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0. Introduction

An Alexandrov surface X is by definition a 2-Hausdorff dimensional, connected,
locally compact and complete length space of curvature bounded from below in the
sense of Alexandrov which has no boundary points. For a point z € X, X/ is the set
of all directions of geodesics emanating from = equipped with the angular metric Z.
Let ¥, be the metric completion of X/. We call it the space of directions at z. This
corresponds to the unit tangent sphere in Riemannian geometry. The space of directions
¥, for each z € X is either a circle of circumference < 27 or a segment of length < 7
(see [1],[9]). Since, by definition, X has no boundary, we mean that 3, is a circle for
every x € X. A point x € X is called singular iff the circumference of X, is less than
27, and we denote by Sing(X) the set of all singular points of X. It is a well known
fact in Alexandrov geometry that the pointed Gromov-Hausdorff limit lim, _,o(1/rX, z)
of the 1/r-rescaling of the metric around z is the flat cone (C(X;),0*) over X, with
vertex o* for every z € X. We call C(X,) the fangent cone at x, which corresponds
to the tangent space in Riemannian geometry.

A real valued function ¢ : X — R on X is called convex iff the following
inequality holds for an arbitrary geodesic v : [a,b] — X and arbitrary ) € [0, 1]:

(%) Ppoy((1-Aa+ab) <(1-A)-goy(a)+A-9oy(b).

A convex function on X is not in general continuous, because X admits the singular
set Sing(X). Nevertheless, we can introduce the notion of the a-level set of 1 for
each a € (inf 1, 00) (see §0 of [6]). Every convex function on a complete Riemannian
manifold M is always locally Lipschitz. Moreover, M is automatically noncompact
if such a convex function is nonconstant. However, an Alexandrov surface X which
admits a locally nonconstant convex function is not always noncompact (see Theorem
A of [6]). The following results have been established by the author: Let ¢ : X — R
be a convex function satisfying the condition

int( n {z € X|¢(z) < a}) =0.

a>inf Y

Then we conclude the following:
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i. supy = oo.

ii. Each component of the a-level set for each a € (inf 9, 00) is either a simple closed
curve or a line.

iii. For each a € (inf 1, 00), the a-level set has at most two components. Moreover, if
the a-level set for some a € (inf v, co) has two components, then the same holds
for all the b-level set with b € (inf 9, 00), and in each case, the two components
are both simple closed curves or both lines.

iv. X is homeomorphic to one of three spaces, R?, S! x R or (S! x R)/Z>.

The purpose of the present paper is to determine the metric structure of X admit-
ting a non-trivial affine function. Here, a function ¢ : X — R is by definition affine
iff the equality in (*) always holds for arbitrary unit speed geodesic v : [a,b] — X
and arbitrary A\ € [0,1]. Letting X2 := {z € X|p(z) = a} define the a-level set
of ¢ for convenience, we specialize the above result to the case of affine functions as
follows:

Theorem 1. If an Alexandrov surface X admits a non-trivial affine function ¢ :
X — R, then for every a € (—00,00) there is an isometric map

I:XSx(—00,00) — X

such that 1(y,t) € X} for every (y,t) € X2 x (—00,00). Moreover, X is isometric to
either flat R? or flat S' x R.

Note that every level set of an affine function on X is totally convex, and hence
such a set is either a simple closed geodesic or a straight line. In particular Sing(X) =
@, and hence C(X,) is isometric to R? for all z € X. Since —¢ is also affine, we
conclude from (i) that the range of ¢ is (—00, 00).

The fundamental notion used here is the directional derivative dp(v) of an affine
function p : X — R for v € ¥/,. Set

dp(v) == (po,),(0), vEX,, T€ X,

where 7, : [0,1(v)] — X is a geodesic such that v,(0) = z and #,(0) = v, and ()%
is the right-hand derivative. Note that we do not take the limit in the above definition
since ¢ is affine. We will show in Lemma 1.1 that dy : £/, — R can be extended con-
tinuously to an affine function dy : C(X;) — R on the whole tangent cone C(X;).
Note that we use the same expression dp(v) for v € C(X,). It follows from the com-
pactness of ¥, that the function of the directional derivative dy|x_ : £, — R attains
its maximum at some (unique) direction v, ; € ¥; (see Lemma 1.2). This allows us
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to introduce the generalized gradient Vi, of ¢ at z € X, that is, Vi, /|Vp,| = v, 4
realizes the maximum of dy|y,. Here we mean by |- | the RZ-norm under identifing
C(X;) with R2. The following lemma on the generalized gradient plays a crucial role
in our investigation:

Lemma 2. The following statements are true:

(1)We have for every x € X and for every v € C(Z;)

dp(v) = [Vpql|v| cos L(Vips, v).

(2)Let a and b be arbitrary fixed numbers with a < b. Then for every x € X? and a
minimal geodesic o, : [0,l(z)] — X from x to X?, we have

32(0) = vp,5 = Vo /|Vipg|.

Hence there is a unique minimal geodesic from z to X l’,’ for every x € X¢.

(3)|V,| is constant for all x € X.

To show Theorem 1, the flatness of every geodesic triangle in X is required.
Therefore we prove the similarities of geodesic triangles as follows. Let a and b be
as in Lemma 2(2), and let v : [0,!] — X be a geodesic from a point on X2 to a point
on X?. For every s € (0,1], let o5 : [0,1(s)] — X be the (unique) minimal geodesic
from 7(s) to X2. Then it follows from Lemma 2 (1) and (3) that the angle between o,
and ~ is constant for all s € (0,!]. This is true for the angle between o, and X2. Let
A(t) for t € (0,1] be a geodesic triangle spanned by geodesics {0s]|0 < s < t}. Using
this and the first variation formula, we conclude the following:

Proposition 3. With the above notation, /\(t1) and A(tz) for all ty,ts € (0,
are similar triangles, i.e., all ratio of the lengths of corresponding edges are same.

In §1 we prove assertions (1)-(3) of Lemma 2, and in §2 we construct the isometric
map I indicated in Theorem 1.

1. Proof of Lemma 2

From this point let X be an Alexandrov surface admitting an affine function ¢ :
X — R. We denote by |z, y| the distance between x and y for z,y € X. We use the
following fact through this paper:
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FACT 1.0. The pointed Gromov-Hausdorff limit lim; ,(1/tX,z) of the (1/t)
-rescaling of the metric around z is the flat cone (C(X;),0*) over ¥, with vertex o*
for every x € X.

Since X admits the affine function ¢, X, is the circle of length 27 for all x € X.
Thus C(X;) is identified with R?, and ¥, is identified with the unit circle centered
at origin of R2. Hence we can denote an arbitrary element of C(X,) by Au for some
X € ]0,00) and some u € X,.

We first discuss the directions in X!, for arbitrary fixed x € X. Let u,v be fixed
directions in X/ with 0 < Z(u,v) < m. Then we choose the direction wy € X/, for
some A € (0, 1) such that (by identifying C(X,) with R?)

ws = (I=XNu+ v
AT A= Nu+ |

where | - | denotes the standard norm in R2. Using this notation, the following holds:

Lemma 1.1. We have

sin Z(u, wy)
1- . Bk G Rl Y
(wk) [( ) (u) + )\ d(P(U)] /\ Sin Z(U, v)

Moreover, dp : X!, — R has the continuous extension dy : ¥, — R, and dyp :
C(X;) — R becomes an affine function again.

Proof. Since the directional derivatives are defined locally, we discuss only in
(sufficiently small) disk neighborhood U, of x. The bracket part in the above equa-
tion follows from the definition of affine functions, and the other part follows from
Euclidean geometry on C(X;), the sine formula and from Fact 1.0.

With the equation established, the second assertion easily follows. The third asser-
tion follows from the property that dp(Av)=Ady (@) for all Ae(0,00) and vEL,,. OJ

For every € X, we denote by O, the directions in ¥, tangent to Xf:((:))
Clearly, O; consists of exactly two elements, O ; and Oz, such that Z(O1 4,02 z)
=7 and dp(0; z) = dp(O2,5) = 0. Put

M3 = {v € Eg|dp(v) = max dp(w)} and mg = {v € Ez|dp(v) = fenzn, dp(w)}.

Then the configuration of O, M7 and myg, is determined as follows.

Lemma 1.2. For every v € M T and u € mw we have

™

L(Og,v) = L(Og,u) = =
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Hence each of the sets M and m{, consists of only one element.

Proof. Suppose that Z(O,,v) # /2 for some v € M. Since £(01,2,02) =,
we can choose a direction w € ¥, such that dp(w) > 0 and Z(O,,w) = /2. Here
we assume that /(O ;,v) > 7/2. Then, under identifying C(X;) with R?, we have
w=[(1=X)01,z + M]/|(1 = )01,z + Av| for some A € (0,1). Therefore, from the
equation in Lemma 1.1, we have

sin (01 z, w)

dip(w) = [(1= Ndp(O1.2) + X - dp(v)] - 320

1

= VI -dp(v) > dp(v).

This contradicts the choice of v € M.
Since —¢ is also affine, £(Oz,u) = m/2 follows for every u € m,. O

Proof of Lemma 2 (1). We see from Lemma 1.1 that dy is an affine function
on C(X,) isometric to R?. We can easily see a fact that every affine function on R?
satisfies the equation in Lemma 2 (1). O

Proof of Lemma 2 (2). Suppose that ¢,(0) # Vi, for some minimal geodesic
0z [0,1(z)] — X from z to X?. Then we construct a broken geodesic segment

e=Un: 016 — X

such that (¢ 0 &)’ (s) > dp(5,(0)) for every s € [0,1(£)) and £(0) = x, £(1(€)) € X
The construction of £ is achieved by inductive steps as follows. First of all, we note
that dp(¥(s)) is constant in s on each geodesic 7 : [0,!(y)] — X. By the continuity
of dp : ¥; — R, we can find a direction v; € X/, such that dp(vi) > dy(6,(0)).
Let 4; : [0,1;] — X be a maximal geodesic tangent to v;. If 7;(I;) does not reach
X} for the i-th maximal geodesic 7; : [0,/;] — X tangent to v; € Y, (0)> then
using the continuity of dy : ¥, — R and Lemma 2(1), we can find a direction
Vi1 € X, ;) such that do(viy1) > dp(64(0)), and we denote the maximal geodesic
tangent to v; 1 by vi+1 : [0,l;41] — X. Then, put a broken geodesic segment & :=
U; 70,3, 6] — X, and 2y = €3, 1), 1(€) ==, L.

It may happen that the endpoint z; of £ does not reach to X?. We then join z
to 1 by a minimal geodesic « : [0, |z,z1|] — X. By the minimizing property of «,
we see that dp(a(|z, z1])) > (¢ 0 §)!.(s) for all s € [0,1(£)]. Since dp(a(|z,z1])) >
dp(64(0)), using the continuity of dp : £, — R, we can find a direction w; € ¥/,
with dp(w1) > dp(6,(0)), and hence we proceed with inductive steps to construct £.
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From the above reason, we may assume that z; € Xf;. Clearly, we have

Uey; 1(8)
/ (po&)i(s)ds > / dp(65(0))ds.
0 0

Moreover, we conclude that [(z) > [(£) since ¢ o€ is almost everywhere differentiable.
This contradicts the minimizing property of . ]

Proof. Proof of Lemma 2 (3) We prove that |V, | = |V,,| for every 1,22 €
X. The first step of the proof is to show that [V,| is constant for all x € X2 and
for arbitrary fixed a € (—00,00). Choose z1,z2 € X2 and let 7 : [0, |z, z2|] — X
be a minimal geodesic from z; to z2. Necessarily, 7 C XZ. Set o5 : [0,1(s)] — X
for the minimal geodesic from 7(s) to X f,’ . Then it follows from (1) and (2) of Lemma
2 and the first variation formula that the function g = g(s) := I(s) is differentiable
in s € (0,|z1,z2|), and %-‘sl = 0 for all s € (0,|zy,z2|). This therefore implies that
V2| = (b= a)/1(0) = (b~ a) /1|1, 23]) = [Vipu.

The second step of the proof is to show that |V, | = |Veg,| when z; € X¢
and zo € X},’ for distinct numbers a,b € (—00,00). Here we assume a < b. Set
0z, : [0,1(z1)] — X for the minimal geodesic from z; to X? and z := o, (I(21)).
Then it follows from (1) and (2) of Lemma 2 that |V, | = |Vp,|. From the first step
of the proof, we see that |V,| = |Vy,|, and hence |V, | = |Vg,|. OJ

2. Proof of Theorem 1

In this section, we construct a isometric map [ in Theorem 1. Lemma 2 (2) guar-
antees that for an arbitrary fixed a € (—o0,00) there exist the gradient flow ¢, :
(—00,00) — X passing through z € X2 such that ¢,(t) € X} for every t €
(—00,00). Then the required bijective map I : X? x (—o0,00) — X is obtained
by I(z,t) := ¢.(t) for (z,t) € X X (—00,00). We will verify that the map I :
X& x (—00,00) — X satisfies the following:

[I(z1,t1), I(z2,t2)|? = |21, 22| + |t1 — to?

for every (z1,t1), (z2,t2) € X§ X (—00,00).

It follows from Lemma 2 and the first variation formula that this flow ¢, satisfies
the following:
2.1 ¢ is perpendicular to X/ for every t € (—00,00).

(2.2) |z, (t), Pz, (t)| is constant for all ¢ € (—o0, 00).
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We first normalize ¢ so that |Vp,| = 1 for all z € X. From (2.2), we may

assume without loss of generality that the geodesic «y : [0,{] — X in Proposition 3
is a minimal geodesic from I(z2,t2) € X? to I(zq,t1) € X2 Put 8 := /(v,X}) €
[0,7/2]. Then it suffices to prove the distance-preserving property of I in the case that
6 # 0,7m/2. With the same notation as in Proposition 3, if we denote by A the 1/t-
rescaling limit triangle of A(t) for ¢ — 0+, fixing the vertex v(0) of A(t), it follows
from Proposition 3 that A and A(l) are similar triangles. Moreover, it follows from
Fact 1.0 that A is a flat right triangle with an inner angle . Together with this and the
similarity of A and A(l), we observe that

1
[(z1,t1), I(z2, )| = c |21, zo|?

0s2 0

= |21, T2|? + tan? Oz, zo|%.

Using again the similarity of A and A(l), we have tanf = |t; — t|/|z1,22|. Hence
the proof is complete.

(1]
(21
(3]
[4]

(5

—

(6]
(7]
[8]

9

—

References

Yu.D.Burago, M.Gromov and G.Perelman: A. D. Alexandrov’s spaces with curvatures bounded below
(english version), Russian Math. Surveys, 47:2 (1992), 1-58

J.Cheeger and D.Gromoll: On the structure of complete manifolds of nonnegative curvature, Ann. of Math.
96 (1972), 413-443

J.Cheeger and D.Gromoll: The splitting theorem for manifolds of nonnegative Ricci curvature, J. Diff.
Geom. 61 (1971), 119-128

R.E.Greene and K.Shiohama: Convex functions on complete noncompact manifolds: Topological structure,
Invent. Math. 63 (1981), 129-157

R.E.Greene and K.Shiohama: The isometry groups of manifolds admitting nonconstant convex functions,
J. Math. Soc. Japan, 39 (no.1) (1987), 1-16

Y.Mashiko: Convex functions on Alexandrov surfaces, to appear in Trans. AMS

Y.Otsu and T.Shioya: The Riemannian structure of Alexandrov spaces, J. Diff. Geom. 39 (1994), 629-658
V.A.Sharafutdinov: The Pogorelov-Klingenberg theorem for manifolds homeomorphic to R™, Transl. from
Sib. Mat. Zhur. 18 (4) (1977), 649-657

K.Shiohama: An Introduction to the Geometry of Alexandrov Spaces, Seoul National univ. Lecture notes
series 8, 1992

Faculty of Science and Engineering
Saga University

1 Honjyoumachi.

Saga 840-8502,Japan

e-mail: mashiko@ms.saga-u.ac.jp








