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A Remark on Spectral Measures of the Flow

of Brownian Motion.

By Hirotada ANZAI.

1. The purpose of this note is to remark that any spectral measure

appearing in the flow of Brownian motion is absolutely continuous up to

a trivial jump at the origin. The converse of this statement, that is, the

facf that any absolutely continuous measure appears in the set of spectral

measures of the flow of Brownian motion, was shown by N. WIENER as

a result of his work on the theory of Brownian motion. )

On the other hand K. Iτo proved that the flow of strictly stationary

stochastic process x(t, ω) of Gaussian type is strongly mixing, provided

that the correlation function

00

φ (f) = f x (t + s, ω) X 0, ω) dω = I e ltλ dF (λ)

has the property that lim^^Cί) = 0.'-) But as is well-known, there

exists a positive definite function φ (£) .with a singular spectral measure

F(λ), having the property that lim ^TO φ (t) = 0. Hence K. ΊTO'S result

shows the existence of a strongly mixing flow which contains a singular

spectral measure.

So far as the author knows, it has been an open question, whether

the spectral types of strongly mixing flows are unique or not. Our remark,

combined with the result of K. Iro, shows that this question is answered

ϊ ) H. WIENER, Generalized harmonic analysis, Acta Math. 55 (1930) p. 214.'
E. IIoi'F, Krgodentheoric, Berlin, 3937,. p (51.

In fact, for this purpose, i t is s u f f i c i e n t to consider the invar iant suϋspace of

Lj (U), consisting of the functions of the f o r m ; ξ * (M) =r. \ ξ (t\ t l χ ( t , t , ι ) , where i<t)
— OO

ε Lsί-βo, °°) tl is the measure space of Brownian motion, and the integral is in the

sense of N. WΓ:NT:K.

2) K. I TO, On the ergodicity of a certain stationary process, Free. Imp. Acad.,

Tokyo, Vol. 20 (1944), p. 54.
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negatively.

This note is a result of conversations between S. KAKUTANI and the

author, but it is needless to say that Professor KAKUTANI is not respon-

sible for this note.

2. By Brownian motion [ x ( A , ω), ω e Ω j , we understand a tem-

porally homogeneous differential process x (A, ω), having a Gaussian

distribution :

(1) P r ω | α < * ( A , « ) < & } ~ -^— e~

where A is an interval 3) on the infinite line, [ A \ denotes the lengttf of

A x (A, ω) in (1) is to be understood as the value of the interval function

x (Ay ω) for the interval A. It is a well-known fact that the flow Te on

Ω, defined by

( 2 ) x(A,Tt ω) -= X(A + ί, ω) ,

is strongly mixing, where A + t denotes the translation of A by ί.

Let 9JΪ be the set of functions belonging to L, (Ω), of which the means

are zero : / (ω) s 3Jί ;± ( / (ω) d ω = 0. Obviously 2ft is the orthocomple-

ment of the trivial one-dimensional subspace of constant functions in

L, (Ω).
THEOREM. For any /(ω) ε 2JI, the positive definite function φ(f) —

\ f (Tt ω) /(ω) d ω has an absolutely continuous spectral measure.

PROOF : We denote by g the subset of functions of S3JI, which are

defined by conditions depending only on finite sums of intervals. We

shall first show that the assertion of the Theorem is true for / (α>) e g.

For any / (ω) e g, there exists a positive number C such that, if t > C,

/ (Tt ω) and / (ω) are stochastically independent. Therefore we have

= 0, for ] t \ .> C.
It is obvious that

r+

(3) ff(a?) = -Λ- i e-'- ,/,(2) cte = -ί- ( e"" ^(z) άz
Z 7Γ _^ Z 7Γ _J,

3 j We mean by « * interval " always finite interval.
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is a positive function, since φ (z) is a positive definite function. Since

φ (z) is a uniformly continuous function, we obtain

A C A

lim ( eίtx g ( x ) dx = lim -~— ί ( ( ei('~*}* dx} φ(z) dz
-\ A->oo Λ 7T J \'* I
-A ^~*°° " /fc -C -A

1

This shows that
oo

(4) φ ( f ) = \ e"* g ( x ) dx.
— 00

In particular, putting t — 0 in (4), we have

( R Λ I ft (~\ ΛΛ* ^ f(\'\ 1^ ί) ) \ y \X) ttίt — cp ({}) -— l.
— 00

By (3), (4) and (5), we conclude that φ(t) has the absolutely continuous

measure ( g (#) dx.

Let us denote by E (λ) the resolution of identity of the one-parameter

unitary group acting on L^ (ίl), which corresponds to the flow Tt on Ω.

Then to a Borel set B on the infinite line, there corresponds a projective

operator E (B\ and for any / (ω) ε L2 (Ω), (E (B)f,f) is the spectral

measure of the positive definite function φ (ί) = / (Tt ω) 7Iω) ^ω :

<p (ί) = j / (Tt ω) /T^) dω = j β ίCλ ( E (dλ) /, / ).
— 00

Let / (ω) be a function of sJJί. Since g is dense in SJJΪ, there exists a

sequence of functions fn (ω) e g, such that || /„— / || -> 0, as n ->co. There-

fore "for any Borel set B, we have

( 6 ) (#(£)/,/).= J i m ( E ( B } f n ί f n )
n-*oo

Since we have shown that, for any /„ e g, ( £7 (β) /„, /n) is an absolutely

continuous measure, it follows from (6) immediately that ( E (B) /, /) is

an absolutely continuous measure. This completes the proof of the Theorem.
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