

Title	Affine functions on Alexandrov surfaces		
Author(s)	Mashiko, Yukihiro		
Citation	Osaka Journal of Mathematics. 1999, 36(4), p. 853-859		
Version Type	VoR		
URL	https://doi.org/10.18910/9165		
rights			
Note			

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

AFFINE FUNCTIONS ON ALEXANDROV SURFACES

YUKIHIRO MASHIKO

(Received January 22, 1998)

0. Introduction

An Alexandrov surface X is by definition a 2-Hausdorff dimensional, connected, locally compact and complete length space of curvature bounded from below in the sense of Alexandrov which has no boundary points. For a point $x \in X$, Σ'_x is the set of all directions of geodesics emanating from x equipped with the angular metric \angle . Let Σ_x be the metric completion of Σ'_x . We call it the space of directions at x. This corresponds to the unit tangent sphere in Riemannian geometry. The space of directions Σ_x for each $x \in X$ is either a circle of circumference $\leq 2\pi$ or a segment of length $\leq \pi$ (see [1],[9]). Since, by definition, X has no boundary, we mean that Σ_x is a circle for every $x \in X$. A point $x \in X$ is called singular iff the circumference of Σ_x is less than 2π , and we denote by Sing(X) the set of all singular points of X. It is a well known fact in Alexandrov geometry that the pointed Gromov-Hausdorff limit $\lim_{r\to 0} (1/rX, x)$ of the 1/r-rescaling of the metric around x is the flat cone $(C(\Sigma_x), o^*)$ over Σ_x with vertex o^* for every $x \in X$. We call $C(\Sigma_x)$ the tangent cone at x, which corresponds to the tangent space in Riemannian geometry.

A real valued function $\psi: X \longrightarrow R$ on X is called *convex* iff the following inequality holds for an arbitrary geodesic $\gamma: [a,b] \longrightarrow X$ and arbitrary $\lambda \in [0,1]$:

(*)
$$\psi \circ \gamma((1-\lambda)a + \lambda b) \le (1-\lambda) \cdot \psi \circ \gamma(a) + \lambda \cdot \psi \circ \gamma(b).$$

A convex function on X is not in general continuous, because X admits the singular set Sing(X). Nevertheless, we can introduce the notion of the a-level set of ψ for each $a \in (\inf \psi, \infty)$ (see $\S 0$ of [6]). Every convex function on a complete Riemannian manifold M is always locally Lipschitz. Moreover, M is automatically noncompact if such a convex function is nonconstant. However, an Alexandrov surface X which admits a locally nonconstant convex function is not always noncompact (see Theorem A of [6]). The following results have been established by the author: Let $\psi: X \longrightarrow R$ be a convex function satisfying the condition

$$\operatorname{int}\Bigl(\bigcap_{a>\inf\psi}\overline{\{x\in X|\psi(x)\leq a\}}\Bigr)=\emptyset.$$

Then we conclude the following:

Y. Mashiko

- i. $\sup \psi = \infty$.
- ii. Each component of the a-level set for each $a \in (\inf \psi, \infty)$ is either a simple closed curve or a line.
- iii. For each $a \in (\inf \psi, \infty)$, the a-level set has at most two components. Moreover, if the a-level set for some $a \in (\inf \psi, \infty)$ has two components, then the same holds for all the b-level set with $b \in (\inf \psi, \infty)$, and in each case, the two components are both simple closed curves or both lines.
- iv. X is homeomorphic to one of three spaces, R^2 , $S^1 \times R$ or $(S^1 \times R)/Z_2$.

The purpose of the present paper is to determine the metric structure of X admitting a non-trivial affine function. Here, a function $\varphi:X\longrightarrow R$ is by definition affine iff the equality in (*) always holds for arbitrary unit speed geodesic $\gamma:[a,b]\longrightarrow X$ and arbitrary $\lambda\in[0,1]$. Letting $X_a^a:=\{x\in X|\varphi(x)=a\}$ define the a-level set of φ for convenience, we specialize the above result to the case of affine functions as follows:

Theorem 1. If an Alexandrov surface X admits a non-trivial affine function $\varphi: X \longrightarrow R$, then for every $a \in (-\infty, \infty)$ there is an isometric map

$$I: X_a^a \times (-\infty, \infty) \longrightarrow X$$

such that $I(y,t) \in X_t^t$ for every $(y,t) \in X_a^a \times (-\infty,\infty)$. Moreover, X is isometric to either flat R^2 or flat $S^1 \times R$.

Note that every level set of an affine function on X is totally convex, and hence such a set is either a simple closed geodesic or a straight line. In particular $Sing(X) = \emptyset$, and hence $C(\Sigma_x)$ is isometric to R^2 for all $x \in X$. Since $-\varphi$ is also affine, we conclude from (i) that the range of φ is $(-\infty, \infty)$.

The fundamental notion used here is the directional derivative $d\varphi(v)$ of an affine function $\varphi: X \longrightarrow R$ for $v \in \Sigma'_x$. Set

$$d\varphi(v) := (\varphi \circ \gamma_v)'_+(0), \ v \in \Sigma'_x, \ x \in X,$$

where $\gamma_v:[0,l(v)]\longrightarrow X$ is a geodesic such that $\gamma_v(0)=x$ and $\dot{\gamma}_v(0)=v$, and $(\cdot)'_+$ is the right-hand derivative. Note that we do not take the limit in the above definition since φ is affine. We will show in Lemma 1.1 that $d\varphi:\Sigma'_x\longrightarrow R$ can be extended continuously to an affine function $d\varphi:C(\Sigma_x)\longrightarrow R$ on the whole tangent cone $C(\Sigma_x)$. Note that we use the same expression $d\varphi(v)$ for $v\in C(\Sigma_x)$. It follows from the compactness of Σ_x that the function of the directional derivative $d\varphi|_{\Sigma_x}:\Sigma_x\longrightarrow R$ attains its maximum at some (unique) direction $v_{\varphi,x}\in\Sigma_x$ (see Lemma 1.2). This allows us

to introduce the generalized gradient $\nabla \varphi_x$ of φ at $x \in X$, that is, $\nabla \varphi_x/|\nabla \varphi_x| = v_{\varphi,x}$ realizes the maximum of $d\varphi|_{\Sigma_x}$. Here we mean by $|\cdot|$ the R^2 -norm under identifing $C(\Sigma_x)$ with R^2 . The following lemma on the generalized gradient plays a crucial role in our investigation:

Lemma 2. The following statements are true:

(1) We have for every $x \in X$ and for every $v \in C(\Sigma_x)$

$$d\varphi(v) = |\nabla \varphi_x| |v| \cos \angle (\nabla \varphi_x, v).$$

(2)Let a and b be arbitrary fixed numbers with a < b. Then for every $x \in X_a^a$ and a minimal geodesic $\sigma_x : [0, l(x)] \longrightarrow X$ from x to X_b^b , we have

$$\dot{\sigma}_x(0) = v_{\varphi,x} = \nabla \varphi_x / |\nabla \varphi_x|.$$

Hence there is a unique minimal geodesic from x to X_b^b for every $x \in X_a^a$.

(3) $|\nabla \varphi_x|$ is constant for all $x \in X$.

To show Theorem 1, the flatness of every geodesic triangle in X is required. Therefore we prove the similarities of geodesic triangles as follows. Let a and b be as in Lemma 2(2), and let $\gamma:[0,l]\longrightarrow X$ be a geodesic from a point on X_a^a to a point on X_b^b . For every $s\in(0,l]$, let $\sigma_s:[0,l(s)]\longrightarrow X$ be the (unique) minimal geodesic from $\gamma(s)$ to X_a^a . Then it follows from Lemma 2 (1) and (3) that the angle between σ_s and γ is constant for all $s\in(0,l]$. This is true for the angle between σ_s and X_a^a . Let $\Delta(t)$ for $t\in(0,l]$ be a geodesic triangle spanned by geodesics $\{\sigma_s|0< s\leq t\}$. Using this and the first variation formula, we conclude the following:

Proposition 3. With the above notation, $\triangle(t_1)$ and $\triangle(t_2)$ for all $t_1, t_2 \in (0, l]$ are similar triangles, i.e., all ratio of the lengths of corresponding edges are same.

In $\S 1$ we prove assertions (1)-(3) of Lemma 2, and in $\S 2$ we construct the isometric map I indicated in Theorem 1.

1. Proof of Lemma 2

From this point let X be an Alexandrov surface admitting an affine function $\varphi: X \longrightarrow R$. We denote by |x,y| the distance between x and y for $x,y \in X$. We use the following fact through this paper:

856 Y. Mashiko

FACT 1.0. The pointed Gromov-Hausdorff limit $\lim_{t\to 0} (1/tX, x)$ of the (1/t)-rescaling of the metric around x is the flat cone $(C(\Sigma_x), o^*)$ over Σ_x with vertex o^* for every $x \in X$.

Since X admits the affine function φ , Σ_x is the circle of length 2π for all $x \in X$. Thus $C(\Sigma_x)$ is identified with R^2 , and Σ_x is identified with the unit circle centered at origin of R^2 . Hence we can denote an arbitrary element of $C(\Sigma_x)$ by λu for some $\lambda \in [0, \infty)$ and some $u \in \Sigma_x$.

We first discuss the directions in Σ_x' for arbitrary fixed $x \in X$. Let u, v be fixed directions in Σ_x' with $0 < \angle(u, v) < \pi$. Then we choose the direction $w_\lambda \in \Sigma_x'$ for some $\lambda \in (0, 1)$ such that (by identifying $C(\Sigma_x)$ with R^2)

$$w_{\lambda} = \frac{(1-\lambda)u + \lambda v}{|(1-\lambda)u + \lambda v|},$$

where $|\cdot|$ denotes the standard norm in \mathbb{R}^2 . Using this notation, the following holds:

Lemma 1.1. We have

$$d\varphi(w_{\lambda}) = \left[(1 - \lambda) \cdot d\varphi(u) + \lambda \cdot d\varphi(v) \right] \cdot \frac{\sin \angle(u, w_{\lambda})}{\lambda \sin \angle(u, v)}.$$

Moreover, $d\varphi: \Sigma_x' \longrightarrow R$ has the continuous extension $d\varphi: \Sigma_x \longrightarrow R$, and $d\varphi: C(\Sigma_x) \longrightarrow R$ becomes an affine function again.

Proof. Since the directional derivatives are defined locally, we discuss only in (sufficiently small) disk neighborhood U_x of x. The bracket part in the above equation follows from the definition of affine functions, and the other part follows from Euclidean geometry on $C(\Sigma_x)$, the sine formula and from Fact 1.0.

With the equation established, the second assertion easily follows. The third assertion follows from the property that $d\varphi(\lambda v) = \lambda d\varphi(v)$ for all $\lambda \in (0,\infty)$ and $v \in \Sigma_x$.

For every $x\in X$, we denote by O_x the directions in Σ_x tangent to $X_{\varphi(x)}^{\varphi(x)}$. Clearly, O_x consists of exactly two elements, $O_{1,x}$ and $O_{2,x}$ such that $\angle(O_{1,x},O_{2,x})=\pi$ and $d\varphi(O_{1,x})=d\varphi(O_{2,x})=0$. Put

$$M_\varphi^x := \{v \in \Sigma_x | d\varphi(v) = \max_{w \in \Sigma_x} d\varphi(w)\} \ \text{ and } \ m_\varphi^x := \{v \in \Sigma_x | d\varphi(v) = \min_{w \in \Sigma_x} d\varphi(w)\}.$$

Then the configuration of O_x, M_{φ}^x and m_{φ}^x is determined as follows.

Lemma 1.2. For every $v \in M_{\varphi}^x$ and $u \in m_{\varphi}^x$, we have

$$\angle(O_x, v) = \angle(O_x, u) = \frac{\pi}{2}.$$

Hence each of the sets M_{φ}^{x} and m_{φ}^{x} consists of only one element.

Proof. Suppose that $\angle(O_x,v) \neq \pi/2$ for some $v \in M_{\varphi}^x$. Since $\angle(O_{1,x},O_{2,x}) = \pi$, we can choose a direction $w \in \Sigma_x$ such that $d\varphi(w) > 0$ and $\angle(O_x,w) = \pi/2$. Here we assume that $\angle(O_{1,x},v) > \pi/2$. Then, under identifying $C(\Sigma_x)$ with R^2 , we have $w = [(1-\lambda)O_{1,x}+\lambda v]/|(1-\lambda)O_{1,x}+\lambda v|$ for some $\lambda \in (0,1)$. Therefore, from the equation in Lemma 1.1, we have

$$\begin{split} d\varphi(w) &= \left[(1 - \lambda) d\varphi(O_{1,x}) + \lambda \cdot d\varphi(v) \right] \cdot \frac{\sin \angle(O_{1,x}, w)}{\lambda \sin \angle(O_{1,x}, v)} \\ &= \frac{1}{\sin \angle(O_{1,x}, v)} \cdot d\varphi(v) > d\varphi(v). \end{split}$$

This contradicts the choice of $v \in M^x_{\omega}$.

Since
$$-\varphi$$
 is also affine, $\angle(O_x, u) = \pi/2$ follows for every $u \in m_{\varphi}^x$.

Proof of Lemma 2 (1). We see from Lemma 1.1 that $d\varphi$ is an affine function on $C(\Sigma_x)$ isometric to R^2 . We can easily see a fact that every affine function on R^2 satisfies the equation in Lemma 2 (1).

Proof of Lemma 2 (2). Suppose that $\dot{\sigma}_x(0) \neq \nabla \varphi_x$ for some minimal geodesic $\sigma_x : [0, l(x)] \longrightarrow X$ from x to X_b^b . Then we construct a broken geodesic segment

$$\xi = \bigcup_{i} \gamma_i : [0, l(\xi)] \longrightarrow X$$

such that $(\varphi \circ \xi)'_+(s) > d\varphi(\dot{\sigma}_x(0))$ for every $s \in [0, l(\xi))$ and $\xi(0) = x$, $\xi(l(\xi)) \in X_b^b$. The construction of ξ is achieved by inductive steps as follows. First of all, we note that $d\varphi(\dot{\gamma}(s))$ is constant in s on each geodesic $\gamma:[0,l(\gamma)] \longrightarrow X$. By the continuity of $d\varphi: \Sigma_x \longrightarrow R$, we can find a direction $v_1 \in \Sigma_x'$ such that $d\varphi(v_1) > d\varphi(\dot{\sigma}_x(0))$. Let $\gamma_1:[0,l_1] \longrightarrow X$ be a maximal geodesic tangent to v_1 . If $\gamma_i(l_i)$ does not reach X_b^b for the i-th maximal geodesic $\gamma_i:[0,l_i] \longrightarrow X$ tangent to $v_i \in \Sigma_{\gamma_i(0)}$, then using the continuity of $d\varphi:\Sigma_x \longrightarrow R$ and Lemma 2(1), we can find a direction $v_{i+1} \in \Sigma_{\gamma_i(l_i)}$ such that $d\varphi(v_{i+1}) > d\varphi(\dot{\sigma}_x(0))$, and we denote the maximal geodesic tangent to v_{i+1} by $\gamma_{i+1}:[0,l_{i+1}] \longrightarrow X$. Then, put a broken geodesic segment $\xi:=\bigcup_i \gamma_i:[0,\sum_i l_i] \longrightarrow X$, and $x_1:=\xi(\sum_i l_i), l(\xi):=\sum_i l_i$.

It may happen that the endpoint x_1 of ξ does not reach to X_b^b . We then join x to x_1 by a minimal geodesic $\alpha:[0,|x,x_1|]\longrightarrow X$. By the minimizing property of α , we see that $d\varphi(\dot{\alpha}(|x,x_1|))\geq (\varphi\circ\xi)'_+(s)$ for all $s\in[0,l(\xi)]$. Since $d\varphi(\dot{\alpha}(|x,x_1|))>d\varphi(\dot{\alpha}_x(0))$, using the continuity of $d\varphi:\Sigma_x\longrightarrow R$, we can find a direction $w_1\in\Sigma'_x$ with $d\varphi(w_1)>d\varphi(\dot{\sigma}_x(0))$, and hence we proceed with inductive steps to construct ξ .

858 Y. Mashiko

From the above reason, we may assume that $x_1 \in X_b^b$. Clearly, we have

$$\int_0^{l(\xi)} (\varphi \circ \xi)'_+(s) ds > \int_0^{l(\xi)} d\varphi (\dot{\sigma}_x(0)) ds.$$

Moreover, we conclude that $l(x) > l(\xi)$ since $\varphi \circ \xi$ is almost everywhere differentiable. This contradicts the minimizing property of σ_x .

Proof. Proof of Lemma 2 (3) We prove that $|\nabla \varphi_{x_1}| = |\nabla \varphi_{x_2}|$ for every $x_1, x_2 \in X$. The first step of the proof is to show that $|\nabla \varphi_x|$ is constant for all $x \in X_a^a$ and for arbitrary fixed $a \in (-\infty, \infty)$. Choose $x_1, x_2 \in X_a^a$ and let $\tau : [0, |x_1, x_2|] \longrightarrow X$ be a minimal geodesic from x_1 to x_2 . Necessarily, $\tau \subset X_a^a$. Set $\sigma_s : [0, l(s)] \longrightarrow X$ for the minimal geodesic from $\tau(s)$ to X_b^b . Then it follows from (1) and (2) of Lemma 2 and the first variation formula that the function g = g(s) := l(s) is differentiable in $s \in (0, |x_1, x_2|)$, and $\frac{dg}{ds} = 0$ for all $s \in (0, |x_1, x_2|)$. This therefore implies that $|\nabla \varphi_{x_1}| = (b-a)/l(0) = (b-a)/l(|x_1, x_2|) = |\nabla \varphi_{x_2}|$.

The second step of the proof is to show that $|\nabla \varphi_{x_1}| = |\nabla \varphi_{x_2}|$ when $x_1 \in X_a^a$ and $x_2 \in X_b^b$ for distinct numbers $a,b \in (-\infty,\infty)$. Here we assume a < b. Set $\sigma_{x_1}: [0,l(x_1)] \longrightarrow X$ for the minimal geodesic from x_1 to X_b^b and $z := \sigma_{x_1}(l(x_1))$. Then it follows from (1) and (2) of Lemma 2 that $|\nabla \varphi_{x_1}| = |\nabla \varphi_z|$. From the first step of the proof, we see that $|\nabla \varphi_z| = |\nabla \varphi_{x_2}|$, and hence $|\nabla \varphi_{x_1}| = |\nabla \varphi_{x_2}|$.

2. Proof of Theorem 1

In this section, we construct a isometric map I in Theorem 1. Lemma 2 (2) guarantees that for an arbitrary fixed $a \in (-\infty,\infty)$ there exist the gradient flow $\phi_x: (-\infty,\infty) \longrightarrow X$ passing through $x \in X_a^a$ such that $\phi_x(t) \in X_t^t$ for every $t \in (-\infty,\infty)$. Then the required bijective map $I: X_a^a \times (-\infty,\infty) \longrightarrow X$ is obtained by $I(x,t) := \phi_x(t)$ for $(x,t) \in X_a^a \times (-\infty,\infty)$. We will verify that the map $I: X_a^a \times (-\infty,\infty) \longrightarrow X$ satisfies the following:

$$|I(x_1,t_1),I(x_2,t_2)|^2 = |x_1,x_2|^2 + |t_1-t_2|^2$$

for every $(x_1, t_1), (x_2, t_2) \in X_a^a \times (-\infty, \infty)$.

It follows from Lemma 2 and the first variation formula that this flow ϕ_x satisfies the following:

(2.1)
$$\phi_x$$
 is perpendicular to X_t^t for every $t \in (-\infty, \infty)$.

$$(2.2) |\phi_{x_1}(t), \phi_{x_2}(t)| is constant for all t \in (-\infty, \infty).$$

We first normalize φ so that $|\nabla \varphi_x| = 1$ for all $x \in X$. From (2.2), we may assume without loss of generality that the geodesic $\gamma: [0,l] \longrightarrow X$ in Proposition 3 is a minimal geodesic from $I(x_2,t_2) \in X_b^b$ to $I(x_1,t_1) \in X_a^a$. Put $\theta:= \angle(\gamma,X_b^b) \in [0,\pi/2]$. Then it suffices to prove the distance-preserving property of I in the case that $\theta \neq 0,\pi/2$. With the same notation as in Proposition 3, if we denote by $\overline{\triangle}$ the 1/t-rescaling limit triangle of $\Delta(t)$ for $t \to 0+$, fixing the vertex $\gamma(0)$ of $\Delta(t)$, it follows from Proposition 3 that $\overline{\triangle}$ and $\Delta(l)$ are similar triangles. Moreover, it follows from Fact 1.0 that $\overline{\triangle}$ is a flat right triangle with an inner angle θ . Together with this and the similarity of $\overline{\triangle}$ and $\Delta(l)$, we observe that

$$|I(x_1, t_1), I(x_2, t_2)|^2 = \frac{1}{\cos^2 \theta} |x_1, x_2|^2$$

$$= |x_1, x_2|^2 + \tan^2 \theta |x_1, x_2|^2.$$

Using again the similarity of $\overline{\triangle}$ and $\triangle(l)$, we have $\tan \theta = |t_1 - t_2|/|x_1, x_2|$. Hence the proof is complete.

References

- [1] Yu.D.Burago, M.Gromov and G.Perelman: A. D. Alexandrov's spaces with curvatures bounded below (english version), Russian Math. Surveys, 47:2 (1992), 1-58
- [2] J.Cheeger and D.Gromoll: On the structure of complete manifolds of nonnegative curvature, Ann. of Math. **96** (1972), 413-443
- [3] J.Cheeger and D.Gromoll: The splitting theorem for manifolds of nonnegative Ricci curvature, J. Diff. Geom. 61 (1971), 119-128
- [4] R.E.Greene and K.Shiohama: Convex functions on complete noncompact manifolds: Topological structure, Invent. Math. 63 (1981), 129-157
- [5] R.E.Greene and K.Shiohama: The isometry groups of manifolds admitting nonconstant convex functions,
 J. Math. Soc. Japan, 39 (no.1) (1987), 1-16
- [6] Y.Mashiko: Convex functions on Alexandrov surfaces, to appear in Trans. AMS
- [7] Y.Otsu and T.Shioya: The Riemannian structure of Alexandrov spaces, J. Diff. Geom. 39 (1994), 629-658
- [8] V.A.Sharafutdinov: The Pogorelov-Klingenberg theorem for manifolds homeomorphic to Rⁿ, Transl. from Sib. Mat. Zhur. 18 (4) (1977), 649-657
- [9] K.Shiohama: An Introduction to the Geometry of Alexandrov Spaces, Seoul National univ. Lecture notes series 8, 1992

Faculty of Science and Engineering Saga University
1 Honjyoumachi.
Saga 840-8502,Japan

e-mail: mashiko@ms.saga-u.ac.jp