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Abstract
We study analytic smoothing effects for solutions to the &@guproblem for
the Schédinger equation with interaction described by the integfathe intensity
with respect to one direction in two space dimensions. Thg assumption on the
Cauchy data is the weight condition of exponential type andeagularity assump-
tion is imposed.

1. Introduction

We study the nonlinear Sabalinger equation
. 1
(1.1 i0u +§Au = f(u),

whereu is a complex-valued function of time and space veasgblenoted respectively
by t € R and ,y) € R? 3§, = /3¢, A is the Laplacian inR?, and f ¢ ) is the
nonlinear interaction given by

L.2) (f(u))(t,x,y)ﬂ(/_x |u(t,xzy)|2dx’)u<r,x,y)

with A € C. The equation (1.1) with integral type nonlinearity (1.®pears as a model
of propagation of laser beams under the influence of a steahgverse wind along
the x -axis [1, 3, 37] and as a special case of the Davey-Steovatystem where the
velocity potential is independent of -variable [2, 5, 6, 3, 14, 18, 25, 32].

In spite of a large literature on the nonlinear Sidinger equations (see for in-
stance [4] and references therein), there are not many paperthe equation (1.1)
with nonlinearity of integral type [1, 3, 22, 34, 37]. The s&ince and uniqueness of
global solutions to the Cauchy problem for (1.1) is provedhia usual Sobolev spaces
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H™(R?) with integersm > 1 [3] and in the Lebesgue spadé¢R?) [22, 34]. The ex-
istence of modified wave operators is proved on a dense seanall and sufficiently
regular asymptotic states [22]. Smoothing properties ardel time asymptotics are
studied in [34] (see also [10, 12, 15, 18, 21, 23-26]). Theppse of this paper is
to describe analytic smoothing properties of solutionshi® €auchy problem for (1.1)
in terms of the generators of Galilei and pseudo-conformahsformations. We fol-
low the method of Hayashi and coauthors ([10-26], espgc[ab, 17, 23, 24]) basi-
cally, while a systematic use of Strichartz estimates anawuple of observations on
the weight condition of exponential type are new ingrediant this paper.

To state our results precisely, we introduce the followimgation. The generators
of Galilei transformations are denoted By A (J, )x (td,y ity M5f i)V
The generator of pseudo-conformal transformations is @ehby K =x2 + y? + 2it +
2itxd, +2ityd, + 21?9, = J2+2’L, where L =i3, +(¥ 2\ . LetX be a Banach space
of functions of ¢, f,y))e R x R? or of (x,y) € R?> and letA be an operator ok
Then fora > 0 the spac&“ A( X ) is defined at least formally by

G*(A; X) = {f eX: [ficuan| =Y S afix| < oo}.

n>0 "

Similarly, for operatorsA =43, Ay) of two components, we define

]
G(A;X) = [f eX; | ;6 x)| =ZC;—! AT A3 x| < oo},

a>0

where we have used the standard multi-index notation with «;7a2). For simplicity,
we write G*(A, B;X)=G*(B;G*(A;X)). ForT > 0 we define

X4 = G*((Jx, 0);L>(0, T ;L% N L¥0, T; LTL2),
Y§ =G((0, J,); L™ (0, T;L%) N L¥0, T; LjL?)),
74 =G(J;L*(0, T;L%) N L0, T;LjL2)),

Wi =G“(J.K;L™(0, T;L%) N L¥0, T;LL2)).

We state the main result in this paper.

Theorem 1. Leta > 0. Then
(1) For any p > 0 there existsT > 0 independent of: with the following properties
() For any ¢ € G*((x. 0); L?) with |¢; G*((x,0);L3)| < p
(1.1) has a unique solutiom € X.
(b) For any ¢ € G*((0. y);L?) with |/¢; G*((0, y); L) < »
(1.1) has a unique solutiom € Y3.
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(c) For any ¢ € G((x, y); L?) with |¢; G*((x, y); L?)| < p

(1.1) has a unique solutiom € Zf.
(2) For any p > O there existsT > 0 depending oz ang such that for agye
G((x, y), x* +y% L?) with [[¢; G*((x, y), x* + % L) < p
(1.1) has a unique solutiom € Wf.

Remark 1. Theorem 1 is regarded as an infinite version of Theorem 234f. [
The conclusion holds when the time interval is replaced b¥,[ ]. 0

RemARk 2. Functions in the spadgg® J (L>® (@ L?)) [resp.G* ((x, 0).L™ (OT ;
L?)), G4((0, J,); L= (0, T ;L?))] are analytic in £,y ) [respx y ] for each / = 0 [23,
24]. Functions in the spacg® J(K L® (@ L?) are analytic in{, £,y )) witht /=0
[17]. In those respects, Theorem 1 describes analytic simgpproperties of solutions.
We note that no regularity assumption is imposed on the Gadela.

In Theorem 1, the assumptions suchdag G* «x, (( L8);are described in terms
of infinite series of weighted.? norms. It would be more explicit to describe the as-
sumptions in terms of weights of exponential type.

The following proposition describes norm in the spa6és x, X( L?);andG* (k, y )
x%+y?; L?) in terms of weights of exponential type.

Proposition 1. For any ¢ > 0 there existsC, > 0 such that the following esti-
mates hold

“ea(lx|+|y|)¢; LZH < ||¢; G((x, y); L?) ”
(13 < C, ||elareXi g 12|,

ea(x2+y2)¢; LZ” < ||¢, G“((x, y)’x2 +y2; L2) ”

(1.4) <C;

PaH)627) LZH .
Moreover the second inequality if1.4) is optimal in the sense that the estimate

(1.5) |¢:G (. y) x*+y%5 L7 < €

e ;12
fails to hold.

Remark 3. The first part of Proposition 1, including (1.3) and (1.8)a special
case of Proposition 2 in Section 4 below.



740 T. Qzawa, K. YAMAUCHI AND Y. Y AMAZAKI

In [17], Hayashi and Kato proved analyticity in space-timighw # O of solutions
for the nonlinear Sclidinger equations

1
iou + EAM = Mul®u

in R x R* with » € C and nonnegative integgr  under the assumption on the Cauchy
data¢ such that*’¢p ¢ HI"/Z*1 for n > 1, where [ ] is the integer part of > 0.
The above assumption is relaxed @8°¢ € H™, wherem =0 if ¢, p) = (1 1) and
m=1ifn=2o0r@p)= (31 (see [17]). In view of (1.4) the assumptigne
G((x, y), x2 + y2, L?) is satisfied ife@)*>*)¢ ¢ 1.2 which corresponds te: =&

a <a+e=1in the last assumption in = 2.

We refer the reader to [7, 8, 11, 19, 21, 29, 30, 31] for angtytiof solutions
to other nonlinear evolution equations and to [33, 35, 34, f8B analytic smoothing
effects for linear dispersive equations.

We prove Theorem 1 in Section 3 by a contraction argumenticBsgtimates for
the proof of Theorem 1 are summarized in Section 2. We proegd3ition 1 in Sec-
tion 4 in a general setting.

Throughout the paper we use the following notation withautHer comments.

LYLY = LP(Ry; L9(R,)) with norm

s L7 LN = s 205 28] -
LP = LP(R?) = LYLY. U(t) = exp(i(t/2)2) denotes the free Sabdinger group acting
on functions onR?. M(t) denotes the modulation operator realized as the migkipl
tion by exp{ &2+ y?)/(2t))- fort # 0. The operatord are represented as
J=U@)x, y)U(—1t) = M@)itVM(—t),
while K satisfies the following useful identity
K —2it =2itM ¢)PM (—t),
where P =x9, +yd, +9, .
2. Preliminaries

In this section we collect some basic estimates for the frelerd8inger group
U(r) and the nonlinearityf « ) of integral type.

Lemma 1 (Hayashi-Ozawa [22]). U ¢( ¥atisfies the following estimates
(1) For any (¢,r) with0<2/g =1/2— Yr< ¥ 2

|U( s LAR; L L2)| < C |5 L)
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(2) For any (gj,r;) with 0 < 2/q; = 1/2— Y¥Yr; < ¥ 2,j =1 2the operatorG
defined by

t
(Gu)(t) = f Ut —t)u()dt’
0
satisfies the estimate

)

|Gu; L0, 75 L7 12)| = € | Gus L0, T5 L L)

where C is independent df > 0 and p’ is the dual exponent tp  defined byp +
1/p =1.

Proof. See [22, 34]. ]

Lemma 2 (Hayashi-K. Kato [17]). Let1 < ¢,r < oo and let p € R. Then for
anya, T > 0and u € C with amT < 1, m = Max(u|/ 2 1)+1the following inequality
holds

| £ GA(K +i(p — 2 +put: X)) < (1 +%) | £ GUK +i(p — 2):X)

’

where X = L4(0, T; L} L) or G“(J; L(0, T'; L',L?)).

Proof. We argue as in [17]. By the commutation relation

[ut, K +i(p — 2)] = —% (ut)?,

we have
(K +i(p—2) +pt)
1 / k-1
=30 () [TTeev2ii) |k +io - 20y
k=1 j=0
(2.1) +(K +i(p—2)) .

We note that||rf X|| <T|f X . By (2.1), we obtain

|£:GU(K +i(p—2) +put; X))

!
= 7—|||(K+i(p—2)t+m)’f;X||
=0
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o0 1 a[ ] k—1
D05 ( ) []‘[(w +2,)] T (K +i(p—20) 7" 1 X|
+| fGUK +i(p — 2); X))

oo I I—k k-1
< Z : |:k' ]_[(|M| +2J):| @I (K +i(p —20)~* £, X|

j=0

aT)kk 1
Z L tuir2i+ |£:6°(K +i(p =2 ;X))

k=1

The lemma then follows by the following inequalities:

]_[(IMI +2j) = Iull_[( W' )

k-1

-2
< ] (2+ wax(52,0) ) = a2 O

J=1

Lemma 3. Let(g;,r;), j =0, 1 2 3,satisfyl < g;,r; < 00, /g0 = Y 31 1/q;,
1/rg= Zle 1/r;. Then
(1) Foranya, T >0

(2.2) < ]‘[ lv; G, O); LU (15 LY L2))
j=1

v / Yalalt, X', y) s GO0, 1, ;LT L0 L2)

v / Yot ¥, ¥) &' G (Js, O);L(1; L°L2))

3
(2.3) <[Tlvi 6. 1y)iLo ;LY L2))] .
j=1
‘ V1 / YaWs(t, x', y) dx'; G4 (J; L(I; L L2)) ‘
3
(2.4) <[1llv;: G, Lo LyL?)|.
j=1

where I = [0, T].
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|

(2) For anya,T > 0 with 2aT < 1

) o

(2.5) m]_[”w],ga(J K;LY(I; L) L?

%/ YoWs(t, x', y) dx'; G (J, K — 2it ;L9(1; LY L?))

wherel = [0, T].

Proof. We definelzj =M Y, M, = M(t) = exp(x?/(2t)). By the relation
Jy = M, (itd;) M1, we obtain

J! (wl / wzﬁdx):M.x(irax)’ (% f %%dx’)

= M (it} a:i%-/ oz e’ + l,'l,\w / o (Vavs) a

I1+l=1
1221
I X ~ =
— -/ § : k k ks ’
- Mx(lt) kll k> 1 k ,@Wl/ 3x21ﬂ2 - Oy wdx
Iy +lp+l3=l >

26 = ) HCD" g v / Ly Iy de',

1 o) feal Ty
I+ =l kal kol ks

We estimate (2.6) by the dider inequalities in space-time as

J; (wl / ) I/fz%dx/) ;L(1; L7 L?)

> l_[k.

kitkotka=l j=1

G LU(1; LY L2

This implies

H b1 [ paTaddin (U On LR L L) H

< Z Z 1_[— | 7554 LU (1, L L) |

1=0 ky+ko+ka=l j=1 kit

w

|97 G (e, O); Lo(1; L L2))|
j=1

This proves (2.2). By a similar calculation, we obtain (2.8)milarly, (2.4) follows
from a two dimensional generalization of (2.6).
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To prove (2.5), by using
P/ fdx’:/ (P+1) fdx,

—00

(P + 1)t (fg) = Z( )Pk ip(peyg,
we compute
Jé (K — 2it) (wl f Yos dx’)

= (2i)“"" Mo P! (% / " Vo dx’)

al I (=1)18"
=@t Y e
papragrmg S J2H I3 B BT B
Jitjetjz=l

X —
. aﬁ'phwl‘/ 3/3"13/'21#2 . 98" (P + 1) g dx’
—0oQ

Z al N(=1)8"
i 12 3 BB B

Jitjatjs=l

I (K = 2it) 7y f JP(K = 2itY, - JB"(K — 2it + 1)3yzdx’.
—00
In the same way as above, we estimate
‘%/ Yoysdy’;G(J, K — 2it;Lq0(1;L§9L§))’
—0oQ
2
< s G0 K = 2it + ;L2 LPLA) | [ ] | w5 GUU. K — 2it; L9 (15 LY L)) |
=1

3
< [T w5 G0, K —2it; L% (117 L2)|
j=1

(1

e

)3 ]_[ lwj; G, K; L9 (1; LY L?

where we have used Lemma 2 and the inequality

|£:G(A+1;X)| <e | f:G*

which holds for any operatoA  with4, 1]=
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3. Proof of Theorem 1

We solve the integral equation
t
3.1) u@)=UeYy —i | U@l —1)f(u())d’
0

by a contraction argument oX% Y& Z4 , aidl¢ . Lete G° x,(( Dj) with
|#; G*((x,0);L?)| < p. For R > 0 we define

X$(R) = {u € X¢; |lu; X7 | < R},
where

|u; X4 = Max (|| u; G ((Jx. 0);L>(Q T ;L?)

s G, 03,280, TS LIL2)) ) -

For u € X4 we define(®(u)) () as the RHS of (3.1). We have

(3.2) (o) O=Uex'e—i [ Ve =) (L) ).

Applying Lemma 1 to the RHS of (3.2) and using thé@ldkr inequality in time, we
obtain

Max (|| 7y @ w); L>(0, T;L?)| . | Ji®(u); L}, T; LL2)|)
< C|x'¢; L2 +C | TL(fw)); LY30. T; LIL)|
(3.3) < C|x'¢; L% + CTY? | Il (f(w)); L*O, T;LILE)| .

Multiplying both sides of (3.3) bya'/l !, making a summation én aagplying
Lemma 3, we obtain

[0Ga); X3 < [ #: G((x, 0;7)]
+CTY?|u; G*((J,, 0);L%(0, T; L3L2)) | |u; G4((J, O); L0, T3 L2)] .

In the same way as above, forv € X4 R(  u () satisfies

|®@); X4 | < Cp+CTY?R®,
|o@) — ®); X4| < CTY?R?||u — v; X7 .

Forp > O letR andT satisfyR > @p T < /A (@R*. Then® () has a unique
fixed point in X% R ). This proves Part (1). Parts (2) and (3) fall;m the same way.
For Part (4) we write, withu € W¢

(JUK D)) (1) = U@y (x® + y2)' ¢
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—i /’ Ut —t) (UK +4it'Y f ) @) o,
0
where we have used the relation
KOU@—1)=U@ —1) (K@) +4it'),

which follows from the commutation relationk L ] = i4L , see [17M]2In the
same way as above, we have

| ®G); Wi
< C¢; G((x. ). x* + % L)
(3.4) +CTY2| f(u); G*(J, K +4ir;L40, T; LEL2)] .

By Lemmas 2 and 3, the last norm on the RHS of (3.4) is estimated

”f(u)y G(J,K +4it;L4(0’ T;LiLf))”

1
< Tz IF @GV K — 2t T L)
1 a
(3.5) S1_(5/2nT (1 _e2aT)3 |us G*(J, K; L3O, T; L4L2) |

lu; G(J, K3 L0, T; L) -
By (3.4) and (3.5), we have far € W§ R( )

CTY2R%"

|o@: Wil < Cor G mma-ary:

Similarly, for u,v € WZ(R)

CTl/ZRZea
A= @2nr)a- ary "~

| @) — @), wi| < v Wi .

Forp> 0 letR andT satishR > @p T < Min(d ¢6,) /L (Z0R%%)?). Thend ¢ )
has a unique fixed point i R( ).

4. Proof of Proposition 1

First, we prove the last part of the proposition. The LHS ab)ls estimated as

|#; G*((x, ¥), x* + y% L) |
otk

= 3 Sy e+ ]
jhkgz0 /T
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ke

a .
= | S eIy + ) ¢ L

RV iLL

eallalHly wey) LZH .

Therefore (1.5) fails to hold fop —@=a(xl*lyi+*+y?)
From now on we consider functions IR". We use the standard multi-index nota-

tion.
Proposition 2. Let n and [ be positive integers and let > 0. Let w =
(w1, ..., w;) be functions oft € R". Then the following inequalities hald
l
l_lealel & Lz(R”)
=1
a|0l| o 4.7 2(TON
=< Z? ||w ¢; L°(R )”
ael!
a>0
1

(4.1) < G| T ] +alw;1) %™ | ¢; LAR™) |,

j=1
where Co = (1 + 2log 2}/2.

Remark 4. To derive (1.3) from (4.1), we put = 2yi(x, y) = x, wa(x, y) = y.
To derive (1.4) from (4.1), we put = 3p1(x, y) = x, wa(x, y) =y, wa(x, y) = x2+y2.

Proof of Proposition 2.  The first inequality of (4.1) is pravby the Maclaurin
expansion ofe* and the triangle inequality.
The second inequality of (4.1) is proved as follows. By thelld/dormula

(26) 1 1 1
22(kN2k kY

we see that the series

Z (2k) 1
2k (N2 .

= 2%k (k)2 k.

converges to a finite valu€? (= 1 + 2log2), wherek. = Max(k, 1). By Schwarz’
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inequality, this yields the following estimate:

(4.2)

ler]
Z (’;_I H wa(b; LZ(R”)H

o

12
(2)!
= (; 220l ((q))?(0rg)+ - - - (al)+)
(@) - (@)« 2%“0 i w2 |12 v
Z Cay @ e AR

1/2
- Co <Z (a1)+ -+~ ()« (2aw)2"’d>, ¢> ’

(20)!

where (-, -) is the scalar product ih?(R"). Since

=\ ke £ £
Z:(Zk)' —1+§smh§,

the RHS of (4.2) is dominated by

C6<h (1+

J=1

2 1/2
ij sinh zzwj) ¢, ¢>
/

= ¢}, l_[<1+

j=1

2w 1/2
wa Sinh21wj> é: LA(R")

Using 1< (14 sinh2 Xk (14#] &¢!, we have the second inequality of (4.1). I

(1]

(2]
(3]

(4]
(5]

(6]
(7]
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