
Title Task and Motion Planning for Mobile Manipulation

Author(s) 許, 敬仁

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/91761

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Task and Motion Planning for Mobile Manipulation

Jingren Xu
October 2022

Task and Motion Planning for Mobile Manipulation

A dissertation submitted to
THE GRADUATE SCHOOL OF ENGINEERING SCIENCE

OSAKA UNIVERSITY
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING

BY

Jingren Xu

October 2022

Task and Motion Planning for Mobile Manipulation
Jingren Xu

Osaka University 2022

Abstract

Human workers are still highly engaged in assembly factories. In order to assemble

a product, human workers have to pick up different assembly parts from a large

storage area and transport them to the assembly line for assembly. Mobile manip-

ulators are able to operate in a large workspace and have the potential to replace

human workers in assembly factories. Especially, the current mobile manipulators

are well-suited for part-supply tasks in a structured environment.

In this thesis, I consider the possible applications of mobile manipulators to the

automation in an assembly factory. I assume the application scenario is that the

mobile manipulators pick up the assembly parts from the storage area and trans-

port them to the assembly line, and then these assembly parts are assembled by

(mobile) manipulators. The involved robotic operations are (1) moving the mobile

manipulator to the positions where the assembly parts are reachable for picking,

(2) moving the manipulator to a picking configuration, and (3) grasping and assem-

bling the assembly parts of various shapes and sizes. I approach this problem from

a three-layer hierarchy, i.e., task-level planning, motion-level planning, and grasp-

level planning, to improve the efficiency of performing the part-supply, grasping,

and assembly tasks.

At the task level, I present a planner to plan a minimal sequence of robust positions

to pick up assembly parts from different trays. The positioning uncertainty of

the mobile base is considered to improve the robustness of the pick-and-place

3

tasks. Considering the practical implementation, I also discussed object placement

styles and the update of the planned base positions, which further increases the

robustness. At the motion level, I present an optimization-based motion planner for

dynamic grasping, i.e., picking up the object during the whole-body motion of the

manipulator and the mobile base. The simultaneous motion of the manipulator and

the base further reduces the operation time and improves the overall efficiency. At

the grasp layer, I consider the grasping and assembly of the assembly parts product.

The robotic grippers have to robustly grasp assembly parts of various shapes and

sizes. In addition, once the assembly parts are efficiently picked by the mobile

manipulators, these assembly products are assembled by robotic manipulators. For

high-mix low-volume assembly tasks, the assembly products frequently change. As

a result, the grippers for the grasping and assembly tasks are required to change

as well. I propose a method for efficient gripper selection and design to meet the

demand for High-Mix Low-Volume assembly production.

4

TABLE OF CONTENTS

Table of Contents . 4

1 Introduction 8

1.1 Task-level Planning . 10

1.2 Motion-level Planning . 13

1.3 Grasp-level Planning . 16

1.4 Contributions of This Thesis . 19

2 Related Work 20

2.1 Task Planning for Mobile Manipulation 20

2.1.1 Positioning the Mobile Manipulator for Manipulation Tasks 21

2.1.2 Mobile Manipulator Performing a Sequence of Tasks 23

2.2 Motion Planning for Mobile Manipulation 24

2.2.1 Modeling and Control of Mobile Manipulators 25

2.2.2 Sampling-based Motion Planning With Constraints 27

2.2.3 Optimization-based Motion Planning 28

2.2.4 Mobile Manipulation . 29

2.3 Gripper Design for Grasping and Assembly 34

2.3.1 Gripper Design and Robotic Assembly 34

2.3.2 Shape Approximation Based Grasping 36

3 Base Position Planning for Efficient Pickup of Assembly parts 38

3.1 Method Overview . 39

3.2 Inverse Kinematics . 41

5

3.2.1 Reachability Database . 42

3.2.2 IK Query . 44

3.3 Base Region Calculation . 47

3.4 Base Sequence Planning . 48

3.4.1 Task Defined as Reaching the Grasping Poses 49

3.4.2 Robust Intersections of Base Regions 52

3.4.3 Path Planning . 55

3.5 Dynamically Update the Base Positions 57

3.5.1 Objects Regularly Placed in the Trays 59

3.5.2 Objects Randomly Placed in the Trays 60

3.6 Numerical Results and Analysis . 61

3.6.1 Base Regions and Intersections 62

3.6.2 Calculation Time . 64

3.6.3 Analysis of Different Policies 66

3.7 Experiments . 69

3.7.1 Regularly Placed, Globally Static Base Sequence 71

3.7.2 Randomly Placed, Globally Static Base Sequence 73

3.7.3 Regularly Placed, Dynamically Update the Base Sequence . 77

3.7.4 Discussion of the Experiment Results 78

4 Whole-body Motion Planning for Dynamic Grasping 81

4.1 Method . 82

4.1.1 Problem Formulation . 82

4.2 Numerical Results . 86

4.3 Strategy for Robust Grasping . 89

6

4.4 Experiment . 91

4.4.1 Experiment Setup . 91

4.4.2 Physical Simulation . 91

4.4.3 Real-world Experiment . 93

4.5 Discussion . 94

5 Gripper Selection and Design for Picking and Assembly 99

5.1 Mesh Segmentation . 100

5.2 Gripper Selection and Dimensioning 103

5.2.1 Rules for Gripper Type Selection 105

5.2.2 Gripper Type . 106

5.2.3 Gripper Parameters . 107

5.3 Evaluation Under Assembly Constraints 108

5.3.1 Assembly Task Specification 108

5.3.2 Assembly Constraints . 109

5.3.3 Grasp Planning . 111

5.3.4 Minimize the Number of Grippers 114

5.3.5 Discussion and Limitation 118

5.4 Experiment . 119

6 Conclusions and Future Work 124

Acknowledgments 128

Bibliography 130

List of Publications 144

7

CHAPTER 1

INTRODUCTION

There is an increasing demand for robots that are able to flexibly perform tasks in

the human environment [1] (such as opening doors [2] and fetching a cup of coffee

[3]) and industrial production (e.g., inspection and sealant tasks in aerospace indus-

try [4], robotic painting [5], robotic machining [6], and part pickup and transport

operations in warehouses [7]). A mobile manipulator, combining a mobile base and

a manipulator, is able to perform a variety of tasks in separate locations. Espe-

cially, the current mobile manipulators are well-suited for part-supply tasks in a

structured environment (e.g., an assembly factory), where the robot picks up and

transports objects to the desired location. However, these tasks are still heavily

occupied by human workers. In this thesis, I expect to use mobile manipulators to

replace human workers to perform the part-supply tasks in an assembly factory,

where different categories of assembly parts are scattered in a large storage area

(Fig. 1.11). To perform the part-supply and assembly tasks, the mobile manip-

ulators have to move to a sequence of positions to pick up the target assembly

parts from multiple trays and then transport them to the assembly area for the

final assembly. The involved operations are (1) moving the mobile manipulator

to the positions where the assembly parts are reachable for picking, (2) moving

the manipulator to a picking configuration, and (3) grasping and assembling the

assembly parts.

To efficiently apply mobile manipulators to part-supply and assembly tasks, plan-

ners and methods are required to automatically determine the base positions,
1Image source: https://www.bott-canada.com/images/betriebseinrichtung/avero/av_

ref_framo_03_mit_person.jpg, https://myworkingspace.com/wp-content/uploads/2015/
03/Production-Line3.jpg

8

https://www.bott-canada.com/images/betriebseinrichtung/avero/av_ref_framo_03_mit_person.jpg
https://www.bott-canada.com/images/betriebseinrichtung/avero/av_ref_framo_03_mit_person.jpg
https://myworkingspace.com/wp-content/uploads/2015/03/Production-Line3.jpg
https://myworkingspace.com/wp-content/uploads/2015/03/Production-Line3.jpg

Figure 1.1: Assembly factories.

optimize the robot motion and design grippers for the grasping and assembly

tasks. This is especially important in case of High-Mix Low-Volume (HMLV)

manufacturing, which has increased significantly in the last couple of decades [8].

In HMLV manufacturing, the assembly line has to adapt to different assembly

products rapidly. This poses many challenges for using mobile manipulators in

an HMLV assembly factory. Firstly, assembly parts are placed in a large storage

area, the mobile manipulator has to pick up assembly parts from trays in different

locations. HMLV manufacturing frequently changes the assembly product, there-

fore the mobile manipulator has to visit different positions for different assembly

products. Moreover, the mobile manipulator has to grasp and assemble parts of

various shapes and sizes. In order to robustly grasp the assembly parts, the mobile

manipulator has to use grippers with appropriate configuration and dimensions.

Since the production cycle is short in HMLV manufacturing, it poses restrictions

on time spent on designing the grippers for picking and assembly. I tackle the as-

sembly factory automation problem from a three-layer hierarchy, as shown in Fig.

1.2. At the task level, I plan an efficient and robust sequence of base positions to

pick up all the required assembly parts. At the motion level, I further improve

the efficiency by optimizing the whole-body motion of the mobile manipulator to

dynamic-grasp the object. At the grasp level, I consider the efficient design of

9

Figure 1.2: Three-layer hierarchy approaches for automation in an assembly fac-
tory.

Assembly area

Storage area

Collect parts

~

Figure 1.3: A schematic overview of the task. In an assembly factory, a mobile
manipulator is used to pick up objects from multiple places and then transport
them to the assembly line for further assembly.

grippers for grasping the assembly parts of various shapes and sizes, this meets

the demand for high-mix low-volume production.

1.1 Task-level Planning

The task-level planning considers planning the minimal stops that enable the mo-

bile manipulator to perform a sequence of pick-and-place tasks. Fig. 1.3 shows the

10

schematic overview of the pick-and-place task to be performed by the mobile ma-

nipulator. The product P to be assembled is comprised of several types of parts:

Pa, Pb and Pc, and these parts are categorized by their types and stored in different

trays tray1, tray2 and tray4, respectively. To supply the parts for the assembly

tasks, the mobile manipulator may have to move to and stop at a sequence of po-

sitions to gradually pick up the required assembly parts from different trays. The

picked parts are temporarily placed on the mobile base and carried with the mobile

manipulator to the goal position. I assume that in each round of the pick-and-

place task, the mobile manipulator picks at least one piece of part for every target

type of assembly part. Our goal is to plan a minimal sequence of base positions,

in which the mobile manipulator is able to grasp the required assembly parts from

the trays without self-collision and collision with the environment. Notice that I

am performing task-level planning considering kinematic feasibility, (i.e., planning

the base positions) instead of low-level motion planning.

With the increased number of base positions (movements), the overall operation

time increases significantly for the following reasons: (1) The mobile manipulator

decelerates and accelerates before and after arriving at every base position of the

base sequence, which lowers the overall base velocity and increases the total oper-

ation time. (2) Every time the mobile manipulator experiences a ”stop and pick”,

there is a risk that the arrived position significantly deviates from the desired posi-

tion. Then the mobile manipulator has to perform time-consuming repositioning.

The risk increases with expanding base sequence, therefore, it is crucial to prune

out unnecessary base movements to improve the overall efficiency.

To minimize the base sequence size for a sequence of pick-and-place tasks, it is

preferable to move the mobile manipulator to the positions, where the mobile

11

manipulator can pick up the assembly parts from multiple trays. As shown in

Fig. 1.3, the mobile manipulator moves to the first position and can grasp the

assembly parts in both tray1 and tray2, thus reducing the base sequence size by

one. To obtain such positions, I first calculate the base region for every target

tray in the given assembly task by using inverse kinematics. The base region is

a set of base positions where there are collision-free inverse kinematics solutions

for grasping the target assembly parts from that tray. Moreover, the base posi-

tioning uncertainty is taken into account by restricting the size of the applicable

intersections, i.e., the intersections smaller than the base positioning uncertainty

are discarded. Otherwise, the mobile manipulator is likely to move out of the

intersections. Then, I solve the minimum number of intersections that visit all

the base regions, by formulating it as a 0-1 knapsack problem. The centers of the

planned intersections are robust base positions for performing the pick-and-place

tasks. Finally, I search for the optimal sequence of visiting the base positions,

which results in the shortest path connecting the start and goal positions via the

base positions. Following the planned base sequence, the mobile manipulator can

perform efficient and robust part-supply tasks in real-world applications.

After every round of pick-and-place tasks, the mobile manipulator returns to the

start position and gets ready for the next round. As a result, the assembly parts

in the trays are gradually picked away. The overall efficiency and robustness can

be further improved by updating the base sequence according to the current sta-

tus of parts. However, the situation is further complicated by part placement

styles in real-world applications, where the parts are either randomly or regularly

placed in the tray. I discussed and analyzed the feasible policies for different task

specifications and parts placements.

12

Existing research usually optimizes the manipulator configuration or base position

for each task, with respect to criteria such as manipulability and reachability [9, 10].

However, very few works consider a sequence of tasks. The most relevant ones I

could find are [11, 12, 13, 14]. In [11, 12, 13], they assumed there is a mobile

manipulator configuration corresponding to each task, and they optimized the

commutation configurations for adjacent tasks or the distance between consecutive

configurations, but they did not consider reducing the number of configurations

or base positions. [14] considered optimizing the number of platform movements

for reaching a set of poses in the workspace. Different from their work, our task is

defined as grasping the objects in separate trays, and reaching a set of grasps is only

one of the possible cases. Moreover, real-world issues like the object placement and

update of the base sequence are discussed in our task, but they are not addressed

in the existing works.

1.2 Motion-level Planning

The motion-level consider optimizing the non-stop mobile manipulator motion to

further reduce the operation time. In the task-level planning, I assume the lo-

comotion and manipulation are performed separately. In this case, the potential

capabilities of mobile manipulators are not fully utilized. Most of the existing works

also employ the decoupled use of the mobility and manipulation modes [15, 16],

where the mobile manipulator firstly stops the mobile base before performing the

manipulation tasks, and then moves to the next position or configuration. For

example, in our previous work [15], I used the mobile manipulator in a decoupled

manner to pick up objects from multiple trays. However, the decoupled motion

of the mobile base and the manipulator is not efficient, the operation time can

13

Initial Goal

The arm and base move
simultaneously

Grasping a target object from a moving base

 ଵ

Figure 1.4: Overview of the motion planning problem with tasks during the mo-
tion. The mobile manipulator has to move from an initial configuration to a goal
configuration, and it has to grasp some target objects during the simultaneous
motion of the manipulator and the mobile base.

be further reduced by simultaneously moving the base and the manipulator when

performing the tasks. There are a few attempts to pick up objects from a moving

base [17, 18], but they firstly plan the path for the base and then plan the mo-

tion of the manipulator, i.e., the planning of the base and manipulator motion is

separately performed. Moreover, [18] predefined zero gripper velocity with respect

to the object, i.e., grasping the object with a stationary gripper from a moving

base. Decoupled planning of base and manipulator motion and decoupled plan-

ning of geometric path and velocity profile may lead to the sub-optimality of the

resultant trajectory. Moreover, the resultant trajectory may be infeasible since the

constraints from another planning phase are not considered [19].

Therefore, I adopt the optimization-based method to plan the path and velocity

profile simultaneously to obtain the time-optimal simultaneous motion of the mo-

bile base and the manipulator. One of the difficulties in planning the optimal

trajectory with tasks during the motion is the representation of the robot configu-

14

ration at the moment of performing the task, since both the time and configuration

are unknown. If I employ the commonly used trajectory optimization formulations

(with fixed a time interval between waypoints), I have to set the timing for per-

forming the task as an optimization variable. To obtain the robot configuration

for performing the task, I have to first determine the interval (defined by two con-

secutive waypoints) within which the task is performed, and then interpolate these

two ends of the interval to get the robot configuration. However, the interpolated

configuration may jump among different intervals during the optimization, thus

introducing nonsmoothness and discontinuity, and as a result, the NLP solver may

not find a feasible solution. To address this issue, in the discretized representation

of the trajectory, I propose to specify the waypoints for performing the task and set

the time interval between the consecutive waypoints as optimization variables to

continuously scale the trajectory. Therefore, the smoothness of this task constraint

is guaranteed. The output of our planner is a locally time-optimal trajectory of

the mobile manipulator, consisting of both the path and velocity profile.

There are mainly two research gaps I am addressing: (1) Firstly, there are very

limited works on coupled motion planning with performing tasks (grasping) dur-

ing the motion; (2) Secondly, very few works consider planning the simultaneous

motion of the mobile base and the manipulator. The contribution of our work is

that I proposed an optimization-based method to plan the optimal trajectory for

a mobile manipulator to perform tasks during the motion.

Most of the existing research on (optimal) motion planning plans the motion be-

tween two points without performing tasks during the motion. If the entire motion

is split into two parts and planned using the existing optimal motion planners, i.e.,

plan the motion from an initial configuration to the intermediate task configuration

15

and the motion from the intermediate task configuration to the final configuration,

then the resultant trajectory is not optimal. Moreover, mobile manipulators are

usually redundant, there are infinite configurations satisfying the task constraint.

In our formulation, I let the motion planner explore the robot configuration for the

task instead of predefining one. These issues are addressed in our optimization-

based whole-body motion planning.

1.3 Grasp-level Planning

The task-level and motion-level planning mainly address the high-level and low-

level motion of the mobile manipulator. At the grasp level, the mobile manipulator

has to grasp and assemble a set of assembly parts using robotic grippers. The grip-

per plays a pivotal role for the robot interacting with the object, the performance

of the gripper grasping an assembly component is strongly influenced by how well

the chosen gripper and its characteristics coincide with the characteristics needed

for grasping a specific part [20]. Therefore, designing reliable grippers is one of the

key issues for applying robots in grasping and assembly tasks.

However, robotic grippers are manually designed in most cases, the manual design

process is time-consuming and requires a lot of experience and expertise, which

makes it extremely challenging to design grippers, especially for an assembly task.

In a general robotic assembly task, a set of specialized grippers are required to

firmly grasp all the assembly components with different shapes and properties, in

addition, the grippers have to satisfy the assembly constraints, such as avoiding

collision with other subassemblies. Moreover, there is a trend in High-Mix Low-

Volume production, which refers to producing a large variety of products in small

16

Segmentation

Primitive
fitting

cylinder cylinder box box

Gripper
types and
parameters

……

𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝟏 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝟐 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒏

Grippers are further examined
under assembly constraints

Assembly
components

……

Figure 1.5: Overview of the proposed approach of selecting and designing grippers
for an assembly task. In the first stage, suitable gripper types (2-finger or 3-finger
gripper) and parameters (opening width) can be determined by mesh segmentation
and primitive fitting. Then the segments and grippers of such configurations are
further evaluated under the assembly constraints, such as affordance and collision
avoidance. Finally, I optimize the number of grippers to cut down the total cost.

quantities, the fast-changing manufacturing routines propose great challenges for

applying robots in such agile manufacturing. Therefore, in terms of the grippers

used in the assembly tasks, a more efficient approach to designing grippers is highly

demanded in order to quickly adapt to the frequently changing assembly tasks.

To efficiently design grippers satisfying the assembly constraints, I propose a struc-

tured approach of selecting and designing the grippers based on the shape analysis

and assembly constraints, the overview of the method is illustrated in Fig. 1.5.

17

The insight is that industrial products are usually comprised of many regular shape

primitives, such as cylinder and cuboid, each of the shape primitives can be firmly

grasped by a suitable type of gripper. Therefore, I pre-define the rules for selecting

suitable gripper types, which reduces the space for searching for possible gripper

configurations and significantly accelerates the design process. Through mesh seg-

mentation techniques, I can uncover the underlying shape primitives and assign

predefined gripper types to them. The gripper parameters, such as the maximum

and minimum opening widths, can be further extracted from the dimensions of

the fitted primitives. These steps are automatically processed and provide re-

duced gripper configurations for further selection and evaluation. These gripper

configurations work well in terms of grasping, however, robotic assembly is a much

more complex task, where the grippers have to not only firmly grasp the assembly

components but also avoid collision with the subassemblies. Furthermore, some

segments are not suitable for grasping considering their affordance, and they are

excluded from the selection of graspable segments. After the evaluation under

assembly constraints, some of the remaining segments can be commonly grasped

by the same gripper, therefore, the number of grippers can be optimized to reduce

the total cost.

A few pieces of research were performed on the design of grippers for an assem-

bly task. However, these researches are limited to designing the local shape of

the fingertip [21] and general suggestions for designing the gripper systems [22].

There has been no attempt at the structured approach of selecting and designing

grippers according to the assembly constraints, as well as minimizing the number

of grippers, for an assembly task.

18

1.4 Contributions of This Thesis

In this thesis, I approach the assembly factory automation from a three-layer hi-

erarchy, the contributions of this thesis are three-fold: (1) task-level planning, (2)

motion-level planning, and (3) grasp-level planning. The core contributions are

summarized as follows:

• A task-level planner that plans a minimal sequence of robust positions to

pick up assembly parts from different trays. I consider both regularly and

randomly placed objects and propose a method to estimate the base region

for randomly placed objects. I discuss the possible policies for dynamically

updating the base sequence, which further increases the robustness.

• A resolution complete method to approximate collision-free IK solutions. It

returns a set of diverse IK solutions based on a precomputed reachability

database, which is especially helpful for checking collisions in complex envi-

ronments.

• An optimization-based motion planner for picking up the object during the

whole-body motion of the manipulator and the mobile base. A push-grasp

strategy is proposed to improve the robustness of dynamic grasping with

respect to object pose uncertainty.

• A structured method for the efficient selection and design of gripper for

grasping and assembly. The gripper types and parameters are automati-

cally determined by mesh segmentation and primitive fitting. The assembly

constraints are explicitly taken into account in the evaluation of the feasible

gripper configurations. The number of grippers required for the assembly

task is optimized to reduce the cost.

19

CHAPTER 2

RELATED WORK

In this chapter, according to the three-layer hierarchy toward assembly factory

automation, I review the related work from three topics, i.e., task planning for

mobile manipulation, motion planning for mobile manipulation, and gripper design

for grasping and assembly.

2.1 Task Planning for Mobile Manipulation

In order to enable the robot to perform useful tasks in the real environment,

the robot has to change the state of the world, by picking, moving, placing, and

pushing the objects in the world. Task planning is to plan a sequence of states and

transitions to change the initial state to a goal state [23]. In this thesis, the task

planning plans a sequence of positions for a sequence of picking tasks.

In the task-level planning for mobile manipulators, the motion constraints from

the picking tasks are considered, i.e., I plan the kinematically reachable base po-

sitions for picking parts from multiple trays. I do not plan the low-level motion

of the mobile manipulator between these positions, instead, I assume that there

exist low-level motion planners and controllers for moving the base between the

planned positions and moving the manipulator to the grasping pose. This relates

to the field of task and motion planning (TAMP), where task planning and motion

planning are coupled. In this work, the connection to motion planning during the

task planning is that I considered the kinematic feasibility/reachability, i.e., there

should be collision-free inverse kinematics solutions in a feasible base position.

Therefore, the task-level planning and motion planning are very weakly coupled in

20

this work. The related research is two-fold: (1) Positioning the mobile manipulator

for performing the tasks. (2) Mobile manipulators performing a sequence of tasks.

2.1.1 Positioning the Mobile Manipulator for Manipula-

tion Tasks

Mobile manipulators are usually redundant due to the added mobility from the

base. Positioning the mobile manipulator can be regarded as a line of research

in the redundancy resolution of mobile manipulators [24, 25, 26]. There has been

extensive research on exploring high-quality base positions for mobile manipula-

tors to perform a variety of tasks, such as reaching/grasping a set of targets and

maintaining velocity [27, 28, 29]. Manipulability [9, 10] is a widely used metric for

evaluating the flexibility of manipulator configurations in a base position.

Yamamoto et al. [24] proposed a planning and control method to position the

mobile manipulator at the preferred region to achieve high manipulability. Du

et al. [30] used the manipulability index to determine a suitable base placement.

Ren et al. [29] optimized the base positions for a mobile manipulator to reach

a set of positions with required orientations and keep a stable velocity in local

painting tasks. Berenson et al. [31] obtained the base placement and grasp for

a mobile manipulator to move an object from one configuration to another, by

optimizing a scoring function that combines the grasp quality, manipulability, and

distance to the obstacle. OpenRAVE [32] provides an inverse reachability module,

which clusters the reachability space for a base-placement sampling distribution

that can be used to find out where the robot should stand in order to perform a

manipulation task. Stulp et al. [33] proposed Action-Related Place to associate

21

a base location with a probability of successfully performing a manipulation task,

a capability map was used to determine if an object was theoretically reachable.

Burget et al. [27] employed the inverse reachability map to select statically stable,

collision-free stance configurations for a humanoid robot to reach a given grasping

target. Zacharias et al. [34] took advantage of the reachability map to position a

mobile manipulator to perform a linear trajectory in the workspace. Vahrenkamp

et al. [35, 36] conducted a series of research on reachability analysis and its appli-

cation, the base positions with a high probability of reaching a target pose can be

efficiently found from the inverse reachability distribution. The reachability indi-

cates the probability of finding an IK solution, while there is no guarantee of the

completeness of obtained base positions. Some other works that used reachability

and capability analysis are referred to [37, 38, 39].

In addition to the base placement for mobile manipulators, there is a line of research

on the optimal placement for fixed-base manipulators [40, 41, 42, 43]. Feddema

et al. [40] resolved the optimal position for a fixed-base manipulator to reach a

set of points in the workspace, where no obstacle is assumed. Hsu et al. [41]

considered the obstacles in the workspace, and a randomized path planner and

a fast path optimization routine were combined to iteratively search for the best

base location. Regardless of where the manipulator is mounted, a mobile base, or

a fixed base, the optimization of base position shares many common criteria, such

as manipulability and time-optimality of the trajectory.

However, these works only optimize the position or manipulator configuration for

each task, they do not explore the base positions where the mobile manipulator can

perform multiple tasks, to reduce the total number of base movements. Besides,

in our task, the mobile manipulator is required to close the gripper to grasp the

22

assembly parts, instead of following an end effector path or exerting force on the

environment, therefore, optimal criteria such as the manipulability of the grasping

configuration are not a critical issue, thus it is not considered in planning the base

positions.

2.1.2 Mobile Manipulator Performing a Sequence of Tasks

To the best of our knowledge, [12] is one of the few works that considered the

mobile manipulator configurations for a sequence of tasks. They planned the op-

timal commutation configurations for a sequence of tasks under constraints. The

commutation configuration should be feasible for both current and next tasks.

They discussed optimization criteria, such as optimum manipulability, the least

torque norm, and minimization of the maximum actuator torque. But they did

not address how to find the common base positions or configurations to reduce the

number of base movements for a sequence of tasks, which is the major concern of

this paper. Carriker et al. [13] considered optimizing the manipulator configura-

tions for a sequence of tasks defined by desired positions, orientations, forces, and

moments. The coordination of mobility and manipulation was formulated as a non-

linear optimization problem. A general cost function for point-to-point motion in

Cartesian space was defined and minimized by simulated annealing. However, they

implicitly assumed that there is a base position and a manipulator configuration

corresponding to each task, and they did not optimize the number of manipulator

configurations for the tasks. Vafadar et al. [14] studied the minimum platform

movements to reach a set of poses in the workspace, which is a special case of

our task definition. Moreover, I also discussed different placement styles of target

objects and the update of the base sequence according to the remaining objects or

23

the target objects to be picked, which are not covered in existing research.

From the above literature review, I find that (1) most of the existing works optimize

the position or configuration for a single task, but they do not consider a sequence

of tasks, and (2) most of the existing works do not optimize the number of base

positions for a sequence of tasks, and (3) none of the existing works considers

updating the base positions and different object placement styles. Although there

has been extensive research on mobile manipulation, the problem of planning a

minimum sequence of base positions for manipulation tasks in multiple locations

has not been addressed.

2.2 Motion Planning for Mobile Manipulation

Motion planning is to find a collision-free trajectory for a robot to move from an ini-

tial configuration to the goal configuration while satisfying all the constraints. The

two most widely used approaches are sampling-based planning and optimization-

based planning. Current motion planners are able to plan the (optimal) path

between two configurations in the C-space. However, they did not consider tasks

during the motion. On the other hand, for planning the motion for mobile ma-

nipulation, there have been very few attempts to plan the simultaneous motion

of the manipulator and the base. In this section, I review the literature from the

perspective of motion planning and mobile manipulation. Before reviewing the

motion planning literature, I review the fundamentals of the modeling and control

of mobile manipulators.

24

2.2.1 Modeling and Control of Mobile Manipulators

A mobile manipulator consists of two subsystems, a manipulator and a mobile

base. A comprehensive book covering the mathematics and modeling of mobile

robots is referred to [44]. Chapter 13 of [45] introduces the modeling and control of

several types of wheeled mobile robots, including omnidirectional wheeled robots,

differential-drive robots, and car-like robots. And the challenges of controlling a

mobile manipulator are three-fold: (1) the nonholonomic base is restricted on the

possible velocities; (2) The manipulator and base have different dynamic charac-

teristics [24], namely, the base usually has a slower dynamic response. (3) There

is a dynamic interaction between the two subsystems.

Yamamoto et al. [24] studied the coordinated locomotion and manipulation of the

mobile platform, where the mobile platform is controlled so that the manipulator is

always positioned at the preferred region, but the mobile platform and manipulator

are controlled separately. Later, the effect of dynamic interaction between the

mobile base and the manipulator is studied in [46]. In [13], the coordination of

mobility and manipulation is formulated as a nonlinear optimization problem. A

general cost function for point-to-point motion in Cartesian space was defined

and minimized using a simulated annealing method. Seraji [47, 48, 26] used the

configuration control approach to control the mobile base and the manipulator in

a unified manner, where the nonholonomic constraints and task constraints can be

incorporated into the augmented Jacobian J(q) = [Jb(q), Jm(q), Jc(q)]
T , and the

whole system kinematics and constraints can be written as:
Jb(q)

Jm(q)

Jc(q)

 q̇ =

0

Ẋt

Ż

 (2.1)

25

where Jm(q) represents the holonomic kinematic constraints of the entire mobile

manipulator to achieve target end effector velocity Ẋt, Jb(q) denotes the non-

holonomic constraints on the mobile base, and Jc(q) represents Jacobian matrix

associated with additional task constraints, it is derived by differentiating the task

kinematic function Z = g(q). Let Ẋd = [0, Ẋdt, Żd] be the desired end effector

velocity and task constraints, then

q̇ = J(q)−1Ẋd (2.2)

is the solution of Eq. (1). And the following control law can be used to control the

nonholonomic mobile manipulator in coordination and also correct the task-space

trajectory error,

q̇ = J(q)−1[Ẋd +K(Xd −X)] (2.3)

Since mobile manipulators are usually redundant, in addition to following an end-

effector trajectory, they are able to achieve multiple tasks or criteria, such as

manipulability. Bayle et al. [10] generalize the manipulability to mobile ma-

nipulator, built from a manipulator mounted on a wheeled base. The extended

manipulability can be used to optimally position the manipulator and base, and

plan the end-effector motion. De Luca et al. [49] extended the Projected Gradient

(PG) and the Reduced Gradient (RG) optimization-based methods to nonholo-

nomic wheeled mobile manipulators. White et al. [50] developed a dynamic-level

redundancy resolution method for nonholonomic wheeled mobile manipulators and

experimentally validated the dynamic end-effector interaction control.

To enable the mobile robot to autonomously perform challenging manipulation

tasks in the natural environment, there has been a line of research on visual servo

control of mobile manipulators. Wang et al. [51] developed a hybrid visual servo

controller for robust grasping, the controller is a form of image-based visual servo

26

(IBVS) controller and guarantees asymptotic stability of the closed-loop system.

To improve the robustness, they developed a discrete-event controller based on

Q-learning to keep the visual features in the view of the camera.

2.2.2 Sampling-based Motion Planning With Constraints

Most of the existing motion planners plan the motion between two points in the

configuration space [52, 53, 54]. Over the past two decades, sampling-based mo-

tion planners [52, 55, 56] have been extensively studied since they are effective

in exploring high-dimensional space and probabilistically complete. Among the

sampling-based planners, RRTs can easily incorporate a variety of constraints.

Therefore, RRTs have been applied to motion planning for nonholonomic manipu-

lators and mobile robots with nonholonomic constraints [57]. However, RRTs have

not been used to plan the full-body motion of a mobile manipulator.

To plan the motion of the nonholonomic mobile robots, one common approach

is to combine the sampling-based method [55] with a steering method function

[58], which serves as the local path planner to extend an existing node closer to

the sampled node [59]. The optimal steering curve between two configurations is

studied for some wheeled vehicles in the absence of obstacles, such as Dubins curves

[60] for a forward-only car and Reeds-shepp curves [61] for a car with a reverse

gear. These curves are the shortest geometric path for the corresponding robot

models, but for the time-optimal motion of the robot, the dynamics constraints

should be considered.

For motion planning for the mobile manipulator, in addition to the nonholonomic

constraints, other constraints may arise from the mobile manipulation tasks, such

27

as grasping an object. For grasping an object, the end effector has to reach

the grasping pose at the time of grasping. This pose constraint defines a lower-

dimensional manifold embedded in the configuration space. Special techniques are

needed to account for the constraints of sampling-based motion planning methods

[62], including relaxation, projection, tangent space, atlas, and reparameterization.

2.2.3 Optimization-based Motion Planning

Motion planning can be formulated as an optimization problem. Compared to the

sampling-based method, optimization-based motion planning can flexibly incor-

porate a variety of constraints and also optimize a certain objective. Commonly

employed objectives for robot motion are operation time, trajectory length, input

energy, jerk, smoothness and etc., and the constraints include collision avoidance,

joint limits, and dynamics. A good tutorial on trajectory optimization methods is

referred to [63].

Khatib [64] pioneered the potential field method for collision avoidance and motion

planning, but it is sensitive to local minimum. Later, an analytical navigation

function with a unique minimum is proposed [65, 66] to address the local minima

problem, a navigation function should (1) be smooth, (2) has a unique minimum

at goal configuration, and (3) be uniformly maximal on the boundary of the free

space and (4) be Morse [67].

Kalakrishnan et al. [68] proposed stochastic trajectory optimization for motion

planning (STOMP), it performs local optimization by adding Gaussian noise

around an initial trajectory, and the cost function based on a combination of

obstacles and smoothness is optimized in each iteration. STOMP uses gradient-

28

free optimization, in contrast, CHOMP [54] uses functional gradient techniques to

iteratively improve the quality of an initial trajectory, it optimizes a functional

that trades off between smoothness and obstacle avoidance, and the trajectory

optimization is invariant to parametrization. Schulman et al. [53] formulated mo-

tion planning as a sequential convex optimization procedure, where the collision

is penalized with a hinge loss, and no-collision constraint for convex objects is ef-

ficiently computed based on signed distance. Ichnowski et al. [69, 70] combined

the grasp selection and motion planning to explore the time-optimal trajectory for

bin-picking, the collision avoidance and grasp pose constraint are linearized in the

trust region, and the motion is computed by optimizing with sequential quadratic

programming (SQP) and iteratively updating trust regions, however, the grasping

action takes place at the beginning of the motion instead of during the motion.

However, sampling-based and optimization-based methods have rarely been ap-

plied to directly plan the whole-body motion of both the manipulator and the

mobile base, besides, they do not consider the tasks during the motion. The most

relevant work to ours is [18], they used a sampling-based method to plan the ma-

nipulator motion from a moving mobile base. But the motion of the mobile base is

planned prior to planning the manipulator motion, which leads to sub-optimality.

Besides, they consider zero gripper velocity for grasping, which restricts the overall

efficiency of the task.

2.2.4 Mobile Manipulation

Mobile Manipulation refers to performing robotic tasks with the help of both lo-

comotion and manipulation ability. In recent years, there have been more and

more learning-based methods used in mobile manipulation due to their ability to

29

adapt to changes in the problem settings. Two possible reasons are: (1) Mobile

manipulators are great agents for exploring the environment; (2) Learning-based

methods help address the positioning uncertainty. At the same time, MPC-based

methods are also popular because they can be used as whole-body controllers for

mobile manipulation. From these recent mobile manipulation research using ei-

ther learning-based approaches or classic approaches, I notice that there has been

a trend in the efficient use of mobile manipulators by simultaneously controlling

the mobile base and the arm. [71, 72, 73, 74].

Classic Approaches to Mobile Manipulation

Most of the existing works in the mobile manipulation community use the mobility

mode and manipulation mode separately [15]. Obviously, the decoupled motion

of the manipulator and mobile platform is not efficient. In the early works in

the 90s, there have been a few works on the coordinated control of the mobile

manipulator. For example, Yamamoto et al. [24] proposed a method for controlling

the mobile platform such that the manipulator is positioned at a configuration

of high manipulability. Seraji [26] proposed a unified approach to control the

manipulator and mobile base as a whole, using the augmented Jacobian matrix.

These works usually assumed a given end-effector trajectory and the absence of

obstacles.

Liao et al. [75] used the optimization-based method to plan the whole-body motion

of a holonomic mobile manipulator (from qi to qf or from qi to a target end-effector

pose Pf). Spahn et al. [74] also performed whole-body trajectory optimization for

mobile manipulation, however, the mobile manipulator performs the picking and

placing tasks at the beginning and the end of the trajectory, instead of during the

30

Figure 2.1: Overview of reinforcement learning for mobile manipulation.

motion. I notice that a recent work conducted aerial grasping during the motion

[76], however, they have to predefine the grasp timing and velocity, therefore,

basically, they plan two trajectories (1) from initial configuration to grasp and (2)

from grasping to the final configuration.

There is another line of works on dynamic grasping [77, 78, 79], i.e., grasping a

moving object. The common part is that there is relative motion between the

robot and the object. However, optimal motion is not the major concern of these

works, their pipeline usually involves motion prediction of the moving object, grasp

planning, visual tracking, trajectory generation, and trajectory execution.

As reviewed above, although there are a few works on whole-body trajectory op-

timization for mobile manipulators [75, 74], none of the existing motion planners

have addressed the problem of planning the optimal motion for a robot to perform

tasks during the motion, which is our major contribution.

Learning-based Approaches to Mobile Manipulation

Sun et al. [80] proposed a system for a mobile manipulator to autonomously learn

skills using a combination of navigation and manipulation. The overview of the

system is shown in Fig. 2.1. This system learns a navigation policy and a grasping

31

Figure 2.2: Overview of the deep reinforcement learning framework to control a
mobile manipulator performing mobile picking tasks.

policy for the mobile manipulator to perform room cleaning tasks, i.e., picking

up objects on the ground. The grasp policy predicts the probability of success

for a grasp action from the RGB images observed by the robot’s camera. The

grasp action is simply represented as moving the gripper to a predicted (x, y)

coordinates slightly above the ground for grasping, the orientation of the grasp is

not considered since they consider grasping some simple objects.

Wong et al. [72] presented a teleoperation framework that allows simultaneous nav-

igation and manipulation of mobile manipulators. They collected a large dataset

in a simulated kitchen environment and proposed a learned error detection system

to detect covariate shifts. They train imitation learning policies on the collected

data and achieve 45% task success rate.

Honerkamp et al. [73] proposed a learning-based method to generate a kinemati-

cally feasible trajectory for the base of a mobile robot when its end-effector moves

toward a certain goal pose. They formulate this problem as a goal-conditioned

reinforcement learning problem. The reward function is composed of two parts:

(1) The first part is an indicator function for kinematic feasibility evaluated by

32

Figure 2.3: The mobile manipulator performs mobile picking using the proposed
framework.

solving the inverse kinematics using an IK solver; (2) The second part penalize the

unnecessary actions. This system learns a policy for generating the next base ve-

locity command, using the current robot state, and the next end-effector goal pose.

However, one of the limitations is that they did not consider collision avoidance

with the environment.

Wang et al. [71] applied the deep reinforcement learning-based method to mobile

manipulation tasks. The overview of the framework is shown in Fig. 2.2. For this

deep reinforcement learning system, the state includes the position of the gripper

w.r.t the robot base frame, the position of object w.r.t the gripper frame, the

position of object w.r.t the robot base frame, the joint positions, and velocities

of the arm, as well as the gripper state. The pose of the object is estimated

from the camera mounted on the mobile platform. The action is defined as the

gripper relative control action, the robot base relative control action, and the

binary gripper control action. The reward function is composed of three terms,

the first term is the control action reward, the second term measures the distance

between the gripper and the object, and the third term is a sparse reward for a

successful grasp.

33

2.3 Gripper Design for Grasping and Assembly

There has been a lot of research on gripper design [81, 82], however, very few of

them design the grippers for an assembly task considering the assembly constraints.

Another line of research that is related to our work is part/model/primitive-based

grasp planning [83, 84, 85, 86, 87], in this sense, our work can be called shape

primitive-based gripper design, considering assembly constraints and optimization

of a number of grippers.

2.3.1 Gripper Design and Robotic Assembly

Generally, the grippers are specially designed according to the task to be per-

formed [82, 81], in this case, the design process takes many iterations to obtain

a satisfactory design. There have been very few attempts to design grippers for

an assembly task and improve the design efficiency, to the best of our knowledge,

the most relevant works to ours are [22, 88]. Pham et al. [22] surveyed the design

methods to achieve versatile and cost-effective gripping and proposed a strategy for

minimizing the number of grippers through part-family grouping, and later Pham

et al. [88] proposed a system to determine the configuration of grippers for an

assembly task. However, none of these works explicitly incorporate the assembly

constraints into the gripper design, besides, the mesh segmentation and primitive

fitting method used in our approach are able to handle models with more complex

shapes.

In addition to the gripper configuration, the contact between the gripper finger

and object plays an important role in grasp stability, therefore, the contact model

has been studied extensively [89, 90, 91, 92]. Early research mainly used the point

34

contact model [93], later on, the soft finger model was developed to model the

contact in a more realistic way [90, 89]. Some researchers studied the finger design

to change the contact characteristics and improve the performance of the gripper.

Honarpardaz et al. [94, 21] proposed a generic optimized finger design (GOFD)

to automate the finger design process, the fingertip shape was designed to mimic

the local surface contour of the workpiece, thus the contact area was increased.

Song et al. [95] noticed that most grasp contacts share a few local geometries,

they proposed a uniform cost algorithm to cluster a set of example grasp contacts

into several contact primitives and designed the fingertip shape to match the local

geometry of the contact primitive in order to increase the contact area.

Rodriguez et al. [96] explored the effector form design for 1 DoF planar actuation,

the mechanical function of a product is formulated as the product of the effector’s

shape and motion. Taylor et al. [97] investigated the role of shape and motion

in the contact interaction and proposed a framework to optimize the shape and

motion of a planar rigid body end-effector to achieve a manipulation task. Chavan-

Dafle et al. [98] proposed a two-phase gripper to passively reorient the objects

while picking them up. Birglen et al. [99] extensively reviewed the characteristics

of industrial grippers, the stroke, weight, force, and weight, as well as performance,

are investigated in detail. Hermann et al. [100] designed a gripper that can switch

between two modes, including a grasping mode and a fully actuated precision

mode.

For an assembly task, usually more than one gripper is required to grasp all the as-

sembly components. Kramberger et al. [101] proposed a flexible and cost-effective

grasping solution to quickly develop and test fingertips to handle multiple parts.

Harada et al. [102] incorporated the tool changer into the assembly planner and

35

proposed an assembly planner that is able to automatically select a suitable gripper

to assemble parts. Nakayama et al. [103] designed grasping tools for an assem-

bly task based on shape analysis of parts, however, the assembly constraints are

not considered in the evaluation of graspable segments and suitable gripper con-

figurations, and additionally I optimize the number of grippers for the assembly

task.

2.3.2 Shape Approximation Based Grasping

Grasp planning is difficult due to a large number of possible gripper configurations,

but grasping planning can be simplified if considering the shape of the object and

the grasping strategy are closely related. Miller et al. modeled the object as a

set of simple shape primitives [83], then the grasp location and preshape can be

determined. Goldfeder et al. [104] used a decomposition tree of the object to prune

the large space of possible grasps into a subspace that is likely to contain many good

grasps. Huebner et al. [85] approximated the object by box primitives and selected

grasps based on the approximated boxes. However, the error of approximation by

primitives may result in low-quality grasps, to counteract this problem, Przybylski

et al. [84] proposed the grid of spheres for grasp planning, which effectively reduces

the search space for grasps without sacrificing potential high-quality grasps.

These researches passively plan grasps given the object model, but I can also

actively design the gripper configurations according to the shape of the target

object in order to easily obtain high-quality grasps. This idea is somewhat related

to the taxonomy of grasps proposed in [105], where the grasps are classified based

on task-related and geometric considerations, each type of grasps is corresponding

to one category of tasks and object geometry. For grasping the assembly compo-

36

nents, I select suitable grasping postures according to the shape of the assembly

components, since I do not use a dexterous robot hand to realize these grasps,

instead I abstract a simple gripper configuration from the grasping postures of a

dexterous hand.

37

CHAPTER 3

BASE POSITION PLANNING FOR EFFICIENT PICKUP OF

ASSEMBLY PARTS

Mobile manipulators are able to operate in a large workspace, and have the po-

tential to replace human workers to perform a sequence of pick-and-place tasks at

separate locations. Many existing works optimize the base position or manipulator

configuration for a single manipulation task, however, very few of them consider a

sequence of tasks. In this chapter, I present a planner that plans a minimum se-

quence of base positions for a mobile manipulator to robustly collect objects stored

in multiple trays. I use inverse kinematics to determine the base region where a

mobile manipulator can grasp the target objects stored in a tray, and move the

mobile manipulator to the intersections of base regions to reduce the operation

time for moving the base. I ensure robustness by only considering the intersection

whose radius of the inscribed circle is larger than the base positioning error. Then

the minimization of the number of base positions is formulated as a 0-1 knapsack

problem. Besides, considering different object placements in the tray, I analyze

feasible policies for dynamically updating the base sequence based on either the

remaining objects or the target objects to be picked. In the experiment, I ex-

amine our planner in various scenarios, including different object placements: (1)

Regularly placed toy objects; (2) Randomly placed industrial parts; and different

implementation policies: (1) Apply globally static base positions; (2) Dynamically

update the base positions. The experiment results show that the time for mov-

ing the base decreases by 11.22 seconds (29.37%) to 17.26 seconds (36.77%) by

reducing one base movement, and demonstrate the feasibility and potential of the

proposed method.

38

3.1 Method Overview

Fig. 3.1a illustrates the overview of the tasks by a simple example. The product P

to be assembled consists of three types of assembly parts Pa, Pb and Pc (subscripts

a, b and c are used to differentiate different types of assembly parts). Each type

of assembly parts are placed in the same tray, thus they are classified and stored

in three different trays tray1, tray2 and tray4, respectively. Our goal is to plan the

base sequence for collecting the target assembly parts from the containing trays.

The following information is assumed to be known: (1) The types of parts to be

collected and their associated trays. (2) The geometrical models of the trays and

the potential obstacles in the environment. (3) The poses of the trays and obstacles.

Since the target application scenario is in the manufacturing environment, the

above information is readily available. The grasping poses for the objects can be

obtained using either model-based or model-free methods, depending on whether

the objects are regularly or randomly placed in the tray. In the first case, I need

the geometric models of the objects, and in the latter case, the grasping poses can

be estimated by the model-free method described in Section 3.7.2.

Algorithm 1 presents the overview of the planner. The algorithm mainly consists

of three steps: (1) Solve the base regions for every target tray which contains the

target assembly parts. (line 2 to line 4) (2) Determine the robust intersections of

the base regions. (line 5 to line 10) (3) Plan a minimal sequence of base positions

from the robust intersections to visit all the base regions (line 11).

Fig. 3.1a, b, and c illustrate three policies that can be implemented in practical

applications. They differ in the target objects used to plan the base positions. In

Fig. 3.1a, all the objects in a tray are used to plan a globally static base sequence.

Fig. 3.1b shows the update of base regions based on the remaining objects in the

39

Start Goal

(a)

ଵ ଶ ସ

ଵ ଶ ସ

ସ

ସ

ଵ

ଵ

ଶ

ଶ

(b)

ଶ ସ

ଶ ସ

ଶ ସ

ଶ ସ

ଵ

ଵ

ଵ

ଵ

(c)

Figure 3.1: Overview of the method (top view). Several types of parts are required
in the task, and one or more parts of each type will be collected. The sub-figures
show three types of policies respectively: (a) Global static base positions for col-
lecting all the objects in the tray. (b) The base positions update based on the
remaining objects in the tray. (c) The base positions update based on the objects
to be picked, which are surrounded by red lines, in a round of pick-and-place tasks.

40

Algorithm 1: Overview of the algorithm
Input: Grasping poses for objects in target trays
Output: A sequence of base positions

1 base_regions← {}
2 for tray ∈ target_trays do
3 base_region← SolveBaseRegion(tray)

// assume base region is robust
4 base_regions← base_regions ∪ base_region

5 robust_intersections← {}
6 intersections← PossibleIntersections(base_regions)
7 for intersection ∈ intersections do

// radius of the inscribed circle
8 r ← InscribedRadius(intersection)
9 if r ≥ positioning_uncertainty then

// save robust intersections
10 robust_intersections← robust_intersections ∪ intersection

11 base_sequence← PlanMinSequence(robust_intersections)
12 return base_sequence

tray. After every round of pick-and-place, the remaining objects decrease and the

area of the base region increases, which improves the overall robustness. Fig. 3.1c

shows another policy for updating the base regions according to the objects to be

picked. A good picking order may reduce the variance of the robustness in different

rounds of pick-and-place tasks.

3.2 Inverse Kinematics

The inverse kinematics problem is to determine a set of joint angles that bring

the end effector to the desired pose. In this study, I aim at obtaining a complete

set of base positions where there exists at least one collision-free IK solution that

reaches desired grasping poses. Since solving IK and collision check are performed

separately, this leads to a planner that loses the ability to be probabilistically

41

complete. In terms of collision check between the mobile manipulator and the en-

vironment, it helps to find a collision-free manipulator configuration by generating

a variety of candidate IK solutions that cover all kinds of manipulator configura-

tions, thus it is not likely to miss a feasible base position in which a collision-free

IK solution can be found. For non-redundant manipulators, it is feasible to find

out all the IK solutions and perform a collision check between the manipulator

and the environment. However, generally there are an infinite number of IK solu-

tions for redundant manipulators, a common IK solver returns only one or multiple

but not necessarily representative IK solutions, in that case, the IK solver might

only find IK solutions that consequently fail in collision check, even if there exist

collision free solutions. Therefore, for redundant manipulators, it is important to

find out representative IK solutions for further collision checks. Parametrized IK

approaches for 7-DOF redundant manipulators [106, 107] are able to find all the

feasible IK solutions, while this method is usually manipulator-specific. I propose

a manipulator-independent method of obtaining approximated representative IK

solutions, by querying the vicinity of a target pose in the reachability database,

and it is proved to be a resolution complete method of solving IK.

3.2.1 Reachability Database

The reachability database is constructed by sampling the joint space of the ma-

nipulator, reachable poses are obtained by calculating forward kinematics (FK).

However, this may introduce the preference for singular configurations, that large

variations in joint angles only result in small differences in the grasping poses.

To obtain a more uniform distribution of poses in the workspace, the manipula-

bility measure [9] can be applied to relieve the congestion of configurations near

42

the singular configurations. The downsampled resultant poses of the Fetch robot

[108] are illustrated in Fig. 3.2 (Left). The reachability can also be represented

by 3-dimensional voxels containing sampled grasping poses, as shown in Fig. 3.2

(Right), the Cartesian workspace is discretized into many 3 dimensional voxels ac-

cording to the positions. The color of the voxels indicates the number of grasping

poses that end up in the corresponding voxels.

Figure 3.2: Representation of downsampled version of our reachability database.
(Left) Reachable poses are represented by colored arrows, the color encodes the
manipulability of the corresponding manipulator configuration. (Right) In the
cross-sectional view of the voxelized 3d workspace of a Fetch robot, the color
indicates the number of grasping poses contained in the 3d voxel. For further pose
queries, the entire 92 million poses are distributed to 2 million 6d voxels, instead
of 3d voxels.

For further query of poses comprised of both translation and rotation parts, 6-

dimensional voxels are adopted instead, thus the workspace is discretized in both

position (x, y, z) and orientation (represented by roll α, pitch β and yaw γ), the

grid lengths are ∆x, ∆y, ∆z, ∆α, ∆β and ∆γ, respectively. All the resultant poses

calculated by forward kinematics, together with their joint angles, are stored in the

corresponding 6-dimensional voxels according to their positions and orientations.

For example, a grasping pose Gi = [xi, yi, zi, αi, βi, γi]
T , should be stored in the

43

voxel indexed by (xi/∆x, yi/∆y, zi/∆z, αi/∆α, βi/∆β, γi/∆γ), within the voxel

is a set of poses with similar position and orientation, thus the vicinity of a target

pose can be quickly found by querying the pose from such a data structure.

3.2.2 IK Query

Instead of resolving the inverse kinematics by an IK solver, I obtain the IK solutions

by querying the grasping pose in the database and accessing the corresponding joint

angles. However, the reachability database is only a discrete representation of the

continuously varying reachable poses. Probabilistically, I will fail to find an iden-

tical grasping pose in the database. Since solving IK and checking collision are

treated separately, the IK solutions should be as diverse as possible in order to be

resolution complete in finding collision-free IK solutions. Instead, I approximate

the IK solutions of the target grasping pose Gt by querying a range of poses in the

vicinity of Gt, for Gi ∈ (Gt−∆G,Gt+∆G), where ∆G = [∆x,∆y,∆z,∆α,∆β,∆γ]T ,

and the associated manipulator configurations of Gi are the approximated IK so-

lutions of Gt.

In the reachability database, every 6d voxel contains a small range of poses, firstly

I find the voxel containing the target pose, and all the poses within the voxel

are regarded as the vicinity of the target pose. For example, by querying pose

[0.6, 0, 0.8, 0, 0.5, 0.5]T from the database, the indexed voxel is found to have 151

poses, and Fig. 3.3 shows a part of the manipulator configurations among them,

these are the approximated IK solutions of the target pose1. As the database

resolution goes to infinity, the approximation error approaches zero and the queried
1If exact IK solutions are desired, it is recommended to use the approximated IK solution as

an initial seed in a numerical IK solver, then it can quickly converge to the exact solution after
a few iterations

44

Figure 3.3: A part of obtained 151 representative manipulator configurations by
querying the pose [0.6, 0, 0.8, 0, 0.5, 0.5]T from the reachability database, they are
the approximation of the exact IK solutions of the target pose and cover different
possible manipulator configurations.

manipulator configurations include complete IK solutions of the target pose, such

that, collision-free IK solutions can be found if there exist, regardless of the location

of the obstacles. The feasibility and completeness of approximating IK solutions

of Gt by the associated manipulator configurations of Gi ∈ (Gt−∆G,Gt +∆G), are

proved by the following two lemmas, they are based on the differentiable mapping

between configuration space and workspace, except for singular configurations.

The first lemma is to prove that, as the sampling resolution goes to infinity, I

can always find a manipulator configuration within the voxel, that approaches any

one of the IK solutions of the target pose. The second lemma proves that, as the

voxelization resolution goes to infinity, all the manipulator configurations within

the voxel approach the IK solutions of the target pose. Note that the completeness

of approximating all the IK solutions of Gt is already guaranteed by lemma 1, and

lemma 2, together with Lemma 1, is to guarantee the completeness of obtained

base positions in the next section.

Definition: Let Θ = [θ1, θ2, . . . , θn]
T be the manipulator configuration vector, ∆θ

45

and ∆G be the sampling and voxelization resolution, IK(Gt) be the IK solution

set of Gt, FK(Θ) be the resultant pose calculated by forward kinematics of Θ,

IKRDB(Gi) be the corresponding manipulator configuration of Gi in the reacha-

bility database, J+ be the pseudo-inverse of Jacobian matrix J , voxel(Gt) be the

voxel containing pose Gt.

Lemma 1: ∀Θt = [θ1, θ2, . . . , θn]
T ∈ IK(Gt), ∃Gi ∈ (Gt − ∆G,Gt + ∆G), Θi =

IKRDB(Gi), such that lim
∆θ→0

∥Θi −Θt∥ = 0.

Proof: Set {Θ | FK(Θ) = Gt} is equivalent to set {Θ | Θ = IK(Gt)}, if ∆θ → 0,

then {Θ | FK(Θ) = Gt} ⊂ {Θ | FK(Θ) = Gi ∈ (Gt − ∆G,Gt + ∆G),∆θ → 0},

thus ∀Θt ∈ IK(Gt), ∃Gi ∈ (Gt − ∆G,Gt + ∆G), Θi = IKRDB(Gi), such that

lim
∆θ→0

∥Θi −Θt∥ = 0.

Lemma 2: ∀Gi ∈ (Gt − ∆G,Gt + ∆G), Θi = IKRDB(Gi), ∃Θt ∈ IK(Gt), that

lim
∆G→0

∥Θi −Θt∥ = 0.

Proof: Ġ = J(Θ)Θ̇, Θ̇ = J+(Θ)Ġ + (I − J+J)k, where k is an arbitrary vector

denoting redundancy, integrate two sides of the formula by a small time step,

∆Θ = J+(Θ)∆G + (I − J+J)k∆t, then ∀∆G → 0, ∃k = 0 such that ∆Θ → 0.

Because |Gi − Gt| < ∆G, ∆G → 0 ⇒ |Gi − Gt| → 0, thus lim
|Gi−Gt|→0

∥Θi − Θt∥ = 0.

(replace J+ with J−1 for non-redundant manipulators)

The above lemmas apply to both redundant and non-redundant manipulators, the

only problem with this method is that the continuous mapping between joint space

and workspace breaks down at singular configurations.

46

3.3 Base Region Calculation

The base region for a tray is a set of base positions where the mobile manipulator

is able to reach all the targets in the tray, and avoid self-collision and the collision

with the environment. Firstly, I prepare stable grasping poses with respect to

the object for every object in the tray, using a grasp planner [109, 110, 111, 112].

Then sample base poses (xi, yi, ϕ) in front of the target tray, as illustrated in

Fig. 3.6, here I assume that the orientation ϕ of the mobile manipulator is con-

stant, because for many mobile manipulators, the joint connecting the manipula-

tor and mobile base rotates around a vertical axis, thus counteracts the rotation

of the mobile base and contributes almost nothing new. Then the set of stable

grasping poses {Gt1,Gt2, . . . ,Gtn}j with respect to the mobile base for object Oj

is obtained for every object in the tray. Finally, if there exists a grasping pose

Gti ∈ {Gt1,Gt2, . . . ,Gtn}j, such that I can find a collision-free manipulator configu-

ration IKRDB(Gk) for a pose Gk ∈ voxel(Gti), then Oj can be grasped from the

base position, a base position for the tray is feasible if all the objects in the tray

can be grasped. All the feasible positions formulate the base region for grasping

objects from the tray.

I compare the base regions obtained by different IK approaches. The obtained

base regions using IKFast plugin to find the IK solutions are shown in Fig. 3.4.

Fig. 3.5 is the base regions calculated by the IK query approach proposed in this

chapter, it is obvious the base region is larger. In the IK solver approach, IK

solutions are not found in some base positions, and some of the found IK solutions

fail in the collision check. For the IK query approach, the obtained base positions

are not always feasible, but the base region is complete when the resolution of the

reachability database goes to infinity.

47

Algorithm 2: Calculate the base region for a tray
Input: Target objects in the tray
Output: Base region of the tray

1 Function SolveBaseRegion(tray)
// plan grasps for every target object

2 grasps_all_objs← PlanGrasps(objs_in_tray)
3 sampled_positions← SampleBasePositions(tray)
4 base_region← {}
5 for position ∈ sampled_positions do

// All target objects should be graspable
6 all_objs_graspable← true
7 for grasps_obji ∈ grasps_all_objs do

// At least one grasp should has collision-free IK
8 for grasp ∈ grasps_obji do
9 IKs← SolveIK(grasp, position)

10 if ExistCollisionFreeIK(IKs) then
11 break

12 else if IsLastGrasp then
13 all_objs_graspable← false

14 else
15 continue

// if not all the objects are graspable, check the
next position

16 if Not all_objs_graspable then
17 break

18 if all_objs_graspable then
19 base_region← base_region ∪ position

20 return base_region

3.4 Base Sequence Planning

Although the ”target” objects vary in different policies (Section 3.5), they share

the same algorithm for planning the base sequence given the grasping poses for

the ”target” objects, as introduced in this section.

48

Figure 3.4: The base regions obtained by using the IKFast solver.

Figure 3.5: The base regions obtained by the proposed IK query method.

3.4.1 Task Defined as Reaching the Grasping Poses

For grasping the target objects in the target trays, a sequence of tasks is defined

as the grasping poses to be reached when the mobile manipulator visits the base

positions. The mobile manipulator should be able to grasp every target object

with at least one grasping pose. The grasp planning method varies for different

object placements, and the grasp planning method considered in this chapter is

shown in Algorithm 3. For objects regularly placed in the tray, a model-based

49

grasp planner [109, 113] can be used to prepare a set of grasps for the target object

Oj in the tray in the offline phase (lines 2 and 3). For objects randomly placed

in the tray, I treat the objects in the tray as a whole and use a model-free grasp

planning method [114] to estimate a set of grasps from depth images (line 5), the

details are described in Section 3.7.2.

Algorithm 3: Planning grasps
Input: Mesh models of the objects or rendered depth images
Output: Planned grasps

1 Function PlanGrasps()
2 if RegularlyP laced then
3 grasps←ModelBasedGraspPlanning(mesh)

4 else
5 grasps← EstimateFromDepthImages(imgs)

6 return grasps

Algorithm 2 explains the procedure of calculating the base region for a tray. The

base region for a tray is a set of base positions where the mobile manipulator is

able to reach all the targets in the tray, without self-collision and the collision

with the environment. Firstly, I prepare stable grasping poses with respect to the

object for every target object in the tray (line 2), using a grasp planner. Then

I uniformly sample base poses (xi, yi, ϕ) in front of the target tray (line 3), as

illustrated in Fig. 3.6. Here, I assume that the orientation ϕ of the mobile ma-

nipulator is constant and keep the mobile manipulator facing the tray, which is

the positive direction of the y-axis as illustrated in Fig. 3.6. This assumption is

based on the observation that in many mobile manipulators, the joint connecting

the manipulator and mobile base rotates around a vertical axis, thus having an

equivalent effect as rotating the mobile base. Then the set of stable grasping poses

{Gt1,Gt2, . . . ,Gtn}j with respect to the mobile base for object Oj are obtained for

every target object in the tray.

50

Algorithm 4: Solve inverse kinematics
Input: Planned grasps specified in local frame (tray or object) and the

position of mobile base
Output: Approximated inverse kinematics solutions

1 Function SolveIK(grasp, position)
// get grasping pose w.r.t the mobile base

2 EE_pose← Transform(grasp, position)
3 voxel ← QueryDB(EE_pose)
4 IKs ≈ configs_in_voxel(voxel)
5 return IKs

In order to determine the feasibility of a grasping pose, firstly I solve inverse

kinematics (IK) and then check if the IK solutions are collision-free. I use the

method presented in section 3.2 to solve inverse kinematics approximately. The

advantage of this method is that it returns a set of diverse IK solutions, which

are helpful for further collision checks, since solving IK and checking collisions are

performed separately. The IK solutions are obtained by querying the grasping pose

in a pre-computed database and then accessing the corresponding joint angles. The

workflow is briefly explained in Algorithm 4. Firstly I transform the end-effector

pose (EE_pose) in the frame of the mobile manipulator (line 2), then I locate the

corresponding voxel in the reachability database (line 3), finally, the manipulator

configurations stored in the voxel are the approximated IKs.

If there exists at least one grasping pose Gti ∈ {Gt1,Gt2, . . . ,Gtn}j, such that I

can find a collision-free IK solution, then object Oj can be grasped from the base

position. A base position for the tray is feasible if all the target objects in the tray

are graspable. The corresponding pseudocode is line 6 to line 19 in Algorithm 2.

All the feasible positions constitute the base region for grasping target objects from

the tray. Considering the base region for a tray may update due to the change of

target objects, it is preferable to calculate the base region for every object in the

51

(0,0) x

(-0.8, -1.0) (0.8, -1.0)

y

()

Collision
check

Figure 3.6: The sampled base positions for one of the trays, which is circled by
a black dashed line. The range of sampling is determined by referring to the
reachable workspace of the robot. Collision check is performed between the mobile
manipulator and the target tray, its neighboring trays, and other obstacles in the
environment.

tray and save such information for further access. Then the base region for a tray,

which is the intersection of the base regions of the target objects, can be quickly

solved.

3.4.2 Robust Intersections of Base Regions

To reduce the number of base movements, the mobile manipulator had better move

to the intersections where the mobile manipulator is able to pick up the objects

in multiple trays. For the IK solver approach, there are 5 intersections for the

obtained 4 base regions of 4 trays, all of them are the intersections of two base

regions, while for the IK query approach, there are the intersections of two base

regions and even the intersections of 3 base regions. The intersections and their

associated trays are labeled with numbers in Fig. 3.7 and Fig. 3.8.

Given a part-supply task to collect the objects in trays {tray1, tray2, . . . , trayn},

the corresponding base regions {PB1, PB2, . . . , PBn} and their intersections can be

52

Figure 3.7: The intersections of the base regions in Fig. 3.4, the centers of their
inscribed circles are the most robust base positions.

(a) PB1 ∩ PB2 (b) PB1 ∩ PB3 (c) PB2 ∩ PB3

(d) PB2 ∩ PB4 (e) PB3 ∩ PB4 (f) PB1 ∩ PB2 ∩ PB3

(g) PB2 ∩ PB3 ∩ PB4

Figure 3.8: All the intersections of the base regions in Fig. 3.5. (a)∼(e) are all
the intersections of two base regions, (f)∼(g) are all the intersections of three base
regions.

obtained following the proposed method. As described in line 6 of Algorithm 1,

firstly I obtain the possible intersections between all the base regions. Let ∩kiPBi,

(1 ≤ i ≤ n), denote all the k-th order intersections, which are the intersections of

k base regions (base regions themselves are regarded as first order intersections),

and λ be the largest k, then {∩1iPBi,∩2iPBi, . . . ,∩λi PBi} represents the set of all

the possible intersections. However, practically the mobile manipulator is not

53

able to accurately arrive at the planned positions. The positioning error is the

result of numerous influencing factors, including map accuracy, sensor accuracy,

environmental complexity, difficulties of controlling the nonholonomic base, and

the performance of the mechanical system. Therefore, the positioning error is

assumed to be random and homogeneous in different directions. Let the average

base positioning error be σ̄(m), the mobile manipulator is most likely to arrive

at a position σ̄(m) away from the planned position. In some base positions close

to the boundary, the mobile manipulator may fail to reach all the target objects

in the tray when positioning error is imposed. The robustness with respect to

the base positioning uncertainty increases with the distance to the boundary of

the base region of the intersection. As a result, the most robust base position is

specified by the center of the inscribed circle of the intersection. If the radius of the

inscribed circle of an intersection is smaller than the base positioning uncertainty,

then it is regarded as not robust and removed from the set of possible intersections.

This is corresponding to line 7 to line 10 in Algorithm 1. Notice that, the overall

operation time is hardly influenced by choosing different positions within the base

region or intersection, due to their limited area, thus the robustness is given much

higher priority in this stage without sacrificing much performance.

The uncertainty of the orientation is not considered here, because it depends on

the model of the mobile manipulator. For some of the mobile manipulators, the

uncertainty of the orientation does have an influence on the result. For example,

in the Fetch robot [108] used in our experiment, the joint connecting the torso and

the manipulator is constrained by the existence of the torso, and the uncertainty

of the orientation will affect the reachable space of the manipulator. However,

as stated in Section 3.4-B, in some mobile manipulators, the joint connecting the

manipulator and mobile base rotates around a vertical axis. The joint motion can

54

(a) radius
(b)

(c)
Start Goal

(d)

Figure 3.9: The procedure of path planning. Every circle in the subfigures repre-
sents a base region for a tray. (a) From left to right are five base regions PB1 ∼ PB5

for 5 trays. (b) InscribedRadius(PB1∩PB2∩PB3) < σ̄, thus discarded. (c) Three fea-
sible second-order intersections are filled with different colors, and five base regions
themselves are first-order intersections. (d) The planned intersections PB1 ∩ PB2,
PB3 ∩ PB4 and PB5 are connected by the shortest path.

completely offset the rotation of the base, so the uncertainty of the orientation

does not change the reachable space of the manipulator. For the case where the

orientation does have an influence on the result, I can simply rotate the base in

place to correct the orientation error, which can be obtained by detecting the

marker attached in the environment. Rotation in place is very easy to accomplish

for a differential-drive mobile robot.

3.4.3 Path Planning

The function PlanMinSequence(robust_intersections) in line 11 of Algorithm 1

takes N robust intersections as the input, and plans the minimal subset of the

input with size m that visit all the target trays. This is equivalent to the problem

of assigning (N −m) zeros and m ones to a base sequence vector [x1, x2, . . . , xN]
T

and minimizing the sum of its elements, which is formulated as:

55

minimize
∑N

i=1 xi

subject to xi = {0, 1}∑N
i=1 a1ixi ≥ 1∑N
i=1 a2ixi ≥ 1

. . .∑N
i=1 anixi ≥ 1

(3.1)

Here, asi, s = {1, 2, . . . , n}, is 1 if PBs is reached by the intersection, and xi = 1

if the robot moves to the corresponding intersection. This is the 0-1 knapsack

problem, which can be solved by the branch-and-bound method [115]. Finally, I

search for the shortest path that connects the start and goal positions, via the

centers of the obtained m intersections.

For the purpose of illustrating the intersections of two or more base regions, I use a

simple example where there are 5 base regions of 5 trays, as shown in Fig. 3.9. One

of them is a third-order intersection and four of them are second-order intersections.

Notice that, as shown in Fig. 3.9b, this third-order intersection is also a second-

order intersection, i.e., PB1 ∩ PB2 ∩ PB3 = PB1 ∩ PB3. However, the radius of the

inscribed circle of the third-order intersection is smaller than the base positioning

uncertainty, i.e., InscribedRadius(PB1 ∩ PB2 ∩ PB3) < σ̄, thus it is removed from

the total set of intersections. From the remaining 8 intersections (3 second-order

intersections and 5 first-order intersections), three of them are planned to reach all

the trays. Then I perform a brute-force search for the shortest path. If the sequence

size becomes too large for searching, the shortest path can be approximated by

the SA method [116].

56

3.5 Dynamically Update the Base Positions

The algorithms presented in Section 3.4, explained planning a sequence of base

positions for a given task, defined by the grasps for the target objects. In this

section, I dive deeper into the tasks in practical application scenarios. The most

straightforward task is grasping all the objects in the tray, then the planned base

positions are feasible for the mobile manipulator to grasp all the objects in the tray.

Even though the number of objects decreases as the pick-and-place tasks proceed,

the base positions remain valid no matter how many objects are left in the tray.

This assumption is not necessarily appropriate as the objects are picked away

gradually. It is possible to dynamically update the base positions according to the

remaining objects, such that the base region becomes larger with the decreasing

remaining objects, and the robustness with respect to base positioning uncertainty

is improved. Therefore, I investigate the feasibility and performance of dynamically

updating the base regions, which depends on whether the update can be performed

in the online phase. The feasibility of updating the base regions online is influenced

by the object placement in the trays. Therefore, I have to consider the object

placement styles in the tray, including the following two situations: (1) The objects

are regularly placed in the trays, where the poses of objects with respect to the tray

are known; (2) The objects are randomly placed in the trays, where the poses of

objects with respect to the tray are random and unknown. Both of these situations

are common in the manufacturing environment.

57

Online

Offline

Generate all base regions Pೕ
for every object,

𝑃
is the base region for object 𝑗 in tray 𝑖.

Retrieve the base regions
of the remaining objects

Explore possible
intersections

Find robust
positions

Retrieve the base regions
of the target objects

Search for the
shortest path

Figure 3.10: Workflow of two policies for updating the base positions for picking
regularly placed objects in the trays, two policies differ in the base regions to be
retrieved in the online phase.

58

3.5.1 Objects Regularly Placed in the Trays

One policy for updating the base positions is based on the remaining objects. The

update is performed after every round of pick-and-place tasks, using the current

remaining objects in the tray as the target. Intuitively, the size of the base region

increases as the task proceeds. The workflow is described in Fig. 3.10. Since the

objects are regularly placed in the tray with known poses, the base region PBij

for object Oj in trayi can be calculated in the offline phase for all the objects. In

the online phase, firstly I determine the remaining objects in the tray, by either

remembering which object has been picked or using a camera to extract the config-

uration of the remaining objects. Then the base regions for the remaining objects

can be retrieved from the offline database. The retrieved base regions are further

processed to explore the possible intersections, iteratively find robust positions, as

well as searching for the shortest path.

Another policy for updating the base positions is based on the target objects to

be picked. This is motivated by the scenario where the mobile manipulator is

requested to pick up a certain amount of objects in every round of pick-and-place

task. Therefore, the base region can be calculated from the target objects to be

picked, instead of all the objects or all the remaining objects. For example, if there

are ma objects remaining in a tray with a specific configuration, in a round of pick-

and-place task, mb objects, where (mb < ma), should be picked from the tray. I

can either exhaustively search for an optimal order of picking objects that achieves

an efficient and robust sequence of base positions, or heuristically specify the order

of picking objects from the tray. Fig. 3.11 illustrates a simple heuristic. Firstly,

I pair the objects in neighboring trays, such that the distance between objects in

every pair is nearly constant. Then these pairs of objects take precedence to be

59

1 21

43

2

3 4

Figure 3.11: Pair the objects in neighboring trays and keep the distance between
the objects in a pair nearly constant, a pair of objects are labeled with the same
number and connected by a black line. Picking objects following such pairing
reduces the overall variance of the robustness in different rounds.

picked when the mobile manipulator has to pick up objects from two neighboring

trays. By doing so, the robustness is more consistent in different rounds of pick-

and-place tasks. Because the distance between objects does not change much, so

does the size of the intersection of their base regions.

Through dynamically re-planning the base sequence for the remaining objects or

the target objects to be picked, the robustness with respect to base positioning

uncertainties can be improved. The overall efficiency is also likely to be improved,

since the base region becomes larger, which may result in more intersections or

higher-order intersections among the base regions.

3.5.2 Objects Randomly Placed in the Trays

If the objects are randomly placed in the tray, it becomes infeasible to obtain the

base region for grasping an individual object. However, I can treat the objects

in the tray as a whole and estimate the total grasps using the method described

in Section 3.7.2, and then the base region of the tray can be planned using the

estimated grasps. Similarly, the grasps for a tray where there are different amounts

60

…

…

…

…

…

…

…

…

…

…

…

…

…

…

m objects, k grasps per object
totally n trays

……

d

Figure 3.12: Setup of numerical analysis. There are totally n trays in a row, m
objects in each tray, and every object is provided with k grasps.

of remaining objects can be estimated. For instance, in the offline phase, I can

estimate the base regions for the trays where there are 100%, 75%, 50%, 25% of the

objects remaining. During the online execution, the amount of remaining objects

can be measured by a weighing device, then the base region with a similar amount

of remaining objects can be retrieved from the offline database.

If the base sequence updates according to the target objects to be picked, since

the base region for an individual object is not available in advance, I have to

select the target objects to be grasped and plan the base positions online, which

is time-consuming and impractical.

3.6 Numerical Results and Analysis

In this section, I perform numerical analysis on the base sequence planner. I use

the Fetch robot [108] with a 7-DOF manipulator mounted on a differential drive

mobile base.

Fig. 3.12 illustrates the setup of the trays and objects for the numerical analysis.

The numerical analysis is based on regularly placed objects, but the results also

apply to randomly placed objects. I assume there are totally n consecutive trays

aligned in a row, every tray contains m objects regularly placed at discrete grid

61

points, and every object is provided with k candidate grasps. In Fig. 3.12, the

plotted base regions are the results of parameters: m = 12 (3 × 4), k = 1, the tray

size is 30cm × 40cm. In all the planning, I use uniformly sampled base positions as

shown in Fig. 3.6, and the distance between the discretized base positions is 5cm.

Different base regions are colored differently. Since some of the qualitative results

of the base region have been presented in [15], here I focus on the quantitative

analysis of the planner.

3.6.1 Base Regions and Intersections

Here I assume the task is to grasp all of the objects in the tray. The change of base

region with respect to the number of objects in the tray (assume one grasp per

object) is shown in Fig. 3.13 and Table 3.1. The number of base positions decreases

drastically in the beginning but does not further decrease as the number of objects

increases. This is because the size of the base region is mostly determined by the

boundary of the grasp poses in the workspace. When the number of objects in the

tray is more than 4, the 4 corners of the tray are filled with objects such that the

positional boundary of all the possible objects in the tray is defined. Therefore, the

base region changes less significantly as the number of objects further increases.

Fig. 3.14 shows the relation between the radius of the inscribed circle of the in-

tersection of two base regions and the distance between two trays (there are 9

× 12 objects in the tray). From this figure I can determine the maximum dis-

tance between the trays such that their intersection is robust. This example shows

that when the distance between two trays is less than 0.8m, the intersection is

robust (the radius of the intersection is larger than 0.1m, and 0.1m is the position

uncertainty of the mobile manipulator which will be introduced later).

62

0 100 200 300 400 500 600
Number of objects in the tray

50

100

150

200

250

300

350

Nu
m

be
r o

f b
as

e
po

sit
io

ns

Figure 3.13: The number of planned base positions with respect to the number
of objects in the tray. The number of base positions decreases drastically in the
beginning but does not further decrease as the number of objects increases.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Distance between neighboring trays

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ra
di

us
 o

f t
he

 in
te

rs
ec

tio
n

(m
)

Figure 3.14: The change of radius of the intersection with respect to the distance
between the trays. This example shows that when the distance between two trays
is less than 0.8m, the intersection is robust. Because when the distance is less than
0.8m, the radius of the intersection is larger than 0.1m, and 0.1m is the position
uncertainty of the mobile manipulator which will be introduced later.

63

Number of objects Number of base positions Calculation time (s)
objects 1x1 306 0.22
objects 1x2 306 0.26
objects 2x2 196 0.28
objects 3x4 157 0.51
objects 6x8 146 1.64
objects 9x12 146 3.01
objects 12x16 146 5.10
objects 15x20 146 7.84
objects 18x24 146 11.14
objects 21x28 146 15.41

Table 3.1: Numerical result for a single tray.

3.6.2 Calculation Time

The calculation time for the base sequence planning is mainly spent on 4 parts:

(1) generating the base regions for the target trays, (2) exploring the intersections

between the base region, (3) determining the robust base positions, and (4) search-

ing for the shortest path. The calculation is implemented in C++ and runs on a

laptop with Intel 2.5GHz processors and 16GB of RAM. Typical calculation time

for the sub-tasks is listed in Table 3.2.

Table 3.1 shows the result of the calculation time for planning the base region for

a single tray. Fig. 3.15 indicates that the calculation time for planning the base

region of a tray grows linearly with respect to the number of objects in the tray.

Table 3.3 presents the total calculation time of the full planning with respect to

the number of trays. As shown in Fig. 3.16, the calculation grows nearly linearly

when the number of trays is smaller than 18, then it grows explosively due to the

exponential complexity of path searching and exploring the minimal number of

base positions.

64

Sub-tasks Calculation time (s)
Generate base regions for all objects 30.58

Explore intersections 0.029
Find robust positions 0.226

Search for the shortest path 0.0

Table 3.2: Typical calculation time for different sub-tasks. The result is conducted
on 10 neighboring trays, where there are 108 (9 × 12) objects in every tray, every
object is provided with one grasp. Except for the calculation of base regions, all
the other tasks can be calculated online.

Number of trays Sequence size Calculation time (s)
2 1 6.17
4 2 12.01
6 3 18.40
8 4 24.00
10 5 31.07
12 6 36.57
14 7 42.55
16 8 48.73
18 9 54.94
20 10 67.93
22 11 139.25

Table 3.3: Numerical result for multiple trays (full planning).

0 100 200 300 400 500 600
Number of objects in the tray

0

2

4

6

8

10

12

14

16

Ca
lcu

la
tio

n
tim

e
(s

)

Figure 3.15: Calculation time with respect to the number of objects in a tray. The
calculation time for planning the base region of a tray grows linearly with respect
to the number of objects in the tray.

65

2 4 6 8 10 12 14 16 18 20 22
Number of trays

0

20

40

60

80

100

120

140

To
ta

l c
al

cu
la

tio
n

tim
e

(s
)

Figure 3.16: Calculation time with respect to the number of trays. The calculation
grows nearly linearly when the number of trays is smaller than 18, then it grows
explosively due to the exponential complexity of path searching and exploring the
minimal number of base positions.

3.6.3 Analysis of Different Policies

I use some numerical examples to evaluate the performance of different policies.

As shown in Table 3.2, all the sub-tasks except the calculation of base regions are

feasible for online execution. Notice that the complexity of brute-force search for

the shortest path is O(n!), where n is the number of planned base positions. How-

ever, the calculation can be done within one second as long as the base sequence

size is less than 10 (excluding the start and goal positions).

For regularly placed objects, I consider the case where there are 9 consecutive

trays in a row, every tray contains 12 objects regularly placed at a 3 by 4 grid,

and every object is provided with one candidate grasp. The first policy plans the

base positions using the grasps of all the objects. For the other two policies which

update the base positions, I assume only one object is picked from a tray in every

round of pick-and-place task, and the base positions will be updated after every

round of task. The calculated base positions for all the three policies are reliable

66

Policies Base positions Average robustness Online Feasibility
Reg/ALL Reliable 0.1 mm OK Yes

Reg/updateR Reliable 0.155 mm OK Yes
Reg/updateT Reliable 0.186 mm OK Yes
Rand/ALL Reliable 0.1 mm OK Yes

Rand/updateR Unreliable 0.143 mm OK No
Rand/updateT Reliable 0.229 mm No No

Table 3.4: Comparison of different policies. In the column of policies, Reg and
Rand are the abbreviations of regular and random placement, respectively. up-
dateR and updateT represent updating the base regions based on remaining objects
and target objects to be picked, respectively. ALL represents all the objects that
fill up a tray, respectively.

since the grasps are identical to the grasps used in the offline calculation. They are

also feasible for online execution since base regions are readily available from the

offline database. The robustness of different policies are evaluated by the average

robustness of all the rounds of the tasks,

average_robustness =
m∑
i=1

robustnessi/m (3.2)

where robustnessi denotes the average robustness of base positions in i-th round

and m is the total number of rounds. The robustness of a base position is computed

as the radius of the inscribed circle of the corresponding intersection. As a result,

the policy that updates the base positions according to the target objects to be

picked has the highest average robustness score.

For randomly placed objects, it is possible to estimate all the grasps of all the

objects that fill up a tray, and perform the offline calculation of the globally static

base positions, which are valid for different rounds of pick-and-place tasks. Then

the mobile manipulator can pick any object from the tray in the online phase.

However, updating the base positions for randomly placed objects is difficult. In

67

the case of updating based on the remaining objects, the base region with a similar

amount of remaining objects is retrieved from the offline database, but the retrieved

base region is not reliable. Because the base regions calculated offline assume the

randomness of the poses of the placed objects, but the actual picking is usually

not performed randomly in terms of the poses of the remaining objects. Instead,

the robot picks according to some metrics, such as grasp quality metrics, which

may favor specific poses. Therefore, the poses of the remaining objects are not

guaranteed to be random. In another word, there are discrepancies between the

actual base regions and the offline-generated base regions. Furthermore, if the

remaining objects are assumed to be randomly distributed in the tray, then the base

regions for the tray with different amounts of remaining objects are theoretically

the same. From this perspective, updating the base region is not necessary for

randomly placed objects.

On the other hand, updating the base region for randomly placed objects according

to the target objects cannot be implemented online. Because the offline-generated

base regions are estimated by treating the objects as a whole, while the base region

for an individual object is not available, thus the base regions for the target objects

have to be calculated online. However, Table 3.2 shows that the calculation of the

base region is the most time-consuming sub-task, which involves many IK queries

and collision checks. The total calculation time grows linearly with respect to the

number of objects. Therefore, dynamically updating the base region for a large

number of target objects to be picked may not be practical for randomly placed

objects.

Table 3.4 summarizes all the 6 policies. From the above analysis, 4 of them are

feasible for practical application. For randomly placed objects, I conclude that a

68

globally static sequence of base positions should be used, without further update.

For regularly placed objects, both static and dynamically updated base sequences

are applicable. Updating the base positions improves the overall robustness, and

the update policy based on the target objects to be picked has the highest average

robustness score. However, one of the disadvantages is that, if the picking fails, the

robot may have to re-plan and move to another position to try the picking once

again. Furthermore, updating the base positions cannot be completed until the

mobile manipulator finishes one round of the task, this obstructs the efficient use of

multiple mobile manipulators. One has to wait until another mobile manipulator

finishes a round of pick-and-place tasks, and then update the base positions and

perform the pick-and-place using the updated base positions. But for the globally

static base sequence calculated from all the objects, multiple mobile manipulators

can cooperate in the tasks efficiently. For instance, when a mobile manipulator

finishes picking objects from tray1 and tray2 and is ready to move to the next base

position, another mobile manipulator can immediately join the task and move to

pick objects from tray1 and tray2. Therefore, despite the overall robustness being

outperformed by the policies that update the base positions, it still makes sense

to use the offline planning policies without further updates.

3.7 Experiments

I present three sets of experiments to demonstrate the 4 feasible policies, which

cover different object placement styles and whether the base positions update or

not. The Fetch robot [108], a single arm mobile manipulator equipped with a

parallel-jaw gripper, is used to pick objects from multiple trays. There is a Prime-

sense Carmine 1.09 short-range RGBD sensor mounted on the head of the Fetch

69

Figure 3.17: Experiment setup: (a) Indoor experimental environment. (b) A 2D
map built by the laser scanner. (c) Task overview. (d) The trays containing target
objects are marked with red dashed lines.

robot. ROS [117] navigation packages and Moveit! are used to plan and control

the motion of the robot. The size of the tray used to store objects is 0.4m × 0.3m ×

0.1m. The recorded videos of all the experiments are available in the supplementary

material and following link: https://www.youtube.com/watch?v=JNww18l13dI.

Section 3.7- A and B demonstrate picking regularly and randomly placed objects

without updating the base positions, respectively. Section 3.7-C demonstrates

picking regularly placed objects, where the base positions update based on the

remaining objects or the target objects, after every round of pick-and-place tasks.

70

https://www.youtube.com/watch?v=JNww18l13dI

3.7.1 Regularly Placed, Globally Static Base Sequence

The mobile manipulator navigates in an indoor environment as shown in Fig. 3.17.

It starts from a predefined position in the environment and moves to pick up 3 ob-

jects stored in 3 different trays (as circled by the red dashed lines), whose locations

in the environment are known. Then the mobile manipulator carries the collected

objects to the goal position. The base regions and intersections are calculated by

the proposed method. In order to obtain a robust base sequence, the base posi-

tioning uncertainty and repeatability are tested by looping the mobile manipulator

between two fixed positions. The actually arrived positions are observed to devi-

ate about 10cm in average from the planned positions. Since the base positioning

error is the result of map accuracy, sensor accuracy, environmental complexity,

difficulties of controlling the nonholonomic base and the performance of the me-

chanical system, with so many factors involved, it is assumed to be random and

homogeneous in all directions. Therefore, the base positioning uncertainty level σ̄

is set as 10cm. Then a sequence of base positions can be planned by the algorithm

described in Section 3.4.3. As a result, the mobile manipulator should successively

move to the center of PB1 ∩ PB2 and PB4 to collect all the required parts.

When the Fetch robot moves to the calculated position, its head-mounted camera

points to the center of the target tray to obtain the point cloud of the objects. I

remove the point cloud segments of the table and tray to get the objects’ point

cloud. For the simple box-shaped objects used in this experiment, the remaining

point cloud is fitted with cuboids, such that the object pose can be determined,

then the grasping poses are retrieved from the offline planned grasps. A more

straightforward way which is used in Section 3.7.3 is to attach a marker in front

of the tray, then the object poses, as well as the grasps, with respect to the robot

71

Figure 3.18: (Left) Move to PB1 to pick up a part from tray1. (Middle) Move to
PB2 to pick up a part from tray2. (Right) Move to PB4 to pick up a part from
tray4.

Figure 3.19: (Left and Middle) Move to PB1∩PB2 to pick up parts from tray1 and
tray2. (Right) Move to PB4 to pick up a part from tray4.

are easily obtained.

For comparison, I move the robot to the center of PB1, PB2 and PB4 to collect

the parts from three trays, respectively. As shown in Fig. 3.18, in each base

position, the mobile manipulator picks up one object from the associated tray.

Fig. 3.19 shows the robot motion following the planned base sequence, the mobile

manipulator moves to the center of PB1 ∩ PB2 to pick up parts from tray1 and

tray2, then it moves to the center of PB4 to pick up part from tray4. In this

experiment, the total operation time is reduced by 17 seconds due to reduced

72

one base movement, and the efficiency of the proposed method becomes more

significant when there are a large number of target trays.

3.7.2 Randomly Placed, Globally Static Base Sequence

In the manufacturing environment, the mechanical components are often randomly

placed in the tray. In this experiment, I use a mobile manipulator to pick up

multiple mechanical components randomly placed in different trays. The overall

experiment setup is shown in Fig. 3.20. Compared to the first experiment, a dif-

ferent grasp planning method is used for the mechanical components with complex

shapes and reflective surfaces. The head-mounted camera on the Fetch robot can

only capture a sparse and incomplete point cloud of the object, therefore I use

fixed PhoXi 3D scanners to scan the mechanical components to obtain depth im-

ages. Fast graspability evaluation [114] is used to plan grasps for randomly placed

objects from a single depth image. The gripper is represented by two mask images

as shown in Fig. 3.21a and b, Fig. 3.21a represents the contact region where the

gripper should contact the object and Fig. 3.21b represents the collision region

where the gripper should avoid collision with the environment. The mask image

of the contact region is used to convolve with the object’s mask image to find the

centroids of grasps, and the mask image of the collision region is applied to find

collision-free orientations around the centroid normal.

In order to obtain the base region where the mobile manipulator is able to grasp all

the randomly placed objects, I have to find a set of object poses that approximate

the possible poses and plan grasps for these poses. Therefore, I randomly place

objects in the tray and scan the objects in the tray. Repeat this process a couple

of times, then it is assumed that these recorded object poses nearly represent all

73

Figure 3.20: Experiment setup: The mechanical components to be grasped are
marked with red dashed lines, PhoXi scanners are configured above the target
components, and the markers in front of the tray are for obtaining the transform
from the tray to the mobile manipulator.

(a) (b) (c)

(d) (e)

Figure 3.21: Grasp planning method for randomly placed objects. (a) Contact
region of the gripper model. (b) Collision region of the gripper model. (c) Mask
image of the object. (d) Graspability map. (e) Planned grasps are represented
by red lines and plotted on the depth image. Different shades of green represent
different depths.

74

(a) (b) (c) (d)

Figure 3.22: Planned grasps at different object configurations. The union of these
grasps is assumed to approximately represent all the possible grasps for grasping
all the randomly placed objects, and they are used to estimate the base region.

Figure 3.23: Planned grasps for different objects.

the possible object poses. Fig. 3.22 shows 4 different object placements, from the

corresponding depth images grasp planning is performed to obtain grasps G1, G2,

G3 and G4 for each of the object placements, respectively. Actually, for grasping

one object, I only need to guarantee that at least one of the grasp candidates is

reachable, this is what I did for the case of regularly placed objects. However, for

the randomly placed objects, I simply used all the planned grasp candidates to

approximate the possible grasp distribution in the tray. The union of the grasps

for each object placement G = G1 ∪ G2 ∪ G3 ∪ G4 roughly represents the required

grasps for grasping all the objects randomly placed in a tray. Then I use G to

calculate the base region of the tray following the method in Section 3.4. The

grasp planning examples for other objects are shown in Fig. 3.23.

During the online execution, the mobile manipulator moves to the calculated posi-

tions in the global map, the planned base positions are the black dots in Fig. 3.24.

Once the mobile manipulator arrives at the calculated position, its head-mounted

camera detects the marker in front of the tray to get the accurate pose of the tray

75

𝑃 𝑃 𝑃

𝑡𝑟𝑎𝑦ଵ 𝑡𝑟𝑎𝑦ଶ 𝑡𝑟𝑎𝑦ଷ 𝑡𝑟𝑎𝑦ସ

Figure 3.24: Schematic diagram of randomly placed objects in the trays (view from
top), the dots of one color represent the base regions of the corresponding tray.
The robot moves to the center of the first intersection to pick up the objects in
tray1 and tray2, then it moves to the center of the third base region to pick up
objects in tray4.

Figure 3.25: Pick up randomly placed objects following the planned globally static
positions in Fig. 3.24.

relative to the robot. The online grasp planning functionality is implemented as

a ROS service, once it is requested, it returns a set of grasps in the frame of the

PhoXi scanner. Since the pose of the PhoXi scanner is also calibrated with respect

to the tray, the poses of planned grasps in the robot’s base frame can be derived.

Among all the returned grasps, the grasp with the highest graspability score will

be executed. Fig. 3.25 shows the grasping of randomly placed objects during the

experiment.

76

3.7.3 Regularly Placed, Dynamically Update the Base Se-

quence

For regularly placed objects in the tray, it is feasible to update the base positions

according to either the remaining objects or the target objects to be picked. Both

two cases are demonstrated by the experiment in this section. The experimental

configuration is similar to that of the first experiment, the difference is that the

base positions are updated after every round of pick-and-place tasks. I assume

one object is picked from every target tray in every round of the task, then there

are totally 4 rounds since every tray contains 4 objects. For randomly placed

objects, it is impractical to determine the picking order of objects in advance, but

for regularly placed objects, I can either determine which object to pick in the

online phase or specify the picking order in the offline phase. In this experiment,

I choose to specify the picking order before the pick-and-place tasks begin, such

that all the base positions in different rounds of tasks can also be calculated in

advance. In the online execution, the base positions are updated after every round

of the task.

Fig. 3.26 shows the experiment on updating the base positions based on the target

objects to be picked. The picking order is specified using a simple heuristic, as

shown in Fig. 3.11. Referring to the same object index as Fig. 3.11, the mobile

manipulator picks up object Oi in tray1 and tray2 and tray4 in the i-th round

of the task. From the snapshots of the experiment, though not very obvious, the

change of base positions in different rounds of tasks can be observed. Following the

dynamically updated base positions, the mobile manipulator can robustly collect

the target objects in different rounds of the task. I also conducted the experiment

on updating the base positions based on the remaining objects, which can be seen

77

Figure 3.26: The base positions update based on the target objects to be picked,
the update is performed after every round of pick-and-place tasks.

in the supplementary video.

3.7.4 Discussion of the Experiment Results

Through the experiments, I have demonstrated the proposed planner with differ-

ent policies for different application scenarios. To evaluate the efficiency of the

proposed method, I use the time for moving the base as the evaluation metric.

Because one of the major goals of this work is to reduce the operation time for

a sequence of picking tasks at multiple places. In this work, I consider reducing

the number of base positions to visit to reduce the operation time for moving the

78

Experiment Baseline Planned sequence Improvement
ExperA 46.94s 29.68s -17.26 (-36.77%)
ExperB 38.20s 26.98s -11.22 (-29.37%)

Table 3.5: Average time for moving the base in our experiments. ExperA and Ex-
perB refer to the experiment setup in Section 3.7.1 and Section 3.7.2, respectively.

base. Therefore, the time for moving the base is the most appropriate metric for

evaluating our planner.

I measure the time for moving the base following the planned base sequence and

compare it to the baseline. Since there is no research on planning a minimum

sequence of base positions for picking objects stored in separate trays, there are no

directly comparable state-of-the-art methods. The existing works usually assume

there is a base position or manipulator configuration corresponding to each task,

therefore, the baseline for comparison can be set as moving the mobile manipulator

to the center of every base region of the target tray. I use the experiment setup

in Section 3.7.1 and Section 3.7.2 since their base positions do not change. I run

the experiment 10 times and record the time for moving the base. The result is

summarized in Table 3.5, the average time for moving the base is reduced by 17.26

seconds and 11.22 seconds in these two experiment setups, respectively. There-

fore, the total operation time for the part-supply tasks is reduced and the overall

efficiency is improved using the proposed method.

Notice that the length of the path connecting the planned base positions is not an

appropriate metric for evaluation. Because the path length does not necessarily

decrease with the decrease of the number of base positions. Fig. 3.27 shows a

simple example where the path lengths are almost the same, but the number of

base positions is different. From another perspective, instead of reducing the path

length, our approach is to reduce the number of base positions to visit, which

79

Start Goal

(a)

Start Goal

(b)

Figure 3.27: (a) The baseline base sequence and path. (b) The planned base
sequence and path using our planner. In this example, the path length is almost
the same even with the reduced base positions. Therefore, the path length is not
an appropriate metric for evaluating the planner.

increases the average base velocity, thus reducing the operation time.

The current limitations are observed through the physical experiments. I acknowl-

edge that the success rate of the experiment is not high (about 50% for a single

picking task). But this is the collective result of several factors beyond our planner,

such as (1) the perception error of the collision environment, (2) motion planning

timeout during the online execution, (3) pose estimation error for the marker and

objects, and (4) positioning uncertainty. These extra factors lead to common fail-

ures in the experiments: (1) The manipulator collides with the trays or table;

(2) The robot fails to grasp the objects; (3) Motion planning for the manipula-

tor to move to the grasping pose times out. Therefore, the success rate may not

be an appropriate metric for the evaluation of the proposed planner. In addi-

tion, the motion of the manipulator is not optimized. In the future, I consider

using optimization-based method motion planning method to further reduce the

operation time for moving the manipulator.

80

CHAPTER 4

WHOLE-BODY MOTION PLANNING FOR DYNAMIC

GRASPING

In chapter 3, a minimal sequence of positions is planned for the mobile manipu-

lator to pick up assembly parts from multiple trays. However, I used the mobile

manipulator in a decoupled manner, where the mobile manipulator firstly stops

the mobile base before performing the manipulation tasks and then moves to the

next position or configuration. Obviously, the decoupled motion of the mobile base

and the manipulator is not efficient. The operation time can be further reduced by

simultaneously moving the base and the manipulator when performing the tasks.

In this chapter, I present an optimization-based motion planner to plan a locally

time-optimal whole-body motion of a nonholonomic mobile manipulator, to pick

up objects while simultaneously moving the manipulator and the base. The si-

multaneous motion further reduces the operation time of the picking tasks. What

distinguishes our planner from the common motion planners, which plan the mo-

tion between two configurations, is that our planner considers performing tasks,

such as grasping an object, during the motion. I formulate the time-optimal mo-

tion planning as an optimization problem. One of the major difficulties is finding

an appropriate representation of the constraints for the tasks during the motion,

since the time and configuration of the robot at the moment of performing the

task are unknown. To address this issue, I propose a novel formulation of the

optimization variables such that constraints arising from the tasks are smooth and

differentiable, which is essential for obtaining a feasible solution using a nonlinear

optimization solver. I present numerical results of the proposed planner to show

that our planner can obtain a feasible trajectory that satisfies all the constraints.

81

Figure 4.1: The kinematic model of the nonholonomic mobile manipulator. In the
numerical calculation, I use the kinematic model of the Fetch robot, which has a
7 DOF manipulator mounted on a diff-drive mobile base.

For real-world implementation, I discussed a robust grasp strategy (push-grasp)

for dynamic grasping with whole-body motion. I also demonstrated the planned

trajectory in both physical simulation and real-world experiments.

4.1 Method

The goal is to plan a locally time-optimal trajectory of a nonholonomic mobile

manipulator to reach a grasping pose G during the motion from an initial configu-

ration qi to a final configuration qf , w.r.t the kinematics and dynamics constraints.

4.1.1 Problem Formulation

This problem can be formulated as the following optimization problem:

82

min
x,∆T1,...,∆Tm+1

m∑
i=1

∆TiNi (4.1)

s.t. x ∈ X (4.2)

∆Tj > 0, j ∈ {1, 2, ...,m+ 1} (4.3)

F (qk) = 0 (4.4)

Nonholonomic(qi, q̇i) = 0 (4.5)

qi + (q̇i + q̇i+1)∆T/2 = qi+1 (4.6)

al∆T ≤ q̇i+1 − q̇i ≤ au∆T (4.7)

q1 = qinitial, q̇1 = q̇initial (4.8)

qN = qfinal, q̇N = q̇final (4.9)

qi ∈ Cfree (4.10)

The trajectory is discretized in the state space, i.e., both the joint configuration

and velocity are the optimization variables. Fig. 4.1 illustrates the mobile manip-

ulator considered in this chapter, and its configuration includes the position and

orientation of the diff-drive base and the joint position of the 7 DOF manipula-

tor, i.e., q = [x, y, ϕ, θ1, θ2, θ3, θ4, θ5, θ6, θ7]
T . I use x to denote the vector of the

discretized states, i.e., x = [q1,q2, . . . ,qN , q̇1, q̇2, . . . , q̇N]
T . Note that, I do not

use the control inputs of the mobile base (left and right wheel velocities) as opti-

mization variables, instead, I derive the control inputs (ur, ul) from the discretized

states (ẋ, ẏ, ϕ̇, ϕ) of the mobile base according to the following first-order dynamics

of the mobile manipulator (equation (11)), and then impose bound constraints on

the derived control inputs.

83

q̇arm

ẋ

ẏ

ϕ̇

=

q̇arm

1
2
(ur + ul)rwcos(ϕ)

1
2
(ur + ul)rwsin(ϕ)

(ur−ul)rw
Rbase

(4.11)

Assume the mobile manipulator has to grasp m objects during the motion, then

the trajectory is split into m + 1 segments by the tasks, as shown in Fig. 4.2.

I heuristically predefine the correspondence between m waypoints and these m

tasks. However, I do not restrict the time for performing the tasks and leave

it for the optimizer to explore. The time intervals ∆Ti (of i-th segment) be-

tween the consecutive waypoints are set as optimization variables, and totally

I have m + 1 time intervals for m + 1 trajectory segments. Therefore, the

optimization variables in our formulation includes the time intervals and the

discretized state: [∆T1, . . . ,∆Tm+1,q1,q2, . . . ,qN , q̇1, q̇2, . . . , q̇N]
T , where qi =

[xi, yi, ϕi, θ1i, θ2i, θ3i, θ4i, θ5i, θ6i, θ7i]
T is the configuration of the i-th waypoint.

Since I seek to obtain the time-optimal trajectory, the objective function (equa-

tion (1)) is simply the total operation time, which is the sum of the time intervals

among all the waypoints, i.e., J =
∑m

i=1 ∆TiNi. Equation (2) is the constraint

on the state. There are limits on the manipulator’s joint position and velocity.

But there are no bounds on the position and orientation of the mobile base. The

velocity of the base is limited by the wheel velocity. Therefore, I calculate the cor-

responding left and right wheel velocities according to [ẋ, ẏ, ϕ̇, ϕ], and then impose

the bounds on the converted form. Equation (3) ensures the time intervals are pos-

itive. Equation (4) denotes the task constraints F (qk) = 0 on the k-th waypoint,

specifically for a grasping task, I transform the robot configuration at k-th way-

point to a grasping pose Gi: FK(qk) = Gi. If there are m tasks during the motion,

84

 𝐪ଵ 𝐪ଶ 𝐪ଷ 𝐪ସ 𝐪ହ 𝐪 …… 𝐪ିଶ 𝐪ିଵ 𝐪

Δ𝑇ଵ Δ𝑇ଶ

Correspondence

Task 1 Task 2 …… Task m

Figure 4.2: Illustration of the correspondence of the states and tasks. Assume the
mobile manipulator has to grasp m objects during the motion, then the trajectory is
split into m+1 segments by the tasks. I heuristically predefine the correspondence
between m waypoints and these m tasks, however, I do not restrict the time for
performing the tasks and leave it for the optimizer to explore. The time intervals
∆Ti (of i-th segment) between the consecutive waypoints are set as optimization
variables, and totally I have m+1 time intervals as optimization variables for m+1
trajectory segments.

I should heuristically select m waypoints and impose the task constraints on these

waypoints. Equations (5) to (10) impose constraints on the waypoints. Equation

(5) describes the nonholonomic constraints at all the waypoints, specifically for the

diff-drive mobile base as shown in Fig. 4.1, the nonholonomic constraint for i-th

waypoint is written as ẋisin(ϕi) − ẏicos(ϕi) = 0. Equation (6) also enforces the

consecutive waypoints to follow the constraint implied by velocity, here I use the

average velocities of i-th and (i+1)-th waypoints. Equation (7) limits the maximum

and minimum accelerations1. In equation (7), ∆Tj of the time interval depends on

which segment of the trajectory it belongs to. For example, for the 4-th and 5-th

waypoint shown in Fig. 4.2, the ∆Tj is ∆T2. Equations (8) and (9) specify the

initial and final positions and velocities of the motion planning problem. Finally,

equation (10) enforces that the mobile manipulator does not collide with itself and

the obstacles. I calculate the distances between the robot links and the obstacles

and the distances between robot links, and then enforce the distances are positive.
1The official documentation of the Fetch robot only provides the torque limits of the manip-

ulator’s joints. To simply the problem, I manually specify the acceleration bounds.

85

4.2 Numerical Results

In this section, I present some numerical results of the proposed motion planner. I

consider planning the time-optimal motion for grasping one object during the mo-

tion. For the initialization of the variables, I focus on obtaining a good estimation

of the time intervals. Firstly I solve the problem with a small number of waypoints,

after several trials with different initial seeds and a different number of waypoints,

the rough range of optimal operation time is obtained. Once I have a reasonable

guess of the total operation time, the time intervals of different trajectory segments

are calculated accordingly. For the initialization of the state of the waypoints, I

linearly interpolate the positions between the initial and final configurations to get

the positions of the waypoints, and then use the time intervals to initialize the

velocities.

I implemented the optimization problem using the nonlinear optimization pack-

age NLopt [118], the optimizer that I use the SLSQP (Sequential Least SQuares

Programming) solver, a local derivative-based method. Fig. 4.3 shows the time-

optimal trajectory to grasp an object with G = [5.5,−2, 0.5, 1, 1, 0]T during the

motion from the initial configuration q1 = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T to the goal

configuration qN = [10, 0,−1, 1.13, 0.3, 1.9, 1.1, 2.1, 0.5, 2.5]T . In this example, I

heuristically set the waypoint in the middle of the trajectory to correspond to the

task. The trajectory is smooth and satisfies all the constraints. The violation of

nonholonomic constraints is plotted in Fig. 4.4, the violation is in the order of 10−5

and is negligible, and it can be further reduced by setting a lower tolerance for the

constraints.

By solving the optimization problem with a different number of waypoints, I verify

the independence of the solutions in the resolution of the discretization. The code

86

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−2

0

2

4

6

8

10

Jo
in

t p
os

iti
on

 [r
ad

 o
r m

]

x y
ϕ θ1

θ2

θ3

θ4
θ5 θ6

θ7

x
y
ϕ
θ1
θ2
θ3
θ4
θ5
θ6
θ7

Figure 4.3: The time-optimal trajectory of all the 10 joints. This solution is the
result of discretizing the trajectory into 35 waypoints. ∆T1 = 0.589s,∆T2 =
0.595s, and the total operation time is 20.13s.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Vi
ol

at
io

n
of

 n
on

ho
lo

no
m

ic
co

ns
tra

in
t

1e−5

Figure 4.4: The violation of nonholonomic constraints along the trajectory. This
figure shows that the nonholonomic constraint is well satisfied.

87

10 20 30 40 50 60
Number of waypoints

0

50

100

150

200

250

300

350

Ca
lcu

la
tio

n
tim

e
[s

]

Figure 4.5: Calculation time with respect to the number of discretized waypoints.

x [m]

0
2

4

6

8

10

y [
m]

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

z [
m

]

0.0
0.5
1.0
1.5

target1 grasp

target2 grasp

origin

Figure 4.6: Visualization of the end-effector and the base trajectory with two
different grasping tasks, G1 = [5.5, 2, 0.5, 1, 1, 0]T ,G2 = [5.5,−2, 0.5, 1, 1, 0]T .

is programmed in C++ and runs on a laptop with Intel 2.5GHz processors and

16GB of RAM. Fig. 4.6 visualizes two trajectories of the end effector and the

base with two different grasping tasks. The end effector passes through the target

grasping poses during the motion.

88

4.3 Strategy for Robust Grasping

Till now, I have introduced planning the time-optimal trajectory for the mobile

manipulator to reach a target grasping pose during the motion. However, grasping

an object during the motion is fragile. A more robust grasping strategy is required

for such dynamic grasping.

Thakar et al. [17] studied dynamic grasping with pose estimation uncertainty,

but they employed zero gripper velocity with respect to the object [18], because

lower speed was considered to be more robust for grasping with uncertainty in

pose estimation of the object. However, zero gripper velocity restricts the overall

efficiency of mobile manipulation. Since one of the major purposes is to reduce

the operation time, I do not assume zero gripper velocity relative to the target

object. In this section, I propose to use push-grasp for the dynamic grasping, which

improves the robustness with respect to the positioning uncertainty of the object

or the mobile manipulator, and at the same time, it is more efficient compared to

the zero-velocity grasp since the gripper can move with a nonzero velocity.

I assume the gripper closes with a limited velocity. As shown in Fig. 4.7(b), if not

taking the push-grasp strategy, in order to contact the object with both fingers of

the gripper at the planned timing for grasping, the gripper has to start to close in

advance. Since the gripper closing velocity is usually low, there is a very narrow

space between the fingers and the object when the object starts to enter the center

of the two fingers. In contrast, push-grasp is able to grasp the object more robustly

as shown in Fig. 4.7(a). The gripper does not close until the object is within the

coverage of two fingers of the gripper, which increase the free space between the

fingers and the target object. Once the object is within the coverage of the two

fingers, the object will slide on the table as the gripper moves and closes, and

89

Figure 4.7: (Left) Closing the fingers and moving the gripper at the same time.
This will lead to narrow space between the fingers and the object, and as a result,
the gripper is prone to collide with the object. (Right) Push-grasp. The fingers do
not close until the object contacts the palm of the gripper, or the object is within
the coverage of the fingers.

finally the object will be grasped as the two fingers contact the object.

Note that I assume that once the object contacts the palm of the gripper, it will

remain in contact with the gripper. However, if the gripper moves at a high

speed and hits the object, the object will detach the gripper after the impact. I

may impose an additional velocity limit on the gripper when reaching the target

grasping pose to avoid this issue.

90

actual position
𝑥

𝑥ௗ
desired position

desired trajectory of point 𝑃

error:
𝒙𝒅 − 𝒙𝑷

Figure 4.8: Illustration of the base trajectory tracking method. A PID controller
is used to correct the base trajectory error. Since the mobile base is subject to
differential constraints, the PID controller is used to track a holonomic point P
relative to the mobile base.

4.4 Experiment

4.4.1 Experiment Setup

I use a Fetch mobile manipulator with a 7DOF manipulator mounted on a diff-

drive mobile base, for both physical simulation and real-world experiments. The

equipped gripper is a parallel two-finger electric gripper with a constant closing

speed of 0.1m/s. The mobile manipulator accepts joint velocity input for the

manipulator and the twist for the mobile base. The task is to grasp an object from

a table using push-grasp, as shown in Fig. 4.11.

4.4.2 Physical Simulation

In the implementation of the planned trajectory, the manipulator trajectory track-

ing is relatively accurate, and the error mainly comes from the mobile base. I use

91

0 2 4 6 8 10

x [m]

0.0

0.5

1.0

1.5

2.0

2.5

y
[m

]

Tracking performance (Kp = 0.0, Ki = 0.0, Kd = 0.0)
Desired trajectory
True trajectory

(a)

0 2 4 6 8 10

x [m]

0.5

0.0

0.5

1.0

1.5

y
[m

]

Tracking performance (Kp = 2.0, Ki = 0.0, Kd = 0.0)
Desired trajectory
True trajectory

(b)

Figure 4.9: The base trajectory tracking performance. (a) Open-loop execution
without feedback control. (b) With a PID controller, the control parameters are
Kp = 2.0, Ki = 0.1, Kd = 0.3. Using a PID controller greatly reduces the base
trajectory tracking error.

a simple PID controller to track the base trajectory. The mobile base is subject to

nonholonomic constraints, which restrict the feasible velocity. To track the calcu-

lated trajectory, I use the method described in [45] and track a holonomic point P

relative to the mobile base (as illustrated in Fig. 4.8). The relation between the

position of P and the position of the mobile base is as follows:

xP = x+ ϵcosϕ (4.12)

yP = y + ϵsinϕ (4.13)

92

ẋP (t) = KPe(t) +Ki

∫ t

0

e(τ)dτ +Kd

de(t)

dt
(4.14)

where [x, y]T is the position of the mobile base, xP = [xp, yp]
T is the position of

the holonomic point P to be tracked by the PID controller, ϵ is the length of the

imaginary rod connecting the mobile base and P , and the tracking error e(t) is

defined as the difference between the desired position xd and actual position xP:

e(t) = xd − xP (4.15)

The desired position xd is calculated according to the planning base trajectory

using equations (12) and (13).

Fig. 4.9(a) shows the tracking performance of the base trajectory using the P

controller without feedback. The deviation between the actual base trajectory and

the desired trajectory accumulates as the robot moves. By using the tuned PID

controller, the base trajectory tracking performance is greatly improved, as shown

in Fig. 4.9(b). Fig. 4.10 shows the executed trajectory in the Gazebo simulation.

In Fig. 4.10-(5), -(6) and -(7), the gripper pushes the object while closing fingers,

and the object slides on the table under the push-grasp.

4.4.3 Real-world Experiment

I implemented the trajectory on a Fetch mobile manipulator. The task is to use

push-grasp to pick up a bottle from a table, as shown in Fig. 4.11. Since the

onboard perception during the mobile manipulation is a challenging problem itself,

93

Figure 4.10: The simulation snapshots of the trajectory for picking up an object
during the whole-body motion.

here I only demonstrate the open-loop execution of the trajectory. I have shortened

the total trajectory to reduce the accumulated position error from the mobile base.

For safe execution, I also scale down the overall velocity of the mobile manipulator

to 1/5 of the planned velocity. Fig. 4.12 shows three executed trajectories. Once

the gripper contacts the object, the object slides on the table under the push-grasp,

and the object is finally grasped as the gripper closes its fingers.

4.5 Discussion

If I use the common discretization scheme for the trajectory and do not predefine

the correspondence between the waypoints and tasks, discontinuity is introduced

94

Figure 4.11: The overview of the experiment. The task is to use push-grasp to
pick up a bottle from a table.

by the task constraints. Since I need to first locate the interval, within which

grasping happens, and then linearly interpolate the two ends of the interval to

get the robot configurations for the tasks. For example, as shown in Fig. 4.13a,

in i-th iteration of the optimization, the interpolated grasping state is within the

interval between the 3rd and 4th waypoints. However, in the next iteration of

the optimization, the state may jump to another interval. Fig. 4.13b shows the

grasping state jumps to the interval between the 5th and 6th waypoints, then the

grasping state has to linearly interpolate the 5th and 6th waypoints. The jumping

among different intervals results in different expressions for calculating the grasping

state, and introduces discontinuity in the grasp constraint. It may lead to slow

convergence or even divergence [119], as a result, I may fail to obtain a feasible

trajectory.

Our formulation of the optimization problem eliminates the discontinuity and non-

smoothness. However, for the task constraints, I need to predefine which waypoints

95

(a)

(b)

(c)

Figure 4.12: The executed motion of picking up a bottle from a table using push-
grasp during the whole-body motion.

96

(a) i-th iteration of the optimization.

(b) (i+1)-th iteration of the optimization.

Figure 4.13: The executed motion of picking up a bottle from a table using push-
grasp during the whole-body motion.

correspond to the tasks. The indexes of the waypoints are heuristically determined

by the relative position of the grasping tasks compared to the whole trajectory.

In practice, this heuristic is not critical to the result, as long as there are enough

waypoints in the trajectory segments split by the tasks.

The calculation time seems to scale poorly with respect to the number of waypoints,

as shown in Fig. 4.5. One of the reasons is that the SLSQP implemented in NLopt

uses dense-matrix methods, which ignore the sparsity of the problem. For large-

scale problems with thousands of parameters, maybe I should use other packages

such as Ipopt [120].

97

Since the current method is based on nonlinear optimization and the dimension

of the state space is large, it is not suitable for real-time trajectory generation.

It can be used to generate locally optimal trajectories offline, and the generated

trajectories can be used as reference trajectories for online tracking. Besides, there

are still some issues:

• In the physical experiment and simulation: The trajectory is disturbed by

the contact forces when the end-effector hits the object. Moreover, as the

object slides on the table under the push-grasp, the friction force acts as

a disturbance force. Especially when the friction between the object and

table is large, the trajectory is disturbed out of control. I can improve this

by reducing the friction, but this is an inherent problem of our formulation

since I consider kinematic planning, without considering the dynamics.

• Due to limited gripper closing speed, the timing for closing the gripper is del-

icate with respect to position uncertainty. The robustness can be increased

using industrial grippers, which can close instantaneously.

• For some grasping poses, the SLSQP solver is not able to converge to a

feasible solution or even fails to obtain a solution due to a segmentation

fault encountered during the optimization. Further investigation is required

to find out the fundamental reasons.

• As the object slides on the table under the push-grasp, I implicitly assume

that there are no other (or very few) obstacles near the target object. Oth-

erwise, the optimization solver may not find a collision-free trajectory for

push-grasp. In another word, our planner can not apply to dynamic grasp-

ing in a cluttered environment.

98

CHAPTER 5

GRIPPER SELECTION AND DESIGN FOR PICKING AND

ASSEMBLY

Chapter 3 and chapter 4 introduce the task and motion planning for efficiently

picking the assembly parts. The assembly parts vary in shape and dimension. To

firmly grasp the assembly parts and perform the assembly, the mobile manipula-

tor may have to change different grippers for different assembly parts. However,

manually designing the grippers is time-consuming. In this chapter, to improve

the efficiency of gripper selection and design, I present a structured approach to

selecting and designing a set of grippers for an assembly task. Compared to the

current experience-based gripper design method, our approach accelerates the de-

sign process by automatically generating a set of initial design options for gripper

types and parameters according to the CAD models of assembly components. I

use mesh segmentation techniques to segment the assembly components and fit the

segmented parts with shape primitives, according to the predefined correspondence

between shape primitive and gripper type, suitable gripper types and parameters

can be selected and extracted from the fitted shape primitives. Moreover, I incor-

porate the assembly constraints in the further evaluation of the initially obtained

gripper types and parameters. Considering the affordance of the segmented parts

and the collision avoidance between the gripper and the subassemblies, applica-

ble gripper types and parameters can be filtered from the initial options. Among

the applicable gripper configurations, I further optimize the number of grippers

for performing the assembly task, by exploring the gripper that is able to handle

multiple assembly components during the assembly. Finally, the feasibility of the

designed grippers is experimentally verified by assembling a part of an industrial

product.

99

Figure 5.1: Models of all the assembly components before processing, are displayed
in the order of the assembly sequence.

The rest of the chapter is organized as follows: Section 5.1 introduces the seg-

mentation of the assembly components. In Section 5.2, the initial set of gripper

configurations is extracted by primitive fitting. In Section 5.3, I evaluate these

gripper configurations under the assembly constraints and optimize the number

of grippers. The feasibility of the designed grippers is confirmed by an assembly

experiment in Section 5.4.

5.1 Mesh Segmentation

Mechanical products are usually comprised of many regular shapes, such as cylin-

ders and cuboids, which makes the proposed method feasible and promising in

industrial applications. I use mesh segmentation to find the underlying shape

primitives of an assembly component, then suitable gripper types are determined

according to the predefined rules. The mesh models of the assembly components

100

(Fig. 5.1) are segmented based on the Shape Diameter Function (SDF) [121],

which is a scalar function measuring the neighborhood diameter of an object at

each point on the surface. To obtain the SDF value at a point P on the surface,

I construct a cone centered around the inward-normal direction of P , as sketched

in black dashed lines in Fig. 5.2 (a), from P I shoot a set of rays (red lines) inside

the cone and stop at the intersections on another side of the mesh. The SDF value

is calculated as the weighted average length of the rays. In our implementation, I

shoot 30 rays per point and set the cone angle to 120◦, as a result, Fig. 5.2 (b) and

(c) show two examples of SDF distribution on the model. The mesh segmentation

process is composed of soft clustering and hard clustering. Soft clustering is a

Gaussian mixture model that fits a set of Gaussian distributions to the distribu-

tion of the SDF values, this step outputs the probability matrix for each face to

belong to each cluster, note that a cluster may contain multiple segments. Hard

clustering yields the final segmentation of the mesh by minimizing an energy func-

tion by combining the probability matrix and geometric surface features [121, 122].

Readers are referred to [123] for other mesh segmentation methods.

Before mesh segmentation, smoothing is applied to the mesh to eliminate the

sharp edges of the screw thread, otherwise, it may result in undesirable segments

[124]. Fig. 5.3 shows the mesh after smoothing is applied. Then all the assembly

components are segmented based on SDF values. The segmentation results are

visualized in Fig. 5.4, different segments are colored differently, and each of the

segments is regarded as a candidate for grasping1.
1Simultaneously grasping multiple segments is not considered in this chapter.

101

(a)

(b)
(c)

Figure 5.2: (a) The Shape Diameter Function (SDF) is the weighted average length
of the rays (red lines). (b) & (c) SDF distribution of the carrier and the rotor.

Figure 5.3: Two examples of models before and after smoothing.

102

(a) (b) (c)
(d) (e)

(f)

(g) (h) (i)
(j)

(k) (l)
(m)

Figure 5.4: After mesh segmentation, an assembly component is decomposed into
several segments, different segments are rendered with different colors. The original
component with a complex shape is decomposed into segments with simpler shapes,
which are suitable for further primitive fitting.

5.2 Gripper Selection and Dimensioning

Through mesh segmentation, an assembly component with a complex shape is

decomposed into segments with simpler shapes. Obviously, some shape primitives

can be easily grasped by some common types of grippers, e.g., cylinders can be

easily grasped by the 3-finger centric gripper. Therefore, I attempt to fit the

segments with shape primitives and then determine the suitable gripper types

according to the predefined rules. In this section, I obtain the initial decision on

gripper types and parameters based on previous segmentation results.

103

Figure 5.5: (a) & (c) Grasping a cylinder with a 2-finger gripper is not stable
against large external torques in the cylinder’s radial direction, the object may slip
around the contact normal. (b) Grasping a cylinder by a 3-finger gripper is stable
against large external torques in the cylinder’s radial direction. (d) & (e) Grasping
a box shape with a 2-finger gripper is appropriate.

Figure 5.6: The opening width and finger length of the 2-finger and 3-finger grip-
pers.

104

5.2.1 Rules for Gripper Type Selection

In this chapter, I consider using two common types of grippers2: 2-finger parallel

jaw grippers and 3-finger centric grippers as shown in Fig. 5.5 (a) and (b). 2-

finger grippers are suitable for grasping parts with (nearly) parallel surfaces, Fig.

5.5 (d) and (e) show a 2-finger gripper grasping a box with parallel surfaces, the

gripper fingers coincide well with the object surfaces, and they have a large contact

area, thus the grasp is stable. However, it may not be suitable to grasp a cylin-

der using a 2-finger gripper, as shown in Fig. 5.5 (a), small external torques in a

cylinder’s radial direction can be balanced by assuming soft-finger contact3, but

in some assembly operations, the gripper may have to exert large forces/torques

on the assembly components, which may lead to slip around the contact normal.

Therefore, I favor 3-finger centric grippers over 2-finger grippers for grasping cylin-

drical objects, which are guaranteed to be stable against the torque in the radial

direction, as shown in Fig. 5.5 (b). Another merit of grasping cylindrical objects

using 3-finger grippers is that the grasp stability is independent of the radius of

the cylinder, however, the stability of grasping a cylindrical object using a 2-finger

gripper depends on the relative curvature of the finger and object surface, that

is, grasping a cylinder with larger radius is more stable since the contact area is

larger4.
2More gripper types and shape primitives can be used to cope with more complex shapes.
3The object and the main body of the finger are assumed to be rigid, but the soft pad can be

attached to the fingertip.
4Assume soft finger contact and constant external forces.

105

5.2.2 Gripper Type

Each segment of an assembly component shown in Fig. 5.4 is a candidate for

grasping, in order to determine a suitable gripper type for grasping the segment, I

fit every segment with a cylinder and a bounding box. If the volume of a cylinder

is closer to the volume of the segment, then a 3-finger centric gripper is selected

for this segment, otherwise, the 2-finger jaw gripper is used. Since the segments

of a surface mesh are usually not closed surfaces, the volume of such segments is

obtained by calculating the volume of their convex hulls.

Fig. 5.7 shows two examples of fitting the segmented parts with primitives. The

rotor in Fig. 5.7 (b) is segmented into 6 parts, and I fit all of them with cylinders

and bounding boxes, by comparing the volume of the segmented part and the fitted

primitives, the appropriate fitting for every segment can be determined. Note that

the criteria for determining a better fitting are by comparing the volume, but the

precondition is that surface of the fitted primitive is non-empty, such that the

gripper can grasp the fitted primitives. And this is why I prefer the RANSAC

model fitting provided in PCL [125], it guarantees that the fitted primitive has a

non-empty surface for grasping. For example, if I fit the point cloud of the third

segment in Fig. 5.7 (b) with cylinder models, the best fitting I can find may be

the cylinder that aligns with its inner hole surface, but the volume difference with

the segment is larger comparing to the fitted bounding box, therefore, the better

fitting is actually the bounding box. However, there is no box fitting provided

in PCL, so I use the bounding box to fit the segment, in this case, I have to

check which faces of the bounding box are empty and which are not, and then

select the non-empty faces to be in contact with the gripper. As a result, five of

them can be closely fitted by cylinders and the other one is fitted by its bounding

106

(a)
(b)

Figure 5.7: Two examples of fitting the segmented parts with shape primitives.
(a) The inner sleeve shaft is segmented into two parts, and both the two parts are
fitted appropriately by cylinders. (b) Five segments of the rotor are more closely
fitted by cylinders and the other one is fitted with its bounding box, notice that
the third segment looks cylindrical but it is empty on the cylindrical surface.

box. The fitted cylinders are represented by gray belts, the height of the cylinder

is manually set to 1 cm for visualization, but it can also be calculated from the

maximum distance along the cylinder’s axis between the points on the segment.

Then the corresponding gripper type can be selected for every segment based on

the predefined rules. In order to grasp a mechanical component, at least one of its

segmented parts should be graspable by the designed grippers, e.g. the gripper for

grasping the rotor should be capable of grasping at least one of the 6 segments in

Fig. 5.7 (b).

5.2.3 Gripper Parameters

The maximum and minimum opening widths and finger length are important pa-

rameters of the grippers. In order to grasp a segment, the characteristic length of

107

the shape primitive, which is the diameter of the fitted cylinder or the distance

between the opposite faces (in touch with the gripper) of its bounding box, must

be within the stroke of the gripper. The capability of grasping a segment does not

directly impose constraints on the finger length, however, the finger length has to

fulfill some requirements in order to satisfy the assembly constraints, for example,

the finger should be long enough to avoid collision with the shaft when inserting

the shaft sleeve to the shaft. And the constraints on the finger length are described

in section 5.2. In addition, the gripper approach direction can be extracted from

the fitted primitives. The 3-finger centric gripper should approach the part along

the axial direction of the fitted cylinder, and the 2-finger gripper can approach the

part as long as the finger surfaces are parallel to the non-empty surfaces of the

bounding box.

5.3 Evaluation Under Assembly Constraints

Through mesh segmentation and shape primitive fitting, I have obtained the initial

candidate gripper types and parameters for all the segmented parts of the assembly

components, however, some of them are not applicable considering the assembly

constraints. In this section, I take into account the assembly constraints and

finalize the minimum number of grippers for the given assembly task.

5.3.1 Assembly Task Specification

Referring to the assembly task decomposition method proposed by Mosemann et

al. [126], an assembly task can be represented as a sequence of assembly operations,

108

Figure 5.8: Gear teeth and screw thread do not afford to grasp, thus removed from
the candidate graspable segments.

in each assembly operationi, a new assembly component is added to the existing

subassembly. I assume the assembly sequence is already given, then the assembly

task is denoted as Assembly = {operation1, operation2, . . . , operationn}. Each

assembly operation can be represented as ⟨ca, cp,a Tp,
a′ Tp⟩, where ca and cp are the

active and passive subassemblies to be manipulated in the operation, and aTp and
a′Tp are spatial transformations between active and passive subassemblies before

and after the assembly operation, respectively. The active subassembly is the

subassembly grasped by the gripper during the assembly operation, and it moves

with the gripper until the assembly operation finishes. The passive subassembly is

usually fixed in the environment, and it serves as an environmental obstacle that

should not collide with the gripper. In Fig. 5.9, the gripper should grasp the active

subassembly ca to assemble it to the passive subassembly cp.

5.3.2 Assembly Constraints

In an assembly operation operationi, the gripper has to grasp one segment of ca

and change the spatial relationship from aTp to a′Tp. When grasping ca, not every

segment of ca is suitable for grasping, the affordance of different segments should

be taken into account in selecting graspable segments. Moreover, the gripper must

avoid collision with the subassemblies during the assembly.

109

Figure 5.9: The gripper has to avoid collision with the subassemblies in the assem-
bly task.

Affordance

Affordance is defined as the possible action on an object or environment [127]. In

an assembly operation, not all the segments of an assembly component afford to

grasp. For example, screw thread and gear teeth are mainly used for fastening

and transmission, they may be damaged and lose their main affordance if they

are directly grasped by the gripper. As illustrated in Fig. 5.8, some segments

are manually removed from the candidate segments for grasping, considering their

major affordance.

Collision Avoidance

The gripper has to avoid collision with the subassemblies during the assembly,

the example illustrated in Fig. 5.9 shows that the gripper will collide with the

subassembly if segment 2 is grasped in this assembly operation, thus segment 1

should be selected as the graspable segment. A segment is graspable only if there

exists a collision-free grasping pose for the gripper to assemble ca to cp. To get

the graspable segments satisfying the collision avoidance constraint, I plan a set

of grasps for each segment and check the collision between the gripper and the

110

subassemblies, the segment is graspable if there is at least one collision-free grasp.

5.3.3 Grasp Planning

After removing ungraspable segments according to their affordance, grasp plan-

ning is performed on the remaining segments to determine if there are collision-

free grasps for the segments. For the segments to be grasped by 2-finger parallel

grippers, I first use planar clustering [113] to cluster the mesh into a set of nearly

planar facets, and then search for nearly parallel facets to be in contact with the

fingers of the gripper, and rotate the gripper around the contact normal to ob-

tain more grasps. Fig. 5.10 shows some examples of planar clustering, different

clustered facets are rendered with different colors. By searching nearly parallel

facets from the clustered model, pairs of facets and contact points for grasping are

obtained, as shown in Fig. 5.11. In terms of the segments to be grasped by 3-finger

grippers, the grasp can be easily extracted from the fitted cylinder, the axis of the

gripper should align with the axis of the cylinder.

The planned grasps are then examined by checking the collision between the grip-

per and the subassemblies. In Fig. 5.12, I explain how grasp planning is used to

determine the graspable segment with respect to collision avoidance constraints,

and in this example, the sub-task is to assemble the rotor to the subassemblies

(including the coolant cover plate and the front cover plate shown in Fig. 5.1).

The rotor, as presented in Fig. 5.7 (b), is composed of 6 segments. Its third seg-

ment should be grasped by a 2-finger parallel jaw gripper, and the planned grasps

are shown in Fig. 5.12 (a), (b), and (c), however, as seen in Fig. 5.12 (c), all

the grasps are in collision with the subassemblies, therefore, the third segment is

not graspable. The first, second, fifth, and sixth segments of the rotor should be

111

(a)
(b) (c)

(d)

(e)

(f)

Figure 5.10: Planar clustering of the segments to be grasped by 2-finger grippers,
different colors render different clustered facets.

grasped by a 3-finger centric gripper, but they are also not graspable since the

planned grasps are in collision with the subassemblies (Fig. 5.12 (d) & (e)). The

fourth segment of the rotor should be grasped by the 3-finger centric gripper, and

it is the only graspable segment, the collision-free grasp is shown in Fig. 5.12 (f).

After the evaluation under the assembly constraints following such process, the re-

maining graspable segments of every assembly component are listed in Fig. 5.13,

alongside the graspable segments, and there are the constraints on gripper types

and parameters for grasping the segments. Among these constraints, the opening

width is set to be the characteristic length of the segment, which is the diameter

of the fitted cylinder or the distance between the opposite faces (in touch with the

gripper) of its bounding box, and the opening width should be within the stroke

of the gripper. The finger length should be set such that the finger can contact

the segment and also avoid the collision between the gripper and other segments

and subassemblies. For example, consider assembling assembly component No. 5

112

(a)
(b) (c)

(d)

(e)
(f) (g) (h)

Figure 5.11: Pairs of facets and contact points for grasping by 2-finger grippers,
the origins of the arrows are the contact points, and the arrows point to the surface
normal directions at the contact points.

to No. 4 (see Fig. 5.16 (b1)), if I grasp the second segment of No. 5, then the

finger length has to be long enough to avoid colliding with assembly component

No. 4 and also the first segment of No. 5, and similarly, I obtain the finger length

constraint for the second segment of assembly component No. 9 (see Fig. 5.16

(c2)). For assembly component No. 10, the finger should be longer than the depth

of the gear teeth to contact the target segment (see Fig. 5.16 (c4)). For assembly

components No. 8 and No. 13, the finger length should be above the threshold to

avoid colliding with the shaft (No. 6) (see Fig. 5.16 (d1) and (d5)).

113

(a)

(b) (c)

(d) (e)

(f)

Figure 5.12: Mesh segmentation and primitive fitted have determined the gripper
types for the segments, then based on the gripper type, grasp planning is performed
on the segmented parts to determine if the segment is graspable, by checking if
there is at least one collision-free grasp. (a) A planned 2-finger grasp at a pair of
contact points. (b) A set of planned 2-finger grasps are obtained by rotating the
gripper around the contact normal. (c) Check the collision between the gripper
and the subassemblies. (d) A planned 3-finger grasp for the segment. (e) All the
planned 3-finger grasps are in collision with the subassemblies. (f) Collision-free
grasps can be found for this segment, and it is the only graspable segment for
grasping the rotor to perform this assembly operation.

5.3.4 Minimize the Number of Grippers

Some assembly components can be commonly grasped by the same gripper, thus

the total cost of grippers can be cut down by reducing the number of grippers

for the assembly task. From the previous analysis, I have obtained the graspable

segments from all the assembly components, and every assembly component ci

114

Figure 5.13: The remaining graspable segments after checking the assembly con-
straints.

115

imposes a set of constraints on the gripper, such as the number of fingers Fi,

opening width Wi, minimum finger length L−
i and maximum finger length L+

i . I

denote the constraints for assembly component ci as Ci = {Fi,Wi, L
−
i , L

+
i }, i =

1, 2, . . . ,M , M is the number of assembly components, if an assembly component

ci has m graspable segments {ci1, ci2, . . . , cim}, then Ci = Ci1 ∪ Ci2 ∪ · · · ∪ Cim,

where Cij is the constraints imposed by segment cij of ci. I generate N gripper

parameters {P1, P2, . . . , PN}, Pj = {Fj,W
−
j ,W+

j , Lj}, covering the minimum and

maximum gripper parameters, then determine the minimal subset out of the N

gripper parameters that can grasp all the assembly components, and the problem

is formulated as follows,

minimize
∑N

j=1 xj

subject to xj = {0, 1}∑N
j=1 a1jxj ≥ 1∑N
j=1 a2jxj ≥ 1

...∑N
j=1 aMjxj ≥ 1

(5.1)

Fj = Fi

L−
i < Lj < L+

i

W−
j < Wi < W+

j

 (5.2)

where i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N}, M is the number of assembly compo-

nents, N is the number of gripper parameter samples, aij is 1 if Eq. (2) is satisfied,

otherwise aij = 0, W−
j and W+

j are the minimum and maximum opening widths of

a gripper, respectively, Lj is the finger length, and xj is 1 if j-th gripper parameter

sample Pj is used and is 0 otherwise. Eq. (2) lists the conditions for the gripper

with parameter Pj to grasp the assembly component ci, and the inequalities in

Eq. (1) ensure that every assembly component ci can be grasped by at least one

116

gripper.

This is a multidimensional 0–1 knapsack problem [128], to solve it, I have to, (1)

obtain N gripper parameters and then determine a minimal subset out of N subject

to these constraints, and (2) figure out all the coefficients aij. For generating

N samples of gripper parameters, I separate the samples into two groups, the

first group is for 2-finger grippers (Fj = 2), and the second group is for 3-finger

grippers (Fj = 3). For each group, I set the upper and lower bounds of the

maximum opening width W+
upper,W

+
lower to be just enough to cover the maximum

and minimum values of opening width Wi, that is W+
upper = {Wi}max,W

+
lower− d =

{Wi}min, where d is the stroke of the gripper, if {Wi}max−{Wi}min ≤ d, then I set

W+
upper = W+

lower = {Wi}max. Notice that, I do not assume the gripper can be fully

closed, instead I assume the gripper has a certain stroke d, or more specifically,

d2finger for the 2-finger gripper and d3finger for the 3-finger gripper, following such

assumption, the minimum opening width can be directly derived as: W−
j = W+

j −d,

and the strokes of the grippers that I use are introduced in Section 6. The upper

and lower bounds of finger length Lupper, Llower are set to be the maximum and

minimum finger lengths among these constraints. So far, I obtain the bounds for

the opening width and the finger length for each group, then for each group, I

uniformly generate n values of W+
j from range [W+

lower,W
+
upper] and m values of Lj

from range [Llower, Lupper]. Specifically, I obtain n1 values of W+
j and m1 values

of Lj for the first group, and n2 values of W+
j and m2 values of Lj for the second

group. Therefore, I totally have N = n1×m1+n2×m2 sets of gripper parameters

for the two parameter groups, and the coefficients aij are obtained by checking if

Eq. (2) is satisfied for assembly constraint Ci and gripper parameter Pj, then this

0-1 knapsack problem can be solved by using the branch-and-bound method [129].

Since there is no upper bound for the finger length in our case, the upper bound

117

can be flexibly set to a value as long as it is larger than the maximum lower limit

of these finger length constraints, the obtained solutions for our case is presented

in Section 5.4.

5.3.5 Discussion and Limitation

In this research, I assume that the target assembly components can be well de-

composed into boxes and cylinders, and I only use two types of grippers, which

are 2-finger parallel jaw grippers and 3-finger centric grippers. To cope with more

complex shapes, I have to use more shape primitives, such as cones and pyramids.

In addition to affordance and collision avoidance described above, there are other

aspects to be considered for further improvement.

Stability of Grasping Different Segments

In an assembly operation, grasping different segments may result in different

force/torque distributions. Consider assembling the carrier to the shaft (Fig. 5.1),

if the grasping contact positions are not symmetric about the shaft, Fig. 5.16 (b5)

shows an example of such a situation, it will lead to uneven normal force between

shaft and hole, which may result in insertion failure, or even damage the assembly

components. Therefore, it is necessary to analyze the contact force distribution

when selecting a suitable segment for grasping during the assembly.

118

Finer Finger Design

The assembly components must be stably grasped without slipping during the

assembly, in which the external forces include gravity, assembly force, etc. It is

necessary to fine-tune the shape of the fingertip surface to increase the contact area

with the object, especially when the object surface is curved. Assuming the soft-

finger contact model, I can calculate the contact area from the relative curvature

between fingertip surface and object surface [89], then an appropriate fingertip

surface curvature that ensures the grasp stability can be determined. Fig. 5.5 (a)

illustrates the situation of the maximum torque caused by gravity, and it should

be balanced by the torsional friction exerted by the soft finger contact.

5.4 Experiment

In this section, the effectiveness and feasibility of our approach are verified by

assembling a part of an industrial product using the designed grippers. Consid-

ering the limit of our 3D printer, the product is scaled to 55% of its original size

and printed out as shown in Fig. 5.14 (Left). The grippers are constructed by

attaching printed fingers to air chucks, the 2-finger gripper is constructed by at-

taching 2 fingers to an SMC MHF2-12D2 air chuck (stroke: 48mm, 0mm to 48

mm), and the 3-finger gripper is constructed by attaching 3 fingers on an SMC

MHSL3-32D air chuck (stroke: 8mm, 34 mm to 42 mm), the stroke of an air chuck

determines the difference between the maximum and minimum opening widths

(W+
j −W−

j). According to the strokes of air chucks I use and the scaled dimen-

sions of the assembly constraints, the feasible solutions for the gripper parameters

are {2, 0, 33, 30}, {3, 14, 22, 30}, {3, 52.5, 60.5, 30}, {3, 116.9, 124.9, 30}, that is one

119

2-finger gripper with a maximum opening width of 33 mm, and three 3-finger

grippers with maximum opening widths of 22 mm, 60.5 mm and 124.9 mm are

required. I model and print out the fingers and attach them to the air chucks, and

I calculate the position where the fingers should be fixed on the air chucks such

that the maximum and minimum opening widths correspond to the solutions. For

the 2-finger gripper, since the stroke is 48 mm, which is larger than the difference

between the maximum and minimum opening widths in solution {2, 0, 33, 30}, so

I simply design the 2-finger gripper with the opening width ranging from 0 mm to

48 mm, which covers the range of opening width in the solution and works equally

well. The actual maximum opening widths for the other three 3-finger grippers

are slightly larger than the calculation results to account for the uncertainties.

Besides, there is no upper bound on finger length, it is free to set finger length

above 30 mm, and all the gripper parameters of the actual gripper used in our

experiment are shown in Fig. 5.14 (Right).

I performed the assembly experiment on a NEXTAGE robot from Kawada

Robotics Inc., as shown in Fig. 5.15, all the 13 assembly components can be

firmly grasped by using the designed 4 grippers. I assume the assembly sequence

is known, the target segment of an assembly component for grasping can be ob-

tained from the previous analysis, then the robot is able to successfully complete

the task without collision with the subassemblies during the assembly, as shown

in Fig. 5.16.

120

Figure 5.14: (Left): The product to be assembled. (Right): The designed 4 grip-
pers in their maximum opening state, the strokes are 8mm for the 3-finger air
chuck and 48mm for the 2-finger air chuck, respectively.

121

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 5.15: Designed 4 grippers are able to firmly grasp all the 13 assembly
components.

122

Figure 5.16: The robot can successfully assemble the product, and there is no
collision between the gripper and the subassembly, the red object appearing in
(c3) and (c4) is used to support the subassembly.

123

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis addresses the automation in an assembly factory from a three-layer

hierarchy, i.e., task-level planning, motion-level planning, and grasp-level planning,

to improve the efficiency of performing the part-supply, grasping, and assembly

tasks.

At the task level, I presented a planner that plans a minimum sequence of base posi-

tions for a mobile manipulator to perform a sequence of tasks in multiple locations.

Our work contributed to the limited work on mobile manipulators performing a

sequence of tasks. Specifically, I considered multiple picking tasks in multiple lo-

cations, but our planner also applies to other manipulation tasks. In that case, I

should consider constraints from the new tasks and plan the base region satisfying

the new task constraints. Our planner can be applied to the pick-and-place tasks

involved in the part-supply tasks in the assembly factories and warehouses. By

reducing the number of base positions to visit for a sequence of tasks, the overall

efficiency of the tasks is improved, thus improving the efficiency of the production.

I also discussed the object placement styles and the update of the base sequence,

which are critical for practical applications.

I performed numerical analysis on the planner. The numerical analysis shows

the calculation time for the base region is the most time-consuming part of the

planning, and this part should be performed offline. The calculation time grows

nearly linearly with respect to the number of objects in the tray and the number

of trays (when the number of trays is less than 18). The numerical result on the

size of base regions and the intersection also provides a reference for configuring

the objects and trays for practical settings. Combined with the numerical analysis

124

result, I found that for regularly placed objects, both globally static and dynam-

ically updated base positions are feasible, but for randomly placed objects, it is

impractical and unnecessary to update the base positions. Extended experiments

are conducted to demonstrate the feasible policies.

The efficiency of our planner is demonstrated by comparing the operation time

for moving the base with a naive base sequence. Our experiments show that the

average operation time is reduced by 11.22s to 17.26s by reducing one base position.

However, some limitations are observed in the current experiments. The success

rate is not high, mainly due to perception errors and motion planning timeout, and

the motion of the manipulator is not optimized. These issues will be considered in

our future work.

At the motion level, I aim to further reduce the motion time. I have presented an

optimization-based motion planner to plan the optimal motion for a nonholonomic

mobile manipulator to perform tasks during the motion. Our major contribution

is a novel formulation of the optimization, such that the task constraints are guar-

anteed to be smooth. The numerical results show that using our formulation,

I can find feasible solutions satisfying all the constraints. The proposed motion

planner can be used to generate locally optimal trajectories offline, the generated

trajectories can be taken as the reference trajectories for online tracking. I also

proposed to use the push-grasp strategy to robustly grasp the target object during

the motion. I have demonstrated the planned trajectories in a simulator and the

physical experiment.

At the grasp level, I tackle the challenges of designing grippers for grasping and

assembly. I presented a structured approach to selecting and designing the grip-

pers. The input for our approach is the assembly specification and the geometrical

125

models of the assembly components. In the first phase, the assembly components

with complex shapes are segmented into simpler parts, then the segmented parts

are fitted with shape primitives. By defining the correspondence between simple

shape primitives and gripper types, suitable gripper types and parameters can

be determined from the results of mesh segmentation and primitive fitting. In

the second phase, the results in the first phase are examined under the assembly

constraints, afterwards, the number of grippers is optimized by finding a minimal

set of gripper parameters that satisfy the constraints imposed by all the assembly

components. Finally, the effectiveness of the designed grippers is confirmed by the

assembly experiment. The current work can be improved in several aspects: (1)

More powerful mesh segmentation methods [130] can be considered to decompose

the assembly components, and the affordance of the assembly component will be

taken into account in the segmentation. (2) More shape primitives such as cones

and pyramids can be used to improve the ability to fit more complex shapes. (3)

The representation of the assembly task and constraints can be refined, and classi-

fying the basic assembly operations (such as peg-in-hole) can further automate the

design process. (4) The shape of the fingertip surface can be fine-tuned to increase

the contact area, thus the grasp stability is improved.

In the future, these three parts of work can be combined into a whole mobile ma-

nipulation system. I envisage that mobile manipulators pick up the assembly parts

from the storage area and transport them to the assembly line, and then these as-

sembly parts are assembled by mobile manipulators. To grasp the assembly parts

from different trays, it is feasible to use a two-finger gripper to grasp all the assem-

bly parts. However, in case of the assembly tasks, the mobile manipulator may

have to change grippers to firmly assemble different assembly parts. To perform

assembly tasks by using mobile manipulators, two issues have to be addressed: (1)

126

the base positioning error of the mobile manipulator, and (2) force control for the

contact-rich assembly tasks. The positioning error of the mobile manipulator can

be reduced by using extra sensors and repositioning itself. The force control in the

assembly tasks is very challenging, especially for mobile manipulators, due to the

low rigidity of the mobile manipulator. The learning-based method may be a good

choice to solve this challenging contact-rich mobile assembly problem, but more

investigation is required to improve this system to be applicable in real industrial

environment.

127

ACKNOWLEDGMENTS

It has been a tough journey, without the help of many people, I could not have

been here. Firstly, I would like to thank my advisor Prof. Harada, who gave me

a chance to do research in the field of robotics, which I still believe is one of the

most important and right decisions for my future development. Prof. Harada has

always been supportive for my academic research and considerate for my daily life

in Japan. I am very grateful to Prof. Harada for providing the opportunity to

work as a research assistant in AIST. He has always been willing to support me

whenever I encounter problems, and I appreciate his kind heart. Besides, Prof.

Wan has been inspiring me with his passion and diligence in work. I thank him for

these inspirations and suggestions on my research. I also thank Prof. Kiyokawa

and Prof. Koyama for their valuable comments on my research during the midterm

presentations. Moreover, I am very grateful for the excellent research environment

created by all the professors and students. When I first came to Harada labora-

tory. I almost knew nothing about robotics research. It was through the students’

midterm presentations, I quickly got the big picture of robotic manipulation re-

search, so I thank my colleagues for their effort.

During my PhD studies, I had a wonderful time working as a research assistant

with Domae-san and Ueshiba-san in AIST. Domae-san proposed many valuable

suggestions to me during the weekly research meeting, and he has always been

supportive for my research. Whenever I need something for help, I know that

Domae-san and Ueshiba-san will get them ready for me.

I would like to thank my parents for their unconditional support and encourage-

ment, without which I cannot imagine how I can get through these difficult times.

Last but not least, I would like to thank my wife for the company throughout the

128

journey, I am looking forward to the shared future with you.

129

BIBLIOGRAPHY

[1] Oussama Khatib, Kazu Yokoi, Oliver Brock, K Chang, and Arancha Casal.
Robots in human environments: Basic autonomous capabilities. The Inter-
national Journal of Robotics Research, 18(7):684–696, 1999.

[2] Sachin Chitta, Benjamin Cohen, and Maxim Likhachev. Planning for au-
tonomous door opening with a mobile manipulator. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 1799–1806. IEEE,
2010.

[3] Anthony Pratkanis, Adam Eric Leeper, and Kenneth Salisbury. Replacing
the office intern: An autonomous coffee run with a mobile manipulator. In
2013 IEEE International Conference on Robotics and Automation, pages
1248–1253. IEEE, 2013.

[4] Kai Zhou, Gerhard Ebenhofer, Christian Eitzinger, Uwe Zimmermann,
Christoph Walter, José Saenz, Luis Pérez Castaño, Manuel Alejandro Fer-
nández Hernández, and José Navarro Oriol. Mobile manipulator is coming to
aerospace manufacturing industry. In 2014 IEEE International Symposium
on Robotic and Sensors Environments (ROSE) Proceedings, pages 94–99.
IEEE, 2014.

[5] Qiankun Yu, Guolei Wang, Xiaotong Hua, Simin Zhang, Libin Song, Jiwen
Zhang, and Ken Chen. Base position optimization for mobile painting robot
manipulators with multiple constraints. Robotics and Computer-Integrated
Manufacturing, 54:56–64, 2018.

[6] Yuhao Zhang, Xingwei Zhao, Bo Tao, and Han Ding. Point stabilization
of nonholonomic mobile robot by bzier smooth subline constraint nonlinear
model predictive control. IEEE/ASME Transactions on Mechatronics, 2020.

[7] S. Thakar, P. Rajendran, A. M. Kabir, and S. K. Gupta. Manipulator motion
planning for part pickup and transport operations from a moving base. IEEE
Transactions on Automation Science and Engineering, pages 1–16, 2020.

[8] HIGH-MIX, LOW-VOLUME ASSEMBLY, https://blog.unex.com/high-mix-
low-volume-assembly. accessed July, 2022.

[9] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The international
journal of Robotics Research, 4(2):3–9, 1985.

130

[10] Bernard Bayle, J-Y Fourquet, and Marc Renaud. Manipulability of wheeled
mobile manipulators: Application to motion generation. The International
Journal of Robotics Research, 22(7-8):565–581, 2003.

[11] Francois G Pin and J-C Culioli. Multi-criteria position and configuration op-
timization for redundant platform/manipulator systems. In IEEE Interna-
tional Workshop on Intelligent Robots and Systems, Towards a New Frontier
of Applications, pages 103–107. IEEE, 1990.

[12] Francois G Pin and Jean-Christophe Culioli. Optimal positioning of com-
bined mobile platform-manipulator systems for material handling tasks.
Journal of intelligent and Robotic Systems, 6(2-3):165–182, 1992.

[13] Wayne F Carriker, Pradeep K Khosla, and Bruce H Krogh. Path planning
for mobile manipulators for multiple task execution. IEEE Transactions on
Robotics and Automation, 7(3):403–408, 1991.

[14] Saman Vafadar, Adel Olabi, and Masoud Shariat Panahi. Optimal motion
planning of mobile manipulators with minimum number of platform move-
ments. In 2018 IEEE International Conference on Industrial Technology
(ICIT), pages 262–267. IEEE, 2018.

[15] Jingren Xu, Kensuke Harada, Weiwei Wan, Toshio Ueshiba, and Yukiyasu
Domae. Planning an efficient and robust base sequence for a mobile manipu-
lator performing multiple pick-and-place tasks. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 11018–11024. IEEE,
2020.

[16] Fei Chen, Mario Selvaggio, and Darwin G Caldwell. Dexterous grasping by
manipulability selection for mobile manipulator with visual guidance. IEEE
Transactions on Industrial Informatics, 15(2):1202–1210, 2018.

[17] Shantanu Thakar, Pradeep Rajendran, Vivek Annem, Ariyan Kabir, and
Satyandra Gupta. Accounting for part pose estimation uncertainties during
trajectory generation for part pick-up using mobile manipulators. In 2019
International Conference on Robotics and Automation (ICRA), pages 1329–
1336. IEEE, 2019.

[18] Shantanu Thakar, Pradeep Rajendran, Ariyan M. Kabir, and Satyandra K.
Gupta. Manipulator motion planning for part pickup and transport opera-
tions from a moving base. IEEE Transactions on Automation Science and
Engineering, pages 1–16, 2020.

131

[19] Tim Mercy, Ruben Van Parys, and Goele Pipeleers. Spline-based motion
planning for autonomous guided vehicles in a dynamic environment. IEEE
Transactions on Control Systems Technology, 26(6):2182–2189, 2017.

[20] Johannes Schmalz and Gunther Reinhart. Automated selection and dimen-
sioning of gripper systems. Procedia CIRP, 23:212–216, 2014.

[21] Mohammadali Honarpardaz, Johan Ölvander, and Mehdi Tarkian. Fast fin-
ger design automation for industrial robots. Robotics and Autonomous Sys-
tems, 113:120–131, 2019.

[22] DT Pham and SH Yeo. Strategies for gripper design and selection in robotic
assembly. The International Journal of Production Research, 29(2):303–316,
1991.

[23] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim,
Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and mo-
tion planning. Annual Review of Control, Robotics, & Autonomous Systems,
4:265–293, 2021.

[24] Yoshio Yamamoto and Xiaoping Yun. Coordinating locomotion and manip-
ulation of a mobile manipulator. IEEE Transactions on Automatic Control,
39(6):1326–1332, 1994.

[25] Homayoun Seraji. An on-line approach to coordinated mobility and manip-
ulation. In [1993] Proceedings IEEE International Conference on Robotics
and Automation, pages 28–35. IEEE, 1993.

[26] Homayoun Seraji. A unified approach to motion control of mobile manipu-
lators. The International Journal of Robotics Research, 17(2):107–118, 1998.

[27] Felix Burget and Maren Bennewitz. Stance selection for humanoid grasping
tasks by inverse reachability maps. In 2015 IEEE International conference
on robotics and automation (ICRA), pages 5669–5674. IEEE, 2015.

[28] Pooya Abolghasemi, Rouhollah Rahmatizadeh, Aman Behal, and Ladislau
Boloni. A real-time technique for positioning a wheelchair-mounted robotic
arm for household manipulation tasks. In Workshops at the Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[29] Shunan Ren, Ying Xie, Xiangdong Yang, Jing Xu, Guolei Wang, and Ken
Chen. A method for optimizing the base position of mobile painting ma-

132

nipulators. IEEE Transactions on Automation Science and Engineering,
14(1):370–375, 2016.

[30] Bin Du, Jing Zhao, and Chunyu Song. Optimal base placement and mo-
tion planning for mobile manipulators. In ASME 2012 International De-
sign Engineering Technical Conferences and Computers and Information in
Engineering Conference, pages 1227–1234. American Society of Mechanical
Engineers Digital Collection, 2013.

[31] Dmitry Berenson, James Kuffner, and Howie Choset. An optimization ap-
proach to planning for mobile manipulation. In 2008 IEEE International
Conference on Robotics and Automation, pages 1187–1192. IEEE, 2008.

[32] Rosen Diankov. Automated Construction of Robotic Manipulation Programs.
PhD thesis, Carnegie Mellon University, Robotics Institute, August 2010.

[33] Freek Stulp, Andreas Fedrizzi, Lorenz Mösenlechner, and Michael Beetz.
Learning and reasoning with action-related places for robust mobile manip-
ulation. Journal of Artificial Intelligence Research, 43:1–42, 2012.

[34] Franziska Zacharias, Christoph Borst, Michael Beetz, and Gerd Hirzinger.
Positioning mobile manipulators to perform constrained linear trajectories.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 2578–2584. IEEE, 2008.

[35] Nikolaus Vahrenkamp, Tamim Asfour, and Rudiger Dillmann. Robot place-
ment based on reachability inversion. In 2013 IEEE International Conference
on Robotics and Automation, pages 1970–1975. IEEE, 2013.

[36] Nikolaus Vahrenkamp, Tamim Asfour, and Rüdiger Dillmann. Efficient in-
verse kinematics computation based on reachability analysis. International
Journal of Humanoid Robotics, 9(04):1250035, 2012.

[37] Daniel Leidner and Christoph Borst. Hybrid reasoning for mobile ma-
nipulation based on object knowledge. In Workshop on AI-based robotics
at IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013.

[38] Jun Dong and Jeffrey C Trinkle. Orientation-based reachability map for
robot base placement. In 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 1488–1493. IEEE, 2015.

133

[39] Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. Capturing robot
workspace structure: representing robot capabilities. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3229–
3236. Ieee, 2007.

[40] John T Feddema. Kinematically optimal robot placement for minimum time
coordinated motion. In Proceedings of IEEE International Conference on
Robotics and Automation, volume 4, pages 3395–3400. IEEE, 1996.

[41] David Hsu, J-C Latcombe, and Stephen Sorkin. Placing a robot manipulator
amid obstacles for optimized execution. In Proceedings of the 1999 IEEE
international symposium on assembly and task planning (ISATP’99)(Cat.
no. 99TH8470), pages 280–285. IEEE, 1999.

[42] Saïd Zeghloul and José-Alfonso Pamanes-Garcia. Multi-criteria optimal
placement of robots in constrained environments. Robotica, 11(2):105–110,
1993.

[43] S Mitsi, K-D Bouzakis, D Sagris, and G Mansour. Determination of optimum
robot base location considering discrete end-effector positions by means of
hybrid genetic algorithm. Robotics and Computer-Integrated Manufacturing,
24(1):50–59, 2008.

[44] Alonzo Kelly. Mobile robotics: mathematics, models, and methods. Cam-
bridge University Press, 2013.

[45] Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University
Press, 2017.

[46] Yoshio Yamamoto and Xiaoping Yun. Effect of the dynamic interaction on
coordinated control of mobile manipulators. IEEE Transactions on robotics
and automation, 12(5):816–824, 1996.

[47] Homayoun Seraji. Configuration control of redundant manipulators: The-
ory and implementation. IEEE Transactions on Robotics and Automation,
5(4):472–490, 1989.

[48] Homayoun Seraji. An on-line approach to coordinated mobility and manip-
ulation. In [1993] Proceedings IEEE International Conference on Robotics
and Automation, pages 28–35. IEEE, 1993.

[49] Alessandro De Luca, Giuseppe Oriolo, and Paolo Robuffo Giordano. Kine-

134

matic modeling and redundancy resolution for nonholonomic mobile manip-
ulators. In Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., pages 1867–1873. IEEE, 2006.

[50] Glenn D White, Rajankumar M Bhatt, Chin Pei Tang, and Venkat N Krovi.
Experimental evaluation of dynamic redundancy resolution in a nonholo-
nomic wheeled mobile manipulator. IEEE/ASME Transactions on Mecha-
tronics, 14(3):349–357, 2009.

[51] Ying Wang, Haoxiang Lang, and Clarence W De Silva. A hybrid visual
servo controller for robust grasping by wheeled mobile robots. IEEE/ASME
transactions on Mechatronics, 15(5):757–769, 2010.

[52] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation. Sym-
posia Proceedings (Cat. No. 00CH37065), volume 2, pages 995–1001. IEEE,
2000.

[53] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion
planning with sequential convex optimization and convex collision checking.
The International Journal of Robotics Research, 33(9):1251–1270, 2014.

[54] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew
Klingensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S
Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 32(9-10):1164–1193, 2013.

[55] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic plan-
ning. The international journal of robotics research, 20(5):378–400, 2001.

[56] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566–580, 1996.

[57] Yoshiaki Kuwata, Gaston A Fiore, Justin Teo, Emilio Frazzoli, and
Jonathan P How. Motion planning for urban driving using rrt. In 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1681–1686. IEEE, 2008.

[58] Richard M Murray and Sosale Shankara Sastry. Nonholonomic motion plan-

135

ning: Steering using sinusoids. IEEE transactions on Automatic Control,
38(5):700–716, 1993.

[59] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio
Frazzoli. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016.

[60] Lester E Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of mathematics, 79(3):497–516, 1957.

[61] James Reeds and Lawrence Shepp. Optimal paths for a car that goes both
forwards and backwards. Pacific journal of mathematics, 145(2):367–393,
1990.

[62] Zachary Kingston, Mark Moll, and Lydia E Kavraki. Sampling-based meth-
ods for motion planning with constraints. Annual review of control, robotics,
and autonomous systems, 1:159–185, 2018.

[63] Matthew Kelly. An introduction to trajectory optimization: How to do your
own direct collocation. SIAM Review, 59(4):849–904, 2017.

[64] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[65] Elon Rimon and Daniel E Koditschek. Exact robot navigation using cost
functions: the case of distinct spherical boundaries in e/sup n. In Proceedings.
1988 IEEE International Conference on Robotics and Automation, pages
1791–1796. IEEE, 1988.

[66] Daniel E Koditschek and Elon Rimon. Robot navigation functions on man-
ifolds with boundary. Advances in applied mathematics, 11:412, 1990.

[67] Howie M Choset, Kevin M Lynch, Seth Hutchinson, George Kantor, Wolfram
Burgard, Lydia Kavraki, Sebastian Thrun, and Ronald C Arkin. Principles
of robot motion: theory, algorithms, and implementation. MIT press, 2005.

[68] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor,
and Stefan Schaal. Stomp: Stochastic trajectory optimization for motion
planning. In 2011 IEEE international conference on robotics and automation,
pages 4569–4574. IEEE, 2011.

136

[69] Jeffrey Ichnowski, Michael Danielczuk, Jingyi Xu, Vishal Satish, and Ken
Goldberg. Gomp: Grasp-optimized motion planning for bin picking. arXiv
preprint arXiv:2003.02401, 2020.

[70] Jeffrey Ichnowski, Yahav Avigal, Vishal Satish, and Ken Goldberg. Deep
learning can accelerate grasp-optimized motion planning. Science Robotics,
5(48), 2020.

[71] Cong Wang, Qifeng Zhang, Qiyan Tian, Shuo Li, Xiaohui Wang, David Lane,
Yvan Petillot, and Sen Wang. Learning mobile manipulation through deep
reinforcement learning. Sensors, 20(3):939, 2020.

[72] Josiah Wong, Albert Tung, Andrey Kurenkov, Ajay Mandlekar, Li Fei-
Fei, Silvio Savarese, and Roberto Martín-Martín. Error-aware imitation
learning from teleoperation data for mobile manipulation. arXiv preprint
arXiv:2112.05251, 2021.

[73] Daniel Honerkamp, Tim Welschehold, and Abhinav Valada. Learning kine-
matic feasibility for mobile manipulation through deep reinforcement learn-
ing. IEEE Robotics and Automation Letters, 6(4):6289–6296, 2021.

[74] Max Spahn, Bruno Brito, and Javier Alonso-Mora. Coupled mobile manip-
ulation via trajectory optimization with free space decomposition. In 2021
International Conference on Robotics and Automation (ICRA). IEEE, 2021.

[75] Jianfeng Liao, Fanghao Huang, Zheng Chen, and Bin Yao. Optimization-
based motion planning of mobile manipulator with high degree of kinematic
redundancy. International Journal of Intelligent Robotics and Applications,
3(2):115–130, 2019.

[76] Joshua Fishman, Samuel Ubellacker, Nathan Hughes, and Luca Carlone.
Dynamic grasping with a” soft” drone: From theory to practice. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021.

[77] Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah, Vijaykumar Ra-
jasekaran, Maxime Adjigble, Rustam Stolkin, Aleš Leonardis, and Yasemin
Bekiroglu. Dynamic grasp and trajectory planning for moving objects. Au-
tonomous Robots, 43(5):1241–1256, 2019.

[78] Iretiayo Akinola, Jingxi Xu, Shuran Song, and Peter K Allen. Dynamic
grasping with reachability and motion awareness. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2021.

137

[79] Arjun Menon, Benjamin Cohen, and Maxim Likhachev. Motion planning for
smooth pickup of moving objects. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 453–460. IEEE, 2014.

[80] Charles Sun, Jędrzej Orbik, Coline Manon Devin, Brian H Yang, Abhishek
Gupta, Glen Berseth, and Sergey Levine. Fully autonomous real-world rein-
forcement learning with applications to mobile manipulation. In 5th Annual
Conference on Robot Learning, 2021.

[81] Bennion R Cannon, Todd D Lillian, Spencer P Magleby, Larry L Howell, and
Matthew R Linford. A compliant end-effector for microscribing. Precision
engineering, 29(1):86–94, 2005.

[82] Kaidi Nie, Weiwei Wan, and Kensuke Harada. An adaptive robotic gripper
with l-shape fingers for peg-in-hole tasks. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4022–4028.
IEEE, 2018.

[83] Andrew T Miller, Steffen Knoop, Henrik I Christensen, and Peter K Allen.
Automatic grasp planning using shape primitives. In 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 03CH37422), vol-
ume 2, pages 1824–1829. IEEE, 2003.

[84] Markus Przybylski, Tamim Asfour, and Rüdiger Dillmann. Planning grasps
for robotic hands using a novel object representation based on the medial
axis transform. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1781–1788. IEEE, 2011.

[85] Kai Huebner and Danica Kragic. Selection of robot pre-grasps using box-
based shape approximation. In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1765–1770. IEEE, 2008.

[86] Nikolaus Vahrenkamp, Leonard Westkamp, Natsuki Yamanobe, Eren E Ak-
soy, and Tamim Asfour. Part-based grasp planning for familiar objects. In
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), pages 919–925. IEEE, 2016.

[87] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-
driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30(2):289–
309, 2013.

[88] Duc Truong Pham, Nasir Salah Gourashi, and Eldaw Elzaki Eldukhri. Au-
tomated configuration of gripper systems for assembly tasks. Proceedings

138

of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 221(11):1643–1649, 2007.

[89] Kensuke Harada, Tokuo Tsuji, Soichiro Uto, Natsuki Yamanobe, Kazuyuki
Nagata, and Kosei Kitagaki. Stability of soft-finger grasp under gravity. In
2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 883–888. IEEE, 2014.

[90] Matei Ciocarlie, Claire Lackner, and Peter Allen. Soft finger model with
adaptive contact geometry for grasping and manipulation tasks. In Sec-
ond Joint EuroHaptics Conference and Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems (WHC’07), pages 219–224.
IEEE, 2007.

[91] Kensuke Harada, Tokuo Tsuji, Kazuyuki Nagata, Natsuki Yamanobe,
Kenichi Maruyama, Akira Nakamura, and Yoshihiro Kawai. Grasp planning
for parallel grippers with flexibility on its grasping surface. In 2011 IEEE
International Conference on Robotics and Biomimetics, pages 1540–1546.
IEEE, 2011.

[92] Antonio Bicchi and Vijay Kumar. Robotic grasping and contact: A re-
view. In Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), volume 1, pages 348–353. IEEE, 2000.

[93] Richard M Murray. A mathematical introduction to robotic manipulation.
CRC press, 2017.

[94] Mohammadali Honarpardaz, Martin Meier, and Robert Haschke. Fast grasp
tool design: From force to form closure. In 2017 13th IEEE Conference on
Automation Science and Engineering (CASE), pages 782–788. IEEE, 2017.

[95] Haoran Song, Michael Yu Wang, and Kaiyu Hang. Fingertip surface op-
timization for robust grasping on contact primitives. IEEE Robotics and
Automation Letters, 3(2):742–749, 2018.

[96] Alberto Rodriguez and Matthew T Mason. Effector form design for 1dof
planar actuation. In 2013 IEEE International Conference on Robotics and
Automation, pages 349–356. IEEE, 2013.

[97] Orion Taylor and Alberto Rodriguez. Optimal shape and motion planning
for dynamic planar manipulation. Autonomous Robots, 43(2):327–344, 2019.

139

[98] Nikhil Chavan-Dafle, Matthew T Mason, Harald Staab, Gregory Rossano,
and Alberto Rodriguez. A two-phase gripper to reorient and grasp. In
2015 IEEE International Conference on Automation Science and Engineering
(CASE), pages 1249–1255. IEEE, 2015.

[99] Lionel Birglen and Thomas Schlicht. A statistical review of industrial robotic
grippers. Robotics and Computer-Integrated Manufacturing, 49:88–97, 2018.

[100] Katharina Hermann, Rafael Hostettler, Markus Zimmermann, and
Anand Vazhapilli Sureshbabu. A joint-selective robotic gripper with ac-
tuation mode switching. In 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), pages 1532–1539. IEEE, 2019.

[101] Aljaf Kramberger, Adam Wolniakowski, Mads Høj Rasmussen, Marko Mu-
nih, Aleš Ude, and Christian Schlette. Automatic fingertip exchange system
for robotic grasping in flexible production processes. In 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE),
pages 1664–1669. IEEE, 2019.

[102] Kensuke Harada, Kento Nakayama, Weiwei Wan, Kazuyuki Nagata,
Natsuki Yamanobe, and Ixchel G Ramirez-Alpizar. Tool exchangeable
grasp/assembly planner. In International Conference on Intelligent Au-
tonomous Systems, pages 799–811. Springer, 2018.

[103] Kento Nakayama, Weiwei Wan, and Kensuke Harada. Designing grasping
tools for robotic assembly based on shape analysis of parts. In 2019 IEEE-
RAS 19th International Conference on Humanoid Robots (Humanoids),
pages 1–7. IEEE, 2019.

[104] Corey Goldfeder, Peter K Allen, Claire Lackner, and Raphael Pelossof. Grasp
planning via decomposition trees. In Proceedings 2007 IEEE International
Conference on Robotics and Automation, pages 4679–4684. IEEE, 2007.

[105] Mark R Cutkosky et al. On grasp choice, grasp models, and the design of
hands for manufacturing tasks. IEEE Transactions on robotics and automa-
tion, 5(3):269–279, 1989.

[106] Masayuki Shimizu, Hiromu Kakuya, Woo-Keun Yoon, Kosei Kitagaki, and
Kazuhiro Kosuge. Analytical inverse kinematic computation for 7-dof re-
dundant manipulators with joint limits and its application to redundancy
resolution. IEEE Transactions on Robotics, 24(5):1131–1142, 2008.

140

[107] Giresh K Singh and Jonathan Claassens. An analytical solution for the
inverse kinematics of a redundant 7dof manipulator with link offsets. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2976–2982. IEEE, 2010.

[108] Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David
Dymesich. Fetch and freight: Standard platforms for service robot appli-
cations. In Workshop on autonomous mobile service robots, 2016.

[109] Kensuke Harada, Kenji Kaneko, and Fumio Kanehiro. Fast grasp planning
for hand/arm systems based on convex model. In 2008 IEEE International
Conference on Robotics and Automation, pages 1162–1168. IEEE, 2008.

[110] Soichiro Uto, Tokuo Tsuji, Kensuke Harada, Ryo Kurazume, and Tsutomu
Hasegawa. Grasp planning using quadric surface approximation for parallel
grippers. In 2013 IEEE International Conference on Robotics and Biomimet-
ics (ROBIO), pages 1611–1616. IEEE, 2013.

[111] Tokuo Tsuji, Soichiro Uto, Kensuke Harada, Ryo Kurazume, Tsutomu
Hasegawa, and Ken’ichi Morooka. Grasp planning for constricted parts of ob-
jects approximated with quadric surfaces. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2447–2453. IEEE, 2014.

[112] Kensuke Harada, Tokuo Tsuji, Soichiro Uto, Natsuki Yamanobe, Kazuyuki
Nagata, and Kosei Kitagaki. Stability of soft-finger grasp under gravity. In
2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 883–888. IEEE, 2014.

[113] Weiwei Wan, Kensuke Harada, and Fumio Kanehiro. Planning grasps with
suction cups and parallel grippers using superimposed segmentation of object
meshes. IEEE Transactions on Robotics, 2020.

[114] Yukiyasu Domae, Haruhisa Okuda, Yuichi Taguchi, Kazuhiko Sumi, and
Takashi Hirai. Fast graspability evaluation on single depth maps for bin
picking with general grippers. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 1997–2004. IEEE, 2014.

[115] Peter J Kolesar. A branch and bound algorithm for the knapsack problem.
Management science, 13(9):723–735, 1967.

[116] Vladimír Černỳ. Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of optimization theory and
applications, 45(1):41–51, 1985.

141

[117] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[118] Steven G Johnson. The nlopt nonlinear-optimization package, 2014.

[119] John T Betts. Practical methods for optimal control and estimation using
nonlinear programming. SIAM, 2010.

[120] Andreas Wächter and Lorenz T Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical programming, 106(1):25–57, 2006.

[121] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh parti-
tioning and skeletonisation using the shape diameter function. The Visual
Computer, 24(4):249, 2008.

[122] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial
Board, 5.0.2 edition, 2020.

[123] Ariel Shamir. A survey on mesh segmentation techniques. In Computer
graphics forum, volume 27, pages 1539–1556. Wiley Online Library, 2008.

[124] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane,
Fabio Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh
Processing Tool. In Vittorio Scarano, Rosario De Chiara, and Ugo Erra,
editors, Eurographics Italian Chapter Conference. The Eurographics Associ-
ation, 2008.

[125] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl).
In 2011 IEEE international conference on robotics and automation, pages
1–4. IEEE, 2011.

[126] Heiko Mosemann and Friedrich M Wahl. Automatic decomposition of
planned assembly sequences into skill primitives. IEEE transactions on
Robotics and Automation, 17(5):709–718, 2001.

[127] Natsuki Yamanobe, Weiwei Wan, Ixchel G Ramirez-Alpizar, Damien Petit,
Tokuo Tsuji, Shuichi Akizuki, Manabu Hashimoto, Kazuyuki Nagata, and
Kensuke Harada. A brief review of affordance in robotic manipulation re-
search. Advanced Robotics, 31(19-20):1086–1101, 2017.

142

[128] Arnaud Fréville. The multidimensional 0–1 knapsack problem: An overview.
European Journal of Operational Research, 155(1):1–21, 2004.

[129] Peter J Kolesar. A branch and bound algorithm for the knapsack problem.
Management science, 13(9):723–735, 1967.

[130] Truc Le and Ye Duan. A primitive-based 3d segmentation algorithm for
mechanical cad models. Computer Aided Geometric Design, 52:231–246,
2017.

143

LIST OF PUBLICATIONS

Journal Articles:

[1] Xu, J., Wan, W., Koyama, K., Domae, Y. and Harada, K., Selecting and de-

signing grippers for an assembly task in a structured approach. Advanced Robotics,

35(6), pp. 381-397, 2021.

[2] Xu, J., Domae, Y., Ueshiba, T., Wan, W. and Harada, K., Planning a Mini-

mum Sequence of Positions for Picking Parts From Multiple Trays Using a Mobile

Manipulator. IEEE Access, 9, pp. 165526-165541, 2021.

[3] Xu, J., Domae, Y., Wan, W. and Harada, K., Whole-body Trajectory Optimiza-

tion for a Mobile Manipulator to Perform Dynamic Grasping During the Motion.

Submitted to IEEE Robotics and Automation Letters, 2022.

International Conference Papers (peer-reviewed):

[1] Xu, J., Harada, K., Wan, W., Ueshiba, T. and Domae, Y., Planning an efficient

and robust base sequence for a mobile manipulator performing multiple pick-and-

place tasks. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pp. 11018-11024, 2020.

[2] Xu, J., Domae, Y., Wan, W. and Harada, K., 2022, An Optimization-based

Motion Planner for a Mobile Manipulator to Perform Tasks During the Motion.

In 2022 IEEE/SICE International Symposium on System Integration (SII), pp.

519-524, 2022.

Domestic Conference Papers (non peer-reviewed):

[1] Xu, J., Domae, Y., Wan, W. and Harada, K., Trajectory optimization for cou-

144

pled mobile manipulator motion in picking tasks. The Conference of the Society

of Instrument and Control Engineers System Integration Division (SICE SI), pp.

993–997, 2021.

[2] Xu, J., Domae, Y., Ueshiba, T., Wan, W. and Harada, K., Base position plan-

ning for a mobile manipulator to pick-and-transport objects stored in multiple

trays. The Conference of the Society of Instrument and Control Engineers System

Integration Division (SICE SI), pp. 1167–1172, 2020.

[3] Xu, J., Koyama, K., Wan, W., Domae, Y. and Harada, K., Designing grippers

based on model decomposition and primitive fitting. The Proceedings of JSME

annual Conference on Robotics and Mechatronics (Robomech), pp. 1P1-B01, 2020.

145

	Table of Contents
	Introduction
	Task-level Planning
	Motion-level Planning
	Grasp-level Planning
	Contributions of This Thesis

	Related Work
	Task Planning for Mobile Manipulation
	Positioning the Mobile Manipulator for Manipulation Tasks
	Mobile Manipulator Performing a Sequence of Tasks

	Motion Planning for Mobile Manipulation
	Modeling and Control of Mobile Manipulators
	Sampling-based Motion Planning With Constraints
	Optimization-based Motion Planning
	Mobile Manipulation

	Gripper Design for Grasping and Assembly
	Gripper Design and Robotic Assembly
	Shape Approximation Based Grasping

	Base Position Planning for Efficient Pickup of Assembly parts
	Method Overview
	Inverse Kinematics
	Reachability Database
	IK Query

	Base Region Calculation
	Base Sequence Planning
	Task Defined as Reaching the Grasping Poses
	Robust Intersections of Base Regions
	Path Planning

	Dynamically Update the Base Positions
	Objects Regularly Placed in the Trays
	Objects Randomly Placed in the Trays

	Numerical Results and Analysis
	Base Regions and Intersections
	Calculation Time
	Analysis of Different Policies

	Experiments
	Regularly Placed, Globally Static Base Sequence
	Randomly Placed, Globally Static Base Sequence
	Regularly Placed, Dynamically Update the Base Sequence
	Discussion of the Experiment Results

	Whole-body Motion Planning for Dynamic Grasping
	Method
	Problem Formulation

	Numerical Results
	Strategy for Robust Grasping
	Experiment
	Experiment Setup
	Physical Simulation
	Real-world Experiment

	Discussion

	Gripper Selection and Design for Picking and Assembly
	Mesh Segmentation
	Gripper Selection and Dimensioning
	Rules for Gripper Type Selection
	Gripper Type
	Gripper Parameters

	Evaluation Under Assembly Constraints
	Assembly Task Specification
	Assembly Constraints
	Grasp Planning
	Minimize the Number of Grippers
	Discussion and Limitation

	Experiment

	Conclusions and Future Work
	Acknowledgments
	Bibliography
	List of Publications

