Osaka University Knowledge Archive

Title	Stability of extremal Kähler manifolds
Author(s)	Mabuchi, Toshiki
Citation	Osaka Journal of Mathematics. 2004, 41(3), p. $563-582$
Version Type	VoR
URL	https://doi.org/10.18910/9178
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

STABILITY OF EXTREMAL KÄHLER MANIFOLDS

Dedicated to Professor Shoshichi Kobayashi on his seventieth birthday

Toshiki MABUCHI

(Received January 15, 2003)

1. Introduction

In Donaldson's study [10] of asymptotic stability for polarized algebraic manifolds (M, L), critical metrics originally defined by Zhang [39] (see also [22]) are referred to as balanced metrics and play a central role when the polarized algebraic manifolds admit Kähler metrics of constant scalar curvature. Let $T \cong\left(\mathbb{C}^{*}\right)^{k}$ be an algebraic torus in the identity component $\operatorname{Aut}^{0}(M)$ of the group of holomorphic automorphisms of M. In this paper, we define the concept of critical metrics relative to T, and as an application, choosing a suitable T, we shall show that a result in [26] on the asymptotic approximation of critical metrics (see [10], [39]) can be generalized to the case where (M, L) admits an extremal Kähler metric in the polarization class. Then in our forthcoming paper [27], we shall show that a slight modification of the concept of stability (see Theorem A below) allows us to obtain the asymptotic stability of extremal Kähler manifolds even when the obstruction as in [26] does not vanish. In particular, by an argument similar to [10], an extremal Kähler metric in a fixed integral Kähler class on a projective algebraic manifold M will be shown to be unique* up to the action of the group $\operatorname{Aut}^{0}(M)$.

2. Statement of results

Throughout this paper, we fix once for all an ample holomorphic line bundle L on a connected projective algebraic manifold M. Let H be the maximal connected linear algebraic subgroup of $\operatorname{Aut}^{0}(M)$, so that $\operatorname{Aut}^{0}(M) / H$ is an abelian variety. The corresponding Lie subalgebra of $H^{0}\left(M, \mathcal{O}\left(T^{1,0} M\right)\right)$ will be denoted by \mathfrak{h}. For the complete linear system $\left|L^{m}\right|, m \gg 1$, we consider the Kodaira embedding

$$
\Phi_{m}=\Phi_{\left|L^{m}\right|}: M \hookrightarrow \mathbb{P}^{*}\left(V_{m}\right), \quad m \gg 1,
$$

where $\mathbb{P}^{*}\left(V_{m}\right)$ denotes the set of all hyperplanes through the origin in $V_{m}:=$ $H^{0}\left(M, \mathcal{O}\left(L^{m}\right)\right)$. Put $N_{m}:=\operatorname{dim} V_{m}-1$. Let n and d be respectively the dimension

[^0]of M and the degree of the image $M_{m}:=\Phi_{m}(M)$ in the projective space $\mathbb{P}^{*}\left(V_{m}\right)$. Put $W_{m}=\left\{\operatorname{Sym}^{d}\left(V_{m}\right)\right\}^{\otimes n+1}$. Then to the image M_{m} of M, we can associate a nonzero element \hat{M}_{m} in W_{m}^{*} such that the corresponding element $\left[\hat{M}_{m}\right]$ in $\mathbb{P}^{*}\left(W_{m}\right)$ is the Chow point associated to the irreducible reduced algebraic cycle M_{m} on $\mathbb{P}^{*}\left(V_{m}\right)$. Replacing L by some positive integral multiple of L if necessary, we fix an H-linearization of L, i.e., a lift to L of the H-action on M such that H acts on L as bundle isomorphisms covering the H-action on M. For an algebraic torus T in H, this naturally induces a T-action on V_{m} for each m. Now for each character $\chi \in \operatorname{Hom}\left(T, \mathbb{C}^{*}\right)$, we set
$$
V(\chi):=\left\{s \in V_{m} ; t \cdot s=\chi(t) s \text { for all } t \in T\right\} .
$$

Then we have mutually distinct characters $\chi_{1}, \chi_{2}, \ldots, \chi_{\nu_{m}} \in \operatorname{Hom}\left(T, \mathbb{C}^{*}\right)$ such that the vector space $V_{m}=H^{0}\left(M, \mathcal{O}\left(L^{m}\right)\right)$ is uniquely written as a direct sum

$$
\begin{equation*}
V_{m}=\bigoplus_{k=1}^{\nu_{m}} V\left(\chi_{k}\right) . \tag{2.1}
\end{equation*}
$$

Put $G_{m}:=\prod_{k=1}^{\nu_{m}} \operatorname{SL}\left(V\left(\chi_{k}\right)\right)$, and the associated Lie subalgebra of $\operatorname{sl}\left(V_{m}\right)$ will be denoted by \mathfrak{g}_{m}. More precisely, G_{m} and \mathfrak{g}_{m} possibly depend on the choice of the algebraic torus T, and if necessary, we denote these by $G_{m}(T)$ and $\mathfrak{g}_{m}(T)$, respectively. The T-action on V_{m} is, more precisely, a right action, while we regard the G_{m}-action on V_{m} as a left action. Since T is Abelian, this T-action on V_{m} can be regarded also as a left action.

The group G_{m} acts diagonally on V_{m} in such a way that, for each k, the k-th factor $\operatorname{SL}\left(V\left(\chi_{k}\right)\right)$ of G_{m} acts just on the k-th factor $V\left(\chi_{k}\right)$ of V_{m}. This induces a natural G_{m}-action on W_{m} and also on W_{m}^{*}.

Definition 2.2. (a) The subvariety M_{m} of $\mathbb{P}^{*}\left(V_{m}\right)$ is said to be stable relative to T or semistable relative to T, according as the orbit $G_{m} \cdot \hat{M}_{m}$ is closed in W_{m}^{*} or the closure of $G_{m} \cdot \hat{M}_{m}$ in W_{m}^{*} does not contain the origin of W_{m}^{*}.
(b) Let \mathfrak{t}_{c} denote the Lie subalgebra of the maximal compact subgroup T_{C} of T, and as a real Lie subalgebra of the complex Lie algebra \mathfrak{t}, we define $\mathfrak{t}_{\mathbb{R}}:=\sqrt{-1} \mathfrak{t}_{c}$.

Take a Hermitian metric for V_{m} such that $V\left(\chi_{k}\right) \perp V\left(\chi_{l}\right)$ if $k \neq l$. Put $N_{m}:=$ $\operatorname{dim} V_{m}-1$ and $n_{k}:=\operatorname{dim} V\left(\chi_{k}\right)$. We then set

$$
l(k, i):=(i-1)+\sum_{j=1}^{k-1} n_{j}, \quad i=1,2, \ldots, n_{k} ; k=1,2, \ldots, \nu_{m},
$$

where the right-hand side denotes $i-1$ in the special case $k=1$. Let $\|\|$ denote the Hermitian norm for V_{m} induced by the Hermitian metric. Take a \mathbb{C}-basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ for V_{m}.

Definition 2.3. We say that $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ is an admissible normal basis for V_{m} if there exist positive real constants $b_{k}, k=1,2, \ldots, \nu_{m}$, and a \mathbb{C}-basis $\left\{s_{k, i} ; i=\right.$ $\left.1,2, \ldots, n_{k}\right\}$ for $V\left(\chi_{k}\right)$, with $\sum_{k=1}^{\nu_{m}} n_{k} b_{k}=N_{m}+1$, such that
(1) $s_{l(k, i)}=s_{k, i}, \quad i=1,2, \ldots, n_{k} ; k=1,2, \ldots, \nu_{m}$;
(2) $s_{l} \perp s_{l^{\prime}}$ if $l \neq l^{\prime}$;
(3) $\left\|s_{k, i}\right\|^{2}=b_{k}, \quad i=1,2, \ldots, n_{k} ; k=1,2, \ldots, \nu_{m}$.

Then the real vector $b:=\left(b_{1}, b_{2}, \ldots, b_{\nu_{m}}\right)$ is called the index of the admissible normal basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ for V_{m}.

We now specify a Hermitian metric on V_{m}. For the maximal compact subgroup T_{c} of T above, let \mathcal{S} be the set $(\neq \emptyset)$ of all T_{c}-invariant Kähler forms in the class $c_{1}(L)_{\mathbb{R}}$. Let $\omega \in \mathcal{S}$, and choose a Hermitian metric h for L such that $\omega=c_{1}(L ; h)$. Define a Hermitian metric on V_{m} by

$$
\begin{equation*}
\left(s, s^{\prime}\right)_{L^{2}}:=\int_{M}\left(s, s^{\prime}\right)_{h^{m}} \omega^{n}, \quad s, s^{\prime} \in V_{m} \tag{2.4}
\end{equation*}
$$

where $\left(s, s^{\prime}\right)_{h^{m}}$ denotes the function on M obtained as the pointwise inner product of s, s^{\prime} by the Hermitian metric h^{m} on L^{m}. Now, let us consider the situation that V_{m} has the Hermitian metric (2.4). Then

$$
V\left(\chi_{k}\right) \perp V\left(\chi_{l}\right), \quad k \neq l,
$$

and define a maximal compact subgroup $\left(G_{m}\right)_{c}$ of G_{m} by $\left(G_{m}\right)_{c}:=\prod_{k=1}^{\nu_{m}} \mathrm{SU}\left(V\left(\chi_{k}\right)\right)$. Again by this Hermitian metric $(,)_{L^{2}}$, let $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ be an admissible normal basis for V_{m} of a given index b. Put

$$
\begin{equation*}
E_{\omega, b}:=\sum_{i=0}^{N_{m}}\left|s_{i}\right|_{h^{m}}^{2}, \tag{2.5}
\end{equation*}
$$

where $|s|_{h^{m}}:=(s, s)_{h^{m}}$ for all $s \in V_{m}$. Then $E_{\omega, b}$ depends only on ω and b. Namely, once ω and b are fixed, $E_{\omega, b}$ is independent of the choice of an admissible normal basis for $V\left(\chi_{k}\right)$ of index b. Fix a positive integer m such that L^{m} is very ample.

Definition 2.6. An element ω in \mathcal{S} is called a critial metric relative to T, if there exists an admissible normal basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ for V_{m} such that the associated function $E_{\omega, b}$ on M is constant for the index b of the admissible normal basis. This generalizes a critical metric of Zhang [39] (see also [5]) who treated the case $T=\{1\}$. If ω is a critical metric relative to T, then by integrating the equality (2.5) over M, we see that the constant $E_{\omega, b}$ is $\left(N_{m}+1\right) / c_{1}(L)^{n}[M]$.

For the centralizer $Z_{H}(T)$ of T in H, let $Z_{H}(T)^{0}$ be its identity component. For m as above, the following generalization of a result in [39] is crucial to our study of
stability:
Theorem A. The subvariety M_{m} of $\mathbb{P}\left(V_{m}\right)$ is stable relative to T if and only if there exists a critical metric $\omega \in \mathcal{S}$ relative to T. Moreover, for a fixed index b, a critical metric ω in \mathcal{S} relative to T with constant $E_{\omega, b}$ is unique up to the action of $Z_{H}(T)^{0}$.

We now fix a maximal compact connected subgroup K of H. The corresponding Lie subalgebra of \mathfrak{h} is denoted by \mathfrak{k}. Let \mathcal{S}_{K} denote the set of all Kähler forms ω in the class $c_{1}(L)_{\mathbb{R}}$ such that the identity component of the group of the isometries of (M, ω) coincides with K. Then $\mathcal{S}_{K} \neq \emptyset$, and an extremal Kähler metric, if any, in the class $c_{1}(L)_{\mathbb{R}}$ is always in H-orbits of elements of \mathcal{S}_{K}. For each $\omega \in \mathcal{S}_{K}$, we write

$$
\omega=\frac{\sqrt{-1}}{2 \pi} \sum_{\alpha, \beta} g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}
$$

in terms of a system $\left(z^{1}, \ldots, z^{n}\right)$ of holomorphic local coordinates on M. let \mathcal{K}_{ω} be the space of all real-valued smooth functions u on M such that $\int_{M} u \omega^{n}=0$ and that

$$
\operatorname{grad}_{\omega}^{\mathbb{C}} u:=\frac{1}{\sqrt{-1}} \sum_{\alpha, \beta} g^{\bar{\beta} \alpha} \frac{\partial u}{\partial z^{\bar{\beta}}} \frac{\partial}{\partial z^{\alpha}}
$$

is a holomorphic vector field on M. Then \mathcal{K}_{ω} forms a real Lie subalgebra of \mathfrak{h} by the Poisson bracket for (M, ω). We then have the Lie algebra isomorphism

$$
\mathcal{K}_{\omega} \cong \mathfrak{k}, \quad u \leftrightarrow \operatorname{grad}_{\omega}^{\mathbb{C}} u .
$$

For the space $C^{\infty}(M)_{\mathbb{R}}$ of real-valued smooth functions on M, we consider the inner product defined by $\left(u_{1}, u_{2}\right)_{\omega}:=\int_{M} u_{1} u_{2} \omega^{n}$ for $u_{1}, u_{2} \in C^{\infty}(M)_{\mathbb{R}}$. Let pr: $C^{\infty}(M)_{\mathbb{R}} \rightarrow$ \mathcal{K}_{ω} be the orthogonal projection. Let \mathfrak{z} be the center of \mathfrak{k}. Then the vector field

$$
\mathcal{V}:=\operatorname{grad}_{\omega}^{\mathbb{C}} \operatorname{pr}\left(\sigma_{\omega}\right) \in \mathfrak{z}
$$

is callled the extremal Kähler vector field of (M, ω), where σ_{ω} denotes the scalar curvature of ω. Then \mathcal{V} is independent of the choice of ω in \mathcal{S}, and satisfies $\exp (2 \pi \gamma \mathcal{V})=$ 1 for some positive integer γ (cf. [13], [32]). Next, since we have an H-linearization of L, there exists a natural inclusion $H \subset \mathrm{GL}\left(V_{m}\right)$. By passing to the Lie algebras, we obtain

$$
\mathfrak{h} \subset \mathfrak{g l}\left(V_{m}\right) .
$$

Take a Hermitian metric h for L such that the corresponding first Chern form $c_{1}(L ; h)$ is ω. As in [23, (1.4.1)], the infinitesimal \mathfrak{h}-action on L induces an infinitesimal
\mathfrak{h}-action on the complexification $\mathcal{H}_{m}^{\mathbb{C}}$ of the space of all Hermitian metrics \mathcal{H}_{m} on the line bundle L^{m}. The Futaki-Morita character $F: \mathfrak{h} \rightarrow \mathbb{C}$ is given by

$$
F(\mathcal{Y}):=\frac{\sqrt{-1}}{2 \pi} \int_{M} h^{-1}(\mathcal{Y} h) \omega^{n},
$$

which is independent of the choice of h (see for instance [15]). For the identity component Z of the center of K, we consider its complexification $Z^{\mathbb{C}}$ in H. Then the corresponding Lie algebra is just the complexification $\mathfrak{z}^{\mathbb{C}}$ of \mathfrak{z} above. We now consider the set Δ of all algebraic tori in $Z^{\mathbb{C}}$. Let $T \in \Delta$. Put

$$
q:=\frac{1}{m} .
$$

For $\omega=c_{1}(L ; h) \in \mathcal{S}_{K}$, we consider the Hermitian metric (2.4) for V_{m}. We then choose an admissible normal basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ for V_{m} of index $(1,1, \ldots, 1)$. By the asymptotic expansion of Tian-Zelditch (cf. [33], [38]; see also [4]) for $m \gg 1$, there exist real-valued smooth functions $a_{k}(\omega), k=1,2, \ldots$, on M such that

$$
\begin{equation*}
\frac{n!}{m^{n}} \sum_{j=0}^{N_{m}}\left|s_{j}\right|_{h^{m}}^{2}=1+a_{1}(\omega) q+a_{2}(\omega) q^{2}+\cdots \tag{2.7}
\end{equation*}
$$

Then $a_{1}(\omega)=\sigma_{\omega} / 2$ by a result of Lu [20]. Let $\mathcal{Y} \in \mathfrak{t}_{\mathbb{R}}$, and put $g:=\exp ^{\mathbb{C}} \mathcal{Y} \in T$, where the element $\exp (\mathcal{Y} / 2)$ in T is written as $\exp ^{\mathbb{C}} \mathcal{Y}$ by abuse of terminology. Recall that the T-action on V_{m} is a right action, though it can be viewed also as a left action. Put $h_{g}:=h \cdot g$ for simplicity. Using the notation in Definition 2.3, we write $s_{k, i}=s_{l(k, i)}$, $k=1,2, \ldots, \nu_{m} ; i=1,2, \ldots, n_{k}$. Then for a fixed $k, \int_{M}\left|s_{k, i}\right|_{h_{g}^{m}}^{2} g^{*} \omega^{n}=\left|\chi_{k}\left(\exp ^{\mathbb{C}} \mathcal{Y}\right)\right|^{-2}$ is independent of the choice of i. Put

$$
Z(q, \omega ; \mathcal{Y}):=\frac{n!}{m^{n}} \sum_{j=0}^{N_{m}}\left|s_{j}\right|_{h_{g}^{m}}^{2}=g^{*}\left\{\frac{n!}{m^{n}} \sum_{k=1}^{\nu_{m}}\left|\chi_{k}\left(\exp ^{\mathbb{C}} \mathcal{Y}\right)\right|^{-2} \sum_{i=1}^{n_{k}}\left|s_{k, i}\right|_{h^{m}}^{2}\right\}, \quad \mathcal{Y} \in \mathfrak{t}_{\mathbb{R}} .
$$

For extremal Kähler manifolds, the following generalization of [26] allows us to approximate arbitrarily some critical metrics relative to T :

Theorem B. Let $\omega_{0}=c_{1}\left(L ; h_{0}\right)$ be an extremal Kähler metric in the class $c_{1}(L)_{\mathbb{R}}$ with extremal Kähler vector field \mathcal{V}. Then for some $T \in \Delta$, there exist a sequence of vector fields $\mathcal{Y}_{k} \in \mathfrak{t}_{\mathbb{R}}$, a formal power series C_{q} in q with real coefficients ($c f$. Section 6), and smooth real-valued functions $\varphi_{k}, k=1,2, \ldots$, on M such that

$$
\begin{equation*}
Z(q, \omega(l) ; \mathcal{Y}(l))=C_{q}+0\left(q^{l+2}\right) \tag{2.8}
\end{equation*}
$$

where $\mathcal{Y}(l):=(\sqrt{-1} \mathcal{V} / 2) q^{2}+\sum_{k=1}^{l} q^{k+2} \mathcal{Y}_{k}, h(l):=h_{0} \exp \left(-\sum_{k=1}^{l} q^{k} \varphi_{k}\right)$, and $\omega(l):=$ $c_{1}(L ; h(l))$.

The equality (2.8) above means that there exists a positive real constant A_{l} independent of q such that $\left\|Z(q, \omega(l) ; \mathcal{Y}(l))-C_{q}\right\|_{C^{0}(M)} \leq A_{1} q^{l+2}$ for all q with $0 \leq q \leq 1$. By [38], for every nonnegative integer j, a choice of a larger constant $A=A_{j, l}>0$ keeps Theorem B still valid even if the $C^{0}(M)$-norm is replaced by the $C^{j}(M)$-norm.

3. A stability criterion

In this section, some stability criterion will be given as a preliminary. In a forthcoming paper [27], we actually use a stronger version of Theorem 3.2 which guarantees the stability only by checking the closedness of orbits through a point for special one-parameter subgroups "perpendicular" to the isotropy subgroup. Now, for a connected reductive algebraic group G, defined over \mathbb{C}, we consider a representation of G on an N-dimensional complex vector space W. We fix a maximal compact subgroup G_{c} of G. Moreover, let \mathbb{C}^{*} be a one-dimensional algebraic torus with the maximal compact subgroup S^{1}.

Definition 3.1. (a) An algebraic group homomorphism $\lambda: \mathbb{C}^{*} \rightarrow G$ is said to be a special one-parameter subgroup of G, if the image $\lambda\left(S^{1}\right)$ is contained in G_{c}.
(b) A point $w \neq 0$ in W is said to be stable, if the orbit $G \cdot w$ is closed in W.

Later, we apply the following stability criterion to the case where $W=W_{m}^{*}$ and $G=G_{m}$. Let $w \neq 0$ be a point in W.

Theorem 3.2. A point w as above is stable if and only if there exists a point w^{\prime} in the orbit $G \cdot w$ of w such that $\lambda\left(\mathbb{C}^{*}\right) \cdot w^{\prime}$ is closed in W for every special oneparameter subgroup $\lambda: \mathbb{C}^{*} \rightarrow G$ of G.

Proof. We prove this by induction on $\operatorname{dim}(G \cdot w)$. If $\operatorname{dim}(G \cdot w)=0$, the statement of the above theorem is obviously true. Hence, fixing a positive integer k, assume that the statement is true for all $0 \neq w \in W$ such that $\operatorname{dim}(G \cdot w)<k$. Now, let $0 \neq w \in W$ be such that $\operatorname{dim}(G \cdot w)=k$, and the proof is reduced to showing the statement for such a point w. Let $\Sigma(G)$ be the set of all special one-parameter subgroups of G. Fix a G_{c}-invariant Hermitian metric $\|\|$ on W. The proof is divided into three steps:

Step 1. First, we prove "only if" part of Theorem 3.2. Assume that w is stable. Since $G \cdot w$ is closed in W, the nonnegative function on $G \cdot w$ defined by

$$
\begin{equation*}
G \cdot w \ni g \cdot w \mapsto\|g \cdot w\| \in \mathbb{R}, \quad g \in G \tag{3.3}
\end{equation*}
$$

has a critical point at some point w^{\prime} in $G \cdot w$. Let $\lambda \in \Sigma(G)$, and it suffices to show the closedness of $\lambda\left(\mathbb{C}^{*}\right) \cdot w^{\prime}$ in W. We may assume that $\operatorname{dim} \lambda\left(\mathbb{C}^{*}\right) \cdot w^{\prime}>0$. Then by using the coordinate system associated to an orthonormal basis for W, we can write
w^{\prime} as $\left(w_{0}^{\prime}, \ldots, w_{r}^{\prime}, 0, \ldots, 0\right)$ in such a way that $w_{\alpha}^{\prime} \neq 0$ for all $0 \leq \alpha \leq r$ and that

$$
\lambda\left(e^{t}\right) \cdot w^{\prime}=\left(e^{t \gamma_{0}} w_{0}^{\prime}, \ldots, e^{t \gamma_{r}} w_{r}^{\prime}, 0, \ldots, 0\right), \quad t \in \mathbb{C}
$$

where $\gamma_{\alpha}, \alpha=0,1, \ldots, r$, are integers independent of the choice of t in \mathbb{C}. Since the closed orbit $G \cdot w$ does not contain the origin of W, the inclusion $\lambda\left(\mathbb{C}^{*}\right) \cdot w^{\prime} \subset$ $G \cdot w$ shows that $r \geq 1$ and that the coincidence $\gamma_{0}=\gamma_{1}=\cdots=\gamma_{r}$ cannot occur. In particular,

$$
f(t):=\log \left\|\lambda\left(e^{t}\right) \cdot w^{\prime}\right\|^{2}=\log \left(e^{2 t \gamma_{0}}\left|w_{0}^{\prime}\right|^{2}+e^{2 t \gamma_{1}}\left|w_{1}^{\prime}\right|^{2}+\cdots+e^{2 t \gamma_{r}}\left|w_{r}^{\prime}\right|^{2}\right), \quad t \in \mathbb{R},
$$

satisfies $f^{\prime \prime}(t)>0$ for all t. Moreover, since the function in (3.3) has a critical point at w^{\prime}, we have $f^{\prime}(0)=0$. It now follows that $\lim _{t \rightarrow+\infty} f(t)=+\infty$ and $\lim _{t \rightarrow-\infty} f(t)=$ $+\infty$. Hence $\lambda\left(\mathbb{C}^{*}\right) \cdot w^{\prime}$ is closed in W, as required.

Step 2. To prove "if" part of Theorem 3.2, we may assume that $w=w^{\prime}$ without loss of generality. Hence, suppose that $\lambda\left(\mathbb{C}^{*}\right) \cdot w$ is closed in W for every $\lambda \in \Sigma(G)$. It then suffices to show that $G \cdot w$ is closed in W. For contradiction, assume that $G \cdot w$ is not closed in W. Since the closure of $G \cdot w$ in W always contains a closed orbit O_{1} in W, by $\operatorname{dim} O_{1}<\operatorname{dim}(G \cdot w)=k$, the induction hypothesis shows that there exists a point $\hat{w} \in O_{1}$ such that

$$
\begin{equation*}
\lambda\left(\mathbb{C}^{*}\right) \cdot \hat{w} \text { is closed in } W \text { for every } \lambda \in \Sigma(G) . \tag{3.4}
\end{equation*}
$$

Moreover, there exist elements $g_{i}, i=1,2, \ldots$, in G such that $g_{i} \cdot w$ converges to \hat{w} in W. Then for each i, we can write $g_{i}=\kappa_{i}^{\prime} \cdot \exp \left(2 \pi A_{i}\right) \cdot \kappa_{i}$ for some $\kappa_{i}, \kappa_{i}^{\prime} \in G_{c}$ and for some $A_{i} \in \mathfrak{a}$, where $2 \pi \sqrt{-1} \mathfrak{a}$ is the Lie algebra of some maximal compact torus in G_{c}. Let $2 \pi \sqrt{-1} \mathfrak{a}_{\mathbb{Z}}$ be the kernel of the exponential map of the Lie algebra $2 \pi \sqrt{-1} \mathfrak{a}$, and put $\mathfrak{a}_{\mathbb{Q}}:=\mathfrak{a}_{\mathbb{Z}} \otimes \mathbb{Q}$. Replacing $\left\{\kappa_{i}\right\}$ by its subsequence if necessary, we may assume that

$$
\begin{equation*}
\kappa_{i} \rightarrow \kappa_{\infty} \quad \text { and } \quad\left\{\exp \left(2 \pi A_{i}\right) \cdot \kappa_{i}\right\} \cdot w \rightarrow w_{\infty}, \quad \text { as } i \rightarrow \infty \tag{3.5}
\end{equation*}
$$

for some $\kappa_{\infty} \in G_{c}$ and $w_{\infty} \in G_{c} \cdot \hat{w}$. Then by (3.4), the orbit $\lambda\left(\mathbb{C}^{*}\right) \cdot w_{\infty}$ is also closed in W for every $\lambda \in \Sigma(G)$. Let \mathfrak{a}_{∞} denote the Lie subalgebra of \mathfrak{a} consisting of all elements in \mathfrak{a} whose associated vector fields on W vanish at $\kappa_{\infty} \cdot w$. For a Euclidean metric on \mathfrak{a} induced from a suitable bilinear form on $\mathfrak{a}_{\mathbb{Q}}$ defined over \mathbb{Q}, we write \mathfrak{a} as a direct sum $\mathfrak{a}_{\infty}^{\perp} \oplus \mathfrak{a}_{\infty}$, where $\mathfrak{a}_{\infty}^{\perp}$ is the orthogonal complement of \mathfrak{a}_{∞} in \mathfrak{a}. Let \bar{A}_{i} be the image of A_{i} under the orthogonal projection

$$
\operatorname{pr}_{1}: \mathfrak{a}\left(=\mathfrak{a}_{\infty}^{\perp} \oplus \mathfrak{a}_{\infty}\right) \rightarrow \mathfrak{a}_{\infty}^{\perp}, \quad A \mapsto \bar{A}:=\operatorname{pr}_{1}(A) .
$$

Note that $\left\{\exp \left(2 \pi A_{i}\right) \cdot \kappa_{\infty}\right\} \cdot w=\left\{\exp \left(2 \pi \bar{A}_{i}\right) \cdot \kappa_{\infty}\right\} \cdot w$. Hence,

$$
\begin{equation*}
\limsup _{i \rightarrow \infty}\left\|\exp \left\{2 \pi \operatorname{Ad}\left(\kappa_{\infty}^{-1}\right) \bar{A}_{i}\right\} \cdot w\right\|=\underset{i \rightarrow \infty}{\limsup }\left\|\left\{\exp \left(2 \pi A_{i}\right) \cdot \kappa_{\infty}\right\} \cdot w\right\| \tag{3.6}
\end{equation*}
$$

$$
\leq \lim _{i \rightarrow \infty}\left\|\left\{\exp \left(2 \pi A_{i}\right) \cdot \kappa_{i}\right\} \cdot w\right\|=\left\|w_{\infty}\right\|<+\infty
$$

Step 3. Since $\lambda\left(\mathbb{C}^{*}\right) \cdot w$ is closed in W for every $\lambda \in \Sigma(G)$, by the boundedness in (3.6), $\left\{\bar{A}_{i}\right\}$ is a bounded sequence in $\mathfrak{a}_{\infty}^{\perp}$ (see Remark 3.7 below). Hence, for some element A_{∞} in $\mathfrak{a}_{\infty}^{\perp}$, replacing $\left\{\bar{A}_{i}\right\}$ by its subsequence if necessary, we may assume that $\bar{A}_{i} \rightarrow A_{\infty}$ as $i \rightarrow \infty$. Then by (3.5),

$$
w_{\infty}=\lim _{i \rightarrow \infty}\left\{\exp \left(2 \pi \bar{A}_{i}\right) \cdot \kappa_{i}\right\} \cdot w=\left\{\exp \left(2 \pi \bar{A}_{\infty}\right) \cdot \kappa_{\infty}\right\} \cdot w
$$

Since we have $\exp \left(2 \pi \bar{A}_{\infty}\right) \in G$, the point w_{∞} in O_{1} belongs to the orbit $G \cdot w$. This contradicts $O_{1} \cap(G \cdot w)=\emptyset$, as required. The proof of Lemma 3.2 is now complete.

Remark 3.7. The boundedness of the sequence $\left\{\bar{A}_{i}\right\}$ in $\mathfrak{a}_{\infty}^{\perp}$ in Step 3 above can be seen as follows: For contradiction, we assume that the sequence $\left\{\bar{A}_{i}\right\}$ is unbounded. Put $v:=\kappa_{\infty} \cdot w$ for simplicity. Then by (3.6), we first observe that

$$
\begin{equation*}
\limsup _{i \rightarrow \infty}\left\|\exp \left(2 \pi \bar{A}_{i}\right) \cdot v\right\|<+\infty \tag{3.8}
\end{equation*}
$$

Since $2 \pi \sqrt{-1} \mathfrak{a}_{\infty}$ is the Lie algebra of the isotropy subgroup of the compact torus $\exp (2 \pi \sqrt{-1} \mathfrak{a})$ at v, both \mathfrak{a}_{∞} and $\mathfrak{a}_{\infty}^{\perp}$ are defined over \mathbb{Q} in \mathfrak{a}. By choosing a complex coordinate system of W, we can write v as $\left(v_{0}, \ldots, v_{r}, 0, \ldots, 0\right)$ for some integer r with $0 \leq r \leq \operatorname{dim} W-1$ such that $v_{\alpha} \neq 0$ for all $0 \leq \alpha \leq r$ and that

$$
\begin{equation*}
\exp (2 \pi \bar{A}) \cdot v=\left(e^{2 \pi \chi_{0}(\bar{A})} v_{0}, \ldots, e^{2 \pi \chi_{r}(\bar{A})} v_{r}, 0, \ldots, 0\right), \quad \bar{A} \in \mathfrak{a}_{\infty}^{\perp} \tag{3.9}
\end{equation*}
$$

where $\chi_{\alpha}: \mathfrak{a}_{\infty}^{\perp} \rightarrow \mathbb{R}, \alpha=0,1, \ldots, r$, are additive characters defined over \mathbb{Q}. Put $n:=\operatorname{dim}_{\mathbb{R}} \mathfrak{a}_{\infty}^{\perp}$, and let $\left(\mathfrak{a}_{\infty}^{\perp}\right)_{\mathbb{Q}}$ denote the set of all rational points in $\mathfrak{a}_{\infty}^{\perp}$. Let us now identify

$$
\mathfrak{a}_{\infty}^{\perp}=\mathbb{R}^{n} \quad \text { and } \quad\left(\mathfrak{a}_{\infty}^{\perp}\right)_{\mathbb{Q}}=\mathbb{Q}^{n}
$$

as vector spaces. Since the orbit $\lambda\left(\mathbb{C}^{*}\right) \cdot w$ is closed in W for all special one-parameter subgroups $\lambda: \mathbb{C}^{*} \rightarrow G$ of G, the same thing is true also for $\lambda\left(\mathbb{C}^{*}\right) \cdot v$. Hence,

$$
\begin{equation*}
\mathbb{Q}^{n} \backslash\{0\} \subset \bigcup_{\alpha, \beta=0}^{r} U_{\alpha \beta} \tag{3.10}
\end{equation*}
$$

where $U_{\alpha \beta}:=\left\{A \in \mathfrak{a} ; \chi_{\alpha}(A)>0>\chi_{\beta}(A)\right\}$. Note that the boundaries of the open sets $U_{\alpha \beta}, 1 \leq \alpha \leq r, 1 \leq \beta \leq r$, in \mathbb{R}^{n} sit in the union of \mathbb{Q}-hyperplanes

$$
H_{\alpha}:=\left\{\chi_{\alpha}=0\right\}, \quad \alpha=0,1, \ldots, r
$$

in \mathbb{R}^{r}. Since an intersection of any finite number of hyperplanes $H_{\alpha}, \alpha=0,1, \ldots, r$, has dense rational points, (3.10) above easily implies

$$
\begin{equation*}
\mathbb{R}^{n} \backslash\{0\}=\bigcup_{\alpha, \beta=0}^{r} U_{\alpha \beta} \tag{3.11}
\end{equation*}
$$

Replacing $\left\{\bar{A}_{i}\right\}$ by its suitable subsequence if necessary, we may assume that there exists an element A_{∞} in $\mathfrak{a}_{\infty}^{\perp}\left(=\mathbb{R}^{n}\right)$ with $\left\|A_{\infty}\right\|_{\mathfrak{a}}=1$ such that

$$
\lim _{i \rightarrow \infty} \frac{\bar{A}_{i}}{\left\|\bar{A}_{i}\right\|_{\mathfrak{a}}}=A_{\infty}
$$

where $\left\|\|_{\mathfrak{a}}\right.$ denotes the Euclidean norm for \mathfrak{a} as in Step 2 in the proof of Theorem 3.2. By (3.11), there exist $\alpha, \beta \in\{0,1, \ldots, r\}$ such that $A_{\infty} \in U_{\alpha \beta}$, and in particular $\chi_{\alpha}\left(A_{\infty}\right)>0$. On the other hand, $\lim \sup _{i \rightarrow \infty}\left\|\bar{A}_{i}\right\|_{\mathfrak{a}}=+\infty$ by our assumption. Thus,

$$
\limsup _{i \rightarrow \infty} \chi_{\alpha}\left(\bar{A}_{i}\right)=\underset{i \rightarrow \infty}{\limsup }\left\{\left\|\bar{A}_{i}\right\|_{\mathfrak{a}} \cdot \chi_{\alpha}\left(\bar{A}_{i} /\left\|\bar{A}_{i}\right\|_{\mathfrak{a}}\right)\right\}=\left(\limsup _{i \rightarrow \infty}\left\|\bar{A}_{i}\right\|_{\mathfrak{a}}\right) \chi_{\alpha}\left(A_{\infty}\right)=+\infty,
$$

in contradiction to (3.8) and (3.9), as required.

4. The Chow norm

Take an algebraic torus $T \subset \operatorname{Aut}^{0}(M)$, and let $\iota: \operatorname{SL}\left(V_{m}\right) \rightarrow \operatorname{PGL}\left(V_{m}\right)$ be the nat-
 embedding $\Phi_{m}: M \hookrightarrow \mathbb{P}^{*}\left(V_{m}\right), m \gg 1$. In this section, we fix a \tilde{T}_{c}-invariant Hermitian metric ρ on V_{m}, where \tilde{T}_{c} is the maximal compact subgroup of $\tilde{T}:=\iota^{-1}(T)$. Obviously, in terms of this metric, $V\left(\chi_{k}\right) \perp V\left(\chi_{l}\right)$ if $k \neq l$. Using Deligne's pairings (cf. [8, 8.3]), Zhang ([39, 1.5]) defined a special type of norm on W_{m}^{*}, called the Chow norm, as a nonnegative real-valued function

$$
\begin{equation*}
W_{m}^{*} \ni w \longmapsto\|w\|_{\mathrm{CH}(\rho)} \in \mathbb{R}_{\geq 0}, \tag{4.1}
\end{equation*}
$$

with very significant properties described below. First, this is a norm, so that it has the only zero at the origin satisfying the homogeneity condition

$$
\|c w\|_{\mathrm{CH}(\rho)}=|c| \cdot\|w\|_{\mathrm{CH}(\rho)} \quad \text { for all }(c, w) \in \mathbb{C} \times W_{m}^{*} .
$$

For the group $\operatorname{SL}\left(V_{m}\right)$, we consider the maximal compact subgroup $\operatorname{SU}\left(V_{m} ; \rho\right)$. For a special one-parameter subgroup

$$
\lambda: \mathbb{C}^{*} \rightarrow \mathrm{SL}\left(V_{m}\right)
$$

of $\operatorname{SL}\left(V_{m}\right)$, there exist integers $\gamma_{j}, j=0,1, \ldots, N_{m}$, and an orthonormal basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ for (V_{m}, ρ) such that, for all j,

$$
\begin{equation*}
\lambda_{z} \cdot s_{j}=e^{z \gamma_{j}} s_{j}, \quad z \in \mathbb{C} \tag{4.2}
\end{equation*}
$$

where $\lambda_{z}:=\lambda\left(e^{z}\right)$. Recall that the subvariety M_{m} in $\mathbb{P}^{*}\left(V_{m}\right)$ is the image of the Kodaira embedding $\Phi_{m}: M \hookrightarrow \mathbb{P}^{*}\left(V_{m}\right)$ defined by

$$
\begin{equation*}
\Phi_{m}(p)=\left(s_{0}(p): s_{1}(p): \cdots: s_{N_{m}}(p)\right), \quad p \in M \tag{4.3}
\end{equation*}
$$

where $\mathbb{P}^{*}\left(V_{m}\right)$ is identified with $\mathbb{P}^{N_{m}}(\mathbb{C})=\left\{\left(z_{0}: z_{1}: \cdots: z_{N_{m}}\right)\right\}$. Put $M_{m, t}:=\lambda_{t}\left(M_{m}\right)$ for each $t \in \mathbb{R}$. As in Section $2, \hat{M}_{m, t}:=\lambda_{t} \cdot \hat{M}_{m}$ is the nonzero point of W_{m}^{*} sitting over the Chow point of the irreducible reduced cycle $M_{m, t}$ on $\mathbb{P}^{*}\left(V_{m}\right)$. Then (cf. [39, 1.4, 3.4.1])

$$
\begin{equation*}
\frac{d}{d t}\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right)=(n+1) \int_{M} \frac{\sum_{j=0}^{N_{m}} \gamma_{j}\left|\lambda_{t} \cdot s_{j}\right|^{2}}{\sum_{j=0}^{N_{m}}\left|\lambda_{t} \cdot s_{j}\right|^{2}}\left(\Phi_{m}^{*} \lambda_{t}^{*} \omega_{\mathrm{FS}}\right)^{n} \tag{4.4}
\end{equation*}
$$

where ω_{FS} is the Fubini-Study form $(\sqrt{-1} / 2 \pi) \partial \bar{\partial} \log \left(\sum_{j=0}^{N_{m}}\left|z_{j}\right|^{2}\right)$ on $\mathbb{P}^{*}\left(V_{m}\right)$, and we regard λ_{t} as a linear transformation of $\mathbb{P}^{*}\left(V_{m}\right)$ induced by (4.2). Note that the term $\Phi_{m}^{*} \lambda_{t}^{*} \omega_{\mathrm{FS}}$ above is just $(\sqrt{-1} / 2 \pi) \partial \bar{\partial} \log \left(\sum_{j=0}^{N_{m}}\left|\lambda_{t} \cdot s_{j}\right|^{2}\right)$. Put $\Gamma:=2 \pi \sqrt{-1} \mathbb{Z}$. By setting

$$
\mathbb{C} / \Gamma=\{t+\sqrt{-1} \theta ; t \in \mathbb{R}, \theta \in \mathbb{R} /(2 \pi \mathbb{Z})\},
$$

we consider the complexified situation. Let $\eta: M \times \mathbb{C} / \Gamma \rightarrow \mathbb{P}^{*}\left(V_{m}\right)$ be the map sending each $(p, t+\sqrt{-1} \theta)$ in $M \times \mathbb{C} / \Gamma$ to $\lambda_{t+\sqrt{-1} \theta} \cdot \Phi_{m}(p)$ in $\mathbb{P}^{*}\left(V_{m}\right)$. For simplicity, we put

$$
Q:=\frac{\sum_{j=0}^{N_{m}} \gamma_{j} e^{2 t \gamma_{j}}\left|s_{j}\right|^{2}}{\sum_{j=0}^{N_{m}} e^{2 t \gamma_{j}}\left|s_{j}\right|^{2}}\left(=\frac{\sum_{j=0}^{N_{m}} \gamma_{j}\left|\lambda_{t} \cdot s_{j}\right|^{2}}{\sum_{j=0}^{N_{m}}\left|\lambda_{t} \cdot s_{j}\right|^{2}}\right) .
$$

We further put $z:=t+\sqrt{-1} \theta$. For the time being, on the total complex manifold $M \times$ \mathbb{C} / Γ, the ∂-operator and the $\bar{\partial}$-operator will be written simply as ∂ and $\bar{\partial}$ respectively, while on M, they will be denoted by ∂_{M} and $\bar{\partial}_{M}$ respectively. Then

$$
\eta^{*} \omega_{\mathrm{FS}}=\Phi_{m}^{*} \lambda_{t}^{*} \omega_{\mathrm{FS}}+\frac{\sqrt{-1}}{2 \pi}\left(\partial_{M} Q \wedge d \bar{z}+d z \wedge \bar{\partial}_{M} Q\right)+\frac{\sqrt{-1}}{4 \pi} \frac{\partial Q}{\partial t} d z \wedge d \bar{z}
$$

For $0 \neq r \in \mathbb{R}$, we consider the 1 -chain $I_{r}:=[0, r]$, where $[0, r]$ means the 1-chain $-[r, 0]$ if $r<0$. Let $\mathrm{pr}: \mathbb{C} / \Gamma \rightarrow \mathbb{R}$ be the mapping sending each $t+\sqrt{-1} \theta$ to t. We now put $B_{r}:=\operatorname{pr}^{*} I_{r}$. Then $\int_{M \times B_{r}} \eta^{*} \omega_{\mathrm{FS}}^{n+1}$ is nothing but

$$
(n+1) \int_{0}^{r} d t \int_{M}\left(\frac{\partial Q}{\partial t} \Phi_{m}^{*} \lambda_{t}^{*} \omega_{\mathrm{FS}}^{n}+\frac{\sqrt{-1}}{\pi} \bar{\partial}_{M} Q \wedge \partial_{M} Q \wedge n \Phi_{m}^{*} \lambda_{t}^{*} \omega_{\mathrm{FS}}^{n-1}\right)
$$

$$
=\int_{0}^{r} \frac{d^{2}}{d t^{2}}\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right) d t=\left.\frac{d}{d t}\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right)\right|_{t=0} ^{t=r}
$$

and by assuming $r \geq 0$, we obtain the following convexity formula:

Theorem 4.5.

$$
\left.\frac{d}{d t}\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right)\right|_{t=0} ^{t=r}=\int_{M \times B_{r}} \eta^{*} \omega_{\mathrm{FS}}^{n+1} \geq 0 .
$$

Remark 4.6. Besides special one-parameter subgroups of $\operatorname{SL}\left(V_{m}\right)$, we also consider a little more general smooth path $\lambda_{t}, t \in \mathbb{R}$, in $\operatorname{GL}\left(V_{m}\right)$ written explicitly by

$$
\lambda_{t} \cdot s_{j}=e^{t \gamma_{j}+\delta_{j}} s_{j}, \quad j=0,1, \ldots, N_{m},
$$

where $\gamma_{j}, \delta_{j} \in \mathbb{R}$ are not necessarily rational. In this case also, we easily see that the formula (4.4) and Theorem 4.5 are still valid.

5. Proof of Theorem \mathbf{A}

The statement of Theorem A is divided into "if" part, "only if" part, and the uniqueness part. We shall prove these three parts separately.

Proof of "if" part. Let $\omega \in \mathcal{S}$ be a critical metric relative to T. Then by Definition 2.6, in terms of the Hermitian metric defined in (2.4), there exists an admissible normal basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ for V_{m} of index b such that the associated function $E_{\omega, b}$ has a constant value C on M. By operating $(\sqrt{-1} / 2 \pi) \partial \bar{\partial} \log$ on the identity $E_{\omega, b}=C$, we have

$$
\begin{equation*}
\Phi_{m}^{*} \omega_{\mathrm{FS}}=m \omega . \tag{5.1}
\end{equation*}
$$

Besides the Hermitian metric defined in (2.4), we shall now define another Hermitian metric on V_{m}. By the identification $V_{m} \cong \mathbb{C}^{N_{m}}$ via the basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$, the standard Hermitian metric on $\mathbb{C}^{N_{m}}$ induces a Hermitian metric ρ on V_{m}. As a maximal compact subgroup of G_{m}, we choose $\left(G_{m}\right)_{c}$ as in Section 2 by using the metric defined in (2.4). Then the Hermitian metric ρ is also preserved by the $\left(G_{m}\right)_{c}$-action on V_{m}. Let

$$
\lambda: \mathbb{C}^{*} \rightarrow G_{m}
$$

be a special one-parameter subgroup of G_{m}. By the notation $l(k, i)$ as in Definition 2.3, we put $s_{k, i}:=s_{l(k, i)}$. If necessary, replacing $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ by another admissible normal basis for V_{m} of the same index b, we may assume without loss of generality that there exist integers $\gamma_{k, i}, i=1,2, \ldots, n_{k}$, satisfying

$$
\begin{equation*}
\lambda_{t} \cdot s_{k, i}=e^{t \gamma_{k, i}} s_{k, i}, \quad t \in \mathbb{C} \tag{5.2}
\end{equation*}
$$

where $\lambda_{t}:=\lambda\left(e^{t}\right)$ is as in (4.2), and the equality $\sum_{i=1}^{n_{k}} \gamma_{k, i}=0$ is required to hold for every k. Put $\gamma_{k, i}=\gamma_{l(k, i)}$ for simplicity. Then by (4.4) and (5.1),

$$
\begin{aligned}
& \frac{d}{d t}\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right)_{\mid t=0}=(n+1) \int_{M} \frac{\sum_{j=0}^{N_{m}} \gamma_{j}\left|s_{j}\right|^{2}}{\sum_{j=0}^{N_{m}}\left|s_{j}\right|^{2}}\left(\Phi_{m}^{*} \omega_{\mathrm{FS}}\right)^{n} \\
& =(n+1) m^{n} \int_{M} \frac{\sum_{j=0}^{N_{m}} \gamma_{j}\left|s_{j}\right|_{h^{m}}^{2}}{\sum_{j=0}^{N_{m}}\left|s_{j}\right|_{h^{m}}^{2}} \omega^{n}=(n+1) m^{n} \int_{M} \frac{\sum_{k=1}^{\nu_{m}}\left(\sum_{i=1}^{n_{k}} \gamma_{k, i}\left|s_{i}\right|_{h^{m}}^{2}\right.}{E_{\omega, b}} \omega^{n} \\
& =\frac{(n+1) m^{n}}{C} \int_{M} \sum_{k=1}^{\nu_{m}}\left(\sum_{i=1}^{n_{k}} \gamma_{k, i}\left|s_{i}\right|_{h^{m}}^{2}\right) \omega^{n}=\frac{(n+1) m^{n}}{C} \sum_{k=1}^{\nu_{m}} b_{k}\left(\sum_{i=1}^{n_{k}} \gamma_{k, i}\right)=0 .
\end{aligned}
$$

Note also that, by Theorem 4.5, we have $c:=\left(d^{2} / d t^{2}\right)\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right)_{t t=0} \geq 0$.
CASE 1. If c is positive, then $\lim _{t \rightarrow-\infty}\left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}=+\infty=\lim _{t \rightarrow+\infty}\left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}$, and in particular $\lambda\left(\mathbb{C}^{*}\right) \cdot \hat{M}_{m}$ is closed.

CASE 2. If c is zero, then by applying Theorem 4.5 infinitesimally, we see that $\lambda\left(\mathbb{C}^{*}\right)$ preserves the subvariety M_{m} in $\mathbb{P}^{*}\left(V_{m}\right)$, and moreover by

$$
\frac{d}{d t}\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right)_{\mid t=0}=0
$$

the isotropy representation of $\lambda\left(\mathbb{C}^{*}\right)$ on the complex line $\mathbb{C} \hat{M}_{m}$ is trivial. Hence, $\lambda\left(\mathbb{C}^{*}\right) \cdot \hat{M}_{m}$ is a single point, and in particular closed.

Thus, these two cases together with Theorem 3.2 show that the subvariety M_{m} of $\mathbb{P}^{*}\left(V_{m}\right)$ is stable relative to T, as required.

Remark 5.3. About the one-parameter subgroup $\left\{\lambda_{t} ; t \in \mathbb{R}\right\}$ of G_{m}, we consider a more general situation that $\gamma_{k, i}$ in (5.2) are just real numbers which are not necessarily rational. The above computation together with Remark 4.6 shows that, even in this case, $(d / d t)_{t=0}\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right)$ vanishes.

Proof of "only if" part. Assume that the subvariety M_{m} in $\mathbb{P}^{*}\left(V_{m}\right)$ is stable relative to T. Take a Hermitian metric ρ for V_{m} such that $V\left(\chi_{k}\right) \perp V\left(\chi_{l}\right)$ for $k \neq l$. For this ρ, we consider the associated Chow norm. Since the orbit $G_{m} \cdot \hat{M}_{m}$ is closed in W_{m}, the Chow norm restricted to this orbit attains an abosolute minimum. Hence, for some $g_{0} \in G_{m}$,

$$
0 \neq\left\|g_{0} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)} \leq\left\|g \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}, \quad \text { for all } g \in G_{m}
$$

By choosing an admissible normal basis $\left\{s_{0}, s_{1}, \ldots, s_{N_{m}}\right\}$ for ($V_{m} ; \rho$) of index $(1,1, \ldots, 1)$, we identify V_{m} with $\mathbb{C}^{N_{m}}=\left\{\left(z_{0}, z_{1}, \ldots, z_{N_{m}}\right)\right\}$. Then $\operatorname{SL}\left(V_{m}\right)$ is identi-
fied with $\operatorname{SL}\left(N_{m}+1 ; \mathbb{C}\right)$. Let \mathfrak{g}_{m} be the Lie subalgebra of $\mathfrak{s l}\left(N_{m}+1 ; \mathbb{C}\right)$ associated to the Lie subgroup G_{m} of $\operatorname{SL}\left(N_{m}+1 ; \mathbb{C}\right)$. We can now write $g_{0}=\kappa^{\prime} \cdot \exp \{\operatorname{Ad}(\kappa) D\}$ for some $\kappa, \kappa^{\prime} \in\left(G_{m}\right)_{c}$ and a real diagonal matrix D in \mathfrak{g}_{m}. By $\left\|\exp \{\operatorname{Ad}(\kappa) D\} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}=$ $\left\|g_{0} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}$, we have
(5.4) $\left\|\exp \{\operatorname{Ad}(\kappa) D\} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)} \leq\left\|\exp \{t \operatorname{Ad}(\kappa) A\} \cdot \exp \{\operatorname{Ad}(\kappa) D\} \cdot \hat{M}_{m}\right\|_{\mathrm{CH}(\rho)}, t \in \mathbb{R}$,
for every real diagonal matrix A in \mathfrak{g}_{m}. For $j=0,1, \ldots, N_{m}$, we write the j-th diagonal element of A and D above as a_{j} and d_{j}, respectively. Put $c_{j}:=\exp d_{j}$ and $s_{j}^{\prime}:=\kappa^{-1} \cdot s_{j}$. Then $\left\{s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{N_{m}}^{\prime}\right\}$ is again an admissible normal basis for $\left(V_{m}, \rho\right)$ of index $(1,1, \ldots, 1)$. By the notation in Definition 2.3, we rewrite $s_{j}^{\prime}, a_{j}, c_{j}, z_{j}$ as $s_{k, i}^{\prime}, a_{k, i}, c_{k, i}, z_{k, i}$ by

$$
s_{k, i}^{\prime}:=s_{l(k, i)}^{\prime}, \quad a_{k, i}:=a_{l(k, i)}, \quad c_{k, i}:=c_{l(k, i)}, \quad z_{k, i}:=z_{l(k, i)},
$$

where $k=1,2, \ldots, \nu_{m}$ and $i=1,2, \ldots, n_{k}$. By (5.4), the derivative at $t=0$ of the right-hand side of (5.4) vanishes. Hence by (4.4) together with Remark 4.6, fixing an arbitrary real diagonal matrix A in \mathfrak{g}_{m}, we have

$$
\begin{equation*}
\int_{M} \frac{\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}} a_{k, i} c_{k, i}^{2}\left|s_{k, i}^{\prime}\right|^{2}}{\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}} c_{k, i}^{2}\left|s_{k, i}^{\prime}\right|^{2}} \Phi_{m}^{*}\left(\Theta^{n}\right)=0 \tag{5.5}
\end{equation*}
$$

where we set $\Theta:=(\sqrt{-1} / 2 \pi) \partial \bar{\partial} \log \left(\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}} c_{k, i}^{2}\left|z_{k, i}\right|^{2}\right)$. Let $k_{0} \in\left\{1,2, \ldots, \nu_{m}\right\}$ and let $i_{1}, i_{2} \in\left\{1,2, \ldots, n_{k}\right\}$ with $i_{1} \neq i_{2}$. Using Kronecker's delta, we specify the real diagonal matrix A by setting

$$
a_{k, i}=\delta_{k k_{0}}\left(\delta_{i i_{1}}-\delta_{i i_{2}}\right), \quad k=1,2, \ldots, \nu_{m} ; i=1,2, \ldots, n_{k}
$$

Apply (5.5) to this A, and let (i_{1}, i_{2}) run through the set of all pairs of two distinct elements in $\left\{1,2, \ldots, n_{k}\right\}$. Then there exists a positive constant $b_{k}>0$ independent of the choice of i in $\left\{1,2, \ldots, n_{k}\right\}$ such that

The following identity (5.7) allows us to define (cf. [39]) a Hermitian metric h_{FS} on L^{m} by

$$
\begin{equation*}
|s|_{h_{\mathrm{FS}}}^{2}:=\frac{\left(N_{m}+1\right)}{c_{1}(L)^{n}[M]} \frac{\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|\left(s, s_{k, i}^{\prime}\right)_{\rho}\right|^{2}\left|s_{k, i}^{\prime}\right|^{2}}{\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}} c_{k, i}^{2}\left|s_{k, i}^{\prime}\right|^{2}}, \quad s \in V_{m} . \tag{5.7}
\end{equation*}
$$

Then for this Hermitian metric, it is easily seen that

$$
\begin{equation*}
\sum_{j=0}^{N_{m}}\left|c_{j} s_{j}^{\prime}\right|_{h \mathrm{FS}}^{2}=\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|c_{k, i} s_{k, i}^{\prime}\right|_{h_{\mathrm{FS}}}^{2}=\frac{N_{m}+1}{c_{1}(L)^{n}[M]} \tag{5.8}
\end{equation*}
$$

By operating $(\sqrt{-1} / 2 \pi) \partial \bar{\partial} \log$ on both sides of (5.8), we obtain $\Phi_{m}^{*} \Theta=c_{1}\left(L^{m} ; h_{\mathrm{FS}}\right)$. We now set $h:=\left(h_{\mathrm{FS}}\right)^{1 / m}$ and $\omega:=c_{1}(L ; h)$. Then

$$
\omega=\frac{1}{m} \Phi_{m}^{*} \Theta
$$

Put $s_{k, i}^{\prime \prime}:=c_{k, i} s_{k, i}^{\prime}$, and as in Definition 2.3, we write $s_{k, i}^{\prime \prime}$ as $s_{l(k, i)}^{\prime \prime}$. Then by (5.8), we have the equality $\sum_{j=0}^{N_{m}}\left|s_{j}^{\prime \prime}\right|_{h^{m}}^{2}=\left(N_{m}+1\right) / c_{1}(L)^{n}[M]$. Moreover, in terms of the Hermitian metric defined in (2.4), the equality (5.6) is interpreted as

$$
\left\|s_{k, i}^{\prime \prime}\right\|_{L^{2}}^{2}=b_{k}, \quad k=1,2, \ldots, \nu_{m} ; i=1,2, \ldots, n_{k}
$$

while by this together with (5.8) above, we obtain $\sum_{k=1}^{\nu_{m}} n_{k} b_{k}=N_{m}+1$, as required.

Proof of uniqueness. Let $\omega=c_{1}(L ; h)$ and $\omega^{\prime}=c_{1}\left(L ; h^{\prime}\right)$ be critical metrics relative to T, and let $\left\{s_{j} ; j=0,1, \ldots, N_{m}\right\}$ and $\left\{s_{j}^{\prime} ; j=0,1, \ldots, N_{m}\right\}$ be respectively the associated admissible normal bases for V_{m} of index b. We use the notation in Definition 2.3. Then

$$
E_{\omega, b}:=\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|s_{k, i}\right|_{h^{m}}^{2} \quad \text { and } \quad E_{\omega^{\prime}, b}:=\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|s_{k, i}^{\prime}\right|_{h^{\prime m}}^{2}
$$

take the same constant value $C:=\left(N_{m}+1\right) / c_{1}(L)^{n}[M]$ on M. Note here that, by operating $(\sqrt{-1} / 2 \pi) \partial \bar{\partial} \log$ on both of these identities, we obtain

$$
m \omega=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \left(\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|s_{k, i}\right|^{2}\right) \quad \text { and } \quad m \omega^{\prime}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \left(\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|s_{k, i}^{\prime}\right|^{2}\right) .
$$

If necessary, we replace each $s_{k, i}$ by $\zeta_{k} s_{k, i}$ for a suitable complex number ζ_{k}, independent of i, of absolute value 1 . Then for each $k=1,2, \ldots, \nu_{m}$, we may assume that there exists a matrix $g^{(k)}=\left(g_{i \hat{\imath}}^{(k)}\right) \in \mathrm{GL}\left(n_{k} ; \mathbb{C}\right)$ satisfying

$$
s_{k, \hat{\imath}}^{\prime}=\sum_{i=1}^{n_{k}} s_{k, i} g_{i \hat{\imath}}^{(k)},
$$

where i and $\hat{\imath}$ always run through the integers in $\left\{1,2, \ldots, n_{k}\right\}$. Then the matrix $g^{(k)}$ above is written as $\kappa^{(k)} \cdot\left(\exp A^{(k)}\right) \cdot\left(\kappa^{\prime(k)}\right)^{-1}$ for some real diagonal matrix $A^{(k)}$ and

$$
\kappa^{(k)}=\left(\kappa_{i \hat{\imath}}^{(k)}\right) \quad \text { and } \quad \kappa^{\prime(k)}=\left(\kappa_{i \hat{\imath}}^{\prime(k)}\right)
$$

in $\operatorname{SU}\left(n_{k}\right)$. Let $a_{i}^{(k)}$ be the i-th diagonal element of $A^{(k)}$. For each $\hat{\imath}$, we put $\tilde{s}_{k, \hat{\imath}}:=\sum_{i=1}^{n_{k}} s_{k, i} \kappa_{i \hat{\imath}}^{(k)}$ and $\tilde{s}_{k, \hat{\imath}}^{\prime}:=\sum_{i=1}^{n_{k}} s_{k, i}^{\prime} \kappa_{i \hat{\imath}}^{\prime}{ }^{(k)}$. If necessary, we replace the bases
$\left\{s_{k, 1}, s_{k, 2}, \ldots, s_{k, n_{k}}\right\}$ and $\left\{s_{k, 1}^{\prime}, s_{k, 2}^{\prime}, \ldots, s_{k, n_{k}}^{\prime}\right\}$ for $V\left(\chi_{k}\right)$ by the bases $\left\{\tilde{s}_{k, 1}, \tilde{s}_{k, 2}, \ldots\right.$, $\left.\tilde{s}_{k, n_{k}}\right\}$ and $\left\{\tilde{s}_{k, 1}^{\prime}, \tilde{s}_{k, 2}^{\prime}, \ldots, \tilde{s}_{k, n_{k}}^{\prime}\right\}$, respectively. Then we may assume, from the beginning, that

$$
s_{k, i}^{\prime}=\left\{\exp a_{i}^{(k)}\right\} s_{k, i}, \quad i=1,2, \ldots, n_{k} .
$$

We now set $\tau_{k, i}:=s_{k, i} / \sqrt{b_{k}}$, and the Hermitian metric for V_{m} defined in (2.4) will be denoted by ρ. Then $\left\{\tau_{k, i} ; k=1,2, \ldots, \nu_{m}, i=1,2, \ldots, n_{k}\right\}$ is an admissible normal basis of index $(1,1, \ldots, 1)$ for $\left(V_{m}, \rho\right)$. Let $\left\{\lambda_{t} ; t \in \mathbb{C}\right\}$ be the smooth one-parameter family of elements in $\operatorname{GL}\left(V_{m}\right)$ defined by

$$
\lambda_{t} \cdot \tau_{k, i}=\left\{\exp \left(t a_{i}^{(k)}\right)\right\} \sqrt{b_{k}} \tau_{k, i}, \quad k=1,2, \ldots, \nu_{m} ; i=1,2, \ldots, n_{k}
$$

Put $\hat{M}_{m, t}:=\lambda_{t} \cdot \hat{M}_{m}, 0 \leq t \leq 1$. Then by Remark 4.6 applied to the formula (4.4), the derivative $\mathfrak{d}(t):=(d / d t)\left(\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right) /(n+1)$ at $t \in[0,1]$ is expressible as

$$
\int_{M} \frac{\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}} a_{i}^{(k)}\left|\lambda_{t} \cdot \tau_{k, i}\right|^{2}}{\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|\lambda_{t} \cdot \tau_{k, i}\right|^{2}}\left\{\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \left(\sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left|\lambda_{t} \cdot \tau_{k, i}\right|^{2}\right)\right\}^{n} .
$$

Hence at $t=0$, we see that

$$
\mathfrak{d}(0)=\int_{M} \sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left\{\frac{a_{i}^{(k)}\left|s_{k, i}\right|_{h^{m}}^{2}}{C}\right\}(m \omega)^{n}=\frac{m^{n}}{C} \sum_{k=1}^{\nu_{m}}\left\{b_{k} \sum_{i=1}^{n_{k}} a_{i}^{(k)}\right\},
$$

while at $t=1$ also, we obtain

$$
\mathfrak{d}(1)=\int_{M} \sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_{k}}\left\{\frac{a_{i}^{(k)}\left|s_{k, i}^{\prime}\right|_{h^{\prime m}}^{2}}{C}\right\}\left(m \omega^{\prime}\right)^{n}=\frac{m^{n}}{C} \sum_{k=1}^{\nu_{m}}\left\{b_{k} \sum_{i=1}^{n_{k}} a_{i}^{(k)}\right\} .
$$

Thus, $\mathfrak{d}(0)$ coincides with $\mathfrak{d}(1)$, while by Remark 4.6, we see from Theorem 4.5 that $\left(d^{2} / d t^{2}\right)\left\{\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right\} \geq 0$ on $[0,1]$. Hence, for all $t \in[0,1]$,

$$
\frac{d^{2}}{d t^{2}}\left\{\log \left\|\hat{M}_{m, t}\right\|_{\mathrm{CH}(\rho)}\right\}=0, \quad \text { on } M
$$

By Remark 4.6, the formula in Theorem 4.5 shows that $\lambda_{t}, t \in[0,1]$, belong to H up to a positive scalar multiple. Since λ_{1} commutes with T, the uniqueness follows, as required.

6. Proof of Theorem B

Throughout this section, we assume that the first Chern class $c_{1}(L)_{\mathbb{R}}$ admits an extremal Kähler metric $\omega_{0}=c_{1}\left(L ; h_{0}\right)$. Then by a theorem of Calabi [3], the identity
component K of the group of isometries of $\left(M, \omega_{0}\right)$ is a maximal compact connected subgroup of H, and we obtain $\omega_{0} \in \mathcal{S}_{K}$ by the notation in the introduction.

Definition 6.1. For a K-invariant Kähler metric $\omega \in \mathcal{S}_{K}$ on M in the class $c_{1}(L)_{\mathbb{R}}$, we choose a Hermitian metric h on L such that $\omega=c_{1}(L ; h)$. Then the power series in q given by the right-hand side of (2.8) will be denoted by $\Psi(\omega, q)$. Given ω and q, the power series $\Psi(\omega, q)$ is independent of the choice of h.

Let \mathcal{D}_{0} be the Lichnérowicz operator as defined in [3], (2.1), for the extremal Kähler manifold $\left(M, \omega_{0}\right)$. Then by $\mathcal{V} \in \mathfrak{k}$, the operator \mathcal{D}_{0} preserves the space \mathcal{F} of all real-valued smooth K-invariant functions φ such that $\int_{M} \varphi \omega_{0}^{n}=0$. Hence, we regard \mathcal{D}_{0} just as an operator $\mathcal{D}_{0}: \mathcal{F} \rightarrow \mathcal{F}$, and the kernel in \mathcal{F} of this restricted operator will be denoted simply by $\operatorname{Ker} \mathcal{D}_{0}$. Then $\operatorname{Ker} \mathcal{D}_{0}$ is a subspace of $\mathcal{K}_{\omega_{0}}$, and we have an isomorphism

$$
\begin{equation*}
e_{0}: \operatorname{Ker} \mathcal{D}_{0} \cong \mathfrak{z}, \quad \varphi \leftrightarrow e_{0}(\varphi):=\operatorname{grad}_{\omega_{0}}^{\mathbb{C}} \varphi \tag{6.2}
\end{equation*}
$$

By the inner product (, $)_{\omega_{0}}$ defined in the introduction, we write \mathcal{F} as an orthogonal direct sum $\operatorname{Ker} \mathcal{D}_{0} \oplus \operatorname{Ker} \mathcal{D}_{0}^{\perp}$. We then consider the orthogonal projection

$$
P: \mathcal{F}\left(=\operatorname{Ker} \mathcal{D}_{0} \oplus \operatorname{Ker} \mathcal{D}_{0}^{\perp}\right) \rightarrow \operatorname{Ker} \mathcal{D}_{0}
$$

Now, starting from $\omega(0):=\omega_{0}$, we inductively define a Hermitian metric $h(k)$, a Kähler metric $\omega(k):=c_{1}(L ; h(k)) \in \mathcal{S}_{K}$, and a vector field $\mathcal{Y}(k) \in \sqrt{-1} \mathfrak{z}, k=1,2, \ldots$, by

$$
\left\{\begin{array}{l}
h(k):=h(k-1) \exp \left(-q^{k} \varphi_{k}\right) \tag{6.3}\\
\omega(k)=\omega(k-1)+\frac{\sqrt{-1}}{2 \pi} q^{k} \partial \bar{\partial} \varphi_{k} \\
\mathcal{Y}(k)=\mathcal{Y}(k-1)+\sqrt{-1} q^{k+2} e_{0}\left(\zeta_{k}\right)
\end{array}\right.
$$

for appropriate $\varphi_{k} \in \operatorname{Ker} \mathcal{D}_{0}^{\perp}$ and $\zeta_{k} \in \operatorname{Ker} \mathcal{D}_{0}$, where $\omega(k)$ and $\mathcal{Y}(k)$ are required to satisfy the condition (2.8) with l replaced by k. We now set $g(k):=\exp ^{\mathbb{C}} \mathcal{Y}(k)$. Then

$$
\begin{aligned}
& \{h(k) \cdot g(k)\}^{-m} h(k)^{m}\left\{Z(q, \omega(k) ; \mathcal{Y}(k))-C_{q}\right\} \\
& =\frac{n!}{m^{n}}\left\{\sum_{j=0}^{N_{m}}\left|s_{j}\right| h(k)^{m}\right\}-C_{q}\left\{g(k) \cdot h(k)^{-m}\right\} h(k)^{m} \\
& =\Psi(\omega(k), q)-C_{q} h(k)^{m}\left\{\left(\exp ^{\mathbb{C}} \mathcal{Y}(k)\right) \cdot h(k)^{-m}\right\} \\
& =\Psi(\omega(k), q)-C_{q}\left\{1+h(k) \frac{\mathcal{Y}(k)}{q} \cdot h(k)^{-1}+R(\mathcal{Y}(k) ; h(k))\right\},
\end{aligned}
$$

where $C_{q}=1+\sum_{k=0}^{\infty} \alpha_{k} q^{k+1}$ is a power series in q with real coefficients α_{k} spec-
ified later, and the last term $R(\mathcal{Y}(k) ; h(k)):=h(k)^{m} \sum_{j=2}^{\infty}\left\{\mathcal{Y}(k)^{j} / j!\right\} \cdot h(k)^{-m}$ will be taken care of as a higher order term in q. Consider the truncated term $C_{q, l}=$ $1+\sum_{k=0}^{l} \alpha_{k} q^{k+1}$. Put

$$
\Xi\left(\omega(k), \mathcal{Y}(k), C_{q, k}\right):=\Psi(\omega(k), q)-C_{q, k}\left\{1-\frac{\mathcal{Y}(k)}{q} \cdot \log h(k)+R(\mathcal{Y}(k) ; h(k))\right\}
$$

for each k. Then, in terms of $\omega(k), \mathcal{Y}(k)$ and $C_{q, k}$, the condition (2.8) with l replaced by k is just the equivalence

$$
\begin{equation*}
\Xi\left(\omega(k), \mathcal{Y}(k), C_{q, k}\right) \equiv 0, \quad \text { modulo } q^{k+2} \tag{6.4}
\end{equation*}
$$

We shall now define $\omega(k), \mathcal{Y}(k)$ and $C_{q, k}$ inductively in such a way that the condition (6.4) is satisfied. If $k=0$, then we set $\omega(0)=\omega_{0}, \mathcal{Y}(0)=\sqrt{-1} q^{2} \mathcal{V} / 2$ and $C_{q, 0}=1+\alpha_{0} q$, where we put $\alpha_{0}:=\left\{2 c_{1}(L)^{n}[M]\right\}^{-1}\left\{\int_{M} \sigma_{\omega} \omega^{n}+2 \pi F(\mathcal{V})\right\}$ for $\omega \in \mathcal{S}_{K}$. This α_{0} is obviously independent of the choice of ω in \mathcal{S}_{K}. Then, modulo q^{2},

$$
\begin{aligned}
& \Psi(\omega(k), q)-C_{q, 0}\left\{1-\frac{\mathcal{Y}(0)}{q} \cdot \log h(0)+R(\mathcal{Y}(0) ; h(0))\right\} \\
& \equiv\left(1+\frac{\sigma_{\omega_{0}}}{2} q\right)-\left(1+\alpha_{0} q\right)\left\{1-q h_{0}^{-1} \sqrt{-1} \frac{\mathcal{V}}{2} \cdot h_{0}\right\} \\
& \equiv\left(1+\frac{\sigma_{\omega_{0}}}{2} q\right)-\left(1+\alpha_{0} q\right)\left\{1+\left(\frac{\sigma_{\omega_{0}}}{2}-\alpha_{0}\right) q\right\} \equiv 0,
\end{aligned}
$$

and we see that (6.4) is true for $k=0$. Here, the equality $h_{0}^{-1} \sqrt{-1}(\mathcal{V} / 2) \cdot h_{0}=\alpha_{0}-$ ($\sigma_{\omega_{0}} / 2$) follows from a routine computation (see for instance [23]).

Hence, let $l \geq 1$ and assume (6.4) for $k=l-1$. It then suffices to find φ_{l}, ζ_{l} and α_{l} satisfying (6.4) for $k=l$. Put $\mathcal{Y}_{l}:=\sqrt{-1} e_{0}\left(\zeta_{l}\right)$. For each $\left(\varphi_{l}, \zeta_{l}, \alpha_{l}\right) \in \operatorname{Ker} \mathcal{D}_{0}^{\perp} \times$ $\operatorname{Ker} \mathcal{D}_{0} \times \mathbb{R}$, we consider

$$
\begin{aligned}
\Phi\left(q ; \varphi_{l}, \zeta_{l}, \alpha_{l}\right):= & \Psi\left(\omega(l-1)+\frac{\sqrt{-1}}{2 \pi} q^{l} \partial \bar{\partial} \varphi_{l}, q\right)-\left(C_{q, l-1}+\alpha_{l} q^{l+1}\right) \\
\times & \left\{1-\left(\frac{\mathcal{Y}(l-1)}{q}+q^{l+1} \mathcal{Y}_{l}\right) \cdot \log \left\{h(l-1) \exp \left(-q^{l} \varphi_{l}\right)\right\}\right. \\
& \left.+R\left(\frac{\mathcal{Y}(l-1)}{q}+q^{l+1} \mathcal{Y}_{l} ; h(l-1) \exp \left(-q^{l} \varphi_{l}\right)\right)\right\}
\end{aligned}
$$

By the induction hypothesis, $\Xi\left(\omega(l-1), \mathcal{Y}(l-1), C_{q, l-1}\right) \equiv 0$ modulo q^{l+1}. Since $\Phi(q ; 0,0,0)=\Xi\left(\omega(l-1), \mathcal{Y}(l-1), C_{q, l-1}\right)$, we have

$$
\Phi(q ; 0,0,0) \equiv u_{l} q^{l+1}, \quad \text { modulo } q^{l+2}
$$

for some real-valued K-invariant smooth function u_{l} on M. Let $\left(\varphi_{l}, \zeta_{l}, \alpha_{k}\right) \in \operatorname{Ker} \mathcal{D}_{0}^{\perp} \times$ $\operatorname{Ker} \mathcal{D}_{0} \times \mathbb{R}$. Since φ_{k} is K-invariant, by $\mathcal{V} \in \mathfrak{k}$, we see that $\sqrt{-1} \mathcal{V} \varphi_{k}$ is a real-valued
function on M. Note also that $\mathcal{Y}(0)=(\sqrt{-1} \mathcal{V} / 2) q^{2}$. Then the variation formula for the scalar curvature (see for instance [3, (2.5)]) shows that, modulo q^{l+2},

$$
\begin{aligned}
& \Phi\left(q ; \varphi_{l}, \zeta_{l}, \alpha_{l}\right) \\
& \equiv \Phi(q ; 0,0,0)+\frac{q^{l+1}}{2}\left(-\mathcal{D}_{0}+\sqrt{-1} \mathcal{V}\right) \varphi_{l}-\alpha_{l} q^{l+1}+q^{l+1} h_{0}^{-1}\left(\mathcal{Y}_{l} \cdot h_{0}\right)-\frac{\sqrt{-1}}{2} \mathcal{V} \varphi_{l} q^{l+1} \\
& \equiv\left\{u_{l}-\mathcal{D}_{0} \frac{\varphi_{l}}{2}-\alpha_{l}-\hat{F}_{m}\left(\mathcal{Y}_{l}\right)+e_{0}^{-1}\left(\sqrt{-1} \mathcal{Y}_{l}\right)\right\} q^{l+1}
\end{aligned}
$$

where we put $\hat{F}(\mathcal{Y}):=\left\{c_{1}(L)^{n}[M]\right\}^{-1} 2 \pi F(\sqrt{-1} \mathcal{Y})$ for each $\mathcal{Y} \in \sqrt{-1} \mathfrak{z}$. By setting $\mu_{l}:=\left\{c_{1}(L)^{n}[M]\right\}^{-1}\left(\int_{M} u_{l} \omega_{0}^{n}\right)$, we write u_{l} as a sum

$$
u_{l}=\mu_{l}+u_{l}^{\prime}+u_{l}^{\prime \prime},
$$

where $u_{l}^{\prime}:=(1-P)\left(u_{l}-\mu_{l}\right) \in \operatorname{Ker} \mathcal{D}_{0}^{\perp}$ and $u_{l}^{\prime \prime}:=P\left(u_{l}-\mu_{l}\right) \in \operatorname{Ker} \mathcal{D}_{0}$. Now, let φ_{l} be the unique element of $\operatorname{Ker} \mathcal{D}_{0}^{\perp}$ such that $\mathcal{D}_{0}\left(\varphi_{l} / 2\right)=u_{l}^{\prime}$. Moreover, we put

$$
\zeta_{l}:=u_{l}^{\prime \prime} \quad \text { and } \quad \alpha_{l}:=\mu_{l}-\hat{F}\left(\mathcal{Y}_{l}\right)
$$

Then by $\mathcal{Y}_{l}=\sqrt{-1} e_{0}\left(\zeta_{l}\right)=\sqrt{-1} e_{0}\left(u_{l}^{\prime \prime}\right)$, we obtain

$$
\begin{aligned}
\Phi\left(q ; \varphi_{l}, \zeta_{l}, \alpha_{l}\right) & \equiv\left\{\mu_{l}+u_{l}^{\prime}+u_{l}^{\prime \prime}-\mathcal{D}_{0} \frac{\varphi_{l}}{2}-\alpha_{l}-\hat{F}_{m}\left(\mathcal{Y}_{l}\right)+e_{0}^{-1}\left(\sqrt{-1} \mathcal{Y}_{l}\right)\right\} q^{l+1} \\
& \equiv\left\{u_{l}^{\prime \prime}+e_{0}^{-1}\left(\sqrt{-1} \mathcal{Y}_{l}\right)\right\} q^{l+1} \equiv 0, \quad \bmod q^{l+2}
\end{aligned}
$$

as required. Write $\sqrt{-1} \mathcal{V} / 2$ as \mathcal{Y}_{0} for simplicity. Now, for the real Lie subalgebra \mathfrak{b} of \mathfrak{z} generated by $\mathcal{Y}_{k}, k=0,1,2, \ldots$, its complexification $\mathfrak{b}^{\mathbb{C}}$ in $\mathfrak{z}^{\mathbb{C}}$ generates a complex Lie subgroup $B^{\mathbb{C}}$ of $Z^{\mathbb{C}}$. Then it is easy to check that the algebraic subtorus T of $Z^{\mathbb{C}}$ obtained as the closure of $B^{\mathbb{C}}$ in $Z^{\mathbb{C}}$ has the required properties.

Remark 6.5. In Theorem B, assume that ω_{0} is a Kähler metric of constant scalar curvature, and moreover that the actions $\rho_{m(\nu)}, \nu=1,2, \ldots$, coincide (cf. [26, (2.3)]) for all sufficiently large ν. Then by [26], the trivial group $\{1\}$ can be chosen as the algebraic subtorus T above of $Z^{\mathbb{C}}$.

References

[1] S. Bando and T. Mabuchi: Uniqueness of Einstein Kähler metrics modulo connected group actions, in "Algebraic Geometry, Sendai 1985" (ed. T. Oda), Adv. Stud. Pure Math. 10, Kinokuniya and North-Holland (1987), 11-40.
[2] N. Berline and M. Vergne: Zeros d'un champ de vecteurs et classes characteristiques equivariantes, Duke Math. J. 50 (1983), 539-549.
[3] E. Calabi: Extremal Kähler metrics II, in "Differential Geometry and Complex Analysis" (ed. I. Chavel, H.M. Farkas), Springer-Verlag (1985), 95-114.
[4] D. Catlin: The Bergman kernel and a theorem of Tian, in "Analysis and Geometry in Several Complex Variables" (ed. G. Komatsu, M. Kuranishi), Trends in Math., Birkhäuser (1999), 1-23.
[5] M. Cahen, S. Gutt and J. Rawnsley: Quantization of Kähler manifolds, II, Trans. Amer. Math. Soc. 337 (1993), 73-98.
[6] X. Chen: The space of Kähler metrics, J. Differential Geom. 56 (2000), 189-234.
[7] W.-Y. Ding: Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), 463-471.
[8] P. Deligne: Le déterminant de la cohomologie, Contemp. Math. J. 67 (1987), 93-177.
[9] S.K. Donaldson: Infinite determinants, stable bundles and curvature, Duke Math. J. 3 (1987), 231-247.
[10] S.K. Donaldson: Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479-522.
[11] A. Fujiki: On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), 225-258.
[12] A. Fujiki: Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku 42 (1990), 231-243; English translation: Sugaku Expositions 5 (1992), 173-191.
[13] A. Futaki and T. Mabuchi: Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199-210.
[14] A. Futaki and T. Mabuchi: Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math. 6 (2002), 349-372.
[15] A. Futaki and S. Morita: Invariant polynomials of the automophism group of a compact complex manifold, J. Differential Geom. 21 (1985), 135-142.
[16] D. Gieseker: Global moduli for surfaces of general type, Invent. Math. 43 (1977), 233-282.
[17] S. Kobayashi: Transformation groups in differential geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[18] S. Kobayashi: Curvature and stability of vector bundles, Proc. Japan Acad. 58 (1982), 158-162.
[19] A. Lichnérowicz: Isométrie et transformations analytique d'une variété kählérienne compacte, Bull. Soc. Math. France 87 (1959), 427-437.
[20] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235-273.
[21] M. Lübke: Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983), 245-247.
[22] H. Luo: Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), 577-599.
[23] T. Mabuchi: An algebraic character associated with Poisson brackets, in "Recent Topics in Differential and Analytic Geometry", Adv. Stud. Pure Math. 18-I, Kinokuniya and Academic Press (1990), 339-358.
[24] T. Mabuchi: Vector field energies and critical metrics on Kähler manifolds, Nagoya Math. J. 162 (2001), 41-63.
[25] T. Mabuchi: The Hitchin-Kobayashi correspondence for vector bundles and manifolds, (in Japanese), Proc. 48th Geometry Symposium, Ibaraki, Aug. (2001), 461-468.
[26] T. Mabuchi: An obstruction to asymptotic semistability and approximate critical metrics, Osaka J. Math. 41 (2004), 463-472.
[27] T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I \& II, preprints.
[28] T. Mabuchi and Y. Nakagawa: The Bando-Calabi-Futaki character as an obstruction to semistability, Math. Annalen 324 (2002), 187-193.
[29] T. Mabuchi and L. Weng: Kähler-Einstein metrics and Chow-Mumford stability, preprint (1998).
[30] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory, 3rd edition, Ergebnisse der

Math. und ihrer Grenzgebiete 34, Springer-Verlag, 1994.
[31] D. Mumford: Stability of projective varieties, Enseignement Math. 23 (1977), 39-110.
[32] Y. Nakagawa: Bando-Calabi-Futaki characters of Kähler orbifolds, Math. Ann. 314 (1999), 369-380.
[33] G. Tian: On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130.
[34] G. Tian: Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-37.
[35] K. Uhlenbeck and S.-T. Yau: On the existence of hermitian Yang-Mills connections on stable bundles over compact Kähler manifolds, Comm. Pure Appl. Math. 39 (1986), suppl. 257-293. and the correction 42 (1989), 703.
[36] E. Viehweg: Quasi-projective moduli for polarized manifolds, Ergebnisse der Math. und ihrer Grenzgebiete, 30, Springer-Verlag, 1995, 1-320.
[37] S.-T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411.
[38] S. Zelditch: Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317-331.
[39] S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77-105.

[^0]: ${ }^{*}$ For this uniquness, we choose $Z^{\mathbb{C}}$ (cf. Section 2) as the algebraic torus T.

