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Abstract
In this paper, we reconstruct the link invariant of framed links introduced in [1]

by the universalR-matrix of Uq(sl2) and name it the colored Alexander invariant. We
check that the optimistic limito-lim of this invariant is determined by the volume of
the knot and link cone-manifold for figure eight knot, Whitehead link and Borromean
rings. We also propose theA-polynomials of these examples obtained from the
colored Alexander invariant.

1. Introduction

New link invariants are introduced in [1] for colored links.They are defined for
each positive integerN and considered as a generalization of the multivariable Alexander
polynomial [12], which corresponds to the caseN = 2. Here we redefine these in-
variants by using the universalR-matrix of Uq(sl2).

Let q = exp(�p�1=N) be a 2N-th root of unity. LetUq(sl2) be the quantum en-
veloping algebra corresponding to the Lie algebrasl2 defined by the following genera-
tors and relations:

Uq(sl2) =

�
K , K�1, E, F K K�1 = K�1K = 1, K E K�1 = q2E, K F K�1 = q�2F ,

[E, F ] =
K � K�1

q � q�1

�
.

Uq(sl2) also has a hopf algebra structure with the following coproduct 1.

1(K ) = K 
 K , 1(E) = E 
 K + 1
 E, 1(F) = F 
 1 + K�1 
 F .

The N-dimensional irreducible representation ofUq(sl2) at q = exp(�p�1=N) admits
central deformation parametrized by the scalar� correponding to the central elementK 2N .
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542 J. MURAKAMI

Instead of�, we use parameter� satisfying� = qN�. Let (��, V�) be the corresponding
representation

�� : Uq(sl2) ! End(V�).
Then �� is isomorphic to the irreducible representation of the highest weight� if � is
not an integer.

The R-matrix G in [1] is compatible with the action ofUq(sl2) on V� 
 V� and
V� 
 V�, i.e.

1(x)G = G1(x) : V� 
 V� ! V� 
 V�.
We modify the aboveR-matrix G so that it coincides with the representation of the
universal R-matrix when� is an integer. By using this modifiedR-matrix, we con-
struct a framed link invariant which we call thecolored Alexander invariant, and in-
vestigate its relation to the hyperbolic volume of the knot and link cone-manifolds. Let
M�1,�2,:::,�k be the cone manifold obtained from the linkL with the cone angle�i along
the i -th component ofL. Then we expect the following.

Naive expectation (Volume conjecture for the colored Alexander invariant). If
M�1,�2,��� ,�k is a hyperbolic cone manifold,

Vol(M�1,�2,��� ,�k ) = lim
N!1 2� logj8N

L (N�1=(2�), N�2=(2�), : : : , N�k=(2�))j
N

.

If M�1,�2,:::,�k is a spherical cone manifold,

8N
L

�
N�1

2� ,
N�2

2� , : : : , N�k

2�
� �

N!1 exp
N
p�1

2� Vol(M�1,�2,:::,�k ).

It is known that the above does not hold if one of�i ’s is rational with respect
to � . But if we use the notion of optimistic limit o-lim introduced in [9], we would
declare the following conjecture.

Conjecture. If M�1,�2,:::,�k is a hyperbolic cone manifold,

Vol(M�1,�2,:::,�k ) = o-lim
N!1 2� logj8N

L (N�1=(2�), N�2=(2�), : : : , N�k=(2�))j
N

.

If M�1,�2,:::,�k is a spherical cone manifold,

Vol(M�1,�2,��� ,�k ) = o-lim
N!1 2� Im(log8N

L (N�1=(2�), N�2=(2�), : : : , N�k=(2�)))

N
.

The optimistic limit o-lim means to apply the saddle point method formally as in
[5], [9] and [10]. This conjecture would be proved by applying Yokota’s theory de-
veloped in [13] to the colored Alexander invariant. However, in this paper, we show
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some examples instead of proving the conjecture. Such relation is first observed in [11]
by considering the deformation of the parameterq. Here, instead ofq, we deform the
highest weights corresponding to the components of a link, and this deformation can
be accomplished independently for each component while theperturbation ofq gives
a simultaneous deformation for the all components.

As an application, a system ofA-polynomials for a multi-component link is pro-
posed at the end of the paper.

2. R-matrix

2.1. Representation ofUq(sl2). We first describe the highest weight representa-
tion (��, V�) of Uq(sl2). Let fv�0 , v�1 , : : : , v�N�1g be the basis ofV�, and the actions of
K , E, F are given by the following:

Ev�i =
f�� i + 1gf1g v�i�1, (i � 1), Ev�0 = 0,

Fv�i =
fi + 1gf1g v�i +1, (i � N � 1), Fv�N�1 = 0,

Kv�i = q��2i v�i ,

where fag = qa � q�a. We also use the notationsfx; ng =
Qn�1

i =0 fx � i g for positive
integern and fx; 0g = 1.

2.2. Universal R-matrix. Let Ru be the universalR-matrix Ru of Uq(sl2) given
as follows:

Ru = q
1
2 H
H

1X
n=0

f1g2n

fn; ngqn(n�1)=2(En 
 Fn),

where H is an element such thatqH = K . H is not an element ofUq(sl2), but we
define the action ofH toV� so thatqH = K , i.e.

Hv�i = (�� 2i )v�i .

Similarly,

q
1
2 H
Hv�i 
 v�j = q

1
2 (��2i )(��2 j )v�i 
 v�j .

Let R be the R-matrix corresponding to the braid generator

R = Ru P,

where P is the permutation

P(x 
 y) = y
 x.
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Fig. 1. R-matrices at positive and negative crossings.

Since Ru is the universalR-matrix, R satisfies the braid relation

(1) R12R23R12 = R23R12R23.

2.3. Representation of theR-matrix. The R-matrix R defined in the previous
section gives a mappingV� 
 V� ! V� 
 V� as follows.

(2)

R � (v�i 
 v�j )

=
X

n

q
1
2 (��2i�2n)(��2 j +2n)+n(n�1)=2 fi + n; ngf�� j + n; ngfn; ng (v�j�n 
 v�i +n),

R�1 � (v�i 
 v�j )

=
X

n

(�1)nq� 1
2 (��2i )(��2 j )�n(n�1)=2 f j + n; ngf�� i + n; ngfn; ng (v�j +n 
 v�i�n).

In the following, Ri j
kl means the matrix element ofR, i.e.

R � (v�i 
 v�j ) =
X
k,l

Ri j
kl (v�k 
 v�l ),

and R, R�1 correspond to the crossings as in Fig. 1.

2.4. R-matrix in [1]. We introduce some symbols forq-analogues.

(z; n)q =
n�1Y
j =0

(1� zqj ),

�
m
n

�
q

=

8<
:

(q; m)q

(q; m� n)q(q; n)q
for m� n � 0,

0 for m� n < 0,�
m
n

�
z,q

=
(z; m)q

(z; n)q
for m, n � 0.



COLORED ALEXANDER INVARIANTS AND CONE-MANIFOLDS 545

Let Gab
cd(�, �;�) be the R-matrix given in [1],

Gab
cd(�, �; +) =

�
a
d

�
q2

�
c
b

�
�,q2

�dq2bd�sb+tc��sd�ta

� f (�, �, q2)
F(�, a)F(�, b)

F(�, d)F(�, c)
qu(a+d�b�c)+v(ab�cd),

Gab
cd(�, �;�) =

�
b
c

�
1=q2

�
d
a

�
1=�,1=q2

��cq�2ac�sb+tc��sd�ta

� f (�, �, q2)�1 F(�, b)F(�, a)

F(�, c)F(�, d)
qu(a+d�b�c)+v(ab�cd),

where f , F are arbitrary functions,s, t , u, v are arbitrary numbers, and�, � are the
parameters for the under and the over paths respectively. Note that�

i + n
i

�
q2

= qin fi + n; ngfn; ng ,

�
j

j � n

�
q�2�,q2

= (�1)nq jn�(�+1)n� 1
2 n(n�1)f j � 1� �; ng

= q jn�(�+1)n� 1
2 n(n�1)f�� j + n; ng.

Theorem 2. The above R-matrix is equal to Glk
j i (�, �;�) as follows:

Ri j
kl = Glk

j i (q
�2�, q�2�; +), (R�1)i j

kl = Glk
j i (q

�2�, q�2�;�),

where the arbitrary parameters and functions are fixed as follows.

s =
1

2
, t = 0, u = 0, v = 1, F(�, i ) = 1, f (q�2�, q�2�, q2) = q(1=2)��.

Proof. CompareRi j
kl in (2) and Glk

j i (q
�2�, q�2�; +) by putting n = l � i = j � k.

Glk
j i (q

�2�, q�2�; +)

= q
1
2��+in+ jn�(�+1)n�(1=2)n(n�1)�2�i +2i ( j�n)��( j�n)+�i +(i +n)( j�n)�i j fi + n; ngf�� j + n; ngfn; ng

= q
1
2 (��2i�2n)(��2 j +2n)+n(n�1)=2 fi + n; ngf�� j + n; ngfn; ng

= Ri j
kl .

Proof for (Ri j
kl )

�1 is similar.
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REMARK 3. The action ofUq(sl2) on V� and V�+2N are the same one. However,
our R-matrices concerning to� and � + 2N are different. This is the reason why we
use the parameter� instead of� = qN�.

3. Colored Alexander invariants

3.1. Modified invariant. Let T be a (1, 1) tangle with parametrized compo-
nents. Let�1 be the parameter corresponding to the open component and�2, : : : , �k

be the parameters for other components. These parameters are called thecolors of the
components. LetON

T (�1, : : : , �k) be the operator in End(V�1) constructed by the state
sum as in [12] obtained by assigning theR-matrices for crossings ofT and the fol-
lowing scalars for maximal and minimal points ofT .

Note that

��(K�(N�1))v�i = q�(1�N)�2i v�i , ��(K (N�1))v�i = q��(1�N)+2i v�i .

Let

8N
T (�1, �2, : : : , �k) = f�1 + N; N � 1g�1ON

T (�1, �2, : : : , �k),

where�1 is the color of the open component ofT .

Theorem 4. 8N
T (�1, �2, : : : , �k) is an invariant of a colored framed link L with

colors �1, �2, : : : , �k obtained by closing the tangle T.

DEFINITION 5. We write8N
L (�1, �2, : : : , �k) instead of8N

T (�1, �2, : : : , �k) and
call it the colored Alexander invariantof colored links.

Proof of Theorem 4. Let̃8N
L (�1,�2,:::,�k) be the function defined as above from

f �1R instead ofR, where f is the function in Theorem 2. Since the product of the
f terms in8̃N

L only depends on the framing and linking numbers ofL, if 8̃ is a link
invariant, then8 is also a framed link invariant. By the way,

�(N�1)=2(�; N � 1)�1
q2 = (�1)N�1q�(N�1)(N�2)=2f�1 + N; N � 1g�1

for � = q�2�1, where (�; k)! =
Qk�1

j =0 (1� �! j ). Therefore

8̃N
L (�1, �2, : : : , �k) = (�1)N�1q(N�1)(N�2)=28̂L (�1, �2, : : : , �k),
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Positive twist of type I, type II, negative twist of type I, type II.

Fig. 2. Positive twists and negative twists.

where 8̂ is the isotopy link invariant in Definition 5.4 of [1]. In the definition of8̂, the function f is normalized asf (�, �; q2) = ��(N�1)=2 so that formulas (3.11)
and (3.12) in [1] hold. In the definition of̃8, we add the factor��(N�1)=2 = q�1(N�1)

to the contribution of minimal and maximal point instead of the R-matrix so that the
similar formulas hold. Therefore,8 is a framed link invariant.

3.2. Framing contribution. The only difference of our8 and 8̂ in [1] is that8 depends on the framing of the link. We check for the four typesof twist given in
Fig. 2. We assume that the string is colored by�. For the positive twist of type I, the
corresponding scalar is obtained by computing the action tov�0 .

q�(1�N)q
1
2�2

= q�(�+2�2N)=2.

For the positive twist of type II, the corresponding scalar is obtained by computing the
action tov�N�1.

q��(1�N)+2(N�1)q(��2N+2)(�=2�N+1) = q(�2+2��2�N+4N2�4N)=2 = q�(�+2�2N)=2.

For the negative twist of type I, the corresponding scalar isobtained by computing the
action tov�0 .

q��(1�N)q�(1=2)�2
= q��(�+2�2N)=2.

For the negative twist of type II, the corresponding scalar is obtained by computing
the action tov�N�1.

q�(1�N)�2(N�1)q�(�+2)(�=2+1) = q��(�+2�2N)=2.

Therefore, we have the following.

Proposition 6. Let K f and K0 be ambient isotopic knots with framing f and0,
we have

(3) 8N
K f

(�) = q
�(�+2�2N)

2 f8N
K0

(�).
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Fig. 3. Tangle for the Hopf link.

4. Examples

4.1. Hopf link. For the positive Hopf linkH+, we compute the colored Alexander
invariant by using the tangle in Fig. 3.

8N
H+

(�, �) = f� + N; N � 1g�1
N�1X
i =0

q�(1�N)�2i q(�=2�i )�q�(�=2�i )

= f� + N; N � 1g�1
N�1X
i =0

q�(�+1)�N��2(�+1)i

= f� + N; N � 1g�1q�(�+1)�N� 1� q�2N(�+1)

1� q�2(�+1)

= f� + N; N � 1g�1q(�+1)(�+1)�N(�+�) qN� � q�N�
q�+1 � q�(�+1)

= f� + N; Ng�1q(�+1�N)(�+1�N)�N2
2
p�1 sin��

= � p�1
N

2 sin��q(�+1�N)(�+1�N)2
p�1 sin�� =

p�1
N�1

q(�+1�N)(�+1�N).

Here we use the relation ([1], 1.392, 1)

(4) f� + N; Ng = 2N
p�1

N
NY

i =1

sin
(� + i )�

N
= 2
p�1

N
sin(� + 1)� = �2

p�1
N

sin�� .

Therefore, we get

(5) 8N
H+

(�, �) =
p�1

N�1
q(�+1�N)(�+1�N).

Similarly, for negative Hopf linkH�, we have

(6) 8N
H�(�, �) =

p�1
�N+1

q�(�+1�N)(�+1�N).
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Fig. 4. Tangle for the figure eight knot.

4.2. Figure eight knot. For the figure eight knot 41, 8N
41

(�) is given as follows.

8N
41

(�) = f� + N; N � 1g�1
X
i , j

q�(1�N)�2i q��(1�N)+2 j Ri ,0
0,i R̄i , j

i + j ,0R0,i + j
i , j R̄ j ,0

0, j

= f� + N; N � 1g�1
X
i , j

q2( j�i )q�(�=2�i )

� (�1)i q� 1
2 (��2i )(��2 j )�i (i�1)=2 fi + j ; i gf�; i gfi ; i g

� q
1
2 (��2 j )(��2i )+ j ( j�1)=2f�� i ; j g � q��(�=2� j )

= f� + N; N � 1g�1
X
i , j

(�1)i q( j�i )(2�+i + j +3)=2 fi + j ; i gf�; i + j gfi ; i g
= f� + N; N � 1g�1

X
0� j�k�N�1

(�1)k� j q�3k=2�k2=2�k�+ j (3+k+2�) fk; i gf�; kgfi ; i g
(k = i + j ).

By using Lemma A in Appendix, the above is equal to

f� + N; N � 1g�1
X

k

(�1)kq�3k=2�k2=2�k� kY
j =1

(1� q4+2k+2��2 j )f�; kg
= f� + N; N � 1g�1

X
k

f� + k + 1; kgf�; kg = f� + N; Ng�1
X

k

f� + k + 1; 2k + 1g
= � 1

2
p�1

N
sin��

X
k

f� + k + 1; 2k + 1g (by (4)).
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Fig. 5. Tangle of Whitehead link.

Therefore

(7) 8N
41

(�) = � 1

2
p�1

N
sin��

N�1X
k=0

f� + k + 1; 2k + 1g.
4.3. Whitehead link. Let KW be the Whitehead link of framings 0 for both

components. The colored Alexander invariant ofKW is given by

8N
KW

(�, �)

= q�((�+1�N)2�(1�N)2)=2f� + N; N � 1g�1

� X
0�k�i� j�N�1

q�(1�N)�2kq��(1�N)+2( j�k)q�(�=2�k)q� 1
2 (��2 j +2k)�

� q((��2i )(��2 j +2i )+i (i�1))=2f�� j + i ; i g
� (�1)kq�((��2k)(��2 j +2k)+k(k�1))=2 f j ; kgf�; kgfk; kg
� q

1
2 (��2 j +2k)(��2k)+(i�k)(i�k�1)=2 f j � k; i � kgf�� k; i � kgfi � k; i � kg

= f� + N; N � 1g�1
X

0�i� j�N�1

q�(i +1)(i�2 j )+�i +�(N�i�1)f�; i gf j ; i gf�� j + i ; i g
� X

0�k�i

(�1)kqk(�i�2��3) 1fi � k; i � kgfk; kg .
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By using Lemma A in Appendix, the above is equal to

X
0�i� j�N�1

q�(i +1)(i�2 j )+�i +�(N�i�1) f�; i gf j ; i gf�� j +i ; i gfi ; i gf�+N; N�1g
iY

k=1

(1�q�2��2�2k)

=
X

0�i� j�N�1

q�(i +1)(i�2 j )+�i +�(N�i�1) f�; i gf j ; i gf�� j +i ; i gfi ; i gf�+N; N�1g
iY

k=1

q���1�k(q�+1+k�q�(�+1+k))

=
X

0�i� j�N�1

q�3i 2=2+2j i��i�5i =2+2j��+�N f�; i gf j ; i gf�� j +i ; i gf�+1+i ; i gfi ; i gf�+N; N�1g .

Now, replacing j by i + l and using Lemma B in Appendix, we have

X
0�i�N�1

qi 2=2��i�2Ni�i =2��+�N f� + i + 1; 2i + 1gfi ; i gf� + N; Ng
X

0�l�N�1�i

q2l (i +1)fl + i ; i gf�� l ; i g
=

X
0�i�N�1

qi 2=2��i�i =2��+�N f� + i + 1; 2i + 1gfi ; i gf� + N; Ng
� q(i +1)(��i )�N� fi ; i g2f� + i + 1; 2i + 1gf� + N; Ngf2i + 1; 2i + 1� Ng

=
(�1)N

4 sin�� sin��
X

[N=2]�i�N�1

q�i 2=2�3i =2 fi ; i gf� + 1 + i ; 2i + 1gf� + i + 1; 2i + 1gf2i + 1; 2i + 1� Ng .

Therefore
(8)

8N
KW

(�,�) =
(�1)N

4sin��sin��
X

[N=2]�i�N�1

q�i 2=2�3i =2 fi ; i gf�+1+i ;2i +1gf�+i +1;2i +1gf2i +1;2i +1�Ng .

4.4. Borromean rings. Let KB be the Borromean rings. Then

8N
KB

(�, �, �)

= f� + N; N � 1g�1

� X
i + j�l�i ,i + j�k� j

q�(1�N)�2i��(1�N)+2 j

� Ri ,0
0,i R̄i , j

k,i + j�k R0,k
i + j�l ,k+l�i� j R̄

k+l�i� j ,i + j�k
l ,0 Ri + j�l ,l

i , j R̄ j ,0
0, j
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= f� + N; N � 1g�1

� X
i + j�l�i ,i + j�k� j

q(N�1)(���)�2i +2 j q�(�=2�i )q��(�=2� j )

� (�1)k� j q� 1
2 (��2i )(��2 j )�(k� j )(k� j�1)=2

� fk; k� j gf�� i � j + k; k� j gfk� j ; k� j g
� q

1
2 (�+2i +2 j�2k�2l )(��2i�2 j +2l )+(k+l�i� j )(k+l�i� j�1)=2

� f� � i � j + l ; k + l � i � j g
� (�1)k+l�i� j q� 1

2 (��2i�2 j +2k)(�+2i +2 j�2k�2l )�(k+l�i� j )(k+l�i� j�1)=2
� fl ; k + l � i � j gf�; k + l � i � j gfk + l � i � j ; k + l � i � j g
� q

1
2 (��2i )(��2 j )+(l�i )(l�i�1)=2 f j ; l � i gf�� i ; l � i gfl � i ; l � i g

= f� + N; N � 1g�1

� X
i + j�l�i ,i + j�k� j

(�1)l�i q(N�1)(���)

�qi (i�3)=2� j ( j�3)=2+k(3k+1)=2�l (3l+1)=2�2ik+i l� jk+2 j l +�(�i� j +k+l )+�(�i + j�k+l )+�(i + j�k�l )

�fk; j gf��i� j +k; k+l�i� j gf��i� j +l ; k+l�i� j gfl ; i gf�; k+l�i� j gfk+l�i� j ; k+l�i� j gfi + j�k; i + j�kgfi + j�l ; i + j�l g .

By putting i = l + r � s and j = k� r , we get

f�+ N; N�1g�1
X

l�s,k�s

(�1)sqN(���)+(���+2k�2l )(s+1)+�s+s(3+s)=2
� fk; sgf�� l + s; sgf�� k + s; sgfl ; sgf�; sgfs; sg2
�X

s�r

(�1)r q�r (2�+s+3) fs; r gfr ; r g
= f�+ N; N�1g�1

X
k,l ,s

(�1)sqN(���)+(���+2k�2l )(s+1)+�s+s(3+s)=2
� fk; sgf�� l + s; sgf�� k + s; sgfl ; sgf�; sgfs; sg2� (1�q�2��4)(1�q�2��6) � � � (1�q�2��2s�2)

= f�+ N; N�1g�1
X

l�s,k�s

(�1)sq(N�1)(���)+(���+2k�2l )(s+1)+�s+s(s+3)=2�s(2�+s+3)=2
� fk; sgf�� l + s; sgf�� k + s; sgfl ; sgf�; sgfs; sg2 �f�+ s+ 1; sg
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Fig. 6. Borromean rings.

=
X

l�s,k�s

(�1)sqN(���)+(���+2k�2l )(s+1)

� fk; sgf�� l + s; sgf�� k + s; sgfl ; sgf�+ s+ 1; 2s+ 1gf�+ N; Ngfs; sg2
=
X

s

(�1)sqN(���)+(���)(s+1) f�+ s+ 1; 2s+ 1gf�+ N; Ngfs; sg2
�X

k�s

q2k(s+1)fk; sgf�� k + s; sgX
l�s

q�2l (s+1)fl ; sgf�� l + s; sg
= qN(���)

X
s

(�1)sq(���)(s+1) f�+ s+ 1; 2s+ 1gf�+ N; Ngfs; sg2
�X

k

q2k(s+1)fk + s; sgf�� k; sgX
l

q�2l (s+1)fl + s; sgf�� l ; sg.

By using Lemma B in Appendix, we have

X
k

q2k(s+1)fk + s; sgf� � k; sg = q(s+1)(��s)�N� fs; sg2f� + s + 1; 2s + 1gf� + N; Ngf2s + 1; 2s + 1� Ng
and X

l

q�2l (s+1)fl + s; sgf�� l ; sg = q�(s+1)(��s)+N� fs; sg2f� + s + 1; 2s + 1gf� + N; Ngf2s + 1; 2s + 1� Ng .
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Hence

8N
KB

(�, �, �)

=
X

s

(�1)s
fs; sg2f� + s + 1; 2s + 1gf� + s + 1; 2s + 1gf� + s + 1; 2s + 1gf� + N; Ngf� + N; Ngf� + N; Ngf2s + 1; 2s + 1� Ng2

=
�p�1

�3N

8 sin�� sin�� sin��
� X

[N=2]�s�N�1

(�1)s
fs; sg2f� + s + 1; 2s + 1gf� + s + 1; 2s + 1gf� + s + 1; 2s + 1gf2s + 1; 2s + 1� Ng2 .

Therefore
(9)8N

KB
(�, �, �)

=

p�1
N

8 sin�� sin�� sin��
� X

[N=2]�s�N�1

(�1)s+1 fs; sg2f� + s + 1; 2s + 1gf� + s + 1; 2s + 1gf� + s + 1; 2s + 1gf2s + 1; 2s + 1� Ng2 .

4.5. Colored Jones invariant. For integer�, �, �, the colored Jones invariants
VL (�, : : : ) of 41, KW, KB are given in [3].

V41(�) =
�X

i =0

f� + i + 1; 2i + 1gf1g ,

VKW (�) =
min(�,�)X

i =0

q�i 2=2�3i =2 f� + i + 1; 2i + 1gf� + i + 1; 2i + 1gf1gf2i + 1; i + 1g ,

VKB (�) =
min(�,�,�)X

i =0

f� + i + 1; 2i + 1gf� + i + 1; 2i + 1gf� + i + 1; 2i + 1gf1gf2i + 1; i + 1g2 .

Comparing with the colored Alexander invariants, the termsin the summations are sim-
ilar, but the range of the summations are quite different, especially for the link case.

5. Volume of cone manifolds

5.1. Figure eight knot. Let 41 be the figure eight knot and let (a; x)n =
Qn�1

j =0 (1�
ax j ). Then, from (7), we have

8N
41

(�) =
�p�1

�N

2 sin��
X

k

q(2k+1)(�+1)(q�2��2k+2; q2)2k+1.
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Let Li2(z) be the analytic continuation of the following function:

Li2(x) =
Z x

0
� log(1� x)

x
dx =

1X
k=1

xk

k2
.

Then Li2(z) is a multivalued function and its branches are given by

Li2(z) + 2�p�1p log z + 4q�2 (p, q 2 Z).

In the rest of this paper, Li2(z) means an appropriate branch of it. Following Kashaev’s
way in [7] (see also [10] for more examples) to consider the relation to the hyperbolic
volume, letV(a, z) be the following function.

(10) V(a, z) = �p�1 loga + log a log z + Li2

�
1

az

�� Li2

� z

a

�
.

Here a, z correspond toq2�, q2k respectively, and the term�p�1 loga is added
so that the value ofV(a, z0) in the following coincide with the volume not only for
hyperbolic case but also for spherical case. Adding�p�1 loga to V corresponds to
multiplying qN� to 8. The optimistic limit introduced in [9] of the colored Alexander
invariants of 41 with fixed a is given byV(a, z0) wherez0 is the solution of the follow-
ing equation.

�V�z
= 0, i.e. z2 � (a� 1 + a�1)z + 1 = 0.

The solution of this equation is given as follows. Leta = exp
p�1� and K� be the

figure eight knot cone-manifold with the cone angle� along the knot.

Hyperbolic case (0� � < 2�=3) jz0j = 1, cos(argz0) = cos� � 1

2
,

Euclidean case (� = 2�=3) z0 = �1,
Spherical case (2�=3< � < 4�=3) z0 = real number.

Comparing with the results of [8], we have

�p�1
�V (a, z)�� = arccosh(1 + cos� � cos 2�) = �� Vol(K�)�� ,

and we get the following.
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Theorem 7. For hyperbolic case, i.e. 0� � < (2=3)� ,

�p�1V(a, z0) = Vol(K�).

For spherical case,

�V(a, z0) = Vol(K�).

5.2. Whitehead link. Let KW be the Whitehead link. Then, from (8), we have

8N
KW

(�, �)

=

p�1
�N�1

q�(�+�+1)

4 sin�� sin��
�X

i

(�1)i +1q(�2��2�+i�3)i (q2; q2)N(q2; q2)i (q2��2i +2; q2)2i +1(q2��2i +2; q2)2i +1

(q2; q2)2i +1
.

Now we compute the optimistic limit of8N
KW

(�, �). Let V(a, b, z) be the following
function.

V a(a, b, z) = �p�1(loga + log b + log z)� Li2(z)� Li2(az)� Li2(bz) + Li2(z2)

+ Li2

�
a

z

�
+ Li2

�
b

z

�� �log a + log b� log z

2

�
log z,

where a, b, z correspond toq2�, q2�, q2i respectively, and the term�p�1(loga +
logb) is added so that the value ofV(a,b,z0) in the following coincide with the volume
not only for hyperbolic case but also for spherical case. By using

Li2(z�1) = �Li2(z)� 1

2
(log z)2 + �p�1 logz +

�2

3
,

we have

(11)

V(a, b, z) = �p�1(log a + log b + log z)� Li2(z) + Li2(z2)� Li2(az)� Li2

� z

a

�

� Li2(bz)� Li2

� z

b

�� 1

2
(log a)2 � 1

2
(log b)2 � 1

2
(log z)2 +

2�2

3
.

Here 2�p�1 logz is absorbed by Li2(z) as a branch of it. The optimistic limit of the
colored Alexander invariants ofKB with fixed a, b and c is given by V(a, b, c, z0)
wherez0 is a solution of the following equation.

�V(a, b, z)�z
= 0.
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By putting z = (x � 1)=(x + 1), this equation becomes to

(12) x3 +
1

2
(A2B2 + A2 + B2 � 1)x2 � A2B2x + A2B2 = 0,

where

A =
a + 1

a� 1

p�1, B =
b + 1

b� 1

p�1.

Let a = exp
p�1� and b = exp

p�1�, then A = cot(�=2), B = cot(�=2) and we have

(13) �p�1
�V (a, b, z)�� = �2 arctan

A

x
, �p�1

�V (a, b, z)�� = �2 arctan
B

x
.

Comparing with the results of [8], (13) shows that the partial derivatives ofV coinside
with the lengths of the singular geodesics ofW�,� , whereW�,� is the Whitehead link
cone-manifold with cone angles� and �. Hence we get the following.

Theorem 8. If W�,� is hyperbolic, then the volume of W�,� is given by

Vol(W�,�) = �V(a, b, z1)� V(a, b, z2)

2
p�1

,

where z1 = z̄, z2 = z, z = (x � 1)=(x + 1), Im(x) 6= 0 and x is a root of the cubic
equation(12).

If W�,� is spherical, then the volume of W�,� is given by

Vol(W�,�) = �V(a, b, z1)� V(a, b, z2)

2
,

where z1 = (x1 � 1)=(x1 + 1), z2 = (x2 � 1)=(x2 + 1), and x1, x2 are nonnegative roots
of the cubic equation(12).

REMARK 9. (1) The above gives a new formula for the volume ofW�,� without
using integral expression.
(2) For hyperbolic case,� Im V(a, b, z1) and� Im V(a, b, z2) are equal to the volume
of W�,� since ā = a�1, b̄ = b�1 and V(a, b, z2) = V(a, b, z1).
(3) For spherical case,V(a, b, z1) and V(a, b, z2) are real numbers.
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5.3. Borromean rings. Let KB be the Borromean rings. Then, from (9), we have

8�,�,�
N (KB)

=

p�1
N

q�������1

8 sin�� sin�� sin��
�X

s

(�1)s+1q�(2�+2�+2�+1�3s)s

� ((q2; q2)s)2(q2��2s+2; q2)2s+1(q2��2s+2; q2)2s+1(q2��2s+2; q2)2s+1

((q2; q2)2s+1�N)2
.

Now we compute the optimistic limit of8N
KB

(�,�,�). Let V(a, b, c, z) be the following
function.

(14)

V(a, b, c, z) = �p�1(loga + log b + log c + log z)� 2Li2(z) + 2Li2(z2)� Li2(az)

� Li2(bz)� Li2(cz) + Li2

�
a

z

�
+ Li2

�
b

z

�
+ Li2

�
c

z

�

+
3

2
log2 z� (log a + log b + log c) log z,

where a, b, c, z correspond toq2�, q2�, q2� , q2s respectively, and the term�p�1(loga + logb+ logc) is added so that the value ofV(a, b, c, z0) in the following
coincide with the volume not only for hyperbolic case but also for spherical case. By
using

Li2(z2) = 2Li2(z) + 2Li2(�z),

Li2(z�1) = �Li2(z)� 1

2
(log z)2 + �p�1 logz +

�2

3
,

we have

V(a, b, c, z) = �Li2(az)� Li2(bz)� Li2(cz) + Li2

�
a

z

�
+ Li2

�
b

z

�
+ Li2

�
c

z

�
+ Li2(z)

� Li2(z�1) + 2Li2(�z)� 2Li2(�z�1)

� (log a + log b + log c)(log z� �p�1).

The optimistic limit of the colored Alexander invariants ofKB with fixed a, b and c
is given by V(a, b, c, z0) where z0 is a solution of the following equation.

(15)
dV

dz
= 0.
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Let a = exp
p�1�, b = exp

p�1�, c = exp
p�1
 , z = exp

p�1� , A = tan(�=2), B =
tan(�=2), C = tan(
 =2) and T = tan(�=2). Then (15) is transformed to

(16) T4 � (A2 + B2 + C2 + 1)T2 � A2B2C2 = 0.

For real parameters� and � , let 1(�, � ) = 3(� + � ) � 3(� � � ), where3(x) =� R x
0 logj2 sint j dt is the Lobachevski function. Then

21��
2

,
�
2

�
= Im

�
Li2(az)� Li2

�
a

z

�
+ log a log z

�
.

Therefore, for real parameters�, �, 
 , and � ,

Im V(a, b, c, z)

= �2

�1��
2

,
�
2

�
+1��

2
,
�
2

�
+1�


2
,
�
2

�� 21��
2

,
�
2

��1�0,
�
2

��
.

Now, consider the case that the parameterz is a real number. In this case, we use
parameterT satisfying T = (z� 1)=(z + 1). Then the equation (15) is transformed to

(17) T4 + (A2 + B2 + C2 + 1)T2 � A2B2C2 = 0.

For � > �=2, let Æ(� , �) be the function in [8],

Æ(� , �) =
Z �=2
� log(1� cos 2� cos 2� )

d�
cos 2� .

By putting t = tan� ,

Æ(� , �) =
Z tan�
�1 log

�
2(t2 + tan2 � )

(1 + t2)(1 + tan2 � )

�
dt

t2 � 1
.

Now replacet by (z� 1)=(z + 1), we get

Æ��
2

, �� =
1

2

Z (1+tan�)=(1�tan�)

�1
log

�
(1� az)(1� az�1)

(1 + z2)

�
dz

z
.

Let T0 be the negative root of (17) andz0, �0 be the real numbers satisfyingz0 =
(1 + T0)=(1� T0) and tan�0 = T0. Then

2

�Æ��
2

, �0

�
+ Æ��

2
, �0

�
+ Æ�


2
, �0

�� 2Æ��
2

, �0

�� Æ(0, �0)

�
= ReV(a, b, c, z0).

Comparing with the results of [6] and [8], we get the following.
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Theorem 10. For 0< �,�, 
 < 2� , let M�,�,
 be the cone-manifold with singlar
set KB whose cone angles of three components of KB are �, �, 
 . If M�,�,
 is a
hyperbolic cone-manifold with0< �, �, 
 < � , then

Vol(M�,�,
 ) = � Im(V(a, b, c, z1)) = � Im(V(a, b, c, z2))

= � 1

2
p�1

(V(a, b, c, z1)� V(a, b, c, z2)),

where z1, z2 correspond to the real solutions of the equation(16).
If M�,�,
 is a spherical cone-manifold with� < �, �, 
 < 2� , then

Vol(M�,�,
 ) = � ReV(a, b, c, z3) = � ReV(a, b, c, z4)

= �1

2
(V(a, b, c, z3)� V(a, b, c, z4)),

where z3, z4 correspond to the real solutions of the equation(17).

6. A-polynomials

In this section, we introduce a polynomial or a system of polynomials of the above
three examples by using the method in [13]. For figure eight knot, it coinsides with
the A-polynomial, and for link cases, these are generalization of the A-polynomial
for links.

6.1. Figure eight knot. The A-polynomial of 41 is obtained by eliminating the
parameterx from the following system of equations.

�V(a, x)�x
= 0, a

�V (a, x)�a
= log L.

Here V(a, x) is given by two parametersa and L correspond to the meridian and lon-
gitude. The resulting polynomial is

(18) a2 � L + aL + 2a2L + a3L � a4L + a2L2 = 0.

In fact, this polynomial coincides withAJ(2,�2)(L, M) in Theorem 7 of [4] witha = M2.

6.2. Whitehead link. After the above construction of theA-polynomial of 41,
the system ofA-polynomials of the linkKW may be obtained by eliminating the pa-
rameterz from the following system of equations.

�V (a, b, z)�z
= 0, a

�V (a, b, z)�a
= log La, b

�V (a, b, z)�b
= log Lb,
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whereV(a, b, z) is the function given by (11). The parametersa, b correspond to the
meridians of the first and second components, andLa, Lb correspond to the longitudes
of them respectively. The result is
(19)
a2bLa

3 + (a2b2�ab2 + a2�2ab�a + b)La
2 + (a2b�ab2�2ab+ b2�a + 1)La + b = 0,

ab2Lb
3 + (a2b2�a2b�2ab+ b2 + a�b)Lb

2 + (ab2�a2b+ a2�2ab�b+ 1)Lb + a = 0.

6.3. Borromean rings. The system ofA-polynomials of the linkKW may be
obtained by eliminating the parameterz from the following system of equations.

�V�z
= 0, a

�V�a
= log La, b

�V�b
= log Lb, c

�V�c
= log Lc,

where V = V(a, b, c, z) is the function given by (14). The parametersa, b, c cor-
respond to the meridians of the first, second and third components, andLa, Lb, Lc

correspond to the longitudes of them respectively. By eliminating z from the first two
equations, we get the following. Leta = exp

p�1�, b = exp
p�1�, c = exp

p�1
 ,
A = cot(�=2), B = cot(�=2), C = cot(
 =2), D = A2(B2C2 + B2 + C2 + 1), and E =
A2 + B2C2, then

(20) DLa
4 � 4E La

3 � 2(D � 4A2 + 4B2C2)La
2 � 4E La + D = 0.

For Lb and Lc, we get the similar equation corresponding to the symmetry of a, b
and c.

Appendix

Here we show some formulas we used in the computation.

Lemma A. The following formulas hold.

�X
i =0

(�1)i q�i

� �
i

�
=

�Y
j =1

(1� q�+�+1�2 j ).

This formula comes from the following quantized Pascal relation and an induction.

(A.1)

�
n
s

�
= q�s

�
n� 1

s

�
+ q�(n�s)

�
n� 1
s� 1

�
.
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Lemma B. For any a, b, c such that b, a� c are nonnegative integers and a is
not an integer, we have the following identity:

N�1�bX
k=0

q�k(a+b�c+2)fa� k; a� cgfb + k; bg
= q�((b+1)c�Na) fN; Ngfb; bgfa + b + 1; a + b� c + 1gfa + N; Ngfa + b� c + 1; b + 1g .

Proof. Downword induction onb.
STEP 1. If b = N � 1,

N�1�bX
k=0

q�k(a+b�c+2)fa� k; a� cgfb + k; bg = fa; a� cgfN � 1; N � 1g.
On the other hand,

q�((b+1)c�Na) fN; Ngfb; bgfa + b + 1; a + b� c + 1gfa + N; Ngfa + b� c + 1; b + 1g
= (�1)a�c fN; NgfN � 1; N � 1gfa + N; a� c + Ngfa + N; Ngfa� c + N; Ng
= fN � 1; N � 1gfa; a� cg.

Hence the equality holds forb = N � 1.
STEP 2. Assume that Lemma holds forb and prove forb� 1. First, we use the

relation fng = fN � ng and fn; ng = fN � 1; ng. Apply this to fb + k � 1; b + k � 1g,
we have

N�bX
k=0

q�k(a+b�c+1)fa� k; a� cgfb + k� 1; b� 1g
=

N�bX
k=0

q�k(a+b�c+1) fa� k; a� cgfN � 1; b + k� 1gfk; kg
= fN � 1; b� 1g N�bX

k=0

q�k(a+b�c+1) fa� k; a� cgfN � b; kgfk; kg .

Now we use Pascal retation (A.1).

fN � 1; b� 1g N�bX
k=0

q�k(a+b�c+1) fa� k; a� cgfN � b; kgfk; kg
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= fN � 1; b� 1g N�bX
k=0

q�k(a+b�c+1)fa� k; a� cg
� �q�k fN � b� 1; kgfk; kg + q�(N�b�k) fN � b� 1; k� 1gfk� 1; k� 1g

�

=
1fN � bg

 
N�b�1X

k=0

q�k(a+b�c+2) fa� k; a� cgfN � 1; b + kgfk; kg
� q�b

N�b�1X
k=0

q�(k+1)(a+b�c+2) fa� k; a� cgfN � 1; b + k� 1gfk� 1; k� 1g
!

=
1fbg

N�b�1X
k=0

�
q�k(a+b�c+2) fa� k; a� cgfb + k; b + kgfk; kg
� q�(a+2b�c+2)q�k(a+b�c+2) fa� k� 1; a� cgfb + k; b + kgfk; kg

�

=
N�b�1X

k=0

q�k(a+b�c+2)

fbg (fa� k; a� cgfb + k; bg
� q�(a+2b�c+2)fa� k� 1; a� cgfb + k; bg)

=
1fbg
�

q�((b+1)c�Na) fN; Ngfb; bgfa + b + 1; a + b� c + 1gfa + N; Ngfa + b� c + 1; b + 1g
� q�(a+2b�c+2)q�((b+1)(c�1)�N(a�1)) fN; Ngfb; bgfa + b; a + b� c + 1gfa + N � 1; Ngfa + b� c + 1; b + 1g

�

=
q�((b+1)c�Na)

fbg fN; Ngfb; bgfa + b; a + b� cgfa + N; Ngfa + b� c + 1; b + 1g (fa + b + 1g � q�(a+b�c+1)fcg)
=

q�((b+1)c�Na)

fbg q�((b+1)c�Na) fN; Ngfb; bgfa + b; a + b� cgfa + N; Ngfa + b� c + 1; b + 1gq�cfa + b� c + 1g
= q�(bc�Na) fN; Ngfb� 1; b� 1gfa + b; a + b� cgfa + N; Ngfa + b� c; bg

Hence the formula also holds forb� 1.
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