
Title
Stable Learning Algorithm of Bayesian Deep
Neural Networks towards Low Power Dedicated
Processor

Author(s) 西田, 圭吾

Citation 大阪大学, 2022, 博士論文

Version Type VoR

URL https://doi.org/10.18910/91787

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Doctoral Thesis

Stable Learning Algorithm of Bayesian Deep

Neural Networks towards Low Power Dedicated

Processor

専用プロセッサによる低電力実行に向けた
ベイジアン深層ニューラルネットワークの

安定した学習アルゴリズム

Keigo Nishida

Systems Science of Biological Dynamics

(Guest Prof. Makoto Taiji),

Graduate School of Frontier Biosciences, Osaka University

December 2022

Abstract

Deep learning has been studied by researchers interested in understanding the basic

principles of information engineering, such as those pertaining to computer vision

and language processing. In addition, deep learning has been investigated for appli-

cation to fields such as automated driving, medical diagnostics, and drug discovery.

Recent advances in deep learning have resulted in vast performance improvements;

this is because continuous improvements in the computational power according to

Moore’s Law have made it possible to handle large-scale neural network models.

However, existing deep learning models tend to lead to overconfident inferences,

and this tendency becomes even stronger for inputs with distributions that differ

from those of the training data, as is often the case in practical applications. Reliable

inferences via deep learning are essential to precisely capture predictive uncertainty.

In this regard, Bayesian neural networks (BNNs) are expected to capture predictive

uncertainty to a high degree of accuracy because of their ability to model parameter

uncertainty. However, in large-scale NNs such as those employed for deep learning,

BNNs are problematic in that the stable convergence of parameters is difficult and

the learning process of these NNs is computationally costly. Further development

of Bayesian deep learning would therefore need to focus on improving the learning

method and developing a dedicated processor with high power efficiency. Attempts

to address these shortcomings are expected to improve Bayes by Backprop (BBB),

an algorithm for BNNs that optimizes the variational parameter θ = {µ,ρ}. The

advantage of BBB is its capability to deliver efficient inference with dedicated pro-

cessors; however, because the variational parameters do not easily converge, the

efficiency of learning with dedicated processors has not been sufficiently discussed

in previous studies.

iii

The objective of the research presented in this thesis was to develop algorithms

for stable parameter convergence with BBB. The aim was to design these algo-

rithms such that they are suitable for efficient learning with dedicated Bayesian

deep learning processors. These algorithms and hardware are expected to enable

reliable predictions of complex phenomena by BNNs. BBB operates by sampling

neural network weights from variational parameters, which makes the loss function

noisy. Although the parameters of noisy loss functions can be made to success-

fully converge using Adam as the optimizer, for BBB this optimizer prevents stable

parameter convergence. To overcome this problem, I proposed using Adam with

decoupled Bayes by Backprop (AdamB), which decouples the log-likelihood terms

of the prior and posterior distributions in the BBB cost function from Adam. Using

a covariate shift benchmark of the image classification tasks with a shifted distribu-

tion from the training data, I evaluated the accuracy and reliability of the models

trained by AdamB. In addition, I discuss dedicated hardware architectures that

enable AdamB to conduct training efficiently.

My study revealed that the difficulty of learning with BBB lies in the rapid and

excessive update of parameter ρ. This problem was fundamentally solved by AdamB

using a Gaussian scale mixture prior (SM prior). In this research, I demonstrated

that the rapid updates of parameter µ can be decoupled from Adam, whereas the

excessive increase can be suppressed by using an SM prior. Experiments also showed

that parameter µ takes a sparse distribution and, by using the SM prior, is strongly

robust against noise type corruption. Currently, the robustness of AdamB has only

been proven for covariate shift in image identification tasks, and its applications to

other tasks would have to be assessed in the future. Additionally, by examining the

basic architecture of Movitan, a system-on-a-chip (SOC) generator system capable

of enabling AdamB to efficiently train neural networks, I provided guidelines for

a dedicated processor capable of efficient and stable Bayesian deep learning. This

study makes a fundamental contribution to the existing knowledge base by proposing

a novel approach to solve the difficulties associated with handling BNNs because of

their unstable convergence of parameters and increased computational cost.

Chapter 0. Abstract iv

Contents

Abstract iii

1 General Introduction 1
1.1 Background to this study . 2

1.1.1 Reliability of deep learning . 2
1.1.2 Dedicated hardware for deep neural networks 4
1.1.3 Importance of reliability evaluation by deep learning in the

life sciences . 6
1.2 Neural Networks . 7

1.2.1 Decoupled weight decay . 8
1.2.2 Reliability Metrics . 8
1.2.3 Distribution shifts . 9
1.2.4 Bayesian neural networks . 9

1.3 Agile system-on-a-chip development 13
1.3.1 Chipyard . 13
1.3.2 Gemmini . 15

1.4 The objective of this thesis . 15

2 Decoupled Bayes by Backprop 17
2.1 Stable Bayesian neural network training 18

2.1.1 Background . 18
2.1.2 Purpose of this study . 19

2.2 Adam with decoupled Bayes by backprop 21
2.2.1 Updates of the variational parameter 21
2.2.2 Decoupled Bayes by backprop 22
2.2.3 Gaussian scale mixture prior for stable optimization 24

2.3 Robustness of AdamB with SM prior 25
2.4 Properties of AdamB in the classification layer 41
2.5 AdamB with low-precision Gaussian sampling 47

3 Movitan 55
3.1 Monte Carlo Variational Inference Training Accelerator for Neural

Networks . 56
3.2 Hardware Architecture . 57
3.3 Software Architecture . 60

4 Conclusion 63
4.1 Discussion . 63
4.2 Conclusion . 65

References 67

Acknowledgement 73

v

Contents

Achievements 75

Contents vi

Chapter 1

General Introduction

In this thesis, I first propose a stable learning method for Bayesian neural networks

(BNNs) and present an in-depth analysis of the algorithm. Next, a basic study of

the hardware architecture for low-power execution of the proposed learning method

by a dedicated processor is presented. The outline of this thesis is as follows. Chap-

ter 1 provides the necessary background information relating to this research. I

explain the evolution of research on reliability in deep learning and the necessity for

low-power execution with dedicated processors in the further development of deep

learning. Potential applications of these studies to the life sciences are discussed.

In chapter 2, I propose a stable learning method for BNNs and provide an in-depth

analysis thereof. In chapter 3, I discuss the fundamentals of a dedicated processor

that can run the proposed algorithm efficiently. In chapter 4, I present a general

discussion based on these results and summarize the findings.

1

1.1. Background to this study

1.1 Background to this study

1.1.1 Reliability of deep learning

When humans make decisions, they consider information by taking a somewhat

ambiguous viewpoint as to what the information is worth, rather than making a

simple binary decision as to whether the information is useful or not useful [1]. For

example, when we are informed by the weather forecast that rain is expected, many

of us are unlikely to unconditionally take out an umbrella. Instead, people would be

more inclined to decide whether to take along an umbrella based on the precipitation

probability in the weather forecast. For example, if the forecast predicted a 30 per-

cent chance of rain, people may leave their homes without an umbrella. On the other

hand, if the forecasted probability was unreliable, they would be forced to take their

umbrella with them. The reliability of this forecast probability is important in tools

that support human decision-making, such as weather forecasts. In particular, it is

highly important to reflect inaccurate forecasts in risky applications such as medical

diagnostics [2]. Deep learning has achieved excellence in tasks based on available

datasets, such as image recognition and natural language processing (NLP). On the

other hand, deep learning was shown to be problematic in that it tends to return

overconfident predictions[3] and this was confirmed in both computer vision [3] and

NLP [4], as well as in drug discovery [5]. In other words, a situation has occurred

in weather forecasting where the forecast always predicts rain with a 90% chance,

but in reality it was only correct 3 out of 10 times or 30% of the time. Although it

is possible to interpret the output of the last activation function (i.e., the softmax

function [6]) of a deep neural network as a prediction probability (confidence), it

does not necessarily reflect the actual percentage of correct responses. Predictive

calibration, which reflects confidence as the actual percentage of correct responses, is

a challenge in deep learning. This problem has been actively investigated for image

recognition tasks, which has been one of the most remarkable achievements in deep

learning. A deep learning model with good predictive calibration shows robustness

to inputs that do not fall within the distribution of the training data. For example,

for out of domain (OOD) inputs of which the correct label is not present in the test

Chapter 1. General Introduction 2

1.1. Background to this study

data, the confidence has a small value and can be removed by thresholding[7]. The

confidence is also adjusted for inputs that do not change the class to be classified,

but which change the distribution of the training data, such as the addition of noise.

Note that a model with good predictive calibration does not necessarily provide high

accuracy. A model with good predictive calibration is able to effectively lower the

output value of softmax for unconfident inputs. Predictive calibration, which re-

flects confidence as the actual percentage of correct responses, is a challenge in deep

learning. Training models with superior predictive uncertainty have been designed

following Bayesian approaches that consider neural networks probabilistically and

incorporate uncertainty in the parameters[8]. Because estimation of the true poste-

rior distribution with the use of BNNs is computationally expensive, the posterior

distribution is approximated by the Monte Carlo dropout (MC-Dropout) technique

[9] and variational inference methods [10][11]. Another commonly used approach is

Deep Ensembles, which is non-Bayesian[7], and estimates the predictive uncertainty

by using multiple models trained with different initial values. Deep ensembles may

have properties closer to the true posterior distribution than variational inference

methods, and they provide robust inference for changes in various training data dis-

tributions [12]. Because the individual models of deep ensembles resemble models

based on ordinary deep learning, parameter convergence is stable. However, the

approach is problematic in that the computational and memory costs increase with

the number of ensembles at training time.

Alternatively, temperature scaling could be used to improve the prediction uncer-

tainty by scaling the inputs to the softmax function without changing the parameters

of the trained model. However, this is a post-hoc approach that uses a validation

set to determine the scalar values. The disadvantage thereof is that predictive cali-

bration is ineffective when the distribution shift from the training data is large[13].

Obtaining predictive uncertainty for distributions that differ from the training data

may require some ingenuity in learning.

Chapter 1. General Introduction 3

1.1. Background to this study

1.1.2 Dedicated hardware for deep neural networks

The exponential supply of computing resources in computer systems is a major

factor in the remarkable progress of deep learning. However, the performance im-

provement comes with a limit. The performance of computers has continued to

increase over the past half-century with the development of semiconductor minia-

turization technology. The circuit resources available for processor design continue

to increase in accordance with Moore’s Law [14], according to which the number

of transistors per chip continues to increase exponentially. Denard scaling, which

contributed to improved power efficiency in semiconductor miniaturization, came to

an end in 2005[15], and, even though the number of transistors available on a chip

increased, power and thermal limitations made it difficult to increase the operating

frequency. Since then, the tendency was to reduce the operating frequency and im-

prove the computing performance based on parallelization with multiprocessor cores.

However, on the basis of Amdahl’s law [16], the multiprocessor core approach essen-

tially cannot resolve execution time bottlenecks in those parts of the computation

that cannot be parallelized. The computational power required for deep learning

exceeds the rate of CPU performance improvement according to Moore’s Law, and

this is being covered by the acceleration of deep learning with dedicated hardware

(see Figure 1.1).

Other approaches to improving the computational performance under power-

constrained conditions include the development of specialized processors. In partic-

ular, approaches involving highly dedicated accelerators are used for graphics, com-

pression, and machine learning. GPUs, accelerators dedicated to graphics process-

ing, have contributed significantly to the evolution of deep learning. After AlexNet,

invented in the early days of deep learning, achieved efficient learning by paral-

lelization on GPUs[17], GPUs became the standard tool for deep learning. As deep

learning models become larger, the computational resources must also become larger,

and the cost of powering these resources is not negligible. This prompted Google to

develop dedicated hardware for deep learning in the form of tensor processing units

(TPUs), which accelerated the power performance by tens of times compared to the

GPUs of the time[18]. Dedicated hardware for deep learning is optimized primarily

Chapter 1. General Introduction 4

1.1. Background to this study

Figure 1.1: Increase in computational demand in neural networks over the past 40
years[19].

by modifying the configuration of the arithmetic unit and memory buffer capacity

required for matrix multiplication. By reducing data and computational precision,

deep learning inference and training can be dramatically accelerated, saving signifi-

cant execution time and power consumption. Deep learning is still evolving today,

with no guarantee that future deep learning designs would be able to run efficiently

on conventional dedicated hardware. In fact, state-of-the-art deep learning models

such as EfficientNet [20] and BERT [21] cannot map their workflows well to ded-

icated hardware [22]. This indicates that the hardware needs to keep pace with

the evolution of deep learning and engineers need to continue to explore the best

architecture. However, designing dedicated hardware in a rapidly evolving field is

not easy. The search for architecture that enables a specific algorithm to become

more efficient requires the integration of the hardware and software in the system

and the verification to evaluate the viability of dedicated hardware. Furthermore,

if efficient hardware architecture could be designed, the architect could proceed

to the development of application specific integrated circuits (ASICs), where the

physical design is conducted. For applications such as deep learning, where the

Chapter 1. General Introduction 5

1.1. Background to this study

underlying algorithms are common but the workflow bottleneck changes depending

on the network architecture, a consistent and efficient development flow from ar-

chitecture exploration to workload evaluation is essential. In preparation for the

future exploration of diversified dedicated hardware architectures, the development

of a framework for generators capable of agile system-on-a-chip (SoC) development

is actively underway[23]. Clear guidelines regarding hardware architecture that can

efficiently handle predictive uncertainty in deep learning are non-existent [24], which

is why it is important to follow the agile development approach.

1.1.3 Importance of reliability evaluation by deep learning

in the life sciences

Medical diagnosis is one of the most important topics in the life sciences. The

use of machine learning to diagnose infected patients is a highly interesting topic

because it is expected to utilized efficiently and in a scalable manner. Coronavirus

disease 2019 (COVID-19) [25] is an infectious disease that broke out in 2019 and was

declared a pandemic in March 2020. COVID-19, which rapidly spread worldwide

and caused spectacular social disruption, is still raging today. An effective test

for COVID-19 infection, the reverse transcription polymerase chain reaction (RT-

PCR), has become popular, although imaging is also used for diagnosis. However,

although attempts have been made to use deep learning to diagnose COVID-19, the

reported results are extremely optimistic and are not practical[26]. Deep learning

models do not generalize well to differences in measurement devices and methods

in different hospitals[27]. The COVID-19 protein has a variety of mutations[28],

and the subtle changes in symptoms caused by this variety may make a diagnosis

by deep learning more difficult. For these situations, deep learning models that

represent high-quality predictive uncertainty are expected to be a tool to support

diagnoses by medical experts[29].

Chapter 1. General Introduction 6

1.2. Neural Networks

1.2 Neural Networks

This research focuses on supervised multiclass classification using a training dataset

D = {(xn, yn)}Nn=1 with N inputs x and target y. The probabilistic model of the

neural network is denoted as P (D|w) with parameters or weights w. The maximum

a posteriori (MAP) estimation is a point estimate of the random variable wMAP

that maximizes the posterior probability P (w|D). Random variable wMAP can be

estimated by minimizing the cost function LMAP(D,w):

LMAP (D,w) = − logP (D|w)− logP (w)

= LN (D,w)− logP (w), (1.1)

where the negative log-likelihood (NLL) is defined as LN (D,w) := − logP (D|w).

If P (w) is a Gaussian distribution with zero mean and variance σ, then (1.1) is a

form of L2 regularization that penalizes the weights if they exhibit large values. The

standard stochastic gradient descent (SGD) update of w at timestep t is as follows.

wt = wt−1 − α∇wL
MAP (D,wt−1)

= (1− λ)wt−1 − αgt, (1.2)

where α is the learning rate, gt is the LN (D,w) gradient at timestep t, and λ is

the regularization factor defined as λ := ασ−2. This factor functions as the weight

decay [30] because the terms of the L2 regularization are used directly to update

the weights w. However, L2 regularization and weight decay are not necessarily

equivalent. When using Adam [31], the sum of gt and the L2 regularization term

was evaluated as the gradient estimate. Consequently, the L2 regularization term

is not directly reflected in the weight update, which is not the same as the weight

decay.

Chapter 1. General Introduction 7

1.2. Neural Networks

1.2.1 Decoupled weight decay

To directly update the weights by the regularization term as a weight decay using

Adam, the update rule for the weights w is expressed as

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

ĝt =
mt/ (1− βt

1)√
vt/ (1− βt

2)

wt = (1− λ)wt−1 − αĝt, (1.3)

where β1 and β2 are the exponential decay rates for the momentum estimates mt

and vt, respectively, and ĝt is the gradient estimate by Adam. This method of de-

coupling gt and the regularization term from the evaluation by Adam is referred to

as Adam with decoupled weight decay (AdamW)[32]. AdamW is robust to the hy-

perparameter of the regularization factor λ and converges stably. This modification

of the optimizer has found application in NLP, reinforcement learning, and image

recognition[33].

1.2.2 Reliability Metrics

Normalization of the class prediction ŷ by the inference model by 1 can be regarded

as a probability distribution for the predicted label, and its maximum value can

be evaluated as confidence p̂. On the condition that p̂ and the actual correct

response rate are consistent, the probability calibration is determined. Because p̂ is

a continuous random variable, it is impossible to evaluate this confidence level from

a finite number of data samples. Therefore, the probability calibration is evaluated

by assigning the model outputs to m equally spaced bins using a finite number of

data samples. Let bm be the set of samples in the mth bin. The errors between the

average confidence value conf (bm) and the correct response rate acc (bm) within the

Chapter 1. General Introduction 8

1.2. Neural Networks

bin are determined, whereupon the weighted average of these errors is calculated as,

ECE =
M∑

m=1

|bm|
NECE

|acc (bm)− conf (bm)|. (1.4)

The expected calibration error (ECE) is used to approximately evaluate the proba-

bility calibration [34]. NECE is the total number of data points.

1.2.3 Distribution shifts

Distribution shifts include dataset shifts that belong to one of the same classes as

in the training dataset but the observed distribution has shifted (covariate shift).

Domain shifts, which are completely different distributions with no corresponding

class in the training dataset, could also occur. To evaluate the dataset shift, the

relative robustness of each model can be evaluated by computing the change in

ECE when noise of different degrees is added to the test data [13]. The proposed

evaluation of the covariate shift entails the addition of a dataset with various types

and levels of corruption to the image recognition dataset (Figure 1.2, Figure 1.3).

In the case of domain shift, the correct answer label is not at the output of the

inference model, but can be removed by setting a threshold value for the confidence

[7].

1.2.4 Bayesian neural networks

Bayes by backprop (BBB)

Bayesian neural networks, which are robust to overfitting [36], find the posterior

distribution P (w|D) given data D. Because obtaining the exact posterior distri-

bution P (w|D) is challenging, this study considered variational inference to obtain

the distribution parameter θ of the weights as the variational posterior distribution

q (w|θ) [10][11][37]. In variational inference, the variational free energy F (D,θ)

F (D,θ) = Eq(w|θ)
[
LN (D,w)

]
+KL(q(w|θ)||P (w)) (1.5)

Chapter 1. General Introduction 9

1.2. Neural Networks

Gaussian Noise Shot Noise Impulse Noise Speckle Noise

Defocus Blur Glass Blur Motion Blur Zoom Blur

Snow Frost Fog Brightness

Contrast Elastic Transform Pixelate JPEG

Figure 1.2: Effect of different types of image data corruption[35]

Clean Noise Level 1 Noise Level 2 Noise Level 3 Noise Level 4 Noise Level 5

Figure 1.3: Effect of different levels of image data corruption [35]

is minimized, where KL is the Kullback-Leibler divergence. The first term of this

cost function is interpreted as an expected NLL. Further, the second term is the

complexity loss, which is interpreted as a minimum description length loss func-

tion[10] [11]. In BBB, KL is treated as an approximation by Monte Carlo sampling

rather than a closed form. Therefore, with S as the number of samples obtained by

Monte Carlo sampling, (1.5) for mini-batch training, where the training data D are

divided into M subsets as D1,D2, ...,DM , becomes

F (Di,θ) =
1

S

S∑
k=1

LN
(
Di,w

k
)

+
1

M

{
log q

(
wk

∣∣θ)− logP
(
wk

)}
. (1.6)

Chapter 1. General Introduction 10

1.2. Neural Networks

When the posterior distribution is assumed to be normal, the weight wk as the

variational parameter θ = {µ,ρ} is

wk = µ+ σ ◦ ϵk, (1.7)

where

ϵk ∼ N (0, I) ,σ = log (1+ exp (ρ)),

where ◦ is pointwise multiplication. Now, the complex cost LC (θ) at the BBB is

defined as

LC (θ) =
1

S

S∑
k=1

{
log q

(
wk

∣∣θ)− logP
(
wk

)}
. (1.8)

If a sufficiently large number of datasets are used, the sample size S = 1 may cease

to be a problem[11]. The log-likelihood of the posterior distribution is

log q
(
wk

∣∣θ) = J∑
j=1

{
− log

√
2πσj −

(
wk

j − µj

)2
2σ2

j

}

=
J∑

j=1

{
− log

√
2πσj −

(ϵkj)
2

2

}
, (1.9)

where J is the size of the weight parameter, σj = log (1 + exp (ρj)). If J is sufficiently

large, the log-likelihood of the posterior distribution can be regarded as a function

of σj. Therefore, the gradient for each of these variables is

∂ log q
(
wk

∣∣θ)
∂wj

= 0, (1.10)

∂ log q
(
wk

∣∣θ)
∂µj

= 0, (1.11)

∂ log q
(
wk

∣∣θ)
∂σj

= − 1

σj

. (1.12)

Chapter 1. General Introduction 11

1.2. Neural Networks

Here, if S = 1, then the gradient of F (Di,θt−1) asw = µt−1+log
(
1+ exp

(
ρt−1

))
◦ϵ

is

∆µ = ∇wF (Di,θt−1)
∂w

∂µ
+∇µF (Di,θt−1)

= ∇wF (Di,θt−1)

= gt −
1

M
∇w logP (w) (1.13)

∆ρ =

{
∇wF (Di,θt−1)

∂w

∂σ

+∇σF (Di,θt−1)

}
∂σ

∂ρ

=

{
∆µϵ

− 1

M

1

σ

}
1

1 + exp
(
−ρt−1

) . (1.14)

and the variational parameters are updated as follows.

µt = µt−1 − α∆µ (1.15)

ρt = ρt−1 − α∆ρ, (1.16)

where α is the learning rate. The sampling from the variational posterior distribution

q (w|θ) can be used to evaluate the predictive distribution P (ŷ|x̂) using an ensemble.

P (ŷ|x̂) = Eq(w|θ) [p (ŷ|x̂,w)]

≒ 1

S

S∑
k=1

p
(
ŷ
∣∣x̂,wk

)
, (1.17)

where x̂ is the new input and ŷ is the unknown label.

Low Precision BNNs

Monte Carlo-based BNN inference is computationally expensive because it requires

Gaussian sampling in addition to general matrix-matrix multiplication (GEMM)

in ordinary NNs. An approach to reduce the computational cost of GEMMs is

to convert floating-point operations to integer operations of a few bits by quanti-

Chapter 1. General Introduction 12

1.3. Agile system-on-a-chip development

zation, as is usually done with NNs. Experiments confirmed that quantizing the

weights of models trained with BBB to 8-bit integers does not degrade the probabil-

ity calibration and accuracy [38]. Apart from the above-mentioned approaches, the

computational cost of Gaussian sampling was also reduced by adapting the hardware

architecture. In particular, a dedicated Bayesian NN accelerator for inference, which

implements an integer GEMM accelerator and a dedicated circuit for low-precision

Gaussian sampling, was developed to optimize the computational flow from sampling

to GEMM at the hardware level. For example, Cai et al. proposed an FPGA-based

BBB inference accelerator that samples the normal distribution from the binomial

distribution based on the central limit theorem (CLT)[39]. Subsequently, Hirayama

et al. proposed sampling of the normal distribution by using a lookup table (LUT)

based on inverse transform sampling[40].

1.3 Agile system-on-a-chip development

Improving the performance of computer systems by developing dedicated hardware

is essential. However, designing hardware from scratch for every application is im-

practical because of the implementation costs. Even if dedicated hardware was

targeted at a specific application, prompt consideration of architectural changes is

necessary when changes occur in the latest algorithms. Changes in the hardware

design to accommodate the targeted algorithm are not simply a matter of changing a

particular module and verifying it at the block level: the module must be integrated

into the system as hardware and validated.

1.3.1 Chipyard

Chipyard is open source software that provides a unified framework and workflow

for agile SoC development (Figure 1.4). Highly parameterized CPU cores, memory

systems, peripherals, and dedicated circuits can be interconnected to generate a

complete SoC. The generated SoC design can be verified using software simulation

and FPGA prototyping. Once verification is complete, the design can be seamlessly

shifted to the VLSI design flow, enabling rapid ASIC physical design. Therefore, by

Chapter 1. General Introduction 13

1.3. Agile system-on-a-chip development

Figure 1.4: Chipyard frameworks[23]

Figure 1.5: RISC-V base instruction formats[42]

designing dedicated hardware that can be integrated into the Chipyard framework,

agile hardware design is possible even with a small number of developers. CPUs

available in Chipyard can use RISC-V ISAs that support the rocket core processor

[41]. RISC-V ISA is an instruction set architecture that defines the minimum func-

tionality required for a processor and enables ISA extensions to be made as needed

[42]. The base integer ISA is the foundation for RISC-V. Four basic instruction

formats are defined: R-type, I-type, S-type, and U-type, as shown in Figure 1.5.

Rocket core provides a rocket custom co-processor (RoCC) interface for connection

to customized dedicated hardware. To access the RoCC from Rocket core, the user

specifies one of the four custom opcodes supported by the R-type ISA.

Chapter 1. General Introduction 14

1.4. The objective of this thesis

1.3.2 Gemmini

Gemmini is a generative system based on the Systolic Array architecture integrated

into the Chipyard framework. This system can be parameterized in terms of arith-

metic precision of the arithmetic unit and the size and number of banks of scratch-

pads, allowing the design of efficient hardware architectures according to the archi-

tecture of deep learning. Gemmini issues execution commands from the RISC-V

CPU through the RoCC interface. Software programming is accomplished via the

C/C++ API, and the parts that depend on the Gemmini architecture utilize infor-

mation in a dedicated C header that is generated simultaneously with the hardware.

1.4 The objective of this thesis

The goal of the research presented in this thesis is to develop algorithms that allow

stable parameter convergence with BBB to enable efficient learning with dedicated

Bayesian deep learning processors that make reliable predictions. In this regard,

deep ensembles capture superior predictive uncertainty, but the training cost in-

creases in proportion to the number of ensembles. This problem can be overcome

by using BBB, which offers a viable solution, although it doubles the number of

parameters. However, the generation of random numbers and the evaluation of

probability distributions can be performed with dedicated hardware for low-power

execution. This research therefore also involved a study of the fundamentals of

dedicated hardware capable of supporting efficient BBB training.

Chapter 1. General Introduction 15

Chapter 2

Decoupled Bayes by Backprop

The performance optimization of reliable Bayesian deep learning models requires

the algorithm to be improved before a dedicated processor is developed. In this

chapter, I propose Adam with decoupled Bayes by Backprop (AdamB), which serves

to stabilize the training of Bayesian deep neural networks. The proposed algorithm

is evaluated and discussed. Chapter 2.1 provides the background and objectives

of the work presented in this chapter. Chapter 2.2 describes the ideas underlying

AdamB. Chapter 2.3 presents my evaluation of AdamB on an image identification

task and my assessment of its robustness to data corruption. In Chapter 2.4, I

provide a detailed analysis of the covariate shifts of the models trained by AdamB.

In Chapter 2.5, I evaluate the possibility of training AdamB with low-precision

random numbers, which is necessary for the low-power execution of AdamB on a

dedicated processor.

17

2.1. Stable Bayesian neural network training

2.1 Stable Bayesian neural network training

2.1.1 Background

Overfitting is a major problem in machine learning. Because deep learning enables

high predictive accuracy in image classification tasks, the research focus has shifted

to improving the quality of the predictive uncertainty [43]. Weight decay can be im-

plemented as the gradients of L2 regularization with the assumption of a Gaussian

distribution for prior maximum a posteriori (MAP) estimation. This is a traditional

method for preventing overfitting[44] while improving the prediction uncertainty

[3]. In another approach, high-quality prediction uncertainty can be represented

by deep ensembles that train an ensemble of neural networks with different initial

values[7]. Deep ensembles are non-Bayesian but may well approximate the ideal

posterior distribution in Bayesian neural networks (BNNs)[12]. Although it is a

simple approach that provides a good representation of predictive uncertainty, the

ensemble increases the computational and memory costs during training. Dropout

and mean-field variational inference (MFVI) approaches have been used to learn the

posterior distribution of the BNNs. MC-dropout represents an ensemble of models

obtained by sampling weights with dropout [9]. The implementation thereof is easy

and the parameters converge stably; however, the quality of the predictive uncer-

tainty is poorer than that with deep ensembles [7] [13]. Further, MFVI facilitates the

marginalization of the weight parameters by assuming a computationally tractable

posterior distribution[10] [11]. Unfortunately, the application of MFVI to large

neural networks is limited and requires various techniques and tuning for param-

eter convergence, such as decorrelating gradients in mini-batches [45], the natural

gradient method [46], and mapping of weights to uncertain activation [47][48]. In

this respect, the predictive uncertainty of the empirical Bayes approach [49], which

switches to variational inference after maximum likelihood estimation (MLE), is

superior to that of deep ensembles [50]. This study showed that, although varia-

tional inference is not necessarily inferior to deep ensembles, it cannot overcome the

challenge of parameter convergence in variational inference. The Adam optimizer

employs a small step size for parameter updates by using automatic annealing when

Chapter 2. Decoupled Bayes by Backprop 18

2.1. Stable Bayesian neural network training

the variance of the gradient estimate is large[31]. Thus, it is naturally expected

to be a good optimizer for BBB; however, it is ineffective in practice. The radial

BNN uses a light-tailed posterior distribution to suppress the increase in the vari-

ance of the gradient estimator and allow convergence with Adam [51]. Thus, it

is necessary to determine whether Adam performs well in MFVI using the vanilla

Gaussian posterior. A technique to improve parameter convergence is to use Adam

with decoupled weight decay (AdamW), wherein the regularization term of the loss

function is decoupled from the gradient estimate of Adam and applied directly to

the weight update as a weight decay[32]. If the gradient of the regularization term,

which tends to be significantly larger than the gradient of the neural network loss, is

not decoupled, the gradient of the neural network loss does not hold properly within

the momentum of Adam[33]. Moreover, an important insight gained from AdamW

is that the performance is adequate even when Adam is used only for the gradi-

ents of the neural network loss. Bayes by Backprop (BBB) is an MFVI algorithm

[37] that samples the weights w from the variational parameter θ = {µ,ρ} of the

Gaussian posterior distribution using a reparameterization trick [52]. Parameter µ

is the mean of the Gaussian, and parameter ρ is transformed into a non-negative

value by the softplus function and used as the standard deviation of the Gaussian.

Consequently, the BBB cost function is formed by adding the log-likelihood of the

variational posterior distribution to the cost function of the MAP estimation. How-

ever, even with such simple changes, training VGG [53] and ResNet [54] remains

challenging and tends to fail[46][55]. BBB is preferred when using a Gaussian scale

mixture (SM) prior [37], which is a mixture of two Gaussians with different vari-

ances. However, the significance of using the SM prior remains unclear. Moreover,

although the use thereof has been reported to slightly improve the performance of

large neural networks [56], other reports indicated that the effect is insignificant[51].

Thus, stabilizing the BBB can aid in evaluating the effectiveness of the SM prior.

2.1.2 Purpose of this study

This study led to the proposal of Adam with decoupled Bayes by Backprop (AdamB),

which decouples the log-likelihood terms of the prior and posterior distributions in

Chapter 2. Decoupled Bayes by Backprop 19

2.1. Stable Bayesian neural network training

Cost Function

Adam

Update 𝝁,𝝆

∇𝝁, ∇𝝆

Cost Function

Update 𝝁,𝝆

∇𝝁, ∇𝝆

NN Error Posterior Prior NN Error Posterior Prior

grad grad grad grad grad grad

Adam

Figure 2.1: Updating the Bayes by Backprop (BBB) parameters using the Adam estimator.
Adam with BBB (left) and Adam with decoupled BBB

Algorithm 1 Momentum SGD with Decoupled Bayes by Backprop
1: given αµ = 0.1, αρ = 0.001, β1 = 0.9, λd = 0.01
2: initialize µ,ρ,m0, t, η0
3: repeat
4: Randomly sample a data example Di

5: t← t+ 1
6: σ ← log

(
1+ exp

(
ρt−1

))
7: w← µt−1 + σ ◦ ϵ,where ϵ ∼ N (0, I)
8: gt ← −∇w logP (Di|w) ▷ estimate NN gradient
9: mt ← β1mt−1 + (1− β1)gt

10: ∆µ ←mt − λd∇w logPSM(w)
11: ∆ρ ← (∆µ ◦ ϵ− λd/σ) 1/{1 + exp

(
−ρt−1

)
},

12: µt ← µt−1 − ηt−1αµ∆µ

13: ρt ← ρt−1 − αρ∆ρ

14: ηt ← SchedulerUpdate(ηt−1)
15: until µ has converged

the BBB cost function from Adam (see Figure 2.1). The advantage of AdamB is

that it facilitates stable parameter convergence in image classification tasks under

training conditions that are nearly identical to MAP estimation. The update of

parameter ρ is strongly influenced by the standard deviation of the prior distribu-

tion. However, the direct application of Adam to BBB causes this parameter to be

excessively updated and this tendency was observed to relax by decoupling BBB.

Furthermore, training AdamB with the SM prior improved the quality of predictive

uncertainty in the covariate shift benchmark [13]. This approach outperformed deep

ensembles for datasets wherein covariate shift was caused by noise.

Chapter 2. Decoupled Bayes by Backprop 20

2.2. Adam with decoupled Bayes by backprop

Algorithm 2 Adam with Decoupled Bayes by Backprop (AdamB)
1: given αµ = 0.001, αρ = 0.001, β1 = 0.9, β2 = 0.999, λd = 0.01
2: initialize µ,ρ,m0,v0, t, η0
3: repeat
4: Randomly sample a data example Di

5: t← t+ 1
6: σ ← log

(
1+ exp

(
ρt−1

))
7: w← µt−1 + σ ◦ ϵ,where ϵ ∼ N (0, I)
8: gt ← −∇w logP (Di|w) ▷ estimate NN gradient
9: mt ← β1mt−1 + (1− β1)gt

10: vt ← β2vt−1 + (1− β2)gt ◦ gt

11: m̂t ←mt/(1− βt
1)

12: v̂t ← vt/(1− βt
2)

13: ĝt ← m̂t/(
√
v̂t + eps)

14: ∆µ ← ĝt − λd∇w logPSM(w)
15: ∆ρ ← (∆µ ◦ ϵ− λd/σ) 1/{1 + exp

(
−ρt−1

)
},

16: µt ← µt−1 − ηt−1αµ∆µ

17: ρt ← ρt−1 − αρ∆ρ

18: ηt ← SchedulerUpdate(ηt−1)
19: until µ has converged

2.2 Adam with decoupled Bayes by backprop

2.2.1 Updates of the variational parameter

As is evident from the comparison of (1.13) and differentiated form of (1.1), there

is no significant difference between the gradient of µ in BBB and that of w in the

MAP estimation. Because ∇ρσ is a sigmoid function, the gradient of parameter ρ

and that of variable σ have the same sign. Therefore, by examining ∇ρL
C (θ), the

sign of ∇σL
C (θ) can be determined.

∇σL
C (θ) =

1

S

S∑
k=1

{
− 1

σ
−

∂ logP
(
wk

)
∂wk

ϵk

}
. (2.1)

Chapter 2. Decoupled Bayes by Backprop 21

2.2. Adam with decoupled Bayes by backprop

Assuming that the prior distribution is Gaussian with mean zero variance σ1 and

the weights w are sufficiently sampled, (2.1) becomes

∂LC (θ)

∂σj

= Eϵj∼N (0,1)

[
− 1

σj

− ∂ logP (w)

∂wj

ϵj

]
= Eϵj∼N (0,1)

[
− 1

σj

− −(µj + σjϵj)

σ2
1

ϵj

]
= Eϵj∼N (0,1)

[
σj

σ2
1

ϵ2j

]
− 1

σj

=
σj

σ2
1

− 1

σj

. (2.2)

When ∂LC(θ)
∂σj

= 0 for certain j, parameter ρj is stable. This condition is satisfied by

∂LC (θ)

∂σj

= 0

σj = σ1. (2.3)

Therefore, parameter ρj continues to change toward the hyperparameter value of the

standard deviation σ1 of the prior following the evaluation of the softplus function.

This corresponds to the results shown in [11] when the weights w are marginalized.

In practice, the weights are sampled only once per iteration; however, similar results

can be obtained for sufficiently large iterations. Moreover, the problem is not too

large to consider the changing trend of parameter ρj. This result indicates that

the update of parameter ρj is significantly influenced by the design of the prior

distribution. However, if the hyperparameters of the Gaussian prior distribution are

not set explicitly, σ1 = 1 is obtained regardless of the coefficients of LC (θ).

2.2.2 Decoupled Bayes by backprop

The loss of BBB is very noisy; thus, it is desirable to use Adam, which is suitable

for the stable convergence of noisy loss functions[31]. As observed, LC (θ) causes

the update of parameter ρj to be strongly dependent on the standard deviation of

the prior distribution. For example, if the initial value of parameter ρj is small, it

continues to increase until σj reaches σ1. In this situation, the gradient estimate by

Chapter 2. Decoupled Bayes by Backprop 22

2.2. Adam with decoupled Bayes by backprop

Adam causes parameter ρj to increase extremely rapidly. Consequently, an unnec-

essarily rapid increase in parameter ρ may prevent the convergence of parameter

µ. Although the use of Adam is undesirable for parameter ρ because the sign of

its gradient rarely changes until the parameter update stabilizes, it is necessary to

update parameter µ owing to the adoption of a noisy cost function. This motivated

the proposal of AdamB in this study, inspired by AdamW [32]. Similar to AdamW,

for the BBB cost function, Adam is evaluated only for the NLL gradient gt. Sub-

sequently, using the gradient estimate ĝt evaluated by Adam, the gradients of the

variational parameters are as follows:

∆µ = ĝt − λd∇w logP (w) (2.4)

∆ρ =

{
∆µϵ− λd

1

σ

}
1

1 + exp
(
−ρt−1

) , (2.5)

where λd denotes a decoupled regularization factor that is replaced by 1
M

in (1.6).

The update of the parameter µ in BBB corresponds to the weight w in the MAP

estimation. λd corresponds to λ in the MAP estimation; however, it is a hyperpa-

rameter that does not reflect the standard deviation of the prior distribution. As

previously observed, the properties of the gradients of parameters µ and ρ are dif-

ferent. Thus, the need to use the same learning rate is eliminated. The learning

rates of µ and ρ were set as αµ and αρ. Therefore, the update of the variational

parameters using AdamB becomes

µt = µt−1 − αµ∆µ (2.6)

ρt = ρt−1 − αρ∆ρ. (2.7)

In this study, the initial values of the variational parameters were obtained from

Xavier’s initial values[57] as follows:

µinit
j ∼ N

(
0,
√

2/ (nin + nout)
)

(2.8)

σ
(
ρinitj

)
= δ

√
2/ (nin + nout), (2.9)

Chapter 2. Decoupled Bayes by Backprop 23

2.2. Adam with decoupled Bayes by backprop

where δ is the initialization scale factor and nin and nout are the numbers of input

and output neurons, respectively, at each layer in the neural network.

2.2.3 Gaussian scale mixture prior for stable optimization

AdamB stabilizes the convergence of the noisy cost function and avoids the rapid

increase in parameter ρ. However, it does not suppress the increase in the parameter

ρ itself. As is evident from (2.3), for parameter ρ to decrease, the variance of the

prior distribution must be set to a sufficiently small value. The simplest way to

accomplish this is to set the variance of the prior distribution to be small. However,

this approach results in a strong regularization of parameter µ, which may adversely

affect convergence. This problem can be solved using the SM prior PSM (w):

PSM (w) =
∏
j=1

{aN
(
wj

∣∣0, σ2
1

)
+ (1− a)N

(
wj

∣∣0, σ2
2

)
},

where a is a constant, such that 0 < a < 1. σ2
1 and σ2

2 are the variances of the

Gaussians. Here, σ1 was set as a long-tailed Gaussian and σ2 as σ2 ≪ 1 such that

the weights were densely concentrated around zero. This log-likelihood is

logPSM(w) =
J∑

j=1

log

{
a

1√
2πσ1

exp

(
−

w2
j

2σ2
1

)

+ (1− a)
1√
2πσ2

exp

(
−

w2
j

2σ2
2

)}
=

J∑
j=1

[
log

a√
2πσ1

−
w2

j

2σ2
1

+ log

{
1 +

1− a

a

σ1

σ2

exp

(
−

w2
j

2σ′2

)}]
, (2.10)

where σ′−2 = σ−2
2 − σ−2

1 . The transformation of the last equation appears unnec-

essary; however, the derivatives must be evaluated correctly. The derivatives of

the Gaussian mixture are moderately complex, resulting in implementation failure

[10]. Further, modern deep learning frameworks[58] [59] tend to miss the back-

ward numerical stability because they rely on automatic differentiation to evaluate

Chapter 2. Decoupled Bayes by Backprop 24

2.3. Robustness of AdamB with SM prior

derivatives. The log-likelihood of SM diverges in the region where the tails of both

Gaussians are zero. Thus, despite the addition of a small value for PSM(w), a region

where the gradient is zero will still exist, and consequently, the regularization of the

parameters will fail.

2.3 Robustness of AdamB with SM prior

The performance of AdamB in combination with the SM prior was evaluated using

the image recognition datasets CIFAR-10, CIFAR-100 [60], and TinyImageNet [61].

The neural network models were evaluated by using ResNet [54] and VGG [53].

In addition, covariate shift benchmarking was carried out using the corresponding

corruption datasets [35]. All experiments were conducted by completing 210 epochs

with a batch size of 256 and the learning rate scheduler was cosine annealed [32].

For all experiments using BBB, δ = 1.0 and αρ = 0.001. When Adam is used as the

optimizer, αµ = 0.001, λd = 0.01, otherwise (SGD) αµ = 0.1, λd = 5.0 × 10−4. For

MAP estimation, SGD has a momentum of 0.9 and λ = 5.0 × 10−4; AdamW had

λ = 1.0× 10−2. During training, data augmentation was applied to the input data.

A horizontal flip was used in all experiments. For CIFAR, the image was padded

with four pixels and then cropped to 32× 32. Finally, for TinyImageNet, the image

was padded with eight pixels and then cropped to 64 × 64. No data augmentation

was used during testing.

Effects of Decoupling

First, the convergence of parameters was evaluated by decoupling the BBB loss;

the momentum SGD and Adam by decoupled BBB are denoted as D-mBBB and

AdamB, respectively. Further, to enable the optimizers to be compared, the vanilla

BBB and non-decoupled momentum SGD (mBBB) and Adam (BBB-Adam) as well

as vanilla optimization with momentum SGD and AdamW were employed. Subse-

quently, the NLL, accuracy, and log posterior distribution log q (w|θ) were plotted

for each epoch (Figure 2.2). In the evaluation of the accuracy and NLL with the test

dataset, the weights w were not sampled; however, the parameter µ was used in-

Chapter 2. Decoupled Bayes by Backprop 25

2.3. Robustness of AdamB with SM prior

0 50 100 150 200
Epoch

1

2

3

NL
L

ResNet18 on CIFAR-10

0 50 100 150 200
Epoch

2

4

6

8

NL
L

ResNet50 on TinyImageNet

0 50 100 150 200
Epoch

0.25

0.50

0.75

Ac
cu

ra
cy

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

0 50 100 150 200
Epoch

0

2

lo
gq

(w
|

)

1e7

0 50 100 150 200
Epoch

2.5

0.0

2.5

5.0

lo
gq

(w
|

)

1e7

AdamB (proposed)
D-mBBB (proposed)

AdamW
SGD

BBB
mBBB

BBB-Adam

Figure 2.2: Learning curve of DNNs trained by BBB (solid curves) or MAP estimation (dashed
curves). NLL curves (top), generalization curves (middle), and log-likelihood of the posterior
distribution curves (bottom).

0.4 0.2 0.0 0.2 0.40

5

10

15

20

25

30

35

40

De
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0
= log {1 + exp ()}

0

10

20

30

40

50

60

70

80

De
ns

ity

4 2 00

2

4

6

De
ns

ity

BBB-Adam BBB-Adam Init

Figure 2.3: Transition of BBB parameter distribution when using Adam estimator. The pa-
rameter µ is concentrated near zero compared to the initial distribution (left). The parameter ρ
concentrates on values for which σ is distributed near 1.0 (right).

stead. BBB can converge in ResNet and VGG on CIFAR-10, regardless of whether

it is optimized by SGD. However, the training fails in ResNet and VGG because

the learning rate is shared by variational parameters [46][55]. SGD tends to set

a larger learning rate than Adam, and the update step size for the parameter ρ

was probably excessive. In the experiments that were conducted, a distinction was

Chapter 2. Decoupled Bayes by Backprop 26

2.3. Robustness of AdamB with SM prior

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
w

0

1

2

3

4

5

lo
gP

SM
(w

)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
w

100

50

0

50

100

lo
gP

SM
(w

)

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
w

1000

500

0

500

1000

lo
gP

SM
(w

)

SM(-0, -0) SM(-0, -6) SM(-1, -6) SM(-2, -6)

Figure 2.4: Log-likelihoods of the Gaussian scale mixture prior distributions (top) and their
derivatives (middle, bottom). The derivatives extend over a wide range (middle) and are concen-
trated near zero (bottom). The hyperparameters of the Gaussian scale mixture are represented as
SM(log σ1, log σ2). The other hyperparameter is a = 0.5.

made between αµ and αρ and thus, successful convergence with SGD on BBB was

realized. In TinyImageNet, which is difficult to use for learning, BBB with SGD

did not notably increase the accuracy; however, AdamB achieved the same level of

accuracy as MAP estimation. Evidently, BBB-Adam failed to learn. log q (w|θ)

in BBB-Adam decreased rapidly until it reached a specific value, implying a rapid

increase in parameter ρ. Because Adam tends to have a large step size when the

sign of the gradient remains the same, this causes a rapid increase in ρ. Figure 2.3

shows the distribution of the parameters for the initial values in ResNet18 and the

values after training CIFAR-10 with BBB-Adam. Parameters µ and ρ are evidently

concentrated at zero and approximately 1.0, respectively, following evaluation using

the softplus function. As Adam accelerated the update of parameter ρ, it can be

considered to have stabilized at the same value as in (2.3).

Chapter 2. Decoupled Bayes by Backprop 27

2.3. Robustness of AdamB with SM prior

0 50 100 150 200
Epoch

1

2

NL
L

ResNet18 on CIFAR-10

0 50 100 150 200
Epoch

2

4

6

NL
L

ResNet50 on TinyImageNet

0 50 100 150 200
Epoch

0.25

0.50

0.75

Ac
cu

ra
cy

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

0 50 100 150 200
Epoch

3.2

3.4

lo
gq

(w
|

)

1e7

0 50 100 150 200
Epoch

5

6

lo
gq

(w
|

)

1e7

AdamB(0,0) AdamB(0,-6) AdamB(-1,-6) AdamB(-2,-6)

Figure 2.5: The learning curve of DNNs trained by BBB with different priors. NLL curves (top),
generalization curves (middle), and log-likelihood of the posterior distribution curves (bottom).

Gaussian Scale Mixture Prior

As AdamB facilitates stable parameter convergence, a detailed evaluation of the

effects of the SM prior is possible. In this experiment, the convergence of the vari-

ational parameters was examined using the SM prior. The hyperparameters of the

SM prior were based on the values used in the BBB study [37]; that is, the hyperpa-

rameters are a = 0.5, (log σ1, log σ2) ∈ {(0, 0) , (0,−6) , (−1,−6) , (−2,−6)}. When

(log σ1, log σ2) = (0, 0), the prior distribution is identical to a standard Gaussian

distribution.

Figure 2.4 shows plots of the prior distribution and the gradient used in this

experiment: σ1 weakly regularizes over a wide range of widths, whereas σ2 strongly

regularizes at approximately zero. The experiment was repeated by changing only

the prior to AdamB (Figure 2.5). AdamB in Figure 2.2 and AdamB (0,0) in Figure

2.5 were identical. The NLL significantly improved with AdamB (-1,-6) owing to

the stronger regularization using the SM prior. Additionally, the SM prior exhibited

a more moderate decrease or increase in log q (w|θ) than the Gaussian prior. This

Chapter 2. Decoupled Bayes by Backprop 28

2.3. Robustness of AdamB with SM prior

0.4 0.2 0.0 0.2 0.40

10

20

30

40

50

De
ns

ity

0.02 0.04 0.06 0.08
= log {1 + exp ()}

0

100

200

300

400

De
ns

ity

4 3 20

5

10

De
ns

ity

AdamB (0, 0) AdamB (-1, -6) AdamB Init

Figure 2.6: Transition of the BBB parameter distribution for different prior distributions when
using AdamB. The parameter µ has a wider distribution when AdamB (0, 0) is used; however, the
parameter values are concentrated near zero for AdamB (-1, -6) (left). The parameter ρ tends to
increase consistently for AdamB (0, 0); however, it increases unevenly for AdamB (-1, -6). (right).

indicates that parameter ρ is controlled by the SM prior. Figure 2.6 shows the

distribution of the initial parameters of ResNet18 and the parameters after training

CIFAR-10 with AdamB (0,0) or AdamB (-1,-6). Despite the introduction of the

SM prior to control the parameter ρ, this made no clear difference and the change

from the initial value was minimal. In contrast, a significant difference was ob-

served in the parameter µ in that its values were strongly concentrated near zero

for AdamB (-1,-6); however, AdamB (0,0) had a wider distribution than the initial

value. The AdamB (0,0) result is consistent with the fact that the weights optimized

by AdamW are not concentrated at zero [62]. When a Gaussian distribution is used

as a variational posterior distribution, the properties of the model may be considered

by estimating the signal-to-noise ratio (SNR = 10 log10 |µj|/σj) from the variational

parameters[11][37]. Figure 2.7 shows the SNR histograms and cumulative distribu-

tion functions (CDFs) for the convolutional (Conv) and fully connected (FC) layers

from ResNet18 on CIFAR-10. The SM prior of AdamB (-1,-6) regularized param-

eter µ such that it was concentrated near zero, thereby rendering the perturbation

by parameter ρ as relatively strong. In addition, even with the SM prior, the FC

layer for classification did not have an extremely small SNR compared to the Conv

layer. Figure 2.8 shows that, percentage-wise, the small SNRs in the convolutional

layer increase toward the output layer. This indicates that the perturbations be-

come progressively stronger. Additionally, the SNRs smaller than zero continue to

Chapter 2. Decoupled Bayes by Backprop 29

2.3. Robustness of AdamB with SM prior

30 20 10 0 10
Signal-to-Noise Ratio (dB)

0.00

0.05

0.10

De
ns

ity

Conv Layer

30 20 10 0 10
Signal-to-Noise Ratio (dB)

0.00

0.05

0.10

De
ns

ity

FC Layer

30 20 10 0 10
Signal-to-Noise Ratio (dB)

0.00

0.25

0.50

0.75

1.00

CD
F

30 20 10 0 10
Signal-to-Noise Ratio (dB)

0.00

0.25

0.50

0.75

1.00

CD
F

AdamB (0, 0) AdamB (-1, -6) AdamB Init

Figure 2.7: Comparison of SNR by varying the prior in AdamB. Histogram of SNR (top) and
cumulative distribution function (CDF) of SNR (bottom).

0
1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

Figure 2.8: Distribution of SNRs in each convolutional layer of ResNet18 in the AdamB (-1,-6)
prior (except for the 1×1 filter, which is a dimensionality adjustment layer). Histogram of SNR
(left) and cumulative distribution function (CDF) of SNR (right). The graph numbers increase
with the depth of the convolutional layer.

become increasingly smaller(Figure 2.9). In contrast, tshe SNRs greater than zero

continue to gradually increase, suggesting that some parameter µ is increasing. This

increasing parameter µ can be thought of as searching a parameter space that is

robust to perturbations by other weights.

Table 2.1 lists the performance of the different datasets, neural network models,

and optimization methods. The accuracy, area under the ROC curve (AUROC), and

expected calibration error (ECE)[3], which quantifies the quality of the prediction

uncertainty, were evaluated. The AUROC was evaluated using a multi-class one-vs.-

one scheme[63]. When neural network models are used, not all outputs are useful for

decision making and those deemed unreliable are removed by setting a threshold[7]

[51]. Here, the confidence threshold τ was evaluated as τ = 0.6. The sample rate

is the percentage of outputs with a confidence threshold. In this study, evaluations

Chapter 2. Decoupled Bayes by Backprop 30

2.3. Robustness of AdamB with SM prior

weight/neuron27 576 1152 2304 4608

noisy (weak)
weight

strong weight
SN
R
m
ea
n

Figure 2.9: Changes in the respective mean values when fitting the SNR distribution in AdamB
(-1,-6) with two Gaussian distributions. The numbers above the graph are the number of weights
per neuron in each convolutional layer.

were conducted using both a single model and an ensemble. In the case of AdamB,

20 patterns of weights w were generated by MC sampling from the variational

parameters and evaluated as an ensemble. For SGD, 20 models with different initial

values were prepared and evaluated as deep ensembles. Further, for AdamB, when

the ensemble was not evaluated, the parameter µ was treated as the weight w and

the performance was evaluated. Overall, the performance of AdamB was not as

good as that of the SGD ensemble. This may be attributed to the fact that AdamB

is designed to explicitly model the parameter uncertainty, which seems to make it

difficult to improve the performance when evaluating the in-domain dataset. When

training on TinyImageNet, AdamB (-1,-6) was more accurate using the threshold

than the SGD ensemble; however, the number of valid samples was extremely small,

and it is not necessarily considered a good result.

Chapter 2. Decoupled Bayes by Backprop 31

2.3. Robustness of AdamB with SM prior

T
ab

le
2.
1:

P
er
fo
rm

an
ce

co
m
p
ar
is
on

on
cl
ea
n
d
at
a

D
at
as
et

M
o
d
el

O
p
ti
m
iz
er

A
ll
E
x
am

p
le
s

C
on

fi
d
en
ce

th
re
sh
ol
d
τ
=

0.
6

A
cc
u
ra
cy

A
U
R
O
C

E
C
E

A
cc
u
ra
cy

A
U
R
O
C

E
C
E

S
am

p
le

R
at
e(
%
)

C
IF
A
R
-

10
-C

V
G
G
16

S
G
D

93
.9
8
/
9
5
.4
8
0.
99
6
/
0
.9
9
8
0.
04
4
/
0
.0
0
3
94
.6
9
/
9
7
.1
2
0.
99
6
/
0
.9
9
9
0.
04
3
/
0
.0
0
3
98
.8

/
96
.5

A
d
am

B
(0
,0
)

91
.3
1
/
91
.1
4
0.
99
4
/
0.
99
5
0.
07
3
/
0.
02
3
91
.6
8
/
94
.0
1
0.
99
4
/
0.
99
6
0.
07
3
/
0.
02
1
99
.1

/
94
.2

A
d
am

B
(-
1,
-6
)
89
.9
3
/
89
.0
8
0.
99
3
/
0.
99
2
0.
04
4
/
0.
10
2
92
.3
1
/
96
.7
5
0.
99
5
/
0.
99
8
0.
04
2
/
0.
08
6
95
.3

/
77
.8

R
es
-

N
et
18

S
G
D

95
.4
6
/
9
6
.3
9
0.
99
8
/
0
.9
9
9
0.
02
5
/
0
.0
0
4
96
.2
3
/
9
7
.5
7
0.
99
8
/
0
.9
9
9
0.
02
4
/
0
.0
0
3
98
.3

/
97
.2

A
d
am

B
(0
,0
)

92
.7
7
/
92
.8
0
0.
99
6
/
0.
99
6
0.
06
1
/
0.
03
1
93
.1
9
/
94
.2
4
0.
99
6
/
0.
99
7
0.
06
0
/
0.
03
1
99
.2

/
96
.8

A
d
am

B
(-
1,
-6
)
91
.5
8
/
91
.2
2
0.
99
6
/
0.
99
5
0.
04
8
/
0.
07
4
93
.1
3
/
96
.7
3
0.
99
6
/
0.
99
8
0.
04
5
/
0.
06
2
97
.3

/
84
.4

C
IF
A
R
-

10
0-
C

V
G
G
16

S
G
D

74
.4
2
/
7
8
.7
7
0.
98
6/

0
.9
9
4
0.
13
0
/
0
.0
2
3
81
.7
9
/
90
.9
4
0.
99
1/

0
.9
9
7
0.
13
0
/
0
.0
1
9
86
.0

/
76
.5

A
d
am

B
(0
,0
)

66
.4
7
/
66
.4
9
0.
98
0
/
0.
98
4
0.
25
7
/
0.
11
5
70
.0
4
/
79
.9
9
0.
98
3
/
0.
99
1
0.
25
6
/
0.
10
5
92
.6

/
73
.2

A
d
am

B
(-
1,
-6
)
64
.9
5
/
64
.1
8
0.
98
5
/
0.
98
5
0.
14
0
/
0.
11
7
76
.9
9
/
9
3
.3
8
0.
99
1
/
0
.9
9
7
0.
14
2
/
0.
11
4
74
.9

/
38
.2

R
es
-

N
et
18

S
G
D

77
.6
2
/
8
1
.5
9
0.
99
0
/
0.
99
5
0.
05
3
/
0.
06
6
89
.8
3
/
9
4
.2
5
0.
99
5
/
0
.9
9
8
0.
03
9
/
0
.0
2
6
74
.7

/
70
.9

A
d
am

B
(0
,0
)

68
.7
9
/
68
.6
6
0.
98
5
/
0
.9
9
6
0.
23
3
/
0.
13
3
72
.5
2
/
79
.6
6
0.
98
8
/
0.
99
2
0.
23
1
/
0.
12
2
92
.4

/
78
.9

A
d
am

B
(-
1,
-6
)
70
.0
6
/
68
.9
1
0.
98
9
/
0.
98
8
0.
17
2
/
0
.0
5
0
76
.6
5
/
91
.0
7
0.
99
2
/
0.
99
7
0.
16
9
/
0.
05
4
86
.7

/
54
.3

T
in
y
-

Im
ag
eN

et
-

C

R
es
-

N
et
50

S
G
D

47
.8
1
/
5
4
.9
0
0.
95
5
/
0
.9
7
7
0
.0
7
2
/
0.
09
4
79
.4
2
/
89
.6
7
0.
97
7
/
0
.9
9
2
0.
09
8
/
0
.0
3
9
39
.6

/
34
.4

A
d
am

B
(0
,0
)

35
.1
7
/
37
.1
4
0.
93
9
/
0.
94
6
0.
49
5
/
0.
20
0
39
.3
4
/
61
.6
8
0.
94
3
/
0.
96
4
0.
52
1
/
0.
21
4
84
.6

/
41
.2

A
d
am

B
(-
1,
-6
)
38
.9
8
/
36
.3
5
0.
95
0
/
0.
95
2
0.
30
8
/
0.
09
1
52
.4
3
/
9
2
.0
7
0.
96
0
/
0.
98
7
0.
35
1
/
0.
16
6

62
.2

/
7.
1

E
ac
h
va
lu
e
re
p
re
se
n
ts

a
si
n
gl
e/

en
se
m
b
le

m
o
d
el
.
In

th
e
ca
se

o
f
m
u
lt
ip
le

m
o
d
el
s,

2
0
m
o
d
el
s
w
er
e
u
se
d
.
F
o
r
S
G
D
,
th
e
va
lu
es

fo
r
m
u
lt
ip
le

m
o
d
el
s
a
re

th
os
e
ev
al
u
at
ed

b
y
d
ee
p
en
se
m
b
le
s.

F
or

A
d
am

B
,
th
e
va
lu
e
fo
r
th
e
si
n
g
le

m
o
d
el

w
a
s
ev
a
lu
a
te
d
b
y
th
e
p
a
ra
m
et
er

µ
,
th
a
t
is
,
w
it
h
o
u
t
sa
m
p
li
n
g
.
M
u
lt
ip
le

m
o
d
el
s
w
er
e
ga
th
er
ed

in
to

en
se
m
b
le
s
b
y
sa
m
p
li
n
g
20

ti
m
es
.

a
T
h
e
T
in
y
Im

a
g
eN

et
-C

d
a
ta
se
t
d
o
es

n
o
t
co
rr
es
p
o
n
d
to

th
e
o
ri
g
in
a
l
T
in
y
Im

a
g
eN

et
te
st

o
r

va
li
d
at
io
n
d
at
as
et
.
T
h
e
va
lu
es

in
th
is

ta
b
le

w
er
e
ev
al
u
a
te
d
o
n
th
e
T
in
y
Im

a
g
eN

et
-C

d
a
ta
se
t
b
ef
o
re

co
rr
u
p
ti
o
n
s
w
er
e
a
p
p
li
ed
.

Chapter 2. Decoupled Bayes by Backprop 32

2.3. Robustness of AdamB with SM prior

clean 1 2 3 4 50

20

40

60

80

100
Ac

cu
ra

cy
CIFAR-10-C

clean 1 2 3 4 50

20

40

60

80

100 CIFAR-100-C

clean 1 2 3 4 50

20

40

60

80

100 TinyImageNet-C

clean 1 2 3 4 50.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

clean 1 2 3 4 50.5

0.6

0.7

0.8

0.9

1.0

clean 1 2 3 4 50.5

0.6

0.7

0.8

0.9

1.0

clean 1 2 3 4 5
Noise Level

0.0

0.2

0.4

0.6

0.8

EC
E

clean 1 2 3 4 5
Noise Level

0.0

0.2

0.4

0.6

0.8

clean 1 2 3 4 5
Noise Level

0.0

0.2

0.4

0.6

0.8

AdamB(0,0) w/o sample
AdamB(0,0)

AdamB(-1,-6) w/o sample
AdamB(-1,-6)

SGD
SGD Ensembles

Figure 2.10: Predictive uncertainty evaluation under covariate shifts. Five levels of corruption
intensity and 16 corruption types were used, the same as in [13]. CIFAR-10-C and CIFAR-100-
C were evaluated with ResNet18, and TinyImageNet was evaluated with ResNet50. Accuracy,
AUROC, and ECE were evaluated for each corruption level and are shown as box plots. Clean
means that no covariate shift occurred in the dataset. Each box summarizes the results of 16
different corruption type evaluations.

Covariate Shift Benchmark

In real-world settings, the input data undergo covariate shifts from the training

data. Therefore, the robustness of the model to various covariate shifts [13] must

be evaluated. Covariate shift evaluation was conducted using CIFAR-10-C, CIFAR-

100-C, and TinyImageNet-C as corruption datasets [35]. Figure 2.10 shows the

results of the covariate shift benchmark under the same conditions as [13]. In this

benchmark, a single model and an ensemble of 20 models were evaluated. Under con-

ditions where the models are well trained, as in CIFAR-10, AdamB (-1,-6) expressed

higher predictive uncertainty than the SGD ensemble. Overall, AdamB (-1,-6) was

strongly robust to various covariate shifts, as shown by the small variations in the

box according to the corruption type in AUROC and ECE. For easily trainable

datasets, such as CIFAR-10, AdamB (-1,-6) expressed a higher predictive uncer-

tainty compared to the SGD ensemble. However, for hard-to-learn datasets, such as

TinyImageNet, the accuracy was clearly inferior. This can be improved by tuning

the hyperparameters for AdamB; however, as the purpose of this experiment was

Chapter 2. Decoupled Bayes by Backprop 33

2.3. Robustness of AdamB with SM prior

clean 1 2 3 4 50

20

40

60

80

100
Ac

cu
ra

cy
CIFAR-10-C

clean 1 2 3 4 50

20

40

60

80

100 CIFAR-100-C

clean 1 2 3 4 50

20

40

60

80

100 TinyImageNet-C

clean 1 2 3 4 50.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

clean 1 2 3 4 50.5

0.6

0.7

0.8

0.9

1.0

clean 1 2 3 4 50.5

0.6

0.7

0.8

0.9

1.0

clean 1 2 3 4 5
Noise Level

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
e

Ra
te

clean 1 2 3 4 5
Noise Level

0.0

0.2

0.4

0.6

0.8

1.0

clean 1 2 3 4 5
Noise Level

0.0

0.2

0.4

0.6

0.8

1.0

AdamB(0,0) w/o sample
AdamB(0,0)

AdamB(-1,-6) w/o sample
AdamB(-1,-6)

SGD
SGD Ensembles

Figure 2.11: Predictive uncertainty evaluation under covariate shifts with confidence threshold
τ = 0.6. CIFAR-10-C and CIFAR-100-C were evaluated with ResNet18, and TinyImageNet was
evaluated with ResNet50. In contrast to the evaluation in Figure 2.10, here the percentage of valid
samples instead of the ECE was evaluated.

clean 1 2 3 4 5
0

20

40

60

80

100

Ac
cu

ra
cy

clean 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

clean 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

EC
E

AdamB(-1, -6) w/o sample
AdamB(-1, -6)

AdamB(-1, -6) SNR 0 w/o sample
AdamB(-1, -6) SNR 0

Figure 2.12: Comparison of covariate shift evaluation by pruning weights based on SNR of
posterior distribution. Results are shown for ResNet18 on CIFAR-10 trained by AdamB (-1,-6).
Covariate shift evaluation when weights are sampled only when the SNR of the variate parameter
in the posterior distribution is greater than 0 dB. In other words, weights are pruned if the SNR
is less than 0 dB.

to evaluate the performance of AdamB under normal MAP estimation training con-

ditions, the experimental conditions were not changed. Covariate shift benchmarks

Chapter 2. Decoupled Bayes by Backprop 34

2.3. Robustness of AdamB with SM prior

can also be evaluated by setting a confidence threshold value. Figure 2.11 shows the

results of the evaluation with a confidence threshold τ = 0.6. AdamB (-1,-6), whose

good predictive uncertainty can be confirmed by the low ECE, achieved high accu-

racy with the threshold setting, whereas AUROC did not result in any noticeable

change. In particular, in TinyImageNet, AdamB (-1,-6) dramatically improved the

accuracy. However, the sample rate is so low that only a few inputs are accepted

for decision-making. First, the redundancy of the variational parameters learned by

using AdamB (-1,-6) was examined. The accuracy of BBB may be maintained even

if the posterior distribution of small SNRs is pruned (replaced by zero weights)[37].

As shown in Figure 2.7, the SNR of the posterior distribution learned using AdamB

(-1,-6) was mostly less than 0 dB. Figure 2.12 shows the results of the covariate shift

benchmark when all posterior distributions are used and when only posterior distri-

butions with SNR ≥ 0 are used (i.e., wj = 0 when SNR < 0). Without the covariate

shift (clean), the performance did not differ significantly. However, when covariate

shifts occurred, the robustness degraded because of SNR-based weights pruning.

This indicates that the seemingly unnecessary low SNR posterior distribution has

an important function in ensuring robustness against covariate shifts.

Figure 2.13 shows the performance for each corruption type for corruption inten-

sity of 4. As is evident, the models were generally less robust to covariate shifts in

the noise type; however, the predictive uncertainty of AdamB (-1,-6) was superior

to that of the other approaches. This confirms that the improvement in Accuracy

(Figure 2.11) using AdamB (-1,-6) with confidence threshold τ = 0.6 is mainly effec-

tive for the noise type (Figure 2.14). Further, the addition of Gaussian noise lowered

the accuracy of all the models, and this was examined thoroughly. Table 2.2 lists

the performance for Gaussian noise type corruptions under the same conditions as

in Table 2.1. Overall, AdamB achieved more accurate confidence calibration than

the MAP estimation approach. Thresholding greatly improved the accuracy but

tended to reduce the number of valid samples. This result reflects the fact that the

confidence for inputs that are recognized as difficult to classify is reduced to small

values. Next, the number of valid test data samples and the change in accuracy

and AUROC for confidence thresholds of 0, 0.3, 0.6, and 0.9 were examined for

Chapter 2. Decoupled Bayes by Backprop 35

2.3. Robustness of AdamB with SM prior

20

40

60

80

100

Ac
cu

ra
cy

CIFAR-10-C (Noise Level = 4)

0.6

0.8

1.0

AU
RO

C

Ga
us

sia
n

No
ise

Sh
ot

 N
ois

e
Im

pu
lse

 N
ois

e
Sp

ec
kle

 N
ois

e
De

fo
cu

s B
lu

r
Gl

as
s B

lu
r

Mo
tio

n
Bl

ur
Zo

om
 B

lu
r

Sn
ow

Fro
st Fo
g

Br
ig

ht
ne

ss
Co

nt
ra

st
El

as
tic

 Tr
an

sfo
rm

Pix
ela

te
Jp

eg
 C

om
pr

es
sio

n

0.0

0.2

0.4

0.6

0.8

EC
E

AdamB SM(0,0) w/o sample
AdamB SM(0,0)

AdamB SM(-1,-6) w/o sample
AdamB SM(-1,-6)

SGD
SGD Ensemble

Figure 2.13: Evaluation of the covariate shift for each corruption type at corruption level 4.
Accuracy, AUROC, and ECE were evaluated using models trained with ResNet18 on CIFAR-10.

data with no covariate shift (clean) and with Gaussian noise intensities of 2 and 4.

Figure 2.15 shows the results of these evaluations and histograms of the information

entropy. For clean data, SGD and the SGD ensemble delivered high performance;

however, an increase in the intensity of the Gaussian noise resulted in a performance

improvement owing to thresholding becoming poorer. In contrast, AdamB (-1,-6)

maintained high performance with MC sampling ensembles and thresholding, even

in the presence of high-intensity Gaussian noise. The ensemble results with MC-

sampling of AdamB (-1,-6) showed a noticeable shift in information entropy to the

right compared to the other methods. Thus, the predictive distribution widened

with an increase in the covariate shift, indicating that the prediction uncertainty

was captured.

Chapter 2. Decoupled Bayes by Backprop 36

2.3. Robustness of AdamB with SM prior

20

40

60

80

100

Ac
cu

ra
cy

CIFAR-10-C (Noise Level = 4)

0.6

0.8

1.0

AU
RO

C

Ga
us

sia
n

No
ise

Sh
ot

 N
ois

e
Im

pu
lse

 N
ois

e
Sp

ec
kle

 N
ois

e
De

fo
cu

s B
lu

r
Gl

as
s B

lu
r

Mo
tio

n
Bl

ur
Zo

om
 B

lu
r

Sn
ow

Fro
st Fo
g

Br
ig

ht
ne

ss
Co

nt
ra

st
El

as
tic

 Tr
an

sfo
rm

Pix
ela

te
Jp

eg
 C

om
pr

es
sio

n

0.00

0.25

0.50

0.75

1.00

Sa
m

pl
e

Ra
te

AdamB SM(0,0) w/o sample
AdamB SM(0,0)

AdamB SM(-1,-6) w/o sample
AdamB SM(-1,-6)

SGD
SGD Ensemble

Figure 2.14: Evaluation of the covariate shift for each corruption type at corruption level 4 with
confidence threshold τ = 0.6. Accuracy, AUROC, and the sample rate were evaluated using models
trained with ResNet18 on CIFAR-10.

Chapter 2. Decoupled Bayes by Backprop 37

2.3. Robustness of AdamB with SM prior

0.0 0.2 0.4 0.6 0.8
Threshold

0.0

0.5

1.0

Ex
am

pl
es

p(

y|
x)

×104 Clean

0.0 0.2 0.4 0.6 0.8
Threshold

0.0

0.5

1.0

Ex
am

pl
es

p(

y|
x)

×104 Level 2

0.0 0.2 0.4 0.6 0.8
Threshold

0.0

0.5

1.0

Ex
am

pl
es

p(

y|
x)

×104 Level 4

0.996 0.998 1.000
AUROC

92

94

96

98

100

Ac
cu

ra
cy

0.90 0.95 1.00
AUROC

60

80

100

Ac
cu

ra
cy

0.7 0.8 0.9 1.0
AUROC

40

60

80

100

Ac
cu

ra
cy

0.0 0.5 1.0 1.5 2.0
Entropy (Nats)

0.5

1.0

of

 E
xa

m
pl

es ×103

0.0 0.5 1.0 1.5 2.0
Entropy (Nats)

0.5

1.0

of

 E
xa

m
pl

es ×103

0.0 0.5 1.0 1.5 2.0
Entropy (Nats)

0.5

1.0

of

 E
xa

m
pl

es ×103

ResNet18 on CIFAR-10-C

AdamB SM(0,0) w/o sampling
AdamB SM(0,0)

AdamB SM(-1,-6) w/o sampling
AdamB SM(-1,-6)

SGD
SGD Ensemble

Figure 2.15: Estimation of detailed predictive uncertainty of ResNet18 on CIFAR-10 for clean
data and Gaussian noise levels 2 and 4. The number of valid samples (top) and plots of Accuracy
and AUROC (middle) when the predictive confidence threshold is set at 0.3, 0.6, and 0.9. The
information entropy was evaluated over all samples (bottom).

Chapter 2. Decoupled Bayes by Backprop 38

2.3. Robustness of AdamB with SM prior

T
ab

le
2.
2:

P
er
fo
rm

an
ce

co
m
p
ar
is
on

of
co
rr
u
p
ti
on

d
at
as
et
s
w
it
h
G
au

ss
ia
n
n
oi
se

le
ve
l
4

D
at
as
et

M
o
d
el

O
p
ti
m
iz
er

A
ll
E
x
am

p
le
s

C
on

fi
d
en
ce

th
re
sh
ol
d
τ
=

0.
6

A
cc
u
ra
cy

A
U
R
O
C

E
C
E

A
cc
u
ra
cy

A
U
R
O
C

E
C
E

S
am

p
le

R
at
e(
%
)

C
IF
A
R
-

10
-C

V
G
G
16

S
G
D

32
.0
3
/
30
.2
8
0.
74
0
/
0.
82
5
0.
58
4
/
0.
44
4
33
.1
4
/
32
.7
9
0.
74
0
/
0.
81
5
0.
61
1
/
0.
52
1
91
.5

/
72
.2

A
d
am

B
(0
,0
)
51
.9
9
/
5
3
.8
7
0.
88
1
/
0.
91
3
0.
42
5
/
0.
24
9
53
.1
2
/
60
.8
0
0.
88
3
/
0.
91
8
0.
43
2
/
0.
27
1
95
.9

/
76
.7

A
d
am

B
(-
1,
-6
)
33
.0
6
/
47
.9
3
0.
82
2
/
0
.9
2
7
0.
51
1
/
0
.0
7
0
35
.0
2
/
7
0
.8
8
0.
82
1
/
0
.9
3
4
0.
55
3
/
0
.0
6
6
85
.0

/
34
.5

R
es
-

N
et
18

S
G
D

24
.6
6
/
29
.7
6
0.
71
4
/
0.
82
3
0.
65
0
/
0.
43
6
24
.7
3
/
34
.0
0
0.
71
1
/
0.
81
6
0.
69
1
/
0.
49
9
90
.7

/
69
.9

A
d
am

B
(0
,0
)
48
.3
3
/
5
0
.1
3
0.
88
9
/
0
.9
1
4
0.
46
3
/
0.
31
2
49
.1
6
/
54
.5
7
0.
89
0
/
0
.9
1
8
0.
47
2
/
0.
33
8
96
.0

/
81
.5

A
d
am

B
(-
1,
-6
)
34
.3
8
/
42
.4
2
0.
83
9
/
0.
91
1
0.
52
0
/
0
.1
5
4
36
.2
1
/
5
9
.3
3
0.
84
2
/
0
.9
1
8
0.
55
8
/
0
.1
8
7
86
.9

/
40
.6

C
IF
A
R
-

10
0-
C

V
G
G
16

S
G
D

16
.0
2
/
19
.2
0
0.
74
3
/
0.
82
8
0.
56
2
/
0.
32
6
19
.2
3
/
31
.3
5
0.
73
9
/
0.
80
7
0.
68
3
/
0.
47
2
67
.0

/
34
.0

A
d
am

B
(0
,0
)
23
.2
0
/
2
4
.7
8
0.
85
0
/
0.
88
2
0.
60
3
/
0.
33
6
26
.0
9
/
39
.2
1
0.
85
4
/
0.
89
1
0.
64
7
/
0.
41
8
83
.1

/
43
.3

A
d
am

B
(-
1,
-6
)
20
.8
9
/
21
.7
6
0.
86
0
/
0
.8
9
5
0.
41
4
/
0
.1
1
3
30
.6
9
/
7
1
.8
1
0.
86
7
/
0
.9
1
7
0.
52
1
/
0
.0
3
1
51
.6

/
7.
8

R
es
-

N
et
18

S
G
D

13
.3
3
/
14
.6
8
0.
70
8
/
0.
76
9
0.
32
2
/
0.
23
9
20
.8
1
/
26
.0
0
0.
68
3
/
0.
70
9

0.
61
3/

0.
50
5
31
.9

/
19
.3

A
d
am

B
(0
,0
)
27
.0
8
/
2
7
.6
3
0.
87
1
/
0
.8
9
0
0.
56
5
/
0.
35
8
30
.2
8
/
40
.6
0
0.
87
4
/
0
.9
0
0
0.
60
5
/
0.
42
5
83
.2

/
51
.3

A
d
am

B
(-
1,
-6
)
19
.7
4
/
18
.9
7
0.
85
5
/
0.
88
3
0.
53
0
/
0
.2
2
6
24
.4
0
/
4
3
.2
8
0.
86
2
/
0.
86
7
0.
61
8
/
0
.3
0
5
67
.7

/
16
.8

T
in
y
-

Im
ag
eN

et
-

C

R
es
-

N
et
50

S
G
D

8.
04

/
8
.5
7

0.
67
8
/
0.
73
3
0.
35
8
/
0.
28
3
13
.9
8
/
19
.2
7
0.
66
2
/
0.
71
0
0.
68
6
/
0.
57
1
30
.3

/
16
.2

A
d
am

B
(0
,0
)

8.
36

/
8.
38

0.
78
4
/
0.
80
0
0.
76
3
/
0.
45
0

9.
12

/
14
.6
3

0.
78
7
/
0.
80
6
0.
81
9
/
0.
63
0
85
.0

/
34
.5

A
d
am

B
(-
1,
-6
)

6.
45

/
8.
03

0.
75
0
/
0
.8
3
4
0.
66
9
/
0
.1
7
1
7.
59

/
4
8
.0
4
0.
75
5
/
0
.8
3
8
0.
79
2
/
0
.2
2
8
68
.5

/
2.
0

E
ac
h
va
lu
e
re
p
re
se
n
ts

a
si
n
gl
e/
en
se
m
b
le

m
o
d
el
.
In

th
e
ca
se

o
f
m
u
lt
ip
le

m
o
d
el
s,
2
0
m
o
d
el
s
w
er
e
u
se
d
.
F
o
r
S
G
D
,
th
e
va
lu
es

fo
r
m
u
lt
ip
le

m
o
d
el
s
a
re

th
o
se

ev
al
u
at
ed

b
y
d
ee
p
en
se
m
b
le
s.

F
or

A
d
am

B
,
th
e
va
lu
e
fo
r
th
e
si
n
g
le

m
o
d
el

w
a
s
ev
a
lu
a
te
d
b
y
th
e
p
a
ra
m
et
er

µ
,
i.
e.
,
w
it
h
o
u
t
sa
m
p
li
n
g
.
M
o
re
ov
er
,
m
u
lt
ip
le

m
o
d
el
s
w
er
e
ga
th
er
ed

in
to

en
se
m
b
le
s
b
y
sa
m
p
li
n
g
20

ti
m
es
.

Chapter 2. Decoupled Bayes by Backprop 39

2.3. Robustness of AdamB with SM prior

Discussion

BBB assumes a single-mode posterior distribution in the parameter space. There-

fore, this algorithm is less capable of capturing uncertainty than deep ensembles,

which may provide a closer approximation to the true posterior distribution[12].

However, even with the assumption of a single mode in the posterior distribution,

AdamB was more robust than deep ensembles for noise-type covariate shifts. With

the SM prior now enabled by AdamB for large neural networks, perturbation of

the weights by the extremely noisy posterior distribution appeared to be impor-

tant for robustness in variational inference. BNNs, used in conjunction with the

Hamiltonian Monte Carlo (HMC) method, do not assume a single mode in the pos-

terior distribution, and are considered vulnerable to Gaussian noise corruption[64].

Although the data augmentation conditions are different from those in our experi-

ment, the work provides valuable insight into the covariate shift of BNNs. To ignore

neural network activations that are not needed for classification, the weight value

for those activations should ideally be zero. BNNs tend to have non-zero weights

because they model weights as a distribution, which induces false classification [64].

Even with AdamB, the variance of the prior distribution cannot be set to zero,

so non-zero weights are sampled. However, AdamB (-1,-6) was confirmed to offer

high robustness against Gaussian noise because parameter µ was updated to values

sufficiently large to ignore the noise in the posterior distribution. In this study,

the hyperparameters were adjusted under high accuracy conditions in MAP esti-

mation. Contrary to this, suitable hyperparameters in AdamB that can capture

high quality predictive uncertainty still need to be found. Searching for these hy-

perparameters fell outside of the scope of this work because this study focused on

a comparison of the properties of AdamB to those of MAP estimation under equal

conditions. The predictive uncertainty of AdamB may be improved by combining

variational inference and deep ensemble methods, as has been demonstrated with

radial BNN [51]. In addition, AdamB has been evaluated only against the covariate

shift benchmark on image classification; it has not been verified in other domains.

Optimistically, AdamB should converge well for natural language processing and

reinforcement learning tasks that have been verified to work well with AdamW[33].

Chapter 2. Decoupled Bayes by Backprop 40

2.4. Properties of AdamB in the classification layer

2.4 Properties of AdamB in the classification layer

In the previous section, I considered whether stable convergence with AdamB is

possible for standard convolutional neural networks (CNNs). The results suggest

that a variational posterior distribution with high SNR has a significant impact on

the classification of models trained with BBB. In this section, I review the properties

of BNNs based on variational inference, focusing on a classification task with a

simple fully connected neural network. In the case of BNNs that process weights

as a distribution, the weights could respond to activations that do not contribute

to the classification, resulting in incorrect identification. My investigation aimed to

determine whether the same issue arises in models trained by AdamB.

PCA features with MNIST dataset

The experiments in this section are designed to evaluate the robustness of Bayesian

neural networks to covariate shifts, as performed by Izmailov et al.[64]. Izmailov

noted that images in the MNIST dataset [65] contain dead pixels around the objects

in an image. These pixels rarely have values and do not contribute to classification.

The covariate shift dataset utilizes vectors with Gaussian noise along the principal

component (PC) for the MNIST dataset. They used the PCs with the 50 highest

and 50 lowest variances (Top 50 and Last 50 PCs). Figure 2.16 shows examples

of these components added to the MNIST test data in a scaled manner. In their

experiment, MAP estimation does not differ significantly from BNNs in the case of

the Top 50 PCs, but in the case of the Last 50 PCs, although MAP estimation does

not degrade the accuracy, significant degradation occurs for BNNs. They confirmed

that the weights of dead pixels that do not contribute to class classification are

set to zero by regularization in the case of MAP estimation, whereas the posterior

distribution converges to match the prior distribution in the case of BNNs. The

Last 50 PC features are concentrated in the dead pixels, which they attribute to

the non-zero values of the weights sampled by the BNNs, which have a negative

impact on the inference results. My investigation aims to determine whether these

tendencies are exhibited in the case of AdamB.

Chapter 2. Decoupled Bayes by Backprop 41

2.4. Properties of AdamB in the classification layer

0 10 20

0

10

20

scale=0.00

0 10 20

0

10

20

scale=1.11

0 10 20

0

10

20

scale=2.22

0 10 20

0

10

20

scale=3.33

0 10 20

0

10

20

scale=4.44

0 10 20

0

10

20

scale=5.56

0 10 20

0

10

20

scale=6.67

0 10 20

0

10

20

scale=7.78

0 10 20

0

10

20

scale=8.89

0 10 20

0

10

20

scale=10.00

0 10 20

0

10

20

scale=0.00

0 10 20

0

10

20

scale=1.11

0 10 20

0

10

20

scale=2.22

0 10 20

0

10

20

scale=3.33

0 10 20

0

10

20

scale=4.44

0 10 20

0

10

20

scale=5.56

0 10 20

0

10

20

scale=6.67

0 10 20

0

10

20

scale=7.78

0 10 20

0

10

20

scale=8.89

0 10 20

0

10

20

scale=10.00

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

(a) Top 50 Principal Components

(b) Last 50 Principal Components

Figure 2.16: Data corruption created from eigenvectors of PCA taken from the
MNIST training dataset

Sensitivity of variational parameters learned by AdamB to

PCA features

This experiment uses a model of a fully connected neural network with two middle

layers with 256 neurons. The activation function is a rectified linear unit (ReLU)

[66]. The experimental conditions are the same as in the previous section, except that

the number of epochs is set to 100 and no data augmentation is employed. Twenty

models with different initial values were trained by SGD (i.e., MAP estimation)

to form an ensemble during the inference evaluation. The dataset is MNIST, with

60,000 training values and 10,000 test values. Covariate shift evaluation using the

Top 50 PCs and Last 50 PCs was conducted as reported by Izmailov et al. These

features are scaled in 20 steps for the test dataset and added to evaluate the models

Chapter 2. Decoupled Bayes by Backprop 42

2.4. Properties of AdamB in the classification layer

0 20 40 60 80
Epoch

0.1

0.2

0.3

NL
L

0 20 40 60 80
Epoch

0.900

0.925

0.950

0.975

Ac
cu

ra
cy

0 20 40 60 80
Epoch

620000

640000

660000

680000

lo
gq

(w
|

)

AdamB (0 0) AdamB (0 -6) AdamB (-1 -6) AdamB (-2 -6) MAP

Figure 2.17: Learning curve of NNs trained by AdamB or MAP estimation. NLL
curves (left), generalization curves (middle), and log-likelihood of the posterior dis-
tribution curves(right)

trained by AdamB and SGD.

Sensitivity of weights to PCA features

Figure 2.17 shows the metrics resulting from training. Similar to the trend described

in the previous section, the Gaussian prior tends to result in overfitting as training

progresses. The accuracy of AdamB (-2,-6) is also lower than that of the other

models. The log-likelihood of the posterior distribution confirms that that of the

SM prior model decreases less than that of the Gaussian prior. Figure visualizes the

weights of the input layers trained by SGD. The ensemble represents the average of

the weights projected onto the same neurons in the different models: the weights are

distributed over the central part of the image where the MNIST data features are

large, whereas the weights are almost zero for the peripheral regions of the image,

regardless of the number of ensembles. On the other hand, the model trained by

AdamB (0,0) with the usual Gaussian prior clearly has a value for the peripheral

regions. This result shows the same trend as in the case of BNNs without the

posterior distribution assumption: AdamB (-1,-6) also has weights for the regions

surrounding the image, but they approach zero when the ensemble is used (Figure

2.19).

Figure 2.20 shows the distribution of SNR for the variational parameters; AdamB

(-2,-6) tends to take small SNR values owing to the strong regularity resulting from

the SM prior. On the other hand, AdamB (-1,-6) and AdamB (0,0) mostly have

the same percentage of SNR as AdamB (-2,-6), but the variational parameters are

Chapter 2. Decoupled Bayes by Backprop 43

2.4. Properties of AdamB in the classification layer

0 10 20

0

10

20

ensemble = 1

0 10 20

0

10

20

ensemble = 5

0 10 20

0

10

20

ensemble = 10

0 10 20

0

10

20

ensemble = 15

0 10 20

0

10

20

ensemble = 20

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100

Figure 2.18: Weight heatmap in SGD ensembles

0 10 20

0

10

20

ensemble = 1

0 10 20

0

10

20

ensemble = 5

0 10 20

0

10

20

ensemble = 10

0 10 20

0

10

20

ensemble = 15

0 10 20

0

10

20

ensemble = 20

0 10 20

0

10

20

ensemble = 1

0 10 20

0

10

20

ensemble = 5

0 10 20

0

10

20

ensemble = 10

0 10 20

0

10

20

ensemble = 15

0 10 20

0

10

20

ensemble = 20

0.3 0.2 0.1 0.0 0.1 0.2 0.3

(a) AdamB (0, 0)

(b) AdamB (-1, -6)

Figure 2.19: Weight heatmap trained by AdamB (0,0) (top), and AdamB (-1,-6)
(bottom)

60 50 40 30 20 10 0 10
Signal-to-Noise Ratio (dB)

0.00

0.05

0.10

De
ns

ity

AdamB (0 0)
AdamB (0 -6)
AdamB (-1 -6)
AdamB (-2 -6)

60 50 40 30 20 10 0 10
Signal-to-Noise Ratio (dB)

0.0

0.5

1.0

CD
F

Figure 2.20: Comparison of SNR with different priors in AdamB. Histogram of SNR
(top) and cumulative distribution function (CDF) of SNR (bottom).

observed to increase with SNR> 0. Figure 2.21 shows the change in accuracy when

mutations are added stepwise to the test dataset with the Top 50 PCs or Last 50

Chapter 2. Decoupled Bayes by Backprop 44

2.4. Properties of AdamB in the classification layer

0 2 4 6 8 10
Noise Scale

93

94

95

96

97

98

A
cc

ur
ac

y

0 2 4 6 8 10
Noise Scale

40

50

60

70

80

90

100

A
cc

ur
ac

y

(a) Top 50 Principal Components (b) Last 50 Principal Components

AdamB (0 0) AdamB (0 -6) AdamB (-1 -6) AdamB (-2 -6) MAP SGD ensemble

Figure 2.21: Change in accuracy by gradual addition of principal components: ad-
dition of Top 50 PCs (left), addition of Last 50 PCs (right).

PCs. For all conditions in the Top 50 PCs, the accuracy decreases as the mutation

increases, but no significant difference is observed. On the other hand, when mu-

tations with the Last 50 PC features are added stepwise, the accuracy of AdamB

tends to be lower than that of MAP. This may be because AdamB has weight val-

ues for the image periphery, which affects the classification results. In particular,

AdamB (-2,-6), which does not have a high SNR variational parameter, is clearly less

accurate compared to other variations of AdamB. The sensitivities of the weights

in the input layer of the model trained by AdamB were analyzed in greater de-

tail. Figure 2.22(right) shows plots of the 2σ of the calculated variance σ of the

value of the inner product of the weights and PCs, starting from the PC with the

largest variance. In other words, the wider the width along the vertical axis, the

greater the extent to which the activations of the neurons vary. As the PCs become

smaller, the width becomes narrower (i.e., the variation decreases), which indicates

that the weights of the PCs are approaching zero. Figure 2.22(left) plots the results

in Figure 2.22(right) normalized with respect to the value calculated for the smallest

PCA variance. The dashed line indicates the value of 1.0 on the vertical axis. The

model trained by MAP estimation shows that the weights are more responsive to

PCs with small variance. Conversely, the model trained by AdamB shows that the

weights are less responsive to PCs with small variance. For AdamB (0,0), which

was overfitted, and AdamB (-2,-6), which exhibited poor growth in Accuracy, the

weights responded only as much as the smallest PC, with a PC of approximately

Chapter 2. Decoupled Bayes by Backprop 45

2.4. Properties of AdamB in the classification layer

0 100 200 300 400 500 600 700
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

W
ei

gh
tS

en
si

tiv
ity

0 100 200 300 400 500 600 700

0.75

0.50

0.25

0.00

0.25

0.50

0.75

W
ei

gh
t

P
ro

je
ct

io
n

AdamB (0 0) AdamB (0 -6) AdamB (-1 -6) AdamB (-2 -6) MAP

Principal ComponentPrincipal Component

Figure 2.22: Projection of weights to PC. Variance of the activation values of neurons
(left). Variance normalized by the smallest eigenvalue (right).

300. AdamB (0,-6) and AdamB (-1,-6), although weak, respond to PCs of as much

as approximately 500, indicating that they are able to respond to more information.

Discussion

This series of experiments was designed to evaluate the behavior of the distribution

of BNN parameters for values such as dead pixels that do not affect classification.

MAP estimation was shown to successfully accommodate inputs that do not con-

tribute to classification by assigning zero weights to them. AdamB processes the

weight parameter as a distribution, and therefore has values by sampling, similar

to a conventional BNN. The results presented in previous sections led to the ob-

servation that the design of an appropriate prior enables AdamB to control the

SNR of variational parameters. I considered certain variational parameters to have

larger SNRs, which makes it possible to ignore the effect of perturbation by noisy

weights. In this experiment, small peaks were visible in the distribution with SNR¿0

for AdamB (0,-6) and AdamB (-1,-6). In fact, the evaluation of the Last 50 PCs

revealed that AdamB (0,-6) and (-1,-6) were robust to perturbations because dead

pixels were used as input, although not as robust as the MAP estimation. The fact

that BNN has a value for weights that should be zero is considered a disadvantage,

but the performance of AdamB is considered to be improved by its well-balanced

SNR.

Chapter 2. Decoupled Bayes by Backprop 46

2.5. AdamB with low-precision Gaussian sampling

2.5 AdamB with low-precision Gaussian sampling

Training AdamB requires a large amount of random numbers to be generated. The

main focus of improving the efficiency of random number generation with dedicated

hardware is to reduce the precision required per variable. The performance changes

that occur when the precision of the random numbers is reduced are considered in

detail. Although efficient random number generation for BBB inference has received

some attention[39], [40], the random numbers needed for training have not yet been

investigated. This prompted an evaluation of the reliability and robustness against

covariate shifts by gradually decreasing the precision of the uniform distribution used

in generating the normal distribution using the Box-Muller transformation [67] from

32 bits. In this experiment, the parameters of the convolutional layer of VGG19,

which is an overconfidence model, were fixed and the parameters of the FC layer

were learned by AdamB to evaluate whether sufficient confidence calibration can

be achieved. Evaluation of a dataset that makes it difficult to learn a confidence-

calibrated model facilitates examination of the effect of random number precision.

Classification layer training on datasets that tend to be over-

confident

The experiment made use of features obtained by using data from CIFAR-10, a

benchmark dataset for object category recognition, as input into a CNN. The CNN

uses the convolutional layer of VGG19 [53] without batch normalization [68], and

the final CIFAR-10 feature dataset has 512 dimensions. Although VGG19 is a model

trained on ImageNet [69], a benchmark dataset for object category recognition, the

VGG19 convolutional layer for CIFAR-10 was not retrained for refinement purposes

in this study. I used a training dataset of 50,000 CIFAR-10 features and a test

dataset of 10,000 features. The shift in the dataset was evaluated by using the

convolutional features of VGG19 on the CIFAR-10-C dataset with 15+4 different

5-level noises for the CIFAR-10 test dataset [35]. For OOD evaluation, I used the

convolutional features of VGG19 on 10,000 test data of the SVHN dataset [70],

which is a benchmark dataset for object category recognition.

Chapter 2. Decoupled Bayes by Backprop 47

2.5. AdamB with low-precision Gaussian sampling

Figure 2.23: Experimental scenario

The training target by AdamB is a fully connected layer with two middle layers

of 512 dimensions and an output layer of 10 dimensions, referring to the discrimina-

tive layer of VGG19, with activation by a sigmoid function. Figure 2.23 summarizes

these experimental conditions. Apart from training AdamB, regular BBB and Adam

were also trained, where AdamB is AdamB (0,-6). The values of the hyperparam-

eters β = β1, β2 of the exponential moving averages of the gradient and the square

of the gradient for Adam and AdamB were β1 = 0.9, β2 = 0.999. The batch size

was set to 100, the number of epochs to 50, and the learning rates for Adam and

BBB were 0.001 and 0.01, respectively. Additionally, the initial value of parameter

δ = 0.5, 1.0, 2.0, 4.0 was varied in the experiments. In the inference phase, the en-

semble evaluation was performed by Monte Carlo sampling, and the average value

of the confidence by multiple weight patterns was used to evaluate the accuracy and

the ECE. The number of ensembles was set to 20. With reference to the parame-

ters verified in AdamB, I again experimented with 32, 8, 4, 2, 1 bits of precision per

variable for uniform random numbers. To confirm in detail the impact of lowering

the precision in random number generation, I performed a threshold evaluation for

the data distribution shift and a covariate shift benchmark using the CIFAR-10-C

feature dataset.

Dependency of the initial value of the variational parameter

The variation in the accuracy and NLL during training is plotted in Figure2.24.

Only δ = 0.5 is shown for BBB and Adam. Adam is overfitted until the accuracy

increases sufficiently, whereas BBB is not overfitted, although it has not reached

sufficient accuracy. In the case of AdamB, the final accuracy does not differ sig-

Chapter 2. Decoupled Bayes by Backprop 48

2.5. AdamB with low-precision Gaussian sampling

0 1 2 3 4 5
Epoch ×10 1

1

2

3

4

5

6

A
cc
ur
ac
y

× 10 1

0 1 2 3 4 5
Epoch ×10 1

1

2

3

4

5

lo
g
P
(D
|w
)

BBB: = 0.5
Adam: = 0.5
AdamB: = 0.5
AdamB: = 1.0
AdamB: = 2.0
AdamB: = 4.0

Figure 2.24: Learning curve of the VGG classification layer trained by AdamB with
different priors or SGD. NLL curves (left), generalization curves (right).

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

= 0.5 ECE=0.18

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

= 1.0 ECE=0.18

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

= 2.0 ECE=0.11

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

= 4.0 ECE=0.017

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

Figure 2.25: Initial value dependence of ECE

0.0 0.2 0.4 0.6 0.8
Confidence Threshold

0.6

0.8

1.0

A
cc
ur
ac
y
on

ex
am

pe
s
p(
y|
x)

CIFAR-10 only
= 0.5
= 1.0
= 2.0
= 4.0

0.0 0.2 0.4 0.6 0.8
Confidence Threshold

0.4

0.6

0.8

1.0

A
cc
ur
ac
y
on

ex
am

pe
s
p(
y|
x)

CIFAR-10 & SVHN

Figure 2.26: Changes in the accuracy using threshold settings with different initial
values. In-domain dataset only (left). Combined OOD dataset (right).

nificantly regardless of the value of δ, except for δ = 4.0, where the NLL increases

and overfitting occurs. Figure 2.25 shows the confidence level of the accuracy for

various values of the ECE with AdamB. The figure shows that the ECE improves as

Chapter 2. Decoupled Bayes by Backprop 49

2.5. AdamB with low-precision Gaussian sampling

4 3 2 1 0 1 2 3 4
0

1

2

3

4

5

6

de
ns
ity

(= 0, = 1), precision=2

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

de
ns
ity

(= 0, = 1), precision=4

4 3 2 1 0 1 2 3 4
0

2

4

6

8

10

12

de
ns
ity

(= 0, = 1), precision=1

4 3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

de
ns
ity

(= 0, = 1), precision=8

analytical
numerical

Figure 2.27: Low precision Gaussian samplings. From left to right: 8, 4, 2, and 1
bit per sampling.

δ increases. For small values of δ, the confidence level exceeds 0.9 in most cases, but

the ECE is higher owing to overconfidence with low accuracy. On the other hand,

when δ = 4.0, the confidence and accuracy are approximately equal, indicating that

the ECE has improved. In the classification layer, it is desirable to assign a larger

initial value to the parameter ρ for features that tend to be overconfident. Figure

2.26 shows the change in the accuracy when the threshold is set using the varia-

tional parameters trained by AdamB. When evaluated with test data of CIFAR-10

features (Figure 2.26 left), the results confirmed that the increase in the value of δ

results in an improved confidence calibration and thus a more favorable growth of

the accuracy when the threshold value is set. The difference is particularly notice-

able when the SVHN feature dataset without labels corresponding to the output

layer is added to the inference dataset (Figure 2.26 right). The results confirmed

that training with larger values of δ is robust against domain shift.

Classification layer training with low precision Gaussian sam-

pling

Based on the previous experiment, we trained AdamB with δ = 4.0, changing the

precision of uniformly distributed random numbers to 32, 8, 4, 2, 1 bits. Figure 2.27

shows the results of sampling a normal distribution by Box-Muller transformation

at different levels of random number precision for a uniform distribution. With 8

bits, sampling close to an ideal normal distribution is confirmed, but the use of 4

bits or fewer causes the sampling distribution to deviate from the normal distri-

bution. The change in accuracy and NLL during training is shown in Figure2.28.

Chapter 2. Decoupled Bayes by Backprop 50

2.5. AdamB with low-precision Gaussian sampling

0 2 4
Epoch ×10 1

1

2

3

4

5

6

A
cc

ur
ac

y

× 10 1

RNG: 32bit
RNG: 8bit
RNG: 4bit
RNG: 2bit
RNG: 1bit

0 2 4
Epoch ×10 1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

lo
g
P

(D
|w

)

Figure 2.28: Learning curve of VGG classification layer trained by AdamB (0,-
6) with different amounts of sampling precision. NLL curves (left), generalization
curves (right).

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

RNG 32 bit ECE=0.017

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

RNG 8 bit ECE=0.022

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

RNG 4 bit ECE=0.019

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

RNG 2 bit ECE=0.018

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

S
am

pl
e
fr
ac

.

RNG 1 bit ECE=0.02

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac

y

Outputs
Gap

Figure 2.29: Sampling precision dependence of ECE

When the uniform distribution has a precision of 32, 8, or 4 bits, the accuracy and

log-likelihood are not significantly affected, but a slight deterioration is confirmed

for the 2-bit precision and a remarkable delay in convergence is confirmed at 1-bit.

Under 2- and 1-bit conditions, the sampled distribution tends to have discrete val-

ues, which negatively affects the convergence of the parameters. On the other hand,

for a precision of 4-bit, although the sampling distribution also deviates from the

normal distribution, the convergence did not significantly differ from that under 32-

Chapter 2. Decoupled Bayes by Backprop 51

2.5. AdamB with low-precision Gaussian sampling

0.0 0.2 0.4 0.6 0.8
Confidence Threshold

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y
on

ex
am

pe
s
p(
y|
x)

CIFAR-10 only

RNG 32bit
RNG 8bit
RNG 4bit
RNG 2bit
RNG 1bit

0.0 0.2 0.4 0.6 0.8
Confidence Threshold

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y
on

ex
am

pe
s
p(
y|
x)

CIFAR-10 & SVHN

Figure 2.30: Accuracy changes with threshold settings with different sampling pre-
cisions. In-domain dataset only (left). Mixture of OOD dataset (right).

0.0 1.0 2.0 3.0 4.0 5.00.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

RNG
32 bit
8 bit
4 bit
2 bit
1 bit

0.0 1.0 2.0 3.0 4.0 5.0
noise level

0.0
0.1
0.2
0.3
0.4
0.5

EC
E

Figure 2.31: Predictive uncertainty evaluation under covariate shifts. Five levels of
corruption intensity and 19 corruption types were used.

bit conditions. Figure 2.25 shows the value of ECE for different amounts of uniform

precision. With the exception of 1-bit, the ECE values do not differ significantly,

although for 2-bit precision, the percentage of high confidence levels is lower, indi-

cating that this amount of precision is inferior to 4-bit precision or higher in terms

of accuracy. Figure 2.30 shows the change in the accuracy when the threshold is set

according to the precision of the random numbers. When evaluated with the test

dataset of CIFAR-10 features (Figure2.30 left), no significant change is observed ex-

cept for 1-bit precision. On the other hand, the results confirmed that the lower the

precision (except for 1-bit) when SVHN features are added, the higher the accuracy

that is maintained (Figure2.30 right). Figure 2.31 shows the results of the covariate

shift benchmark in terms of the precision of the random number generation. The

Chapter 2. Decoupled Bayes by Backprop 52

2.5. AdamB with low-precision Gaussian sampling

smaller the precision of the random number generation, the smaller the ECE tends

to be, but the accuracy also tends to be lower for 2- and 1-bit precision.

Discussion

The results confirmed that feature datasets extracted from the convolutional layer of

overconfidence models show large differences in confidence calibration after training

and that this depends on the initial value of δ of the variational parameter ρ. The

accuracy of the test dataset does not depend on δ, but the accuracy differs markedly

when the confidence levels are separated by bin. In addition, the ECE at high confi-

dence levels tends to be smaller when δ is large. The histogram of confidence levels

shows that the number of samples with high confidence decreases as δ increases. This

can be interpreted to signify that the inference is well calibrated. A well-calibrated

model shows a significant improvement in accuracy for thresholding and maintains

the accuracy even when OOD inputs are added to the dataset. Effective learning

with random numbers generated from a 32-bit uniform distribution neither gives rise

to noticeable degradation in the OOD input or covariate shift benchmarks nor in the

accuracy and ECE when the precision of the random numbers is changed to 4 bits

or more. When thresholds are set for OOD inputs at 2-bit precision, the accuracy

is maintained to a greater extent than at other precision levels. However, a certain

degree of degradation in the accuracy and NLL is observed during learning, thus the

use of random numbers with a precision of 4 bits or higher is preferable. Note that in

this experiment, the evaluation of BBB-based algorithms using dedicated hardware

should also take into account the change from single-precision floating-point format

to data formats such as fixed point or bfloat.

Chapter 2. Decoupled Bayes by Backprop 53

Chapter 3

Movitan

55

3.1. Monte Carlo Variational Inference Training Accelerator for Neural Networks

3.1 Monte Carlo Variational Inference Training

Accelerator for Neural Networks

The contribution of improvements in the exponential performance of computers has

made it possible to increasingly scale neural networks for application to various

domains for deep learning. Different types of dedicated hardware have been de-

veloped to perform deep learning more efficiently and the data flow of operations

and memory capacity has been optimized according to the network model. Even

though advances in deep learning continue unabated and new network architectures

continue to be proposed, these architectures are not necessarily efficient with exist-

ing dedicated hardware. For applications that require risky decision making, such

as self-driving and medical diagnostics, which are promising applications of deep

learning, the inference results must be reliable. Despite Bayesian deep learning and

deep ensemble methods being considered to be effective deep learning models for

obtaining reliable inferences, evidence to this effect is not yet conclusive. Thus far,

I have developed AdamB, which enables us to accommodate reliable deep learning

models. Compared to ordinary MAP estimation, AdamB adds the log-likelihood

of the variational posterior distribution to the cost function and generates weights

using sampling with a normal distribution. This means that complex probability

distribution calculations and sampling with a normal distribution of the order of the

number of parameters of the NNs are necessary and this is computationally expen-

sive. These challenges can be streamlined by using dedicated hardware to directly

support an optimized data flow and lightweight random number generators. Ded-

icated hardware targeting Bayes by Backprop (BBB) inference, on which AdamB

is based, focuses mainly on lowering the cost of the random number generator[39],

[40]. In these studies, BBB training is assumed to be performed on other hardware

and inference is performed by converting floating-point format to integer format. In

contrast, my research targets BBB learning rather than inference only. Unlike infer-

ence, when learning by way of deep learning, it is difficult to simplify the workload

of the neural network, and predicting the optimal hardware architecture in advance

is challenging. Therefore, I decided to develop a system for generating dedicated

Chapter 3. Movitan 56

3.2. Hardware Architecture

RISC-V Core

L2$

DRAM

L1$
Scratchpad

with Accum mem

RF

ALU

Frontend Re-Order
Buffer

Store
cntl

Load
cntl

Execute
cntl

Mesh

Gemmini RISC-V co-processor

Transposer

RISC-V Core

L2$

DRAM

L1$ Scratchpad

RF

ALU

Frontend Re-Order
Buffer

Store
cntl

Load
cntl

Execute
cntl

Vector

Movitan (proposed)

PEs

Accum Reg

Gauss

Reduction Tree

Elementary
Functions Acc

Systolic
Array

FPU

RNG

Chipyard Framework, Designing and Evaluating RISC -V full-system Hardware

Original
expansion

Major
Changes

Figure 3.1: Overview of Movitan Extension

processors with dedicated circuits that enable efficient learning with AdamB, and

build a system that can flexibly adapt to various deep learning architectures. Movi-

tan (Monte Carlo Variational Inference Training Accelerator for Neural Networks)

is a generating system based on Chipyard, an agile SoC development framework

that enables efficient BBB training. The system generates instances of vector archi-

tectures that support Gaussian sampling flows and function approximation circuits

optimized for BBBs tightly connected to RISC-V cores. Movitan is based on and

extends Gemmini v0.2, a hardware generation system for deep learning supported

by Chipyard3.1.

3.2 Hardware Architecture

Table 3.1 lists the main differences between Movitan and Gemmini. Gemmini v0.2

mainly targets inference, where matrix multiplication with fixed-length vectors is

performed in one single step by systolic array hardware. Movitan flexibly simplifies

the data flow of vector operations and random number generation, replacing them

with simple vector type operators to facilitate the implementation of neural net-

work training. In Gemmini, neural network activation relies on ReLU or ReLU6,

whereas Movitan uses sigmoid and softplus functions as well as dedicated functions

to efficiently calculate complex probability distributions such as a Gaussian scale

Chapter 3. Movitan 57

3.2. Hardware Architecture

Table 3.1: Major differences between Gemmini v0.2 and Movitan
Module function Gemmini v0.2 Movitan

Execution
Controller

PE architecture Systolic array Vector
Tensorpose supported none
Activations ReLU, ReLU6 elementary function

Accumulator place near scratchpad vector PEs
scalar operation none supported

Re-Order
Buffer

Data
manager

fixed length variable length

mixture. In addition, the Accumulator has a dedicated memory in Gemmini, but in

Movitan, a register in the vector arithmetic unit plays this role. Scalar operations

were not assumed in Gemmini v0.2, thus support for scalar operations were added

to Movitan. The management of data dependencies in the reorder buffer has been

changed to accommodate these changes.

Figure 3.6 shows the main block diagram for the operations in Movitan, which

consists of an execution controller, a Gaussian sampling circuit, a vector unit, and

a scratchpad. Movitan, similar to Gemmini, receives instructions from the CPU

through the RoCC interface, and the execution controller mainly decodes the re-

ceived instructions, makes data access requests to the scratchpad, and passes the

data to the vector unit. Depending on the instruction, the input to the vector unit

is switched by the arbiter to a value of zero or a sampled random number directly

into the vector unit (Figure 3.3). The vector unit consists of a controller for

broadcasting the input data, processing elements (PEs), and a reduction tree (Fig-

ure 3.4). The data input to the vector unit is passed to the internal PEs, which

can broadcast any data element input just before it is passed to the PE, or switch

the data elements to broadcast each cycle. The output from the PE can use the

accumulator if necessary. The data computed by the vector unit is passed to the ex-

ecution controller, which stores the data at the specified scratchpad address (Figure

3.5). The controller has been extended from the Gemmini v0.2 implementation to

allow writing to each element of data when storing data in the scratchpad. Figure

3.6 shows the results of the predictive process design kit (PDK) for the academically

available 7nm process, ASAP7[71], for Movitan and Rocket. The results are based

on SoC floorplanning with Movitan and Rocket core at an operating frequency of

Chapter 3. Movitan 58

3.2. Hardware Architecture

LUT LUT LUT

RNGController

Vector Unit

LUT Base Gaussian Generator

16

RNG Bits

RNG Bits x Vector Size

SP Read
Manager

Scratch Pad
Banks

PE PE PE

Accum
Reg

Instruction
Queue

Execution Controller

SPWrite
Manager

Inputs
Manager

Instruction

Figure 3.2: Movitan main block diagram

Vector

RNG
(Gauss)

Scratch Pad

3

0

x DIM

TagQueue

Al
lr
eq
ue
st
ed

SP Bank Access Controller

ROB

Counter

3

Figure 3.3: Execution controller to vector unit inputs flow

Vector
PEs

Tag_in

3

Counter

x DIM

Reduction
Tree

Tag_out

DIN

DOUTBR
O
AD

CA
ST

SE
Q
U
EN

TI
AL

PE PE

PE PE

PE

argmin
argmax

relu
d_relu

Accumlator

Function
Estimator

Figure 3.4: Vector unit block diagram

Chapter 3. Movitan 59

3.3. Software Architecture

Vector

Counter

Scratch Pad

W
RI
TE

_S
CA

LA
R

SE
Q
U
EN

TI
AL

w
ad

dr

LowerHigher

waddr wmask wdata

sc
al
ar
_w

ad
dr

m
as
k_

w
id
th

Figure 3.5: Vector unit outputs to the execution controller flow

Figure 3.6: Movitan floorplan connected to Rocket core

500 MHz.

3.3 Software Architecture

The software API of Movitan is basically the same as that of Gemmini, and generates

a C header file from the parameters necessary for processor generation. When

software is developed to run Movitan, information about the hardware architecture

can be obtained on the software side by linking to the generated C header. By

Chapter 3. Movitan 60

3.3. Software Architecture

generating an SoC with the dedicated parameter listing 3.1 for configuring Movitan,

a dedicated C header file is generated at the same time. The contents of the C

header file are cut out of the generated parameters and the corresponding parts.

Listing 3.3 is a sample for the inference of fully connected NNs by Movitan.

Listing 3.1: Movitan parameters

1 object MovitanConfigs {

2 val defaultConfig = MovitanArrayConfig(

3 vecLanes = 8,

4 burst_size = 64,

5 ld_queue_length = 8,

6 st_queue_length = 2,

7 ex_queue_length = 8,

8 rob_entries = 16,

9 sp_banks = 4,

10 sp_capacity = CapacityInKilobytes(16), //CapacityInKilobytes(256),

11 mem_pipeline = 2,

12 dma_maxbytes = 64, // TODO get this from cacheblockbytes

13 dma_buswidth = 128,//128*2, // TODO get this from SystemBusKey

14 aligned_to = 1,

15 inputType = rialBFloat(1,7,8),// Movitan Type SInt(8.W), Float(8,24) or Float(8,8)

16 outputType = rialBFloat(1,7,8),//Float(8,8) ,

17 pe_latency = 3,

18)

19 }

Listing 3.2: Movitan Macro

1 #define DIM 16

2 #define VECTOR_LANE 8

3 #define ADDR_LEN 32

4

5 #define BANK_NUM 4

6 #define SP_CAPACITY 256 * 1024 * 8

7 #define SP_WIDTH DIM * VECTOR_LANE

8 #define BANK_ROWS SP_CAPACITY/(BANK_NUM*SP_WIDTH)

9

10 #define MAX_BYTES 64

11 #define MAX_BLOCK_LEN (MAX_BYTES / (DIM * 1))

12

13 #define A_SP_ADDR_START 0

14 #define B_SP_ADDR_START 1 * BANK_ROWS

15 #define C_SP_ADDR_START 2 * BANK_ROWS

16 #define D_SP_ADDR_START 3 * BANK_ROWS

Chapter 3. Movitan 61

3.3. Software Architecture

Listing 3.3: Movitan software (single batch)

1 void movitan_forward_mat_vec_mul(rocc_elem_t *InA, rocc_elem_t *InB,

2 rocc_elem_t *Out, rocc_elem_t *InD,

3 int col_num, int row_num) {

4

5 const uint32_t vec_col_size_full = col_num/DIM;

6 const uint32_t vec_col_size_partial = col_num%DIM;

7 const uint32_t vec_col_size = vec_col_size_full + (vec_col_size_partial != 0 ? 1 : 0);

8 const uint32_t vec_row_size_full = row_num/DIM;

9 const uint32_t vec_row_size_partial = row_num%DIM;

10 const uint32_t vec_row_size = vec_row_size_full + (vec_row_size_partial != 0 ? 1 : 0);

11 const uint32_t sp_sift = row_num < DIM ? row_num : DIM ;

12

13 // load vector A

14 movitan_load_vector(InA, A_SP_ADDR_START, vec_col_size_full, vec_col_size_partial);

15 // load vector D

16 movitan_load_vector(InD, D_SP_ADDR_START, vec_row_size_full, vec_row_size_partial);

17 // load matrix B

18 movitan_load_matrix_blocked(InB, B_SP_ADDR_START, col_num,

19 vec_col_size_full, vec_col_size_partial, vec_col_size,

20 vec_row_size_full, vec_row_size_partial, vec_row_size);

21 // product of matrix B and vector A

22 movitan_vec_col_mat_col_mul(A_SP_ADDR_START, B_SP_ADDR_START, C_SP_ADDR_START,

23 vec_col_size_full, vec_col_size_partial, vec_col_size,

24 vec_row_size_full, vec_row_size_partial, vec_row_size);

25 // add bias & activation

26 movitan_fadd(C_SP_ADDR_START, D_SP_ADDR_START, C_SP_ADDR_START,vec_row_size);

27 movitan_relu(C_SP_ADDR_START, D_SP_ADDR_START, vec_row_size);

28 // store vector D

29 movitan_store_vector(Out, D_SP_ADDR_START, vec_row_size_full, vec_row_size_partial);

30 };

Chapter 3. Movitan 62

Chapter 4

Conclusion

4.1 Discussion

Algorithms with excessive computational cost should be avoided in deep learning,

because the amount of computation continues to grow in scale[19]. In contrast, deep

ensemble methods provide superior predictive uncertainty, but the computational

and memory costs during training are proportional to the number of models. The

variational inference approach with BBB requires only a doubling of the number of

parameters for the weights, the sampling cost of which can be handled efficiently

by dedicated hardware[39]. However, previous studies have shown that variational

inference approaches tended to perform worse than ensemble approaches[13]. This

motivated the proposal of AdamB as a stable learning method, which successfully

outperformed deep ensembles for noise collapse in the input data. These results

were only confirmed experimentally, and additional theoretical support would be

required in the future. The mathematical difference between the Bayesian approach

and an ensemble is discussed[72]. The Bayesian approach is interpreted as a “soft

model selection’’ approach that attempts to find an effective model that explains

all of the given data satisfactorily. On the other hand, in the case of a combination

of models, such as a deep ensemble, each individual model does not need to explain

all of the data. Instead, the explanation of all of the data by multiple models

collectively is sufficient. That is, the Bayesian approach is more difficult to optimize

and performs less well than the combined model approach because this approach

63

4.1. Discussion

attempts to explain everything well with a single model in a hypothesis. Although

AdamB is a Bayesian approach, it uses ensembles by sampling from variational

posterior distributions to assess the predictive uncertainty. Hence, the challenge lies

in the interpretation of the multiple predictions by AdamB. In this regard, it would

be helpful to investigate the reason for the superior generalization performance of

deep ensembles [73]. A robustness study for adversarial perturbation[74] would be

helpful to determine why AdamB enables robust inference of noise-type corruptions.

Robustness to adversarial perturbation was confirmed by replacing the input layer of

the convolutional neural network with a neurophysiological model of the actual visual

cortex and adding stochasticity to the model[75]. This was interpreted as meaning

that the noise inherent in the network formed manifolds for a single data sample,

and the effects of adversarial perturbation were captured within these manifolds[76].

The connection between the variational parameters obtained by AdamB and

neuroscience would be interesting to study. The synaptic strengths observed in the

visual cortex of rats are known to obey a lognormal distribution. Leaky integrate-

and-fire (LIF) simulations confirmed that the weights based on this distribution

promote efficient neural firing[77]. This result confirms that it is not essential for

the distribution of synapses to be lognormal, which is the neurophysiological dis-

tribution of synapses, but that it is important for neurons to have a large number

of weak synapses and a small number of strong synapses[78]. With reference to

AdamB (-1,-6), it is possible to interpret more than 90% of the SNRs of the vari-

ational parameters of the convolutional layer as noisy weights, i.e., weak weights

(Figure 2.9). The fact that the remaining few large SNR variate parameters can be

interpreted as strong weights, means that the SNRs of AdamB (-1,-6) correspond

to the neurophysiological synapse distribution. However, it should be noted that

the weak weights due to the variational parameters obtained by AdamB can eas-

ily change signs. The sign of the weights corresponds to excitatory and inhibitory

synapses in neurophysiology, and they differ in the receptors that receive the chem-

ical information. The scaffold protein droplet, which holds the receptors to the cell

membrane, prevents the excitatory and inhibitory receptors from mixing at a single

synapse[79]. Therefore, a situation in which the sign undergoes fluctuation at large

Chapter 4. Conclusion 64

4.2. Conclusion

weights is unlikely to arise. On the other hand, excitatory and inhibitory switches

could probably be modeled as a situation in which the receptors are not fixed, as

in silent synapses[80]. This could be considered as an extension of the research on

modeling neural networks assuming silent synapses[81]. The balance between ex-

citability and inhibition is known to play an important role in neural information

coding[82], and its relation to the behavior of noisy variational parameters during

learning would also be interesting to examine.

The properties of noisy variational parameters may be applicable to neuromor-

phic devices. This approach attempts the low-power execution of neural networks

by replacing synaptic weights with electrical resistance values[83]. Memristors[84],

also referred to as synaptic devices, can change their resistance by changing the

state of their crystal structure, but changing the resistance by switching causes the

values to vary in a Gaussian distribution[85]. Initial research on the implementation

of Bayesian neural networks in neuromorphic devices has already commenced[86],

and optimization with AdamB may enable robust inference against variations in

resistance change.

4.2 Conclusion

My study revealed that the difficulty of learning in BBB lies in the rapid and ex-

cessive update of parameter ρ, which is fundamentally solved by AdamB using the

SM prior. I demonstrated that the rapid updating of parameter ρ can be decou-

pled from Adam, whereas the excessive increase can be suppressed by using the SM

prior. Experiments also showed that by using the SM Prior, the parameter µ takes

a sparse distribution and is strongly robust against noise type corruption. However,

the evaluation of AdamB was restricted to evaluating the robustness against covari-

ate shift in image identification tasks, and its application to other tasks would have

to be assessed in future.

I also confirmed that the model trained by AdamB using the SM prior did not

undergo any clear performance degradation even when the random number precision

was reduced to 4 bits. In addition, I applied principal component analysis to the

Chapter 4. Conclusion 65

4.2. Conclusion

MNIST dataset and found that AdamB responds well to eigenvector features with

small eigenvalues if they have been properly trained. These results are expected

to provide a validation metric for applications of dedicated processors generated

by Movitan, a SoC generation system that enables efficient AdamB training. The

development of end-to-end AdamB training flow by Movitan is a future task.

I believe that this series of studies will provide important insights into the effi-

cient operation of reliable deep learning models on real-world settings. Overfitting of

neural networks to training data is among the most significant problems in machine

learning. Bayesian neural networks (BNNs) are known to be robust against over-

fitting owing to their ability to model parameter uncertainty. Bayes by Backprop

(BBB), a simple variational inference approach that optimizes variational parame-

ters by backpropagation, has been proposed to train BNNs. However, many studies

have encountered challenges in terms of variational inference for large-scale models,

such as deep learning. Thus, this study proposed Adam with Decoupled Bayes by

Backprop (AdamB) to stabilize the training of BNN by applying the Adam estima-

tor to evaluate the gradient of the neural network. The proposed approach stabilized

the noisy gradient of the BBB and mitigated excessive changes in the parameters.

In addition, AdamB combined with a Gaussian scale mixture as a prior distribution

can suppress the intrinsic increase in variational parameters. The proposed AdamB

exhibited superior stability compared to training using Adam with vanilla BBB. Fur-

ther, the covariate shift benchmark using image classification tasks indicated that

AdamB was more reliable than deep ensembles in the case of noise-type covariate

shifts. The considerations for stable learning of BNNs by AdamB shown for image

classification tasks are expected to offer important insights for application to other

domains.

Chapter 4. Conclusion 66

References

[1] L. Cosmides and J. Tooby, “Are humans good intuitive statisticians after all? rethinking some conclusions

from the literature on judgment under uncertainty,” Cognition, vol. 58, no. 1, pp. 1–73, Jan. 1996.

[2] X. Jiang, M. Osl, J. Kim, and L. Ohno-Machado, “Calibrating predictive model estimates to support per-

sonalized medicine,” en, J. Am. Med. Inform. Assoc., vol. 19, no. 2, pp. 263–274, Mar. 2012.

[3] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in Proceedings

of the 34th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,

vol. 70, PMLR, 2017, pp. 1321–1330.

[4] L. Kong, H. Jiang, Y. Zhuang, J. Lyu, T. Zhao, and C. Zhang, “Calibrated language model fine-tuning for

in- and out-of-distribution data,” in Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Online: Association for Computational Linguistics, Nov. 2020, pp. 1326–

1340.

[5] K. Han, B. Lakshminarayanan, and J. Liu, “Reliable graph neural networks for drug discovery under distri-

butional shift,” Nov. 2021. arXiv: 2111.12951 [cs.LG].

[6] J. Bridle, “Training stochastic model recognition algorithms as networks can lead to maximum mutual infor-

mation estimation of parameters,” in Advances in Neural Information Processing Systems, vol. 2, Morgan-

Kaufmann, 1989.

[7] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation

using deep ensembles,” in Advances in Neural Information Processing Systems, vol. 30, Curran Associates,

Inc., 2017.

[8] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” In

Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[9] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep

learning,” in Proceedings of The 33rd International Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, vol. 48, New York, New York, USA: PMLR, 2016, pp. 1050–1059.

[10] G. E. Hinton and D. van Camp, “Keeping the neural networks simple by minimizing the description length

of the weights,” in Proceedings of the sixth annual conference on Computational learning theory, ser. COLT

’93, Santa Cruz, California, USA: Association for Computing Machinery, Aug. 1993, pp. 5–13.

[11] A. Graves, “Practical variational inference for neural networks,” in Advances in Neural Information Process-

ing Systems, vol. 24, Curran Associates, Inc., 2011.

[12] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson, “What are bayesian neural network posteriors

really like?” In Proceedings of the 38th International Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, vol. 139, PMLR, 2021, pp. 4629–4640.

67

References

[13] Y. Ovadia, E. Fertig, J. Ren, et al., “Can you trust your model’s uncertainty? evaluating predictive uncertainty

under dataset shift,” in Proceedings of the 33rd International Conference on Neural Information Processing

Systems, Red Hook, NY, USA: Curran Associates Inc., Dec. 2019, pp. 14 003–14 014.

[14] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114–117,

1965.

[15] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of the coming dark silicon apocalypse,”

in DAC Design Automation Conference 2012, Jun. 2012, pp. 1131–1136.

[16] D. P. Rodgers, “Improvements in multiprocessor system design,” SIGARCH Comput. Archit. News, vol. 13,

no. 3, pp. 225–231, Jun. 1985.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural net-

works,” in Advances in Neural Information Processing Systems, vol. 25, Curran Associates, Inc., 2012.

[18] N. P. Jouppi, C. Young, N. Patil, et al., “In-Datacenter performance analysis of a tensor processing unit,” in

Proceedings of the 44th Annual International Symposium on Computer Architecture, ser. ISCA ’17, Toronto,

ON, Canada: Association for Computing Machinery, Jun. 2017, pp. 1–12.

[19] A. Mehonic and A. J. Kenyon, “Brain-inspired computing needs a master plan,” en, Nature, vol. 604, no. 7905,

pp. 255–260, Apr. 2022.

[20] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proceedings

of the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,

vol. 97, PMLR, Jun. 2019, pp. 6105–6114.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers

for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186.

[22] D. Zhang, S. Huda, E. Songhori, et al., “A full-stack search technique for domain optimized deep learning

accelerators,” in Proceedings of the 27th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. New York, NY, USA: Association for Computing Machinery,

2022, pp. 27–42, isbn: 9781450392051.

[23] A. Amid, D. Biancolin, A. Gonzalez, et al., “Chipyard: Integrated design, simulation, and implementation

framework for custom socs,” IEEE Micro, vol. 40, pp. 10–21, 2020.

[24] Y. Ding, W. Jiang, Q. Lou, et al., “Hardware design and the competency awareness of a neural network,”

en, Nature Electronics, vol. 3, no. 9, pp. 514–523, Sep. 2020.

[25] P. V’kovski, A. Kratzel, S. Steiner, H. Stalder, and V. Thiel, “Coronavirus biology and replication: Implica-

tions for SARS-CoV-2,” en, Nat. Rev. Microbiol., vol. 19, no. 3, pp. 155–170, Oct. 2020.

[26] M. Roberts, D. Driggs, M. Thorpe, et al., “Common pitfalls and recommendations for using machine learning

to detect and prognosticate for COVID-19 using chest radiographs and CT scans,” en, Nature Machine

Intelligence, vol. 3, no. 3, pp. 199–217, Mar. 2021.

[27] J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and E. K. Oermann, “Variable generalization

performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study,”

en, PLoS Med., vol. 15, no. 11, e1002683, Nov. 2018.

[28] W. T. Harvey, A. M. Carabelli, B. Jackson, et al., “SARS-CoV-2 variants, spike mutations and immune

escape,” en, Nat. Rev. Microbiol., vol. 19, no. 7, pp. 409–424, Jul. 2021.

References 68

References

[29] N. Band, T. G. Rudner, Q. Feng, et al., “Benchmarking bayesian deep learning on diabetic retinopathy

detection tasks,” in NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications,

2021.

[30] A. Krogh and J. Hertz, “A simple weight decay can improve generalization,” in Advances in Neural Infor-

mation Processing Systems, J. Moody, S. Hanson, and R. P. Lippmann, Eds., vol. 4, Morgan-Kaufmann,

1991.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,

2015.

[32] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in 7th International Conference on

Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[33] J. Bjorck, K. Q. Weinberger, and C. P. Gomes, “Understanding decoupled and early weight decay,” in AAAI,

2021.

[34] M. P. Naeini, G. F. Cooper, and M. Hauskrecht, “Obtaining well calibrated probabilities using bayesian

binning,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, ser. AAAI’15,

Austin, Texas: AAAI Press, 2015, pp. 2901–2907, isbn: 0262511290.

[35] D. Hendrycks and T. G. Dietterich, “Benchmarking neural network robustness to common corruptions and

perturbations,” in 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,

USA, May 6-9, 2019, OpenReview.net, 2019.

[36] D. J. C. Mackay, “Bayesian methods for adaptive models,” UMI Order No. GAX92-32200, Ph.D. dissertation,

USA, 1992.

[37] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural networks,”

in Proceedings of the 32nd International Conference on International Conference on Machine Learning -

Volume 37, ser. ICML’15, Lille, France: JMLR.org, 2015, pp. 1613–1622.

[38] M. Ferianc, P. Maji, M. Mattina, and M. Rodrigues, “On the effects of quantisation on model uncertainty

in bayesian neural networks,” in Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial

Intelligence, ser. Proceedings of Machine Learning Research, vol. 161, PMLR, 27–30 Jul 2021, pp. 929–938.

[39] R. Cai, A. Ren, N. Liu, et al., “Vibnn: Hardware acceleration of bayesian neural networks,” SIGPLAN Not.,

vol. 53, no. 2, pp. 476–488, Mar. 2018, issn: 0362-1340.

[40] Y. Hirayama, T. Asai, M. Motomura, and S. Takamaeda, “A hardware-efficient weight sampling circuit for

bayesian neural networks,” en, Int. J. High Perform. Comput. Networking, vol. 10, no. 2, pp. 84–93, Jul.

2020.

[41] K. Asanović, R. Avizienis, J. Bachrach, et al., “The rocket chip generator,” EECS Department, University

of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr. 2016. [Online]. Available: http://www2.eecs.

berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[42] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The risc-v instruction set manual, volume i:

User-level isa, version 2.1,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2016-118, May 2016. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-

2016-118.html.

[43] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” In

Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17,

Long Beach, California, USA: Curran Associates Inc., Dec. 2017, pp. 5580–5590.

References 69

References

[44] A. Krogh and J. Hertz, “A simple weight decay can improve generalization,” in Advances in Neural Infor-

mation Processing Systems, vol. 4, Morgan-Kaufmann, 1991.

[45] Y. Wen, P. Vicol, J. Ba, D. Tran, and R. B. Grosse, “Flipout: Efficient pseudo-independent weight perturba-

tions on mini-batches,” in 6th International Conference on Learning Representations, ICLR 2018, Vancouver,

BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018.

[46] K. Osawa, S. Swaroop, M. E. E. Khan, et al., “Practical deep learning with bayesian principles,” in Advances

in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[47] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local reparameterization trick,”

in Advances in Neural Information Processing Systems, vol. 28, Curran Associates, Inc., 2015.

[48] A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernández-Lobato, and A. L. Gaunt, “Deterministic

variational inference for robust bayesian neural networks,” in 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[49] R. Krishnan, M. Subedar, and O. Tickoo, “Specifying weight priors in bayesian deep neural networks with

empirical bayes,” en, AAAI, vol. 34, no. 04, pp. 4477–4484, Apr. 2020.

[50] R. Krishnan and O. Tickoo, “Improving model calibration with accuracy versus uncertainty optimization,”

in Advances in Neural Information Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 18 237–

18 248.

[51] S. Farquhar, M. A. Osborne, and Y. Gal, “Radial bayesian neural networks: Beyond discrete support in large-

scale bayesian deep learning,” in Proceedings of the Twenty Third International Conference on Artificial

Intelligence and Statistics, ser. Proceedings of Machine Learning Research, vol. 108, PMLR, 26–28 Aug 2020,

pp. 1352–1362.

[52] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in 2nd International Conference on Learn-

ing Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings,

2014.

[53] S. Liu and W. Deng, “Very deep convolutional neural network based image classification using small training

sample size,” in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730–734. doi:

10.1109/ACPR.2015.7486599.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[55] G. Zhang, S. Sun, D. K. Duvenaud, and R. B. Grosse, “Noisy natural gradient as variational inference,” in

ICML, 2018.

[56] Z. Xiao, J. Shen, X. Zhen, L. Shao, and C. G. M. Snoek, “A bit more bayesian: Domain-invariant learning

with uncertainty,” in ICML, 2021.

[57] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in

Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, ser. Proceed-

ings of Machine Learning Research, vol. 9, Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010,

pp. 249–256.

[58] M. Abadi, P. Barham, J. Chen, et al., “Tensorflow: A system for large-scale machine learning.,” in OSDI,

vol. 16, 2016, pp. 265–283.

[59] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance deep learning library,”

in Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[60] A. Krizhevsky, “Learning multiple layers of features from tiny images,” pp. 32–33, 2009.

References 70

References

[61] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” cs231n.stanford.edu, 2015.

[62] A. Yaguchi, T. Suzuki, W. Asano, S. Nitta, Y. Sakata, and A. Tanizawa, “Adam induces implicit weight

sparsity in rectifier neural networks,” 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), pp. 318–325, 2018.

[63] D. J. Hand and R. J. Till, “A simple generalisation of the area under the roc curve for multiple class

classification problems,” Machine Learning, vol. 45, pp. 171–186, 2004.

[64] P. Izmailov, P. Nicholson, S. Lotfi, and A. G. Wilson, “Dangers of bayesian model averaging under covari-

ate shift,” in Advances in Neural Information Processing Systems, vol. 34, Curran Associates, Inc., 2021,

pp. 3309–3322.

[65] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”

Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[66] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of

the 27th International Conference on International Conference on Machine Learning, ser. ICML’10, Haifa,

Israel: Omnipress, Jun. 2010, pp. 807–814.

[67] G. E. Box, “A note on the generation of random normal deviates,” Ann. Math. Statist., vol. 29, pp. 610–611,

1958.

[68] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” in Proceedings of the 32nd International Conference on International Conference on Machine

Learning - Volume 37, ser. ICML’15, Lille, France: JMLR.org, Jul. 2015, pp. 448–456.

[69] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image

database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. doi:

10.1109/CVPR.2009.5206848.

[70] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading digits in natural images with

unsupervised feature learning,” 2011.

[71] L. T. Clark, V. Vashishtha, L. Shifren, et al., “Asap7: A 7-nm finfet predictive process design kit,” Micro-

electronics Journal, vol. 53, pp. 105–115, 2016, issn: 0026-2692.

[72] T. P. Minka, “Bayesian model averaging is not model combination,” 2002.

[73] L. A. Ortega, R. Cabañas, and A. Masegosa, “Diversity and generalization in neural network ensembles,” in

Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, G. Camps-Valls,

F. J. R. Ruiz, and I. Valera, Eds., ser. Proceedings of Machine Learning Research, vol. 151, PMLR, 2022,

pp. 11 720–11 743.

[74] C. Szegedy, W. Zaremba, I. Sutskever, et al., “Intriguing properties of neural networks,” in 2nd International

Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference

Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2014.

[75] J. Dapello, T. Marques, M. Schrimpf, F. Geiger, D. Cox, and J. J. DiCarlo, “Simulating a primary visual

cortex at the front of cnns improves robustness to image perturbations,” in Advances in Neural Information

Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran

Associates, Inc., 2020, pp. 13 073–13 087.

[76] J. Dapello, J. Feather, H. Le, et al., “Neural population geometry reveals the role of stochasticity in ro-

bust perception,” in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y.

Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc., 2021, pp. 15 595–15 607.

References 71

References

[77] J.-N. Teramae, Y. Tsubo, and T. Fukai, “Optimal spike-based communication in excitable networks with

strong-sparse and weak-dense links,” Sci. Rep., vol. 2, no. 1, pp. 1–6, Jul. 2012.

[78] H. Kada, J.-N. Teramae, and I. T. Tokuda, “Highly heterogeneous excitatory connections require less amount

of noise to sustain firing activities in cortical networks,” Front. Comput. Neurosci., vol. 12, p. 104, Dec. 2018.

[79] X. Chen, X. Wu, H. Wu, and M. Zhang, “Phase separation at the synapse,” Nat. Neurosci., vol. 23, no. 3,

pp. 301–310, Feb. 2020.

[80] G. A. Kerchner and R. A. Nicoll, “Silent synapses and the emergence of a postsynaptic mechanism for LTP,”

Nat. Rev. Neurosci., vol. 9, no. 11, pp. 813–825, Oct. 2008.

[81] N. Brunel, V. Hakim, P. Isope, J.-P. Nadal, and B. Barbour, “Optimal information storage and the distribution

of synaptic weights: Perceptron versus purkinje cell,” Neuron, vol. 43, no. 5, pp. 745–757, Sep. 2004.

[82] S. Zhou and Y. Yu, “Synaptic E-I balance underlies efficient neural coding,” Front. Neurosci., vol. 12, p. 46,

Feb. 2018.

[83] S. J. Kim, S. Kim, and H. W. Jang, “Competing memristors for brain-inspired computing,” iScience, vol. 24,

no. 1, p. 101 889, Jan. 2021.

[84] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature,

vol. 453, no. 7191, pp. 80–83, May 2008.

[85] D. Ielmini and G. Pedretti, “Device and circuit architectures for in ‐ memory computing,” Advanced Intel-

ligent Systems, vol. 2, no. 7, p. 2 000 040, Jul. 2020.

[86] A. Sebastian, R. Pendurthi, A. Kozhakhmetov, et al., “Two-dimensional materials-based probabilistic synapses

and reconfigurable neurons for measuring inference uncertainty using bayesian neural networks,” Nat. Com-

mun., vol. 13, no. 1, pp. 1–10, Oct. 2022.

References 72

Acknowledgement

I would like to express my sincere gratitude to my supervisor, Guest Prof. Makoto

Taiji for his continuous support throughout my Master’s and Ph.D. studies.

I would also like to thank Drs. Yousuke Ohno, Gentaro Morimoto, Teruhisa

Komatsu, Hao Zhang, Yohei Koyama, and Itta Ohmura of the RIKEN Center for

Biosystems Dynamics Research (BDR) for their valuable advice on preparing this

thesis.

My sincere appreciation to Prof. Masahiro Ueda, Prof. Shigeru Kitazawa, Prof.

Shinji Nishimoto, and Guest Prof. Toshiyuki Kanoh for serving as members of my

thesis committee.

I would like to thank Dr. Hideki Asoh, Dr. Tomoyuki Higuchi, Dr. Kenji

Fukumizu, Dr. Ryosuke Kojima, Dr. Masahiro Suzuki, and Mr. Tsuyoshi Ishizone

for scientific discussions and constructive criticism.

My research was supported by the Program for Leading Graduate Schools of

the Ministry of Education, Culture, Sports, Science and Technology, Japan (K03),

RIKEN Junior Research Associate Program, and Masason Foundation.

73

Achievements

PEER-REVIEWED JOURNAL ARTICLES

1. Keigo Nishida and Makoto Taiji, ”AdamB: Decoupled Bayes by Backprop

With Gaussian Scale Mixture Prior,” in IEEE Access, vol. 10, pp. 92959-

92970, 2022, doi: 10.1109/ACCESS.2022.3203484.

PEER-REVIEWED PROCEEDINGS

1. Gentaro Morimoto, Yohei M. Koyama, Hao Zhang, Teruhisa S. Komatsu,

Yousuke Ohno, Keigo Nishida, Itta Ohmura, Hiroshi Koyama, Makoto Taiji,

“Hardware acceleration of tensor-structured multilevel ewald summation method

on MDGRAPE-4A, a special-purpose computer system for molecular dynamics

simulations,”in Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pp. 1-15, 2021

NON PEER-REVIEWED JOURNAL ARTICLES

1. Kazufumi Hosoda, Keigo Nishida, Shigeto Seno, Tomohiro Mashita, Hideki

Kashioka, Izumi Ohzawa,“It’s DONE: Direct ONE-shot learning with quantile

weight imprinting,” arXiv, Nov. 2, 2022. [Online]. Available: https://

arxiv.org/abs/2204.13361

2. 西田圭吾, 泰地真弘人,“Bayes by Backprop法における適応的最適化の提案と
低精度サンプリングによる確率キャリブレーション性能評価,”信学技報, vol.

121, no. 155, PRMU2021-8, pp. 7-12, 2021.

75

OTHERS

1. Keigo Nishida, “Adopted Chipyard Framework for Bayesian Neural Net-

works Training Accelerator Development,”RISC-V Day Vietnam 2020 Virtual

Booths, 2020.

2. 西田圭吾, “RISC-Vベースカスタム SoC開発ツール Chipyardによるベイズ
ニューラルネット向け学習アクセラレータ開発,” RISC-V Day Tokyo 2020

バーチャルブース, 2020.

Chapter 4. Achievements 76

