|

) <

The University of Osaka
Institutional Knowledge Archive

Title Task and Motion Planning for Mobile Manipulation

Author(s) |&F, &=

Citation |KFRKZ, 2022, HEHwX

Version Type|VoR

URL https://doi.org/10.18910/91761

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Task and Motion Planning for Mobile Manipulation

Jingren Xu
October 2022

Task and Motion Planning for Mobile Manipulation

A dissertation submitted to
THE GRADUATE SCHOOL OF ENGINEERING SCIENCE
OSAKA UNIVERSITY
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN ENGINEERING

BY

Jingren Xu

October 2022

Task and Motion Planning for Mobile Manipulation
Jingren Xu

Osaka University 2022

Abstract

Human workers are still highly engaged in assembly factories. In order to assemble
a product, human workers have to pick up different assembly parts from a large
storage area and transport them to the assembly line for assembly. Mobile manip-
ulators are able to operate in a large workspace and have the potential to replace
human workers in assembly factories. Especially, the current mobile manipulators

are well-suited for part-supply tasks in a structured environment.

In this thesis, I consider the possible applications of mobile manipulators to the
automation in an assembly factory. I assume the application scenario is that the
mobile manipulators pick up the assembly parts from the storage area and trans-
port them to the assembly line, and then these assembly parts are assembled by
(mobile) manipulators. The involved robotic operations are (1) moving the mobile
manipulator to the positions where the assembly parts are reachable for picking,
(2) moving the manipulator to a picking configuration, and (3) grasping and assem-
bling the assembly parts of various shapes and sizes. I approach this problem from
a three-layer hierarchy, i.e., task-level planning, motion-level planning, and grasp-
level planning, to improve the efficiency of performing the part-supply, grasping,

and assembly tasks.

At the task level, I present a planner to plan a minimal sequence of robust positions
to pick up assembly parts from different trays. The positioning uncertainty of

the mobile base is considered to improve the robustness of the pick-and-place

tasks. Considering the practical implementation, I also discussed object placement
styles and the update of the planned base positions, which further increases the
robustness. At the motion level, I present an optimization-based motion planner for
dynamic grasping, i.e., picking up the object during the whole-body motion of the
manipulator and the mobile base. The simultaneous motion of the manipulator and
the base further reduces the operation time and improves the overall efficiency. At
the grasp layer, I consider the grasping and assembly of the assembly parts product.
The robotic grippers have to robustly grasp assembly parts of various shapes and
sizes. In addition, once the assembly parts are efficiently picked by the mobile
manipulators, these assembly products are assembled by robotic manipulators. For
high-mix low-volume assembly tasks, the assembly products frequently change. As
a result, the grippers for the grasping and assembly tasks are required to change
as well. T propose a method for efficient gripper selection and design to meet the

demand for High-Mix Low-Volume assembly production.

TABLE OF CONTENTS

ITable of Contentsi 4
Introductiod 8
|1.1 Task-level Planningj 10
|1.2 Motion-level Plannind 13
|1.3 Grasp-level Planningj 16
|1.4 Contributions of This T hesisl 19
Related Workl 20
I2.1 Task Planning for Mobile Manipulatiod 20

|2.1.1 Positioning the Mobile Manipulator for Manipulation Tasksl 21

|2.1.2 Mobile Manipulator Performing a Sequence of Tasksl .. 23
l2.2 Motion Planning for Mobile Manipulatiod 24
|2.2.1 Modeling and Control of Mobile Manipulators] 25
|2.2.2 Sampling-based Motion Planning With Constraints] 27
|2.2.3 Optimization-based Motion Planniné 28
|2.2.4 Mobile Manipulatiod 29
l2.3 Gripper Design for Grasping and Assemblyl 34
|2.3.1 Gripper Design and Robotic Assemblyl 34
|2.3.2 Shape Approximation Based Graspiné 36

Base Position Planning for Efficient Pickup of Assembly part4 38

|3. 1 Method Overviewl 39

|3.2 Inverse Kinemati(ﬂ 41

I3.2. 1 Reachability Database{ 42

B.2.2 TK Quersl oo 44
b.3 Base Region Calculatiod 47
b.4 Base Sequence PlanningJ 48
I3.4.1 Task Defined as Reaching the Grasping Posesl 49
I3.4.2 Robust Intersections of Base Regionsl 52
B.4.3 Path Planningo 55
B.E) Dynamically Update the Base Positionsl Y4
I3.5.1 Objects Regularly Placed in the Traysi 59
l3.5.2 Objects Randomly Placed in the Traysl 60
B.6 Numerical Results and Analysisl 61
I3.6.1 Base Regions and Intersectionsl 62
l3.6.2 Calculation Time{ 64
l3.6.3 Analysis of Different Policiesl 66
B.? Experimentsi 69
I3.7.1 Regularly Placed, Globally Static Base Sequencei 71
l3.7.2 Randomly Placed, Globally Static Base Sequencei 73

I3.7.3 Regularly Placed, Dynamically Update the Base Sequence{ .17

l3.7.4 Discussion of the Experiment Resultsi 78
Whole-body Motion Planning for Dynamic Graspingi 81
4.1 Method 82

|4.1.1 Problem Formulatiod 82
|4.2 Numerical Results] 86
|4.3 Strategy for Robust Graspingl 89

|4.4 Experimentl 91
|4.4.1 Experiment Setupl 91

W42 Physical Simulation 91

|4.4.3 Real-world Experimend 93

|4.5 Discussiod 94

b Gripper Selection and Design for Picking and Assemblyl 99
|5.1 Mesh Segmentatiod 100
|5.2 Gripper Selection and Dimensioning] 103
b.2.1 Rules for Gripper Type Selectiod 105

b.2.2 Gripper Typel 106

b.2.3 Gripper Parametersl 107

|5.3 Evaluation Under Assembly Constraintsi 108
b.3.1 Assembly Task Speciﬁcatiod 108

b.3.2 Assembly Constraintsi 109

b.3.3 Grasp PlanningJ 111

b.3.4 Minimize the Number of Grippersi 114

b.3.5 Discussion and Limitatiod 118

|5.4 Experimentl 119

b Conclusions and Future Workl 124
|Acknowledgment4 128
Bibliography/ 130
IList of Publications{ 144

CHAPTER 1
INTRODUCTION

There is an increasing demand for robots that are able to flexibly perform tasks in
the human environment [(such as opening doors [2] and fetching a cup of coffee
[B]) and industrial production (e.g., inspection and sealant tasks in aerospace indus-
try [4], robotic painting [5], robotic machining [6], and part pickup and transport
operations in warehouses [[7]). A mobile manipulator, combining a mobile base and
a manipulator, is able to perform a variety of tasks in separate locations. Espe-
cially, the current mobile manipulators are well-suited for part-supply tasks in a
structured environment (e.g., an assembly factory), where the robot picks up and
transports objects to the desired location. However, these tasks are still heavily
occupied by human workers. In this thesis, I expect to use mobile manipulators to
replace human workers to perform the part-supply tasks in an assembly factory,
where different categories of assembly parts are scattered in a large storage area
(Fig. ﬁ]). To perform the part-supply and assembly tasks, the mobile manip-
ulators have to move to a sequence of positions to pick up the target assembly
parts from multiple trays and then transport them to the assembly area for the
final assembly. The involved operations are (1) moving the mobile manipulator
to the positions where the assembly parts are reachable for picking, (2) moving
the manipulator to a picking configuration, and (3) grasping and assembling the

assembly parts.

To efficiently apply mobile manipulators to part-supply and assembly tasks, plan-

ners and methods are required to automatically determine the base positions,

Image source: https://www.bott-canada.com/images/betriebseinrichtung/avero/av_
ref _framo_03_mit_person.jpg, https://myworkingspace.com/wp-content/uploads/2015/
03/Production-Line3. jpg

https://www.bott-canada.com/images/betriebseinrichtung/avero/av_ref_framo_03_mit_person.jpg
https://www.bott-canada.com/images/betriebseinrichtung/avero/av_ref_framo_03_mit_person.jpg
https://myworkingspace.com/wp-content/uploads/2015/03/Production-Line3.jpg
https://myworkingspace.com/wp-content/uploads/2015/03/Production-Line3.jpg

Figure 1.1: Assembly factories.

optimize the robot motion and design grippers for the grasping and assembly
tasks. This is especially important in case of High-Mix Low-Volume (HMLV)
manufacturing, which has increased significantly in the last couple of decades [B]
In HMLV manufacturing, the assembly line has to adapt to different assembly
products rapidly. This poses many challenges for using mobile manipulators in
an HMLV assembly factory. Firstly, assembly parts are placed in a large storage
area, the mobile manipulator has to pick up assembly parts from trays in different
locations. HMLV manufacturing frequently changes the assembly product, there-
fore the mobile manipulator has to visit different positions for different assembly
products. Moreover, the mobile manipulator has to grasp and assemble parts of
various shapes and sizes. In order to robustly grasp the assembly parts, the mobile
manipulator has to use grippers with appropriate configuration and dimensions.
Since the production cycle is short in HMLV manufacturing, it poses restrictions
on time spent on designing the grippers for picking and assembly. I tackle the as-
sembly factory automation problem from a three-layer hierarchy, as shown in Fig.
@. At the task level, I plan an efficient and robust sequence of base positions to
pick up all the required assembly parts. At the motion level, I further improve
the efficiency by optimizing the whole-body motion of the mobile manipulator to

dynamic-grasp the object. At the grasp level, I consider the efficient design of

Solutions:

Task > Base position planning for
picking parts from multiple trays
(minimal stops)
Motion ‘ » Motion planning for efficient
picking (no stop)
» Design grippers for grasping
Grasp ‘ assembly parts with various

shapes and sizes

Figure 1.2: Three-layer hierarchy approaches for automation in an assembly fac-
tory.

P

s‘; ! TI‘anS |
‘ Po \
gollect partsW

Ty

i
\

“‘Assembly}“ area

Figure 1.3: A schematic overview of the task. In an assembly factory, a mobile
manipulator is used to pick up objects from multiple places and then transport
them to the assembly line for further assembly.

grippers for grasping the assembly parts of various shapes and sizes, this meets

the demand for high-mix low-volume production.
1.1 Task-level Planning

The task-level planning considers planning the minimal stops that enable the mo-

bile manipulator to perform a sequence of pick-and-place tasks. Fig. B shows the

10

schematic overview of the pick-and-place task to be performed by the mobile ma-
nipulator. The product P to be assembled is comprised of several types of parts:
P,, P, and P,, and these parts are categorized by their types and stored in different
trays tray,, trays and tray,, respectively. To supply the parts for the assembly
tasks, the mobile manipulator may have to move to and stop at a sequence of po-
sitions to gradually pick up the required assembly parts from different trays. The
picked parts are temporarily placed on the mobile base and carried with the mobile
manipulator to the goal position. I assume that in each round of the pick-and-
place task, the mobile manipulator picks at least one piece of part for every target
type of assembly part. Our goal is to plan a minimal sequence of base positions,
in which the mobile manipulator is able to grasp the required assembly parts from
the trays without self-collision and collision with the environment. Notice that I
am performing task-level planning considering kinematic feasibility, (i.e., planning

the base positions) instead of low-level motion planning.

With the increased number of base positions (movements), the overall operation
time increases significantly for the following reasons: (1) The mobile manipulator
decelerates and accelerates before and after arriving at every base position of the
base sequence, which lowers the overall base velocity and increases the total oper-
ation time. (2) Every time the mobile manipulator experiences a ”stop and pick”,
there is a risk that the arrived position significantly deviates from the desired posi-
tion. Then the mobile manipulator has to perform time-consuming repositioning.
The risk increases with expanding base sequence, therefore, it is crucial to prune

out unnecessary base movements to improve the overall efficiency.

To minimize the base sequence size for a sequence of pick-and-place tasks, it is

preferable to move the mobile manipulator to the positions, where the mobile

11

manipulator can pick up the assembly parts from multiple trays. As shown in
Fig. @, the mobile manipulator moves to the first position and can grasp the
assembly parts in both tray; and trays, thus reducing the base sequence size by
one. To obtain such positions, I first calculate the base region for every target
tray in the given assembly task by using inverse kinematics. The base region is
a set of base positions where there are collision-free inverse kinematics solutions
for grasping the target assembly parts from that tray. Moreover, the base posi-
tioning uncertainty is taken into account by restricting the size of the applicable
intersections, i.e., the intersections smaller than the base positioning uncertainty
are discarded. Otherwise, the mobile manipulator is likely to move out of the
intersections. Then, I solve the minimum number of intersections that visit all
the base regions, by formulating it as a 0-1 knapsack problem. The centers of the
planned intersections are robust base positions for performing the pick-and-place
tasks. Finally, I search for the optimal sequence of visiting the base positions,
which results in the shortest path connecting the start and goal positions via the
base positions. Following the planned base sequence, the mobile manipulator can

perform efficient and robust part-supply tasks in real-world applications.

After every round of pick-and-place tasks, the mobile manipulator returns to the
start position and gets ready for the next round. As a result, the assembly parts
in the trays are gradually picked away. The overall efficiency and robustness can
be further improved by updating the base sequence according to the current sta-
tus of parts. However, the situation is further complicated by part placement
styles in real-world applications, where the parts are either randomly or regularly
placed in the tray. I discussed and analyzed the feasible policies for different task

specifications and parts placements.

12

Existing research usually optimizes the manipulator configuration or base position
for each task, with respect to criteria such as manipulability and reachability [9, [L0].
However, very few works consider a sequence of tasks. The most relevant ones I
could find are [11, 12, 13, 14]. In [L1, 12, 13], they assumed there is a mobile
manipulator configuration corresponding to each task, and they optimized the
commutation configurations for adjacent tasks or the distance between consecutive
configurations, but they did not consider reducing the number of configurations
or base positions. [14] considered optimizing the number of platform movements
for reaching a set of poses in the workspace. Different from their work, our task is
defined as grasping the objects in separate trays, and reaching a set of grasps is only
one of the possible cases. Moreover, real-world issues like the object placement and
update of the base sequence are discussed in our task, but they are not addressed

in the existing works.

1.2 Motion-level Planning

The motion-level consider optimizing the non-stop mobile manipulator motion to
further reduce the operation time. In the task-level planning, I assume the lo-
comotion and manipulation are performed separately. In this case, the potential
capabilities of mobile manipulators are not fully utilized. Most of the existing works
also employ the decoupled use of the mobility and manipulation modes [15, [16],
where the mobile manipulator firstly stops the mobile base before performing the
manipulation tasks, and then moves to the next position or configuration. For
example, in our previous work [15], I used the mobile manipulator in a decoupled
manner to pick up objects from multiple trays. However, the decoupled motion

of the mobile base and the manipulator is not efficient, the operation time can

13

Grasping a target object from a moving base

i

FK(q1) = 61

The arm and base move
simultaneously

Initial q;

Figure 1.4: Overview of the motion planning problem with tasks during the mo-
tion. The mobile manipulator has to move from an initial configuration to a goal
configuration, and it has to grasp some target objects during the simultaneous
motion of the manipulator and the mobile base.

be further reduced by simultaneously moving the base and the manipulator when
performing the tasks. There are a few attempts to pick up objects from a moving
base [@, @], but they firstly plan the path for the base and then plan the mo-
tion of the manipulator, i.e., the planning of the base and manipulator motion is
separately performed. Moreover,] predefined zero gripper velocity with respect
to the object, i.e., grasping the object with a stationary gripper from a moving
base. Decoupled planning of base and manipulator motion and decoupled plan-
ning of geometric path and velocity profile may lead to the sub-optimality of the
resultant trajectory. Moreover, the resultant trajectory may be infeasible since the

constraints from another planning phase are not considered [@]

Therefore, 1 adopt the optimization-based method to plan the path and velocity
profile simultaneously to obtain the time-optimal simultaneous motion of the mo-
bile base and the manipulator. One of the difficulties in planning the optimal

trajectory with tasks during the motion is the representation of the robot configu-

14

ration at the moment of performing the task, since both the time and configuration
are unknown. If I employ the commonly used trajectory optimization formulations
(with fixed a time interval between waypoints), I have to set the timing for per-
forming the task as an optimization variable. To obtain the robot configuration
for performing the task, I have to first determine the interval (defined by two con-
secutive waypoints) within which the task is performed, and then interpolate these
two ends of the interval to get the robot configuration. However, the interpolated
configuration may jump among different intervals during the optimization, thus
introducing nonsmoothness and discontinuity, and as a result, the NLP solver may
not find a feasible solution. To address this issue, in the discretized representation
of the trajectory, I propose to specify the waypoints for performing the task and set
the time interval between the consecutive waypoints as optimization variables to
continuously scale the trajectory. Therefore, the smoothness of this task constraint
is guaranteed. The output of our planner is a locally time-optimal trajectory of

the mobile manipulator, consisting of both the path and velocity profile.

There are mainly two research gaps I am addressing: (1) Firstly, there are very
limited works on coupled motion planning with performing tasks (grasping) dur-
ing the motion; (2) Secondly, very few works consider planning the simultaneous
motion of the mobile base and the manipulator. The contribution of our work is
that I proposed an optimization-based method to plan the optimal trajectory for

a mobile manipulator to perform tasks during the motion.

Most of the existing research on (optimal) motion planning plans the motion be-
tween two points without performing tasks during the motion. If the entire motion
is split into two parts and planned using the existing optimal motion planners, i.e.,

plan the motion from an initial configuration to the intermediate task configuration

15

and the motion from the intermediate task configuration to the final configuration,
then the resultant trajectory is not optimal. Moreover, mobile manipulators are
usually redundant, there are infinite configurations satisfying the task constraint.
In our formulation, I let the motion planner explore the robot configuration for the
task instead of predefining one. These issues are addressed in our optimization-

based whole-body motion planning.

1.3 Grasp-level Planning

The task-level and motion-level planning mainly address the high-level and low-
level motion of the mobile manipulator. At the grasp level, the mobile manipulator
has to grasp and assemble a set of assembly parts using robotic grippers. The grip-
per plays a pivotal role for the robot interacting with the object, the performance
of the gripper grasping an assembly component is strongly influenced by how well
the chosen gripper and its characteristics coincide with the characteristics needed
for grasping a specific part [20]. Therefore, designing reliable grippers is one of the

key issues for applying robots in grasping and assembly tasks.

However, robotic grippers are manually designed in most cases, the manual design
process is time-consuming and requires a lot of experience and expertise, which
makes it extremely challenging to design grippers, especially for an assembly task.
In a general robotic assembly task, a set of specialized grippers are required to
firmly grasp all the assembly components with different shapes and properties, in
addition, the grippers have to satisfy the assembly constraints, such as avoiding
collision with other subassemblies. Moreover, there is a trend in High-Mix Low-

Volume production, which refers to producing a large variety of products in small

16

Assembly : ==
components

N —
Segmentation =

Primitive
fitting

cylinder cylinder
Gripper ‘

types and
parameters

Grippers are further examined ‘
under assembly constraints

operationq operation, operation,,

Figure 1.5: Overview of the proposed approach of selecting and designing grippers
for an assembly task. In the first stage, suitable gripper types (2-finger or 3-finger
gripper) and parameters (opening width) can be determined by mesh segmentation
and primitive fitting. Then the segments and grippers of such configurations are
further evaluated under the assembly constraints, such as affordance and collision
avoidance. Finally, I optimize the number of grippers to cut down the total cost.

quantities, the fast-changing manufacturing routines propose great challenges for
applying robots in such agile manufacturing. Therefore, in terms of the grippers
used in the assembly tasks, a more efficient approach to designing grippers is highly

demanded in order to quickly adapt to the frequently changing assembly tasks.

To efficiently design grippers satisfying the assembly constraints, I propose a struc-
tured approach of selecting and designing the grippers based on the shape analysis

and assembly constraints, the overview of the method is illustrated in Fig. @

17

The insight is that industrial products are usually comprised of many regular shape
primitives, such as cylinder and cuboid, each of the shape primitives can be firmly
grasped by a suitable type of gripper. Therefore, I pre-define the rules for selecting
suitable gripper types, which reduces the space for searching for possible gripper
configurations and significantly accelerates the design process. Through mesh seg-
mentation techniques, I can uncover the underlying shape primitives and assign
predefined gripper types to them. The gripper parameters, such as the maximum
and minimum opening widths, can be further extracted from the dimensions of
the fitted primitives. These steps are automatically processed and provide re-
duced gripper configurations for further selection and evaluation. These gripper
configurations work well in terms of grasping, however, robotic assembly is a much
more complex task, where the grippers have to not only firmly grasp the assembly
components but also avoid collision with the subassemblies. Furthermore, some
segments are not suitable for grasping considering their affordance, and they are
excluded from the selection of graspable segments. After the evaluation under
assembly constraints, some of the remaining segments can be commonly grasped
by the same gripper, therefore, the number of grippers can be optimized to reduce

the total cost.

A few pieces of research were performed on the design of grippers for an assem-
bly task. However, these researches are limited to designing the local shape of
the fingertip [21] and general suggestions for designing the gripper systems [22].
There has been no attempt at the structured approach of selecting and designing
grippers according to the assembly constraints, as well as minimizing the number

of grippers, for an assembly task.

18

1.4 Contributions of This Thesis

In this thesis, I approach the assembly factory automation from a three-layer hi-
erarchy, the contributions of this thesis are three-fold: (1) task-level planning, (2)
motion-level planning, and (3) grasp-level planning. The core contributions are

summarized as follows:

o A task-level planner that plans a minimal sequence of robust positions to
pick up assembly parts from different trays. I consider both regularly and
randomly placed objects and propose a method to estimate the base region
for randomly placed objects. I discuss the possible policies for dynamically

updating the base sequence, which further increases the robustness.

e A resolution complete method to approximate collision-free IK solutions. It
returns a set of diverse IK solutions based on a precomputed reachability
database, which is especially helpful for checking collisions in complex envi-

ronments.

o An optimization-based motion planner for picking up the object during the
whole-body motion of the manipulator and the mobile base. A push-grasp
strategy is proposed to improve the robustness of dynamic grasping with

respect to object pose uncertainty.

o A structured method for the efficient selection and design of gripper for
grasping and assembly. The gripper types and parameters are automati-
cally determined by mesh segmentation and primitive fitting. The assembly
constraints are explicitly taken into account in the evaluation of the feasible
gripper configurations. The number of grippers required for the assembly

task is optimized to reduce the cost.

19

CHAPTER 2
RELATED WORK

In this chapter, according to the three-layer hierarchy toward assembly factory
automation, I review the related work from three topics, i.e., task planning for
mobile manipulation, motion planning for mobile manipulation, and gripper design

for grasping and assembly.

2.1 Task Planning for Mobile Manipulation

In order to enable the robot to perform useful tasks in the real environment,
the robot has to change the state of the world, by picking, moving, placing, and
pushing the objects in the world. Task planning is to plan a sequence of states and
transitions to change the initial state to a goal state [23]. In this thesis, the task

planning plans a sequence of positions for a sequence of picking tasks.

In the task-level planning for mobile manipulators, the motion constraints from
the picking tasks are considered, i.e., I plan the kinematically reachable base po-
sitions for picking parts from multiple trays. 1 do not plan the low-level motion
of the mobile manipulator between these positions, instead, I assume that there
exist low-level motion planners and controllers for moving the base between the
planned positions and moving the manipulator to the grasping pose. This relates
to the field of task and motion planning (TAMP), where task planning and motion
planning are coupled. In this work, the connection to motion planning during the
task planning is that I considered the kinematic feasibility /reachability, i.e., there
should be collision-free inverse kinematics solutions in a feasible base position.

Therefore, the task-level planning and motion planning are very weakly coupled in

20

this work. The related research is two-fold: (1) Positioning the mobile manipulator

for performing the tasks. (2) Mobile manipulators performing a sequence of tasks.

2.1.1 Positioning the Mobile Manipulator for Manipula-

tion Tasks

Mobile manipulators are usually redundant due to the added mobility from the
base. Positioning the mobile manipulator can be regarded as a line of research
in the redundancy resolution of mobile manipulators [24, 25, 26]. There has been
extensive research on exploring high-quality base positions for mobile manipula-
tors to perform a variety of tasks, such as reaching/grasping a set of targets and
maintaining velocity [27, 28, 29]. Manipulability [9, 10] is a widely used metric for

evaluating the flexibility of manipulator configurations in a base position.

Yamamoto et al. [24] proposed a planning and control method to position the
mobile manipulator at the preferred region to achieve high manipulability. Du
et al. [30] used the manipulability index to determine a suitable base placement.
Ren et al. [29] optimized the base positions for a mobile manipulator to reach
a set of positions with required orientations and keep a stable velocity in local
painting tasks. Berenson et al. [31] obtained the base placement and grasp for
a mobile manipulator to move an object from one configuration to another, by
optimizing a scoring function that combines the grasp quality, manipulability, and
distance to the obstacle. OpenRAVE [32] provides an inverse reachability module,
which clusters the reachability space for a base-placement sampling distribution
that can be used to find out where the robot should stand in order to perform a

manipulation task. Stulp et al. [33] proposed Action-Related Place to associate

21

a base location with a probability of successfully performing a manipulation task,
a capability map was used to determine if an object was theoretically reachable.
Burget et al. [27] employed the inverse reachability map to select statically stable,
collision-free stance configurations for a humanoid robot to reach a given grasping
target. Zacharias et al. [B4] took advantage of the reachability map to position a
mobile manipulator to perform a linear trajectory in the workspace. Vahrenkamp
et al. [35, B6] conducted a series of research on reachability analysis and its appli-
cation, the base positions with a high probability of reaching a target pose can be
efficiently found from the inverse reachability distribution. The reachability indi-
cates the probability of finding an IK solution, while there is no guarantee of the
completeness of obtained base positions. Some other works that used reachability

and capability analysis are referred to [37, B8, B9].

In addition to the base placement for mobile manipulators, there is a line of research
on the optimal placement for fixed-base manipulators [40, 41, 42, #3]. Feddema
et al. [40] resolved the optimal position for a fixed-base manipulator to reach a
set of points in the workspace, where no obstacle is assumed. Hsu et al. [41]
considered the obstacles in the workspace, and a randomized path planner and
a fast path optimization routine were combined to iteratively search for the best
base location. Regardless of where the manipulator is mounted, a mobile base, or
a fixed base, the optimization of base position shares many common criteria, such

as manipulability and time-optimality of the trajectory.

However, these works only optimize the position or manipulator configuration for
each task, they do not explore the base positions where the mobile manipulator can
perform multiple tasks, to reduce the total number of base movements. Besides,

in our task, the mobile manipulator is required to close the gripper to grasp the

22

assembly parts, instead of following an end effector path or exerting force on the
environment, therefore, optimal criteria such as the manipulability of the grasping
configuration are not a critical issue, thus it is not considered in planning the base

positions.

2.1.2 Mobile Manipulator Performing a Sequence of Tasks

To the best of our knowledge, [12] is one of the few works that considered the
mobile manipulator configurations for a sequence of tasks. They planned the op-
timal commutation configurations for a sequence of tasks under constraints. The
commutation configuration should be feasible for both current and next tasks.
They discussed optimization criteria, such as optimum manipulability, the least
torque norm, and minimization of the maximum actuator torque. But they did
not address how to find the common base positions or configurations to reduce the
number of base movements for a sequence of tasks, which is the major concern of
this paper. Carriker et al. [[13] considered optimizing the manipulator configura-
tions for a sequence of tasks defined by desired positions, orientations, forces, and
moments. The coordination of mobility and manipulation was formulated as a non-
linear optimization problem. A general cost function for point-to-point motion in
Cartesian space was defined and minimized by simulated annealing. However, they
implicitly assumed that there is a base position and a manipulator configuration
corresponding to each task, and they did not optimize the number of manipulator
configurations for the tasks. Vafadar et al. [14] studied the minimum platform
movements to reach a set of poses in the workspace, which is a special case of
our task definition. Moreover, I also discussed different placement styles of target

objects and the update of the base sequence according to the remaining objects or

23

the target objects to be picked, which are not covered in existing research.

From the above literature review, I find that (1) most of the existing works optimize
the position or configuration for a single task, but they do not consider a sequence
of tasks, and (2) most of the existing works do not optimize the number of base
positions for a sequence of tasks, and (3) none of the existing works considers
updating the base positions and different object placement styles. Although there
has been extensive research on mobile manipulation, the problem of planning a
minimum sequence of base positions for manipulation tasks in multiple locations

has not been addressed.

2.2 Motion Planning for Mobile Manipulation

Motion planning is to find a collision-free trajectory for a robot to move from an ini-
tial configuration to the goal configuration while satisfying all the constraints. The
two most widely used approaches are sampling-based planning and optimization-
based planning. Current motion planners are able to plan the (optimal) path
between two configurations in the C-space. However, they did not consider tasks
during the motion. On the other hand, for planning the motion for mobile ma-
nipulation, there have been very few attempts to plan the simultaneous motion
of the manipulator and the base. In this section, I review the literature from the
perspective of motion planning and mobile manipulation. Before reviewing the
motion planning literature, I review the fundamentals of the modeling and control

of mobile manipulators.

24

2.2.1 Modeling and Control of Mobile Manipulators

A mobile manipulator consists of two subsystems, a manipulator and a mobile
base. A comprehensive book covering the mathematics and modeling of mobile
robots is referred to [44]. Chapter 13 of [45] introduces the modeling and control of
several types of wheeled mobile robots, including omnidirectional wheeled robots,
differential-drive robots, and car-like robots. And the challenges of controlling a
mobile manipulator are three-fold: (1) the nonholonomic base is restricted on the
possible velocities; (2) The manipulator and base have different dynamic charac-
teristics [24], namely, the base usually has a slower dynamic response. (3) There

is a dynamic interaction between the two subsystems.

Yamamoto et al. [24] studied the coordinated locomotion and manipulation of the
mobile platform, where the mobile platform is controlled so that the manipulator is
always positioned at the preferred region, but the mobile platform and manipulator
are controlled separately. Later, the effect of dynamic interaction between the
mobile base and the manipulator is studied in [46]. In [13], the coordination of
mobility and manipulation is formulated as a nonlinear optimization problem. A
general cost function for point-to-point motion in Cartesian space was defined
and minimized using a simulated annealing method. Seraji [47, U8, 26] used the
configuration control approach to control the mobile base and the manipulator in
a unified manner, where the nonholonomic constraints and task constraints can be
incorporated into the augmented Jacobian J(q) = [J3(q), Jm(q), J-(¢)]*, and the

whole system kinematics and constraints can be written as:

Ju(q) 0
Tnlq) | 4= | X, (2.1)
Je(q) Z

25

where J,,(q) represents the holonomic kinematic constraints of the entire mobile
manipulator to achieve target end effector velocity X, Jy(q) denotes the non-
holonomic constraints on the mobile base, and J.(q) represents Jacobian matrix
associated with additional task constraints, it is derived by differentiating the task
kinematic function Z = ¢(q). Let X, = [O,th, Zd] be the desired end effector

velocity and task constraints, then
q=J(g)"' Xa (2.2)

is the solution of Eq. (1). And the following control law can be used to control the
nonholonomic mobile manipulator in coordination and also correct the task-space
trajectory error,

q=J(q) ' [Xa+ K(Xg— X)) (2.3)

Since mobile manipulators are usually redundant, in addition to following an end-
effector trajectory, they are able to achieve multiple tasks or criteria, such as
manipulability. Bayle et al. [10] generalize the manipulability to mobile ma-
nipulator, built from a manipulator mounted on a wheeled base. The extended
manipulability can be used to optimally position the manipulator and base, and
plan the end-effector motion. De Luca et al. [49] extended the Projected Gradient
(PG) and the Reduced Gradient (RG) optimization-based methods to nonholo-
nomic wheeled mobile manipulators. White et al. [50] developed a dynamic-level
redundancy resolution method for nonholonomic wheeled mobile manipulators and

experimentally validated the dynamic end-effector interaction control.

To enable the mobile robot to autonomously perform challenging manipulation
tasks in the natural environment, there has been a line of research on visual servo
control of mobile manipulators. Wang et al. [51] developed a hybrid visual servo

controller for robust grasping, the controller is a form of image-based visual servo

26

(IBVS) controller and guarantees asymptotic stability of the closed-loop system.
To improve the robustness, they developed a discrete-event controller based on

Q-learning to keep the visual features in the view of the camera.

2.2.2 Sampling-based Motion Planning With Constraints

Most of the existing motion planners plan the motion between two points in the
configuration space [52, 53, b4]. Over the past two decades, sampling-based mo-
tion planners [52, b5, p6] have been extensively studied since they are effective
in exploring high-dimensional space and probabilistically complete. Among the
sampling-based planners, RRTs can easily incorporate a variety of constraints.
Therefore, RRTs have been applied to motion planning for nonholonomic manipu-
lators and mobile robots with nonholonomic constraints [57]. However, RRTs have

not been used to plan the full-body motion of a mobile manipulator.

To plan the motion of the nonholonomic mobile robots, one common approach
is to combine the sampling-based method [55] with a steering method function
[68], which serves as the local path planner to extend an existing node closer to
the sampled node [p9]. The optimal steering curve between two configurations is
studied for some wheeled vehicles in the absence of obstacles, such as Dubins curves
[60] for a forward-only car and Reeds-shepp curves [61] for a car with a reverse
gear. These curves are the shortest geometric path for the corresponding robot
models, but for the time-optimal motion of the robot, the dynamics constraints

should be considered.

For motion planning for the mobile manipulator, in addition to the nonholonomic

constraints, other constraints may arise from the mobile manipulation tasks, such

27

as grasping an object. For grasping an object, the end effector has to reach
the grasping pose at the time of grasping. This pose constraint defines a lower-
dimensional manifold embedded in the configuration space. Special techniques are
needed to account for the constraints of sampling-based motion planning methods

[62], including relaxation, projection, tangent space, atlas, and reparameterization.

2.2.3 Optimization-based Motion Planning

Motion planning can be formulated as an optimization problem. Compared to the
sampling-based method, optimization-based motion planning can flexibly incor-
porate a variety of constraints and also optimize a certain objective. Commonly
employed objectives for robot motion are operation time, trajectory length, input
energy, jerk, smoothness and etc., and the constraints include collision avoidance,
joint limits, and dynamics. A good tutorial on trajectory optimization methods is

referred to [63].

Khatib [64] pioneered the potential field method for collision avoidance and motion
planning, but it is sensitive to local minimum. Later, an analytical navigation
function with a unique minimum is proposed [65, 66] to address the local minima
problem, a navigation function should (1) be smooth, (2) has a unique minimum
at goal configuration, and (3) be uniformly maximal on the boundary of the free

space and (4) be Morse [67].

Kalakrishnan et al. [68] proposed stochastic trajectory optimization for motion
planning (STOMP), it performs local optimization by adding Gaussian noise
around an initial trajectory, and the cost function based on a combination of

obstacles and smoothness is optimized in each iteration. STOMP uses gradient-

28

free optimization, in contrast, CHOMP [54] uses functional gradient techniques to
iteratively improve the quality of an initial trajectory, it optimizes a functional
that trades off between smoothness and obstacle avoidance, and the trajectory
optimization is invariant to parametrization. Schulman et al. [53] formulated mo-
tion planning as a sequential convex optimization procedure, where the collision
is penalized with a hinge loss, and no-collision constraint for convex objects is ef-
ficiently computed based on signed distance. Ichnowski et al. [69, 70] combined
the grasp selection and motion planning to explore the time-optimal trajectory for
bin-picking, the collision avoidance and grasp pose constraint are linearized in the
trust region, and the motion is computed by optimizing with sequential quadratic
programming (SQP) and iteratively updating trust regions, however, the grasping

action takes place at the beginning of the motion instead of during the motion.

However, sampling-based and optimization-based methods have rarely been ap-
plied to directly plan the whole-body motion of both the manipulator and the
mobile base, besides, they do not consider the tasks during the motion. The most
relevant work to ours is [18], they used a sampling-based method to plan the ma-
nipulator motion from a moving mobile base. But the motion of the mobile base is
planned prior to planning the manipulator motion, which leads to sub-optimality.
Besides, they consider zero gripper velocity for grasping, which restricts the overall

efficiency of the task.

2.2.4 Mobile Manipulation

Mobile Manipulation refers to performing robotic tasks with the help of both lo-
comotion and manipulation ability. In recent years, there have been more and

more learning-based methods used in mobile manipulation due to their ability to

29

adapt to changes in the problem settings. Two possible reasons are: (1) Mobile
manipulators are great agents for exploring the environment; (2) Learning-based
methods help address the positioning uncertainty. At the same time, MPC-based
methods are also popular because they can be used as whole-body controllers for
mobile manipulation. From these recent mobile manipulation research using ei-
ther learning-based approaches or classic approaches, I notice that there has been
a trend in the efficient use of mobile manipulators by simultaneously controlling

the mobile base and the arm. [71, 72, [73, [74].

Classic Approaches to Mobile Manipulation

Most of the existing works in the mobile manipulation community use the mobility
mode and manipulation mode separately [15]. Obviously, the decoupled motion
of the manipulator and mobile platform is not efficient. In the early works in
the 90s, there have been a few works on the coordinated control of the mobile
manipulator. For example, Yamamoto et al. [24] proposed a method for controlling
the mobile platform such that the manipulator is positioned at a configuration
of high manipulability. Seraji [26] proposed a unified approach to control the
manipulator and mobile base as a whole, using the augmented Jacobian matrix.
These works usually assumed a given end-effector trajectory and the absence of

obstacles.

Liao et al. [75] used the optimization-based method to plan the whole-body motion
of a holonomic mobile manipulator (from q; to q; or from g; to a target end-effector
pose Py). Spahn et al. [74] also performed whole-body trajectory optimization for
mobile manipulation, however, the mobile manipulator performs the picking and

placing tasks at the beginning and the end of the trajectory, instead of during the

30

\
Navigation Grasp Grasp Pseudo-reset

Detection

t }

Figure 2.1: Overview of reinforcement learning for mobile manipulation.

motion. I notice that a recent work conducted aerial grasping during the motion
[@], however, they have to predefine the grasp timing and velocity, therefore,
basically, they plan two trajectories (1) from initial configuration to grasp and (2)

from grasping to the final configuration.

There is another line of works on dynamic grasping [@, , @], i.e., grasping a
moving object. The common part is that there is relative motion between the
robot and the object. However, optimal motion is not the major concern of these
works, their pipeline usually involves motion prediction of the moving object, grasp

planning, visual tracking, trajectory generation, and trajectory execution.

As reviewed above, although there are a few works on whole-body trajectory op-
timization for mobile manipulators [@, @], none of the existing motion planners
have addressed the problem of planning the optimal motion for a robot to perform

tasks during the motion, which is our major contribution.

Learning-based Approaches to Mobile Manipulation

Sun et al. [] proposed a system for a mobile manipulator to autonomously learn
skills using a combination of navigation and manipulation. The overview of the

system is shown in Fig. EI This system learns a navigation policy and a grasping

31

Action a;

State
St P S5t+1

Tt P T

Deep RL Module Reward

& Robot /

Pose p Environment

RGB Image

Vision Module

Figure 2.2: Overview of the deep reinforcement learning framework to control a
mobile manipulator performing mobile picking tasks.

policy for the mobile manipulator to perform room cleaning tasks, i.e., picking
up objects on the ground. The grasp policy predicts the probability of success
for a grasp action from the RGB images observed by the robot’s camera. The
grasp action is simply represented as moving the gripper to a predicted (x, y)
coordinates slightly above the ground for grasping, the orientation of the grasp is

not considered since they consider grasping some simple objects.

Wong et al. [72] presented a teleoperation framework that allows simultaneous nav-
igation and manipulation of mobile manipulators. They collected a large dataset
in a simulated kitchen environment and proposed a learned error detection system
to detect covariate shifts. They train imitation learning policies on the collected

data and achieve 45% task success rate.

Honerkamp et al. [73] proposed a learning-based method to generate a kinemati-
cally feasible trajectory for the base of a mobile robot when its end-effector moves
toward a certain goal pose. They formulate this problem as a goal-conditioned
reinforcement learning problem. The reward function is composed of two parts:

(1) The first part is an indicator function for kinematic feasibility evaluated by

32

Figure 2.3: The mobile manipulator performs mobile picking using the proposed
framework.

solving the inverse kinematics using an IK solver; (2) The second part penalize the
unnecessary actions. This system learns a policy for generating the next base ve-
locity command, using the current robot state, and the next end-effector goal pose.
However, one of the limitations is that they did not consider collision avoidance

with the environment.

Wang et al. [] applied the deep reinforcement learning-based method to mobile
manipulation tasks. The overview of the framework is shown in Fig. @ For this
deep reinforcement learning system, the state includes the position of the gripper
w.r.t the robot base frame, the position of object w.r.t the gripper frame, the
position of object w.r.t the robot base frame, the joint positions, and velocities
of the arm, as well as the gripper state. The pose of the object is estimated
from the camera mounted on the mobile platform. The action is defined as the
gripper relative control action, the robot base relative control action, and the
binary gripper control action. The reward function is composed of three terms,
the first term is the control action reward, the second term measures the distance
between the gripper and the object, and the third term is a sparse reward for a

successful grasp.

33

2.3 Gripper Design for Grasping and Assembly

There has been a lot of research on gripper design [81], 82], however, very few of
them design the grippers for an assembly task considering the assembly constraints.
Another line of research that is related to our work is part/model/primitive-based
grasp planning [83, 84, 85, 86, 87], in this sense, our work can be called shape
primitive-based gripper design, considering assembly constraints and optimization

of a number of grippers.

2.3.1 Gripper Design and Robotic Assembly

Generally, the grippers are specially designed according to the task to be per-
formed [82, 81], in this case, the design process takes many iterations to obtain
a satisfactory design. There have been very few attempts to design grippers for
an assembly task and improve the design efficiency, to the best of our knowledge,
the most relevant works to ours are [22, 88]. Pham et al. [22] surveyed the design
methods to achieve versatile and cost-effective gripping and proposed a strategy for
minimizing the number of grippers through part-family grouping, and later Pham
et al. [88] proposed a system to determine the configuration of grippers for an
assembly task. However, none of these works explicitly incorporate the assembly
constraints into the gripper design, besides, the mesh segmentation and primitive
fitting method used in our approach are able to handle models with more complex

shapes.

In addition to the gripper configuration, the contact between the gripper finger
and object plays an important role in grasp stability, therefore, the contact model

has been studied extensively [89, 90, 91, 92]. Early research mainly used the point

34

contact model [93], later on, the soft finger model was developed to model the
contact in a more realistic way [90, 89]. Some researchers studied the finger design
to change the contact characteristics and improve the performance of the gripper.
Honarpardaz et al. [94, 21] proposed a generic optimized finger design (GOFD)
to automate the finger design process, the fingertip shape was designed to mimic
the local surface contour of the workpiece, thus the contact area was increased.
Song et al. [95] noticed that most grasp contacts share a few local geometries,
they proposed a uniform cost algorithm to cluster a set of example grasp contacts
into several contact primitives and designed the fingertip shape to match the local

geometry of the contact primitive in order to increase the contact area.

Rodriguez et al. [96] explored the effector form design for 1 DoF planar actuation,
the mechanical function of a product is formulated as the product of the effector’s
shape and motion. Taylor et al. [97] investigated the role of shape and motion
in the contact interaction and proposed a framework to optimize the shape and
motion of a planar rigid body end-effector to achieve a manipulation task. Chavan-
Dafle et al. [98] proposed a two-phase gripper to passively reorient the objects
while picking them up. Birglen et al. [99] extensively reviewed the characteristics
of industrial grippers, the stroke, weight, force, and weight, as well as performance,
are investigated in detail. Hermann et al. [100] designed a gripper that can switch
between two modes, including a grasping mode and a fully actuated precision

mode.

For an assembly task, usually more than one gripper is required to grasp all the as-
sembly components. Kramberger et al. [101] proposed a flexible and cost-effective
grasping solution to quickly develop and test fingertips to handle multiple parts.

Harada et al. [102] incorporated the tool changer into the assembly planner and

35

proposed an assembly planner that is able to automatically select a suitable gripper
to assemble parts. Nakayama et al. [103] designed grasping tools for an assem-
bly task based on shape analysis of parts, however, the assembly constraints are
not considered in the evaluation of graspable segments and suitable gripper con-
figurations, and additionally I optimize the number of grippers for the assembly

task.

2.3.2 Shape Approximation Based Grasping

Grasp planning is difficult due to a large number of possible gripper configurations,
but grasping planning can be simplified if considering the shape of the object and
the grasping strategy are closely related. Miller et al. modeled the object as a
set of simple shape primitives [83], then the grasp location and preshape can be
determined. Goldfeder et al. [104] used a decomposition tree of the object to prune
the large space of possible grasps into a subspace that is likely to contain many good
grasps. Huebner et al. [85] approximated the object by box primitives and selected
grasps based on the approximated boxes. However, the error of approximation by
primitives may result in low-quality grasps, to counteract this problem, Przybylski
et al. [84] proposed the grid of spheres for grasp planning, which effectively reduces

the search space for grasps without sacrificing potential high-quality grasps.

These researches passively plan grasps given the object model, but I can also
actively design the gripper configurations according to the shape of the target
object in order to easily obtain high-quality grasps. This idea is somewhat related
to the taxonomy of grasps proposed in [[105], where the grasps are classified based
on task-related and geometric considerations, each type of grasps is corresponding

to one category of tasks and object geometry. For grasping the assembly compo-

36

nents, I select suitable grasping postures according to the shape of the assembly
components, since I do not use a dexterous robot hand to realize these grasps,
instead I abstract a simple gripper configuration from the grasping postures of a

dexterous hand.

37

CHAPTER 3
BASE POSITION PLANNING FOR EFFICIENT PICKUP OF
ASSEMBLY PARTS

Mobile manipulators are able to operate in a large workspace, and have the po-
tential to replace human workers to perform a sequence of pick-and-place tasks at
separate locations. Many existing works optimize the base position or manipulator
configuration for a single manipulation task, however, very few of them consider a
sequence of tasks. In this chapter, I present a planner that plans a minimum se-
quence of base positions for a mobile manipulator to robustly collect objects stored
in multiple trays. I use inverse kinematics to determine the base region where a
mobile manipulator can grasp the target objects stored in a tray, and move the
mobile manipulator to the intersections of base regions to reduce the operation
time for moving the base. I ensure robustness by only considering the intersection
whose radius of the inscribed circle is larger than the base positioning error. Then
the minimization of the number of base positions is formulated as a 0-1 knapsack
problem. Besides, considering different object placements in the tray, I analyze
feasible policies for dynamically updating the base sequence based on either the
remaining objects or the target objects to be picked. In the experiment, I ex-
amine our planner in various scenarios, including different object placements: (1)
Regularly placed toy objects; (2) Randomly placed industrial parts; and different
implementation policies: (1) Apply globally static base positions; (2) Dynamically
update the base positions. The experiment results show that the time for mov-
ing the base decreases by 11.22 seconds (29.37%) to 17.26 seconds (36.77%) by
reducing one base movement, and demonstrate the feasibility and potential of the

proposed method.

38

3.1 Method Overview

Fig. @a illustrates the overview of the tasks by a simple example. The product P
to be assembled consists of three types of assembly parts P,, P, and P, (subscripts
a, b and ¢ are used to differentiate different types of assembly parts). Each type
of assembly parts are placed in the same tray, thus they are classified and stored
in three different trays tray;, tray, and trayy, respectively. Our goal is to plan the
base sequence for collecting the target assembly parts from the containing trays.
The following information is assumed to be known: (1) The types of parts to be
collected and their associated trays. (2) The geometrical models of the trays and
the potential obstacles in the environment. (3) The poses of the trays and obstacles.
Since the target application scenario is in the manufacturing environment, the
above information is readily available. The grasping poses for the objects can be
obtained using either model-based or model-free methods, depending on whether
the objects are regularly or randomly placed in the tray. In the first case, I need

the geometric models of the objects, and in the latter case, the grasping poses can

be estimated by the model-free method described in Section .

Algorithm m presents the overview of the planner. The algorithm mainly consists
of three steps: (1) Solve the base regions for every target tray which contains the
target assembly parts. (line 2 to line 4) (2) Determine the robust intersections of
the base regions. (line 5 to line 10) (3) Plan a minimal sequence of base positions

from the robust intersections to visit all the base regions (line 11).

Fig. @a, b, and c illustrate three policies that can be implemented in practical
applications. They differ in the target objects used to plan the base positions. In
Fig. @a, all the objects in a tray are used to plan a globally static base sequence.

Fig. @b shows the update of base regions based on the remaining objects in the

39

tray, trayz tray; tray,

0Op 00, /@
aksl 00[®m

U

@ Start Goal 0he @

T 0
Y [j

QA
QQ

O §p09 9 00
OOf|F B} 00, @S @ 090
Pgy Ppa Ppy4
00 00
OO0 fFj 00| |88 Oo)]@r| 09 e
Ppr Py, Ppy PB Ppy
00 90 ‘
O Ffio9 L @ o9/ ®

Ppq Ppg, Ppy PB Ppy

(b) ()

Figure 3.1: Overview of the method (top view). Several types of parts are required
in the task, and one or more parts of each type will be collected. The sub-figures
show three types of policies respectively: (a) Global static base positions for col-
lecting all the objects in the tray. (b) The base positions update based on the
remaining objects in the tray. (c¢) The base positions update based on the objects
to be picked, which are surrounded by red lines, in a round of pick-and-place tasks.

40

Algorithm 1: Overview of the algorithm

Input: Grasping poses for objects in target trays
Output: A sequence of base positions
base_regions < {}
for tray € target_trays do
base_region < SolveBaseRegion(tray)
// assume base region is robust
base_regions < base__regions U base_region

w N =

'S

(9]

robust__intersections < {}
intersections < PossibleIntersections(base_regions)
for intersection € intersections do
// radius of the inscribed circle
8 r < InscribedRadius(intersection)
if r > positioning__uncertainty then
// save robust intersections
L robust_intersections < robust_intersections U intersection

N o

10

11 base__sequence < PlanMinSequence(robust__intersections)
12 return base sequence

tray. After every round of pick-and-place, the remaining objects decrease and the
area of the base region increases, which improves the overall robustness. Fig. El]c
shows another policy for updating the base regions according to the objects to be
picked. A good picking order may reduce the variance of the robustness in different

rounds of pick-and-place tasks.

3.2 Inverse Kinematics

The inverse kinematics problem is to determine a set of joint angles that bring
the end effector to the desired pose. In this study, I aim at obtaining a complete
set of base positions where there exists at least one collision-free IK solution that
reaches desired grasping poses. Since solving IK and collision check are performed

separately, this leads to a planner that loses the ability to be probabilistically

41

complete. In terms of collision check between the mobile manipulator and the en-
vironment, it helps to find a collision-free manipulator configuration by generating
a variety of candidate IK solutions that cover all kinds of manipulator configura-
tions, thus it is not likely to miss a feasible base position in which a collision-free
IK solution can be found. For non-redundant manipulators, it is feasible to find
out all the IK solutions and perform a collision check between the manipulator
and the environment. However, generally there are an infinite number of IK solu-
tions for redundant manipulators, a common IK solver returns only one or multiple
but not necessarily representative 1K solutions, in that case, the IK solver might
only find IK solutions that consequently fail in collision check, even if there exist
collision free solutions. Therefore, for redundant manipulators, it is important to
find out representative IK solutions for further collision checks. Parametrized IK
approaches for 7-DOF redundant manipulators [[106, [107] are able to find all the
feasible IK solutions, while this method is usually manipulator-specific. I propose
a manipulator-independent method of obtaining approximated representative 1K
solutions, by querying the vicinity of a target pose in the reachability database,

and it is proved to be a resolution complete method of solving IK.

3.2.1 Reachability Database

The reachability database is constructed by sampling the joint space of the ma-
nipulator, reachable poses are obtained by calculating forward kinematics (FK).
However, this may introduce the preference for singular configurations, that large
variations in joint angles only result in small differences in the grasping poses.
To obtain a more uniform distribution of poses in the workspace, the manipula-

bility measure [9] can be applied to relieve the congestion of configurations near

42

the singular configurations. The downsampled resultant poses of the Fetch robot
[] are illustrated in Fig. @ (Left). The reachability can also be represented
by 3-dimensional voxels containing sampled grasping poses, as shown in Fig. @
(Right), the Cartesian workspace is discretized into many 3 dimensional voxels ac-
cording to the positions. The color of the voxels indicates the number of grasping

poses that end up in the corresponding voxels.

Figure 3.2: Representation of downsampled version of our reachability database.
(Left) Reachable poses are represented by colored arrows, the color encodes the
manipulability of the corresponding manipulator configuration. (Right) In the
cross-sectional view of the voxelized 3d workspace of a Fetch robot, the color
indicates the number of grasping poses contained in the 3d voxel. For further pose
queries, the entire 92 million poses are distributed to 2 million 6d voxels, instead
of 3d voxels.

For further query of poses comprised of both translation and rotation parts, 6-
dimensional voxels are adopted instead, thus the workspace is discretized in both
position (z,y, z) and orientation (represented by roll a, pitch 8 and yaw 7), the
grid lengths are Az, Ay, Az, Aa, A and A~, respectively. All the resultant poses
calculated by forward kinematics, together with their joint angles, are stored in the
corresponding 6-dimensional voxels according to their positions and orientations.

For example, a grasping pose G; = [z;, i, 2, a4, Bi, 7i]*, should be stored in the

43

voxel indexed by (x;/Ax, y; /Ay, z;/Az, a;/Aa, B/ AB, v/ Av), within the voxel
is a set of poses with similar position and orientation, thus the vicinity of a target

pose can be quickly found by querying the pose from such a data structure.

3.2.2 1K Query

Instead of resolving the inverse kinematics by an IK solver, I obtain the IK solutions
by querying the grasping pose in the database and accessing the corresponding joint
angles. However, the reachability database is only a discrete representation of the
continuously varying reachable poses. Probabilistically, I will fail to find an iden-
tical grasping pose in the database. Since solving IK and checking collision are
treated separately, the IK solutions should be as diverse as possible in order to be
resolution complete in finding collision-free IK solutions. Instead, I approximate
the IK solutions of the target grasping pose G; by querying a range of poses in the
vicinity of Gy, for G; € (G;—AG, G +AG), where AG = [Ax, Ay, Az, Aa, AS, Avy]T,
and the associated manipulator configurations of G; are the approximated IK so-

lutions of G,.

In the reachability database, every 6d voxel contains a small range of poses, firstly
I find the voxel containing the target pose, and all the poses within the voxel
are regarded as the vicinity of the target pose. For example, by querying pose
[0.6,0,0.8,0,0.5,0.5] from the database, the indexed voxel is found to have 151
poses, and Fig. @ shows a part of the manipulator configurations among them,
these are the approximated IK solutions of the target poseﬂ. As the database

resolution goes to infinity, the approximation error approaches zero and the queried

ITf exact IK solutions are desired, it is recommended to use the approximated IK solution as
an initial seed in a numerical IK solver, then it can quickly converge to the exact solution after
a few iterations

44

'ERY
A

Figure 3.3: A part of obtained 151 representative manipulator configurations by
querying the pose [0.6,0,0.8,0,0.5,0.5]7 from the reachability database, they are
the approximation of the exact IK solutions of the target pose and cover different
possible manipulator configurations.

'k

manipulator configurations include complete IK solutions of the target pose, such
that, collision-free IK solutions can be found if there exist, regardless of the location
of the obstacles. The feasibility and completeness of approximating IK solutions
of G; by the associated manipulator configurations of G; € (G, — AG, G, + AG), are
proved by the following two lemmas, they are based on the differentiable mapping
between configuration space and workspace, except for singular configurations.
The first lemma is to prove that, as the sampling resolution goes to infinity, I
can always find a manipulator configuration within the voxel, that approaches any
one of the IK solutions of the target pose. The second lemma proves that, as the
voxelization resolution goes to infinity, all the manipulator configurations within
the voxel approach the IK solutions of the target pose. Note that the completeness
of approximating all the IK solutions of G; is already guaranteed by lemma 1, and
lemma 2, together with Lemma 1, is to guarantee the completeness of obtained

base positions in the next section.

Definition: Let © = [01,0,,...,0,]T be the manipulator configuration vector, Af

45

and AG be the sampling and voxelization resolution, I K(G;) be the IK solution
set of G;, FK(O) be the resultant pose calculated by forward kinematics of O,
IKRDB(G;) be the corresponding manipulator configuration of G; in the reacha-
bility database, J* be the pseudo-inverse of Jacobian matrix J, vorel(G;) be the

voxel containing pose G;.

Lemma 1: VO; = [01,0,,...,0,]7 € IK(G;), 3G; € (G — AG,G; + AG), ©; =
IKRDB(G;), such that A1i9mo |9; — 6] = 0.

Proof: Set {O | FK(0) = G} is equivalent to set {© | © = IK(G,)}, if A§ — 0,
then {© | FK(0) = G,} € {0 | FK(©) = G; € (G — AG, G, + AG), A0 — 0},
thus VO, € IK(G,), 3G; € (G — AG, G, + AG), ©, = IKRDB(G;), such that
Aim [[©; — O] = 0.

Lemma 2: VG, € (G, — AG, G, + AG), ©, = IKRDB(G;), 36, € IK(G;), that
AG—0

Proof: G = J(©)O, © = J*(©)G + (I — J*J)k, where k is an arbitrary vector
denoting redundancy, integrate two sides of the formula by a small time step,
AO = JH(O©)AG + (I — J"J)kAt, then VAG — 0, 3k = 0 such that A© — 0.
Because |G; — G| < AG, AG — 0= |G; — G| — 0, thus lim ||©; — ©,]] = 0.

|Gi—Gt|—0

(replace J* with J~! for non-redundant manipulators)

The above lemmas apply to both redundant and non-redundant manipulators, the
only problem with this method is that the continuous mapping between joint space

and workspace breaks down at singular configurations.

46

3.3 Base Region Calculation

The base region for a tray is a set of base positions where the mobile manipulator
is able to reach all the targets in the tray, and avoid self-collision and the collision
with the environment. Firstly, I prepare stable grasping poses with respect to
the object for every object in the tray, using a grasp planner [109, 110, 111, 112].
Then sample base poses (z;,y;,) in front of the target tray, as illustrated in
Fig. @, here I assume that the orientation ¢ of the mobile manipulator is con-
stant, because for many mobile manipulators, the joint connecting the manipula-
tor and mobile base rotates around a vertical axis, thus counteracts the rotation
of the mobile base and contributes almost nothing new. Then the set of stable
grasping poses {Gi1, Gia, - .., Gin }; With respect to the mobile base for object O;
is obtained for every object in the tray. Finally, if there exists a grasping pose
Gii € {Gi1,Ge2, ..., Gin}j, such that I can find a collision-free manipulator configu-
ration /K RDB(Gy) for a pose Gy, € voxel(Gy;), then O; can be grasped from the
base position, a base position for the tray is feasible if all the objects in the tray
can be grasped. All the feasible positions formulate the base region for grasping

objects from the tray.

I compare the base regions obtained by different IK approaches. The obtained
base regions using IKFast plugin to find the IK solutions are shown in Fig. @
Fig. @ is the base regions calculated by the IK query approach proposed in this
chapter, it is obvious the base region is larger. In the IK solver approach, IK
solutions are not found in some base positions, and some of the found IK solutions
fail in the collision check. For the IK query approach, the obtained base positions
are not always feasible, but the base region is complete when the resolution of the

reachability database goes to infinity.

47

Algorithm 2: Calculate the base region for a tray
Input: Target objects in the tray

Output: Base region of the tray

Function SolveBaseRegion(tray)

=

// plan grasps for every target object
2 grasps__all_objs < PlanGrasps(objs_in_ tray)
3 sampled__positions < SampleBasePositions(tray)
4 base_region < {}
5 for position € sampled_positions do
// All target objects should be graspable
6 all_objs__graspable < true
7 for grasps_obj; € grasps_all_objs do
// At least one grasp should has collision-free IK
for grasp € grasps_obj; do
9 IKs < SolvelK(grasp, position)
10 if ExistCollisionFreelK(IKs) then
11 L break
12 else if [sLastGrasp then
13 L all_objs_graspable < false
14 else
15 L continue
// if not all the objects are graspable, check the
next position
16 if Notall_objs graspable then
17 L break
18 if all_objs__graspable then
19 L base_region < base__region U position
20 return base_region

3.4 Base Sequence Planning
Although the "target” objects vary in different policies (Section @), they share

the same algorithm for planning the base sequence given the grasping poses for

the "target” objects, as introduced in this section.

48

a a8 L VoV L
LA L > ¢ LA
a & LI VoV a8
L A] L VN LA

Figure 3.4: The base regions obtained by using the IKFast solver.

L a a8 L Vo a8
L AN L B L > v ||l &
L AN | L Vo a8 § &||js ®
o N L > v ||l & q N||je ®
‘ !

Figure 3.5: The base regions obtained by the proposed IK query method.

3.4.1 Task Defined as Reaching the Grasping Poses

For grasping the target objects in the target trays, a sequence of tasks is defined
as the grasping poses to be reached when the mobile manipulator visits the base
positions. The mobile manipulator should be able to grasp every target object
with at least one grasping pose. The grasp planning method varies for different
object placements, and the grasp planning method considered in this chapter is

shown in Algorithm H For objects regularly placed in the tray, a model-based

49

grasp planner [109, 113] can be used to prepare a set of grasps for the target object
O, in the tray in the offline phase (lines 2 and 3). For objects randomly placed
in the tray, I treat the objects in the tray as a whole and use a model-free grasp
planning method [114] to estimate a set of grasps from depth images (line 5), the
details are described in Section .

Algorithm 3: Planning grasps
Input: Mesh models of the objects or rendered depth images
Output: Planned grasps

1 Function PlanGrasps()

2 if RegularlyPlaced then

3 L grasps < ModelBasedGraspPlanning(mesh)

4 else
5 L grasps < EstimateFromDepthImages(imgs)

6 return grasps

Algorithm E explains the procedure of calculating the base region for a tray. The
base region for a tray is a set of base positions where the mobile manipulator is
able to reach all the targets in the tray, without self-collision and the collision
with the environment. Firstly, I prepare stable grasping poses with respect to the
object for every target object in the tray (line 2), using a grasp planner. Then
I uniformly sample base poses (z;,y;,¢) in front of the target tray (line 3), as
illustrated in Fig. @ Here, I assume that the orientation ¢ of the mobile ma-
nipulator is constant and keep the mobile manipulator facing the tray, which is
the positive direction of the y-axis as illustrated in Fig. @ This assumption is
based on the observation that in many mobile manipulators, the joint connecting
the manipulator and mobile base rotates around a vertical axis, thus having an
equivalent effect as rotating the mobile base. Then the set of stable grasping poses
{Gu1,Gta, ..., Gin}j with respect to the mobile base for object O; are obtained for

every target object in the tray.

20

Algorithm 4: Solve inverse kinematics

Input: Planned grasps specified in local frame (tray or object) and the
position of mobile base
Output: Approximated inverse kinematics solutions
1 Function SolvelK (grasp, position)
// get grasping pose w.r.t the mobile base
EFE_pose «+ Transform(grasp, position)
voxel < QueryDB(EE _pose)
IKs =~ configs__in__voxel(vozel)
return /Ks

[SL NV V)

In order to determine the feasibility of a grasping pose, firstly 1 solve inverse
kinematics (IK) and then check if the IK solutions are collision-free. I use the
method presented in section @ to solve inverse kinematics approximately. The
advantage of this method is that it returns a set of diverse IK solutions, which
are helpful for further collision checks, since solving IK and checking collisions are
performed separately. The IK solutions are obtained by querying the grasping pose
in a pre-computed database and then accessing the corresponding joint angles. The
workflow is briefly explained in Algorithm @ Firstly I transform the end-effector
pose (EE _pose) in the frame of the mobile manipulator (line 2), then I locate the
corresponding voxel in the reachability database (line 3), finally, the manipulator

configurations stored in the voxel are the approximated IKs.

If there exists at least one grasping pose Gy € {Gu, G, ...,Gwm};, such that I
can find a collision-free IK solution, then object O; can be grasped from the base
position. A base position for the tray is feasible if all the target objects in the tray
are graspable. The corresponding pseudocode is line 6 to line 19 in Algorithm E
All the feasible positions constitute the base region for grasping target objects from
the tray. Considering the base region for a tray may update due to the change of

target objects, it is preferable to calculate the base region for every object in the

o1

COHiSiOl’l]. w I(D \‘ \:X b 4 | |
check AR e 8 ‘|||l & =
\\g P J
(o, V)
(-0.8, -1.0) (0.8, -1.0)

Figure 3.6: The sampled base positions for one of the trays, which is circled by
a black dashed line. The range of sampling is determined by referring to the
reachable workspace of the robot. Collision check is performed between the mobile
manipulator and the target tray, its neighboring trays, and other obstacles in the
environment.

tray and save such information for further access. Then the base region for a tray,
which is the intersection of the base regions of the target objects, can be quickly

solved.

3.4.2 Robust Intersections of Base Regions

To reduce the number of base movements, the mobile manipulator had better move
to the intersections where the mobile manipulator is able to pick up the objects
in multiple trays. For the IK solver approach, there are 5 intersections for the
obtained 4 base regions of 4 trays, all of them are the intersections of two base
regions, while for the IK query approach, there are the intersections of two base
regions and even the intersections of 3 base regions. The intersections and their

associated trays are labeled with numbers in Fig. @ and Fig. @

Given a part-supply task to collect the objects in trays {tray,trays,...,tray,},

the corresponding base regions { Pg1, Ppo, ..., Pp,} and their intersections can be

52

nal|fe 0|0]||e &
@ @
n m||ee||>

Inscribed circle of

@@°§§§° .EEE.@@ the base region
.....‘...0000000000. QQQQQQQQQ
seeeeee 0000000 | e e eeeee e PR e o o o
(X R XX J 00000 | e e e e
00 @3 @® A

Figure 3.7: The intersections of the base regions in Fig. @, the centers of their
inscribed circles are the most robust base positions.

a . | 3R} J N [a L 3R} v |
.®. ‘®‘ \© .®. .®. ‘®‘ \® .@.
(a) Pp1 N Ppy (b) Pp1 N Pp3
L BN | L 3R} VIR &N o & L JR J J N
aw ‘®‘ \® .®. .®. ‘®‘] \®
06e)

(f) Pp1 N Py N Pps

@®

(g) Pp2 N Pp3N Ppy

Figure 3.8: All the intersections of the base regions in Fig. @ (a)~(e) are all
the intersections of two base regions, (f)~(g) are all the intersections of three base
regions.

obtained following the proposed method. As described in line 6 of Algorithm EI,
firstly I obtain the possible intersections between all the base regions. Let NFPp;,
(1 < i < n), denote all the k-th order intersections, which are the intersections of
k base regions (base regions themselves are regarded as first order intersections),
and A\ be the largest k, then {N!Pg;,N?Pg;,..., N Pg;} represents the set of all

the possible intersections. However, practically the mobile manipulator is not

23

able to accurately arrive at the planned positions. The positioning error is the
result of numerous influencing factors, including map accuracy, sensor accuracy,
environmental complexity, difficulties of controlling the nonholonomic base, and
the performance of the mechanical system. Therefore, the positioning error is
assumed to be random and homogeneous in different directions. Let the average
base positioning error be d(m), the mobile manipulator is most likely to arrive
at a position (m) away from the planned position. In some base positions close
to the boundary, the mobile manipulator may fail to reach all the target objects
in the tray when positioning error is imposed. The robustness with respect to
the base positioning uncertainty increases with the distance to the boundary of
the base region of the intersection. As a result, the most robust base position is
specified by the center of the inscribed circle of the intersection. If the radius of the
inscribed circle of an intersection is smaller than the base positioning uncertainty,
then it is regarded as not robust and removed from the set of possible intersections.
This is corresponding to line 7 to line 10 in Algorithm EI Notice that, the overall
operation time is hardly influenced by choosing different positions within the base
region or intersection, due to their limited area, thus the robustness is given much

higher priority in this stage without sacrificing much performance.

The uncertainty of the orientation is not considered here, because it depends on
the model of the mobile manipulator. For some of the mobile manipulators, the
uncertainty of the orientation does have an influence on the result. For example,
in the Fetch robot [108] used in our experiment, the joint connecting the torso and
the manipulator is constrained by the existence of the torso, and the uncertainty
of the orientation will affect the reachable space of the manipulator. However,
as stated in Section @—B, in some mobile manipulators, the joint connecting the

manipulator and mobile base rotates around a vertical axis. The joint motion can

o4

o o P,
radius < @

(a)
(b)

s G A
© St
C

art Goal

Figure 3.9: The procedure of path planning. Every circle in the subfigures repre-
sents a base region for a tray. (a) From left to right are five base regions Pg; ~ Pps
for 5 trays. (b) InscribedRadius(Pp1NPpaNPps) < &, thus discarded. (c) Three fea-
sible second-order intersections are filled with different colors, and five base regions
themselves are first-order intersections. (d) The planned intersections Pg; N Ppgo,
P3N Py and Pgs are connected by the shortest path.

completely offset the rotation of the base, so the uncertainty of the orientation
does not change the reachable space of the manipulator. For the case where the
orientation does have an influence on the result, I can simply rotate the base in
place to correct the orientation error, which can be obtained by detecting the
marker attached in the environment. Rotation in place is very easy to accomplish

for a differential-drive mobile robot.

3.4.3 Path Planning

The function PlanMinSequence(robust__intersections) in line 11 of Algorithm EI
takes N robust intersections as the input, and plans the minimal subset of the
input with size m that visit all the target trays. This is equivalent to the problem
T

of assigning (N — m) zeros and m ones to a base sequence vector [xy,Za, ..., Ty]

and minimizing the sum of its elements, which is formulated as:

95

minimize 3, @
subject to x; = {0,1}

N
Yoing 0T > 1

(3.1)
Zé\il agx; > 1
ZiNzl aniT; > 1
Here, az,s = {1,2,...,n}, is 1 if Ppg is reached by the intersection, and z; = 1

if the robot moves to the corresponding intersection. This is the 0-1 knapsack
problem, which can be solved by the branch-and-bound method [115]. Finally, I
search for the shortest path that connects the start and goal positions, via the

centers of the obtained m intersections.

For the purpose of illustrating the intersections of two or more base regions, I use a
simple example where there are 5 base regions of 5 trays, as shown in Fig. @ One
of them is a third-order intersection and four of them are second-order intersections.
Notice that, as shown in Fig. @b, this third-order intersection is also a second-
order intersection, i.e., Pg1 N Ppy N Pz = Pp; N Pps. However, the radius of the
inscribed circle of the third-order intersection is smaller than the base positioning
uncertainty, i.e., InscribedRadius(Ppy N Py N Pps) < &, thus it is removed from
the total set of intersections. From the remaining 8 intersections (3 second-order
intersections and 5 first-order intersections), three of them are planned to reach all
the trays. Then I perform a brute-force search for the shortest path. If the sequence
size becomes too large for searching, the shortest path can be approximated by

the SA method [116].

o6

3.5 Dynamically Update the Base Positions

The algorithms presented in Section @, explained planning a sequence of base
positions for a given task, defined by the grasps for the target objects. In this
section, I dive deeper into the tasks in practical application scenarios. The most
straightforward task is grasping all the objects in the tray, then the planned base
positions are feasible for the mobile manipulator to grasp all the objects in the tray.
Even though the number of objects decreases as the pick-and-place tasks proceed,
the base positions remain valid no matter how many objects are left in the tray.
This assumption is not necessarily appropriate as the objects are picked away
gradually. It is possible to dynamically update the base positions according to the
remaining objects, such that the base region becomes larger with the decreasing
remaining objects, and the robustness with respect to base positioning uncertainty
is improved. Therefore, I investigate the feasibility and performance of dynamically
updating the base regions, which depends on whether the update can be performed
in the online phase. The feasibility of updating the base regions online is influenced
by the object placement in the trays. Therefore, I have to consider the object
placement styles in the tray, including the following two situations: (1) The objects
are regularly placed in the trays, where the poses of objects with respect to the tray
are known; (2) The objects are randomly placed in the trays, where the poses of
objects with respect to the tray are random and unknown. Both of these situations

are common in the manufacturing environment.

57

A0 0[00pms|

A S it e SO S L i S 1
s ’ A N Y I
R e e e e Ry e S R i S \
— - - T T /l ~ /' T e ~ 1 ~ ‘I
1; 17 N TA N \
¥) y ¢ g o \{ M|
s n N N U4 Y
W " A o /1
AN VY FAER S o 1_- 1]
LIARN ~ 7V ~ - -
VoS~ g P b T ’
N (et AP L S ANt ol E R Lt PR
< < - N - -
~ N - DL -~ -

‘——___-._..—___—‘ i T il

I A !
: ' :
'| Retrieve the base regions || Retrieve the base regions |
.| of the remaining objects of the target objects :
I
: | ¥ 1 :
: 4 X A |
! E);plore pqss1ble |
; . | Intersections |
 Online T i
: [Find robust i
: positions !
: T i
I
! Search for the !
! shortest path :
1

Figure 3.10: Workflow of two policies for updating the base positions for picking
regularly placed objects in the trays, two policies differ in the base regions to be
retrieved in the online phase.

o8

3.5.1 Objects Regularly Placed in the Trays

One policy for updating the base positions is based on the remaining objects. The
update is performed after every round of pick-and-place tasks, using the current
remaining objects in the tray as the target. Intuitively, the size of the base region
increases as the task proceeds. The workflow is described in Fig. . Since the
objects are regularly placed in the tray with known poses, the base region Pp;;
for object O; in tray; can be calculated in the offline phase for all the objects. In
the online phase, firstly I determine the remaining objects in the tray, by either
remembering which object has been picked or using a camera to extract the config-
uration of the remaining objects. Then the base regions for the remaining objects
can be retrieved from the offline database. The retrieved base regions are further
processed to explore the possible intersections, iteratively find robust positions, as

well as searching for the shortest path.

Another policy for updating the base positions is based on the target objects to
be picked. This is motivated by the scenario where the mobile manipulator is
requested to pick up a certain amount of objects in every round of pick-and-place
task. Therefore, the base region can be calculated from the target objects to be
picked, instead of all the objects or all the remaining objects. For example, if there
are m, objects remaining in a tray with a specific configuration, in a round of pick-
and-place task, m; objects, where (m;, < m,), should be picked from the tray. I
can either exhaustively search for an optimal order of picking objects that achieves
an efficient and robust sequence of base positions, or heuristically specify the order
of picking objects from the tray. Fig. illustrates a simple heuristic. Firstly,
I pair the objects in neighboring trays, such that the distance between objects in

every pair is nearly constant. Then these pairs of objects take precedence to be

29

tray, tray,
[N
(N |

Figure 3.11: Pair the objects in neighboring trays and keep the distance between
the objects in a pair nearly constant, a pair of objects are labeled with the same
number and connected by a black line. Picking objects following such pairing
reduces the overall variance of the robustness in different rounds.

Pa Pb

picked when the mobile manipulator has to pick up objects from two neighboring
trays. By doing so, the robustness is more consistent in different rounds of pick-
and-place tasks. Because the distance between objects does not change much, so

does the size of the intersection of their base regions.

Through dynamically re-planning the base sequence for the remaining objects or
the target objects to be picked, the robustness with respect to base positioning
uncertainties can be improved. The overall efficiency is also likely to be improved,
since the base region becomes larger, which may result in more intersections or

higher-order intersections among the base regions.

3.5.2 Objects Randomly Placed in the Trays

If the objects are randomly placed in the tray, it becomes infeasible to obtain the
base region for grasping an individual object. However, I can treat the objects
in the tray as a whole and estimate the total grasps using the method described
in Section , and then the base region of the tray can be planned using the

estimated grasps. Similarly, the grasps for a tray where there are different amounts

60

m objects, k grasps per object totally 7 trays
EE .. N LN EE . N

Figure 3.12: Setup of numerical analysis. There are totally n trays in a row, m
objects in each tray, and every object is provided with k£ grasps.

of remaining objects can be estimated. For instance, in the offline phase, I can
estimate the base regions for the trays where there are 100%, 75%, 50%, 25% of the
objects remaining. During the online execution, the amount of remaining objects
can be measured by a weighing device, then the base region with a similar amount

of remaining objects can be retrieved from the offline database.

If the base sequence updates according to the target objects to be picked, since
the base region for an individual object is not available in advance, I have to
select the target objects to be grasped and plan the base positions online, which

is time-consuming and impractical.

3.6 Numerical Results and Analysis

In this section, I perform numerical analysis on the base sequence planner. I use
the Fetch robot [108] with a 7-DOF manipulator mounted on a differential drive

mobile base.

Fig. illustrates the setup of the trays and objects for the numerical analysis.
The numerical analysis is based on regularly placed objects, but the results also
apply to randomly placed objects. I assume there are totally n consecutive trays

aligned in a row, every tray contains m objects regularly placed at discrete grid

61

points, and every object is provided with £ candidate grasps. In Fig. , the
plotted base regions are the results of parameters: m = 12 (3 x 4), k = 1, the tray
size is 30cm x 40cm. In all the planning, I use uniformly sampled base positions as
shown in Fig. @, and the distance between the discretized base positions is bem.
Different base regions are colored differently. Since some of the qualitative results
of the base region have been presented in [15], here I focus on the quantitative

analysis of the planner.

3.6.1 Base Regions and Intersections

Here I assume the task is to grasp all of the objects in the tray. The change of base
region with respect to the number of objects in the tray (assume one grasp per
object) is shown in Fig. and Table @ The number of base positions decreases
drastically in the beginning but does not further decrease as the number of objects
increases. This is because the size of the base region is mostly determined by the
boundary of the grasp poses in the workspace. When the number of objects in the
tray is more than 4, the 4 corners of the tray are filled with objects such that the
positional boundary of all the possible objects in the tray is defined. Therefore, the

base region changes less significantly as the number of objects further increases.

Fig. shows the relation between the radius of the inscribed circle of the in-
tersection of two base regions and the distance between two trays (there are 9
X 12 objects in the tray). From this figure I can determine the maximum dis-
tance between the trays such that their intersection is robust. This example shows
that when the distance between two trays is less than 0.8m, the intersection is
robust (the radius of the intersection is larger than 0.1m, and 0.1m is the position

uncertainty of the mobile manipulator which will be introduced later).

62

350

w
o
o

2501

N

o

o
L

«
«
«
|

Number of base positions

fu
o
o

>0 6 160 260 360 460 560 660

Number of objects in the tray
Figure 3.13: The number of planned base positions with respect to the number
of objects in the tray. The number of base positions decreases drastically in the
beginning but does not further decrease as the number of objects increases.

0.175 A

0.025 A

Radius of the intersection (m)
o
g

0.000 -

Oh 05 Ok 05 Ok dQ iO il £2
Distance between neighboring trays
Figure 3.14: The change of radius of the intersection with respect to the distance
between the trays. This example shows that when the distance between two trays
is less than 0.8m, the intersection is robust. Because when the distance is less than
0.8m, the radius of the intersection is larger than 0.1m, and 0.1m is the position
uncertainty of the mobile manipulator which will be introduced later.

63

Number of objects Number of base positions Calculation time (s)

objects 1x1 306 0.22
objects 1x2 306 0.26
objects 2x2 196 0.28
objects 3x4 157 0.51
objects 6x8 146 1.64
objects 9x12 146 3.01
objects 12x16 146 5.10
objects 15x20 146 7.84
objects 18x24 146 11.14
objects 21x28 146 15.41

Table 3.1: Numerical result for a single tray.

3.6.2 Calculation Time

The calculation time for the base sequence planning is mainly spent on 4 parts:
(1) generating the base regions for the target trays, (2) exploring the intersections
between the base region, (3) determining the robust base positions, and (4) search-
ing for the shortest path. The calculation is implemented in C++ and runs on a
laptop with Intel 2.5GHz processors and 16GB of RAM. Typical calculation time

for the sub-tasks is listed in Table @

Table @ shows the result of the calculation time for planning the base region for
a single tray. Fig. indicates that the calculation time for planning the base
region of a tray grows linearly with respect to the number of objects in the tray.
Table @ presents the total calculation time of the full planning with respect to
the number of trays. As shown in Fig. , the calculation grows nearly linearly
when the number of trays is smaller than 18, then it grows explosively due to the
exponential complexity of path searching and exploring the minimal number of

base positions.

64

Sub-tasks Calculation time (s)

Generate base regions for all objects 30.58
Explore intersections 0.029
Find robust positions 0.226

Search for the shortest path 0.0

Table 3.2: Typical calculation time for different sub-tasks. The result is conducted
on 10 neighboring trays, where there are 108 (9 x 12) objects in every tray, every
object is provided with one grasp. Except for the calculation of base regions, all
the other tasks can be calculated online.

Number of trays Sequence size Calculation time (s)

2 1 6.17

4 2 12.01
6 3 18.40
8 4 24.00
10 3 31.07
12 6 36.57
14 7 42.55
16 8 48.73
18 9 54.94
20 10 67.93
22 11 139.25

Table 3.3: Numerical result for multiple trays (full planning).

16

Calculation time (s)
= =
B o o o N

N
L

6 160 260 360 460 560 660
Number of objects in the tray

Figure 3.15: Calculation time with respect to the number of objects in a tray. The
calculation time for planning the base region of a tray grows linearly with respect
to the number of objects in the tray.

65

140 A

=
N
o

100 A

Total calculation time (s)
B ()] o]
o o o

N
o
L

2 4 6 8 10 12 14 16 18 20 22
Number of trays

Figure 3.16: Calculation time with respect to the number of trays. The calculation
grows nearly linearly when the number of trays is smaller than 18, then it grows
explosively due to the exponential complexity of path searching and exploring the
minimal number of base positions.

3.6.3 Analysis of Different Policies

I use some numerical examples to evaluate the performance of different policies.
As shown in Table @, all the sub-tasks except the calculation of base regions are
feasible for online execution. Notice that the complexity of brute-force search for
the shortest path is O(n!), where n is the number of planned base positions. How-
ever, the calculation can be done within one second as long as the base sequence

size is less than 10 (excluding the start and goal positions).

For regularly placed objects, I consider the case where there are 9 consecutive
trays in a row, every tray contains 12 objects regularly placed at a 3 by 4 grid,
and every object is provided with one candidate grasp. The first policy plans the
base positions using the grasps of all the objects. For the other two policies which
update the base positions, I assume only one object is picked from a tray in every
round of pick-and-place task, and the base positions will be updated after every

round of task. The calculated base positions for all the three policies are reliable

66

Policies Base positions Average robustness Online Feasibility

Reg/ALL Reliable 0.1 mm OK Yes
Reg/updateR Reliable 0.155 mm OK Yes
Reg/updateT Reliable 0.186 mm OK Yes

Rand/ALL Reliable 0.1 mm OK Yes
Rand/updateR Unreliable 0.143 mm OK No
Rand/updateT Reliable 0.229 mm No No

Table 3.4: Comparison of different policies. In the column of policies, Reg and
Rand are the abbreviations of regular and random placement, respectively. up-
dateR and updateT represent updating the base regions based on remaining objects
and target objects to be picked, respectively. ALL represents all the objects that
fill up a tray, respectively.

since the grasps are identical to the grasps used in the offline calculation. They are
also feasible for online execution since base regions are readily available from the
offline database. The robustness of different policies are evaluated by the average

robustness of all the rounds of the tasks,

m

average_robustness = Z robustness;/m (3.2)
i=1

where robustness; denotes the average robustness of base positions in i-th round
and m is the total number of rounds. The robustness of a base position is computed
as the radius of the inscribed circle of the corresponding intersection. As a result,
the policy that updates the base positions according to the target objects to be

picked has the highest average robustness score.

For randomly placed objects, it is possible to estimate all the grasps of all the
objects that fill up a tray, and perform the offline calculation of the globally static
base positions, which are valid for different rounds of pick-and-place tasks. Then
the mobile manipulator can pick any object from the tray in the online phase.

However, updating the base positions for randomly placed objects is difficult. In

67

the case of updating based on the remaining objects, the base region with a similar
amount of remaining objects is retrieved from the offline database, but the retrieved
base region is not reliable. Because the base regions calculated offline assume the
randomness of the poses of the placed objects, but the actual picking is usually
not performed randomly in terms of the poses of the remaining objects. Instead,
the robot picks according to some metrics, such as grasp quality metrics, which
may favor specific poses. Therefore, the poses of the remaining objects are not
guaranteed to be random. In another word, there are discrepancies between the
actual base regions and the offline-generated base regions. Furthermore, if the
remaining objects are assumed to be randomly distributed in the tray, then the base
regions for the tray with different amounts of remaining objects are theoretically
the same. From this perspective, updating the base region is not necessary for

randomly placed objects.

On the other hand, updating the base region for randomly placed objects according
to the target objects cannot be implemented online. Because the offline-generated
base regions are estimated by treating the objects as a whole, while the base region
for an individual object is not available, thus the base regions for the target objects
have to be calculated online. However, Table @ shows that the calculation of the
base region is the most time-consuming sub-task, which involves many IK queries
and collision checks. The total calculation time grows linearly with respect to the
number of objects. Therefore, dynamically updating the base region for a large
number of target objects to be picked may not be practical for randomly placed

objects.

Table @ summarizes all the 6 policies. From the above analysis, 4 of them are

feasible for practical application. For randomly placed objects, I conclude that a

68

globally static sequence of base positions should be used, without further update.
For regularly placed objects, both static and dynamically updated base sequences
are applicable. Updating the base positions improves the overall robustness, and
the update policy based on the target objects to be picked has the highest average
robustness score. However, one of the disadvantages is that, if the picking fails, the
robot may have to re-plan and move to another position to try the picking once
again. Furthermore, updating the base positions cannot be completed until the
mobile manipulator finishes one round of the task, this obstructs the efficient use of
multiple mobile manipulators. One has to wait until another mobile manipulator
finishes a round of pick-and-place tasks, and then update the base positions and
perform the pick-and-place using the updated base positions. But for the globally
static base sequence calculated from all the objects, multiple mobile manipulators
can cooperate in the tasks efficiently. For instance, when a mobile manipulator
finishes picking objects from tray; and trays and is ready to move to the next base
position, another mobile manipulator can immediately join the task and move to
pick objects from tray, and tray,. Therefore, despite the overall robustness being
outperformed by the policies that update the base positions, it still makes sense

to use the offline planning policies without further updates.

3.7 Experiments

I present three sets of experiments to demonstrate the 4 feasible policies, which
cover different object placement styles and whether the base positions update or
not. The Fetch robot [10§], a single arm mobile manipulator equipped with a
parallel-jaw gripper, is used to pick objects from multiple trays. There is a Prime-

sense Carmine 1.09 short-range RGBD sensor mounted on the head of the Fetch

69

Figure 3.17: Experiment setup: (a) Indoor experimental environment. (b) A 2D
map built by the laser scanner. (c) Task overview. (d) The trays containing target
objects are marked with red dashed lines.

robot. ROS [] navigation packages and Moveit! are used to plan and control
the motion of the robot. The size of the tray used to store objects is 0.4m x 0.3m X
0.1m. The recorded videos of all the experiments are available in the supplementary
material and following link: https://www.youtube.com/watch?v=JNww18113dI.
Section @ A and B demonstrate picking regularly and randomly placed objects
without updating the base positions, respectively. Section @—C demonstrates
picking regularly placed objects, where the base positions update based on the

remaining objects or the target objects, after every round of pick-and-place tasks.

70

https://www.youtube.com/watch?v=JNww18l13dI

3.7.1 Regularly Placed, Globally Static Base Sequence

The mobile manipulator navigates in an indoor environment as shown in Fig. .
It starts from a predefined position in the environment and moves to pick up 3 ob-
jects stored in 3 different trays (as circled by the red dashed lines), whose locations
in the environment are known. Then the mobile manipulator carries the collected
objects to the goal position. The base regions and intersections are calculated by
the proposed method. In order to obtain a robust base sequence, the base posi-
tioning uncertainty and repeatability are tested by looping the mobile manipulator
between two fixed positions. The actually arrived positions are observed to devi-
ate about 10cm in average from the planned positions. Since the base positioning
error is the result of map accuracy, sensor accuracy, environmental complexity,
difficulties of controlling the nonholonomic base and the performance of the me-
chanical system, with so many factors involved, it is assumed to be random and
homogeneous in all directions. Therefore, the base positioning uncertainty level &
is set as 10cm. Then a sequence of base positions can be planned by the algorithm
described in Section . As a result, the mobile manipulator should successively

move to the center of Pg; N Py and Ppy to collect all the required parts.

When the Fetch robot moves to the calculated position, its head-mounted camera
points to the center of the target tray to obtain the point cloud of the objects. I
remove the point cloud segments of the table and tray to get the objects’ point
cloud. For the simple box-shaped objects used in this experiment, the remaining
point cloud is fitted with cuboids, such that the object pose can be determined,
then the grasping poses are retrieved from the offline planned grasps. A more
straightforward way which is used in Section is to attach a marker in front

of the tray, then the object poses, as well as the grasps, with respect to the robot

71

Figure 3.18: (Left) Move to Pg; to pick up a part from tray,. (Middle) Move to
Ppgsy to pick up a part from trays. (Right) Move to Ppy to pick up a part from
trayy.

Figure 3.19: (Left and Middle) Move to Pg; N Pps to pick up parts from tray; and
trays. (Right) Move to Ppy to pick up a part from tray,.

are easily obtained.

For comparison, I move the robot to the center of Pgq, Pgo and Ppgy to collect
the parts from three trays, respectively. As shown in Fig. , in each base
position, the mobile manipulator picks up one object from the associated tray.
Fig. shows the robot motion following the planned base sequence, the mobile
manipulator moves to the center of Pg; N Pgy to pick up parts from tray; and
tray,, then it moves to the center of Pg, to pick up part from tray,. In this

experiment, the total operation time is reduced by 17 seconds due to reduced

72

one base movement, and the efficiency of the proposed method becomes more

significant when there are a large number of target trays.

3.7.2 Randomly Placed, Globally Static Base Sequence

In the manufacturing environment, the mechanical components are often randomly
placed in the tray. In this experiment, I use a mobile manipulator to pick up
multiple mechanical components randomly placed in different trays. The overall
experiment setup is shown in Fig. . Compared to the first experiment, a dif-
ferent grasp planning method is used for the mechanical components with complex
shapes and reflective surfaces. The head-mounted camera on the Fetch robot can
only capture a sparse and incomplete point cloud of the object, therefore I use
fixed PhoXi 3D scanners to scan the mechanical components to obtain depth im-
ages. Fast graspability evaluation [114] is used to plan grasps for randomly placed
objects from a single depth image. The gripper is represented by two mask images
as shown in Fig. a and b, Fig. a represents the contact region where the
gripper should contact the object and Fig. b represents the collision region
where the gripper should avoid collision with the environment. The mask image
of the contact region is used to convolve with the object’s mask image to find the
centroids of grasps, and the mask image of the collision region is applied to find

collision-free orientations around the centroid normal.

In order to obtain the base region where the mobile manipulator is able to grasp all
the randomly placed objects, I have to find a set of object poses that approximate
the possible poses and plan grasps for these poses. Therefore, I randomly place
objects in the tray and scan the objects in the tray. Repeat this process a couple

of times, then it is assumed that these recorded object poses nearly represent all

73

Figure 3.20: Experiment setup: The mechanical components to be grasped are
marked with red dashed lines, PhoXi scanners are configured above the target
components, and the markers in front of the tray are for obtaining the transform
from the tray to the mobile manipulator.

(d)

Figure 3.21: Grasp planning method for randomly placed objects. (a) Contact
region of the gripper model. (b) Collision region of the gripper model. (c¢) Mask
image of the object. (d) Graspability map. (e) Planned grasps are represented
by red lines and plotted on the depth image. Different shades of green represent
different depths.

74

Figure 3.22: Planned grasps at different object configurations. The union of these
grasps is assumed to approximately represent all the possible grasps for grasping
all the randomly placed objects, and they are used to estimate the base region.

Figure 3.23: Planned grasps for different objects.

the possible object poses. Fig. shows 4 different object placements, from the
corresponding depth images grasp planning is performed to obtain grasps G, Ga,
Gs and G, for each of the object placements, respectively. Actually, for grasping
one object, I only need to guarantee that at least one of the grasp candidates is
reachable, this is what I did for the case of regularly placed objects. However, for
the randomly placed objects, I simply used all the planned grasp candidates to
approximate the possible grasp distribution in the tray. The union of the grasps
for each object placement G = G U Gy U G3 U G4 roughly represents the required
grasps for grasping all the objects randomly placed in a tray. Then I use G to
calculate the base region of the tray following the method in Section @ The

grasp planning examples for other objects are shown in Fig. .

During the online execution, the mobile manipulator moves to the calculated posi-
tions in the global map, the planned base positions are the black dots in Fig. .
Once the mobile manipulator arrives at the calculated position, its head-mounted

camera detects the marker in front of the tray to get the accurate pose of the tray

5

tray; tray, trays tray,
*
22 000 & & [(n %,

A A A A
+ + + + + k k &k A A A A AAAAA
+ + + + + + + k k k A AAAA A AAAAAA
++++++ + + + + 4+ + kkk AAAAAA AA-A~A A AAAAAAAAL
++ + ARt +++++++AAAAAAAAA’AAAAX\AAAAAA

7
tr+ bR bbb bbb+t AAAAAAAAAAAAAARAALAAL
FHEEHF A HF ++ FH b+ bbb+ 4+ AAAAAAAAAAA@AALAAL

A FE R R4+ AAAAAAAAUAAAAARAALL
Lo o T AAAadasaasa
I E R R R R R AAAAASDAAAAA

+++++ A+
+

Figure 3.24: Schematic diagram of randomly placed objects in the trays (view from
top), the dots of one color represent the base regions of the corresponding tray.
The robot moves to the center of the first intersection to pick up the objects in
tray,; and trays, then it moves to the center of the third base region to pick up
objects in trayy.

Figure 3.25: Pick up randomly placed objects following the planned globally static
positions in Fig. @

relative to the robot. The online grasp planning functionality is implemented as
a ROS service, once it is requested, it returns a set of grasps in the frame of the
PhoXi scanner. Since the pose of the PhoXi scanner is also calibrated with respect
to the tray, the poses of planned grasps in the robot’s base frame can be derived.
Among all the returned grasps, the grasp with the highest graspability score will
be executed. Fig. shows the grasping of randomly placed objects during the

experiment.

76

3.7.3 Regularly Placed, Dynamically Update the Base Se-

quence

For regularly placed objects in the tray, it is feasible to update the base positions
according to either the remaining objects or the target objects to be picked. Both
two cases are demonstrated by the experiment in this section. The experimental
configuration is similar to that of the first experiment, the difference is that the
base positions are updated after every round of pick-and-place tasks. I assume
one object is picked from every target tray in every round of the task, then there
are totally 4 rounds since every tray contains 4 objects. For randomly placed
objects, it is impractical to determine the picking order of objects in advance, but
for regularly placed objects, I can either determine which object to pick in the
online phase or specify the picking order in the offline phase. In this experiment,
I choose to specify the picking order before the pick-and-place tasks begin, such
that all the base positions in different rounds of tasks can also be calculated in
advance. In the online execution, the base positions are updated after every round

of the task.

Fig. shows the experiment on updating the base positions based on the target
objects to be picked. The picking order is specified using a simple heuristic, as
shown in Fig. . Referring to the same object index as Fig. , the mobile
manipulator picks up object O; in tray; and tray, and tray, in the i-th round
of the task. From the snapshots of the experiment, though not very obvious, the
change of base positions in different rounds of tasks can be observed. Following the
dynamically updated base positions, the mobile manipulator can robustly collect
the target objects in different rounds of the task. I also conducted the experiment

on updating the base positions based on the remaining objects, which can be seen

7

Figure 3.26: The base positions update based on the target objects to be picked,
the update is performed after every round of pick-and-place tasks.

in the supplementary video.

3.7.4 Discussion of the Experiment Results

Through the experiments, I have demonstrated the proposed planner with differ-
ent policies for different application scenarios. To evaluate the efficiency of the
proposed method, I use the time for moving the base as the evaluation metric.
Because one of the major goals of this work is to reduce the operation time for
a sequence of picking tasks at multiple places. In this work, I consider reducing

the number of base positions to visit to reduce the operation time for moving the

78

Experiment Baseline Planned sequence Improvement
ExperA 46.94s 29.68s -17.26 (-36.77%)
ExperB 38.20s 26.98s -11.22 (-29.37%)

Table 3.5: Average time for moving the base in our experiments. ExperA and Ex-
perB refer to the experiment setup in Section B.7.1f and Section @?respectively.

base. Therefore, the time for moving the base is the most appropriate metric for

evaluating our planner.

I measure the time for moving the base following the planned base sequence and
compare it to the baseline. Since there is no research on planning a minimum
sequence of base positions for picking objects stored in separate trays, there are no
directly comparable state-of-the-art methods. The existing works usually assume
there is a base position or manipulator configuration corresponding to each task,
therefore, the baseline for comparison can be set as moving the mobile manipulator
to the center of every base region of the target tray. I use the experiment setup
in Section and Section since their base positions do not change. I run
the experiment 10 times and record the time for moving the base. The result is
summarized in Table @, the average time for moving the base is reduced by 17.26
seconds and 11.22 seconds in these two experiment setups, respectively. There-
fore, the total operation time for the part-supply tasks is reduced and the overall

efficiency is improved using the proposed method.

Notice that the length of the path connecting the planned base positions is not an
appropriate metric for evaluation. Because the path length does not necessarily
decrease with the decrease of the number of base positions. Fig. shows a
simple example where the path lengths are almost the same, but the number of
base positions is different. From another perspective, instead of reducing the path

length, our approach is to reduce the number of base positions to visit, which

79

Start ‘/ ", Goal

Figure 3.27: (a) The baseline base sequence and path. (b) The planned base
sequence and path using our planner. In this example, the path length is almost
the same even with the reduced base positions. Therefore, the path length is not
an appropriate metric for evaluating the planner.

increases the average base velocity, thus reducing the operation time.

The current limitations are observed through the physical experiments. I acknowl-
edge that the success rate of the experiment is not high (about 50% for a single
picking task). But this is the collective result of several factors beyond our planner,
such as (1) the perception error of the collision environment, (2) motion planning
timeout during the online execution, (3) pose estimation error for the marker and
objects, and (4) positioning uncertainty. These extra factors lead to common fail-
ures in the experiments: (1) The manipulator collides with the trays or table;
(2) The robot fails to grasp the objects; (3) Motion planning for the manipula-
tor to move to the grasping pose times out. Therefore, the success rate may not
be an appropriate metric for the evaluation of the proposed planner. In addi-
tion, the motion of the manipulator is not optimized. In the future, I consider
using optimization-based method motion planning method to further reduce the

operation time for moving the manipulator.

80

CHAPTER 4
WHOLE-BODY MOTION PLANNING FOR DYNAMIC
GRASPING

In chapter a, a minimal sequence of positions is planned for the mobile manipu-
lator to pick up assembly parts from multiple trays. However, I used the mobile
manipulator in a decoupled manner, where the mobile manipulator firstly stops
the mobile base before performing the manipulation tasks and then moves to the
next position or configuration. Obviously, the decoupled motion of the mobile base
and the manipulator is not efficient. The operation time can be further reduced by

simultaneously moving the base and the manipulator when performing the tasks.

In this chapter, I present an optimization-based motion planner to plan a locally
time-optimal whole-body motion of a nonholonomic mobile manipulator, to pick
up objects while simultaneously moving the manipulator and the base. The si-
multaneous motion further reduces the operation time of the picking tasks. What
distinguishes our planner from the common motion planners, which plan the mo-
tion between two configurations, is that our planner considers performing tasks,
such as grasping an object, during the motion. I formulate the time-optimal mo-
tion planning as an optimization problem. One of the major difficulties is finding
an appropriate representation of the constraints for the tasks during the motion,
since the time and configuration of the robot at the moment of performing the
task are unknown. To address this issue, I propose a novel formulation of the
optimization variables such that constraints arising from the tasks are smooth and
differentiable, which is essential for obtaining a feasible solution using a nonlinear
optimization solver. I present numerical results of the proposed planner to show

that our planner can obtain a feasible trajectory that satisfies all the constraints.

81

Figure 4.1: The kinematic model of the nonholonomic mobile manipulator. In the
numerical calculation, I use the kinematic model of the Fetch robot, which has a
7 DOF manipulator mounted on a diff-drive mobile base.

For real-world implementation, I discussed a robust grasp strategy (push-grasp)
for dynamic grasping with whole-body motion. I also demonstrated the planned

trajectory in both physical simulation and real-world experiments.

4.1 Method

The goal is to plan a locally time-optimal trajectory of a nonholonomic mobile
manipulator to reach a grasping pose G during the motion from an initial configu-

ration q; to a final configuration qg¢, w.r.t the kinematics and dynamics constraints.

4.1.1 Problem Formulation

This problem can be formulated as the following optimization problem:

82

i=1
st. xeX (4.2)
AT; > 0,5 €{1,2,....,m+1} (4.3)
F(ap) =0 (4.4)
Nonholonomic(q;,q;) = 0 (4.5)
di + (&4 + Qi1)AT/2 = di (4.6)
AT < qip1 — q; < a,AT (4.7)
d1 = Qinitials A1 = Qinitial (4.8)
AN = finals AN = Ufinal (4.9)
qi € Cpree (4.10)

The trajectory is discretized in the state space, i.e., both the joint configuration
and velocity are the optimization variables. Fig. El] illustrates the mobile manip-
ulator considered in this chapter, and its configuration includes the position and
orientation of the diff-drive base and the joint position of the 7 DOF manipula-
tor, i.e., q = [z,y,®,01,05,0s,04,05,06,0;]7. T use x to denote the vector of the
discretized states, i.e., x = [q1,Q2, ..., 9N, 1,2, - - -, an|T. Note that, I do not
use the control inputs of the mobile base (left and right wheel velocities) as opti-
mization variables, instead, I derive the control inputs (u,, u;) from the discretized
states (&, 9, b, ¢) of the mobile base according to the following first-order dynamics
of the mobile manipulator (equation (11)), and then impose bound constraints on

the derived control inputs.

83

qm’m qarm

iy _ (U + w)rycos(P) (4.11)
%(ur + ul)rws'in(gb)
é (Ur—u)rw

L . L Rpase .

Assume the mobile manipulator has to grasp m objects during the motion, then
the trajectory is split into m + 1 segments by the tasks, as shown in Fig. @
I heuristically predefine the correspondence between m waypoints and these m
tasks. However, I do not restrict the time for performing the tasks and leave
it for the optimizer to explore. The time intervals AT; (of i-th segment) be-
tween the consecutive waypoints are set as optimization variables, and totally
I have m + 1 time intervals for m + 1 trajectory segments. Therefore, the
optimization variables in our formulation includes the time intervals and the
discretized state: [ATY,...,AT,41,4d1,92,---,9N8, 41,42, - - -, An] L, Where q; =

(T4, Yi, D1y 014y O, O34, Oui, 054, Ogi, 0] is the configuration of the i-th waypoint.

Since I seek to obtain the time-optimal trajectory, the objective function (equa-
tion (1)) is simply the total operation time, which is the sum of the time intervals
among all the waypoints, i.e., J = >" AT;N;. Equation (2) is the constraint
on the state. There are limits on the manipulator’s joint position and velocity.
But there are no bounds on the position and orientation of the mobile base. The
velocity of the base is limited by the wheel velocity. Therefore, I calculate the cor-
responding left and right wheel velocities according to [, 7, (;5, ¢], and then impose
the bounds on the converted form. Equation (3) ensures the time intervals are pos-
itive. Equation (4) denotes the task constraints F'(qx) = 0 on the k-th waypoint,
specifically for a grasping task, I transform the robot configuration at k-th way-

point to a grasping pose G;: FK(qx) = G;. If there are m tasks during the motion,

84

Task 1 Task2 ... Task m
1

Correspondence / :" N
AT, AT, /AT, BT2 ‘E\Z/\' N A A7,
/ ‘/\/‘ I\‘\l +1
W
a1 92 Q3 ds d5 Gds - dn-2 dn-1 9N

Figure 4.2: Tllustration of the correspondence of the states and tasks. Assume the
mobile manipulator has to grasp m objects during the motion, then the trajectory is
split into m + 1 segments by the tasks. I heuristically predefine the correspondence
between m waypoints and these m tasks, however, I do not restrict the time for
performing the tasks and leave it for the optimizer to explore. The time intervals
AT; (of i-th segment) between the consecutive waypoints are set as optimization
variables, and totally I have m+1 time intervals as optimization variables for m+1
trajectory segments.

I should heuristically select m waypoints and impose the task constraints on these
waypoints. Equations (5) to (10) impose constraints on the waypoints. Equation
(5) describes the nonholonomic constraints at all the waypoints, specifically for the
diff-drive mobile base as shown in Fig. @, the nonholonomic constraint for i-th
waypoint is written as @;sin(¢;) — gicos(¢;) = 0. Equation (6) also enforces the
consecutive waypoints to follow the constraint implied by velocity, here I use the
average velocities of i-th and (i+1)-th waypoints. Equation (7) limits the maximum
and minimum accelerationsl. Tn equation (7), AT} of the time interval depends on
which segment of the trajectory it belongs to. For example, for the 4-th and 5-th
waypoint shown in Fig. @, the AT} is AT,. Equations (8) and (9) specify the
initial and final positions and velocities of the motion planning problem. Finally,
equation (10) enforces that the mobile manipulator does not collide with itself and
the obstacles. I calculate the distances between the robot links and the obstacles

and the distances between robot links, and then enforce the distances are positive.

!The official documentation of the Fetch robot only provides the torque limits of the manip-
ulator’s joints. To simply the problem, I manually specify the acceleration bounds.

85

4.2 Numerical Results

In this section, I present some numerical results of the proposed motion planner. I
consider planning the time-optimal motion for grasping one object during the mo-
tion. For the initialization of the variables, I focus on obtaining a good estimation
of the time intervals. Firstly I solve the problem with a small number of waypoints,
after several trials with different initial seeds and a different number of waypoints,
the rough range of optimal operation time is obtained. Once I have a reasonable
guess of the total operation time, the time intervals of different trajectory segments
are calculated accordingly. For the initialization of the state of the waypoints, I
linearly interpolate the positions between the initial and final configurations to get
the positions of the waypoints, and then use the time intervals to initialize the

velocities.

I implemented the optimization problem using the nonlinear optimization pack-
age NLopt [L18], the optimizer that I use the SLSQP (Sequential Least SQuares
Programming) solver, a local derivative-based method. Fig. @ shows the time-
optimal trajectory to grasp an object with G = [5.5,—2,0.5,1,1,0]” during the
motion from the initial configuration q; = [[0,0,0,0,0,0,0,0,0,0]7 to the goal
configuration qy = [10,0,—1,1.13,0.3,1.9,1.1,2.1,0.5,2.5]. In this example, I
heuristically set the waypoint in the middle of the trajectory to correspond to the
task. The trajectory is smooth and satisfies all the constraints. The violation of
nonholonomic constraints is plotted in Fig. @, the violation is in the order of 1075
and is negligible, and it can be further reduced by setting a lower tolerance for the

constraints.

By solving the optimization problem with a different number of waypoints, I verify

the independence of the solutions in the resolution of the discretization. The code

86

bitl

N

Joint position [rad or m]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

Figure 4.3: The time-optimal trajectory of all the 10 joints. This solution is the
result of discretizing the trajectory into 35 waypoints. AT} = 0.589s, AT, =
0.595s, and the total operation time is 20.13s.

le-5

—0.25 A1

—0.50 A1

—0.75 A1

Violation of nonholonomic constraint
o
o
o

-1.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

Figure 4.4: The violation of nonholonomic constraints along the trajectory. This
figure shows that the nonholonomic constraint is well satisfied.

87

Calculation time [s]
= = N N
o (9,1 o w
o o o o

w
o
!

10 20 30 40 50 60
Number of waypoints

Figure 4.5: Calculation time with respect to the number of discretized waypoints.

z[m]

Figure 4.6: Visualization of the end-effector and the base trajectory with two
different grasping tasks, G; = [5.5,2,0.5,1,1,0]%,G, = [5.5, —2,0.5,1,1,0]T.

is programmed in C++ and runs on a laptop with Intel 2.5GHz processors and
16GB of RAM. Fig. @ visualizes two trajectories of the end effector and the
base with two different grasping tasks. The end effector passes through the target

grasping poses during the motion.

88

4.3 Strategy for Robust Grasping

Till now, I have introduced planning the time-optimal trajectory for the mobile
manipulator to reach a target grasping pose during the motion. However, grasping
an object during the motion is fragile. A more robust grasping strategy is required

for such dynamic grasping.

Thakar et al. [[17] studied dynamic grasping with pose estimation uncertainty,
but they employed zero gripper velocity with respect to the object [1§], because
lower speed was considered to be more robust for grasping with uncertainty in
pose estimation of the object. However, zero gripper velocity restricts the overall
efficiency of mobile manipulation. Since one of the major purposes is to reduce
the operation time, I do not assume zero gripper velocity relative to the target
object. In this section, I propose to use push-grasp for the dynamic grasping, which
improves the robustness with respect to the positioning uncertainty of the object
or the mobile manipulator, and at the same time, it is more efficient compared to

the zero-velocity grasp since the gripper can move with a nonzero velocity.

I assume the gripper closes with a limited velocity. As shown in Fig. @(b), if not
taking the push-grasp strategy, in order to contact the object with both fingers of
the gripper at the planned timing for grasping, the gripper has to start to close in
advance. Since the gripper closing velocity is usually low, there is a very narrow
space between the fingers and the object when the object starts to enter the center
of the two fingers. In contrast, push-grasp is able to grasp the object more robustly
as shown in Fig. @(a). The gripper does not close until the object is within the
coverage of two fingers of the gripper, which increase the free space between the
fingers and the target object. Once the object is within the coverage of the two

fingers, the object will slide on the table as the gripper moves and closes, and

89

Gripper moving —_—
Moving and closing : . . Moving gripper
gripper without closing

Start closing gripper

Narrow space

- collision! E
Push-grasp

Figure 4.7: (Left) Closing the fingers and moving the gripper at the same time.
This will lead to narrow space between the fingers and the object, and as a result,
the gripper is prone to collide with the object. (Right) Push-grasp. The fingers do
not close until the object contacts the palm of the gripper, or the object is within
the coverage of the fingers.

finally the object will be grasped as the two fingers contact the object.

Note that I assume that once the object contacts the palm of the gripper, it will
remain in contact with the gripper. However, if the gripper moves at a high
speed and hits the object, the object will detach the gripper after the impact. I
may impose an additional velocity limit on the gripper when reaching the target

grasping pose to avoid this issue.

90

error:

actual position Xd — Xp
} desired trajectory of point P
Xd
@ desired position

&

Figure 4.8: Illustration of the base trajectory tracking method. A PID controller
is used to correct the base trajectory error. Since the mobile base is subject to
differential constraints, the PID controller is used to track a holonomic point P
relative to the mobile base.

4.4 Experiment

4.4.1 Experiment Setup

I use a Fetch mobile manipulator with a 7TDOF manipulator mounted on a diff-
drive mobile base, for both physical simulation and real-world experiments. The
equipped gripper is a parallel two-finger electric gripper with a constant closing
speed of 0.1m/s. The mobile manipulator accepts joint velocity input for the

manipulator and the twist for the mobile base. The task is to grasp an object from

a table using push-grasp, as shown in Fig. .

4.4.2 Physical Simulation

In the implementation of the planned trajectory, the manipulator trajectory track-

ing is relatively accurate, and the error mainly comes from the mobile base. I use

91

—— Desired trajectory
—— True trajectory

—— Desired trajectory
—— True trajectory

T i wligp o
S LI
LI

AR
%6,

>
4%,
’0,/ %)

=\
==\
N
B e g S E AR
B e 1 A R R e

Figure 4.9: The base trajectory tracking performance. (a) Open-loop execution
without feedback control. (b) With a PID controller, the control parameters are
K, =20,K; = 0.1, Kg = 0.3. Using a PID controller greatly reduces the base
trajectory tracking error.

a simple PID controller to track the base trajectory. The mobile base is subject to
nonholonomic constraints, which restrict the feasible velocity. To track the calcu-
lated trajectory, I use the method described in [45] and track a holonomic point P
relative to the mobile base (as illustrated in Fig. @) The relation between the

position of P and the position of the mobile base is as follows:

Tp =T + €cosp (4.12)

yp = Yy + €sing (4.13)

92

de(t)
dt

xp(t) = Kpe(t) +K/ T)dT + Ky (4.14)

where [z,y]7 is the position of the mobile base, xp = [z,,,|" is the position of
the holonomic point P to be tracked by the PID controller, € is the length of the
imaginary rod connecting the mobile base and P, and the tracking error e(t) is

defined as the difference between the desired position x4 and actual position xp:

e(t) = xq — xp (4.15)

The desired position x4 is calculated according to the planning base trajectory

using equations (12) and (13).

Fig. @(a) shows the tracking performance of the base trajectory using the P
controller without feedback. The deviation between the actual base trajectory and
the desired trajectory accumulates as the robot moves. By using the tuned PID
controller, the base trajectory tracking performance is greatly improved, as shown
in Fig. @ Flg shows the executed trajectory in the Gazebo simulation.
In Fig. —(5), -(6) and -(7), the gripper pushes the object while closing fingers,

and the object slides on the table under the push-grasp.

4.4.3 Real-world Experiment

I implemented the trajectory on a Fetch mobile manipulator. The task is to use
push-grasp to pick up a bottle from a table, as shown in Fig. . Since the

onboard perception during the mobile manipulation is a challenging problem itself,

93

Figure 4.10: The simulation snapshots of the trajectory for picking up an object
during the whole-body motion.

here I only demonstrate the open-loop execution of the trajectory. I have shortened
the total trajectory to reduce the accumulated position error from the mobile base.
For safe execution, I also scale down the overall velocity of the mobile manipulator
to 1/5 of the planned velocity. Fig. shows three executed trajectories. Once

the gripper contacts the object, the object slides on the table under the push-grasp,

and the object is finally grasped as the gripper closes its fingers.

4.5 Discussion

If T use the common discretization scheme for the trajectory and do not predefine

the correspondence between the waypoints and tasks, discontinuity is introduced

94

Figure 4.11: The overview of the experiment. The task is to use push-grasp to
pick up a bottle from a table.

by the task constraints. Since I need to first locate the interval, within which
grasping happens, and then linearly interpolate the two ends of the interval to
get the robot configurations for the tasks. For example, as shown in Fig. a,
in i-th iteration of the optimization, the interpolated grasping state is within the
interval between the 3rd and 4th waypoints. However, in the next iteration of
the optimization, the state may jump to another interval. Fig. b shows the
grasping state jumps to the interval between the 5th and 6th waypoints, then the
grasping state has to linearly interpolate the 5th and 6th waypoints. The jumping
among different intervals results in different expressions for calculating the grasping
state, and introduces discontinuity in the grasp constraint. It may lead to slow
convergence or even divergence [], as a result, I may fail to obtain a feasible

trajectory.

Our formulation of the optimization problem eliminates the discontinuity and non-

smoothness. However, for the task constraints, I need to predefine which waypoints

95

Figure 4.12: The executed motion of picking up a bottle from a table using push-
grasp during the whole-body motion.

96

Where is robot state X(t;) at ¢;? Grasp constraint:

ta, FK(q(t,)) = grasp,
. [
(X Xpes1): k yr
AT [AT
A7, AT, AT; Bli o N; 47,
i-th iteration — o ——r— 4 ' X; = (g1, 40
AT, t,.
i Xy Xo Xz X4 Xs Xe e Xv_2 Xn_1 Xu

X(t;) k=3, linearly interpolate X3 and X,

(a) i-th iteration of the optimization.

Grasp constraint:

Where is robot state X(t,) at t;?
(t)atty FK(q(t))) = grasp;

tq.
(Xp) Xpp1): b = 1L

ATi4q
Tivd e AT,
ATpyy ATyyy AT ST BTEF J; A7y,
(i+1)-th iteration e — Ty X; = (942
AT;)
i1 By Xy X, X3 X4 Xs X¢ o e Xv_z Xn_1 Xy

X(t1) k=5, linearly interpolate X5 and X,

Jump to another interval
(b) (i+1)-th iteration of the optimization.

Figure 4.13: The executed motion of picking up a bottle from a table using push-
grasp during the whole-body motion.

correspond to the tasks. The indexes of the waypoints are heuristically determined
by the relative position of the grasping tasks compared to the whole trajectory.
In practice, this heuristic is not critical to the result, as long as there are enough

waypoints in the trajectory segments split by the tasks.

The calculation time seems to scale poorly with respect to the number of waypoints,
as shown in Fig. @ One of the reasons is that the SLSQP implemented in NLopt
uses dense-matrix methods, which ignore the sparsity of the problem. For large-
scale problems with thousands of parameters, maybe I should use other packages

such as Ipopt [120].

97

Since the current method is based on nonlinear optimization and the dimension
of the state space is large, it is not suitable for real-time trajectory generation.
It can be used to generate locally optimal trajectories offline, and the generated
trajectories can be used as reference trajectories for online tracking. Besides, there

are still some issues:

e In the physical experiment and simulation: The trajectory is disturbed by
the contact forces when the end-effector hits the object. Moreover, as the
object slides on the table under the push-grasp, the friction force acts as
a disturbance force. Especially when the friction between the object and
table is large, the trajectory is disturbed out of control. I can improve this
by reducing the friction, but this is an inherent problem of our formulation

since | consider kinematic planning, without considering the dynamics.

e Due to limited gripper closing speed, the timing for closing the gripper is del-
icate with respect to position uncertainty. The robustness can be increased

using industrial grippers, which can close instantaneously.

o For some grasping poses, the SLSQP solver is not able to converge to a
feasible solution or even fails to obtain a solution due to a segmentation
fault encountered during the optimization. Further investigation is required

to find out the fundamental reasons.

o As the object slides on the table under the push-grasp, I implicitly assume
that there are no other (or very few) obstacles near the target object. Oth-
erwise, the optimization solver may not find a collision-free trajectory for
push-grasp. In another word, our planner can not apply to dynamic grasp-

ing in a cluttered environment.

98

CHAPTER 5
GRIPPER SELECTION AND DESIGN FOR PICKING AND
ASSEMBLY

Chapter g and chapter @ introduce the task and motion planning for efficiently
picking the assembly parts. The assembly parts vary in shape and dimension. To
firmly grasp the assembly parts and perform the assembly, the mobile manipula-
tor may have to change different grippers for different assembly parts. However,
manually designing the grippers is time-consuming. In this chapter, to improve
the efficiency of gripper selection and design, I present a structured approach to
selecting and designing a set of grippers for an assembly task. Compared to the
current experience-based gripper design method, our approach accelerates the de-
sign process by automatically generating a set of initial design options for gripper
types and parameters according to the CAD models of assembly components. I
use mesh segmentation techniques to segment the assembly components and fit the
segmented parts with shape primitives, according to the predefined correspondence
between shape primitive and gripper type, suitable gripper types and parameters
can be selected and extracted from the fitted shape primitives. Moreover, I incor-
porate the assembly constraints in the further evaluation of the initially obtained
gripper types and parameters. Considering the affordance of the segmented parts
and the collision avoidance between the gripper and the subassemblies, applica-
ble gripper types and parameters can be filtered from the initial options. Among
the applicable gripper configurations, I further optimize the number of grippers
for performing the assembly task, by exploring the gripper that is able to handle
multiple assembly components during the assembly. Finally, the feasibility of the
designed grippers is experimentally verified by assembling a part of an industrial

product.

99

S © L5 o=

(1) Coolant cover plate (2) Front cover plate (3) Rotor (4) Inner sleeve shaft
2 e =]
(5) Outer sleeve shaft (6) Shaft (7) Carrier (8) Inner sleeve shaft
0 © == 7=
(9) Outer sleeve shaft (10) Gear (11) Planetary gear ~ (12) Link
©
(13) Main seal

Figure 5.1: Models of all the assembly components before processing, are displayed
in the order of the assembly sequence.

The rest of the chapter is organized as follows: Section EI introduces the seg-
mentation of the assembly components. In Section @, the initial set of gripper
configurations is extracted by primitive fitting. In Section @, I evaluate these
gripper configurations under the assembly constraints and optimize the number
of grippers. The feasibility of the designed grippers is confirmed by an assembly

experiment in Section @
5.1 Mesh Segmentation

Mechanical products are usually comprised of many regular shapes, such as cylin-
ders and cuboids, which makes the proposed method feasible and promising in
industrial applications. I use mesh segmentation to find the underlying shape
primitives of an assembly component, then suitable gripper types are determined

according to the predefined rules. The mesh models of the assembly components

100

(Fig. EI) are segmented based on the Shape Diameter Function (SDF) [121],
which is a scalar function measuring the neighborhood diameter of an object at
each point on the surface. To obtain the SDF value at a point P on the surface,
I construct a cone centered around the inward-normal direction of P, as sketched
in black dashed lines in Fig. @ (a), from P I shoot a set of rays (red lines) inside
the cone and stop at the intersections on another side of the mesh. The SDF value
is calculated as the weighted average length of the rays. In our implementation, I
shoot 30 rays per point and set the cone angle to 1200, as a result, Fig. @ (b) and
(¢) show two examples of SDF distribution on the model. The mesh segmentation
process is composed of soft clustering and hard clustering. Soft clustering is a
Gaussian mixture model that fits a set of Gaussian distributions to the distribu-
tion of the SDF values, this step outputs the probability matrix for each face to
belong to each cluster, note that a cluster may contain multiple segments. Hard
clustering yields the final segmentation of the mesh by minimizing an energy func-
tion by combining the probability matrix and geometric surface features [121,, 122].

Readers are referred to [[123] for other mesh segmentation methods.

Before mesh segmentation, smoothing is applied to the mesh to eliminate the
sharp edges of the screw thread, otherwise, it may result in undesirable segments
[124]. Fig. @ shows the mesh after smoothing is applied. Then all the assembly
components are segmented based on SDF values. The segmentation results are
visualized in Fig. @, different segments are colored differently, and each of the

segments is regarded as a candidate for graspingm.

!Simultaneously grasping multiple segments is not considered in this chapter.

101

(b)

Figure 5.2: (a) The Shape Diameter Function (SDF') is the weighted average length
of the rays (red lines). (b) & (c¢) SDF distribution of the carrier and the rotor.

smoothing
Figure 5.3: Two examples of models before and after smoothing.

102

U]
(k) (m)

Figure 5.4: After mesh segmentation, an assembly component is decomposed into
several segments, different segments are rendered with different colors. The original
component with a complex shape is decomposed into segments with simpler shapes,
which are suitable for further primitive fitting.

5.2 Gripper Selection and Dimensioning

Through mesh segmentation, an assembly component with a complex shape is
decomposed into segments with simpler shapes. Obviously, some shape primitives
can be easily grasped by some common types of grippers, e.g., cylinders can be
easily grasped by the 3-finger centric gripper. Therefore, I attempt to fit the
segments with shape primitives and then determine the suitable gripper types
according to the predefined rules. In this section, I obtain the initial decision on

gripper types and parameters based on previous segmentation results.

103

- b)“

Large torque - Slip Large torque > Stable
Figure 5.5: (a) c) Grasping a cylinder with a 2-finger gripper is not stable

against large external torques in the cylinder’s radial direction, the object may slip
around the contact normal. (b) Grasping a cylinder by a 3-finger gripper is stable
against large external torques in the cylinder’s radial direction. (d) & (e) Grasping
a box shape with a 2-finger gripper is appropriate.

Opening width Opening width
——— i

1 1
Finger
length

Figure 5.6: The opening width and finger length of the 2-finger and 3-finger grip-
pers.

Finger
length

104

5.2.1 Rules for Gripper Type Selection

In this chapter, I consider using two common types of grippersE: 2-finger parallel
jaw grippers and 3-finger centric grippers as shown in Fig. @ (a) and (b). 2-
finger grippers are suitable for grasping parts with (nearly) parallel surfaces, Fig.
@ (d) and (e) show a 2-finger gripper grasping a box with parallel surfaces, the
gripper fingers coincide well with the object surfaces, and they have a large contact
area, thus the grasp is stable. However, it may not be suitable to grasp a cylin-
der using a 2-finger gripper, as shown in Fig. @ (a), small external torques in a
cylinder’s radial direction can be balanced by assuming soft-finger contactE, but
in some assembly operations, the gripper may have to exert large forces/torques
on the assembly components, which may lead to slip around the contact normal.
Therefore, I favor 3-finger centric grippers over 2-finger grippers for grasping cylin-
drical objects, which are guaranteed to be stable against the torque in the radial
direction, as shown in Fig. @ (b). Another merit of grasping cylindrical objects
using 3-finger grippers is that the grasp stability is independent of the radius of
the cylinder, however, the stability of grasping a cylindrical object using a 2-finger
gripper depends on the relative curvature of the finger and object surface, that
is, grasping a cylinder with larger radius is more stable since the contact area is

lar gerE .

2More gripper types and shape primitives can be used to cope with more complex shapes.

3The object and the main body of the finger are assumed to be rigid, but the soft pad can be
attached to the fingertip.

4 Assume soft finger contact and constant external forces.

105

5.2.2 Gripper Type

Each segment of an assembly component shown in Fig. @ is a candidate for
grasping, in order to determine a suitable gripper type for grasping the segment, I
fit every segment with a cylinder and a bounding box. If the volume of a cylinder
is closer to the volume of the segment, then a 3-finger centric gripper is selected
for this segment, otherwise, the 2-finger jaw gripper is used. Since the segments
of a surface mesh are usually not closed surfaces, the volume of such segments is

obtained by calculating the volume of their convex hulls.

Fig. @ shows two examples of fitting the segmented parts with primitives. The
rotor in Fig. @ (b) is segmented into 6 parts, and I fit all of them with cylinders
and bounding boxes, by comparing the volume of the segmented part and the fitted
primitives, the appropriate fitting for every segment can be determined. Note that
the criteria for determining a better fitting are by comparing the volume, but the
precondition is that surface of the fitted primitive is non-empty, such that the
gripper can grasp the fitted primitives. And this is why I prefer the RANSAC
model fitting provided in PCL [125], it guarantees that the fitted primitive has a
non-empty surface for grasping. For example, if I fit the point cloud of the third
segment in Fig. @ (b) with cylinder models, the best fitting I can find may be
the cylinder that aligns with its inner hole surface, but the volume difference with
the segment is larger comparing to the fitted bounding box, therefore, the better
fitting is actually the bounding box. However, there is no box fitting provided
in PCL, so I use the bounding box to fit the segment, in this case, I have to
check which faces of the bounding box are empty and which are not, and then
select the non-empty faces to be in contact with the gripper. As a result, five of

them can be closely fitted by cylinders and the other one is fitted by its bounding

106

Primitive l
fitting

1 g:tiil:igtive l 1

cylinder cylinder

(a)

cylinder cylinder box cylinder cylinder cylinder

(b)

Figure 5.7: Two examples of fitting the segmented parts with shape primitives.
(a) The inner sleeve shaft is segmented into two parts, and both the two parts are
fitted appropriately by cylinders. (b) Five segments of the rotor are more closely
fitted by cylinders and the other one is fitted with its bounding box, notice that
the third segment looks cylindrical but it is empty on the cylindrical surface.

box. The fitted cylinders are represented by gray belts, the height of the cylinder
is manually set to 1 cm for visualization, but it can also be calculated from the
maximum distance along the cylinder’s axis between the points on the segment.
Then the corresponding gripper type can be selected for every segment based on
the predefined rules. In order to grasp a mechanical component, at least one of its
segmented parts should be graspable by the designed grippers, e.g. the gripper for

grasping the rotor should be capable of grasping at least one of the 6 segments in

Fig. b.7 (b).

5.2.3 Gripper Parameters

The maximum and minimum opening widths and finger length are important pa-

rameters of the grippers. In order to grasp a segment, the characteristic length of

107

the shape primitive, which is the diameter of the fitted cylinder or the distance
between the opposite faces (in touch with the gripper) of its bounding box, must
be within the stroke of the gripper. The capability of grasping a segment does not
directly impose constraints on the finger length, however, the finger length has to
fulfill some requirements in order to satisfy the assembly constraints, for example,
the finger should be long enough to avoid collision with the shaft when inserting
the shaft sleeve to the shaft. And the constraints on the finger length are described
in section 5.2. In addition, the gripper approach direction can be extracted from
the fitted primitives. The 3-finger centric gripper should approach the part along
the axial direction of the fitted cylinder, and the 2-finger gripper can approach the
part as long as the finger surfaces are parallel to the non-empty surfaces of the

bounding box.

5.3 Evaluation Under Assembly Constraints

Through mesh segmentation and shape primitive fitting, I have obtained the initial
candidate gripper types and parameters for all the segmented parts of the assembly
components, however, some of them are not applicable considering the assembly
constraints. In this section, I take into account the assembly constraints and

finalize the minimum number of grippers for the given assembly task.

5.3.1 Assembly Task Specification

Referring to the assembly task decomposition method proposed by Mosemann et

al. [126], an assembly task can be represented as a sequence of assembly operations,

108

Figure 5.8: Gear teeth and screw thread do not afford to grasp, thus removed from
the candidate graspable segments.

in each assembly operation;, a new assembly component is added to the existing
subassembly. I assume the assembly sequence is already given, then the assembly
task is denoted as Assembly = {operation,,operations,...,operation,}. Each
assembly operation can be represented as (¢, ¢,,* Tp,“' T,), where ¢, and ¢, are the
active and passive subassemblies to be manipulated in the operation, and 7, and
a'Tp are spatial transformations between active and passive subassemblies before
and after the assembly operation, respectively. The active subassembly is the
subassembly grasped by the gripper during the assembly operation, and it moves
with the gripper until the assembly operation finishes. The passive subassembly is
usually fixed in the environment, and it serves as an environmental obstacle that
should not collide with the gripper. In Fig. @, the gripper should grasp the active

subassembly ¢, to assemble it to the passive subassembly c,,.

5.3.2 Assembly Constraints

In an assembly operation operation;, the gripper has to grasp one segment of ¢,
and change the spatial relationship from T}, to “T,,. When grasping c,, not every
segment of ¢, is suitable for grasping, the affordance of different segments should
be taken into account in selecting graspable segments. Moreover, the gripper must

avoid collision with the subassemblies during the assembly.

109

Segment 1
~~~~~ .\Assemble
\‘”-—»

Ca

Segment 1

»n
1]

(0]
S|
o
5
=
N

»
o
(o]
5]
)
=)
=
N

Active subassembly
C

p
Passive subassembly

Figure 5.9: The gripper has to avoid collision with the subassemblies in the assem-
bly task.

Affordance

Affordance is defined as the possible action on an object or environment [] In
an assembly operation, not all the segments of an assembly component afford to
grasp. For example, screw thread and gear teeth are mainly used for fastening
and transmission, they may be damaged and lose their main affordance if they
are directly grasped by the gripper. As illustrated in Fig. @, some segments
are manually removed from the candidate segments for grasping, considering their

major affordance.

Collision Avoidance

The gripper has to avoid collision with the subassemblies during the assembly,
the example illustrated in Fig. @ shows that the gripper will collide with the
subassembly if segment 2 is grasped in this assembly operation, thus segment 1
should be selected as the graspable segment. A segment is graspable only if there
exists a collision-free grasping pose for the gripper to assemble ¢, to c,. To get
the graspable segments satisfying the collision avoidance constraint, I plan a set

of grasps for each segment and check the collision between the gripper and the

110



subassemblies, the segment is graspable if there is at least one collision-free grasp.

5.3.3 Grasp Planning

After removing ungraspable segments according to their affordance, grasp plan-
ning is performed on the remaining segments to determine if there are collision-
free grasps for the segments. For the segments to be grasped by 2-finger parallel
grippers, I first use planar clustering [113] to cluster the mesh into a set of nearly
planar facets, and then search for nearly parallel facets to be in contact with the
fingers of the gripper, and rotate the gripper around the contact normal to ob-
tain more grasps. Fig. shows some examples of planar clustering, different
clustered facets are rendered with different colors. By searching nearly parallel
facets from the clustered model, pairs of facets and contact points for grasping are
obtained, as shown in Fig. . In terms of the segments to be grasped by 3-finger
grippers, the grasp can be easily extracted from the fitted cylinder, the axis of the

gripper should align with the axis of the cylinder.

The planned grasps are then examined by checking the collision between the grip-
per and the subassemblies. In Fig. , I explain how grasp planning is used to
determine the graspable segment with respect to collision avoidance constraints,
and in this example, the sub-task is to assemble the rotor to the subassemblies
(including the coolant cover plate and the front cover plate shown in Fig. @)
The rotor, as presented in Fig. @ (b), is composed of 6 segments. Its third seg-
ment should be grasped by a 2-finger parallel jaw gripper, and the planned grasps
are shown in Fig. (a), (b), and (c), however, as seen in Fig. (c), all
the grasps are in collision with the subassemblies, therefore, the third segment is

not graspable. The first, second, fifth, and sixth segments of the rotor should be

111



(d)

Figure 5.10: Planar clustering of the segments to be grasped by 2-finger grippers,
different colors render different clustered facets.

grasped by a 3-finger centric gripper, but they are also not graspable since the
planned grasps are in collision with the subassemblies (Fig. (d) & (e)). The
fourth segment of the rotor should be grasped by the 3-finger centric gripper, and
it is the only graspable segment, the collision-free grasp is shown in Fig. (f).
After the evaluation under the assembly constraints following such process, the re-
maining graspable segments of every assembly component are listed in Fig. ,
alongside the graspable segments, and there are the constraints on gripper types
and parameters for grasping the segments. Among these constraints, the opening
width is set to be the characteristic length of the segment, which is the diameter
of the fitted cylinder or the distance between the opposite faces (in touch with the
gripper) of its bounding box, and the opening width should be within the stroke
of the gripper. The finger length should be set such that the finger can contact
the segment and also avoid the collision between the gripper and other segments

and subassemblies. For example, consider assembling assembly component No. 5

112



Figure 5.11: Pairs of facets and contact points for grasping by 2-finger grippers,
the origins of the arrows are the contact points, and the arrows point to the surface
normal directions at the contact points.

to No. 4 (see Fig. (b1)), if I grasp the second segment of No. 5, then the
finger length has to be long enough to avoid colliding with assembly component
No. 4 and also the first segment of No. 5, and similarly, I obtain the finger length
constraint for the second segment of assembly component No. 9 (see Fig. p.16
(c2)). For assembly component No. 10, the finger should be longer than the depth
of the gear teeth to contact the target segment (see Fig. (c4)). For assembly
components No. 8 and No. 13, the finger length should be above the threshold to

avoid colliding with the shaft (No. 6) (see Fig. (d1) and (d5)).

113



Figure 5.12: Mesh segmentation and primitive fitted have determined the gripper
types for the segments, then based on the gripper type, grasp planning is performed
on the segmented parts to determine if the segment is graspable, by checking if
there is at least one collision-free grasp. (a) A planned 2-finger grasp at a pair of
contact points. (b) A set of planned 2-finger grasps are obtained by rotating the
gripper around the contact normal. (c¢) Check the collision between the gripper
and the subassemblies. (d) A planned 3-finger grasp for the segment. (e) All the
planned 3-finger grasps are in collision with the subassemblies. (f) Collision-free
grasps can be found for this segment, and it is the only graspable segment for
grasping the rotor to perform this assembly operation.

5.3.4 Minimize the Number of Grippers

Some assembly components can be commonly grasped by the same gripper, thus
the total cost of grippers can be cut down by reducing the number of grippers
for the assembly task. From the previous analysis, I have obtained the graspable

segments from all the assembly components, and every assembly component c;

114



Graspable  Gripper Opening Finger

s segments type width length
1 . 7 3finger 227mm >0mm
P
£ X
2 & Y 3-finger 227mm >0mm
S

3 \‘/ ‘)' 3-finger 110mm >0 mm

4 @ ~ 3-finger 25mm  >0mm

3-finger 32mm  >0mm

3-finger 40mm >41 mm

3-finger 18mm >0 mm

2-finger 16.7mm >0 mm
2-finger 19.lmm >0mm
2-finger 17.2mm >0mm
2-finger 159 mm >0mm
2-finger 16.5mm >0 mm
2-finger 15.8mm >0 mm

2-finger 16.9mm >0 mm

1agriey | <f

2-finger 18.5mm >0 mm

Y

2-finger 60mm  >0mm

o
<)
b

3-finger 40mm  >50 mm

3-finger 32 mm >0 mm

B

3-finger 40mm >4l mm

. Sy 1
10 \(;., v 2-finger 17mm >4.5 mm
Wager/

A o/
11 ij 3-finger 20mm >0 mm

2-finger 15mm  >0mm
12

2-finger 32.8mm >0 mm

=
13 @ 3-finger 37.5mm >22.7 mm

Figure 5.13: The remaining graspable segments after checking the assembly con-
straints.

115



imposes a set of constraints on the gripper, such as the number of fingers Fj,
opening width W;, minimum finger length L; and maximum finger length L;. T
denote the constraints for assembly component ¢; as C; = {F;, W;, L, , L}, i =
1,2,..., M, M is the number of assembly components, if an assembly component
¢; has m graspable segments {c;1, ¢, ..., Cim}, then C; = Ci3 U Cip U -+ U Cipp,
where C;; is the constraints imposed by segment c¢;; of ¢;. I generate N gripper
parameters {1, Py, ..., Py}, Pj = {F;, W, Wj*, L;}, covering the minimum and
maximum gripper parameters, then determine the minimal subset out of the N
gripper parameters that can grasp all the assembly components, and the problem

is formulated as follows,
minimize Zjvzl T,
subject to z; = {0,1}

N
Do (T > 1

- (5.1)
Do (2T > 1
Sy anay > 1
F;=F
L7 <L;<Lf (5.2)
Wy < W, <W;

where i € {1,2,...,M},j7 € {1,2,...,N}, M is the number of assembly compo-
nents, NV is the number of gripper parameter samples, a;; is 1 if Eq. (2) is satisfied,
otherwise a;; = 0, W, and I/VjJr are the minimum and maximum opening widths of
a gripper, respectively, L, is the finger length, and z; is 1 if j-th gripper parameter
sample P; is used and is 0 otherwise. Eq. (2) lists the conditions for the gripper
with parameter P; to grasp the assembly component c;, and the inequalities in

Eq. (1) ensure that every assembly component ¢; can be grasped by at least one

116



gripper.

This is a multidimensional 0-1 knapsack problem [12§], to solve it, I have to, (1)
obtain N gripper parameters and then determine a minimal subset out of NV subject
to these constraints, and (2) figure out all the coefficients a;;. For generating
N samples of gripper parameters, I separate the samples into two groups, the
first group is for 2-finger grippers (F; = 2), and the second group is for 3-finger

grippers (F; = 3). For each group, I set the upper and lower bounds of the

maximum opening width W .. W . to be just enough to cover the maximum
and minimum values of opening width W;, that is Wi .. = {Wi}maz, Wi, —d =

{W;}min, where d is the stroke of the gripper, if {W;}maze — {Wi}tmin < d, then I set
wt =W

upper lower

= {W;}maz- Notice that, I do not assume the gripper can be fully
closed, instead I assume the gripper has a certain stroke d, or more specifically,
dafinger for the 2-finger gripper and dsfinger for the 3-finger gripper, following such
assumption, the minimum opening width can be directly derived as: W = VVjJr—d,
and the strokes of the grippers that I use are introduced in Section 6. The upper
and lower bounds of finger length Lypper, Liower are set to be the maximum and
minimum finger lengths among these constraints. So far, I obtain the bounds for
the opening width and the finger length for each group, then for each group, I
uniformly generate n values of W' from range [W,!, ... Wt ] and m values of L;
from range [Liower, Lupper]- Specifically, I obtain n; values of VV;r and m; values
of L; for the first group, and ny values of VV;r and my values of L; for the second
group. Therefore, I totally have N = n; X my 4+ ng X ms sets of gripper parameters
for the two parameter groups, and the coefficients a;; are obtained by checking if
Eq. (2) is satisfied for assembly constraint C; and gripper parameter P;, then this
0-1 knapsack problem can be solved by using the branch-and-bound method [129].

Since there is no upper bound for the finger length in our case, the upper bound

117



can be flexibly set to a value as long as it is larger than the maximum lower limit

of these finger length constraints, the obtained solutions for our case is presented

in Section @

5.3.5 Discussion and Limitation

In this research, I assume that the target assembly components can be well de-
composed into boxes and cylinders, and I only use two types of grippers, which
are 2-finger parallel jaw grippers and 3-finger centric grippers. To cope with more
complex shapes, I have to use more shape primitives, such as cones and pyramids.
In addition to affordance and collision avoidance described above, there are other

aspects to be considered for further improvement.

Stability of Grasping Different Segments

In an assembly operation, grasping different segments may result in different
force/torque distributions. Consider assembling the carrier to the shaft (Fig. [5:1!),
if the grasping contact positions are not symmetric about the shaft, Fig. (b5)
shows an example of such a situation, it will lead to uneven normal force between
shaft and hole, which may result in insertion failure, or even damage the assembly
components. Therefore, it is necessary to analyze the contact force distribution

when selecting a suitable segment for grasping during the assembly.

118



Finer Finger Design

The assembly components must be stably grasped without slipping during the
assembly, in which the external forces include gravity, assembly force, etc. It is
necessary to fine-tune the shape of the fingertip surface to increase the contact area
with the object, especially when the object surface is curved. Assuming the soft-
finger contact model, I can calculate the contact area from the relative curvature
between fingertip surface and object surface [89], then an appropriate fingertip
surface curvature that ensures the grasp stability can be determined. Fig. @ (a)
illustrates the situation of the maximum torque caused by gravity, and it should

be balanced by the torsional friction exerted by the soft finger contact.

5.4 Experiment

In this section, the effectiveness and feasibility of our approach are verified by
assembling a part of an industrial product using the designed grippers. Consid-
ering the limit of our 3D printer, the product is scaled to 55% of its original size
and printed out as shown in Fig. (Left). The grippers are constructed by
attaching printed fingers to air chucks, the 2-finger gripper is constructed by at-
taching 2 fingers to an SMC MHF2-12D2 air chuck (stroke: 48mm, Omm to 48
mm), and the 3-finger gripper is constructed by attaching 3 fingers on an SMC
MHSL3-32D air chuck (stroke: 8mm, 34 mm to 42 mm), the stroke of an air chuck
determines the difference between the maximum and minimum opening widths
(W — W:). According to the strokes of air chucks I use and the scaled dimen-

J J

sions of the assembly constraints, the feasible solutions for the gripper parameters

are {2,0,33,30}, {3, 14,22, 30}, {3, 52.5,60.5, 30}, {3, 116.9, 124.9, 30}, that is one

119



2-finger gripper with a maximum opening width of 33 mm, and three 3-finger
grippers with maximum opening widths of 22 mm, 60.5 mm and 124.9 mm are
required. I model and print out the fingers and attach them to the air chucks, and
I calculate the position where the fingers should be fixed on the air chucks such
that the maximum and minimum opening widths correspond to the solutions. For
the 2-finger gripper, since the stroke is 48 mm, which is larger than the difference
between the maximum and minimum opening widths in solution {2, 0, 33,30}, so
I simply design the 2-finger gripper with the opening width ranging from 0 mm to
48 mm, which covers the range of opening width in the solution and works equally
well. The actual maximum opening widths for the other three 3-finger grippers
are slightly larger than the calculation results to account for the uncertainties.
Besides, there is no upper bound on finger length, it is free to set finger length

above 30 mm, and all the gripper parameters of the actual gripper used in our

experiment are shown in Fig. (Right).

I performed the assembly experiment on a NEXTAGE robot from Kawada
Robotics Inc., as shown in Fig. , all the 13 assembly components can be
firmly grasped by using the designed 4 grippers. I assume the assembly sequence
is known, the target segment of an assembly component for grasping can be ob-
tained from the previous analysis, then the robot is able to successfully complete

the task without collision with the subassemblies during the assembly, as shown

in Fig. .

120



Figure 5.14: (Left): The product to be assembled. (Right): The designed 4 grip-
pers in their maximum opening state, the strokes are 8mm for the 3-finger air
chuck and 48mm for the 2-finger air chuck, respectively.

121



Figure 5.15: Designed 4 grippers are able to firmly grasp all the 13 assembly
components.

122



@1 ) " (d3) (d4) (ds)

Figure 5.16: The robot can successfully assemble the product, and there is no
collision between the gripper and the subassembly, the red object appearing in
(¢3) and (c4) is used to support the subassembly.

123



CHAPTER 6
CONCLUSIONS AND FUTURE WORK

This thesis addresses the automation in an assembly factory from a three-layer
hierarchy, i.e., task-level planning, motion-level planning, and grasp-level planning,
to improve the efficiency of performing the part-supply, grasping, and assembly

tasks.

At the task level, I presented a planner that plans a minimum sequence of base posi-
tions for a mobile manipulator to perform a sequence of tasks in multiple locations.
Our work contributed to the limited work on mobile manipulators performing a
sequence of tasks. Specifically, I considered multiple picking tasks in multiple lo-
cations, but our planner also applies to other manipulation tasks. In that case, I
should consider constraints from the new tasks and plan the base region satisfying
the new task constraints. Our planner can be applied to the pick-and-place tasks
involved in the part-supply tasks in the assembly factories and warehouses. By
reducing the number of base positions to visit for a sequence of tasks, the overall
efficiency of the tasks is improved, thus improving the efficiency of the production.
I also discussed the object placement styles and the update of the base sequence,

which are critical for practical applications.

I performed numerical analysis on the planner. The numerical analysis shows
the calculation time for the base region is the most time-consuming part of the
planning, and this part should be performed offline. The calculation time grows
nearly linearly with respect to the number of objects in the tray and the number
of trays (when the number of trays is less than 18). The numerical result on the
size of base regions and the intersection also provides a reference for configuring

the objects and trays for practical settings. Combined with the numerical analysis

124



result, I found that for regularly placed objects, both globally static and dynam-
ically updated base positions are feasible, but for randomly placed objects, it is
impractical and unnecessary to update the base positions. Extended experiments

are conducted to demonstrate the feasible policies.

The efficiency of our planner is demonstrated by comparing the operation time
for moving the base with a naive base sequence. Our experiments show that the
average operation time is reduced by 11.22s to 17.26s by reducing one base position.
However, some limitations are observed in the current experiments. The success
rate is not high, mainly due to perception errors and motion planning timeout, and
the motion of the manipulator is not optimized. These issues will be considered in

our future work.

At the motion level, I aim to further reduce the motion time. I have presented an
optimization-based motion planner to plan the optimal motion for a nonholonomic
mobile manipulator to perform tasks during the motion. Our major contribution
is a novel formulation of the optimization, such that the task constraints are guar-
anteed to be smooth. The numerical results show that using our formulation,
I can find feasible solutions satisfying all the constraints. The proposed motion
planner can be used to generate locally optimal trajectories offline, the generated
trajectories can be taken as the reference trajectories for online tracking. I also
proposed to use the push-grasp strategy to robustly grasp the target object during
the motion. I have demonstrated the planned trajectories in a simulator and the

physical experiment.

At the grasp level, I tackle the challenges of designing grippers for grasping and
assembly. I presented a structured approach to selecting and designing the grip-

pers. The input for our approach is the assembly specification and the geometrical

125



models of the assembly components. In the first phase, the assembly components
with complex shapes are segmented into simpler parts, then the segmented parts
are fitted with shape primitives. By defining the correspondence between simple
shape primitives and gripper types, suitable gripper types and parameters can
be determined from the results of mesh segmentation and primitive fitting. In
the second phase, the results in the first phase are examined under the assembly
constraints, afterwards, the number of grippers is optimized by finding a minimal
set of gripper parameters that satisfy the constraints imposed by all the assembly
components. Finally, the effectiveness of the designed grippers is confirmed by the
assembly experiment. The current work can be improved in several aspects: (1)
More powerful mesh segmentation methods [130] can be considered to decompose
the assembly components, and the affordance of the assembly component will be
taken into account in the segmentation. (2) More shape primitives such as cones
and pyramids can be used to improve the ability to fit more complex shapes. (3)
The representation of the assembly task and constraints can be refined, and classi-
fying the basic assembly operations (such as peg-in-hole) can further automate the
design process. (4) The shape of the fingertip surface can be fine-tuned to increase

the contact area, thus the grasp stability is improved.

In the future, these three parts of work can be combined into a whole mobile ma-
nipulation system. I envisage that mobile manipulators pick up the assembly parts
from the storage area and transport them to the assembly line, and then these as-
sembly parts are assembled by mobile manipulators. To grasp the assembly parts
from different trays, it is feasible to use a two-finger gripper to grasp all the assem-
bly parts. However, in case of the assembly tasks, the mobile manipulator may
have to change grippers to firmly assemble different assembly parts. To perform

assembly tasks by using mobile manipulators, two issues have to be addressed: (1)

126



the base positioning error of the mobile manipulator, and (2) force control for the
contact-rich assembly tasks. The positioning error of the mobile manipulator can
be reduced by using extra sensors and repositioning itself. The force control in the
assembly tasks is very challenging, especially for mobile manipulators, due to the
low rigidity of the mobile manipulator. The learning-based method may be a good
choice to solve this challenging contact-rich mobile assembly problem, but more
investigation is required to improve this system to be applicable in real industrial

environment.

127



ACKNOWLEDGMENTS

It has been a tough journey, without the help of many people, I could not have
been here. Firstly, I would like to thank my advisor Prof. Harada, who gave me
a chance to do research in the field of robotics, which I still believe is one of the
most important and right decisions for my future development. Prof. Harada has
always been supportive for my academic research and considerate for my daily life
in Japan. I am very grateful to Prof. Harada for providing the opportunity to
work as a research assistant in AIST. He has always been willing to support me
whenever I encounter problems, and I appreciate his kind heart. Besides, Prof.
Wan has been inspiring me with his passion and diligence in work. I thank him for
these inspirations and suggestions on my research. I also thank Prof. Kiyokawa
and Prof. Koyama for their valuable comments on my research during the midterm
presentations. Moreover, I am very grateful for the excellent research environment
created by all the professors and students. When I first came to Harada labora-
tory. I almost knew nothing about robotics research. It was through the students’
midterm presentations, I quickly got the big picture of robotic manipulation re-

search, so I thank my colleagues for their effort.

During my PhD studies, I had a wonderful time working as a research assistant
with Domae-san and Ueshiba-san in AIST. Domae-san proposed many valuable
suggestions to me during the weekly research meeting, and he has always been
supportive for my research. Whenever I need something for help, I know that

Domae-san and Ueshiba-san will get them ready for me.

I would like to thank my parents for their unconditional support and encourage-
ment, without which I cannot imagine how I can get through these difficult times.

Last but not least, I would like to thank my wife for the company throughout the

128



journey, I am looking forward to the shared future with you.

129



1]

BIBLIOGRAPHY

Oussama Khatib, Kazu Yokoi, Oliver Brock, K Chang, and Arancha Casal.
Robots in human environments: Basic autonomous capabilities. The Inter-
national Journal of Robotics Research, 18(7):684-696, 1999.

Sachin Chitta, Benjamin Cohen, and Maxim Likhachev. Planning for au-
tonomous door opening with a mobile manipulator. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 1799-1806. IEEE,
2010.

Anthony Pratkanis, Adam Eric Leeper, and Kenneth Salisbury. Replacing
the office intern: An autonomous coffee run with a mobile manipulator. In
2018 IEEE International Conference on Robotics and Automation, pages
1248-1253. IEEE, 2013.

Kai Zhou, Gerhard Ebenhofer, Christian Eitzinger, Uwe Zimmermann,
Christoph Walter, José Saenz, Luis Pérez Castano, Manuel Alejandro Fer-
nandez Hernandez, and José Navarro Oriol. Mobile manipulator is coming to
aerospace manufacturing industry. In 2014 IEEE International Symposium
on Robotic and Sensors Environments (ROSE) Proceedings, pages 94-99.
IEEE, 2014.

Qiankun Yu, Guolei Wang, Xiaotong Hua, Simin Zhang, Libin Song, Jiwen
Zhang, and Ken Chen. Base position optimization for mobile painting robot
manipulators with multiple constraints. Robotics and Computer-Integrated
Manufacturing, 54:56-64, 2018.

Yuhao Zhang, Xingwei Zhao, Bo Tao, and Han Ding. Point stabilization
of nonholonomic mobile robot by bzier smooth subline constraint nonlinear
model predictive control. IEEE/ASME Transactions on Mechatronics, 2020.

S. Thakar, P. Rajendran, A. M. Kabir, and S. K. Gupta. Manipulator motion

planning for part pickup and transport operations from a moving base. IEEE
Transactions on Automation Science and Engineering, pages 1-16, 2020.

HIGH-MIX, LOW-VOLUME ASSEMBLY, hittps://blog.unex.com/high-miz-
low-volume-assembly. accessed July, 2022.

Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The international
journal of Robotics Research, 4(2):3-9, 1985.

130



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

Bernard Bayle, J-Y Fourquet, and Marc Renaud. Manipulability of wheeled
mobile manipulators: Application to motion generation. The International
Journal of Robotics Research, 22(7-8):565-581, 2003.

Francois G Pin and J-C Culioli. Multi-criteria position and configuration op-
timization for redundant platform/manipulator systems. In IEEE Interna-
tional Workshop on Intelligent Robots and Systems, Towards a New Frontier
of Applications, pages 103-107. IEEE, 1990.

Francois G Pin and Jean-Christophe Culioli. Optimal positioning of com-
bined mobile platform-manipulator systems for material handling tasks.
Journal of intelligent and Robotic Systems, 6(2-3):165-182, 1992.

Wayne F Carriker, Pradeep K Khosla, and Bruce H Krogh. Path planning
for mobile manipulators for multiple task execution. IEEE Transactions on
Robotics and Automation, 7(3):403-408, 1991.

Saman Vafadar, Adel Olabi, and Masoud Shariat Panahi. Optimal motion
planning of mobile manipulators with minimum number of platform move-

ments. In 2018 IEEFE International Conference on Industrial Technology
(ICIT), pages 262-267. IEEE, 2018.

Jingren Xu, Kensuke Harada, Weiwei Wan, Toshio Ueshiba, and Yukiyasu
Domae. Planning an efficient and robust base sequence for a mobile manipu-
lator performing multiple pick-and-place tasks. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 11018-11024. IEEE,
2020.

Fei Chen, Mario Selvaggio, and Darwin G Caldwell. Dexterous grasping by
manipulability selection for mobile manipulator with visual guidance. IEEFE
Transactions on Industrial Informatics, 15(2):1202-1210, 2018.

Shantanu Thakar, Pradeep Rajendran, Vivek Annem, Ariyan Kabir, and
Satyandra Gupta. Accounting for part pose estimation uncertainties during
trajectory generation for part pick-up using mobile manipulators. In 2019
International Conference on Robotics and Automation (ICRA), pages 1329—
1336. IEEE, 2019.

Shantanu Thakar, Pradeep Rajendran, Ariyan M. Kabir, and Satyandra K.
Gupta. Manipulator motion planning for part pickup and transport opera-
tions from a moving base. IFEFE Transactions on Automation Science and
Engineering, pages 1-16, 2020.

131



[19]

[20]

[21]

22]

23]

[24]

28]

[29]

Tim Mercy, Ruben Van Parys, and Goele Pipeleers. Spline-based motion
planning for autonomous guided vehicles in a dynamic environment. [EEFE
Transactions on Control Systems Technology, 26(6):2182-2189, 2017.

Johannes Schmalz and Gunther Reinhart. Automated selection and dimen-
sioning of gripper systems. Procedia CIRP, 23:212-216, 2014.

Mohammadali Honarpardaz, Johan Olvander, and Mehdi Tarkian. Fast fin-
ger design automation for industrial robots. Robotics and Autonomous Sys-
tems, 113:120-131, 2019.

DT Pham and SH Yeo. Strategies for gripper design and selection in robotic
assembly. The International Journal of Production Research, 29(2):303-316,
1991.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim,
Leslie Pack Kaelbling, and Toméas Lozano-Pérez. Integrated task and mo-

tion planning. Annual Review of Control, Robotics, € Autonomous Systems,
4:265-293, 2021.

Yoshio Yamamoto and Xiaoping Yun. Coordinating locomotion and manip-
ulation of a mobile manipulator. IEEFE Transactions on Automatic Control,
39(6):1326-1332, 1994.

Homayoun Seraji. An on-line approach to coordinated mobility and manip-
ulation. In [1993] Proceedings IEEE International Conference on Robotics
and Automation, pages 28-35. IEEE, 1993.

Homayoun Seraji. A unified approach to motion control of mobile manipu-
lators. The International Journal of Robotics Research, 17(2):107-118, 1998.

Felix Burget and Maren Bennewitz. Stance selection for humanoid grasping
tasks by inverse reachability maps. In 2015 IEEE International conference
on robotics and automation (ICRA), pages 5669-5674. IEEE, 2015.

Pooya Abolghasemi, Rouhollah Rahmatizadeh, Aman Behal, and Ladislau
Boloni. A real-time technique for positioning a wheelchair-mounted robotic
arm for household manipulation tasks. In Workshops at the Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

Shunan Ren, Ying Xie, Xiangdong Yang, Jing Xu, Guolei Wang, and Ken
Chen. A method for optimizing the base position of mobile painting ma-

132



[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

nipulators. [EEE Transactions on Automation Science and Engineering,

14(1):370-375, 2016.

Bin Du, Jing Zhao, and Chunyu Song. Optimal base placement and mo-
tion planning for mobile manipulators. In ASME 2012 International De-
sign Engineering Technical Conferences and Computers and Information in
Engineering Conference, pages 1227-1234. American Society of Mechanical
Engineers Digital Collection, 2013.

Dmitry Berenson, James Kuffner, and Howie Choset. An optimization ap-
proach to planning for mobile manipulation. In 2008 IEEFE International
Conference on Robotics and Automation, pages 1187-1192. IEEE, 2008.

Rosen Diankov. Automated Construction of Robotic Manipulation Programs.
PhD thesis, Carnegie Mellon University, Robotics Institute, August 2010.

Freek Stulp, Andreas Fedrizzi, Lorenz Mosenlechner, and Michael Beetz.
Learning and reasoning with action-related places for robust mobile manip-
ulation. Journal of Artificial Intelligence Research, 43:1-42, 2012.

Franziska Zacharias, Christoph Borst, Michael Beetz, and Gerd Hirzinger.
Positioning mobile manipulators to perform constrained linear trajectories.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 2578-2584. IEEE, 2008.

Nikolaus Vahrenkamp, Tamim Asfour, and Rudiger Dillmann. Robot place-
ment based on reachability inversion. In 2013 IEEE International Conference
on Robotics and Automation, pages 1970-1975. IEEE, 2013.

Nikolaus Vahrenkamp, Tamim Asfour, and Riidiger Dillmann. Efficient in-
verse kinematics computation based on reachability analysis. International
Journal of Humanoid Robotics, 9(04):1250035, 2012.

Daniel Leidner and Christoph Borst. Hybrid reasoning for mobile ma-
nipulation based on object knowledge. In Workshop on Al-based robotics
at IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013.

Jun Dong and Jeffrey C Trinkle. Orientation-based reachability map for
robot base placement. In 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 1488-1493. IEEE, 2015.

133



[39]

[40]

[41]

[47]

[48]

[49]

Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. Capturing robot
workspace structure: representing robot capabilities. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3229—
3236. leee, 2007.

John T Feddema. Kinematically optimal robot placement for minimum time
coordinated motion. In Proceedings of IEEE International Conference on
Robotics and Automation, volume 4, pages 3395-3400. IEEE, 1996.

David Hsu, J-C Latcombe, and Stephen Sorkin. Placing a robot manipulator
amid obstacles for optimized execution. In Proceedings of the 1999 IEEE
international symposium on assembly and task planning (ISATP’99)(Cat.
no. 99THS8470), pages 280-285. IEEE, 1999.

Said Zeghloul and José-Alfonso Pamanes-Garcia. Multi-criteria optimal
placement of robots in constrained environments. Robotica, 11(2):105-110,
1993.

S Mitsi, K-D Bouzakis, D Sagris, and G Mansour. Determination of optimum
robot base location considering discrete end-effector positions by means of
hybrid genetic algorithm. Robotics and Computer-Integrated Manufacturing,
24(1):50-59, 2008.

Alonzo Kelly. Mobile robotics: mathematics, models, and methods. Cam-
bridge University Press, 2013.

Kevin M Lynch and Frank C Park. Modern Robotics. Cambridge University
Press, 2017.

Yoshio Yamamoto and Xiaoping Yun. Effect of the dynamic interaction on
coordinated control of mobile manipulators. IFEE Transactions on robotics
and automation, 12(5):816-824, 1996.

Homayoun Seraji. Configuration control of redundant manipulators: The-
ory and implementation. IEEE Transactions on Robotics and Automation,
5(4):472-490, 1989.

Homayoun Seraji. An on-line approach to coordinated mobility and manip-
ulation. In [1993] Proceedings IEEE International Conference on Robotics
and Automation, pages 28-35. IEEE, 1993.

Alessandro De Luca, Giuseppe Oriolo, and Paolo Robuffo Giordano. Kine-

134



[50]

[51]

[52]

[54]

[58]

matic modeling and redundancy resolution for nonholonomic mobile manip-
ulators. In Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., pages 1867-1873. IEEE, 2006.

Glenn D White, Rajankumar M Bhatt, Chin Pei Tang, and Venkat N Krovi.
Experimental evaluation of dynamic redundancy resolution in a nonholo-
nomic wheeled mobile manipulator. IEEE/ASME Transactions on Mecha-
tronics, 14(3):349-357, 2009.

Ying Wang, Haoxiang Lang, and Clarence W De Silva. A hybrid visual
servo controller for robust grasping by wheeled mobile robots. IEEE/ASME
transactions on Mechatronics, 15(5):757-769, 2010.

James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Proceedings 2000 ICRA. Millennium Con-
ference. IEEFE International Conference on Robotics and Automation. Sym-
posia Proceedings (Cat. No. 00CH37065), volume 2, pages 995-1001. IEEE,
2000.

John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion
planning with sequential convex optimization and convex collision checking.

The International Journal of Robotics Research, 33(9):1251-1270, 2014.

Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew
Klingensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S

Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 32(9-10):1164-1193, 2013.

Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic plan-
ning. The international journal of robotics research, 20(5):378-400, 2001.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566-580, 1996.

Yoshiaki Kuwata, Gaston A Fiore, Justin Teo, Emilio Frazzoli, and
Jonathan P How. Motion planning for urban driving using rrt. In 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1681-1686. IEEE, 2008.

Richard M Murray and Sosale Shankara Sastry. Nonholonomic motion plan-

135



[59]

[60]

[61]

[62]

[63]

[64]

[65]

ning: Steering using sinusoids. [EEE transactions on Automatic Control,

38(5):700-716, 1993.

Brian Paden, Michal Cép, Sze Zheng Yong, Dmitry Yershov, and Emilio
Frazzoli. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Transactions on intelligent vehicles, 1(1):33-55, 2016.

Lester E Dubins. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
American Journal of mathematics, 79(3):497-516, 1957.

James Reeds and Lawrence Shepp. Optimal paths for a car that goes both
forwards and backwards. Pacific journal of mathematics, 145(2):367-393,
1990.

Zachary Kingston, Mark Moll, and Lydia E Kavraki. Sampling-based meth-
ods for motion planning with constraints. Annual review of control, robotics,
and autonomous systems, 1:159-185, 2018.

Matthew Kelly. An introduction to trajectory optimization: How to do your
own direct collocation. SIAM Review, 59(4):849-904, 2017.

Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396—404. Springer, 1986.

Elon Rimon and Daniel E Koditschek. Exact robot navigation using cost
functions: the case of distinct spherical boundaries in e/sup n. In Proceedings.
1988 IEEE International Conference on Robotics and Automation, pages
1791-1796. IEEE, 1988.

Daniel E Koditschek and Elon Rimon. Robot navigation functions on man-
ifolds with boundary. Advances in applied mathematics, 11:412, 1990.

Howie M Choset, Kevin M Lynch, Seth Hutchinson, George Kantor, Wolfram
Burgard, Lydia Kavraki, Sebastian Thrun, and Ronald C Arkin. Principles
of robot motion: theory, algorithms, and implementation. MIT press, 2005.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor,
and Stefan Schaal. Stomp: Stochastic trajectory optimization for motion

planning. In 2011 IEEF international conference on robotics and automation,
pages 4569-4574. TEEE, 2011.

136



[69]

[70]

[71]

[72]

[77]

Jeffrey Ichnowski, Michael Danielczuk, Jingyi Xu, Vishal Satish, and Ken
Goldberg. Gomp: Grasp-optimized motion planning for bin picking. arXiv
preprint arXiv:2003.02401, 2020.

Jeffrey Ichnowski, Yahav Avigal, Vishal Satish, and Ken Goldberg. Deep
learning can accelerate grasp-optimized motion planning. Science Robotics,
5(48), 2020.

Cong Wang, Qifeng Zhang, Qiyan Tian, Shuo Li, Xiaohui Wang, David Lane,
Yvan Petillot, and Sen Wang. Learning mobile manipulation through deep
reinforcement learning. Sensors, 20(3):939, 2020.

Josiah Wong, Albert Tung, Andrey Kurenkov, Ajay Mandlekar, Li Fei-
Fei, Silvio Savarese, and Roberto Martin-Martin. Error-aware imitation
learning from teleoperation data for mobile manipulation. arXiv preprint
arXiw:2112.05251, 2021.

Daniel Honerkamp, Tim Welschehold, and Abhinav Valada. Learning kine-
matic feasibility for mobile manipulation through deep reinforcement learn-
ing. IEEE Robotics and Automation Letters, 6(4):6289-6296, 2021.

Max Spahn, Bruno Brito, and Javier Alonso-Mora. Coupled mobile manip-
ulation via trajectory optimization with free space decomposition. In 2021
International Conference on Robotics and Automation (ICRA). IEEE, 2021.

Jianfeng Liao, Fanghao Huang, Zheng Chen, and Bin Yao. Optimization-
based motion planning of mobile manipulator with high degree of kinematic
redundancy. International Journal of Intelligent Robotics and Applications,
3(2):115-130, 20109.

Joshua Fishman, Samuel Ubellacker, Nathan Hughes, and Luca Carlone.
Dynamic grasping with a” soft” drone: From theory to practice. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021.

Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah, Vijaykumar Ra-
jasekaran, Maxime Adjigble, Rustam Stolkin, Ales Leonardis, and Yasemin
Bekiroglu. Dynamic grasp and trajectory planning for moving objects. Au-
tonomous Robots, 43(5):1241-1256, 2019.

Iretiayo Akinola, Jingxi Xu, Shuran Song, and Peter K Allen. Dynamic
grasping with reachability and motion awareness. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2021.

137



[79]

[30]

[81]

[82]

[33]

[87]

[33]

Arjun Menon, Benjamin Cohen, and Maxim Likhachev. Motion planning for
smooth pickup of moving objects. In 2014 IEEFE International Conference
on Robotics and Automation (ICRA), pages 453-460. IEEE, 2014.

Charles Sun, Jedrzej Orbik, Coline Manon Devin, Brian H Yang, Abhishek
Gupta, Glen Berseth, and Sergey Levine. Fully autonomous real-world rein-
forcement learning with applications to mobile manipulation. In 5th Annual
Conference on Robot Learning, 2021.

Bennion R Cannon, Todd D Lillian, Spencer P Magleby, Larry L. Howell, and
Matthew R Linford. A compliant end-effector for microscribing. Precision
engineering, 29(1):86-94, 2005.

Kaidi Nie, Weiwei Wan, and Kensuke Harada. An adaptive robotic gripper
with l-shape fingers for peg-in-hole tasks. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4022-4028.
IEEE, 2018.

Andrew T Miller, Steffen Knoop, Henrik I Christensen, and Peter K Allen.
Automatic grasp planning using shape primitives. In 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 03CHS37422), vol-
ume 2, pages 1824-1829. IEEE, 2003.

Markus Przybylski, Tamim Asfour, and Riidiger Dillmann. Planning grasps
for robotic hands using a novel object representation based on the medial
axis transform. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1781-1788. IEEE, 2011.

Kai Huebner and Danica Kragic. Selection of robot pre-grasps using box-
based shape approximation. In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1765—-1770. IEEE, 2008.

Nikolaus Vahrenkamp, Leonard Westkamp, Natsuki Yamanobe, Eren E Ak-
soy, and Tamim Asfour. Part-based grasp planning for familiar objects. In
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), pages 919-925. IEEE, 2016.

Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-
driven grasp synthesis—a survey. IEEE Transactions on Robotics, 30(2):289—
309, 2013.

Duc Truong Pham, Nasir Salah Gourashi, and Eldaw Elzaki Eldukhri. Au-
tomated configuration of gripper systems for assembly tasks. Proceedings

138



[39]

[90]

[92]

[97]

of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 221(11):1643-1649, 2007.

Kensuke Harada, Tokuo Tsuji, Soichiro Uto, Natsuki Yamanobe, Kazuyuki
Nagata, and Kosei Kitagaki. Stability of soft-finger grasp under gravity. In
2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 883-888. IEEE, 2014.

Matei Ciocarlie, Claire Lackner, and Peter Allen. Soft finger model with
adaptive contact geometry for grasping and manipulation tasks. In Sec-
ond Joint EuroHaptics Conference and Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems (WHC’07), pages 219-224.
IEEE, 2007.

Kensuke Harada, Tokuo Tsuji, Kazuyuki Nagata, Natsuki Yamanobe,
Kenichi Maruyama, Akira Nakamura, and Yoshihiro Kawai. Grasp planning
for parallel grippers with flexibility on its grasping surface. In 2011 IEEE
International Conference on Robotics and Biomimetics, pages 1540-1546.
IEEE, 2011.

Antonio Bicchi and Vijay Kumar. Robotic grasping and contact: A re-
view. In Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), volume 1, pages 348-353. IEEE, 2000.

Richard M Murray. A mathematical introduction to robotic manipulation.
CRC press, 2017.

Mohammadali Honarpardaz, Martin Meier, and Robert Haschke. Fast grasp
tool design: From force to form closure. In 2017 13th IEEE Conference on
Automation Science and Engineering (CASE), pages 782-788. IEEE, 2017.

Haoran Song, Michael Yu Wang, and Kaiyu Hang. Fingertip surface op-
timization for robust grasping on contact primitives. IEEE Robotics and
Automation Letters, 3(2):742-749, 2018.

Alberto Rodriguez and Matthew T Mason. Effector form design for 1dof
planar actuation. In 2013 IEEFE International Conference on Robotics and
Automation, pages 349-356. IEEE, 2013.

Orion Taylor and Alberto Rodriguez. Optimal shape and motion planning
for dynamic planar manipulation. Autonomous Robots, 43(2):327-344, 2019.

139



[98]

[99]

[100]

[101]

[102]

[103]

104]

[105]

[106]

Nikhil Chavan-Dafle, Matthew T Mason, Harald Staab, Gregory Rossano,
and Alberto Rodriguez. A two-phase gripper to reorient and grasp. In
2015 IEEFE International Conference on Automation Science and Engineering
(CASE), pages 1249-1255. IEEE, 2015.

Lionel Birglen and Thomas Schlicht. A statistical review of industrial robotic
grippers. Robotics and Computer-Integrated Manufacturing, 49:88-97, 2018.

Katharina Hermann, Rafael Hostettler, Markus Zimmermann, and
Anand Vazhapilli Sureshbabu. A joint-selective robotic gripper with ac-
tuation mode switching. In 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), pages 1532-1539. IEEE, 2019.

Aljaf Kramberger, Adam Wolniakowski, Mads Hgj Rasmussen, Marko Mu-
nih, Ales Ude, and Christian Schlette. Automatic fingertip exchange system
for robotic grasping in flexible production processes. In 2019 IEEE 15th

International Conference on Automation Science and Engineering (CASE),
pages 1664-1669. ITEEE, 2019.

Kensuke Harada, Kento Nakayama, Weiwei Wan, Kazuyuki Nagata,
Natsuki Yamanobe, and Ixchel G Ramirez-Alpizar. Tool exchangeable
grasp/assembly planner. In International Conference on Intelligent Au-
tonomous Systems, pages 799-811. Springer, 2018.

Kento Nakayama, Weiwei Wan, and Kensuke Harada. Designing grasping
tools for robotic assembly based on shape analysis of parts. In 2019 IFEE-
RAS 19th International Conference on Humanoid Robots (Humanoids),
pages 1-7. IEEE, 2019.

Corey Goldfeder, Peter K Allen, Claire Lackner, and Raphael Pelossof. Grasp
planning via decomposition trees. In Proceedings 2007 IEEFE International
Conference on Robotics and Automation, pages 4679-4684. IEEE, 2007.

Mark R Cutkosky et al. On grasp choice, grasp models, and the design of
hands for manufacturing tasks. IEFE Transactions on robotics and automa-
tion, 5(3):269-279, 1989.

Masayuki Shimizu, Hiromu Kakuya, Woo-Keun Yoon, Kosei Kitagaki, and
Kazuhiro Kosuge. Analytical inverse kinematic computation for 7-dof re-
dundant manipulators with joint limits and its application to redundancy
resolution. IEEE Transactions on Robotics, 24(5):1131-1142, 2008.

140



107]

108

109

[110]

[111]

[112]

113]

[114]

[115]

[116]

Giresh K Singh and Jonathan Claassens. An analytical solution for the
inverse kinematics of a redundant 7dof manipulator with link offsets. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2976-2982. IEEE, 2010.

Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David
Dymesich. Fetch and freight: Standard platforms for service robot appli-
cations. In Workshop on autonomous mobile service robots, 2016.

Kensuke Harada, Kenji Kaneko, and Fumio Kanehiro. Fast grasp planning
for hand/arm systems based on convex model. In 2008 IEEE International
Conference on Robotics and Automation, pages 1162-1168. IEEE, 2008.

Soichiro Uto, Tokuo Tsuji, Kensuke Harada, Ryo Kurazume, and Tsutomu
Hasegawa. Grasp planning using quadric surface approximation for parallel
grippers. In 2013 IEEFE International Conference on Robotics and Biomimet-
ics (ROBIO), pages 1611-1616. IEEE, 2013.

Tokuo Tsuji, Soichiro Uto, Kensuke Harada, Ryo Kurazume, Tsutomu
Hasegawa, and Ken’ichi Morooka. Grasp planning for constricted parts of ob-
jects approximated with quadric surfaces. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2447-2453. IEEE, 2014.

Kensuke Harada, Tokuo Tsuji, Soichiro Uto, Natsuki Yamanobe, Kazuyuki
Nagata, and Kosei Kitagaki. Stability of soft-finger grasp under gravity. In
2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 883-888. IEEE, 2014.

Weiwei Wan, Kensuke Harada, and Fumio Kanehiro. Planning grasps with
suction cups and parallel grippers using superimposed segmentation of object
meshes. IEEE Transactions on Robotics, 2020.

Yukiyasu Domae, Haruhisa Okuda, Yuichi Taguchi, Kazuhiko Sumi, and
Takashi Hirai. Fast graspability evaluation on single depth maps for bin
picking with general grippers. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 1997-2004. IEEE, 2014.

Peter J Kolesar. A branch and bound algorithm for the knapsack problem.
Management science, 13(9):723-735, 1967.

Vladimir Cerny. Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of optimization theory and
applications, 45(1):41-51, 1985.

141



[117]

[118]

[119]

[120]

[121]

[122]

[123]

124]

[125]

[126]

[127]

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

Steven G Johnson. The nlopt nonlinear-optimization package, 2014.

John T Betts. Practical methods for optimal control and estimation using
nonlinear programming. STAM, 2010.

Andreas Wéchter and Lorenz T Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical programming, 106(1):25-57, 2006.

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh parti-
tioning and skeletonisation using the shape diameter function. The Visual
Computer, 24(4):249, 2008.

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial
Board, 5.0.2 edition, 2020.

Ariel Shamir. A survey on mesh segmentation techniques. In Computer
graphics forum, volume 27, pages 1539-1556. Wiley Online Library, 2008.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane,
Fabio Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh
Processing Tool. In Vittorio Scarano, Rosario De Chiara, and Ugo Erra,
editors, Furographics Italian Chapter Conference. The Eurographics Associ-
ation, 2008.

Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl).
In 2011 IEEFE international conference on robotics and automation, pages
1-4. IEEE, 2011.

Heiko Mosemann and Friedrich M Wahl. Automatic decomposition of
planned assembly sequences into skill primitives. IEFEE transactions on
Robotics and Automation, 17(5):709-718, 2001.

Natsuki Yamanobe, Weiwei Wan, Ixchel G Ramirez-Alpizar, Damien Petit,
Tokuo Tsuji, Shuichi Akizuki, Manabu Hashimoto, Kazuyuki Nagata, and
Kensuke Harada. A brief review of affordance in robotic manipulation re-
search. Advanced Robotics, 31(19-20):1086-1101, 2017.

142



[128] Arnaud Fréville. The multidimensional 0-1 knapsack problem: An overview.
European Journal of Operational Research, 155(1):1-21, 2004.

[129] Peter J Kolesar. A branch and bound algorithm for the knapsack problem.
Management science, 13(9):723-735, 1967.

[130] Truc Le and Ye Duan. A primitive-based 3d segmentation algorithm for
mechanical cad models. Computer Aided Geometric Design, 52:231-246,
2017.

143



LIST OF PUBLICATIONS

Journal Articles:

[1] Xu, J., Wan, W., Koyama, K., Domae, Y. and Harada, K., Selecting and de-
signing grippers for an assembly task in a structured approach. Advanced Robotics,

35(6), pp. 381-397, 2021.

2] Xu, J., Domae, Y., Ueshiba, T., Wan, W. and Harada, K., Planning a Mini-
mum Sequence of Positions for Picking Parts From Multiple Trays Using a Mobile
Manipulator. IEEE Access, 9, pp. 165526-165541, 2021.

[3] Xu, J., Domae, Y., Wan, W. and Harada, K., Whole-body Trajectory Optimiza-
tion for a Mobile Manipulator to Perform Dynamic Grasping During the Motion.

Submitted to IEEE Robotics and Automation Letters, 2022.
International Conference Papers (peer-reviewed):

[1] Xu, J., Harada, K., Wan, W., Ueshiba, T. and Domae, Y., Planning an efficient
and robust base sequence for a mobile manipulator performing multiple pick-and-

place tasks. In 2020 IFEFE International Conference on Robotics and Automation
(ICRA), pp. 11018-11024, 2020.

2] Xu, J., Domae, Y., Wan, W. and Harada, K., 2022, An Optimization-based
Motion Planner for a Mobile Manipulator to Perform Tasks During the Motion.
In 2022 IEEE/SICE International Symposium on System Integration (SII), pp.
519-524, 2022.

Domestic Conference Papers (non peer-reviewed):
[1] Xu, J., Domae, Y., Wan, W. and Harada, K., Trajectory optimization for cou-

144



pled mobile manipulator motion in picking tasks. The Conference of the Society
of Instrument and Control Engineers System Integration Division (SICE SI), pp.
993-997, 2021.

2] Xu, J., Domae, Y., Ueshiba, T., Wan, W. and Harada, K., Base position plan-
ning for a mobile manipulator to pick-and-transport objects stored in multiple
trays. The Conference of the Society of Instrument and Control Engineers System
Integration Division (SICE SI), pp. 11671172, 2020.

3] Xu, J., Koyama, K., Wan, W., Domae, Y. and Harada, K., Designing grippers
based on model decomposition and primitive fitting. The Proceedings of JSME

annual Conference on Robotics and Mechatronics (Robomech), pp. 1P1-B01, 2020.

145



	Table of Contents
	Introduction
	Task-level Planning
	Motion-level Planning
	Grasp-level Planning
	Contributions of This Thesis

	Related Work
	Task Planning for Mobile Manipulation
	Positioning the Mobile Manipulator for Manipulation Tasks
	Mobile Manipulator Performing a Sequence of Tasks

	Motion Planning for Mobile Manipulation
	Modeling and Control of Mobile Manipulators
	Sampling-based Motion Planning With Constraints
	Optimization-based Motion Planning
	Mobile Manipulation

	Gripper Design for Grasping and Assembly
	Gripper Design and Robotic Assembly
	Shape Approximation Based Grasping


	Base Position Planning for Efficient Pickup of Assembly parts
	Method Overview
	Inverse Kinematics
	Reachability Database
	IK Query

	Base Region Calculation
	Base Sequence Planning
	Task Defined as Reaching the Grasping Poses
	Robust Intersections of Base Regions
	Path Planning

	Dynamically Update the Base Positions
	Objects Regularly Placed in the Trays
	Objects Randomly Placed in the Trays

	Numerical Results and Analysis
	Base Regions and Intersections
	Calculation Time
	Analysis of Different Policies

	Experiments
	Regularly Placed, Globally Static Base Sequence
	Randomly Placed, Globally Static Base Sequence
	Regularly Placed, Dynamically Update the Base Sequence
	Discussion of the Experiment Results


	Whole-body Motion Planning for Dynamic Grasping
	Method
	Problem Formulation

	Numerical Results
	Strategy for Robust Grasping
	Experiment
	Experiment Setup
	Physical Simulation
	Real-world Experiment

	Discussion

	Gripper Selection and Design for Picking and Assembly
	Mesh Segmentation
	Gripper Selection and Dimensioning
	Rules for Gripper Type Selection
	Gripper Type
	Gripper Parameters

	Evaluation Under Assembly Constraints
	Assembly Task Specification
	Assembly Constraints
	Grasp Planning
	Minimize the Number of Grippers
	Discussion and Limitation

	Experiment

	Conclusions and Future Work
	Acknowledgments
	Bibliography
	List of Publications

