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Abstract
We study analytic smoothing effects for solutions to the Cauchy problem for

the Schr̈odinger equation with interaction described by the integralof the intensity
with respect to one direction in two space dimensions. The only assumption on the
Cauchy data is the weight condition of exponential type and noregularity assump-
tion is imposed.

1. Introduction

We study the nonlinear Schrödinger equation

(1.1) +
1

2
= ( )

where is a complex-valued function of time and space variables denoted respectively
by R and ( ) R2, = , is the Laplacian inR2, and ( ) is the
nonlinear interaction given by

(1.2) ( ( ))( ) = ( )
2

d ( )

with C. The equation (1.1) with integral type nonlinearity (1.2) appears as a model
of propagation of laser beams under the influence of a steady transverse wind along
the -axis [1, 3, 37] and as a special case of the Davey-Stewartson system where the
velocity potential is independent of -variable [2, 5, 6, 9, 13, 14, 18, 25, 32].

In spite of a large literature on the nonlinear Schrödinger equations (see for in-
stance [4] and references therein), there are not many papers on the equation (1.1)
with nonlinearity of integral type [1, 3, 22, 34, 37]. The existence and uniqueness of
global solutions to the Cauchy problem for (1.1) is proved inthe usual Sobolev spaces

1Partially supported by Grant-in-Aid for formation of COE.
2JSPS Fellow
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(R2) with integers 1 [3] and in the Lebesgue spaces2(R2) [22, 34]. The ex-
istence of modified wave operators is proved on a dense set of small and sufficiently
regular asymptotic states [22]. Smoothing properties and large time asymptotics are
studied in [34] (see also [10, 12, 15, 18, 21, 23–26]). The purpose of this paper is
to describe analytic smoothing properties of solutions to the Cauchy problem for (1.1)
in terms of the generators of Galilei and pseudo-conformal transformations. We fol-
low the method of Hayashi and coauthors ([10–26], especially [16, 17, 23, 24]) basi-
cally, while a systematic use of Strichartz estimates and a couple of observations on
the weight condition of exponential type are new ingredients in this paper.

To state our results precisely, we introduce the following notation. The generators
of Galilei transformations are denoted by = ( ) = ( + + ) = ( )+ .
The generator of pseudo-conformal transformations is denoted by = 2 + 2 + 2 +
2 + 2 + 2 2 = 2 + 2 2 , where = + (1 2) . Let be a Banach space
of functions of ( ( )) R R2 or of ( ) R2 and let be an operator on .
Then for 0 the space ( ; ) is defined at least formally by

( ; ) = ; ; ( ; ) =
0

!
;

Similarly, for operators = ( 1 2) of two components, we define

( ; ) = ; ; ( ; ) =
0

!
1

1
2

2 ;

where we have used the standard multi-index notation with = (1 2). For simplicity,
we write ( ; ) = ( ; ( ; )). For 0 we define

= (( 0); (0 ; 2) 8(0 ; 4 2))

= ((0 ); (0 ; 2) 8(0 ; 4 2))

= ( ; (0 ; 2) 8(0 ; 4 2))

= ( ; (0 ; 2) 8(0 ; 4 2))

We state the main result in this paper.

Theorem 1. Let 0. Then:
(1) For any 0 there exists 0 independent of with the following properties:

(a) For any (( 0); 2) with ; (( 0); 2)
(1.1) has a unique solution .
(b) For any ((0 ); 2) with ; ((0 ); 2)
(1.1) has a unique solution .
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(c) For any (( ); 2) with ; (( ); 2)
(1.1) has a unique solution .

(2) For any 0 there exists 0 depending on and such that for any
(( ) 2 + 2; 2) with ; (( ) 2 + 2; 2)

(1.1) has a unique solution .

REMARK 1. Theorem 1 is regarded as an infinite version of Theorem 2 of [34].
The conclusion holds when the time interval is replaced by [ 0].

REMARK 2. Functions in the space ( ; (0 ;2)) [resp. (( 0); (0 ;
2)), ((0 ); (0 ; 2))] are analytic in ( ) [resp. , ] for each = 0 [23,

24]. Functions in the space ( ; (0 ;2)) are analytic in ( ( )) with = 0
[17]. In those respects, Theorem 1 describes analytic smoothing properties of solutions.
We note that no regularity assumption is imposed on the Cauchy data.

In Theorem 1, the assumptions such as (( 0);2) are described in terms
of infinite series of weighted 2 norms. It would be more explicit to describe the as-
sumptions in terms of weights of exponential type.

The following proposition describes norm in the spaces (( );2) and (( )
2 + 2; 2) in terms of weights of exponential type.

Proposition 1. For any 0 there exists 0 such that the following esti-
mates hold:

( + ) ; 2 ; (( ); 2)
( + )( + ) ; 2(1.3)

( 2+ 2) ; 2 ; (( ) 2 + 2; 2)

( + )( 2+ 2) ; 2(1.4)

Moreover, the second inequality in(1.4) is optimal in the sense that the estimate

(1.5) ; (( ) 2 + 2; 2) ( 2+ 2) ; 2

fails to hold.

REMARK 3. The first part of Proposition 1, including (1.3) and (1.4),is a special
case of Proposition 2 in Section 4 below.
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In [17], Hayashi and Kato proved analyticity in space-time with = 0 of solutions
for the nonlinear Schrödinger equations

+
1

2
= 2

in R R with C and nonnegative integer under the assumption on the Cauchy
data such that

2 [ 2]+1 for 1, where [ ] is the integer part of 0.
The above assumption is relaxed as

2
, where = 0 if ( ) = (1 1) and

= 1 if = 2 or ( ) = (3 1) (see [17]). In view of (1.4) the assumption
(( ) 2 + 2; 2) is satisfied if ( + )( 2+ 2) 2, which corresponds to = 0

+ = 1 in the last assumption in = 2.
We refer the reader to [7, 8, 11, 19, 21, 29, 30, 31] for analyticity of solutions

to other nonlinear evolution equations and to [33, 35, 36, 38] for analytic smoothing
effects for linear dispersive equations.

We prove Theorem 1 in Section 3 by a contraction argument. Basic estimates for
the proof of Theorem 1 are summarized in Section 2. We prove Proposition 1 in Sec-
tion 4 in a general setting.

Throughout the paper we use the following notation without further comments.
= (R ; (R )) with norm

; = ; ;

= (R2) = . ( ) = exp( ( 2) ) denotes the free Schrödinger group acting
on functions onR2. ( ) denotes the modulation operator realized as the multiplica-
tion by exp( ( 2 + 2) (2 )) for = 0. The operators are represented as

= ( )( ) ( ) = ( ) ( )

while satisfies the following useful identity

2 = 2 ( ) ( )

where = + + .

2. Preliminaries

In this section we collect some basic estimates for the free Schrödinger group
( ) and the nonlinearity ( ) of integral type.

Lemma 1 (Hayashi-Ozawa [22]). ( )satisfies the following estimates:
(1) For any ( ) with 0 2 = 1 2 1 1 2

( ) ; (R; 2) ; 2
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(2) For any ( ) with 0 2 = 1 2 1 1 2, = 1 2,the operator
defined by

( )( ) =
0

( ) ( ) d

satisfies the estimate

; 1(0 ; 1 2) ; 2(0 ; 2 2)

where is independent of 0 and is the dual exponent to defined by1 +
1 = 1.

Proof. See [22, 34].

Lemma 2 (Hayashi-K. Kato [17]). Let 1 and let R. Then for
any , 0 and C with 1, = Max( 2 1)+1the following inequality
holds:

; ( + ( 2) + ; ) 1 +
1

; ( + ( 2) ; )

where = (0 ; 2) or ( ; (0 ; 2)).

Proof. We argue as in [17]. By the commutation relation

[ + ( 2) ] =
2

( )2

we have

( + ( 2) + )

=
=1

1

=0

( + 2 ) ( + ( 2) )

+ ( + ( 2 ))(2.1)

We note that ; ; . By (2.1), we obtain

; ( + ( 2) + ; )

=
=0

!
( + ( 2) + ) ;
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=0 =1
!

1

=0

( + 2 ) ( + ( 2) ) ;

+ ; ( + ( 2) ; )

=0 =1
( )!

1

!

1

=0

( + 2 ) ( ) ( + ( 2) ) ;

+ ; ( + ( 2) ; )

=1

( )

!

1

=0

( + 2 ) + 1 ; ( + ( 2) ; )

The lemma then follows by the following inequalities:

1

!

1

=0

( + 2 ) =
1

=1

2 +
2

+ 1

1

=1

2 + Max
2

2
0 = 1

Lemma 3. Let ( ), = 0 1 2 3,satisfy1 , 1 0 = 3
=1 1 ,

1 0 = 3
=1 1 . Then:

(1) For any 0

1 2 3( ) d ; (( 0); 0( ; 0 2))

3

=1

; (( 0); ( ; 2))(2.2)

1 2 3( ) d ; ((0 ); 0( ; 0 2))

3

=1

; ((0 ); ( ; 2))(2.3)

1 2 3( ) d ; ( ; 0( ; 0 2))

3

=1

; ( ; ( ; 2))(2.4)

where = [0 ].
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(2) For any 0 with 2 1

1 2 3( ) d ; ( 2 ; 0( ; 0 2))

(1 2 )3

3

=1

; ( ; ( ; 2))(2.5)

where = [0 ].

Proof. We define = 1 , = ( ) = exp( 2 (2 )). By the relation
= ( ) 1, we obtain

1 2 3 d = ( ) 1 2 3 d

= ( ) 1 2 3 d +
1+ 2=

2 1

!

1! 2!
1

1
2

2 3 d

= ( )
1+ 2+ 3=

!

1! 2! 3!
1

1
2

2
3 d

=
1+ 2+ 3=

!( 1) 3

1! 2! 3!
1

1
2

2
3

3 d(2.6)

We estimate (2.6) by the Ḧolder inequalities in space-time as

1 2 3 d ; 0( ; 0 2)

!
1+ 2+ 3=

3

=1

1

!
; ( ; 2)

This implies

1 2 3 d ; (( 0); 0( ; 0 2))

=0 1+ 2+ 3=

3

=1

1

!
; ( ; 0 2)

3

=1

; (( 0); 0( ; 0 2))

This proves (2.2). By a similar calculation, we obtain (2.3). Similarly, (2.4) follows
from a two dimensional generalization of (2.6).
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To prove (2.5), by using

d = ( + 1) d

( + 1) ( ) =
=0

( + 1)

we compute

( 2 ) 1 2 3 d

= (2 ) +
1 2 3 d

= (2 ) +

+ + =
1+ 2+ 3=

! ! ( 1)

1! 2! 3! ! ! !

1
1

2
2 ( + 1) 3

3 d

=
+ + =
1+ 2+ 3=

! !( 1)

1! 2! 3! ! ! !

( 2 ) 1
1 ( 2 ) 2

2 ( 2 + 1) 3 3 d

In the same way as above, we estimate

1 2 3 d ; ( 2 ; 0( ; 0 2))

3; ( 2 + 1; 3( ; 3 2))
2

=1

; ( 2 ; ( ; 2))

3

=1

; ( 2 ; ( ; 2))

(1 2 )3

3

=1

; ( ; ( ; 2))

where we have used Lemma 2 and the inequality

; ( + 1; ) ; ( ; )

which holds for any operator with [ 1] = 0.



ANALYSTIC SMOOTHING EFFECT FORNLS 745

3. Proof of Theorem 1

We solve the integral equation

(3.1) ( ) = ( )
0

( ) ( ( )) d

by a contraction argument on , , , and . Let (( 0);2) with
; (( 0); 2) . For 0 we define

( ) = ; ;

where

; = Max ; (( 0); (0 ; 2)) ; (( 0); 8(0 ; 4 2))

For we define( ( )) ( ) as the RHS of (3.1). We have

(3.2) ( ) ( ) = ( )
0

( ) ( ) ( ) d

Applying Lemma 1 to the RHS of (3.2) and using the Hölder inequality in time, we
obtain

Max ( ); (0 ; 2) ( ); 8(0 ; 4 2)

; 2 + ( ( )) ; 4 3(0 ; 1 2)

; 2 + 1 2 ( ( )) ; 4(0 ; 1 2)(3.3)

Multiplying both sides of (3.3) by !, making a summation on andapplying
Lemma 3, we obtain

( ); ; (( 0); 2)

+ 1 2 ; (( 0); 8(0 ; 4 2))
2

; (( 0); (0 ; 2))

In the same way as above, for ( ), ( ) satisfies

( ); + 1 2 3

( ) ( ); 1 2 2 ;

For 0 let and satisfy 2 , 1 (42 4). Then ( ) has a unique
fixed point in ( ). This proves Part (1). Parts (2) and (3) follow in the same way.

For Part (4) we write, with

( ) ( ) = ( ) 1 2( 2 + 2)
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0
( ) ( + 4 ) ( ) ( ) d

where we have used the relation

( ) ( ) = ( ) ( ) + 4

which follows from the commutation relation [ ] = 4 , see [17, 20]. In the
same way as above, we have

( );

; (( ) 2 + 2; 2)

+ 1 2 ( ); ( + 4 ; 4(0 ; 1 2))(3.4)

By Lemmas 2 and 3, the last norm on the RHS of (3.4) is estimatedas

( ); ( + 4 ; 4(0 ; 1 2))

1

1 (5 2)
( ); ( 2 ; 4(0 ; 1 2))

1

1 (5 2) (1 2 )3
; ( ; 8(0 ; 4 2))

2

; ( ; (0 ; 2))
(3.5)

By (3.4) and (3.5), we have for ( )

( ); +
1 2 3

(1 (5 2) )(1 2 )3

Similarly, for ( )

( ) ( );
1 2 2

(1 (5 2) )(1 2 )3
;

For 0 let and satisfy 2 , Min(1 (5 ) 1 (20 2 )2). Then ( )
has a unique fixed point in ( ).

4. Proof of Proposition 1

First, we prove the last part of the proposition. The LHS of (1.5) is estimated as

; (( ) 2 + 2; 2)

=
0

+ +

! ! !
( 2 + 2) ; 2
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0

+ +

! ! !
( 2 + 2) ; 2

= ( + + 2+ 2) ; 2

Therefore (1.5) fails to hold for = ( + + 2+ 2).
From now on we consider functions inR . We use the standard multi-index nota-

tion.

Proposition 2. Let and be positive integers and let 0. Let =
( 1 ) be functions of R . Then the following inequalities hold.

=1

; 2(R )

Z
0

!
; 2(R )

0
=1

(1 + )1 2 ; 2(R )(4.1)

where 0 = (1 + 2 log 2)1 2.

REMARK 4. To derive (1.3) from (4.1), we put = 2,1( ) = , 2( ) = .
To derive (1.4) from (4.1), we put = 3, 1( ) = , 2( ) = , 3( ) = 2 + 2.

Proof of Proposition 2. The first inequality of (4.1) is proved by the Maclaurin
expansion of and the triangle inequality.

The second inequality of (4.1) is proved as follows. By the Wallis formula

(2 )!

22 ( !)2

1 1 1
1+1 2

we see that the series

0

(2 )!

22 ( !)2

1

+

converges to a finite value 2
0 (= 1 + 2 log 2), where + = Max( 1). By Schwarz’
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inequality, this yields the following estimate:

!
; 2(R )

(2 )!

22 (( 1)!)2( 1)+ ( )+

1 2

( 1)+ ( )+22

(2 )!
2 ; 2(R )

2
1 2

= 0
( 1)+ ( )+

(2 )!
(2 )2

1 2

(4.2)

where is the scalar product in2(R ). Since

=0

+

(2 )!
2 = 1 +

2
sinh

the RHS of (4.2) is dominated by

0
=1

1 +
2

2
sinh 2

1 2

= 0
=1

1 +
2

2
sinh 2

1 2

; 2(R )

Using 1 (1+ sinh 2 ) (1+ )2 , we have the second inequality of (4.1).
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