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Abstract

This study proposes a Multi-connection cross-flow vertical axis wind
turbine (VAWT), an innovative device to supply electric power in aqua-
culture farms. The device is a newtype floating offshore wind turbine
(FOWT) consisting of two independent wind turbine floats and a moor-
ing float set in a straight line. A Single-Point-Mooring (SPM) system
with tension is utilized at the mooring float, which allows the wind tur-
bine floats to turn around the moored point. However, there are various
challenges to this new concept for its practical application mainly related
to turning motion about the moored point. Therefore, the focus of this
study is to understand the turning mechanism of the proposed FOWT
through dedicated water tank experiments and numerical simulations.
As a concept demonstration, two cross-flow wind turbines, were mounted
on the wind turbine floats and turning motion characteristics about the
moored point is observed. A prototype model was built with a model
scale of 1/36 using Froude scaling assuming rough weather conditions at
the aquaculture farm. Wind speed of 35 m/s, wave height of 0.75 m, and
wave period of 5 to 7.5 s, are the assumed environmental conditions in
the actual model. Free yawing tests were conducted in only-wind, only
wave and combined wind-wave conditions. Further, a numerical simula-
tion considering the wind loads acting on the turbines is developed. It is
found that the wind turbine floats turn to a position where the wind loads
acting on the left and right sides of the moored point are balanced. The
numerical simulation reproduced the turning motion within an error of 10

1 Introduction

Marine environment is rapidly changing and phenomenon such as red tide and
anoxic water mass, are occurring in aquaculture farms. This causes damage to
fish and shellfish production, and has negative impact to aquaculture farms in
Japan. The deterioration of water quality in aquaculture farms is caused by
the concentration of nutrients and the lack of oxygen in the lower water layers.
A common solution to red tide is the application of clay, which is effective
in controlling red tide. This method has been proven by Maeda et al (2009)
to destroy red tide plankton in a short period of time with no impact on the
ecosystem, and is used worldwide as a red tide countermeasure. As a solution
to the anoxic water masses, aeration devices that supply oxygen to seawater
by exposing it to air and seawater circulation pumps that mix the upper and
lower layers of seawater can be utilized. However, unlike solutions for red tides,
many of the solutions for anoxic water masses require electric power, which
is difficult to secure at sea. Therefore, it is necessary to solve the problem of
securing electric power in aquaculture farms.

There are three types of offshore power supply: photovoltaic, tidal current
and wind power. Photovoltaic power generation has already been introduced
as above water photovoltaic power generation, and Thi et al (2021) proposed
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its use and future potential in aquaculture farms. On the other hand, there
are concerns about the deterioration of water quality due to the reduction
of sunlight hours in the water and the damage to the solar panels caused by
drifting debris. In Japan, Ueno et al (2018) conducted a demonstration study
using a 100kW-class ocean current generator, and in the United States, several
projects focusing on tidal current generation, such as Verdant Power LLC.
(2019), are underway. However, water bodies where water quality degradation
is an issue are not expected to generate enough current to generate electricity,
due to limited or no water flow. Offshore wind power generation is one of the
fields that have been rapidly being researched in recent years, and is attracting
attention around the world.

Offshore wind turbines can be classified as bottom-fixed and floating types.
In this study, the floating type will be used because it is easier to move after
installation. Furthermore, there are three types of floating systems: pontoons,
semi-submersibles, and spars. The pontoon type, also known as the barge
type, has the shape of an ark. It maintains the stability of the floating body
by increasing the waterline area, and can be installed in shallow waters with
shallow draft. In this study, a tub type was chosen because it is simple to
fabricate and can be installed in shallow water. Kikuchi et al (2017) found
that the pontoon type tends to shorten the natural period in the heave and
pitch directions compared to other types of floating structures but it resonates
with waves, resulting in larger oscillations. However, the pontoon type can be
applied to the aquaculture farm since it is assumed to be in a relatively calm
sea area.

Another important aspect of floating structures is the mooring system
to station them. Floating structures are usually installed on the seabed by
multi-point catenary mooring, single point mooring, or tension mooring with
different spring rates. Many floating wind turbines, such as the 2MW FOWT
”Fukushima Mirai,” combine multiple moorings with catenary mooring, a type
of loose mooring, for stability and safety. “ Fukushima Mirai” consists of
three mooring points, and six catenary mooring lines spread every 120 degrees
(Yamaguchi and Imakita (2018)). The water area assumed in this study is an
aquaculture farm, and the multi-point mooring system and catenary mooring,
which require a vast area, are not suitable. Alkan (2017) argue that TLPs have
many advantages over catenary mooring, such as less turbulence. Furthermore,
lijima et al (2015) and Srinivasamurthy et al (2021) applied single-point moor-
ing, which is usually used for FPSO, to a floating wind turbine and showed its
usefulness.

In the view of the above discussions, we propose a multi-connection VAWTs
(Vertical Axis Offshore Wind Turbine) as an effective means of preventing
the deterioration of the aquaculture fishery environment. Multi-connection
VAWTs is a new type of FOWT initially conceptualized by Kusanagi et al
(2018), which consists of a wind turbine float and a moored float with two
VAWTs installed in a straight line. A single point mooring system with four
tension moorings is adopted to station it. The new concept proposed in this
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study can be equipped with two vertical axis wind turbines in a single moor-
ing unit. The Multi-connection VAWTSs is a groundbreaking idea, since the
existing technology generally uses the concept of one wind turbine per moor-
ing. In addition, in anticipation of the larger size of this new FOWT, similar
experiments (Iwamatsu et al (2021)) were conducted using two different semi-
submersible floats hosting Darius-type wind turbines, and it demonstrated the
usefulness of this new concept for Darius-type wind turbines.

Furthermore, one of the features of this concept is the use of vertical axis
type wind turbines. Most of the existing floating wind turbines and onshore
wind turbines are horizontal axis wind turbines. However, horizontal axis wind
turbines are difficult to operate at sea because of the yaw control mechanism,
which requires maintenance at a faster rate and is located at the tower top.
In addition, the high location of the control mechanism increases the overall
center of gravity, which is fatal for floating turbines. In contrast to horizon-
tal axis wind turbines, vertical axis wind turbines are non-directional, which
eliminates the need for a control mechanism and reduces the center of gravity
of the floating structure. The concept of Multi-connection VAWTSs combines a
single-point mooring with vertical axis wind turbines, which enables multiple
wind turbines to face the wind direction.

The Multi-connection VAWTSs is a new type of floating wind turbine. The
power generation efficiency of two vertical-axis wind turbines in a row has been
studied by Giorgetti et al (2015), but it has not been clarified what kind of
turning motion it performs when two VAWTSs are utilized as offshore wind tur-
bines. There are still many problems and unknown mechanisms to be addressed
for its practical application. In this study, water tank experiments and numeri-
cal simulations are carried out. From the experiments, we will confirm whether
the Multi-connection VAWTs actually follows the wind or not, and clarify the
mechanism of wind-following of the floating body. In this paper, a prototype
model with two VAWTSs is used as a demonstration, and the concept devel-
opment and operating principle of Multi-connection VAWTSs are clarified by
experimental results and numerical simulations.

2 Concept

Figure 1 shows the conceptual design of the proposed system. The feasibility
of the concept is tested using twin-connected VAWTSs. The test model consists
of two types of floating bodies: wind turbine floats and mooring float. The
wind turbine floats are equipped with two cross-flow type vertical axis wind
turbines, one of which rotates clockwise and the other counterclockwise. The
mooring float is stationed using a single point mooring system and connected
to the center of the wind turbine floats. Therefore, the wind turbine floaters
can rotate around the moored buoy.
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Fig. 1 Concept design of Multi-connection VAWTs. (full scale)

Cross-flow wind turbines are vertical-axis wind turbines of the same drag
type as Savonius wind turbines. As shown in Figure 2, drag-type wind turbines
have inferior power generation performance compared to lift-type wind tur-
bines. However, they are often installed as small wind turbines in residential
areas because of their low RPM and higher safety. Nakata (2014) conducted
study on performance of cross-flow wind turbines that can be installed on
structures such as fences and buildings. In this study, too, a small cross-flow
wind turbine was employed because the study envisions an aquaculture farm
where fishing personnel would be working nearby.
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Fig. 2 Performance curves for wind turbines. (Frank (1980))

When multiple wind turbines are installed, it is possible that they line up
in the direction of the wind as elucidated in Figure 3 (a). When they overlap
with respect to the wind direction, the wind turbine on the leeward side cannot
receive enough wind due to wake effects. It has been confirmed by experiments
that the rotational speed of the vertical axis wind turbine on the leeward side
decreases by about 40-50% (Philip (2012)) compared to that on the upwind
side and it depends on the distance between the wind turbines. However, in
the proposed concept, the model itself can turn and receive maximum wind at
all times (Figure 3(b)). Therefore, it is expected to generate stable power at
various offshore sites using the proposed concept.

* * Wind * * * Wind *

®
Fig. 3 Turning motion of Multi-connection VAWTs.

3 Model design

3.1 Vertical axis wind turbine

A cross-flow type wind turbine, which is one of the vertical axis type wind
turbines and has a track record of commercialization as a small wind turbine
is adopted. The rotor part is made of aluminum, and the support part is made



Springer Nature 2021 ITEX template

Article Title 7

of PVC pipe (Figure 4). The rotor consists of 18 blades and cross-sectional
shape of each blade is a thin arc wing. This vertical axis type wind turbine is
attached to the left and right sides of the wind turbine floater, one rotating
clockwise and the other counterclockwise.

320
380

(a) Front view (b) Experimental model

Fig. 4 Cross-flow type wind turbine from side

3.2 Wind turbine floaters

Wind floaters to host the turbines is shown in the Figure 5. The two floaters
are connected at the top using a single frame structure, such that twin turbines
can be connected to the mooring buoy. The wind turbine floaters are made of
aluminum and frame is made of aluminum. Figure 6 shows the wind turbine
floaters hosting the cross-flow type turbine built for the experiment. Table 1
tabulates the principal particulars of the experimental model.

(b) Top view

Fig. 5 Wind turbine floaters
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Fig. 6 Experimental model with wind turbines

Table 1 Principal particulars of the experimental and actual model wind float body
(equipped with a wind turbine, overall system)

Item Unit Scale Model Actual Model
Mass ton 0.03 1430.47
Draft m 0.06 2.16

KB m 0.03 1.08

KG m 0.30 10.80

BM m 0.32 11.52
GM m 0.05 1.80

3.3 Mooring buoy floater

The mooring buoy floater has a cylindrical shape made of PVC pipe and
both ends of the pipe are covered with acrylic disks. The upper part of the
mooring buoy is connected to the wind turbine floaters. A bearing is attached
to the upper connection part, so that the wind turbine floating body can rotate
around the mooring buoy floater. There are four mooring points at the bottom
part of the buoy, and each point is tensioned by a mooring anchor. Mooring
buoy is ballasted with a weight of 8 kg to arrive at required stability. Table 2
summarizes the mooring buoy characteristics.
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Table 2 Principal particulars of mooring buoy floater (equipped with a wind turbine)
Item Unit Scale Model Actual Model
Mass ton 0.02 811.81
Draft m 0.45 16.20
KB m 0.34 12.24
KG m 0.26 9.36
BM m 0.006 0.22
GM m 0.08 3.16
9_(1
= Lo
-;:i G,
= g
228 Unit-mm
(a) Front view (b) Experimental model

Fig. 7 Mooring buoy floater

4 Physical model

4.1 Turning motion simulation

The purpose of this study is to clarify the mechanism of the turning motion
of the Multi-connection VAWTSs. The design load of the twin turbine system
proposed in this study has not been clarified. Therefore, we calculate the design
load from experiments and numerical calculations. We construct a program to
solve the equations of motion based on the developed mechanical model.

The numerical analysis method for the turning motion used in this study
is the Runge-Kutta-Gill method, which is an improved version of the classical
Runge-Kutta method. The numerical analysis method is excellent in automat-
ically correcting rounding errors and securing memory space. This numerical
method is used to predict the turning motion of the test model. The effect of
moored floater is not considered in this numerical simulation. In this study,
calm sea areas such as aquaculture farms are assumed. Therefore, the influ-
ence on the surge, sway, roll and pitch motions is considered to be negligible.
Further, since the mooring attached to the floating structure is a TLP, the
heave motion response is small.
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4.1.1 Equation of motion

Figure 8 shows the coordinate system. The simulations in this study are in a
body-fixed coordinate system and the coordinate system also moves with the
Yawing of the model, as shown in Figure 8 (b).

Here, G represents the overall center of gravity, and Gwrt and Gwr rep-
resent the center of gravity of the wind turbine and the floating structure,
respectively. Although a model with six degrees of freedom is shown, in order
to simulate the turning motion, the four degrees of freedom equations are
solved. The motion responses in heave and pitch are considered to be small
and therefore four-degree maneuvering equations of motion is solved for the
mechanical model. The equations of maneuvering motion in surge, sway, roll,
and yaw can be written as in Eq. 1.

Wind, Wave

vy 4 J

v

(a) XYZ coordinate (b) X-Y axis

Fig. 8 The coordinate system of simulation

(m 4+ my)U — (m + m, cos® ¢ + m, sin’ PV = F,

(m + my cos? ¢+ m, sin® )V + (m + m, ) Ut

+2(m; —my)sin¢gcos ¢ - Vo= F,

Loz + Jm)¢ —{Uyy + Jyy) — (L2 + J22) }psingcos ¢ - ¢2 =M,

{(Lyy + Jyy)sin®  + (I + Jyy ) cos® o))

+ 2{(Lyy + Jyy) — (Iz2 + J:2) } sindpcos ¢ - U+ bp = M, (1)

where m is the mass, m;, m, and m, are the added mass, I, I,, and
I.. are the moments of inertia, and J,;, Jy, and J., are the added moments
of inertia. U and V are linear velocities in surge and sway directions, ¢ and
are angular displacements in roll and yaw directions. I, and [ are loads, and
M, and M, are moments in surge, sway, roll and yaw directions. In addition,
b is the slow-drift damping coefficient.

Here, the roll motion of the mechanical model is small i.e., ¢ = gb =01in
the steady-state turning condition. The kinematic model in roll direction can
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be assumed as shown in Figure 9. The mooring float hardly tilts and therefore, 461
the moment of roll acting only on the wind turbines is considered. The roll 462
moment can thus be obtained as follows. 463
464

M, = _mgG—M sin ¢ + Muying + My + Myave (2) 465

466

where M ing is the moment due to wind load, M, is the moment due to 467
hydrodynamic resistance of water, M4 is the moment due to wave load. 468
469
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495

496
Using Equation 2 in the roll equation of motion, the roll angle can be 497

obtained as follows. 498
499

mgGM sin ¢ = Muying + My + Myave 500

. : 501

+{(Iyy+<]yy) - (Izz —1—Jzz)}sm¢cos¢-d)2 502

(3) 503
504

505

506

«
«
«
«

Fig. 9 Rolling of kinematic model.
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Where M,.,;; is the right side of Eq. 3, the roll angle is shown in Eq. 4.

MT'O
¢ =sin? i (4)
mgGM

Further, Figure 10 shows the kinematic model of the twin-turbines under
only-wind condition in yaw direction at an angle of ¢

Wind

v b d

wy2

Fig. 10 Yawing of kinematic model.

The loads acting on this model are the wind load, fluid load resisting the
motion, and the mooring load. As the wind blows and the model turns, the
external loads acting on the floating body can be modelled as shown in Eq. 5.

Fy=Fyp1 — P+ Fygo + Fro =1,

Fy = Fyyr + Fuyz — Ty

M, = —(Fuyz1 + Fuz2)zw — (Fr1 — Fro)z,
M, = (Fyz1 — Fuw2)L — (Fr1 + Fr2)L

()

Here, F,;1 and F,,,o are the wind loads acting on the wind turbines in
the longitudinal direction. I, and [%,,2 are wind loads acting on the wind
turbines in the transverse direction. F,,,; and F,,.o are the fluid resistance
acting on the wind turbine floats. T}, and T}, are the restoring mooring line
forces. L is the distance from the center of turning (the center of the mooring
buoy float) to the center of twin wind turbines on either side.

4.1.2 Wind load

During the turning motion, the wind speed and correspondingly the wind load
acting on the turbine changes depending on the rotational speed of the test
model. It is therefore necessary to evaluate relative wind speed acting on each
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of the twin turbines. The relative wind speed of test model is obtained by the
wind it receives during the turning motion as shown in Figure 11.

Fig. 11 Relative wind speed.

where Viinq is the wind speed generated at the wind tunnel, V. ¢q¢e is the
speed of the test model as it turns, Vieative is the relative wind speed, 1 is
the yaw angle of turn, and ¢ is the relative wind speed direction.
V;“otate - ¢ x L
Welativel - \/(‘/;’otate COoS ¢)2 + (Vwindl - ‘/'rotate sin ¢>2
V;”elativeQ = \/(V;“otate COoS 77/})2 + (Vwind2 + ‘/rotate sin 770)2

o1 = tan_l ‘/frotate COS’I,D
1 — .
Vwindl - ‘/rotate Sln¢
V, cos
o = tan_l rotate ¢ (6)

VwindQ + ‘/rotate sin w

Figure 12 shows the wind loads based on the relative wind velocity as discussed
above.
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Wind

Fig. 12 A dynamic model considering relative wind speed.

The following equation shows the wind load in the direction of the turning
movement when using the relative wind speed obtained from Figure 12.

1 .
wal - §OdvpaVl”2€latiU€ISU Sln(¢ - 901) + Fyl COS('L/) - 901)

1 .
Fw:pQ - §Cdvpa‘/r26lativeQSU Sm(lb + 502) + Fy2 COS(T,D + S02) (7)

where F,,1 is the combined force of the wind load on the vertical-axis wind
turbine in the clockwise direction in the direction of gyration, Fl .o is the
combined force of the wind load on the vertical-axis wind turbine in the semi-
clockwise direction in the direction of gyration, Cy, is the coefficient of efficacy
of the vertical-axis wind turbine obtained from the wind load test, p, is the
density of air, S, is the projected area of the vertical-axis wind turbine, and Fy;
and [ are the wind load in the direction perpendicular to the wind direction
of the vertical-axis wind turbine obtained from the wind load test, Vi ¢jqtive 1S
the relative wind speed, L is the distance from the center of gyration to the
position of force, v is the angle of gyration, and ¢ is the wind direction of the
relative wind speed.

In addition, a wind load test was conducted separately on each of the twin
vertical axis wind turbines. Figure 13 shows the experimental setup and the
schematic diagram of the wind load test. The wind turbine model was fixed to
a pedestal with a force gauge. The wind speed was measured simultaneously
with a hot wire anemometer placed next to the wind turbine.
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(a) Installed model (b) Schematic view

Fig. 13 Overview of wind load test

15

Figure 14 shows the wind loads and drag coefficients acting on the vertical

axis wind turbines measured from the wind load test. C';, in the diagram is a

coefficient of F), obtained from wind load tests and is referred to as the lift
coefficient for convenience. Where Cy, and Cf, are shown in Eq. 8. From the
test results, the horizontal loads are almost the same for the two wind turbines,

while the vertical forces are slightly different. The drag coefficient Cy, in the

simulation is set to 1.6, which is the average of all the values.
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Fig. 14 Wind load and drag coefficient of wind turbine

4.1.3 Mooring line response

Cofficient of wind load

In the water tank tests, the mooring buoy was tension moored using four wires.
However, in the simulation, the tension load is modelled as a single mooring
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691 cable since the distance between the four tension moorings is short. In this
692 section, the derivation of the constant k for the tension mooring is described.
693 Figure 15 shows the dynamic mooring model before and after moving the buoy.
694

695

696 H
697 F. L1 [ F.. F..
698
699 g g mog
oo | 1 |
701 T T/
702 |
703 |
704 —
705 (a) Before (b) After
706
707
708
709
710
711 (Fbuoy + Ffloat,l + Ffloat,2) - (mbuoy + M float,1 + mfloat,Q)g -T=0 (9)
712

713 Suppose the mooring float moves by 6 and the mooring cable tilts by 6.

714 Assuming that the length of the mooring cable L, ... is constant, the mooring
715 buoy float will sink by (1 — cos) L0, and the resulting buoyancy force
716 Fi, oy after the change can be expressed by the following equation. In this test
717 model, the joint between the mooring float and the wind turbine floats has
718 a mechanism that allows to freely move up and down. Therefore, even if the
719 whole model moves by §, the windmill float will not sink by (1 — cos @) L,0r--

720

ik
1K

=]
s
Rl
iy

Fig. 15 Modelling of mooring force.

721 Fl;uoy = Fbuoy + Abuoyhpg (10)
722

793 Here, the depth A due to movement is expressed by the following equation.
724

795 h=L—+/L?— 42 (11)
726

797 The tension of the mooring cable in the vertical and horizontal directions
798 is as follows

729 ..

730 T:U — T Sln9

731 T, =T'cosb (12)
732

733 The vertical and horizontal equilibrium equations after displacing the
734 mooring float can be expressed as follows.

735

736 (Fl;uoy + Ffloat,l + Ffloat,2) - (mbuoy + M float,1 + mfloat,?).g - T/ cosf =0
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(13)

T'sinf —ké =0 (14)

From the equilibrium equations, the spring constant £ and movement of
the mooring cable can be obtained.

Féuoy + Ffloat,l + Ffloat,2 - (mbuoy + mfioat,1 + mfloat,2)g

Lcost
(15)

)

=1
0 = sin 7 (16)

Using the spring constant £ obtained above, the mooring cable tensions, T,
and 7}, acting on mooring float in the x and y-directions can be determined.
The purpose of such modelling is to include the effect of changing buoyancy
as the mooring float sinks.

4.2 Added moment of inertia and Damping force
coefficient

Additional moment of inertia and slow-drift damping coefficient are necessary
to solve the turning motion of a floating body, and Nihei et al (2020) stated
that the damping force is important for the turning motion of a floating wind
turbine moored at a single point. Therefore, in this study, a forced yawing test
was conducted and these values were obtained from the experiment.

In this test, only the floating part of the 1/72 scale model wind turbine was
used to measure the load due to water acting on the floating part. The exper-
imental setup is shown in Figure 16 (a), and the definition of the coordinate
system and the load to be measured is shown in Figure 16 (b). The yawing
device shown in Figure 16 is connected to a dedicated controller, that sends
angle and time data to the yawing device. The yawing device then rotates
the attached model and the load in each direction was measured with a force
gauge. These measured forces are post-processed to obtain added moment of
inertia and damping force coefficient.
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1 B
b — 5

(a) Installed model

Beam —__ | Current
Yawing device é

Float model
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» Fy e
x, Fx
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(b) Coordinate system

Fig. 16 Forced yawing test (1/72 scale model).

Table 3 Forced yawing test conditions

Item Unit Value
Period T S 5, 10, 15~40, 50
Amplitude A deg 5, 10, 20~60
Center of yawing B deg 0, 90
Current speed V. cm/s 0, 0.2

4.3 Wave load

The wave loads acting on the two floating wind turbines are obtained by using
a hybrid boundary element method based on potential theory, which was devel-
oped by Masuda et al (1993). The fluid domain is divided into two regions,
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inner and outer. The outer region is solved by the eigenfunction expansion
method, while the inner region is solved by the boundary element method using
a simple ranking source of Green’s functions. This makes it possible to mathe-
matically handle even non-dominant forces of arbitrary shape in higher-order
hydrodynamic calculations.

=
== =
e EE
ST

Fig. 17 HYBIEM mesh modele

The roll angle can be calculated using equation 17 when only waves are
acting and the floating body is not in yawing motion. Here, the moment acting
on the floating body is M. The same equation can be used to determine the
roll and pitch angles when only wind acts on the floating body.

) M
¢ =sin"! ——— (17)
mgGM
4.4 Numerical simulation
Table 4 summarizes the simulation conditions.
Table 4 Simulation conditions
Item Unit 1/36 Scale model
Rotational inertia of float I, kg 8.73
Added mass of float and buoy mg, my kg 25.09
Added rotational inertia of float and buoy Juzz, Jyy kgm? 16.55
Added rotational inertia of float J,» kgm2 6.45
Density of water py, kg/m?3 1000
Density of air pq kg/m3 1.293
Drag coefficient of float Cp, ¢ - 0.9
Drag coefficient of wind turbine Cpq: - 1.60
Damping force coefficient b kgm? 0.526
Mooring length L m 1.0
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5 Water tank test in wind and wave

The turning motion experimental setup is shown in Figure 18 (a) and con-
ducted for various initial positions of the model as defined in Figure 18 (b).
For the motion measurements, multiple trackers are mounted on to the test
model and OptiTrack’s motion capture cameras are utilized. The test model
is regarded as a rigid body, and in this tank test, eight trackers were mounted
on a steel frame.

CQI CQZ
. LT — |
(a) Installed model (b) Definition of initial positions

Fig. 18 Experimental setup.

The experimental conditions are shown in Table 5. The wind speed is set
to 7 m/s at which the vertical axis wind turbine could rotate moderately. The
wave heights and wavelengths are based on the wave conditions assuming that
the test model is 1/36 scale.

Table 5 Experimental conditions of turning motion test

Item Unit 1/36 Scale Model Actual Model
Initial positions deg 0, 45 ~ 315 0, 45 ~ 315
Wind speed m/s 7.0 42.0
Wave height m 0.03 1.08
Wave period S 1.0~ 1.5 6.0 ~ 9.0

6 Results and discussion

6.1 Effects of wind

Figure 19 shows the turning motion obtained from the wind-only test results
for Case2, Case 3, Case 5 and Case 7. Here, the initial positions for Case 2,
Case 3, Case 5 and Case 7 are 45, 90, 180 and 270 deg. In the wind-only tests,
the turning motion converged at 90 deg for all the different initial positions.
In Case 3, it can be seen that the model did not move from the initial position
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since both the wind turbines faced the wind. Therefore, it was expected that
in Case 7 does not move from the initial position since both wind turbines face
the wind. However, Case 7 turned and converged to a final position of 90 deg.
The only difference between Case 3 and Case 7 is that the initial positions of
the two wind turbines is interchanged. Since the horizontal wind load acting
on both clockwise- and counterclockwise- rotating turbines are same, it is
hypothesized that the small vertical wind load (as in Fig 14) contributes to
such turning motion.

360,
315f
270F
225F
180k
135F

90F

45}

Yaw Angle [deg]

Time [sec]

Fig. 19 Experimental results in wind-only condition.

Figure 20 and Figure 21 show the comparison between the simulation and
the wind-only test for Case 1 and Case 8, respectively. In the simulation, the
small vertical wind load obtained from the wind load test is also considered
and we can observe good correlation between calculation and experimental
result. Such results could not be obtained if only the horizontal wind load was
considered in the calculations. This suggests that loads acting on each wind
turbine needs to be accurately modelled when hosting multiple turbines.

360 S S MU SN S SN S _
315:_ Exp.---Cal._:
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180F ]
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90 '
45f
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Fig. 20 Comparison between experiment (only wind) and simulation - Case 1.
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Fig. 21 Comparison between experiment (only wind) and simulation - Case 8.

Now to understand the wind load distribution during the simulation,
Figure 22 shows the variation between clockwise and anticlockwise rotating
turbines for Case 1. The wind load difference between the left (clockwise
rotating) and right (anticlockwise rotating) turbines becomes smaller as we
approach the final position of 90 deg. From this result, it can be said that the
load generated inside the wind turbine is important for the turning motion
prediction. In other words, it can be said that the motion of a multi-turbine
floating wind turbine, converges at the point where the external forces acting
on the left and right sides are balanced when two vertical axis wind turbines
are symmetrically mounted.

5'”'IIIIHIII”IHHIIIIII””I”HI”HI””J
ClockwiseF,, Anticlockwisd,, 2

Wind Load [N]
R KRR

—
T
1

0 10 20 30 40 50 60 70 80 90
Yaw Angle [deg]

Fig. 22 Wind load distribution during turning motion - Case 1.

6.2 Effects of wave

1008 Figure 23 shows the comparison between the wave-only test and the simulation

1009
1010
1011
1012

for Case 2 with a wave height of 0.03 m and a wave period of 1.0s (real wave
period of 6.0 s). Both the experimental and calculation results of the wave-
only condition show that the model did not move much and is unaffected by
the waves.
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Fig. 23 Comparison between experiment (only wave) and simulation - Case 2

Figure 24 shows the roll angle for the 1/36 scale model with a wave height
of 0.03 m, a wave period of 1.5 s and wind velocity 7.0 m/s. This result was
calculated from Eq. 17. As can be seen from the graph, the roll angle is less
than 1.5 deg, which is quite small. From this result, it can be said that the
effect of waves on the model is small. In this study, the wave loads obtained
in this frequency domain are put into the time domain.

5.0 — T " T " T " T T T T UL
| —@—Only Wave Load —&—Only Wind Load
?b4 OF ... g, (@ aA— A A
H A -
% v & _ -
— 3.0 X PNy A .
) -
0 3
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<20k e i
3 | .
1.0

Yaw Angle [deg.]
Fig. 24 Roll angle for the 1/36 scale model.

6.3 Effects of wind and wave

Figure 25 shows the experimental results of wind-only and wind-wave coex-
isting conditions for Case 1. The results for wave height of 3.0 cm and wave
period of 1.0 and 1.5 s (real wave period of 6.0 and 9.0 s) is shown. It can
be observed that the maximum yaw angle was 127 deg in wind-only condition
and time required to turn was about 10 seconds. In contrast, under the wind-
wave coexisting condition, the maximum yaw angle decreased to 120 and 121
degrees, for wave periods of 1.0 and 1.5 seconds, respectively. However, the
time taken to turn increased to 12 and 11 seconds. From these results, it can
be seen that there is almost no difference between the wave periods of 1.0 and
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1059 1.5 seconds for initial position of 0 deg. A similar trend was observed in the
1060 other cases, and little difference was observed between the waves.

1061
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1073 Fig. 25 Experimental result of wind-only and wind-wave conditions - Case 1

1074

1075
1076 Figure 26 shows the comparison between the wind-wave coexisting test

1077 and the simulation for Case 5 with a wave period of 1.1 s (real wave period
1078 6.6 s) and a wave height of 3.0 cm. As mentioned earlier, the effect of the
1079 waves is limited and the experimental and simulation results generally agreed
1080 in this simulation. However, there is a slight difference between experiment
1081 and simulation results around the elapsed time of 20 s, where the maximum
1082 yaw angle was 106 deg at 23.8 s in the experiment and 111 deg at 22 s in
1083 the simulation. This slight error, 5%, is thought to be due to the moment of
1084 inertia of the small parts installed in the model, which is not considered in
1085 the simulation. In other cases, the difference between the experimental and
1086 calculated values shows an error of less than 10%. However, it can be said that
1087 the accuracy of the simulation is sufficient to understand the basic principal
1088 involved in hosting multiple vertical axis wind turbines.
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7 Conclusion

In this study, a new-type floating offshore wind turbine is proposed, which con-
sists of two wind turbine floats hosting cross-flow type wind turbines connected
to a mooring float in a straight line. The motion response and wind-following
performance of the prototype model is experimentally clarified from free yaw-
ing tests in wind and wave conditions using a 1/36 scale model. In addition,
a time history program was developed using a four-degree-of-freedom maneu-
vering equation to simulate the turning motion of the floating structure. The
findings of this study are summarized as follows.

e The floating wind turbines turned around the mooring float and converged
to a final position facing the wind, irrespective of different initial posi-
tions. From the experiments, it was found that the two cross-flow wind
turbines rotated after receiving adequate wind at the converged position. It
is therefore expected to generate power using the proposed concept.

® From the simulation and the experimental results, it is found that the turn-
ing motion of the floating wind turbine converges to a final position where
the loads acting on the left and right wind turbines are balanced. It is there-
fore important to accurately evaluate not only in-line wind load but also
transverse wind load acting on the turbines.

e [t is found that the floating model in this study is almost unaffected by
waves under long wave period conditions. It can be concluded that the pro-
totype model is suitable to be installed at aquaculture farms where the wave
conditions are relatively calm.

® In this study, a numerical model of a multi-connected floating wind turbine
is developed and compared with experimental results. The error between
the simulation and the experimental results is within 10% throughout the
entire model, which is sufficiently accurate. This error can be reduced by
accurately considering the moment of inertia of small parts in the model.
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