha} \leq \aleph_0} \sum_{i} \bigoplus M_{\alpha i}$ and put $P_1 = \sum_{\lambda_{\alpha} \geq \aleph_0} \sum_{\beta} M_{\alpha\beta}$ and $P_2 = \sum_{\lambda_{\alpha} \leq \aleph_0} \sum_{i} \bigoplus M_{\alpha i}$. We know from the first case P_2 is semi-perfect. If $\lambda_{\alpha} \geqslant \aleph_0$ for α , the fact that $\{M_{\alpha\beta}\}$ is semi-T-nilpotent implies from the definition that $\{M_{\alpha\beta}\}$ is a T-nilpotent system. Hence, P_1 is perfect by Theorem 6. Therefore, P is semi-perfect from [9], Corollary 5.3 (see Proposition 6 below).

Corollary 1. Let P be projective and artinian, then P is perfect. Furthermore, if P' is a directsum of artinian submodules and P' is semi-perfect, then P' is perfect.

Proof. If P is artinian and projective, then P is in $\mathfrak A$ and $\mathfrak F_P$ is nilpotent ideal by [5], Theorem 2.8. Hence, for any directsum M of any copies of P, we have $\mathfrak F_M = J(S_M)$, since $\mathfrak F_M$ is nilpotent. Therefore, M is semi-perfect, and P is perfect. Let $P' = \sum \bigoplus P_i$; P_i 's are artinian and P' be semi-perfect. Then $\{P_i\}$ is a semi-T-nilpotent system from Theorem 7. Furthermore, since J_{P_i} is nilpotent, $\{P_i\}$ is a T-nilpotent system. Hence, P' is perfect from Theorem 6.

Corollary 2. Let P be a semi-perfect module. Then there exists a maximal one among submodules which are perfect and direct summand of P. Those maximal perfect submodules are isomorphic each other.

Proof. Let $P = \sum_{\lambda_{\alpha} < \aleph_0} \sum \bigoplus M_{\alpha_i} \oplus \sum_{\lambda_{\alpha} > \aleph_0} \sum M_{\alpha\beta}$ as in the above proof. If $\Im_{M_{\alpha i}}$ is elementwise T-nilpotent, then $\{M_{\alpha_i}, M_{\alpha\beta}\}$ is T-nilpotent, since it is semi-T-nilpotent. Hence, if we chooseevery M_{α_i} whose ideal $\Im_{M_{\alpha i}}$ is T-nilpotent, $P_1 = \sum_{\lambda_{\alpha} < \aleph_0} \sum \bigoplus M_{\alpha\beta}$ is a direct summand of M and perfect, where \sum' runs through all M_{α_i} in the above. Put $P = P_1 \oplus P_2$. If $P = Q_1 \oplus Q_2$, $Q_1 \supseteq P_1$ and Q_1 is perfect, then $P = Q_1' \oplus P_1 \oplus Q_2$ and $Q_2 = Q_2' \oplus P_1$. Since $P_2 \approx Q_1' \oplus Q_2$, $Q_1' = (0)$ by the assumption. Hence, P_1 is a desired perfect submodule. Let T_1 be a maximal element as in Corollary 2; $P = T_1 \oplus T_2$, then T_2 is in \mathfrak{A} . It is clear that T_1 , P_1 and T_2 , P_2 have the isomorphic direct components, respectively. Hence, $P_1 \approx T_1$.

Finally, we shall give some results concerned with ones obtained in [9].

First we shall give another proof of [9], Theorem 5.5.

Proposition 5 ([9]). Let \mathfrak{A} be as above and P a direct summand of an object M in \mathfrak{A} . If J(P) is small in P, then P is in \mathfrak{A} .

Proof. Let $M=P\oplus P_1$ and P=eM for some idempotent e. P contains a dense submodule P_0 with inclusion i such that $if \equiv e \pmod{\Im}$ for some f in $[M, P_0]_R$. Put e=if+x, $x\in \Im$. Then $P=P_0+x(P)$ and $x(P)\subset P\cap J(M)=J(P)$. Hence, $P=P_0$.

Proposition 6 ([9], Corollary 5.3). Let $\{P\}_1^n$ be a finite set of semi-perfect modules. Then $\sum_{i=1}^{n} \oplus P_i$ is semi-perfect.

Proof. Since $\mathfrak{F}_{P_i}=J(S_{P_i})$ for every i, we can show $\mathfrak{F}_P=J(S_P)$ by using

fundamental transformations of matrices (see [4], Lemma 8). Hence, P is semiperfect from Propostion 4.

Proposition 7 ([9], Theorem 7.2). If J(R) is right T-nilpotent, then every semi-perfect modules is perfect.

Proof. Let $P = \sum_{I} \oplus P_{\alpha}$ be semi-perfect. Then $\mathfrak{F}_{P} = [P, J(P)] = [P, PJ(R)]$. Hence, for any $f \in [P_{\alpha}, P_{\beta}] \cap \mathfrak{F}$ and $x_{\alpha} \in P_{\alpha}$, $f(x_{\alpha}) = \sum x_{\beta_{i}} a_{\beta_{i}}$, $a_{\beta_{i}} \in J(R)$. Therefore, $\{P_{\alpha}\}$ is T-nilpotent system by the assumption. Hence, P is perfect from Theorem 6.

REMARK. [9], Theorem 5.1 is a special case of Theorem 3.

OSAKA CITY UNIVERSITY

References

- [1] P. Crawley and B. Jónnson: Refinements for infinite direct decomposition of algebraic systems, Pacific J. Math. 14 (1964), 797-855.
- [2] C. Ehresmann: Catégories et Structures, Dunod, Paris, 1965.
- [3] S. Elliger: Zu dem Satz von Krull-Remak-Schmidt-Azumaya, Math. Z. 115 (1970), 227-230.
- [4] M. Harada and Y. Sai: On categories of indecomposable moduls I, Osaka J. Math. 7 (1970), 323-344.
- [5] M. Harada: On semi-simple categories, Osaka J. Math. 7 (1970), 89-95.
- [6] I. Kaplansky: Projective modules, Ann. of Math. 68 (1958), 372-377.
- [7] G.M. Kelly: On the radical of a category, J. Austral. Math. Soc. 4 (1964), 299-307.
- [8] N. Jacobson: Structure of Rings, Amer. Math. Soc., 1956.
- [9] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
- [10] R.B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of moduels, Proc. Amer. Math. Soc. 22 (1969), 460-465.