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1. Introduction

In Donaldson’s study [10] of asymptotic stability for pdlsed algebraic manifolds
(M, L), critical metricsoriginally defined by Zhang [39] (see also [22]) are referted
as balanced metrics and play a central role when the pothalgebraic manifolds ad-
mit Kahler metrics of constant scalar curvature. [let (C*)* be an algebraic torus
in the identity component Af¢M) of the group of holomorphic automorphisms &f
In this paper, we define the concept @itical metrics relative toT, and as an appli-
cation, choosing a suitabl& , we shall show that a result 8] fh the asymptotic
approximation of critical metrics (see [10], [39]) can bengrlized to the case where
(M, L) admits an extremal Kahler metric in the polarizationsslaThen in our forth-
coming paper [27], we shall show that a slight modificationtled concept of stability
(see Theorem A below) allows us to obtain the asymptoticilgtabf extremal Kahler
manifolds even when the obstruction as in [26] does not taris particular, by an
argument similar to [10], an extremal Kahler metric in a @ixategral Kahler class on
a projective algebraic manifold  will be shown to be unijug to the action of the
group Auf(M).

2. Statement of results

Throughout this paper, we fix once for all an ample holomarpime bundleL on
a connected projective algebraic manifai . L&t  be the makioonnected linear
algebraic subgroup of AlgM), so that Au?(M)/H is an abelian variety. The corre-
sponding Lie subalgebra af®(M, O(1*°M)) will be denoted byh. For the complete
linear system/L™|, m > 1, we consider the Kodaira embedding

(Dm = (D|L’”|: M — ]P)*(Vm)a m > 17

where P*(V,,) denotes the set of all hyperplanes through the originVip =
HO(M,O(L™). Put N,, := dimV,, — 1. Letn andd be respectively the dimension

* For this uniquness, we choos (cf. Section 2) as the algebraic tor@is
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of M and the degree of the image,, &, M( ) in the projective sp&og/,,). Put

W, = {Symj (Vn )}®™*1. Then to the image,, oM , we can associate a nonzero el-
ement M, in Wy such that the corresponding elemeifl,,ﬂ in P*(W,,) is the Chow
point associated to the irreducible reduced algebraicecyf;, on P*(V,,). Replacing

L by some positive integral multiple af  if necessary, we fix drlinearization ofL ,

i.e., a lift to L of the H -action oM such thaf acts én  as bundienmghisms
covering theH -action om . For an algebraic toflis Hn , this raly induces a
T-action onV,, for eachm . Now for each characiee Hom(T, C*), we set

Vi) ={s € Vut-s=x()s forallreT }.

Then we have mutually distinct characteys, x2, ..., x», € Hom(Z, C*) such that
the vector spac#,, #H°(M, O(L™)) is uniquely written as a direct sum

Vm

2.1) Vi =D V).
k=1
Put G, =TIz SL(V (xx)), and the associated Lie subalgebra ofvsl( ) will be de-

noted byg,,. More precisely,G,, andy, possibly depend on the choice of the alge-
braic torusT , and if necessary, we denote theseGhyT ( ) @nd’), respectively.
The T -action onV,, is, more precisely, a right action, while wgarel theG,, -action
onV, as a left action. Sinc& is Abelian, this -action gp can lyanded also
as a left action.

The groupG,, acts diagonally oW, in such a way that, for elach kttte fac-
tor SL(V (xx)) of G,, acts just on the -th factov x¢) of V,,. This induces a natural
Gy-action onW,, and also omv.

DeriniTioN 2.2. (@) The subvarietys,, dP*(V,,) is said to bestable relative to
T or semistable relative td@", according as the orbiG,, - 1\71,,, is closed inW,: or the
closure ofG,, - 1\71,,, in W, does not contain the origin d¥,;.
(b) Let t. denote the Lie subalgebra of the maximal compact subgiup 7, &nd
as a real Lie subalgebra of the complex Lie algebrave definetg := v/—1t..

Take a Hermitian metric fo,, such that y) L V(y) if kK #1. Putn, =
dimV,, — 1 andn;, :=dimV ). We then set

k—1
Ik, i) = — 1)+ nj, i=12. . m; k=12 ..., v,
Jj=1
where the right-hand side denotés— 1 in the special cas& = 1. Lgf || de-

note the Hermitian norm fofv,, induced by the Hermitian metfieke a C-basis
{So, Sy -+ -5 SN } for V,,.

m
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DeriniTion 2.3, We say thaf{so, s1, ..., sy, } IS an admissible normal basi$or
V.. if there exist positive real constantg k, 5 1.2.,v,, and aC-basis{s;;;i =
1,2 ...,n} for V(xx), with > nebx = N, + 1, such that
(1) Si(k,i) = Skii i=1L2....n: k=12 ...,0y;

(2) s Lspif ;él/;

(3) ||Sk.,'||2:bk, i=12...,n k=12 ...,v,.

Then the real vectob =g, b, ..., b,,) is called theindex of the admissible normal
basis{so, 51, ..., sn, } for V,,.

We now specify a Hermitian metric oW, . For the maximal compadigroup?,
of T above, letS be the set £ 0)) of all T,-invariant Kahler forms in the class(L)g.
Let w € S, and choose a Hermitian metric  fdr  such that c¢1(L; k). Define a
Hermitian metric onV,, by

(2.9) 652 = / (5.5 s 5,5 € Vi
M

where §, s’),» denotes the function o/  obtained as the pointwise innedymtoof
s, s’ by the Hermitian metrich” onL™ . Now, let us consider the situatibat V,,
has the Hermitian metric (2.4). Then

Vixe) L V(). k#1,

and define a maximal compact subgrou..(. ) @f %, (. ) TEz, SUWV (xx))-
Again by this Hermitian metric ( ;}, let {so0, s1, ..., sy, } be an admissible normal
basis forV,, of a given inde® . Put

Nm

(2.5) E,p = Z |si
i=0

2
hm s

where |s|,. = (s, ), for all s € V,,. ThenE,, , depends only o andb. Namely,
oncew and b are fixed,E, ;, is independent of the choice of an admissible normal
basis forV {;) of index . Fix a positive integes: such that® is very ample.

DeriniTion 2.6.  An elementw in S is called acritial metric relative to T, if
there exists an admissible normal basis, s1, ..., sw,} for V, such that the associ-
ated functionE,, , on M is constant for the indek of the admissible normal basis.
This generalizes aritical metric of Zhang [39] (see also [5]) who treated the case
T = {1}. If w is a critical metric relative tdI' , then by integrating the aljfy (2.5)

over M, we see that the constafy, , is (N, + 1)/c1(L)"[M].

For the centralizeiZy X ) off inH , leZy T( °)be its identity component. For
m as above, the following generalization of a result in [39kisicial to our study of
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stability:

Theorem A. The subvarietyM,, of?(V,,) is stable relative tor" if and only if
there exists a critical metriecv € S relative to T . Moreover for a fixed indexb, a
critical metric w in S relative to 7 with constant&,, , is unique up to the action of
Zu(T)°.

We now fix a maximal compact connected subgrdap Hof . The quorefing
Lie subalgebra ofy is denoted byt. Let Sk denote the set of all Kahler forms in
the classci(L)r such that the identity component of the group of the isoraetof
(M, w) coincides withK . ThenSx # 0, and an extremal Kahler metric, if any, in the
classci(L)r is always inH -orbits of elements &x. For eachw € Sk, we write

v =1 o —
w:?Zgaﬁ_‘dZ /\dZﬁ
o,

in terms of a systemzt, ..., z") of holomorphic local coordinates ol . lét, be
the space of all real-valued smooth functions Mn  such fhatw” = 0 and that

1 s Ou O
- = Ba Z* Y
grad u : = ; e

is a holomorphic vector field o . Thef, forms a real Lie subalgebra &f by the
Poisson bracket forM, w). We then have the Lie algebra isomorphism

Kot  u+ gradu.

For the spaceC>°(M)r of real-valued smooth functions ai¥ , we consider the inner
product defined byu(, us)., := [,, uruz2w" for us, uz € C*(M)g. Let pr: C>°(M)r —
K. be the orthogonal projection. Lgtbe the center of. Then the vector field

v :=grad pr(o.,) €3

is callled theextremal Kahler vector fieldof (M, w), whereo, denotes the scalar cur-
vature ofw. ThenV is independent of the choice af in S, and satisfies exp{2V) =

1 for some positive integer (cf. [13], [32]). Next, since we have aH -linearization
of L, there exists a natural inclusiali ¢ GL(V,,). By passing to the Lie algebras, we
obtain

b C gl(Vin)-

Take a Hermitian metri¢z fol such that the corresponding isern formea(L; 1)
is w. As in [23, (1.4.1)], the infinitesimak-action on L induces an infinitesimal
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h-action on the complexificatiofts of the space of all Hermitian metricq,, on the
line bundle L™ . The Futaki-Morita charactér h:— C is given by

FO)= 2 [ o,

which is independent of the choice 6f (see for instance [15¢y the identity com-

ponentZ of the center ok , we consider its complexificatioh in H. Then the

corresponding Lie algebra is just the complexificatiénof 3 above. We now consider
the setA of all algebraic tori irZC. Let T € A. Put

For w = ci(L;h) € Sk, we consider the Hermitian metric (2.4) fof, . We then
choose an admissible normal ba$is, s1, ..., sn,} for V,, of index (1 1...,1). By
the asymptotic expansion of Tian-Zelditch (cf. [33], [3&¢e also [4]) form > 1,
there exist real-valued smooth functiomsw),(k =1, 2 ..., on M such that

Nm

Z |sj|/12’" =1 +Cl]_(w)q + az(w)qz +.o..
Jj=0

(2.7) n!

mll

Then a;(w) = 0,/2 by a result of Lu [20]. Lety € tg, and putg = exp) € T,
where the element exp(/2) in T is written as exp) by abuse of terminology. Recall
that theT -action orV,, is a right action, though it can be viewlsd as a left action.
Puth, :=h-g for simplicity. Using the notation in Definition 2.3, we wWeiby; =six.i),
k=12 ...,vm;i=12...,m. Then for a fixedk ,[,, [sc. ,212 grw" = xu(exg” V)| ~?
is independent of the choice of . Put ‘

Nm Vm 13
n! . | n! B
Z(q, w;Y) = po E |Sj|/12f; =g {ﬁ E Ixk(exg” V)| 2 § ISk
j=0 k=1 i=1

For extremal Kahler manifolds, the following generaliaat of [26] allows us to
approximate arbitrarily some critical metrics relative %o

/21";} , Ve tr.

Theorem B. Letwg = ci1(L; ho) be an extremal Bhler metric in the clasg1(L)x
with extremal Kahler vector field). Then for somel’ € A, there exist a sequence of
vector fields); € tg, a formal power seriex’, iy with real coefficientsf. Sec-
tion 6), and smooth real-valued functions,, k =1, 2 ..., on M such that

(2.8) Z(g. w(1); Y1) = C4 +0(g"™?),

where V(1) = (vV=1V/2)q? + 3121 4"*?Ve, h(1) = hoexp(= Y41 ¢° 1), and w(l) =
c1(L; h(D)).
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The equality (2.8) above means that there exists a positgé qonstant4; inde-
pendent ofg such thatZ(g, w(l); V(1)) — Cyllcomy < Aq'*? for all ¢ with 0< ¢ < 1.
By [38], for every nonnegative integer , a choice of a largenstantA =A;; > 0
keeps Theorem B still valid even if th€°(M)-norm is replaced by th€/ M )-norm.

3. A stability criterion

In this section, some stability criterion will be given as elpninary. In a forth-
coming paper [27], we actually use a stronger version of Témo03.2 which guaran-
tees the stability only by checking the closedness of oihitsugh a point for special
one-parameter subgroups “perpendicular’ to the isotragygsoup. Now, for a con-
nected reductive algebraic grodp , defined olewe consider a representation Gf
on an N -dimensional complex vector spadge . We fix a maximal emmnpubgroup
G. of G. Moreover, letC* be a one-dimensional algebraic torus with the maximal
compact subgroup?.

Derinimion 3.1, (a) An algebraic group homomorphisin C* — G is said to be
a special one-parameter subgroug G, if the image\(S?) is contained inG. .
(b) A point w #0 in W is said to bestable if the orbit G - w is closed inW .

Later, we apply the following stability criterion to the easvhereW =W, and
G =Gp. Let w #0 be a point inW .

Theorem 3.2. A pointw as above is stable if and only if there exists a paint
in the orbit G - w of w such that\(C*) - w’ is closed inW for every special one-
parameter subgroup\: C* — G of G.

Proof. We prove this by induction on diifi( w). If dim(G-w) = 0, the statement
of the above theorem is obviously true. Hence, fixing a pasitintegerk , assume that
the statement is true for all 8 w € W such that dim( - w) < k. Now, let 0z w € W
be such that dim§ - w) = &, and the proof is reduced to showing the statement for
such a pointw . Le® ¢ ) be the set of all special one-parametegreups ofG . Fix
a G.-invariant Hermitian metrid| || on W. The proof is divided into three steps:

STep 1. First, we prove “only if” part of Theorem 3.2. Assume that s stable.
Since G - w is closed inW , the nonnegative function @h- w defined by

(3.3) G-wog-ww g -wl|eR, g €G,
has a critical point at some point’ in G - w. Let A € X(G), and it suffices to show

the closedness ok(C*) - w’ in W. We may assume that dik{C*) - w’ > 0. Then by
using the coordinate system associated to an orthonornsdd ffier W, we can write
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w’ as wg, ..., w.,0,...,0) in such a way thaw/, # 0 for all 0< « <r and that

r
Ae') - w' = (e"wg, ..., e w!,0,...,0), t €C,

wherev,, « = 0,1,...,r, are integers independent of the choicerof Gn Since
the closed orbitG - w does not contain the origin o , the inclusiof{C*) - w’ C

G - w shows thatr > 1 and that the coincidencgy = «1 = --- = ~, cannot occur. In
particular,

£(0) :=log | A(e") - w'||? = log (€20 wp|? + e |wi > +- - - + 2V |w!|?), 1 E€R,

satisfies f/(t) > 0 for all . Moreover, since the function in (3.3) has a critipaint
at w’, we havef’(0) = 0. It now follows that lim_,+. f(f) = +oo and lim_._ ., f(t) =
+oo. Hence\(C*) - w’ is closed inW , as required.

STEP 2. To prove “if” part of Theorem 3.2, we may assume that w’=without
loss of generality. Hence, suppose thd€*) - w is closed inW for every € Z(G).
It then suffices to show that - w is closed inW . For contradiction, assume tliatw
is not closed inW . Since the closure 6f-w in W always contains a closed orhi
in W, by dimO1 < dim(G - w) = k, the induction hypothesis shows that there exists a
point w € O such that

(3.4) AMC*) - w is closed inW for every\ € £(G).

Moreover, there exist elements i, 71 2,...,6h such thatw converges tow”

in W. Then for eachi , we can writg; . - exp(2r4;) - x; for somek;, k| € G,
and for someA; € a, where Zr/—1a is the Lie algebra of some maximal compact
torus in G.. Let Z/—1az be the kernel of the exponential map of the Lie algebra
2mv/—1a, and putag := az ® Q. Replacing{x;} by its subsequence if necessary, we
may assume that

(3.5) Ki — Koo and {exp(2rd;) -k} - w — weo, asi — oo,

for someks € G, andwy, € G.-w. Then by (3.4), the orbifh(C*)-w., is also closed
in W for every A € £(G). Let a,, denote the Lie subalgebra af consisting of all
elements ina whose associated vector fields &  vanishcat- w. For a Euclidean
metric ona induced from a suitable bilinear form amy defined overQ, we write a
as a direct sumil @ a._, whereal is the orthogonal complement of_ in a. Let
A; be the image ofA; under the orthogonal projection

priia(=al ®a,) — al A — A= pry(A).

Note that{exp(2rA;) - koo } - w = {eXp(27A;) - koo } - w. Hence,

(3.6)  limsup|| exp{2rAd(k A, } - w| = lim sup|| {exp(2rA;) - koo } - w

i—00 i—00
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< Jim || {exp(@rA;) - wi} - wl| = [|wa | < +oo.

STeP 3. Since)(C*)-w is closed inW for every\ € %(G), by the boundedness
in (3.6), {A;} is a bounded sequence i, (see Remark 3.7 below). Hence, for some
elementA in aL, replacing{A;} by its subsequence if necessary, we may assume

that A, — A,, asi — oo. Then by (3.5),
Woo = liM {exp(2rA;) - kit - w = {exp(2rAoc) - oo} - .

Since we have exp@ZOO) € G, the pointw., in O; belongs to the orbiG - w. This
contradictsO1 N (G - w) = 0, as required. The proof of Lemma 3.2 is now complete.
]

Remark 3.7. The boundedness of the sequereg} in aL in Step 3 above
can be seen as follows: For contradiction, we assume thasehj@ence{A;} is un-
bounded. Put :%., - w for simplicity. Then by (3.6), we first observe that

(3.8) lim sup|| exp(2rA;) - v]| < +oc.

11— 00

Since 2rv/—1a. is the Lie algebra of the isotropy subgroup of the compactstor
exp(2ry/—1a) at v, botha,, andal are defined ovefQ in a. By choosing a com-
plex coordinate system dV , we can write ag,(..,v,,0,...,0) for some integer
r with 0 <r <dimW — 1 such thatv, # 0 for all 0< o < r and that
(3.9)  exp(A)-v=(e2Wyy 2@y 0 0), Acat

o0

where y,: at — R, a = 0,1...,r, are additive characters defined ov@r Put

oo

n =dimgal, and let X )g denote the set of all rational points i . Let us now
identify
o, =R and @ )e=Q"

as vector spaces. Since the orb{tC*)-w is closed inW for all special one-parameter
subgroups\: C* — G of G, the same thing is true also foC*) - v. Hence,

r

(3.10) Q' \{0} C |J Uas.

a,3=0

whereU,ps := { A € a; xo(A) > 0 > x3(A) }. Note that the boundaries of the open
setsUqp, 1<a<r, 1< g <r,inR" sit in the union ofQ-hyperplanes

H, :={xa =0}, a=01...,r,
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in R". Since an intersection of any finite number of hyperplabgs « =0, 1,...,r,
has dense rational points, (3.10) above easily implies

r

(3.11) R"\ {0} = | Uap.

a,3=0

Replacing{A;} by its suitable subsequence if necessary, we may assumehtrat
exists an elementi, in aX (= R") with |[A|/s = 1 such that

lim — = A,
i—oo [|Ajfla

where || || denotes the Euclidean norm far as in Step 2 in the proof of Theo-
rem 3.2. By (3.11), there exist, 3 € {0, 1,...,r} such thatA,, € U,g, and in par-

ticular xo(As) > 0. On the other hand, limsup_ ||A:|l« = +oo by our assumption.
Thus,

lim supxa(A;) = imsup{ [|4; o - xa(Ai/[|A;]la) } = (M SUP||A; [a) XalAso) = +oo,

i—o00 i—o00 i—o00

in contradiction to (3.8) and (3.9), as required.

4. The Chow norm

Take an algebraic torus c Aut’(M), and let:: SL(V,,) — PGL(V,,) be the nat-
ural projection, where we regard A@/) as a subgroup of PGM(n ) via the Kodaira
embedding®d,, M — ]P*(V,,,) m > 1. In this section, we fix & -invariant Hermitian
metric p on V,,, where7, is the maximal compact subgroup @f := .~1(7’). Obvi-
ously, in terms of this metricy x¢) L V(x;) if k #1. Using Deligne’s pairings (cf. [8,
8.3]), Zhang ([39, 1.5]) defined a special type of normWjj, called theChow norm
as a nonnegative real-valued function

(4.1) W, 2 wr— [[wllcng) € Rso

with very significant properties described below. Firststis a norm, so that it has the
only zero at the origin satisfying the homogeneity conditio

e wllchgy = lel - lwllchgy — for all (e, w) € C x W,

For the group SL¥,, ), we consider the maximal compact subgi®ug,, ;p). For a
special one-parameter subgroup

A: C* — SL(V,)
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of SL(V,,), there exist integersy;, j = 0,1...,N,, and an orthonormal basis
{0, 81, .-, 8w, } for (V. p) such that, for allj ,
(4.2) Ar-sj=eMs;, z€C,

where )\, := A(e?). Recall that the subvarietys,, i®*(V,) is the image of the
Kodaira embeddingb,, M — P*(V,,) defined by

(4.3) @, () = Go(p) i s2(p) -~ 5w, (P)), PEM,

where P*(V,,) is identified with ]P’N"'(C) = {(Zo tza e tzny,) ) PUt My, =N (M,)
for eacht € R. As in Section 2Mm, =\ - M, is the nonzero point oW, sitting

over the Chow point of the irreducible reduced cydlg, , ®t(V,,). Then (cf. [39,
1.4, 3.4.1))

m

Z] =0 ,y/ : J|2 * O\ k n
(4.4) ('09 1Mo llcry) = (2 + 1) ﬁ (@A wrs)",
S

wherewrs is the Fubini-Study form /—1/27)90 Iog(zj = 1z;%) on P*(V,,), and we
regard \;, as a linear transformation dP*(V ) induced by (4.2). Note that the term
@ \wrs above is just {/— 1/27r)88|0g(2 " A s, Putl = 2r/—17Z. By set-
ting

C/T={r+v-10;1t R, 0 € R/(2rZ) },
we consider the complexified situation. Let M xC/T" — P*(V,,) be the map sending
each p,t +/=10) in M xC/T" to A\, /=14 Pu(p) in P*(V,,). For simplicity, we put

N, . N,
51 77¢2 752 <: 1% i A -s,-|2)

0=
ZN”' 2W’|Sj|2 EN”’ | - S/|2

We further putz := +/—10. For the time being, on the total complex manifalfl x
C/T, the 9-operator and thé&-operator will be written simply a# and o respectively,
while on M, they will be denoted by,, and d,, respectively. Then

(aMQAdz +dzAaMQ)+\/_18—Qd AdZ.

N wrs = Oy A wrs+
For 0 # r € R, we consider the 1-chaili, :=]8 ], where,j0 ] means the 1-chain

—[r,0] if r < 0. Let pr:C/T — R be the mapping sending each 4+16 to r. We
now put B, :=pF I,. Then foB n*wpEd is nothing but

(n+1)/ dt/ (aQ Dy N wEg+ —— (’9MQ/\8MQ/\nCIDm/\*wFS )



STABILITY OF EXTREMAL KAHLER MANIFOLDS 573

r d2 N d Y
- /0 dr? (IOg | M. ||CH(p)) dt = dr (Iog 1Mo HCH(”))) ’1207

and by assuming > 0, we obtain the following convexity formula:

d Y 1=r_ * n+l
Theorem 4.5. I (log My llchg) LO— /MXBrn wis > 0.

Remark 4.6. Besides special one-parameter subgroups oV,SL( ), 8@ &in-
sider a little more general smooth path r € R, in GL(V,,) written explicitly by

— iyt -
AI'sj_e’YI /sjv J_05L"'5NI)17

where~;, §; € R are not necessarily rational. In this case also, we easdytisat the
formula (4.4) and Theorem 4.5 are still valid.

5. Proof of Theorem A

The statement of Theorem A is divided into “if” part, “only”ifpart, and the
uniqueness part. We shall prove these three parts separatel

Proof of ‘if ” part. Letw € S be a critical metric relative t@" . Then by Defi-
nition 2.6, in terms of the Hermitian metric defined in (2.#)ere exists an admissible
normal basis{so, s1, - - ., sn, } for V,, of indexb such that the associated functigp

has a constant valug o . By operating<1/2r)90 log on the identityE,,, = C,
we have

(5.1) D) wrs = m w.

Besides the Hermitian metric defined in (2.4), we shall novingeanother Hermitian
metric onV,, . By the identificatiorV,, =~ C via the basis{so, s1, ..., sx, }, the stan-
dard Hermitian metric orlC induces a Hermitian metrip on V,,. As a maximal
compact subgroup of;,, , we choos€,(. ) as in Section 2 by using #teicde-
fined in (2.4). Then the Hermitian metrje is also preserved by the&G(, . ) -action on

V.. Let
A C" — Gy,

be a special one-parameter subgroup ®f . By the notatibni (  )naBefini-
tion 2.3, we puts;; =s.;). If necessary, replacingso, s1, ..., sy, } by another ad-
missible normal basis fo¥,, of the same index , we may assumieoutitloss of
generality that there exist integets,, i =1, 2 ..., ng, satisfying

(5.2) A Sk =€ Misp, teC,
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where )\, := A(¢’) is as in (4.2), and the equality_’*; v, = 0 is required to hold for
everyk . Puty.; = v,y for simplicity. Then by (4.4) and (5.1),

> im0 ilsil?
(|°9||Mmr||CH(p))|, o=t 1)/ JTW(CD'" Fs)"
J
ZN”’O ’YJ |sj|h”’ ZVm ”A ’Yk i |S, |/m
=(n+1)m / JNi =(n+1)m / W
il Evp

(n + 1)m,1 U (n + 1)m Ui

Z ZVkl'&'hm Zbk 27k1 =0.

M =1 \i=1

Note also that, by Theorem 4.5, we have &2 /dt?)(10g || My.||cH)) =0 > O.

Case 1. If ¢ is positive, then lim_ .. || M. ||cr() = +00 =M, oo || Mon.:[|cHe),
and in particularA(C*) - M,, is closed.

Case 2. If ¢ is zero, then by applying Theorem 4.5 infinitesimallye wee that
A(C*) preserves the subvarietM,, ' (V,,), and moreover by

d -
E (|Og ”Mmt”CH(p)) |1=0 =0,
the isotropy representation oX(C*) on the complex lineCa,, is trivial. Hence,
AMC*) - M, is a single point, and in particular closed.

Thus, these two cases together with Theorem 3.2 show thafulnearietyM,, of
P*(V,,) is stable relative td' , as required. O

Remark 5.3.  About the one-parameter subgroup ; r € R} of G,,, we consider
a more general situation tha ; in (5.2) are just real numbers which are not neces-
sarily rational. The above computation together with Rdm@&6 shows that, even in
this case, d/dt)=o(l0g ||A71,,,,,||CH(,J)) vanishes.

Proof of “only if ” part. Assume that the subvariety,, ¥ (V,,) is stable rel-
ative to T . Take a Hermitian metrig for V,, such thatV () L V(x;) for k #1. For
this p, we consider the associated Chow norm. Since the @rhit Mm is closed in
W,,, the Chow norm restricted to this orbit attains an abosotni@mum. Hence, for
somego € G,

07 180~ Mullcniy < 1Ig - Ml for all ¢ € Gy

By choosing an admissible normal bas{so, s1,...,sn,} for (V.;p) of index

m

(1, 1...,1), we identify V,, withC" = {(zo,z1,...,2n,) }. Then SL{,, ) is identi-

m
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fied with SL(V,, +1,C). Let g,, be the Lie subalgebra afi(N,,+1;C) associated to the
Lie subgroupG,, of SLy,, +1€). We can now writegg = «’-exp{Ad(x)D} for some
k, kK € (Gn). and a real diagonal matri®  ip,,. By | exp{Ad(x)D} - Mm||CH(p) =
g0 - Munllch(,), We have

(5.4) || exp{Ad(x)D} - Mi|chi) < || exp{t Ad(x)A} - exp{Ad(k)D} - My||cH(). t € R,

for every real diagonal matrid im,. For j =Q 1..., N,, we write thej -th di-
agonal element oA and above ag ald , respectively.cPut =dexpd a
s;- =k~ -5;. Then{sg,s,...,sy } is again an admissible normal basis far,( p)
of index (1, 1...,1). By the notation in Definition 2.3, we rewritej-, aj, ¢cj, zj as
!

Spir Qkiy Ckiis 2k DY

i — — — . —
Ski = Sik,iyr ki T Aiki)s  Cki = Clk,i)s ki T ZU(k,i)s

wherek =1 2...,v, andi =1 2...,n;. By (5.4), the derivative at = 0 of the
right-hand side of (5.4) vanishes. Hence by (4.4) togethigh Remark 4.6, fixing an
arbitrary real diagonal matrid  ig,,, we have

D0l Dot kil il
M Zym :ul kz| k1|2

where we se® :=(—1/21)29 log(Xy S, cfilzrild). Letko € {1,2,..., v, } and
let i1, ip € {1, 2 ...,nk} with i3 # i>. Using Kronecker’'s delta, we specify the real
diagonal matrixA by setting

(5.5) ®,(0") =0,

ar,i = ko (Biiy — i), k=12 ...,vp i=1,2...,m

Apply (5.5) to thisA , and letig, i») run through the set of all pairs of two distinct
elements in{1, 2, ..., nt}. Then there exists a positive constant> O independent of
the choice ofi in{1, 2,...,n;} such that

Npu+1 2 |S/i,i|2

m"c (L)”[Zu] ZVM :Zkl kl| /(I|2 m

The following identity (5.7) allows us to define (cf. [39]) aeHnitian metrichrs on
Lln by

(5.6) @) =by, k=12... v

(N + 1) D0 S |G st )l It 2

5.7 Slh = , s € V.
( ) | |/1|:5 (L)H[M] Zu,,, ;ulck . |Sk ) |2 m
Then for this Hermitian metric, it is easily seen that
N Um Nk
_ Nm +1
(5.8) Z | lies = ZZ |kt i hes = (LTI

k=1 i=1
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By operating (/—1/27r)88—Iog on both sides of (5.8), we obtai@},® = c1(L"; hrs).
We now seth :=krs)¥/” andw := c1(L; k). Then
w= iCIJ* ®
m

m N

Putsy; == ckis;;, and as in Definition 2.3, we write/; as s . Then by (5.8), we
have the equalitﬁygbh}’ﬁ,,, = (Ny +1)/c1(L)"[M]. Moreover, in terms of the Hermi-

tian metric defined in (2.4), the equality (5.6) is interpckias

stz =b,  k=L2...,um i=12...,n,
while by this together with (5.8) above, we obtan,”; nibx = N,, + 1, as required.
O

Proof ofuniqueness Letw =c¢i(L;h) andw’ =c1(L;h’) be critical metrics rela-
tive to 7, and let{s;; j=0,1...,N, } and{s}; j=0,1..., N, } be respectively
the associated admissible normal basesVipr of index . Wehgsadtation in Def-
inition 2.3. Then

Vm Nk Um Nk
— 2 — /2
Ew,b = E E |Sk.,'|/1m and E,p = E E |Sk’l'|/1lm
k=1 i=1 k=1 i=1

take the same constant val@e  ¥,( ¥d&)L)"[M] on M. Note here that, by op-
erating (/—1/27)00log on both of these identities, we obtain

Um Nk

B \/__l _ ) ~ \/__1 _ Vm Nk )
mw=-5—00log (> > lsil*| and mo'=—00log|> > Isil®].

k=1 i=1 k=1 i=1

If necessary, we replace eagh; byr.; for a suitable complex numbey, indepen-
dent of i, of absolute value 1. Then for eakh =1 .2,v,, we may assume that
there exists a matrix® = (¢%) € GL(n; C) satisfying

ng
S;I(,g = Z Sk.i g,-(kg),
=1
wherei and: "always run through the integers ¥1, 2,...,n¢}. Then the matrixg®
above is written ag® - (expA®) - (v'®)~1 for some real diagonal matrix®) and
kO = (x®) and KO =(x'Y)

in SU@y). Let a® be the i -th diagonal element oA®). For each: we put

Ny Ny

Sep = Y% s k® and $i; = Yitisi, k00 If necessary, we replace the bases
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{Sk,l’ Sk2y e,y Sk,nk} and {sli,l’ SI£,2’ Ceey S//C-"k} for V(Xk) by the bases{Ek,l, Ek.Z’ ey
Sty and {5 4,5, 5, ..., 5,1, respectively. Then we may assume, from the begin-
ning, that
- k .
si={ewaPys,  i=l12...n

We now setry; := sy /b, and the Hermitian metric fov,, defined in (2.4) will be
denoted byp. Then{n.;; k =1,2...,v,,i =1, 2 ...,n} is an admissible normal

basis of index (1 1..,1) for (V,, p). Let {\; t € C} be the smooth one-parameter
family of elements in GLY,, ) defined by

AT = {expta®) Vb, k=L 2. v =12 n

Put AA/I,,,‘, =\ -1\7[",, 0<t <1 Then by Remark 4.6 applied to the formula (4.4), the
derivatived(r) := (d/dt)(109 || Mom.: ||cH())/(n + 1) atr € [0, 1] is expressible as

ZV'" 1 a(k) |AI Th.i | Vm Nk n
Tl 88 lo A T
o E 'm i:1 |/\f e |2 g Z Z | t " Tk, |

k=1 i=1

Hence atr =0, we see that
Un n k n Vnm ng
0 - ( )|skl|h”’ n_m b E (k)
00 = [ 35T Ly =TS 40> a?
k 1 i=1 i=1
while atr =1 also, we obtain
Um N k n VYm N
. ()|skl h/m Nnn — m : (k)
(1) = ZZ (mw')" = = by al s
k 1 i=1

Thus, 9(0) coincides witho(1), while by Remark 4.6, we see from Theorem 4.5 that
(d?/di*){10g || Myn.q|lchy} = 0 on [Q 1]. Hence, for alk € [0, 1],

d? ~
W{k’g [ Monitllcriyt = O, onM.

By Remark 4.6, the formula in Theorem 4.5 shows thatr € [0, 1], belong toH
up to a positive scalar multiple. Sincg commutes with7T , the uniqueness follows,
as required. O

6. Proof of Theorem B

Throughout this section, we assume that the first Chern elgd9r admits an
extremal Kahler metricoy = c1(L; ho). Then by a theorem of Calabi [3], the identity
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componentK of the group of isometries a¥(wp) is a maximal compact connected
subgroup ofH , and we obtaityg € Sg by the notation in the introduction.

DerinimioN 6.1, For a K -invariant Kahler metric € Sx on M in the class
c1(L)gr, we choose a Hermitian metric  ab  such that ¢;(L; ). Then the power
series ing given by the right-hand side of (2.8) will be dedoby ¥ (w, ¢). Givenw
andgq , the power serie¥ w(q) is independent of the choice af

Let Dy be the Lichnérowicz operator as defined in [3], (2.1), foe textremal
Kahler manifold 1, wo). Then byV € ¢, the operatoDy preserves the spack of all
real-valued smoottK -invariant functions such that|, owi = 0. Hence, we regard
Dy just as an operatoDy: F — F, and the kernel inF of this restricted operator
will be denoted simply by KebP,. Then KerDy is a subspace ok,,, and we have
an isomorphism

(6.2) eo: KerDg ¥ 3, @ — eo(p) = gracfo ®.

By the inner product ( ), defined in the introduction, we writ¢ as an orthogonal
direct sum KeD, @ KerDg. We then consider the orthogonal projection

P: F (= KerDy @ KerDy ) — KerDy.

Now, starting fromw(0) := wp, we inductively define a Hermitian metrick ( ), a Kahler
metric w(k) := c1(L; h(k)) € Sk, and a vector fieldy(k) € vV—-13, k=1, 2 ..., by

h(k) := h(k — 1) exp-q*©r).
(6.3) w(k) = w(k — 1) + % q* 90y,

Y(k) = Yk — 1) +v/=1¢"2eo(G),

for appropriatep;, € KerDg and (, € KerDg, wherew(k) and Y(k) are required to
satisfy the condition (2.8) witlhi replaced iy . We now get ( exg° V(k). Then

{h(k) - g(k)} " h(k)" {Z(q, w(k); Y(k)) — Cy}

N
- nn1_| {Z |Sf'|h<k>'"} — Co{g(k) - h(k) " }h(k)"
j=0

= W(w(k), 9) — Cy h(k)" {(exp” Y(k) - h(k) ™"}
= V(w(k). q) — C4 {1 +h(’<)¥ ~h(k) "+ RQOI(K); h(k))} :

where C, = 1+) 5, axg**! is a power series iy with real coefficients spec-
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ified later, and the last ternR J(k); h(k)) = h(k)" Y272, {V ()’ /j'} - h(k)~™ will
be taken care of as a higher order termgn . Consider the ttedcermcC,; =
1 +E§<:o axg**t. Put

B(w(k), Y(k), Cqi) = W(w(k), q) — Cqx { 1- @ -logh (k) + R(V(k); h(k)) }

for eachk . Then, in terms ab(k), V(k) and C,  , the condition (2.8) witlh replaced
by k is just the equivalence

(6.4) EW(k), Y(k), Cyz) = O, modulo g**2.

We shall now definev(k), Y(k) and C, inductively in such a way that the con-
dition (6.4) is satisfied. Ik = 0, then we set(0) = wo, Y(0) = v/—14°V/2 and
Cy.0 = 1+aog, where we puing := {2c1(L)”[M]}—1{fM o w" +2rF(V)} for w € Sk.
This ag is obviously independent of the choice ofin Sx. Then, modulog?,

W(w(k). q) - Cyo {1 - @ 10g(0) +R@(0);h(0))}

0w _ %
E(1+7°q)—(1+aoq){1—qhol —1E-ho}
Ouweo

- (1+%0) o {1+ - en)a} =0

and we see that (6.4) is true far = 0. Here, the equalfyv/—1 (V/2) - ho = ap —
(0.,/2) follows from a routine computation (see for instance ]23]

Hence, let/ > 1 and assume (6.4) fdr = 1. It then suffices to findy;, ¢; and
oy satisfying (6.4) fork =l . Pup), := v/—1eo((;). For each ¢, (1, o) € KerDy x
KerDg x R, we consider

N .
@(q; 01, Gy n) =W <w(l -1+ 74133% f1> — (Cgu—1 +ug"™t)

i (A2 e

+R (# +q"Y; h(i - 1) eXp(-Q'S”)) }

By the induction hypothesisg w(/ — 1), Y(I — 1), C,,—1) = 0 modulo ¢'*!. Since

®(g;0, 0, 0)= u;q"*, modulo ¢'*?,

for some real-valued -invariant smooth function  &h . Let (;, ox) € KerDy x
KerDp x R. Sincey is K -invariant, by € ¢, we see that/—1V ¢, is a real-valued
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function on M . Note also tha)(0) = (vV—1V/2)4>%. Then the variation formula for
the scalar curvature (see for instance [3, (2.5)]) shows thadulo ¢'*2,

D(q; @1, Gy v)

1+1 v—=1
= ©(¢:0,0.0) + L (=D + V=1V)gr — g™ + 4"y "(Yi - ho) = 5= Vi g
= {Ml - Do% —a — Fn(V) +eg (v —13)1)} gt

where we putF () := {c1(L)"[M]}12xF(v/—1)) for each) € \/—13. By setting
= {ea(L) M1}, ww}), we write u; as a sum

— ’ "
up = tu;tu;,

whereu] := (1 — P)(u; — 1) € KerDg andu) := P(u; — ;) € KerDo. Now, let ¢, be
the unique element of K&y such thatDo(y;/2) =u). Moreover, we put

C[ = u;’ and Q= — I}(y/)
Then by), = v—1eo((;) = v—1eo(u)’), we obtain

(g, @1, Gy 0q) = {,Ul +uptu — Do% — ) — Fu() +eg H(V —132,)} gt

= {u+ eo_l(\/ ~1)}g"*t =0, mod ¢'*2,

as required. Write,y/—1V/2 as)) for simplicity. Now, for the real Lie subalgebra
of 3 generated by, k =0, 1 2 ..., its complexificationt® in 3* generates a com-
plex Lie subgroupB® of Z€. Then it is easy to check that the algebraic subtdfus
of Z€ obtained as the closure @&fC in Z€ has the required properties.

Remark 6.5. In Theorem B, assume thag is a Kahler metric of constant scalar
curvature, and moreover that the actigng.y, v = 1, 2 ..., coincide (cf. [26, (2.3)])
for all sufficiently largev. Then by [26], the trivial group{1} can be chosen as the
algebraic subtorug” above &f.
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