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Abstract

Halphen’s equations are given by a remarkable polynomietioveield in C* hav-
ing only single-valued solutions, defined in domains bouanidy a circle or by a line.
By generalizing the Lie-theoretic principle behind Halplseequations and borrow-
ing some facts from the theory of deformations of Fuchsiamugs, we exhibit a

family of polynomial vector fields inC3 having only single-valued solutions. The
solutions of vector fields within this family are defined inndains which had not
been previously observed as domains of definition of salstiof polynomial vec-

tor fields in C®. For example, we obtain polynomial vector fields having tohs
defined in domains that are bounded by a fractal curve.

1. Introduction

In the complex domain, the solutions of an ordinary diffél@nequation may be
multivalued, as it is the case for the differential equatiahy/dt = 1, whose solution
is given by the logarithm. Even at the level of complex défetial equations given by
polynomial vector fields irC", there is no full understanding of the obstructions that a
vector field must overcome in order to have a single valuedtisol. Even if a vector
field does have a single-valued solution, it is difficult tooln a priori, its properties.
If a solution is single-valued, we may extend the domainCofvhere it is defined in
order to obtain a maximal domain (open subsetG)fwhere the solution is defined
(this can be taken as the definition sihgle-valued solution What can be said about
the nature of this maximal domain? If we restrict to the clafgpolynomial vector
fields in C" where every solution is single-valued (this is, the vector fields thag ar
semicompletén the sense of Rebelo [20]) then, at leastdh, we have the following
result: In a semicomplete polynomial vector field@%, every solution is defined in the
complement of a countable set of poifit®, Corollary C].

We do not have a complete picture of semicomplete polynongator fields in
C3. We know, however, that the domains where the solutions oh sector fields are
defined are not as simple as the domains appearing in lowerngdions. A remarkable
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vector field inC® was introduced by Darboux [7] and studied by Halphen [12] 881
ad ad ad

1) X=(2122 -~ 2223+ 2123) — + (2B~ 2uZ3 + 2120) —— + (Z2Z3 — 2122 + 21 23) —.
021 02> 0z3

Halphen showed thaX is semicomplete and that its solutions are defined in domains
having a circle (or a line) as a natural boundary. Equatidgsppear in many settings,
such as reductions of Yang—Mills equations [5] and dynamiceiagnetic monopoles
[2] and have connections with modular forms and Ramanujamstions [18], [23],
to cite only a few. There are many generalizations of thesetsans, the first ones
considered by Halphen himself [11], providing many more isemplete vector fields
in C3. We will not try to list all these generalizations. Let ustjusention that some
were given in [8] and generalizations where the ambient espaao longerC® but a
three-dimensional singular affine variety have appeardéjiand [19]. However, in all
the semicomplete generalizations we know of, the solutamasstill meromorphic func-
tions defined in domains having, again, a circle or a line asrahboundary. These
natural boundaries arise as boundaries of components dfisieentinuity domain of a
Fuchsian group.

Do there exist semicomplete polynomial vector fieldsdh having solutions de-
fined in other kinds of domains? We will exhibit a family of vecfields whose solu-
tions are defined in components of the discontinuity domainikleinian groups which
are no longer Fuchsian:

Theorem 1. For everyp € C\ {0, 1}, there exists a nonempty open bounded sub-
setB, C C such that the vector field

a
X, (@) = [Z + 2223(20 — z3)({e — p} 2 + p{1— 01}23)]8—21
2

2 0 2 9
+ 22(21 + p2223 — '023)8_22 +23(z1 + 25— 2223)8_23

is semicompleté¢has only single-valued solution$or everya € 1’5‘,,. A solution of any
such X,(«) is defined in the complement o in CP?! of an invariant component of the
discontinuity domain of either a quasifuchsjantotally degenerate or a cusp Kleinian
group (and all these situations appear

In particular, there exist semicomplete polynomial vedietds in C* whose so-
lutions are defined in simply connected domains bounded bsacetal Jordan curve,
or in simply connected domains whose complement is uncblentdior example with
non-empty interior) but whose boundary is not a Jordan cufeeour best knowledge,
the family (2) gives the only examples of semicomplete poiyial vector fields inC3
where such phenomena appear.



SOME GENERALIZATIONS OF HALPHEN'S EQUATIONS 1087

A key point in Halphen’s work is an invariance property thahde infinitesimally
expressed as followsX and the vector fields = ) ;7 9/9z andZ =) ;9/9z satisfy
the relations

®) L, X]=X, [L,Z]=-2Z, [Z, X]=2L.

Our vector fields enjoy an analogue property and are, in thises, generalizations of
Halphen’s equations. For the proof of our theorem we will tis® approach developed
in [9]. It is geometric and is expressed in terms &, X)-structures on manifolds in
the sense of Thurston [22]. We will use some facts about Kaigroups and, more
specifically, the deformations of Fuchsian groups, that i@yound in [16, 3, 15].

2. Preliminaries

Let G be a Lie group acting faithfully and transitively on a complaanifold X
via a fixed actiond: Gx X — X. A (G, X)-structure on a manifold/ is an atlas for its
complex structure taking values ofi and having changes of coordinatesGn In other
words, there exists a coveririty;} of M and chartsp;: U; — X (biholomorphisms unto
their image) such thap; o ¢, *: ¢;(U; NU;) — X agrees, in each connected component
of its domain, with®(g, -) for a umqueg € G. A chart for a G, X)-structure can be
globalized in the universal coverinl of M: we have adeveloping mapD: M — X
and amonodromymorphismu: 71(M) — G that satisfy the relation

(4) Dfe - p) = pu(a)D(p).-

Reciprocally, a G, X)-structure may be recovered from the coup® ().

A projective structureon a (complex) curveC is a (PSla(C), CPY)-structure (with
the action of PSK(C) on CP! by fractional linear transformations). The projective
structures on a curv€ form an affine space directed by the vector space of holo-
morphic quadratic differentials of: Let {(U;, ¢;)} and {(Vi, i)} be charts for two
projective structures on a cur¥@. Their difference is a quadratic differential, given in
Ui NV by {f(s), s}ds?, where

£ 3/ f" 2
= -3( )

is the Schwarzian derivativand f = v o ¢! (the quadratic differential is globally
well-defined). Reciprocally, given a projective structome C and a quadratic differen-
tial Q, we may build a new projective structure such that the difiee with the orig-
inal one is exactlyQ: if, in a chart of the projective structure is given byq(z) dZ,
a chart for the new projective structure will be given by aojuson to the differential
equation{¢(2), z} = q(2).

Let G be a complex Lie groupg the Lie algebra of its left-invariant vector fields.
Let M be a complex manifold having the same dimensioiGaand letX(M) be its Lie
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algebra of holomorphic vector fields. For the natural actbr to the left upon itself
by left translations, aG, G)-structure (or leftG translation structurkis equivalent to a
representatiorf: g — X(M) such thatf (V)|, # 0 for everyV € g and p € M. In fact,
given a leftG translation structurg¢U;, ¢;} on M, for V € g define f (V) on U; as the
pull-back ¢;*(V). In the opposite direction, iff : g — X(M) is such thatf(V)|, # 0
for every V € g, Lie's third theorem [21] guarantees that there exists ghimrhood
U c M of p and a diffeomorphismy: U — G such thatD¢(V) = f(V), whose germ
at p is unigue up to a left translation iG.

3. The geometry of the vector fields

We will set, in order to simplify notationX = X,(«). Together withX, the vector
fields L = z9/9z3 + (1/2)9/9z, + (1/2)d/9z3 and Z = 9/dz; satisfy the relations
(3). In this way, if 20 denotes the Lie algebra of vector fields @ generated by
X, L and Z andsl,(C) denotes the Lie algebra ¢éft invariant vector fields in Si(C)
(identifying each vector field to its value at the identityle unique linear mapping
¥ W — sl,(C) for which

®  vx=(g o) vO-

O NI

0 0 0
L]ovo= (5 0)

is a Lie algebra isomorphism. In this wa} comes with a representation ef,(C)
into the Lie algebra of polynomial vector fields ©%. Let Q be the locus of linear
independence of., Z and X, which is invariant byX. Its complement is the zero
locus of z,z3(zo — z3)(22 — p23).

The solutions ofX with initial condition in the complement of2 are rational. In
the coordinatesxg, X, 0) for {zz = 0}; (X1, 0,x2) for {zo = 0}; (X1, X2, X2) for {z, = z3};
(X1 + p(p — 1)X2, pXz, X2) for {z, = pz3}, the restriction ofX is x23/8X1 + X1Xz /X
For the initial condition X2, x9), the solution is X9/(1—tx?), x3/(1—tx?)) and is thus
single valued (in restriction to the complementf the vector field is semicomplete).
In view of this, we will focus exclusively on the solutions twviinitial condition in €.

For any discrete groufy C SL»(C), the vector fieldy (X)" induced by (X) on
I'\SL,(C) is complete. This implies that for any open subsetc T"\SL,(C), the re-
striction of ¥(X)" to U is semicomplete. To prove Theorem 1 we will prove that,
for some values ofc(, p), there is a discrete group,,, C SL>(C) and an embedding
iw,p: 2 — I'\SLy(C) that mapsX|q to the restriction to the image af (X)". In this
situation, the solutions oKX with initial condition in Q are single-valued and hence,
for every p € C3, the solution ofX with initial condition p will be single-valued.

Since 2 has three linearly independent vector fields satisfying ridations (3),
it is endowed with a left Si(C) translation structure. Fix a poirp € Q. We have
the universal coverindl: (2, p) — (2, p), a unique developing map: (2, p) —
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(SLx(C), e) and the corresponding monodromy morphigm 1(2) — SL,(C)—that
we will denote byu,[«] whenever we need to stress the dependence upon the param-

eters. LetP = {(‘2 agl)} C SLy(C). It is a closed subgroup of $(C) generated by
¥ (L) andy(Z). The Lie subalgebra dij generated byt and Z integrates into a free

holomorphic action to the right oP on © given by

a o0
c atl

(21, 22, z3)( ) = (a%z, — ac, az, az).
The Lie subalgebra ofl,(C) generated byy (L) and ¢ (Z) integrates into the action
by right translations ofP.

Let A be the orbit of this action that contairns and letx, = C\ {0, 1,p}. The
orbits of the action are fibers of the fibratioh — 2 — X,, given by the restriction
of w(z1, 23, z3) = 2o/73. Sinceny(X,) = 0, from the homotopy long exact sequence
associated to the fibration, we obtain the short exact seguen

(6) 0— m1(A) = m(R2) — m(%,) — 0.

We claim thatri(A) C keru. This is equivalent to the fact tha? is well defined
in a neighborhood ofA. The developing ma is (locally) equivariant with respect to
the above action oP on © and with respect to the action by right translationsPobn
SLy(C). Let 7: U — (€2, p) a germ of solution ofX with initial condition p (defined
in some suitable neighborhodd of 0 in C). The mappingr parametrizes locally the
fibers close toA. For each pointg close to A there exists a unique,(B) e U x P
such thatz(t) andq are in the same fiber and such that, under the above actidéh of
gB € t(U). We have thatD(q) = (é tl)B‘1 is well-defined in a neighborhood oA
and thusmi(A) C ker .

Let IT: Q — Q be the Galois covering associatedstg(A), with the group of deck
transformationsr(2)/71(A) = m1(X,). We have a well-defined mapping m1(%,) —
SL,(C) induced byu and a well defined developing mdp: @ — SL»(C) induced by
D. The couple D, 1) satisfies relation (4). " = u(71(2)), we have

a—" .9

P

SLy(C) —s I"'\SLy(C).

The quotientl"\SL,(C) is a non-Hausdorff manifold (Hausdorff If is discrete) and,
defined as the class if\SL,(C) of Do [T, is an immersion that is well-defined in
view of relation (4).

Suppose thaD is injective. By the monodromy formula (4}, is a faithful repre-
sentation. Also, the action df on SLy(C) preservesD(Q2) and the restriction of this
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action toD() is free and properly discontinuous (in particulfirc SL,(C) is a dis-
crete subgroup). The quotient is, as a manifold with a lef§(S). translation structure,
isomorphic toQ2 and thus, in this case? identifies to a subset of' \SL,(C), identi-
fying X to ¥(X), and X is thus semicomplete. This proves thétis semicomplete if
D is injective

The above diagram can be better understood when we “factdrioel action of P.
Let @ the foliation inQ obtained by the pullback of the fibers efby I1. The quotient
of @ under& is, by relation (6), the universal covering, of £,. The quotient of
SL»(C) under the multiplicative action to the right ¢t is CP* and is given by

o a’l
@) (i‘ 3)—>[b:d], since (2 3)(,/ O[Ol):(: gal)'

Moreover, the standard action to the left of 8L) on CP! is exactly the multiplicative
action to the left of Sk(C) on SLy(C)/P:

a b ¥ 20\ _(* an+bz
c d x z1) \x czp+dzy /)
Since a leaf of is mapped byD to an orbit of the multiplicative action to the
right of P upon Sly(C), D induces a mappin@®”: £, — CP* (a local biholomorphism)
and /z induces a representatiqrf : 1(,) — PSLy(C). The image ofu” is the image

I of I under the projection from SKC) to PSLy(C). The previous commutative dia-
gram becomes:

ipL)Ep

l”’ l

b
cpt 1\ P,

If D is not injective then there are two different poings and p, in € such
that D(p1) = D(p2). The points belong to different fibers of (we have already es-
tablished thatD is injective in restriction to each fiber). Hence, the fibenteain-
ing p: and the fiber containing, have the same image and heri is not inject-
ive. We have thus proved thaf is semicomplete iD” is injective In this situation,
the solution of X with initial condition p is, by formula (7), defined in the domain
(TeC;[T:1]eD'(,)).

Since D’ and p’ satisfy the relation (4), we have a projective structure XN
that depends om and that will be denoted by, [«¢]. By equation (7), ifz(t) =
(z1(t), z(1), z3(t)) is a local solution toX, an inverse of a chart of the projective struc-
ture on £, is given by w o z(t). On the other hand, being a subset ©P!, there
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is a natural projective structure af,. By comparing these two projective structures,
we have

{071 s} ds? = i{w(t), t} o w Y(s) ds?
(')?
B st — 4as® + 2(2x + 2pa — p)S? — dpas + p? e
= 22— 1P = p)? ds* = Q¥(s) ds”.

®

In a neighborhood of each of the four punctures (a) the mamogris parabolic and
(b) its developing map is injective in a neighborhood of theim a suitable coordinate
z around a punctureD” is log(z) [13]. This formula gives every projective structure
on X, satisfying (a) and (b).

WheneverD’ is injective, Db(ip) is, by formula (4), invariant under the action
of the Kleinian groupu”. In the terminology of Kleinian groupﬁp is an invariant
componentfor the Kleinian group and:” is a B-group Much is known about these
groups and their relations to projective structures andhreiiller spaces. We will now
give a rough glimpse of the situation based on [3, 15, 16], restdetails and more
references may be found (see also the Introduction of [17]).

Via the Bers embeddingthe Teichmiller space af, is embedded into the space
of projective structures oit, that, at the punctures, have parabolic monodromy and
whose developing map is locally injective. This is, the Bensbedding takes values in
the space of quadratic differentigdQ7} of X, of formula (8). The image of the Bers
embedding is a bounded open ¢&f C C.

There is a distinguished projective structuresip, the one given by the uniformiza-
tion theorem: there exists sorg in the interior of B, such that the developing map of
¥,[u,] is injective (and thus the corresponding vector field is isemplete). Its image
is (up to a fractional linear transformation) the upper pddineH = {z; J(z) > 0}. The
image of the monodromy.,[u,] is a Fuchsiangroup, this is, it preserveld (the func-
tion p — u, is real-analytic though not holomorphic). For everye 3,, « # u, the
group u,[e] is a quasifuchsiangroup: there is a quasiconformal (and not conformal)
homeomorphismf : CP! — CP! such thatu,[a] = f o u,[a,] o f~1. The develop-
ing map of ¥,[«] is injective and as explained before, the correspondirgjovefield is
semicomplete. Its image is@uasidisk a simply connected open set bounded by a Jor-
dan curve inCP!. The Hausdorff dimension of this curve is strictly greateart one [4].

The boundary of3, has received a lot of attention since it gives a compactifinat
of the Teichmuller space af,. By continuity, if {«;}ien C B, is s sequence such that
limi_. o = p and g € 083, then, since the developing map Bf,[«;] is injective, the
developing map of=,[8] will be injective as well (and the corresponding vector diel
will be semicomplete). It will have some simply-connectgetn setA as image. We
have the following exclusive dichotomy fak:

e The groupu;[ﬂ] is totally degenerate The setA is its discontinuity domain and

is a dense subset @&P*. Its complement, the limit set, is a closed connected sdt tha
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is not locally connected [1].

e The group;ﬁ;[ﬁ] is a cusp group The setA is the only invariant component of
the discontinuity set otuf,[ﬂ]. The complement of the closure af is a countable
union of round disks that are, by pairs, either disjoint angent. The union of the
boundaries of these disks is containedift, which is not a Jordan curve. The quotient
of the union of these disks is the union of two triply-punetlirspheres (see [15] for
more on these groups).

Both situations effectively appear withig3, [3]. Theorem 1 is now proved.

4. Final comments

4.1. On the existence of first integrals. Halphen'’s equations do not have a mero-
morphic first integral [14] (see also [9]) and our generdi@ss share this property. Semi-
complete vector fields within the family (2) do not have a firgegral, in view of the
following result [10, Corollary D]Let X be a semicomplete meromorphic vector field in
C? and suppose that the maximal solution with initial conditip is defined in a subset
U of C such that the complement of U is uncountable. Then the ofbit through p is
Zariski dense irC3 and, in particular, X does not have a meromoprhic first integral

4.2. An example. In the cases wher&,(«) is semicompletew(t) is a single-
valued function. Our geometric reasoning implied tha{«) is semicomplete whenever
w(t) is single-valued. It is legitimate to ask if all this is needand if the single-
valuedness of» does not imply, in a more direct way, the semicompleteness.ofhis
is, in general, not true. For example, the vector fiedfl { z3) 9/0z1 + 212, /92, +
z3(22% — 71) 3/ 9z satisfies relations (3) with respect to the vector fiefds- 9/9z; and
L =09/0zs+ (1/2)0/0z, — (1/2)9/0z3. The three vector fields are linearly independent
in the complement ofz,z; = 0}. The fibration corresponding to the right action Bf
is now given byw = z3z3 and takes values i€ \ {0}. A solution to this vector field is
given by

( t 1 (t — 1)2)

1-t2" 21 i2—1)"

and hence the vector field is not semicomplete. Despite #{i9,= (t — 1)/(t + 1) is
a single-valued function (it has vanishing Schwarzian).

4.3. Symmetries of the equations. The vector fieldsX,(«) are invariant under
a simultaneous change of sign of and z3 and can thus be defined in the quotient of

C? under this involution. Forn a primitive cubic root of unity, the functions

X=z, Y=271+ Z% — 223, Z=277— (cu + 1)2223, W=2z + a)Z% — w273,
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generate the ring of polynomials invariant by a simultarseobange of sign of, and
z3 and are bound by the algebraic relation

9) W (XZ+YW) + o(XW +Y 2) + (XY + ZW) = 0.

This quadratic cone has a vector field inducedXy(«). For example, if £1,2,,23) are
a solution toX_,((1/3)(1— w)), the above functions satisfy the differential relations

W4 X +Y =WX+ XY+ YW,
W4Y +Z =WY+YZ+ZW,
W+ X' +Z =WX+ XZ+ZW,
X+Y +Z =XY+YZ+ZX

This is exactly the system of equations satisfied by moduang$ of level three con-
sidered by Ohyama in [19].

4.4. Some questions. Let us end by formulating some questions:

Does there exist a semicomplete polynomial vector fieldCthaving a maximal
solution defined in a domain
(1) with uncountable complement, or
(2) whose complement has nonempty interior,
necessarily part of a Lie algebra of rational vector field$® @nswer is negative if we
restrict to polynomial vector fields, see [8, Section 3]).

In [5], a reduction of the Yang—Mills equations is shown todarce the system (1).
Is there a reduction of these equations yielding the vecttadiX,(r)? More generally,
does there exist an interesting partial differential eigquesadmittingX,(«) as a reduction?

Does there exist a polynomial vector field @' having a single-valued solution
defined in an annulugr <|z—q| < R}?
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