



|              |                                                                           |
|--------------|---------------------------------------------------------------------------|
| Title        | Stability of extremal Kähler manifolds                                    |
| Author(s)    | Mabuchi, Toshiki                                                          |
| Citation     | Osaka Journal of Mathematics. 2004, 41(3), p. 563-582                     |
| Version Type | VoR                                                                       |
| URL          | <a href="https://doi.org/10.18910/9178">https://doi.org/10.18910/9178</a> |
| rights       |                                                                           |
| Note         |                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

## STABILITY OF EXTREMAL KÄHLER MANIFOLDS

Dedicated to Professor Shoshichi Kobayashi on his seventieth birthday

TOSHIKI MABUCHI

(Received January 15, 2003)

### 1. Introduction

In Donaldson's study [10] of asymptotic stability for polarized algebraic manifolds  $(M, L)$ , *critical metrics* originally defined by Zhang [39] (see also [22]) are referred to as balanced metrics and play a central role when the polarized algebraic manifolds admit Kähler metrics of constant scalar curvature. Let  $T \cong (\mathbb{C}^*)^k$  be an algebraic torus in the identity component  $\text{Aut}^0(M)$  of the group of holomorphic automorphisms of  $M$ . In this paper, we define the concept of *critical metrics relative to  $T$* , and as an application, choosing a suitable  $T$ , we shall show that a result in [26] on the asymptotic approximation of critical metrics (see [10], [39]) can be generalized to the case where  $(M, L)$  admits an extremal Kähler metric in the polarization class. Then in our forthcoming paper [27], we shall show that a slight modification of the concept of stability (see Theorem A below) allows us to obtain the asymptotic stability of extremal Kähler manifolds even when the obstruction as in [26] does not vanish. In particular, by an argument similar to [10], an extremal Kähler metric in a fixed integral Kähler class on a projective algebraic manifold  $M$  will be shown to be unique\* up to the action of the group  $\text{Aut}^0(M)$ .

### 2. Statement of results

Throughout this paper, we fix once for all an ample holomorphic line bundle  $L$  on a connected projective algebraic manifold  $M$ . Let  $H$  be the maximal connected linear algebraic subgroup of  $\text{Aut}^0(M)$ , so that  $\text{Aut}^0(M)/H$  is an abelian variety. The corresponding Lie subalgebra of  $H^0(M, \mathcal{O}(T^{1,0}M))$  will be denoted by  $\mathfrak{h}$ . For the complete linear system  $|L^m|$ ,  $m \gg 1$ , we consider the Kodaira embedding

$$\Phi_m = \Phi_{|L^m|} : M \hookrightarrow \mathbb{P}^*(V_m), \quad m \gg 1,$$

where  $\mathbb{P}^*(V_m)$  denotes the set of all hyperplanes through the origin in  $V_m := H^0(M, \mathcal{O}(L^m))$ . Put  $N_m := \dim V_m - 1$ . Let  $n$  and  $d$  be respectively the dimension

---

\* For this uniqueness, we choose  $Z^{\mathbb{C}}$  (cf. Section 2) as the algebraic torus  $T$ .

of  $M$  and the degree of the image  $M_m := \Phi_m(M)$  in the projective space  $\mathbb{P}^*(V_m)$ . Put  $W_m = \{\text{Sym}^d(V_m)\}^{\otimes n+1}$ . Then to the image  $M_m$  of  $M$ , we can associate a nonzero element  $\hat{M}_m$  in  $W_m^*$  such that the corresponding element  $[\hat{M}_m]$  in  $\mathbb{P}^*(W_m)$  is the Chow point associated to the irreducible reduced algebraic cycle  $M_m$  on  $\mathbb{P}^*(V_m)$ . Replacing  $L$  by some positive integral multiple of  $L$  if necessary, we fix an  $H$ -linearization of  $L$ , i.e., a lift to  $L$  of the  $H$ -action on  $M$  such that  $H$  acts on  $L$  as bundle isomorphisms covering the  $H$ -action on  $M$ . For an algebraic torus  $T$  in  $H$ , this naturally induces a  $T$ -action on  $V_m$  for each  $m$ . Now for each character  $\chi \in \text{Hom}(T, \mathbb{C}^*)$ , we set

$$V(\chi) := \{s \in V_m; t \cdot s = \chi(t)s \text{ for all } t \in T\}.$$

Then we have mutually distinct characters  $\chi_1, \chi_2, \dots, \chi_{\nu_m} \in \text{Hom}(T, \mathbb{C}^*)$  such that the vector space  $V_m = H^0(M, \mathcal{O}(L^m))$  is uniquely written as a direct sum

$$(2.1) \quad V_m = \bigoplus_{k=1}^{\nu_m} V(\chi_k).$$

Put  $G_m := \prod_{k=1}^{\nu_m} \text{SL}(V(\chi_k))$ , and the associated Lie subalgebra of  $\text{sl}(V_m)$  will be denoted by  $\mathfrak{g}_m$ . More precisely,  $G_m$  and  $\mathfrak{g}_m$  possibly depend on the choice of the algebraic torus  $T$ , and if necessary, we denote these by  $G_m(T)$  and  $\mathfrak{g}_m(T)$ , respectively. The  $T$ -action on  $V_m$  is, more precisely, a right action, while we regard the  $G_m$ -action on  $V_m$  as a left action. Since  $T$  is Abelian, this  $T$ -action on  $V_m$  can be regarded also as a left action.

The group  $G_m$  acts diagonally on  $V_m$  in such a way that, for each  $k$ , the  $k$ -th factor  $\text{SL}(V(\chi_k))$  of  $G_m$  acts just on the  $k$ -th factor  $V(\chi_k)$  of  $V_m$ . This induces a natural  $G_m$ -action on  $W_m$  and also on  $W_m^*$ .

DEFINITION 2.2. (a) The subvariety  $M_m$  of  $\mathbb{P}^*(V_m)$  is said to be *stable relative to  $T$*  or *semistable relative to  $T$* , according as the orbit  $G_m \cdot \hat{M}_m$  is closed in  $W_m^*$  or the closure of  $G_m \cdot \hat{M}_m$  in  $W_m^*$  does not contain the origin of  $W_m^*$ .

(b) Let  $\mathfrak{t}_c$  denote the Lie subalgebra of the maximal compact subgroup  $T_c$  of  $T$ , and as a real Lie subalgebra of the complex Lie algebra  $\mathfrak{t}$ , we define  $\mathfrak{t}_{\mathbb{R}} := \sqrt{-1} \mathfrak{t}_c$ .

Take a Hermitian metric for  $V_m$  such that  $V(\chi_k) \perp V(\chi_l)$  if  $k \neq l$ . Put  $N_m := \dim V_m - 1$  and  $n_k := \dim V(\chi_k)$ . We then set

$$l(k, i) := (i-1) + \sum_{j=1}^{k-1} n_j, \quad i = 1, 2, \dots, n_k; \quad k = 1, 2, \dots, \nu_m,$$

where the right-hand side denotes  $i-1$  in the special case  $k=1$ . Let  $\|\cdot\|$  denote the Hermitian norm for  $V_m$  induced by the Hermitian metric. Take a  $\mathbb{C}$ -basis  $\{s_0, s_1, \dots, s_{N_m}\}$  for  $V_m$ .

DEFINITION 2.3. We say that  $\{s_0, s_1, \dots, s_{N_m}\}$  is an *admissible normal basis* for  $V_m$  if there exist positive real constants  $b_k$ ,  $k = 1, 2, \dots, \nu_m$ , and a  $\mathbb{C}$ -basis  $\{s_{k,i} ; i = 1, 2, \dots, n_k\}$  for  $V(\chi_k)$ , with  $\sum_{k=1}^{\nu_m} n_k b_k = N_m + 1$ , such that

- (1)  $s_{l(k,i)} = s_{k,i}$ ,  $i = 1, 2, \dots, n_k$ ;  $k = 1, 2, \dots, \nu_m$ ;
- (2)  $s_l \perp s_{l'}$  if  $l \neq l'$ ;
- (3)  $\|s_{k,i}\|^2 = b_k$ ,  $i = 1, 2, \dots, n_k$ ;  $k = 1, 2, \dots, \nu_m$ .

Then the real vector  $b := (b_1, b_2, \dots, b_{\nu_m})$  is called the *index* of the admissible normal basis  $\{s_0, s_1, \dots, s_{N_m}\}$  for  $V_m$ .

We now specify a Hermitian metric on  $V_m$ . For the maximal compact subgroup  $T_c$  of  $T$  above, let  $\mathcal{S}$  be the set ( $\neq \emptyset$ ) of all  $T_c$ -invariant Kähler forms in the class  $c_1(L)_{\mathbb{R}}$ . Let  $\omega \in \mathcal{S}$ , and choose a Hermitian metric  $h$  for  $L$  such that  $\omega = c_1(L; h)$ . Define a Hermitian metric on  $V_m$  by

$$(2.4) \quad (s, s')_{L^2} := \int_M (s, s')_{h^m} \omega^n, \quad s, s' \in V_m,$$

where  $(s, s')_{h^m}$  denotes the function on  $M$  obtained as the pointwise inner product of  $s, s'$  by the Hermitian metric  $h^m$  on  $L^m$ . Now, let us consider the situation that  $V_m$  has the Hermitian metric (2.4). Then

$$V(\chi_k) \perp V(\chi_l), \quad k \neq l,$$

and define a maximal compact subgroup  $(G_m)_c$  of  $G_m$  by  $(G_m)_c := \prod_{k=1}^{\nu_m} \mathrm{SU}(V(\chi_k))$ . Again by this Hermitian metric  $(\cdot, \cdot)_{L^2}$ , let  $\{s_0, s_1, \dots, s_{N_m}\}$  be an admissible normal basis for  $V_m$  of a given index  $b$ . Put

$$(2.5) \quad E_{\omega,b} := \sum_{i=0}^{N_m} |s_i|_{h^m}^2,$$

where  $|s|_{h^m} := (s, s)_{h^m}$  for all  $s \in V_m$ . Then  $E_{\omega,b}$  depends only on  $\omega$  and  $b$ . Namely, once  $\omega$  and  $b$  are fixed,  $E_{\omega,b}$  is independent of the choice of an admissible normal basis for  $V(\chi_k)$  of index  $b$ . Fix a positive integer  $m$  such that  $L^m$  is very ample.

DEFINITION 2.6. An element  $\omega$  in  $\mathcal{S}$  is called a *critical metric relative to  $T$* , if there exists an admissible normal basis  $\{s_0, s_1, \dots, s_{N_m}\}$  for  $V_m$  such that the associated function  $E_{\omega,b}$  on  $M$  is constant for the index  $b$  of the admissible normal basis. This generalizes a *critical metric* of Zhang [39] (see also [5]) who treated the case  $T = \{1\}$ . If  $\omega$  is a critical metric relative to  $T$ , then by integrating the equality (2.5) over  $M$ , we see that the constant  $E_{\omega,b}$  is  $(N_m + 1)/c_1(L)^m[M]$ .

For the centralizer  $Z_H(T)$  of  $T$  in  $H$ , let  $Z_H(T)^0$  be its identity component. For  $m$  as above, the following generalization of a result in [39] is crucial to our study of

stability:

**Theorem A.** *The subvariety  $M_m$  of  $\mathbb{P}(V_m)$  is stable relative to  $T$  if and only if there exists a critical metric  $\omega \in \mathcal{S}$  relative to  $T$ . Moreover, for a fixed index  $b$ , a critical metric  $\omega$  in  $\mathcal{S}$  relative to  $T$  with constant  $E_{\omega,b}$  is unique up to the action of  $Z_H(T)^0$ .*

We now fix a maximal compact connected subgroup  $K$  of  $H$ . The corresponding Lie subalgebra of  $\mathfrak{h}$  is denoted by  $\mathfrak{k}$ . Let  $\mathcal{S}_K$  denote the set of all Kähler forms  $\omega$  in the class  $c_1(L)_{\mathbb{R}}$  such that the identity component of the group of the isometries of  $(M, \omega)$  coincides with  $K$ . Then  $\mathcal{S}_K \neq \emptyset$ , and an extremal Kähler metric, if any, in the class  $c_1(L)_{\mathbb{R}}$  is always in  $H$ -orbits of elements of  $\mathcal{S}_K$ . For each  $\omega \in \mathcal{S}_K$ , we write

$$\omega = \frac{\sqrt{-1}}{2\pi} \sum_{\alpha, \beta} g_{\alpha\bar{\beta}} dz^\alpha \wedge dz^{\bar{\beta}}$$

in terms of a system  $(z^1, \dots, z^n)$  of holomorphic local coordinates on  $M$ . Let  $\mathcal{K}_\omega$  be the space of all real-valued smooth functions  $u$  on  $M$  such that  $\int_M u \omega^n = 0$  and that

$$\text{grad}_\omega^{\mathbb{C}} u := \frac{1}{\sqrt{-1}} \sum_{\alpha, \beta} g^{\bar{\beta}\alpha} \frac{\partial u}{\partial z^{\bar{\beta}}} \frac{\partial}{\partial z^\alpha}$$

is a holomorphic vector field on  $M$ . Then  $\mathcal{K}_\omega$  forms a real Lie subalgebra of  $\mathfrak{h}$  by the Poisson bracket for  $(M, \omega)$ . We then have the Lie algebra isomorphism

$$\mathcal{K}_\omega \cong \mathfrak{k}, \quad u \leftrightarrow \text{grad}_\omega^{\mathbb{C}} u.$$

For the space  $C^\infty(M)_{\mathbb{R}}$  of real-valued smooth functions on  $M$ , we consider the inner product defined by  $(u_1, u_2)_\omega := \int_M u_1 u_2 \omega^n$  for  $u_1, u_2 \in C^\infty(M)_{\mathbb{R}}$ . Let  $\text{pr}: C^\infty(M)_{\mathbb{R}} \rightarrow \mathcal{K}_\omega$  be the orthogonal projection. Let  $\mathfrak{z}$  be the center of  $\mathfrak{k}$ . Then the vector field

$$\mathcal{V} := \text{grad}_\omega^{\mathbb{C}} \text{pr}(\sigma_\omega) \in \mathfrak{z}$$

is called the *extremal Kähler vector field* of  $(M, \omega)$ , where  $\sigma_\omega$  denotes the scalar curvature of  $\omega$ . Then  $\mathcal{V}$  is independent of the choice of  $\omega$  in  $\mathcal{S}$ , and satisfies  $\exp(2\pi\gamma\mathcal{V}) = 1$  for some positive integer  $\gamma$  (cf. [13], [32]). Next, since we have an  $H$ -linearization of  $L$ , there exists a natural inclusion  $H \subset \text{GL}(V_m)$ . By passing to the Lie algebras, we obtain

$$\mathfrak{h} \subset \mathfrak{gl}(V_m).$$

Take a Hermitian metric  $h$  for  $L$  such that the corresponding first Chern form  $c_1(L; h)$  is  $\omega$ . As in [23, (1.4.1)], the infinitesimal  $\mathfrak{h}$ -action on  $L$  induces an infinitesimal

$\mathfrak{h}$ -action on the complexification  $\mathcal{H}_m^{\mathbb{C}}$  of the space of all Hermitian metrics  $\mathcal{H}_m$  on the line bundle  $L^m$ . The Futaki-Morita character  $F: \mathfrak{h} \rightarrow \mathbb{C}$  is given by

$$F(\mathcal{Y}) := \frac{\sqrt{-1}}{2\pi} \int_M h^{-1}(\mathcal{Y}h)\omega^n,$$

which is independent of the choice of  $h$  (see for instance [15]). For the identity component  $Z$  of the center of  $K$ , we consider its complexification  $Z^{\mathbb{C}}$  in  $H$ . Then the corresponding Lie algebra is just the complexification  $\mathfrak{z}^{\mathbb{C}}$  of  $\mathfrak{z}$  above. We now consider the set  $\Delta$  of all algebraic tori in  $Z^{\mathbb{C}}$ . Let  $T \in \Delta$ . Put

$$q := \frac{1}{m}.$$

For  $\omega = c_1(L; h) \in \mathcal{S}_K$ , we consider the Hermitian metric (2.4) for  $V_m$ . We then choose an admissible normal basis  $\{s_0, s_1, \dots, s_{N_m}\}$  for  $V_m$  of index  $(1, 1, \dots, 1)$ . By the asymptotic expansion of Tian-Zelditch (cf. [33], [38]; see also [4]) for  $m \gg 1$ , there exist real-valued smooth functions  $a_k(\omega)$ ,  $k = 1, 2, \dots$ , on  $M$  such that

$$(2.7) \quad \frac{n!}{m^n} \sum_{j=0}^{N_m} |s_j|_{h^m}^2 = 1 + a_1(\omega)q + a_2(\omega)q^2 + \dots$$

Then  $a_1(\omega) = \sigma_{\omega}/2$  by a result of Lu [20]. Let  $\mathcal{Y} \in \mathfrak{t}_{\mathbb{R}}$ , and put  $g := \exp^{\mathbb{C}} \mathcal{Y} \in T$ , where the element  $\exp(\mathcal{Y}/2)$  in  $T$  is written as  $\exp^{\mathbb{C}} \mathcal{Y}$  by abuse of terminology. Recall that the  $T$ -action on  $V_m$  is a right action, though it can be viewed also as a left action. Put  $h_g := h \cdot g$  for simplicity. Using the notation in Definition 2.3, we write  $s_{k,i} = s_{l(k,i)}$ ,  $k = 1, 2, \dots, \nu_m$ ;  $i = 1, 2, \dots, n_k$ . Then for a fixed  $k$ ,  $\int_M |s_{k,i}|_{h_g^m}^2 g^* \omega^n = |\chi_k(\exp^{\mathbb{C}} \mathcal{Y})|^{-2}$  is independent of the choice of  $i$ . Put

$$Z(q, \omega; \mathcal{Y}) := \frac{n!}{m^n} \sum_{j=0}^{N_m} |s_j|_{h_g^m}^2 = g^* \left\{ \frac{n!}{m^n} \sum_{k=1}^{\nu_m} |\chi_k(\exp^{\mathbb{C}} \mathcal{Y})|^{-2} \sum_{i=1}^{n_k} |s_{k,i}|_{h^m}^2 \right\}, \quad \mathcal{Y} \in \mathfrak{t}_{\mathbb{R}}.$$

For extremal Kähler manifolds, the following generalization of [26] allows us to approximate arbitrarily some critical metrics relative to  $T$ :

**Theorem B.** *Let  $\omega_0 = c_1(L; h_0)$  be an extremal Kähler metric in the class  $c_1(L)_{\mathbb{R}}$  with extremal Kähler vector field  $\mathcal{V}$ . Then for some  $T \in \Delta$ , there exist a sequence of vector fields  $\mathcal{Y}_k \in \mathfrak{t}_{\mathbb{R}}$ , a formal power series  $C_q$  in  $q$  with real coefficients (cf. Section 6), and smooth real-valued functions  $\varphi_k$ ,  $k = 1, 2, \dots$ , on  $M$  such that*

$$(2.8) \quad Z(q, \omega(l); \mathcal{Y}(l)) = C_q + 0(q^{l+2}),$$

where  $\mathcal{Y}(l) := (\sqrt{-1} \mathcal{V}/2) q^2 + \sum_{k=1}^l q^{k+2} \mathcal{Y}_k$ ,  $h(l) := h_0 \exp(-\sum_{k=1}^l q^k \varphi_k)$ , and  $\omega(l) := c_1(L; h(l))$ .

The equality (2.8) above means that there exists a positive real constant  $A_l$  independent of  $q$  such that  $\|Z(q, \omega(l); \mathcal{Y}(l)) - C_q\|_{C^0(M)} \leq A_l q^{l+2}$  for all  $q$  with  $0 \leq q \leq 1$ . By [38], for every nonnegative integer  $j$ , a choice of a larger constant  $A = A_{j,l} > 0$  keeps Theorem B still valid even if the  $C^0(M)$ -norm is replaced by the  $C^j(M)$ -norm.

### 3. A stability criterion

In this section, some stability criterion will be given as a preliminary. In a forthcoming paper [27], we actually use a stronger version of Theorem 3.2 which guarantees the stability only by checking the closedness of orbits through a point for special one-parameter subgroups “perpendicular” to the isotropy subgroup. Now, for a connected reductive algebraic group  $G$ , defined over  $\mathbb{C}$ , we consider a representation of  $G$  on an  $N$ -dimensional complex vector space  $W$ . We fix a maximal compact subgroup  $G_c$  of  $G$ . Moreover, let  $\mathbb{C}^*$  be a one-dimensional algebraic torus with the maximal compact subgroup  $S^1$ .

**DEFINITION 3.1.** (a) An algebraic group homomorphism  $\lambda: \mathbb{C}^* \rightarrow G$  is said to be a *special one-parameter subgroup* of  $G$ , if the image  $\lambda(S^1)$  is contained in  $G_c$ .  
 (b) A point  $w \neq 0$  in  $W$  is said to be *stable*, if the orbit  $G \cdot w$  is closed in  $W$ .

Later, we apply the following stability criterion to the case where  $W = W_m^*$  and  $G = G_m$ . Let  $w \neq 0$  be a point in  $W$ .

**Theorem 3.2.** *A point  $w$  as above is stable if and only if there exists a point  $w'$  in the orbit  $G \cdot w$  of  $w$  such that  $\lambda(\mathbb{C}^*) \cdot w'$  is closed in  $W$  for every special one-parameter subgroup  $\lambda: \mathbb{C}^* \rightarrow G$  of  $G$ .*

**Proof.** We prove this by induction on  $\dim(G \cdot w)$ . If  $\dim(G \cdot w) = 0$ , the statement of the above theorem is obviously true. Hence, fixing a positive integer  $k$ , assume that the statement is true for all  $0 \neq w \in W$  such that  $\dim(G \cdot w) < k$ . Now, let  $0 \neq w \in W$  be such that  $\dim(G \cdot w) = k$ , and the proof is reduced to showing the statement for such a point  $w$ . Let  $\Sigma(G)$  be the set of all special one-parameter subgroups of  $G$ . Fix a  $G_c$ -invariant Hermitian metric  $\| \cdot \|$  on  $W$ . The proof is divided into three steps:

**STEP 1.** First, we prove “only if” part of Theorem 3.2. Assume that  $w$  is stable. Since  $G \cdot w$  is closed in  $W$ , the nonnegative function on  $G \cdot w$  defined by

$$(3.3) \quad G \cdot w \ni g \cdot w \mapsto \|g \cdot w\| \in \mathbb{R}, \quad g \in G,$$

has a critical point at some point  $w'$  in  $G \cdot w$ . Let  $\lambda \in \Sigma(G)$ , and it suffices to show the closedness of  $\lambda(\mathbb{C}^*) \cdot w'$  in  $W$ . We may assume that  $\dim \lambda(\mathbb{C}^*) \cdot w' > 0$ . Then by using the coordinate system associated to an orthonormal basis for  $W$ , we can write

$w'$  as  $(w'_0, \dots, w'_r, 0, \dots, 0)$  in such a way that  $w'_\alpha \neq 0$  for all  $0 \leq \alpha \leq r$  and that

$$\lambda(e^t) \cdot w' = (e^{t\gamma_0} w'_0, \dots, e^{t\gamma_r} w'_r, 0, \dots, 0), \quad t \in \mathbb{C},$$

where  $\gamma_\alpha$ ,  $\alpha = 0, 1, \dots, r$ , are integers independent of the choice of  $t$  in  $\mathbb{C}$ . Since the closed orbit  $G \cdot w$  does not contain the origin of  $W$ , the inclusion  $\lambda(\mathbb{C}^*) \cdot w' \subset G \cdot w$  shows that  $r \geq 1$  and that the coincidence  $\gamma_0 = \gamma_1 = \dots = \gamma_r$  cannot occur. In particular,

$$f(t) := \log \|\lambda(e^t) \cdot w'\|^2 = \log (e^{2t\gamma_0} |w'_0|^2 + e^{2t\gamma_1} |w'_1|^2 + \dots + e^{2t\gamma_r} |w'_r|^2), \quad t \in \mathbb{R},$$

satisfies  $f''(t) > 0$  for all  $t$ . Moreover, since the function in (3.3) has a critical point at  $w'$ , we have  $f'(0) = 0$ . It now follows that  $\lim_{t \rightarrow +\infty} f(t) = +\infty$  and  $\lim_{t \rightarrow -\infty} f(t) = +\infty$ . Hence  $\lambda(\mathbb{C}^*) \cdot w'$  is closed in  $W$ , as required.

STEP 2. To prove “if” part of Theorem 3.2, we may assume that  $w = w'$  without loss of generality. Hence, suppose that  $\lambda(\mathbb{C}^*) \cdot w$  is closed in  $W$  for every  $\lambda \in \Sigma(G)$ . It then suffices to show that  $G \cdot w$  is closed in  $W$ . For contradiction, assume that  $G \cdot w$  is not closed in  $W$ . Since the closure of  $G \cdot w$  in  $W$  always contains a closed orbit  $O_1$  in  $W$ , by  $\dim O_1 < \dim(G \cdot w) = k$ , the induction hypothesis shows that there exists a point  $\hat{w} \in O_1$  such that

$$(3.4) \quad \lambda(\mathbb{C}^*) \cdot \hat{w} \text{ is closed in } W \text{ for every } \lambda \in \Sigma(G).$$

Moreover, there exist elements  $g_i$ ,  $i = 1, 2, \dots$ , in  $G$  such that  $g_i \cdot w$  converges to  $\hat{w}$  in  $W$ . Then for each  $i$ , we can write  $g_i = \kappa'_i \cdot \exp(2\pi A_i) \cdot \kappa_i$  for some  $\kappa_i, \kappa'_i \in G_c$  and for some  $A_i \in \mathfrak{a}$ , where  $2\pi\sqrt{-1}\mathfrak{a}$  is the Lie algebra of some maximal compact torus in  $G_c$ . Let  $2\pi\sqrt{-1}\mathfrak{a}_{\mathbb{Z}}$  be the kernel of the exponential map of the Lie algebra  $2\pi\sqrt{-1}\mathfrak{a}$ , and put  $\mathfrak{a}_{\mathbb{Q}} := \mathfrak{a}_{\mathbb{Z}} \otimes \mathbb{Q}$ . Replacing  $\{\kappa_i\}$  by its subsequence if necessary, we may assume that

$$(3.5) \quad \kappa_i \rightarrow \kappa_\infty \quad \text{and} \quad \{\exp(2\pi A_i) \cdot \kappa_i\} \cdot w \rightarrow w_\infty, \quad \text{as } i \rightarrow \infty,$$

for some  $\kappa_\infty \in G_c$  and  $w_\infty \in G_c \cdot \hat{w}$ . Then by (3.4), the orbit  $\lambda(\mathbb{C}^*) \cdot w_\infty$  is also closed in  $W$  for every  $\lambda \in \Sigma(G)$ . Let  $\mathfrak{a}_\infty$  denote the Lie subalgebra of  $\mathfrak{a}$  consisting of all elements in  $\mathfrak{a}$  whose associated vector fields on  $W$  vanish at  $\kappa_\infty \cdot w$ . For a Euclidean metric on  $\mathfrak{a}$  induced from a suitable bilinear form on  $\mathfrak{a}_{\mathbb{Q}}$  defined over  $\mathbb{Q}$ , we write  $\mathfrak{a}$  as a direct sum  $\mathfrak{a}_\infty^\perp \oplus \mathfrak{a}_\infty$ , where  $\mathfrak{a}_\infty^\perp$  is the orthogonal complement of  $\mathfrak{a}_\infty$  in  $\mathfrak{a}$ . Let  $\bar{A}_i$  be the image of  $A_i$  under the orthogonal projection

$$\text{pr}_1: \mathfrak{a} (= \mathfrak{a}_\infty^\perp \oplus \mathfrak{a}_\infty) \rightarrow \mathfrak{a}_\infty^\perp, \quad A \mapsto \bar{A} := \text{pr}_1(A).$$

Note that  $\{\exp(2\pi A_i) \cdot \kappa_\infty\} \cdot w = \{\exp(2\pi \bar{A}_i) \cdot \kappa_\infty\} \cdot w$ . Hence,

$$(3.6) \quad \limsup_{i \rightarrow \infty} \|\exp\{2\pi \text{Ad}(\kappa_\infty^{-1}) \bar{A}_i\} \cdot w\| = \limsup_{i \rightarrow \infty} \|\{\exp(2\pi A_i) \cdot \kappa_\infty\} \cdot w\|$$

$$\leq \lim_{i \rightarrow \infty} \|\{\exp(2\pi A_i) \cdot \kappa_i\} \cdot w\| = \|w_\infty\| < +\infty.$$

STEP 3. Since  $\lambda(\mathbb{C}^*) \cdot w$  is closed in  $W$  for every  $\lambda \in \Sigma(G)$ , by the boundedness in (3.6),  $\{\bar{A}_i\}$  is a bounded sequence in  $\mathfrak{a}_\infty^\perp$  (see Remark 3.7 below). Hence, for some element  $A_\infty$  in  $\mathfrak{a}_\infty^\perp$ , replacing  $\{\bar{A}_i\}$  by its subsequence if necessary, we may assume that  $\bar{A}_i \rightarrow A_\infty$  as  $i \rightarrow \infty$ . Then by (3.5),

$$w_\infty = \lim_{i \rightarrow \infty} \{\exp(2\pi \bar{A}_i) \cdot \kappa_i\} \cdot w = \{\exp(2\pi \bar{A}_\infty) \cdot \kappa_\infty\} \cdot w.$$

Since we have  $\exp(2\pi \bar{A}_\infty) \in G$ , the point  $w_\infty$  in  $O_1$  belongs to the orbit  $G \cdot w$ . This contradicts  $O_1 \cap (G \cdot w) = \emptyset$ , as required. The proof of Lemma 3.2 is now complete.  $\square$

REMARK 3.7. The boundedness of the sequence  $\{\bar{A}_i\}$  in  $\mathfrak{a}_\infty^\perp$  in Step 3 above can be seen as follows: For contradiction, we assume that the sequence  $\{\bar{A}_i\}$  is unbounded. Put  $v := \kappa_\infty \cdot w$  for simplicity. Then by (3.6), we first observe that

$$(3.8) \quad \limsup_{i \rightarrow \infty} \|\exp(2\pi \bar{A}_i) \cdot v\| < +\infty.$$

Since  $2\pi\sqrt{-1}\mathfrak{a}_\infty$  is the Lie algebra of the isotropy subgroup of the compact torus  $\exp(2\pi\sqrt{-1}\mathfrak{a})$  at  $v$ , both  $\mathfrak{a}_\infty$  and  $\mathfrak{a}_\infty^\perp$  are defined over  $\mathbb{Q}$  in  $\mathfrak{a}$ . By choosing a complex coordinate system of  $W$ , we can write  $v$  as  $(v_0, \dots, v_r, 0, \dots, 0)$  for some integer  $r$  with  $0 \leq r \leq \dim W - 1$  such that  $v_\alpha \neq 0$  for all  $0 \leq \alpha \leq r$  and that

$$(3.9) \quad \exp(2\pi \bar{A}) \cdot v = (e^{2\pi \chi_0(\bar{A})} v_0, \dots, e^{2\pi \chi_r(\bar{A})} v_r, 0, \dots, 0), \quad \bar{A} \in \mathfrak{a}_\infty^\perp,$$

where  $\chi_\alpha: \mathfrak{a}_\infty^\perp \rightarrow \mathbb{R}$ ,  $\alpha = 0, 1, \dots, r$ , are additive characters defined over  $\mathbb{Q}$ . Put  $n := \dim_{\mathbb{R}} \mathfrak{a}_\infty^\perp$ , and let  $(\mathfrak{a}_\infty^\perp)_{\mathbb{Q}}$  denote the set of all rational points in  $\mathfrak{a}_\infty^\perp$ . Let us now identify

$$\mathfrak{a}_\infty^\perp = \mathbb{R}^n \quad \text{and} \quad (\mathfrak{a}_\infty^\perp)_{\mathbb{Q}} = \mathbb{Q}^n,$$

as vector spaces. Since the orbit  $\lambda(\mathbb{C}^*) \cdot w$  is closed in  $W$  for all special one-parameter subgroups  $\lambda: \mathbb{C}^* \rightarrow G$  of  $G$ , the same thing is true also for  $\lambda(\mathbb{C}^*) \cdot v$ . Hence,

$$(3.10) \quad \mathbb{Q}^n \setminus \{0\} \subset \bigcup_{\alpha, \beta=0}^r U_{\alpha\beta},$$

where  $U_{\alpha\beta} := \{A \in \mathfrak{a}; \chi_\alpha(A) > 0 > \chi_\beta(A)\}$ . Note that the boundaries of the open sets  $U_{\alpha\beta}$ ,  $1 \leq \alpha \leq r$ ,  $1 \leq \beta \leq r$ , in  $\mathbb{R}^n$  sit in the union of  $\mathbb{Q}$ -hyperplanes

$$H_\alpha := \{\chi_\alpha = 0\}, \quad \alpha = 0, 1, \dots, r,$$

in  $\mathbb{R}^r$ . Since an intersection of any finite number of hyperplanes  $H_\alpha$ ,  $\alpha = 0, 1, \dots, r$ , has dense rational points, (3.10) above easily implies

$$(3.11) \quad \mathbb{R}^n \setminus \{0\} = \bigcup_{\alpha, \beta=0}^r U_{\alpha\beta}.$$

Replacing  $\{\bar{A}_i\}$  by its suitable subsequence if necessary, we may assume that there exists an element  $A_\infty$  in  $\mathfrak{a}_\infty^\perp (= \mathbb{R}^n)$  with  $\|A_\infty\|_{\mathfrak{a}} = 1$  such that

$$\lim_{i \rightarrow \infty} \frac{\bar{A}_i}{\|\bar{A}_i\|_{\mathfrak{a}}} = A_\infty,$$

where  $\| \cdot \|_{\mathfrak{a}}$  denotes the Euclidean norm for  $\mathfrak{a}$  as in Step 2 in the proof of Theorem 3.2. By (3.11), there exist  $\alpha, \beta \in \{0, 1, \dots, r\}$  such that  $A_\infty \in U_{\alpha\beta}$ , and in particular  $\chi_\alpha(A_\infty) > 0$ . On the other hand,  $\limsup_{i \rightarrow \infty} \|\bar{A}_i\|_{\mathfrak{a}} = +\infty$  by our assumption. Thus,

$$\limsup_{i \rightarrow \infty} \chi_\alpha(\bar{A}_i) = \limsup_{i \rightarrow \infty} \{ \|\bar{A}_i\|_{\mathfrak{a}} \cdot \chi_\alpha(\bar{A}_i / \|\bar{A}_i\|_{\mathfrak{a}}) \} = (\limsup_{i \rightarrow \infty} \|\bar{A}_i\|_{\mathfrak{a}}) \chi_\alpha(A_\infty) = +\infty,$$

in contradiction to (3.8) and (3.9), as required.

#### 4. The Chow norm

Take an algebraic torus  $T \subset \text{Aut}^0(M)$ , and let  $\iota: \text{SL}(V_m) \rightarrow \text{PGL}(V_m)$  be the natural projection, where we regard  $\text{Aut}^0(M)$  as a subgroup of  $\text{PGL}(V_m)$  via the Kodaira embedding  $\Phi_m: M \hookrightarrow \mathbb{P}^*(V_m)$ ,  $m \gg 1$ . In this section, we fix a  $\tilde{T}_c$ -invariant Hermitian metric  $\rho$  on  $V_m$ , where  $\tilde{T}_c$  is the maximal compact subgroup of  $\tilde{T} := \iota^{-1}(T)$ . Obviously, in terms of this metric,  $V(\chi_k) \perp V(\chi_l)$  if  $k \neq l$ . Using Deligne's pairings (cf. [8, 8.3]), Zhang ([39, 1.5]) defined a special type of norm on  $W_m^*$ , called the *Chow norm*, as a nonnegative real-valued function

$$(4.1) \quad W_m^* \ni w \longmapsto \|w\|_{\text{CH}(\rho)} \in \mathbb{R}_{\geq 0},$$

with very significant properties described below. First, this is a norm, so that it has the only zero at the origin satisfying the homogeneity condition

$$\|c w\|_{\text{CH}(\rho)} = |c| \cdot \|w\|_{\text{CH}(\rho)} \quad \text{for all } (c, w) \in \mathbb{C} \times W_m^*.$$

For the group  $\text{SL}(V_m)$ , we consider the maximal compact subgroup  $\text{SU}(V_m; \rho)$ . For a special one-parameter subgroup

$$\lambda: \mathbb{C}^* \rightarrow \text{SL}(V_m)$$

of  $\mathrm{SL}(V_m)$ , there exist integers  $\gamma_j$ ,  $j = 0, 1, \dots, N_m$ , and an orthonormal basis  $\{s_0, s_1, \dots, s_{N_m}\}$  for  $(V_m, \rho)$  such that, for all  $j$ ,

$$(4.2) \quad \lambda_z \cdot s_j = e^{z\gamma_j} s_j, \quad z \in \mathbb{C},$$

where  $\lambda_z := \lambda(e^z)$ . Recall that the subvariety  $M_m$  in  $\mathbb{P}^*(V_m)$  is the image of the Kodaira embedding  $\Phi_m: M \hookrightarrow \mathbb{P}^*(V_m)$  defined by

$$(4.3) \quad \Phi_m(p) = (s_0(p) : s_1(p) : \dots : s_{N_m}(p)), \quad p \in M,$$

where  $\mathbb{P}^*(V_m)$  is identified with  $\mathbb{P}^{N_m}(\mathbb{C}) = \{(z_0 : z_1 : \dots : z_{N_m})\}$ . Put  $M_{m,t} := \lambda_t(M_m)$  for each  $t \in \mathbb{R}$ . As in Section 2,  $\hat{M}_{m,t} := \lambda_t \cdot \hat{M}_m$  is the nonzero point of  $W_m^*$  sitting over the Chow point of the irreducible reduced cycle  $M_{m,t}$  on  $\mathbb{P}^*(V_m)$ . Then (cf. [39, 1.4, 3.4.1])

$$(4.4) \quad \frac{d}{dt} (\log \|\hat{M}_{m,t}\|_{\mathrm{CH}(\rho)}) = (n+1) \int_M \frac{\sum_{j=0}^{N_m} \gamma_j |\lambda_t \cdot s_j|^2}{\sum_{j=0}^{N_m} |\lambda_t \cdot s_j|^2} (\Phi_m^* \lambda_t^* \omega_{\mathrm{FS}})^n,$$

where  $\omega_{\mathrm{FS}}$  is the Fubini-Study form  $(\sqrt{-1}/2\pi) \partial \bar{\partial} \log(\sum_{j=0}^{N_m} |z_j|^2)$  on  $\mathbb{P}^*(V_m)$ , and we regard  $\lambda_t$  as a linear transformation of  $\mathbb{P}^*(V_m)$  induced by (4.2). Note that the term  $\Phi_m^* \lambda_t^* \omega_{\mathrm{FS}}$  above is just  $(\sqrt{-1}/2\pi) \partial \bar{\partial} \log(\sum_{j=0}^{N_m} |\lambda_t \cdot s_j|^2)$ . Put  $\Gamma := 2\pi\sqrt{-1}\mathbb{Z}$ . By setting

$$\mathbb{C}/\Gamma = \{t + \sqrt{-1}\theta; t \in \mathbb{R}, \theta \in \mathbb{R}/(2\pi\mathbb{Z})\},$$

we consider the complexified situation. Let  $\eta: M \times \mathbb{C}/\Gamma \rightarrow \mathbb{P}^*(V_m)$  be the map sending each  $(p, t + \sqrt{-1}\theta)$  in  $M \times \mathbb{C}/\Gamma$  to  $\lambda_{t+\sqrt{-1}\theta} \cdot \Phi_m(p)$  in  $\mathbb{P}^*(V_m)$ . For simplicity, we put

$$Q := \frac{\sum_{j=0}^{N_m} \gamma_j e^{2t\gamma_j} |s_j|^2}{\sum_{j=0}^{N_m} e^{2t\gamma_j} |s_j|^2} \left( = \frac{\sum_{j=0}^{N_m} \gamma_j |\lambda_t \cdot s_j|^2}{\sum_{j=0}^{N_m} |\lambda_t \cdot s_j|^2} \right).$$

We further put  $z := t + \sqrt{-1}\theta$ . For the time being, on the total complex manifold  $M \times \mathbb{C}/\Gamma$ , the  $\partial$ -operator and the  $\bar{\partial}$ -operator will be written simply as  $\partial$  and  $\bar{\partial}$  respectively, while on  $M$ , they will be denoted by  $\partial_M$  and  $\bar{\partial}_M$  respectively. Then

$$\eta^* \omega_{\mathrm{FS}} = \Phi_m^* \lambda_t^* \omega_{\mathrm{FS}} + \frac{\sqrt{-1}}{2\pi} (\partial_M Q \wedge d\bar{z} + d\bar{z} \wedge \bar{\partial}_M Q) + \frac{\sqrt{-1}}{4\pi} \frac{\partial Q}{\partial t} dz \wedge d\bar{z}.$$

For  $0 \neq r \in \mathbb{R}$ , we consider the 1-chain  $I_r := [0, r]$ , where  $[0, r]$  means the 1-chain  $[-r, 0]$  if  $r < 0$ . Let  $\mathrm{pr}: \mathbb{C}/\Gamma \rightarrow \mathbb{R}$  be the mapping sending each  $t + \sqrt{-1}\theta$  to  $t$ . We now put  $B_r := \mathrm{pr}^* I_r$ . Then  $\int_{M \times B_r} \eta^* \omega_{\mathrm{FS}}^{n+1}$  is nothing but

$$(n+1) \int_0^r dt \int_M \left( \frac{\partial Q}{\partial t} \Phi_m^* \lambda_t^* \omega_{\mathrm{FS}}^n + \frac{\sqrt{-1}}{\pi} \bar{\partial}_M Q \wedge \partial_M Q + n \Phi_m^* \lambda_t^* \omega_{\mathrm{FS}}^{n-1} \right)$$

$$= \int_0^r \frac{d^2}{dt^2} (\log \|\hat{M}_{m,t}\|_{\text{CH}(\rho)}) dt = \frac{d}{dt} (\log \|\hat{M}_{m,t}\|_{\text{CH}(\rho)}) \Big|_{t=0}^{t=r},$$

and by assuming  $r \geq 0$ , we obtain the following convexity formula:

**Theorem 4.5.**  $\frac{d}{dt} (\log \|\hat{M}_{m,t}\|_{\text{CH}(\rho)}) \Big|_{t=0}^{t=r} = \int_{M \times B_r} \eta^* \omega_{\text{FS}}^{n+1} \geq 0.$

**REMARK 4.6.** Besides special one-parameter subgroups of  $\text{SL}(V_m)$ , we also consider a little more general smooth path  $\lambda_t$ ,  $t \in \mathbb{R}$ , in  $\text{GL}(V_m)$  written explicitly by

$$\lambda_t \cdot s_j = e^{t\gamma_j + \delta_j} s_j, \quad j = 0, 1, \dots, N_m,$$

where  $\gamma_j, \delta_j \in \mathbb{R}$  are not necessarily rational. In this case also, we easily see that the formula (4.4) and Theorem 4.5 are still valid.

## 5. Proof of Theorem A

The statement of Theorem A is divided into “if” part, “only if” part, and the uniqueness part. We shall prove these three parts separately.

Proof of “if” part. Let  $\omega \in \mathcal{S}$  be a critical metric relative to  $T$ . Then by Definition 2.6, in terms of the Hermitian metric defined in (2.4), there exists an admissible normal basis  $\{s_0, s_1, \dots, s_{N_m}\}$  for  $V_m$  of index  $b$  such that the associated function  $E_{\omega,b}$  has a constant value  $C$  on  $M$ . By operating  $(\sqrt{-1}/2\pi)\partial\bar{\partial}\log$  on the identity  $E_{\omega,b} = C$ , we have

$$(5.1) \quad \Phi_m^* \omega_{\text{FS}} = m \omega.$$

Besides the Hermitian metric defined in (2.4), we shall now define another Hermitian metric on  $V_m$ . By the identification  $V_m \cong \mathbb{C}^{N_m}$  via the basis  $\{s_0, s_1, \dots, s_{N_m}\}$ , the standard Hermitian metric on  $\mathbb{C}^{N_m}$  induces a Hermitian metric  $\rho$  on  $V_m$ . As a maximal compact subgroup of  $G_m$ , we choose  $(G_m)_c$  as in Section 2 by using the metric defined in (2.4). Then the Hermitian metric  $\rho$  is also preserved by the  $(G_m)_c$ -action on  $V_m$ . Let

$$\lambda: \mathbb{C}^* \rightarrow G_m$$

be a special one-parameter subgroup of  $G_m$ . By the notation  $l(k, i)$  as in Definition 2.3, we put  $s_{k,i} := s_{l(k,i)}$ . If necessary, replacing  $\{s_0, s_1, \dots, s_{N_m}\}$  by another admissible normal basis for  $V_m$  of the same index  $b$ , we may assume without loss of generality that there exist integers  $\gamma_{k,i}$ ,  $i = 1, 2, \dots, n_k$ , satisfying

$$(5.2) \quad \lambda_t \cdot s_{k,i} = e^{t\gamma_{k,i}} s_{k,i}, \quad t \in \mathbb{C},$$

where  $\lambda_t := \lambda(e^t)$  is as in (4.2), and the equality  $\sum_{i=1}^{n_k} \gamma_{k,i} = 0$  is required to hold for every  $k$ . Put  $\gamma_{k,i} = \gamma_{l(k,i)}$  for simplicity. Then by (4.4) and (5.1),

$$\begin{aligned} \frac{d}{dt} (\log \|\hat{M}_{m,t}\|_{\text{CH}(\rho)})|_{t=0} &= (n+1) \int_M \frac{\sum_{j=0}^{N_m} \gamma_j |s_j|^2}{\sum_{j=0}^{N_m} |s_j|^2} (\Phi_m^* \omega_{\text{FS}})^n \\ &= (n+1) m^n \int_M \frac{\sum_{j=0}^{N_m} \gamma_j |s_j|^2_{h^m}}{\sum_{j=0}^{N_m} |s_j|^2_{h^m}} \omega^n = (n+1) m^n \int_M \frac{\sum_{k=1}^{\nu_m} (\sum_{i=1}^{n_k} \gamma_{k,i} |s_i|^2_{h^m})}{E_{\omega,b}} \omega^n \\ &= \frac{(n+1) m^n}{C} \int_M \sum_{k=1}^{\nu_m} \left( \sum_{i=1}^{n_k} \gamma_{k,i} |s_i|^2_{h^m} \right) \omega^n = \frac{(n+1) m^n}{C} \sum_{k=1}^{\nu_m} b_k \left( \sum_{i=1}^{n_k} \gamma_{k,i} \right) = 0. \end{aligned}$$

Note also that, by Theorem 4.5, we have  $c := (d^2/dt^2)(\log \|\hat{M}_{m,t}\|_{\text{CH}(\rho)})|_{t=0} \geq 0$ .

CASE 1. If  $c$  is positive, then  $\lim_{t \rightarrow -\infty} \|\hat{M}_{m,t}\|_{\text{CH}(\rho)} = +\infty = \lim_{t \rightarrow +\infty} \|\hat{M}_{m,t}\|_{\text{CH}(\rho)}$ , and in particular  $\lambda(\mathbb{C}^*) \cdot \hat{M}_m$  is closed.

CASE 2. If  $c$  is zero, then by applying Theorem 4.5 infinitesimally, we see that  $\lambda(\mathbb{C}^*)$  preserves the subvariety  $M_m$  in  $\mathbb{P}^*(V_m)$ , and moreover by

$$\frac{d}{dt} (\log \|\hat{M}_{m,t}\|_{\text{CH}(\rho)})|_{t=0} = 0,$$

the isotropy representation of  $\lambda(\mathbb{C}^*)$  on the complex line  $\mathbb{C}\hat{M}_m$  is trivial. Hence,  $\lambda(\mathbb{C}^*) \cdot \hat{M}_m$  is a single point, and in particular closed.

Thus, these two cases together with Theorem 3.2 show that the subvariety  $M_m$  of  $\mathbb{P}^*(V_m)$  is stable relative to  $T$ , as required.  $\square$

REMARK 5.3. About the one-parameter subgroup  $\{\lambda_t ; t \in \mathbb{R}\}$  of  $G_m$ , we consider a more general situation that  $\gamma_{k,i}$  in (5.2) are just real numbers which are not necessarily rational. The above computation together with Remark 4.6 shows that, even in this case,  $(d/dt)_{t=0}(\log \|\hat{M}_{m,t}\|_{\text{CH}(\rho)})$  vanishes.

Proof of “only if” part. Assume that the subvariety  $M_m$  in  $\mathbb{P}^*(V_m)$  is stable relative to  $T$ . Take a Hermitian metric  $\rho$  for  $V_m$  such that  $V(\chi_k) \perp V(\chi_l)$  for  $k \neq l$ . For this  $\rho$ , we consider the associated Chow norm. Since the orbit  $G_m \cdot \hat{M}_m$  is closed in  $W_m$ , the Chow norm restricted to this orbit attains an absolute minimum. Hence, for some  $g_0 \in G_m$ ,

$$0 \neq \|g_0 \cdot \hat{M}_m\|_{\text{CH}(\rho)} \leq \|g \cdot \hat{M}_m\|_{\text{CH}(\rho)}, \quad \text{for all } g \in G_m.$$

By choosing an admissible normal basis  $\{s_0, s_1, \dots, s_{N_m}\}$  for  $(V_m; \rho)$  of index  $(1, 1, \dots, 1)$ , we identify  $V_m$  with  $\mathbb{C}^{N_m} = \{(z_0, z_1, \dots, z_{N_m})\}$ . Then  $\text{SL}(V_m)$  is identi-

fied with  $\mathrm{SL}(N_m+1; \mathbb{C})$ . Let  $\mathfrak{g}_m$  be the Lie subalgebra of  $\mathfrak{sl}(N_m+1; \mathbb{C})$  associated to the Lie subgroup  $G_m$  of  $\mathrm{SL}(N_m+1; \mathbb{C})$ . We can now write  $g_0 = \kappa' \cdot \exp\{\mathrm{Ad}(\kappa)D\}$  for some  $\kappa, \kappa' \in (G_m)_c$  and a real diagonal matrix  $D$  in  $\mathfrak{g}_m$ . By  $\|\exp\{\mathrm{Ad}(\kappa)D\} \cdot \hat{M}_m\|_{\mathrm{CH}(\rho)} = \|g_0 \cdot \hat{M}_m\|_{\mathrm{CH}(\rho)}$ , we have

$$(5.4) \quad \|\exp\{\mathrm{Ad}(\kappa)D\} \cdot \hat{M}_m\|_{\mathrm{CH}(\rho)} \leq \|\exp\{t \mathrm{Ad}(\kappa)A\} \cdot \exp\{\mathrm{Ad}(\kappa)D\} \cdot \hat{M}_m\|_{\mathrm{CH}(\rho)}, \quad t \in \mathbb{R},$$

for every real diagonal matrix  $A$  in  $\mathfrak{g}_m$ . For  $j = 0, 1, \dots, N_m$ , we write the  $j$ -th diagonal element of  $A$  and  $D$  above as  $a_j$  and  $d_j$ , respectively. Put  $c_j := \exp d_j$  and  $s'_j := \kappa^{-1} \cdot s_j$ . Then  $\{s'_0, s'_1, \dots, s'_{N_m}\}$  is again an admissible normal basis for  $(V_m, \rho)$  of index  $(1, 1, \dots, 1)$ . By the notation in Definition 2.3, we rewrite  $s'_j, a_j, c_j, z_j$  as  $s'_{k,i}, a_{k,i}, c_{k,i}, z_{k,i}$  by

$$s'_{k,i} := s'_{l(k,i)}, \quad a_{k,i} := a_{l(k,i)}, \quad c_{k,i} := c_{l(k,i)}, \quad z_{k,i} := z_{l(k,i)},$$

where  $k = 1, 2, \dots, \nu_m$  and  $i = 1, 2, \dots, n_k$ . By (5.4), the derivative at  $t = 0$  of the right-hand side of (5.4) vanishes. Hence by (4.4) together with Remark 4.6, fixing an arbitrary real diagonal matrix  $A$  in  $\mathfrak{g}_m$ , we have

$$(5.5) \quad \int_M \frac{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} a_{k,i} c_{k,i}^2 |s'_{k,i}|^2}{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |s'_{k,i}|^2} \Phi_m^*(\Theta^n) = 0,$$

where we set  $\Theta := (\sqrt{-1}/2\pi) \partial \bar{\partial} \log(\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |z_{k,i}|^2)$ . Let  $k_0 \in \{1, 2, \dots, \nu_m\}$  and let  $i_1, i_2 \in \{1, 2, \dots, n_k\}$  with  $i_1 \neq i_2$ . Using Kronecker's delta, we specify the real diagonal matrix  $A$  by setting

$$a_{k,i} = \delta_{kk_0}(\delta_{ii_1} - \delta_{ii_2}), \quad k = 1, 2, \dots, \nu_m; \quad i = 1, 2, \dots, n_k.$$

Apply (5.5) to this  $A$ , and let  $(i_1, i_2)$  run through the set of all pairs of two distinct elements in  $\{1, 2, \dots, n_k\}$ . Then there exists a positive constant  $b_k > 0$  independent of the choice of  $i$  in  $\{1, 2, \dots, n_k\}$  such that

$$(5.6) \quad \frac{N_m + 1}{m^n c_1(L)^n [M]} \int_M \frac{c_{k,i}^2 |s'_{k,i}|^2}{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |s'_{k,i}|^2} \Phi_m^*(\Theta^n) = b_k, \quad k = 1, 2, \dots, \nu_m.$$

The following identity (5.7) allows us to define (cf. [39]) a Hermitian metric  $h_{\mathrm{FS}}$  on  $L^m$  by

$$(5.7) \quad |s|_{h_{\mathrm{FS}}}^2 := \frac{(N_m + 1)}{c_1(L)^n [M]} \frac{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |(s, s'_{k,i})_\rho|^2 |s'_{k,i}|^2}{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |s'_{k,i}|^2}, \quad s \in V_m.$$

Then for this Hermitian metric, it is easily seen that

$$(5.8) \quad \sum_{j=0}^{N_m} |c_j s'_j|_{h_{\mathrm{FS}}}^2 = \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |c_{k,i} s'_{k,i}|_{h_{\mathrm{FS}}}^2 = \frac{N_m + 1}{c_1(L)^n [M]}.$$

By operating  $(\sqrt{-1}/2\pi)\partial\bar{\partial}\log$  on both sides of (5.8), we obtain  $\Phi_m^*\Theta = c_1(L^m; h_{\text{FS}})$ . We now set  $h := (h_{\text{FS}})^{1/m}$  and  $\omega := c_1(L; h)$ . Then

$$\omega = \frac{1}{m}\Phi_m^*\Theta.$$

Put  $s''_{k,i} := c_{k,i}s'_{k,i}$ , and as in Definition 2.3, we write  $s''_{k,i}$  as  $s''_{l(k,i)}$ . Then by (5.8), we have the equality  $\sum_{j=0}^{N_m} |s''_j|_{h^m}^2 = (N_m + 1)/c_1(L)^n[M]$ . Moreover, in terms of the Hermitian metric defined in (2.4), the equality (5.6) is interpreted as

$$\|s''_{k,i}\|_{L^2}^2 = b_k, \quad k = 1, 2, \dots, \nu_m; \quad i = 1, 2, \dots, n_k,$$

while by this together with (5.8) above, we obtain  $\sum_{k=1}^{\nu_m} n_k b_k = N_m + 1$ , as required.  $\square$

**Proof of uniqueness.** Let  $\omega = c_1(L; h)$  and  $\omega' = c_1(L; h')$  be critical metrics relative to  $T$ , and let  $\{s_j; j = 0, 1, \dots, N_m\}$  and  $\{s'_j; j = 0, 1, \dots, N_m\}$  be respectively the associated admissible normal bases for  $V_m$  of index  $b$ . We use the notation in Definition 2.3. Then

$$E_{\omega,b} := \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s_{k,i}|_{h^m}^2 \quad \text{and} \quad E_{\omega',b} := \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s'_{k,i}|_{h'^m}^2$$

take the same constant value  $C := (N_m + 1)/c_1(L)^n[M]$  on  $M$ . Note here that, by operating  $(\sqrt{-1}/2\pi)\partial\bar{\partial}\log$  on both of these identities, we obtain

$$m\omega = \frac{\sqrt{-1}}{2\pi} \partial\bar{\partial} \log \left( \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s_{k,i}|^2 \right) \quad \text{and} \quad m\omega' = \frac{\sqrt{-1}}{2\pi} \partial\bar{\partial} \log \left( \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s'_{k,i}|^2 \right).$$

If necessary, we replace each  $s_{k,i}$  by  $\zeta_k s_{k,i}$  for a suitable complex number  $\zeta_k$ , independent of  $i$ , of absolute value 1. Then for each  $k = 1, 2, \dots, \nu_m$ , we may assume that there exists a matrix  $g^{(k)} = (g_{i\hat{i}}^{(k)}) \in \text{GL}(n_k; \mathbb{C})$  satisfying

$$s'_{k,\hat{i}} = \sum_{i=1}^{n_k} s_{k,i} g_{i\hat{i}}^{(k)},$$

where  $i$  and  $\hat{i}$  always run through the integers in  $\{1, 2, \dots, n_k\}$ . Then the matrix  $g^{(k)}$  above is written as  $\kappa^{(k)} \cdot (\exp A^{(k)}) \cdot (\kappa'^{(k)})^{-1}$  for some real diagonal matrix  $A^{(k)}$  and

$$\kappa^{(k)} = (\kappa_{i\hat{i}}^{(k)}) \quad \text{and} \quad \kappa'^{(k)} = (\kappa'_{i\hat{i}}^{(k)})$$

in  $\text{SU}(n_k)$ . Let  $a_{i\hat{i}}^{(k)}$  be the  $i$ -th diagonal element of  $A^{(k)}$ . For each  $\hat{i}$ , we put  $\tilde{s}_{k,\hat{i}} := \sum_{i=1}^{n_k} s_{k,i} \kappa_{i\hat{i}}^{(k)}$  and  $\tilde{s}'_{k,\hat{i}} := \sum_{i=1}^{n_k} s'_{k,i} \kappa'_{i\hat{i}}^{(k)}$ . If necessary, we replace the bases

$\{s_{k,1}, s_{k,2}, \dots, s_{k,n_k}\}$  and  $\{s'_{k,1}, s'_{k,2}, \dots, s'_{k,n_k}\}$  for  $V(\chi_k)$  by the bases  $\{\tilde{s}_{k,1}, \tilde{s}_{k,2}, \dots, \tilde{s}_{k,n_k}\}$  and  $\{\tilde{s}'_{k,1}, \tilde{s}'_{k,2}, \dots, \tilde{s}'_{k,n_k}\}$ , respectively. Then we may assume, from the beginning, that

$$s'_{k,i} = \{\exp a_i^{(k)}\} s_{k,i}, \quad i = 1, 2, \dots, n_k.$$

We now set  $\tau_{k,i} := s_{k,i}/\sqrt{b_k}$ , and the Hermitian metric for  $V_m$  defined in (2.4) will be denoted by  $\rho$ . Then  $\{\tau_{k,i}; k = 1, 2, \dots, \nu_m, i = 1, 2, \dots, n_k\}$  is an admissible normal basis of index  $(1, 1, \dots, 1)$  for  $(V_m, \rho)$ . Let  $\{\lambda_t; t \in \mathbb{C}\}$  be the smooth one-parameter family of elements in  $\mathrm{GL}(V_m)$  defined by

$$\lambda_t \cdot \tau_{k,i} = \{\exp(t a_i^{(k)})\} \sqrt{b_k} \tau_{k,i}, \quad k = 1, 2, \dots, \nu_m; \quad i = 1, 2, \dots, n_k.$$

Put  $\hat{M}_{m,t} := \lambda_t \cdot \hat{M}_m$ ,  $0 \leq t \leq 1$ . Then by Remark 4.6 applied to the formula (4.4), the derivative  $\mathfrak{d}(t) := (d/dt)(\log \|\hat{M}_{m,t}\|_{\mathrm{CH}(\rho)})/(n+1)$  at  $t \in [0, 1]$  is expressible as

$$\int_M \frac{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} a_i^{(k)} |\lambda_t \cdot \tau_{k,i}|^2}{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |\lambda_t \cdot \tau_{k,i}|^2} \left\{ \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \log \left( \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |\lambda_t \cdot \tau_{k,i}|^2 \right) \right\}^n.$$

Hence at  $t = 0$ , we see that

$$\mathfrak{d}(0) = \int_M \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} \left\{ \frac{a_i^{(k)} |s_{k,i}|_{h^m}^2}{C} \right\} (m\omega)^n = \frac{m^n}{C} \sum_{k=1}^{\nu_m} \left\{ b_k \sum_{i=1}^{n_k} a_i^{(k)} \right\},$$

while at  $t = 1$  also, we obtain

$$\mathfrak{d}(1) = \int_M \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} \left\{ \frac{a_i^{(k)} |s'_{k,i}|_{h^m}^2}{C} \right\} (m\omega')^n = \frac{m^n}{C} \sum_{k=1}^{\nu_m} \left\{ b_k \sum_{i=1}^{n_k} a_i^{(k)} \right\}.$$

Thus,  $\mathfrak{d}(0)$  coincides with  $\mathfrak{d}(1)$ , while by Remark 4.6, we see from Theorem 4.5 that  $(d^2/dt^2)\{\log \|\hat{M}_{m,t}\|_{\mathrm{CH}(\rho)}\} \geq 0$  on  $[0, 1]$ . Hence, for all  $t \in [0, 1]$ ,

$$\frac{d^2}{dt^2} \{\log \|\hat{M}_{m,t}\|_{\mathrm{CH}(\rho)}\} = 0, \quad \text{on } M.$$

By Remark 4.6, the formula in Theorem 4.5 shows that  $\lambda_t$ ,  $t \in [0, 1]$ , belong to  $H$  up to a positive scalar multiple. Since  $\lambda_1$  commutes with  $T$ , the uniqueness follows, as required.  $\square$

## 6. Proof of Theorem B

Throughout this section, we assume that the first Chern class  $c_1(L)_{\mathbb{R}}$  admits an extremal Kähler metric  $\omega_0 = c_1(L; h_0)$ . Then by a theorem of Calabi [3], the identity

component  $K$  of the group of isometries of  $(M, \omega_0)$  is a maximal compact connected subgroup of  $H$ , and we obtain  $\omega_0 \in \mathcal{S}_K$  by the notation in the introduction.

DEFINITION 6.1. For a  $K$ -invariant Kähler metric  $\omega \in \mathcal{S}_K$  on  $M$  in the class  $c_1(L)_{\mathbb{R}}$ , we choose a Hermitian metric  $h$  on  $L$  such that  $\omega = c_1(L; h)$ . Then the power series in  $q$  given by the right-hand side of (2.8) will be denoted by  $\Psi(\omega, q)$ . Given  $\omega$  and  $q$ , the power series  $\Psi(\omega, q)$  is independent of the choice of  $h$ .

Let  $\mathcal{D}_0$  be the Lichnérowicz operator as defined in [3], (2.1), for the extremal Kähler manifold  $(M, \omega_0)$ . Then by  $\mathcal{V} \in \mathfrak{k}$ , the operator  $\mathcal{D}_0$  preserves the space  $\mathcal{F}$  of all real-valued smooth  $K$ -invariant functions  $\varphi$  such that  $\int_M \varphi \omega_0^n = 0$ . Hence, we regard  $\mathcal{D}_0$  just as an operator  $\mathcal{D}_0: \mathcal{F} \rightarrow \mathcal{F}$ , and the kernel in  $\mathcal{F}$  of this restricted operator will be denoted simply by  $\text{Ker } \mathcal{D}_0$ . Then  $\text{Ker } \mathcal{D}_0$  is a subspace of  $\mathcal{K}_{\omega_0}$ , and we have an isomorphism

$$(6.2) \quad e_0: \text{Ker } \mathcal{D}_0 \cong \mathfrak{z}, \quad \varphi \leftrightarrow e_0(\varphi) := \text{grad}_{\omega_0}^{\mathbb{C}} \varphi.$$

By the inner product  $(\ , \ )_{\omega_0}$  defined in the introduction, we write  $\mathcal{F}$  as an orthogonal direct sum  $\text{Ker } \mathcal{D}_0 \oplus \text{Ker } \mathcal{D}_0^{\perp}$ . We then consider the orthogonal projection

$$P: \mathcal{F} (= \text{Ker } \mathcal{D}_0 \oplus \text{Ker } \mathcal{D}_0^{\perp}) \rightarrow \text{Ker } \mathcal{D}_0.$$

Now, starting from  $\omega(0) := \omega_0$ , we inductively define a Hermitian metric  $h(k)$ , a Kähler metric  $\omega(k) := c_1(L; h(k)) \in \mathcal{S}_K$ , and a vector field  $\mathcal{Y}(k) \in \sqrt{-1} \mathfrak{z}$ ,  $k = 1, 2, \dots$ , by

$$(6.3) \quad \begin{cases} h(k) := h(k-1) \exp(-q^k \varphi_k), \\ \omega(k) = \omega(k-1) + \frac{\sqrt{-1}}{2\pi} q^k \partial \bar{\partial} \varphi_k, \\ \mathcal{Y}(k) = \mathcal{Y}(k-1) + \sqrt{-1} q^{k+2} e_0(\zeta_k), \end{cases}$$

for appropriate  $\varphi_k \in \text{Ker } \mathcal{D}_0^{\perp}$  and  $\zeta_k \in \text{Ker } \mathcal{D}_0$ , where  $\omega(k)$  and  $\mathcal{Y}(k)$  are required to satisfy the condition (2.8) with  $l$  replaced by  $k$ . We now set  $g(k) := \exp^{\mathbb{C}} \mathcal{Y}(k)$ . Then

$$\begin{aligned} & \{h(k) \cdot g(k)\}^{-m} h(k)^m \{Z(q, \omega(k); \mathcal{Y}(k)) - C_q\} \\ &= \frac{n!}{m^n} \left\{ \sum_{j=0}^{N_m} |s_j|_{h(k)^m} \right\} - C_q \{g(k) \cdot h(k)^{-m}\} h(k)^m \\ &= \Psi(\omega(k), q) - C_q h(k)^m \{(\exp^{\mathbb{C}} \mathcal{Y}(k)) \cdot h(k)^{-m}\} \\ &= \Psi(\omega(k), q) - C_q \left\{ 1 + h(k) \frac{\mathcal{Y}(k)}{q} \cdot h(k)^{-1} + R(\mathcal{Y}(k); h(k)) \right\}, \end{aligned}$$

where  $C_q = 1 + \sum_{k=0}^{\infty} \alpha_k q^{k+1}$  is a power series in  $q$  with real coefficients  $\alpha_k$  spec-

ified later, and the last term  $R(\mathcal{Y}(k); h(k)) := h(k)^m \sum_{j=2}^{\infty} \{\mathcal{Y}(k)^j / j!\} \cdot h(k)^{-m}$  will be taken care of as a higher order term in  $q$ . Consider the truncated term  $C_{q,l} = 1 + \sum_{k=0}^l \alpha_k q^{k+1}$ . Put

$$\Xi(\omega(k), \mathcal{Y}(k), C_{q,k}) := \Psi(\omega(k), q) - C_{q,k} \left\{ 1 - \frac{\mathcal{Y}(k)}{q} \cdot \log h(k) + R(\mathcal{Y}(k); h(k)) \right\}$$

for each  $k$ . Then, in terms of  $\omega(k)$ ,  $\mathcal{Y}(k)$  and  $C_{q,k}$ , the condition (2.8) with  $l$  replaced by  $k$  is just the equivalence

$$(6.4) \quad \Xi(\omega(k), \mathcal{Y}(k), C_{q,k}) \equiv 0, \quad \text{modulo } q^{k+2}.$$

We shall now define  $\omega(k)$ ,  $\mathcal{Y}(k)$  and  $C_{q,k}$  inductively in such a way that the condition (6.4) is satisfied. If  $k = 0$ , then we set  $\omega(0) = \omega_0$ ,  $\mathcal{Y}(0) = \sqrt{-1}q^2\mathcal{V}/2$  and  $C_{q,0} = 1 + \alpha_0 q$ , where we put  $\alpha_0 := \{2c_1(L)^n[M]\}^{-1} \{\int_M \sigma_\omega \omega^n + 2\pi F(\mathcal{V})\}$  for  $\omega \in \mathcal{S}_K$ . This  $\alpha_0$  is obviously independent of the choice of  $\omega$  in  $\mathcal{S}_K$ . Then, modulo  $q^2$ ,

$$\begin{aligned} & \Psi(\omega(k), q) - C_{q,0} \left\{ 1 - \frac{\mathcal{Y}(0)}{q} \cdot \log h(0) + R(\mathcal{Y}(0); h(0)) \right\} \\ & \equiv \left( 1 + \frac{\sigma_{\omega_0}}{2} q \right) - (1 + \alpha_0 q) \left\{ 1 - q h_0^{-1} \sqrt{-1} \frac{\mathcal{V}}{2} \cdot h_0 \right\} \\ & \equiv \left( 1 + \frac{\sigma_{\omega_0}}{2} q \right) - (1 + \alpha_0 q) \left\{ 1 + \left( \frac{\sigma_{\omega_0}}{2} - \alpha_0 \right) q \right\} \equiv 0, \end{aligned}$$

and we see that (6.4) is true for  $k = 0$ . Here, the equality  $h_0^{-1} \sqrt{-1}(\mathcal{V}/2) \cdot h_0 = \alpha_0 - (\sigma_{\omega_0}/2)$  follows from a routine computation (see for instance [23]).

Hence, let  $l \geq 1$  and assume (6.4) for  $k = l - 1$ . It then suffices to find  $\varphi_l$ ,  $\zeta_l$  and  $\alpha_l$  satisfying (6.4) for  $k = l$ . Put  $\mathcal{Y}_l := \sqrt{-1}e_0(\zeta_l)$ . For each  $(\varphi_l, \zeta_l, \alpha_l) \in \text{Ker } \mathcal{D}_0^\perp \times \text{Ker } \mathcal{D}_0 \times \mathbb{R}$ , we consider

$$\begin{aligned} \Phi(q; \varphi_l, \zeta_l, \alpha_l) := & \Psi \left( \omega(l-1) + \frac{\sqrt{-1}}{2\pi} q^l \partial \bar{\partial} \varphi_l, q \right) - (C_{q,l-1} + \alpha_l q^{l+1}) \\ & \times \left\{ 1 - \left( \frac{\mathcal{Y}(l-1)}{q} + q^{l+1} \mathcal{Y}_l \right) \cdot \log \{h(l-1) \exp(-q^l \varphi_l)\} \right. \\ & \left. + R \left( \frac{\mathcal{Y}(l-1)}{q} + q^{l+1} \mathcal{Y}_l; h(l-1) \exp(-q^l \varphi_l) \right) \right\}. \end{aligned}$$

By the induction hypothesis,  $\Xi(\omega(l-1), \mathcal{Y}(l-1), C_{q,l-1}) \equiv 0$  modulo  $q^{l+1}$ . Since  $\Phi(q; 0, 0, 0) = \Xi(\omega(l-1), \mathcal{Y}(l-1), C_{q,l-1})$ , we have

$$\Phi(q; 0, 0, 0) \equiv u_l q^{l+1}, \quad \text{modulo } q^{l+2},$$

for some real-valued  $K$ -invariant smooth function  $u_l$  on  $M$ . Let  $(\varphi_l, \zeta_l, \alpha_l) \in \text{Ker } \mathcal{D}_0^\perp \times \text{Ker } \mathcal{D}_0 \times \mathbb{R}$ . Since  $\varphi_k$  is  $K$ -invariant, by  $\mathcal{V} \in \mathfrak{k}$ , we see that  $\sqrt{-1}\mathcal{V}\varphi_k$  is a real-valued

function on  $M$ . Note also that  $\mathcal{Y}(0) = (\sqrt{-1}\mathcal{V}/2)q^2$ . Then the variation formula for the scalar curvature (see for instance [3, (2.5)]) shows that, modulo  $q^{l+2}$ ,

$$\begin{aligned} \Phi(q; \varphi_l, \zeta_l, \alpha_l) &\equiv \Phi(q; 0, 0, 0) + \frac{q^{l+1}}{2} (-\mathcal{D}_0 + \sqrt{-1}\mathcal{V})\varphi_l - \alpha_l q^{l+1} + q^{l+1}h_0^{-1}(\mathcal{Y}_l \cdot h_0) - \frac{\sqrt{-1}}{2}\mathcal{V}\varphi_l q^{l+1} \\ &\equiv \left\{ u_l - \mathcal{D}_0 \frac{\varphi_l}{2} - \alpha_l - \hat{F}_m(\mathcal{Y}_l) + e_0^{-1}(\sqrt{-1}\mathcal{Y}_l) \right\} q^{l+1}, \end{aligned}$$

where we put  $\hat{F}(\mathcal{Y}) := \{c_1(L)^n[M]\}^{-1}2\pi F(\sqrt{-1}\mathcal{Y})$  for each  $\mathcal{Y} \in \sqrt{-1}\mathfrak{z}$ . By setting  $\mu_l := \{c_1(L)^n[M]\}^{-1}(\int_M u_l \omega_0^n)$ , we write  $u_l$  as a sum

$$u_l = \mu_l + u'_l + u''_l,$$

where  $u'_l := (1 - P)(u_l - \mu_l) \in \text{Ker } \mathcal{D}_0^\perp$  and  $u''_l := P(u_l - \mu_l) \in \text{Ker } \mathcal{D}_0$ . Now, let  $\varphi_l$  be the unique element of  $\text{Ker } \mathcal{D}_0^\perp$  such that  $\mathcal{D}_0(\varphi_l/2) = u'_l$ . Moreover, we put

$$\zeta_l := u''_l \quad \text{and} \quad \alpha_l := \mu_l - \hat{F}(\mathcal{Y}_l).$$

Then by  $\mathcal{Y}_l = \sqrt{-1}e_0(\zeta_l) = \sqrt{-1}e_0(u''_l)$ , we obtain

$$\begin{aligned} \Phi(q; \varphi_l, \zeta_l, \alpha_l) &\equiv \left\{ \mu_l + u'_l + u''_l - \mathcal{D}_0 \frac{\varphi_l}{2} - \alpha_l - \hat{F}_m(\mathcal{Y}_l) + e_0^{-1}(\sqrt{-1}\mathcal{Y}_l) \right\} q^{l+1} \\ &\equiv \{ u''_l + e_0^{-1}(\sqrt{-1}\mathcal{Y}_l) \} q^{l+1} \equiv 0, \quad \text{mod } q^{l+2}, \end{aligned}$$

as required. Write  $\sqrt{-1}\mathcal{V}/2$  as  $\mathcal{Y}_0$  for simplicity. Now, for the real Lie subalgebra  $\mathfrak{b}$  of  $\mathfrak{z}$  generated by  $\mathcal{Y}_k$ ,  $k = 0, 1, 2, \dots$ , its complexification  $\mathfrak{b}^\mathbb{C}$  in  $\mathfrak{z}^\mathbb{C}$  generates a complex Lie subgroup  $B^\mathbb{C}$  of  $Z^\mathbb{C}$ . Then it is easy to check that the algebraic subtorus  $T$  of  $Z^\mathbb{C}$  obtained as the closure of  $B^\mathbb{C}$  in  $Z^\mathbb{C}$  has the required properties.

**REMARK 6.5.** In Theorem B, assume that  $\omega_0$  is a Kähler metric of constant scalar curvature, and moreover that the actions  $\rho_{m(\nu)}$ ,  $\nu = 1, 2, \dots$ , coincide (cf. [26, (2.3)]) for all sufficiently large  $\nu$ . Then by [26], the trivial group  $\{1\}$  can be chosen as the algebraic subtorus  $T$  above of  $Z^\mathbb{C}$ .

---

## References

- [1] S. Bando and T. Mabuchi: *Uniqueness of Einstein Kähler metrics modulo connected group actions*, in “Algebraic Geometry, Sendai 1985” (ed. T. Oda), Adv. Stud. Pure Math. **10**, Kinokuniya and North-Holland (1987), 11–40.
- [2] N. Berline and M. Vergne: *Zeros d’un champ de vecteurs et classes caractéristiques équivariantes*, Duke Math. J. **50** (1983), 539–549.

- [3] E. Calabi: *Extremal Kähler metrics* II, in “Differential Geometry and Complex Analysis” (ed. I. Chavel, H.M. Farkas), Springer-Verlag (1985), 95–114.
- [4] D. Catlin: *The Bergman kernel and a theorem of Tian*, in “Analysis and Geometry in Several Complex Variables” (ed. G. Komatsu, M. Kuranishi), Trends in Math., Birkhäuser (1999), 1–23.
- [5] M. Cahen, S. Gutt and J. Rawnsley: *Quantization of Kähler manifolds*, II, Trans. Amer. Math. Soc. **337** (1993), 73–98.
- [6] X. Chen: *The space of Kähler metrics*, J. Differential Geom. **56** (2000), 189–234.
- [7] W.-Y. Ding: *Remarks on the existence problem of positive Kähler-Einstein metrics*, Math. Ann. **282** (1988), 463–471.
- [8] P. Deligne: *Le déterminant de la cohomologie*, Contemp. Math. J. **67** (1987), 93–177.
- [9] S.K. Donaldson: *Infinite determinants, stable bundles and curvature*, Duke Math. J. **3** (1987), 231–247.
- [10] S.K. Donaldson: *Scalar curvature and projective embeddings*, I, J. Differential Geom. **59** (2001), 479–522.
- [11] A. Fujiki: *On automorphism groups of compact Kähler manifolds*, Invent. Math. **44** (1978), 225–258.
- [12] A. Fujiki: *Moduli space of polarized algebraic manifolds and Kähler metrics*, Sugaku **42** (1990), 231–243; English translation: Sugaku Expositions **5** (1992), 173–191.
- [13] A. Futaki and T. Mabuchi: *Bilinear forms and extremal Kähler vector fields associated with Kähler classes*, Math. Ann. **301** (1995), 199–210.
- [14] A. Futaki and T. Mabuchi: *Moment maps and symmetric multilinear forms associated with symplectic classes*, Asian J. Math. **6** (2002), 349–372.
- [15] A. Futaki and S. Morita: *Invariant polynomials of the automorphism group of a compact complex manifold*, J. Differential Geom. **21** (1985), 135–142.
- [16] D. Gieseker: *Global moduli for surfaces of general type*, Invent. Math. **43** (1977), 233–282.
- [17] S. Kobayashi: Transformation groups in differential geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [18] S. Kobayashi: *Curvature and stability of vector bundles*, Proc. Japan Acad. **58** (1982), 158–162.
- [19] A. Lichnérowicz: *Isométrie et transformations analytique d'une variété kähleriennne compacte*, Bull. Soc. Math. France **87** (1959), 427–437.
- [20] Z. Lu: *On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch*, Amer. J. Math. **122** (2000), 235–273.
- [21] M. Lübke: *Stability of Einstein-Hermitian vector bundles*, Manuscripta Math. **42** (1983), 245–247.
- [22] H. Luo: *Geometric criterion for Gieseker-Mumford stability of polarized manifolds*, J. Differential Geom. **49** (1998), 577–599.
- [23] T. Mabuchi: *An algebraic character associated with Poisson brackets*, in “Recent Topics in Differential and Analytic Geometry”, Adv. Stud. Pure Math. **18-I**, Kinokuniya and Academic Press (1990), 339–358.
- [24] T. Mabuchi: *Vector field energies and critical metrics on Kähler manifolds*, Nagoya Math. J. **162** (2001), 41–63.
- [25] T. Mabuchi: *The Hitchin-Kobayashi correspondence for vector bundles and manifolds*, (in Japanese), Proc. 48th Geometry Symposium, Ibaraki, Aug. (2001), 461–468.
- [26] T. Mabuchi: *An obstruction to asymptotic semistability and approximate critical metrics*, Osaka J. Math. **41** (2004), 463–472.
- [27] T. Mabuchi: *An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds*, I & II, preprints.
- [28] T. Mabuchi and Y. Nakagawa: *The Bando-Calabi-Futaki character as an obstruction to semistability*, Math. Annalen **324** (2002), 187–193.
- [29] T. Mabuchi and L. Weng: *Kähler-Einstein metrics and Chow-Mumford stability*, preprint (1998).
- [30] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory, 3rd edition, Ergebnisse der

Math. und ihrer Grenzgebiete **34**, Springer-Verlag, 1994.

- [31] D. Mumford: *Stability of projective varieties*, Enseignement Math. **23** (1977), 39–110.
- [32] Y. Nakagawa: *Bando-Calabi-Futaki characters of Kähler orbifolds*, Math. Ann. **314** (1999), 369–380.
- [33] G. Tian: *On a set of polarized Kähler metrics on algebraic manifolds*, J. Differential Geom. **32** (1990), 99–130.
- [34] G. Tian: *Kähler-Einstein metrics with positive scalar curvature*, Invent. Math. **130** (1997), 1–37.
- [35] K. Uhlenbeck and S.-T. Yau: *On the existence of hermitian Yang-Mills connections on stable bundles over compact Kähler manifolds*, Comm. Pure Appl. Math. **39** (1986), suppl. 257–293. and the correction **42** (1989), 703.
- [36] E. Viehweg: *Quasi-projective moduli for polarized manifolds*, Ergebnisse der Math. und ihrer Grenzgebiete, **30**, Springer-Verlag, 1995, 1–320.
- [37] S.-T. Yau: *On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*, Comm. Pure Appl. Math. **31** (1978), 339–411.
- [38] S. Zelditch: *Szegő kernels and a theorem of Tian*, Internat. Math. Res. Notices **6** (1998), 317–331.
- [39] S. Zhang: *Heights and reductions of semi-stable varieties*, Compositio Math. **104** (1996), 77–105.

Department of Mathematics  
 Graduate School of Science  
 Osaka University  
 Toyonaka, Osaka, 560-0043  
 Japan