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On the Examples in the Classification of
Open Riemann Surfaces (I)

By Yukinari TokI

In the preceding paper® the author has given two examples on the
classification of open Riemann surfaces, but more examples will be needed
to complete the classification.

The following notations are customary in the theory of Riemann
surfaces :

Os the class of Riemann surfaces without the Green’s function.

o the class of Riemann surfaces with-
AP

f iti i ctions.
out any non-constant single-valued positive harmonic function

Oug » bounded harmonic functions.

o harmonic functions of finite Diri-
aD ? chlet integrals.

O4p » bounded analytic functions.

1) analytic functions of finite Dirichlet
4D 7 integrals.

The known inclusion-relations between them are
OHD

v

05 < Opp <Oy, 0,, and 0,C0,,.

) OAB
In the present paper we shall show in §1 that we may put C in

place of < in the above relations, and in §2 that there exists no
inclusion-relation between O,, and O, ,.

8§1. In order to prove O, O,, it is sufficient to construct a
Riemann surface, on which the Green’s function exists but not any
non-constant single-valued positive harmonic function. This surface is
almost the same as the one that the author has shown in the previous
work.

1) Y. To6ki, On the Classification of Open Riemann Surfaces, Osaka Math. J. 4,
(1952), pp. 191-201.
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We shall define a sequence {k.} (p=1,2,3, ) as follows :
By the cut «. along the positive real axis, we make out of the ring
2p+1 2u+2
domain -—<%) ‘ <loglz]<——(~12—> ** a simply connected domain Dy.
Let w(2, @, D.) be the harmonic measure of a, with respect to D,

and let C. be the circle log|z|= —%(%)2“2.

Fig. 1
Put

(1) be = Min o(z, du, D). (6=1,2,3,°)
z€Cpu

Then we have a sequence {k.}, and see easily that limk.=0.
>0

On the other hand we shall define another sequence of positive
integers {r.} (p=1,23, ) such that

‘7'1<"'2<”'3< tt
and that
(2) Max w(z; BM’ Rt’-)ékﬁv
Z€E T
where R, is the domain enclosed by four straight lines x = — (—;— ‘)2“,

1 28 +1 T .
x = _(5) ,y=0, and y= T and B, is the part of the boundary
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parallel to the imaginary axis and v, is the part of the straight line

3 1 2p+1 . .
X = 3 <?> contained in R,..

2
R/.L “-U/u

T T L I
Fig. 2

Now we shall construct a Riemann surface with the Green’s function
but without any non-constant single-valued positive harmonic function.
We consider the surface F cut along radial slits S} (p=1,2, --; v=1,2,
-+, 2) on the unit-circle |z|<1, where

Ve o ity _[1\* _(l)z’”l _ 2vm
sp;z=ré®, —(2) <togr<—(3)"", 0,= 27,

By the relation p=2""2n—1)
natural numbers g correspond one-to- X i1 2 3 4 s
one to the pairs of two natural m
numbers (m, #). Therefore we shall
denote the slits S} by S%,.. These
slits SY,.(m=1,2..;n=12 -,
v=12 ... 27%) are symmetric with
respect to the real axis. P TP T

Let Ty(2) be the indirectly con-
formal mapping such that each point z corresponds to the point 2. We
shall identify each two sides of slits Sy, (r=1,2, ---; v=1,2, ..., 2™)
corresponding each other Ty(2).

Let T,(2) be the mapping such that each point z corresponds to the
symmetric point Z with respect to the imaginary axis. Then we shall
identify two sides of slits S}, (#=1,2..-; v=1,2, .., 2™) correspond-
ing each other by T,(z).
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Let Ts,.(z) be the mapping such that each point z (Ogargzg %

or zgargz§%n> corresponds to the symmetric point z with respect

to the line y = (tan %) x. Let T;,4(2) be the mapping such that each

point z<% <argz< w or % < arg 2 < 27:> corresponds to the sym-

metric point Z with respect to line y = <tan % 7:) x.

Fig. 5

) /;%(f%j:/z)z

Then we shall identify two sides of slits S}, (n=1,2,--; v=1, 2,
-, 27) corresponding each other by 73,,(2) and T 4(2).
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Next we shall define the mapping T,,.(2), T4 «2), T4,s(2), T4,4{2) as
follows.

corresponds to the sym-
the mapping such that each point z metric point Z with re-
Taat= (0gargzc T or wéargzé(nnh%)) Spec;:)(tan%)x
T4,2(2) (E_éargzégor(ﬂ_{_%)éargzéi7:) y=<tan%7‘£)x
T4 (%éargzé—z—n’ or (7z+%)éargzé(7r+% ﬂ)) y=(tan% ”)x
T3,4(2) (% wLargz L w or (715_{__ 7,:) Largz <L (7t+7c)> y= (tan % ﬂ)x

LN

/Z‘*z z
o ?=(m-§'7t)l /1;?’(Mglﬂ>l

\\ . % A

W

Then we shall identify each sides of slits S}, (#n=1,2, ---; v=1, 2,
-+, 27) corresponding each other by T, (2), T,,2), T,,(2) and T, 2).

Fig. 7
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Proceeding in this way we can construct a Riemann surface F
We shall prove Fis just the required Riemann surface.
Lemma 1. Let D,’ be a simply connected domain enclosed by two
2p+1 2 +2
circles log|z|= ——(%) i , loglz]|= —<%> , and a Jordan arc «,.’ con-

necting the two circles.
Then 2k’ "> k. where k' = Min o(2, ./, D)) (z=1,2,-..).
z¢eCp

Proof. Let k' = w(2,, @', D./) at 2z, on C.. We may suppose with-
out loss of generality that 2z, is on the real axis. We shall denote by

Fig. 8

D' and &, the symmetric domain and arc of D, and a,. respectively
with respect to the real axis, and denote by D,” the component of

D,L’-DM,J containing the point z,.
Then we have

(2, a0, D)+ (2, &, ﬁ/&’)> wo(z, a,/+a&), D)y zeD,”
o(2y, &', D) = o(2,, &Ml’ﬁﬂl) =k
2k > o2y, au' + &/, D) > (24, du, Du) =k
i.e. 2k > ky

Now let #(z) be a non-constant single-valued positive harmonic function
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A

on and let M, be the maximum value of #(z) on the circle log|z]|
1 2u+1
= <?> .
i) When lim £2M, >>1, there exists a sequence of positive integers
L

such that
/‘b1</”’2</"3< E)

and

—<MMJ) (j=1)21“')'

Then for every p; there exists a Jordan arc a, 5 connecting two circles
1 2ij+ 1 1 2”‘}*’ 2 1
log[z|=—<3> and log [z]:—(?> such thatu(z)>7?—,zngJ.

Bs
By the Lemma 1 we have

Min oz, Dh) > 5 ke,

zECp.j
consequently
Mmu(z)>M1nM,LJco(z a,L,D')> ]é-lk li
z¢€ Cu, z¢Cu, J Ie,LJ 2 2 ku,
Let j— co, then k., —0, lim ol = co.
Jre H-J

Thus #(z) must be reduced to constant infinity, which is a con-
tradiction.

ii) When lim k2M, <1, we can find a number N such that for x> N

My 0
2
Ml.l.<k—’2l. .

We shall denote k., and M,, respectively by &, ., and M,, ., where
the pairs of two natural numbers (m, #) correspond one-to-one to u by
the relation p = 2™"Y2rn—1).

Put

' 1
u(e) = - [u(2)~u(Ty(2))],
then u,(z) is a single-valued harmonic function on F and vanishes on

Sta(m=1,2--; v=1,2 -..,2%) and |uy(2)|<<M,,,.
In view of (2) we therefore obtain for x> N and x=2rn—1
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Max ul(z) _<_ Ml,n' kf,n < 2
1 \2#+1 k% [
|z]= exp—(f) ’

k.= 2k,,,.

Let g — oo, then &, — 0, and #,(2)=0 on I:‘ Therefore

(3) u(z) = u(Ty(2)) on F and —gl =0,

n
where %u_ is the normal derivative with respect to the real
n

axis or to S}, (r=1,2,---; v=1,2 -.- 27).

Put u,(2)= % [#(2)—u(T(2))], then in the same way we have the

next inequality

Max  #)(2)<2k,,, for p >N and p=2(2n—-1).
1 \#+1
=l =exp—( 5 )

Let p— oo, then k,,— 0, and #,(2)=0 on F. Therefore

(4) w(2) = u(Ty(2)) on F and %:0,

where g_u is the normal derivative with respect to the imaginary
n

axis or to S3, (n=1,2,---; v=1,2 ... 2™),

Next we divide F into two components by the cuts on S3,, and by
the cuts, say C’, on the real axis but not on S:. Let F, be the com-
ponent on the upper half plane. Then we shall identify two sides of slits

l,» on Fy corresponding by T,(2) and shall identify the cuts C’ on F,

corresponding by T,(2). Thus we have a new Riemann surface, say F;.
A
Let us define a function #;(z) on F; by the value of #(2) on F;.
A

Then by (3) and (4) u,(2) is harmonic on F;.
Put

0(2) = % [ts(2)— s To(22)],

then in the same way #,(2) = u,(T2(2%)) on 13“1. Therefore
(5) u(2) is symmetric with respect to the lines y = (tan %) x,
y = (tan i’i) x, and 2% —,
4 on

where g_u is the normal derivative with respect to the lines

//
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y= (tan %) X, Y= (tan %T”) x, and to S3,, on I*i.

And next we divide F into four components by the cuts on Sy, and on
Ss,. and by the cuts, say C? on the real and imaginary axis but not

on Sy. Let F, be the component containing a point z(argz—_%).

Now we shall identify two sides of slits S3, and S}, on F, correspond-
ing by T,(2%*) and shall identify the cuts C? on F, corresponding by
T,(=%).

Thus we have a new Riemann surface, say F2 Let us define a
function #,(z) on I:“2 by the value of u(z) F,. Then by (3), (4) and (5)
#,(2) is harmonic on qu

Put ' :

0@) = - (D)= Tz,

then in the same way

Cu(2) = u(Ty(z™) on F;.
Therefore

k6) u(z) is symmetric with respect to the lines y=(tan% x,

y= (tan 3—8”>x, y = (tan% n)x, y = <tan % 7r> x and %Z =0,

where g_u is the normal derivative with respect to above four
on

lines or to S}, on F,.

In the same way we can prove that #(2) is symmetric with respect to
2m+-1

the lines y = <tan n') x, where n=1,2,--- and m=1,2, -.- .

Therefore #(z) must be a constant on Ic“, which is a contradiction.

On the other hand let us define a function G(p) on F by log%I at

the point p corresponding to 2. Then it is clear that G(p) is the Green’s

function on F. Therefore the Riemann surface F is just the required one.
It is clear that the surface after extracting a point p from the

surface F does not belong to O,,, but belongs to O,,.
Thus we have proved that O, O,, C Ogp.

§2. Now we shall construct a Riemann surface with a single-valued
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bounded analytic fuuction, but with no harmonic function of finite Diri-
chlet integral. v

We shall consider the surface F, cut along the radial slits
Si(w=1,2,-+;v=12--,2%) on the unit-circle |z]< 1 as follows:

N . 1\2~ 1 21+ 2
Sy z=re%, —<?> <logr < —<7> , 0, = 2”2:’
Let F(#) and FA‘(h) (h=1,2,...) be one-sheeted covering surfaces
without any relative boundaries over the basic surface F,. We shall
denote the slits S; by S} ., where iz and # are natural numbers with
the relation x = 2""%(2n—1).
We shall construct the covering surface W over the unit-circle con-
necting the surfaces {F(k)} and {F(k)} as follows:

F(k+1) and I/v\‘(lH—l) on each slit over Sy,

F(2k+1) and F(2k+2)

F(2k+2) and F(2k+1)

F(22k+1) and F(22k+3)

F(22k+2) and F(22k+4)

A
We shall F(22k4-3) and F(22k+1)

connect F(22k+4) and F/\‘(22k +2)
crosswise

F(23k+1) and F(23k+5)

F(23k+2) and F(2k+6)

F(23k+3) and F(23k+7)

F(23k+4) and F(23k +8)

A Sy
F(2k+5) and F(23k+1) ;

F(23k+6) and F(2%k+2)

F(23k+7) and F(23k+3)

F(23k+8) and F(23k14)

where =0,1,2, -, 7
14

We shall show the above correspondence among {F'(%)} and {FA‘(k)}
by diagrams :
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F(l) F(2) F@3) F(4) F((5) F6) F@) F(@)- -
m=1 1 11 1 1 1 11
FQ1)y F©@) F@) F@4) FG) F6) FT) FE®) -
F() F(2) F@3) F4) F() F@®) F(@) F(@®) -
) < <
=t X <X
\ A V/\ A, /\' A A
FQ)y F©2) F@) F@) FG) F@6) FT) F@8) -
F(1) F(2) F3) F4) F() F@®) F@) F(@®)--
NG
FQ) F@) F@) F@) FG) F6E) F(7) FES) -
F(l) F(2) F@) F#4) F((5) F®) F{) F(@)- -
m=4 —
/

FQ)y F@) F@) F@)

F(5) F(6)

F() F(@8) -

..............................................................................

Thus we can construct the Riemann surface W.

Lemma 2. Let D be two-sheeted covering surfaces over the stripe-
domain —% <l x < —

1
16

points over the points —%4-%752' and

1
8

in the z-(= x+1y) plane, having its all branch

———+£27£Z. (n=0) :L—-li :‘:2,"')-

Consider in D all the harmonic functions #(z) that possess the zeros at
1, nm

7 and —%+n7”i (m=0, x£1, £2, ---) respectively and statisfy

|u(2)]<< M on the boundaries over z = ——% and x = -—11—6. Then there

exists a constant 0 <“a <1, independent of %, such that

(1) lu(z)| < aM
holds on the straight line x = —% .

Proof. If (1) were not true on the segment L: x= ~-13—6 , 0<<y<{2g,

there would exist a sequence {#,(2)}



On the Examples in the Classification of Open Riemann Surfaces (I) 279

}‘irg max lu,(2)|= M.
A subsequence, say again {u,(2)}, would converge towards a function
u(2), harmonic and bounded, |#(z)|<< M, in D. The points z, where %,(z)
takes its maximum on L accumulate at least to one point z, on L. It
follows from the continuity of #(z) and the uniform convergence of
fu,(2)} on L that |u(z,)]= M. But |u(z)| can not be identically M, since
u(z) really has the zero-points. This contradicts the maximum principle.

Y

- A-—%—— - 2T

.g—L— — - % -----57L

Py I R S N

* - ———l(——-—-—%i
__/# 2 IT-1 X
4| "75| 8| | O

- — <= - —%—— ~—-l4,
F-—-—%x-F-4-7L
- —-— - X — ———%)u_

R S I b J1

Fig. 9
Therefore (1) is true for L. By the transformations 7,(2)= 2+ 2m=i
(m= =x1, £2 .--) the segments L,; x= —%, 2mai <y < 2Am+1) =i,

are mapped on the segment L, consequently (1) is true for the whole
straight line x = _3 .
16

Then we shall prove that W is just the required Riemann surface.

Let u(p) be an arbitrary single-valued bounded harmonic function on

W. We may assume |#(p)|< 1 without loss of generality. Let W,,,

(m=12 --; =12 ---) be the covering subsurfaces of W over the

ring-domains R,,, respectively, where

Rm,,,, —(%>2u—l< log|z|< —<%>2‘H2 » = -——2m—l(2n_1) .
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It is clear that each component of W,, is a two-sheeted covering surface
over R, ..

Let T,(p) m=1,2, ...) be the conformal mappings of W onto
itself as follows :

b hich int o corresponds to a point on
Ty(p) is the mapping I,Y(]:V +i(): ogegoin " F(k+1) over the same
point z
F(2k+1) FR12)
T2(p) —
F(2k+2) F(k+1)
F(22k+1) F(22R+3)
F(22k4+2) F(22k1-4)
T
22 F(22k+3) F(22k11)
F(22k+4) F(22k1-2)
Put

Un(0) =5 (MDY~ TulpN],  (m=1,2,-).

Then u,(p) are single-valued harmonic functions which vanish on the
branch points over the end-points of S, (#=1,2,---; v=1,2 ... 2%
and |u,($)|< 1.

Application of Lemma 2 after suitable auxiliary transformations
implies that the inequality

lun($)|<a <1
holds for all points p over the circles log|z|= -% (%)“ (5= 2™(2n—1),
n=1,2,...). Then we see
lun(p)|< a" for all points over the circle log|z|= — % <% )2m-—1.

Let n—co, then " —0. Therefore all functions #,(p) (m=1,2, .)
are identically zero on W. So u(p) takes the same value on every
points on F(k) (k=1,2,---) over a point z on the unit-circle. This fact
means that #(p) has no finite Dirichlet integral on W. Therefore by
Virtanen’s® theorem there is no harmonic function with finite Dirichlet
integral on W.

On the other hand if we put w(p)=z for all p over z, then w(p)
is a single-valued bounded analytic function on W.

(Received November 5, 1953)

2) K. I Virtanen, Uber die Existenz von beschrinkten harmonischen Funktionen auf
offenen Riemannschen Flichen, Ann. Acad. Scient. Fenn., Al 75 1950.





