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Abstract
In this paper, we reconstruct the link invariant of framewkd introduced in [1]
by the universaR-matrix of i/, (sl,) and name it the colored Alexander invariant. We
check that the optimistic limib-lim of this invariant is determined by the volume of
the knot and link cone-manifold for figure eight knot, Whigeldl link and Borromean
rings. We also propose thé-polynomials of these examples obtained from the
colored Alexander invariant.

1. Introduction

New link invariants are introduced in [1] for colored linksthey are defined for
each positive integeX and considered as a generalization of the multivariableaider
polynomial [12], which corresponds to the cabe= 2. Here we redefine these in-
variants by using the univers&t-matrix of Uq(sh).

Let g = expfr+/—1/N) be a N-th root of unity. Letiy(sk) be the quantum en-
veloping algebra corresponding to the Lie algebkadefined by the following genera-
tors and relations:

Uq(Sk) :<K, KL EF|KKt=KK=1 KEK1=¢g%E, KFK 1=q?F,

[E, F]= K_—Kl>

q-q
Uy(sl) also has a hopf algebra structure with the following copmdh.
AK)=K®K, AE)=E®QK+1QE, A(F)=F®1+K '®F.

The N-dimensional irreducible representation tdf(sk) at g = expgr+~/—1/N) admits
central deformation parametrized by the scalaorreponding to the central elemettN.

2000 Mathematics Subject Classification. Primary 57M27; 8éary 20G42.



542 J. MURAKAMI

Instead ofe, we use parameter satisfyinga = qN*. Let (o,, V,) be the corresponding
representation

Py . Z/[q(Slz) — End(\/x)

Then p, is isomorphic to the irreducible representation of the bgjhweighta if A is
not an integer.

The R-matrix G in [1] is compatible with the action of{y4(sl;) on V, ® V,, and
VM (2] VA, i.e.

AX)G=GAX): V, ®V, = V, ® V..

We modify the aboveR-matrix G so that it coincides with the representation of the
universal R-matrix whena is an integer. By using this modifie®-matrix, we con-
struct a framed link invariant which we call theplored Alexander invariantand in-
vestigate its relation to the hyperbolic volume of the kniot dink cone-manifolds. Let
M, 6,....0. D€ the cone manifold obtained from the lihkwith the cone angl®; along
the i-th component ofL. Then we expect the following.

Naive expectation (Volume conjecture for the colored Alger invariant). If
Mg, 6,..- 6, 1S @ hyperbolic cone manifold,

2 log| (N6 /(27), NOo/(27).. ... Nok/ )|

V0|(Mglyg21... ng) = |lim
N—o0

N
If Mg, 0, 6 1S @ spherical cone manifold,
N6, N6, N 6 Nv-1
oN[—, —=,...,— ) ~ ex Vol(M .
L ( 27 ' 27 27 ) N EXP 27 (Mo, 65...0)

It is known that the above does not hold if one &fs is rational with respect
to 7. But if we use the notion of optimistic limit o-lim introdudein [9], we would
declare the following conjecture.

Conjecture. If My, 4,4 IS @ hyperbolic cone manifold

logl®N (N61/(27), N6O»/(27), . .., Nbk/(27))|
. .

VOI(M91,92,...,0k) = O'“m 27T
N—oo

If Mg, 0.6, iS @ spherical cone manifold

Im(log ®N(N61/(27), N62/(27), . . ., Nek/(zn)))_

VOI(MGLGZ,--- ,Gk) = ﬂ'_l)lgg 27 N

The optimistic limit o-lim means to apply the saddle pointthoel formally as in
[5], [9] and [10]. This conjecture would be proved by applyilvokota’s theory de-
veloped in [13] to the colored Alexander invariant. Howevier this paper, we show
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some examples instead of proving the conjecture. Suchiaels first observed in [11]
by considering the deformation of the parameterHere, instead of;, we deform the
highest weights corresponding to the components of a limkl this deformation can
be accomplished independently for each component whilepéreurbation ofq gives
a simultaneous deformation for the all components.

As an application, a system d&-polynomials for a multi-component link is pro-
posed at the end of the paper.

2. R-matrix

2.1. Representation ofify(sl2). We first describe the highest weight representa-

tion (os, Vi) of Uy(sk). Let {v§, v, ..., vy_,} be the basis o¥/;, and the actions of
K, E, F are given by the following:
A—i+1} :
Evi="1p* (i>1), Ev:=0,
Vi O viq, (i >1) s
{i+1}
Fol = vh, N—-1), Fv} ,=0,
Vi T Ui (0= ) UN-1
Kvi}‘ = (:1’\_2i vl’\,
where {a} = g — g2 We also use the notationx; n} = ,_0 {x — i} for positive

integern and {x; 0} = 1

2.2. UniversalR-matrix. Let R, be the universaR-matrix R, of Uy(sk) given
as follows:

giHeH Z {{;}n} n-1/2(EN @ FN),

where H is an element such that? = K. H is not an element ot{y(sk), but we
define the action oH toV, so thatg" =K, i.e.

= (L — 20}
Similarly,
q2H®H h & vu _ qz(* 2)(u— 2J)U,\ ® v
Let R be the R-matrix corresponding to the braid generator
R=R,P,
where P is the permutation

Px®y)=yQ®Xx.
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Fig. 1. R-matrices at positive and negative crossings.
Since R, is the universalR-matrix, R satisfies the braid relation
1) R12R23R12 = R23Ri12Rea3.

2.3. Representation of theR-matrix. The R-matrix R defined in the previous
section gives a mappiny, ® V, — V, ® V, as follows.

R-(vﬁ@v?)

' . i+n;n —j+n;n
— Z q%(k—2|—2n)(ﬂ—21 +2n)+n(n—1)/2{ }{{:f n}J } v?—n ® vi)\+n)'
n 1

2
@ R_l-(v{\®vf)

- - j+n;n}{A—i+n;n
= Y (17t 2e2-nte-vel ﬁ] - D @ )
= ;

In the following, Rle means the matrix element @&, i.e.
R-(vf ®vl) = Z Ry (vF @ v},
k.l

and R, R™! correspond to the crossings as in Fig. 1.

2.4. R-matrix in [1]. We introduce some symbols faranalogues.

n—1
(zn)q=[]@-zd),
j=0
m (a; m)q
[ } =1 (@; m—n)q(q; n)q
q

0 form—n <0,

(m) = Mg for m, n > 0.
2.

form—-n=>0,

n (zn)q
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Let Ggg(a, B; 1) be the R-matrix given in [1],

G®(a, B; +) = [ 3] ( g) Blg2dysbrcg-sd-ta
9 B,

Fla, 8)F(B,0) y@+d—b- Srufab-cd)
F(a, d)F(8, ©)

b d
ab ) = —Cn—2ac gsbttc  —sd-ta
Cd(avﬂ! ) [Ci|1 2<a> Zﬂ q ﬂ (24
/9 1/8.1/q

-1 Fle, D)F(B,3) ard—b_cpru(ab cd)
e B ) T OF s, d)

x f(a, B, %)

where f, F are arbitrary functionss, t, u, v are arbitrary numbers, and, g are the
parameters for the under and the over paths respectivelie that

i +n _ ipli+n;n}
[ i ]qz_q (n;n)

< ' i n ) = (—1)"gin e n=zn0-Dg 1 sy
J q72/l qZ

- an—(,;+1)n—%n(n—1){u —j+n;n}.

Theorem 2. The above R-matrix is equal to'{Ga, ; £) as follows

Rkj le(q—ZA’ q—Zp, +) (R 1)|J — le(q—Zp, —2x. _)’

where the arbitrary parameters and functions are fixed aked
1
s=5, t=0, u=0, v=1, F(i)=1 f@* g™ ¢%)=q¥"

Proof. CompareR)) in (2) and Gl{(a™#, q 2 +) by puttingn =1 —i = j —k.
G (q™, g7 +)

= i In—(er D=1/ 2012042 ) -y om0 MM = J 05 )
{n; n}

- q%(A—Zi—2n)(p,—2j+2n)+n(n—1)/2 {i +nn}{n — j +n;n}
{n; n}

:Rii<j|-

Proof for (R)* is similar. O
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REMARK 3. The action offy(sly) on V, and V,.on are the same one. However,
our R-matrices concerning ta and 1 + 2N are different. This is the reason why we
use the parameter instead ofa = qN*.

3. Colored Alexander invariants

3.1. Modified invariant. Let T be a (1, 1) tangle with parametrized compo-
nents. Leti; be the parameter corresponding to the open componenand., ix
be the parameters for other components. These parametecaléed thecolors of the
components. LeON(ry, ..., Ax) be the operator in Enl{,) constructed by the state
sum as in [12] obtained by assigning tliematrices for crossings of and the fol-
lowing scalars for maximal and minimal points ®f

A A I I I i
gHI—M-2 m 1 m g M- U 1 U
i i i i A A

Note that

pa(K~N D)l = rO=N=2ih ) (KIND)h = q 20N 2
Let

OF (A1, A2y .oy ) =P+ NG N = 172ON g, 22,0, ),

where A, is the color of the open component &f

Theorem 4. <I>$‘()L1, A2, ..., Ak) IS an invariant of a colored framed link L with
colors A1, Ay, ..., Ak Obtained by closing the tangle.T

DEFINITION 5. We write ®]¥ (1, A2, . . ., Ak) instead of®¥ (g, Ao, ..., Ak) and
call it the colored Alexander invarianof colored links.

Proof of Theorem 4. Leﬁ)ﬁ(kl,kz,...,)»k) be the function defined as above from
f IR instead ofR, where f is the function in Theorem 2. Since the product of the
f terms in éﬁ only depends on the framing and linking numbersLofif @ is a link
invariant, then®d is also a framed link invariant. By the way,

a(N—l)/Z(a; N — 1);21 - (_1)N—1q—(N—l)(N—2)/2{)\’1 + N, N — 1}—1
for o = q=?1, where ¢; k), = ]‘[T;&(l —aw'). Therefore

BN (g, Az .oy i) = (FDNTIGNTDN=D2P (g, A, .., M),
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o O 0 O

Y A 4 A 4 \ 4

Positive twist of type |, type Il,  negative twist of type I, type Il
Fig. 2. Positive twists and negative twists.

where @ is the isotopy link invariant in Definition 5.4 of [1]. In theefinition of
®, the function f is normalized asf(«, «; gq?) = « (N-1/2 so that formulas (3.11)
and (3.12) in [1] hold. In the definition o, we add the factor,~(N-1/2 = g*(N-1)
to the contribution of minimal and maximal point instead b€ tR-matrix so that the
similar formulas hold. Thereforep is a framed link invariant. O

3.2. Framing contribution. The only difference of ou and ® in [1] is that
@ depends on the framing of the link. We check for the four typEswist given in
Fig. 2. We assume that the string is coloredyFor the positive twist of type I, the
corresponding scalar is obtained by computing the action)to

qk(l—N)q%AZ — q;\(,\+2—2N)/2_

For the positive twist of type Il, the corresponding scakpbtained by computing the
action tovy,_;.

—2(1—N)+2(N 7l)q(A72N +2)(1/2—N+1) 22420 —2AN+4N2—4N)/2 — q,\(uzsz)/z

q =q
For the negative twist of type |, the corresponding scalasbigined by computing the

action tovj.

—A(1— N)Cr(l/z)x2 —A(+2-2N)/2.

q =q

For the negative twist of type Il, the corresponding scataolbtained by computing
the action tov}, ;.

A(1—N)—2(N 71)q7(,\+2)(,\/2+1) = g H2-2N)/2.

q q

Therefore, we have the following.

Proposition 6. Let K¢ and Ky be ambient isotopic knots with framing f ald
we have

A(+2-2N)

©) PR W)=q z 'O Q).
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u

.

Fig. 3. Tangle for the Hopf link.

4. Examples

4.1. Hopf link. For the positive Hopf linkH., we compute the colored Alexander
invariant by using the tangle in Fig. 3.

N-1
®H+(A' ,u) = {I,L + N, N — 1}71 Z q)‘(lfN)leq()‘/zfl)ﬂqﬂ()‘/zfl)
i=0
N-1
- {H/ + N, N — l}fl Z qk(u+l)7NA72(p+l)i
i=0
1— q—ZN(lHl)
_ CN L 11=1A(u+1)—NA
={u+N;N-1}"g"" 1_q72(#+1)
gy AV — g7
grtl — g wrl)

- {/'L +N; N}flq(k+lfN)(M+lfN)fN22 /—1 Sin?T,LL

- {H’ + N, N — 1}—1q(k+l)w+l)—N(

«/—1’\I N-1
- _—q()\+lfN)(u+lfN)2 /_—13in7ru =/ q()\+17N)(u+lfN)_
2sinmTu

Here we use the relation ([1], 1.392, 1)

A+

N')” =2y—1" sin(. + L)r = —2J/-1" sinax.

N
(@) .+ N;Ny=2Y=1" [[sin
i=1

Therefore, we get

(5) N (A, 1) = VT e NG,

Similarly, for negative Hopf linkH_, we have

CNHL g -
(6) ON (b, @)= v/ g NN
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/

Fig. 4. Tangle for the figure eight knot.
4.2. Figure eight knot. For the figure eight knot 4 @L’;i(k) is given as follows.

_ _ ~ g N2 .05 m0it] 510
ON() = (A +N; N — 171y " N2 -NRI R OR (RYTIRY
i
- {)\‘ + N, N — 1}—1 Z qZ(j—i)q)L(}\/Z—i)
i
« (_1)iqf%()ﬁzi)(k—zj)fi(ifl)/z{i + ;i HA )
{ivi}
x q%()»*zi)()»*Zi)ﬂ'(i*1)/2{A —i;j} x q*/\()»/zfj)

= +N:N— 1)1 _1y (j—i)(21+i+j+3)/2{i+j;i-}{.)\;i+j}
(+ ) Z,( Yo T
- = 3k/2— k22— kit {k; i}{A; Kk}
- VN -1 k= y—3k/2—k2/2—Ka+] (3+k+20)
AN N=—17t Y (—1)f g i
(k=1i+j).

0<j<k<N-1

By using Lemma A in Appendix, the above is equal to

k
{(A+N:;N— 1}71 Z(_l)kq73k/27k2/27kk 1_[(1 _ q4+2k+2)LfZJ){)\; k}
k j=1

=0AN;N =LY ok + Lk k= (A NG NP Y i+ k+ 1 K0+ 1)
k k

_ ;Z{“m Lx+1 (by (4)).

2«/—1N sinAm 7
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Fig. 5. Tangle of Whitehead link.

Therefore
N—-1
2/\/ —1N sinAm k=0

4.3. Whitehead link. Let Ky be the Whitehead link of framings O for both
components. The colored Alexander invariantkof, is given by

(7) DY) = - (A+k+1; 2% +1).

@k, (A, 1)
- qf((}ﬁlfN)zf(lfN)z)/Z{)\ +N;N— 1}71
x Z qA(l—N)—qu—u(l—N)+2(j—k)qA(A/Z—k)q—%(u—Zj +2K)A
O<k=<i<j<N-1
x q(()~72i)(;172j+2i)+i (ifl))/z{’u _ ] +i i}

- i kHA k
x (—1)fq(C—2u—2i+2)+k(k-1))/2 15 KHAT K}

{k; k}
% q%(u—21+2k)(k—2k)+(i—k)(i—k—l)/2 {i—ki—-Kk{r=ki-k}
{i —k;i —k}
=N Nyt YT g RO NTIG (i e — | +i5)
O<i<j<N-1

1
{i —k;i —k}k Kk}

x Z (_l)qu(fi —20—3)

O<k<i



COLORED ALEXANDER INVARIANTS AND CONE-MANIFOLDS 551

By using Lemma A in Appendix, the above is equal to

—(i+ —2j)+ri+ JE {)‘-:l}{Jvl}{M_J'H’l} i _2A—2—
(i+1)G =2 y+Ai +p(N—i —1) 22 %
2 o GioeNN—g 11a- )

k=1

O<i<j=N-1

_ —in)i—2j)+ri+u(N—i—1) AT HT T Hr — ] +i51} ALkt (1K)
2 A+ N;N—1) gq (@ =a )

= Z q—3i2/2+21i—ui—5i/2+2j—u+MN{A;i}{j;i}{ﬂ—j+i;i}{)»+l+i;i}
O<i<j<N-1 {i;iH{A+N; N-1}

O<i<j<N-1

Now, replacingj by i +1 and using Lemma B in Appendix, we have

3 in/zfm—zNifi/szNM S @D i ifu - 1)

O<i<N-1 {i;i}{x +N; N} oo
O<i<N-1 {i;i}{x+N; N}

« i D—)-N 0iiPp+i+1,2+1
{mu+N;NH2i +1;2 +1— N}

(=N Z q,iz/z,gi/z{i;i}{)»+1+i;2i+1}{M+i+1;2' +1)
4sinmAsinmp (N/2ITeN-1 {2i +1;2 +1— N} '
Therefore
O ()= _(—1)'_“ Z q_iz/z_gi/zh;|}{A+1J_r|;2|fl}{u+|+1;2 +1}.
4smm\smnu[N/2]§i§N_l {20 +1;2+1— N}

4.4. Borromean rings. Let Kg be the Borromean rings. Then
DA, v)
={n+N;N -1~
« Z qk(lfN)fzifu(l—N)+2j

i+]>1>0,i+j>k>

i.05i.] 0,k Skt —i— ] i+j—k i+ =1l 57,0
X Roi Ri+j—kRifjoike—i—jRio ;i Roj
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={u+N;N-17*
x Z q(Nfl)(H)fZi +2] qu(l/Zfi)qfu(v/ij)
i+j>1>i,i+j>k>]j
% (_1)kaqf%(Hi)(vai)f(kfj)(kfi71)/2
kKk—jHr—i—j+kk—j}
x k= k—1)
% q%(u+2i+2j—2k—2l)(u—2i—2j+2|)+(k+|—i—j)(k+l—i—j—1)/2

S —i—j+lk+l—i— )
s (1) =i B2 =242+ 21+2] ~22l) (=i =} (k=i = ~1)/2
{l;k+l —i — jHu; kK+1 —i — j}
K+l —i —j;k+l —i —j}
« q%(x—Zi)(v—Zj)+(l—i)(l—i—1)/2{j;I —i{a =il =i}

{I —i;l—i}
={u+N;N-11
x Z (_1)| —i q(N—l)(v—)\)

i+jzl=i,i+j=k=>]

x qi (i—3)/2—j(j —3)/2+k(3k+1)/2—I (3 +1)/2—2iKk+il — jK+2jl +A(—i — j+k+H )+p(—i+] —k+H)+v(i+] —k—I)

{k; JHA—T = j+K; Kt =i — jH{v—i =+ KH =i — i, kH =i =]}
(kH —i—; ket —i —j}{i+]—k; i +j—kMi+j—;i+j—1} '

By puttingi =l +r —sandj =k —r, we get

{M+ N; N — 1}—1 Z (_1)SqN(v—)\)+()\.—l}+2k—2|)(S+l)+/,LS+S(3+S)/2

I>s,k>s
y {k; sHA =1 +s; s}{v —k+s; sH{l; s}{u; s}
{s; s}?
, {s;r}
1Y r(2u+s+3)
x§( e
- {,LL + N; N — 1}71 Z(_l)sqN(U*)n)’f(?»*V+2k*2|)(S+1)+MS+S(3+S)/2
k,l,s
{k; sH{A —1 +s; sH{v —k+s; s|{l; s}{u; s}
x {s; s}?

X (1-q 21— q %) . (1-q 227
— {'u+ N; N — 1}—1 Z (_1)sq(N—1)(v—k)+(k—v+2k—2|)(s+1)+Ms+s(s+3)/2—s(2;1+s+3)/2

I>s,k>s
{k; sHA — 1 +s; s}{v —k+s; sSH{l; s}{u; s}
) {s;s}?

x {u+s+1;s}
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Fig. 6. Borromean rings.

= Z (_1)SqN(V—)»)+(A—v+2k—2l)(s+1)
I>s,k>s
ki shr -l +sishv —k+ s s)l; s +s+1;25+1)
{1+ N; N}{s; s)2
= Z(_l)SqN(V7A)+(Afv)(S+]_) {n+s+1;25+1}
S

{m+N; N}{s; s}?
x Z g% Dik; si{v — k +s; s} Z g~ 26 sHr — +s; s}

kzs I>s
1;2s+1}
— N@—2) _1) (Afu)(s+l){,u+8+—,
! Zs:( 7 {n+N; N}{s; s}?

x Z g% ik +s; sHv — k; s} Z q 26"l +s; s}{r —1;s).
k |
By using Lemma B in Appendix, we have

{s:s}?{v+s+1;25+1)
{v+N;NH{2s+1;25+1— N}

Z qzk(S+l){k + s S}{V _ k, S} = q(S+l)(v75)7NU
k

and

{s:s)P{A+s+1;25+1)
(.+N;N}[2s+1,25+1— N}’

Z q—2| (S+l){| +s; S}{)\. — : S} - q—(S+l)()»—S)+NA
|
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Hence

R (A, 1, v)
=37 1)S{S;S}Z{A+S+l;$+1}{M+S+1;$+l}{v+s+l;25+ 1
=2 (A+N;N}p+N;N}Hv+N; N}{2s+1; 25+ 1— NJ2

- 8sinmA sinu sinmv
Z (- 1)3{5 SPPA+s+1; 25+ 1 {u+s+1;25+1{v+s+1;25+1}
X .
{(2s+1;25+1— N}2

[N/2]=s<N-1

Therefore
9)
(4, 1, v)
mN
" 8sinTA sinTp sinTv
y Z (_1)S+1{s; sPPA+s+1; 25+ {u+s+1;25+1{v+s+1;25+ 1}
{2s+1;25+1— N}2

[N/2]<s<N-1

4.5. Colored Jones invariant. For integeri, u, v, the colored Jones invariants
Vi(A,...) of 41, Ky, Kg are given in [3].

2 ; ;
p+i+1;2+1
Vi (X)) = _—,
() ZO a
" o min(. 1) Lizjpg AT LA+ Y{u+i+ 1,2+
w@®)= D d ({2 +1;i +1) '

i=0

v k_min(k’“’v){)u+|+12+1}{M+|+12|+1}{u+|+12|+1}
w(®= D (1}{2i + 151 + 1)2

i=0

Comparing with the colored Alexander invariants, the tetmthe summations are sim-
ilar, but the range of the summations are quite differenpeemlly for the link case.

5. Volume of cone manifolds

5.1. Figure eight knot. Let 4, be the figure eight knot and led;(x), = ﬂ (l—
ax}). Then, from (7), we have

-
Dy (1) = 2‘S|n)» Zq(zk”"“”(q 222 0 ke
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Let Li»(2) be the analytic continuation of the following function:

Liz(x) = /OX —w dx =

00 Xk
L
k=1 k

Then Lk(2) is a multivalued function and its branches are given by
Lio(2) + 2r+/—1plogz+4qz? (p, q € Z).

In the rest of this paper, kfz) means an appropriate branch of it. Following Kashaev's
way in [7] (see also [10] for more examples) to consider tHatian to the hyperbolic
volume, letV(a, z) be the following function.

(1 . /Z
(10) V(a, 2) = 7+/—1loga+logalogz+ |_|2(a_z> _ |_|2<5).

Here a, z correspond tog?, g% respectively, and the termr/—1loga is added
so that the value o¥(a, zp) in the following coincide with the volume not only for
hyperbolic case but also for spherical case. Adding—1 loga to V corresponds to
multiplying gN* to ®. The optimistic limit introduced in [9] of the colored Alexder
invariants of 4 with fixed a is given byV (a, zy) wherez, is the solution of the follow-
ing equation.

W =0, ie. Z—(@a—1+aYz+1=0.

0z
The solution of this equation is given as follows. L&t exp+v/—1a and K, be the
figure eight knot cone-manifold with the cone anglealong the knot.

1
Hyperbolic case (& o < 27/3) |z =1, cos(argy) = cosa — =,

2
Euclidean caseo(= 27/3) Zo=-1,
Spherical case (2/3 < @ < 4n/3) 2z = real number.

Comparing with the results of [8], we have

e

aV(a, d Vol(K,
(@2 = arccosh(1l + cos — cos &) = ﬂ:#,
oo o

and we get the following.
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Theorem 7. For hyperbolic casgi.e. 0 <« < (2/3)r,
+v/—1V(a, zo) = VoI(K,).
For spherical casg

+V(a, zp) = VoI(K,).
5.2. Whitehead link. Let Ky be the Whitehead link. Then, from (8), we have

o, (1)
=1 NG
4singAsinTu
x 37\(—1) *igl-2eti=3) (@ 9)n (% 9% (0% 2% g7 (@25 q2)2i+1.
i (9% 9921

Now we compute the optimistic limit obeW()L, w). Let V(a, b, 2) be the following
function.

Va(a, b, z) = 7+~/—1(loga + log b + l0g z) — Li,(2) — Lix(a2) — Lia(b2) + Li»(z?)

. [a . (b log z
+ LIz(;) + le<2> - (Ioga+ logh — T) log z,

wherea, b, z correspond tog?, g?*, gq? respectively, and the term+/—1(loga +
logb) is added so that the value ¥f(a, b, zy) in the following coincide with the volume
not only for hyperbolic case but also for spherical case. Byl

1 2
Lio(z™") = —Liz(2) - 5(log)* +7v/Llogz+ %

we have

V(a, b, 7) = 7/—1(log a + logb + l0g Z) — Lis(2) + Lio(22) — Li»(a2) — Li2<§>

(11)
— Lip(b2) — Liz(%) — %(|og a)2 _ %‘(|Og b)2 _ %(Iog 2)2 i Ziz

Here 2r+/—1logz is absorbed by Li{z) as a branch of it. The optimistic limit of the
colored Alexander invariants okg with fixed a, b and c is given by V(a, b, ¢, )
where z; is a solution of the following equation.

aV(a, b, 2) ~0.
0z
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By putting z= (x — 1)/(x + 1), this equation becomes to

1
(12) x3 + E(AZB2 + A%+ B2 — 1)x? — A?B?x + A’B? =,
where
a+1 b+1
A= V-1, B= V-1
a—-1 b-1

Let a = exp+/—1a andb = exp+/—18, then A = cot(/2), B = cot(8/2) and we have

-9V(a, b 2)

aV(a, b, 2)
(13) —/—1 o 1— =

A
= —2arctan—, —+/—
X aB

Comparing with the results of [8], (13) shows that the paderivatives ofV coinside
with the lengths of the singular geodesics\Wf z, whereW, s is the Whitehead link
cone-manifold with cone angles and 8. Hence we get the following.

B
=-2 arctan;.

Theorem 8. If W, g is hyperboli¢ then the volume of W; is given by

V(a b, z1) - V(a, b, z)
2/-1 ’
where 2 =2 z =2 z=(x —1)/(x+1), Imx) # 0 and x is a root of the cubic

equation(12).
If W, p is spherica) then the volume of W; is given by

VOI(W,. ) = &

V(a, b, z1) —V(a, b, z)
> )

VOI(W,. ) = &

where 2 = (x; — 1)/(X1 +1), o = (o — 1)/(x2 + 1), and X, X2 are nonnegative roots
of the cubic equatior{12).

REMARK 9. (1) The above gives a new formula for the volumeVdf z without
using integral expression.
(2) For hyperbolic casetIlmV(a, b, z;) and+ImV(a, b, z,) are equal to the volume
of W, 4 sincea=a !, b=b!andV(a, b, ) =V(a b, z).
(3) For spherical casey(a, b, z;) and V(a, b, z,) are real numbers.
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5.3. Borromean rings. Let Kg be the Borromean rings. Then, from (9), we have

oy (Ko)
qu—A—u—v—l

" 8sinzAsinTpsinTy
% Z(_1)s+1q—(2/\+2u+2u+1—3s)s
S

y (9% 9%)s)2(A% %2, 0%)25+1(4% 2525 02)25+1(0% %25 42) 2541

(0% 99)2s+1-n)?

Now we compute the optimistic limit o@QB()L,M, v). LetV(a,b,c,2) be the following
function.

V(a, b, ¢, ) = +/—1(loga + logb + log ¢ + log z) — 2Li,(2) + 2Li»(z°) — Li,(a2)

(14) — Lip(b2) — Lix(c2) + Li2<§) + Li2<g> - Liz((—;>

+ g log? z— (loga + logb + log c) log z,

where a, b, ¢, z correspond tog®, g%, g, g% respectively, and the term
m+/—1(loga+logb+logc) is added so that the value df(a, b, ¢, zy) in the following
coincide with the volume not only for hyperbolic case butoaler spherical case. By
using

Li»(Z%) = 2Lio(2) + 2Lix(—2),
2

Lis(z ) = —Lis(2) — %(Iog 22 +7v/—1logz + %

we have

V(a, b, ¢, 2) = —Lis(az) — Lia(b2) — Lis(c2) + Li2<§) + Li2(2> + Liz(g) + Lis(2)
— Lia(z7Y) + 2Lin(—2) — 2Lio(—z7Y)
— (loga+logb + log c)(log z — = +/—1).

The optimistic limit of the colored Alexander invariants Kfs with fixed a, b andc
is given byV(a, b, ¢, ) wherez, is a solution of the following equation.

dv

(15) w0
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Let a = exps/—1a, b =exps/—18, c=exp/—1y, z=exps/—1¢, A=tang/2), B =
tan(B/2), C =tanf/2) and T =tan{/2). Then (15) is transformed to

(16) T4 — (A’+B?+C?+1)T? — A’B%C2=0.

For real parametera and ¢, let A(a, ¢) = Ale +¢) — Ala — ¢), where A(x) =
— 5 log|2 sint| dt is the Lobachevski function. Then

ZA(%, %) = Im(Liz(az) — Li2<§) +logalog z).

Therefore, for real parametess g, y, and¢,

ImV(a, b, c, 2)

(3926525 5 5 -20)

Now, consider the case that the parametés a real number. In this case, we use
parameterT satisfyingT = (z— 1)/(z+1). Then the equation (15) is transformed to

17 T4+ (A?+B2+C?+1)T? — A?B2C? = 0.
For 6 > /2, let §(¢, 9) be the function in [8],

”/zl dr
5(€,0) = 1- ) ——.
(&, 0) /9 og( COoS Z cos )COS >

By putting t = tant,

_ptane 2(t2 + tar? £) dt
5(5*9)‘/_00 '°g<(1+t2)(1+tar?s)>t2—1'

Now replacet by (z—1)/(z+ 1), we get

(1+tand)/(1—tano) _ _ 1
8(29)_1/ Iog<(1 az(l-az ))d_z

2 "2/ a+2 z

Let Ty be the negative root of (17) anzh, 6p be the real numbers satisfyirg =
(1+Tp)/(1 — Tp) and tarvy = Tp. Then

2(5(%, 90> +5<§, 90> +5(%, 90) _ 23(%, 90) —5(0, 90)> =ReV(a, b, ¢, 20).

Comparing with the results of [6] and [8], we get the follogin
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Theorem 10. For O <a, B,y < 27, let My 5, be the cone-manifold with singlar
set Kg whose cone angles of three components ef de o, 8, y. If My, is a
hyperbolic cone-manifold wit < «, 8, y < 7, then

Vol(Me,p,,) = £ IM(V(a, b, ¢, z1)) = FIm(V(a, b, ¢, z2))

_ 1
= iz—m(V(a, b, c, z) — V(a, b, ¢, z2)),

where 2, z, correspond to the real solutions of the equatid®).
If My, is a spherical cone-manifold with < «, 8, ¥ < 27, then

Vol(Mq,g.,) = £ ReV(a, b, c, z3) =F ReV(a, b, c, z4)

1
= iE(V(a, b, c, z3) — V(a, b, ¢, 7)),
where 3, z4 correspond to the real solutions of the equati@d).

6. A-polynomials

In this section, we introduce a polynomial or a system of poipials of the above
three examples by using the method in [13]. For figure eighidtkit coinsides with
the A-polynomial, and for link cases, these are generalizatibrihe A-polynomial
for links.

6.1. Figure eight knot. The A-polynomial of 4 is obtained by eliminating the
parameterx from the following system of equations.

aV(a, x) —0o aE)V(a, X) _

, logL.
aX oa 9

Here V(a, x) is given by two parametera and L correspond to the meridian and lon-
gitude. The resulting polynomial is

(18) a’?—L+al+2a%L +a’L —a'*L +a’L?=0.
In fact, this polynomial coincides witl;2_2)(L, M) in Theorem 7 of [4] witha = M2.

6.2. Whitehead link. After the above construction of thA-polynomial of 4,
the system ofA-polynomials of the linkKy, may be obtained by eliminating the pa-
rameterz from the following system of equations.

aV(a, b, z) _ 0 aaV(a, b,2) _ logL b8V(a, b,z) o
B B e/ B St e 2y b—— = =

L
3z ’ da b gto,
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whereV (a, b, 2) is the function given by (11). The parametexrsb correspond to the
meridians of the first and second components, bpdL, correspond to the longitudes
of them respectively. The result is

19)

a’bL,3+(a%b? —ab? +a? —2ab—a+b)L,%+(a’b—ab? — 2ab+b?> —a+ 1)L, +b = 0,

ab?Lp +(a?b? —a’b —2ab+b?+a—b)L,2 + (ab? —a’b+a? —2ab— b+ 1)L, +a = 0.

6.3. Borromean rings. The system ofA-polynomials of the linkKy may be
obtained by eliminating the parameterfrom the following system of equations.

A LAY oV oV
— =0, a—=logL,, b— =logL,, c— =loglLec,
3z pa  09ta Doy =l0GLe, oo =100k,

whereV = V(a, b, ¢, 2) is the function given by (14). The parametexs b, ¢ cor-
respond to the meridians of the first, second and third coemsn andL,, Ly, Lc
correspond to the longitudes of them respectively. By elating z from the first two
equations, we get the following. Let= expv/—1a, b = expv/—18, ¢ = exp/—1y,
A = cot(/2), B = cot(8/2), C = cot(y/2), D = A>(B?C?>+ B2+ C? + 1), andE =
A? + B2C?, then

(20) DL.* —4EL,% — 2(D — 4A% + 4B2C?)L,> — 4EL,+ D = 0.

For L, and L., we get the similar equation corresponding to the symmetrga,ob
andc.

Appendix

Here we show some formulas we used in the computation.

Lemma A. The following formulas hold
Z(_l)i qﬁi [‘IX :| — 1—[(1 _ qﬁ+a+172j).
i=0 j=1

This formula comes from the following quantized Pascalti@aand an induction.

o [
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Lemma B. For any g b, ¢ such that b a— ¢ are nonnegative integers and a is
not an integer we have the following identity

N—1-b
> qH@P-c (g —k a—c}{b+k; b}

k=0

+(b+1e—Na) IN; NHb;b{a+b+1;a+b—c+1)

-4 {a+N;N}{a+b—c+1;b+1)

Proof. Downword induction otb.
Step 1. Ifb=N-1,

N-1-b
> g @ a —k;a—cj{b+k;b) = {a;a—c}{N - 1;N - 1}.
k=0

On the other hand,

+(b+1e-na) (NI NJ{brbH{a+b+1a+b—c+1j
{a+ N;NH{a+b—-c+1;b+1}
{N;N}N —1;N —-1}{a+ N;a—c+ N}
{a+ N; N}{a—c+ N; N}
={N—-1;N —1}{a;a —c}.

q

= (-1

Hence the equality holds fdsr= N — 1.

STEP 2. Assume that Lemma holds farand prove forb — 1. First, we use the
relation {n} = {N — n} and {n;n} = {N — 1;n}. Apply thisto{b+k —1;b+k — 1},
we have

N—b
qtk@P—cig _kia—ci{b+k—1;b— 1}
k=0
N—b . .
_ tkarb-crpyfa—Ka—cl{N —1;b+k -1}
=) KK
- (ki k)
P fa—k:a—c}{N —b; k)
- {N —1;b-— 1} tk(atb—c+1) ! !
2 (ki k]

Now we use Pascal retation (A.1).

N-b
{N —1 b _ 1} Z qik(a+b—c+1) {a_ k’ a-— C}{N - b! k}

e {ki Kk}
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N-b
= {N _ l, b _ 1} Z q:tk(a+b—c+l){a_ k, a— C}
k=0
5 ik{N—b.—l;k} +(ﬁ(N_b_k){N —b—.l;k—l}
{k; k} {(k—1;k—1}

_ 1 Nt +k(atb—c+2) {a — k; a— C}{N — L b+ k}
{N_b}<§q kik)

ki

_ qib &' q;t(k+1)(a+b—c+2) fa—kia—c}{N-1b+k— 1}>
i (k—1,k—1}
N—b—1 ) .
_ 1 Z (qik(a+bc+2) {fa—k;a—c}{b+k;b+k}
b} ki k)
| t(arb—cr2)k@arb—cs2) (& —K—Lia—cl{b+ ki b+ k}
a | kK]

N-b-1 gk(asb-c+2)
= ——({a—-k;a—c}{b+k; b}
k=0 (b}

— qtE2D-¢2g kK —1;a—c}{b+k; b))
_ 1 (b 1e-Na) {N; N}{b;b{a+b+1;a+b—c+1}
(b} {a+N:N}{fatb—c+1:b+1}
+(ar2-c+2) g H(B+)E-1)-N(a-1) {N; N}{b;b}{a+bja+b—c+1
{atrN—1 Nj{atb—c+1.b+1}
~ qF(®+e-Na) N: N}{b; b}{a+b;a+b—c} tb+1 +(atb—c+1)
ST [@+N.Nja+b_c+Llb+g @ =4 )
_ qi((b+1)67Na)q:|:((b+l)cha) {N; N}{b;b}{a+b;a+b—c} q¥°{a+ b—c+1)
{b} {a+ N;N}{a+b—-c+1;b+1}
_ q:I:(bcha){N; NHb—-1;b—1{a+b;a+b—c}
{a+ N;NH{a+b—c;b}

—q

Hence the formula also holds fdr— 1. O
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