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Indecomposable Completely Simple Semigroups
Except Groups

By Takayuki TAMURA

§ 1. If a semigroup S is homomorphic onto a semigroup T> a factor
semigroup of S is obtained, namely, S is decomposed into a union of
subsets by gathering elements of S mapped into the same element of
T. Among all homomorphisms of S, there are two kinds of special
cases : isomorphisms and a mapping of all elements of S to the one-
element semigroup, which are called trivial homomorphisms. By an
indecomposable semigroup we mean a semigroup without non-trivial
homomorphism. As is well known a group is indecomposable if and
only if it is simple. Of course finite semigroups of order at most 2
are indecomposable, and we shall call them as trivial cases. It is clear
that an indecomposable semigroup has no proper idealΌ. Otherwise we
could consider Rees' difference semigroup of it modulo the proper ideal
so that it would have a non-trivial homomorphism. In this paper we
shall investigate a structure of indecomposable completely simple semi-
groups except groups [1].

According to Rees [1], a completely simple semigroup is represented
as a regular matrix semigroup. In this paper, we shall use without
special explanation the same terminology and notations as Rees'.
Let G' denote a group G with zero 0 adjoined. Let P be an (M, L)-
matrix, (/>μλ), μ£M, λGL, elements of which belong to G', satisfying
the conditions that for any suffix μ£M at least one ^μλΦθ, and that
for any suffix λ e L at least one ^μλΦO. Then a regular matrix semi-
group S with a defining matrix P is defined to be a semigroup whose
non-zero elements are all (L, M) -matrices (x)Λβ? x varying over G, oί
over L, β over M, and the multiplication in S is defined as

In some cases S may contain a zero-matrix 0, elements of which are all

1) By a proper ideal of S we mean a two-sided ideal distinct from S itself and from a
set of only zero.

2) Denote by (*)*β a matrix X=(zλtί) where Zλfjj—x if (λ, μ) = (a, £), and £λμ=0 if
0, μ)4=(«, is).
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zero 0, and to which (0)λμ shall be equal, if necessary, and XQ = QX=Q
for all XeS. In detail, if P has at least one />μλ = 0, S must contain
naturally the zero-matrix 0, but if P has no pμ,λ = 0, there are two
cases of S: the one where 0 is contained and the other where not so.
It follows that the former3) S is indecomposable if and only if the
number of non-zero elements of S is one, i.e., S = {0, A} where
(L4 = ̂ 4.0 — 0, A2 = A, being a trivial case. Hence the former case is out
of consideration in the present paper.

§ 2. Now let D be the set of all ordered pairs (λ, μ) where λ G L,
μ^My written D=LxM and we distinguish it from D' = MxL. Noticing
suffixes of elements of a defining matrix P, let E={(μ, λ) ^λ = 0}.
E satisfies the following conditions due to the conditions of P.

(CJ For any λ e L, there is μ such that (μ, λ) e E.
(C2) For any μeM, there is λ such that (μy λ) <Ξ E.

These conditions imply directly that .E is a proper subset of Df. For
this E, we define a multiplication system Z) as following :

(1) If E is empty, Z) consists of all elements of D and the multipli-
cation is (λi, μ,) (λ2, μ2) — (λA, μz) .

(2) If E is not empty, D is D adjoined with zero 0#,

and (Uλ, μ) = (λ, μ)QD=Oϊ> = 0D ,

A WΛ x ί°* if (^ λ 2 ) e £>(λx, ^)(λ2, μ2) = ,
I (λ !, jufe) otherwise.

Then it is easily shown that the correspondence of S to D defined in
the following manner is a homomorphism.

(x)Λβ ~> («, β) , 0 -> 0,, if S has 0.

Lemma 1. S is homomorphic to D.

We can assume that at least one of L and M contains distinct
elements. Because, if not so, Aι=t=0 and the mapping (xpTι)u-^x is an
isomorphism between S and the group G this case is excluded in the
initial assumption of this paper.

Suppose that G' contains at least two elements different from 0,
then the homomorphism is non-trivial by Lemma 1. Accordingly we
have

Lemma 2. // S is indecomposable, then G is composed of only one

3) This means S which contains 0, but P of which has no ̂ μλ=0.
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element, i.e., G'= {0, g}, Og—gQ = Q, g2=g; in other words, if S is
indecomposable, the homomorphism mentioned in Lemma 1 must be an
isomorphism.

From now on, we shall find what is a necessary condition for D
with (CJ and (C2) to be indecomposable. For simplicity, D0 denotes D
whose E is empty and DE denotes D whose E is not empty.

Let us give the set L and M the multiplications xy=x and xy = y
respectively and the former is defined to be a left singular semigroup
and the latter a right singular semigroup, and "singular" means "left
singular or right singular." Then DQ is a direct product of the left
singular semigroup L and the right singular semigroup M. Consequently
D0 is homomorphic to L and M. It follows that DQ has a non-trivial
homomorphism if both L and M consist of elements more than one.

Lemma 3. // D0 is indecomposable, it is isomorphic to L or M, that
is to say, it is singular.

On the other hand, we can easily show that any classification of
elements of a left (right) singular semigroup determines a factor semi-
group which appears singular. Consequently

Lemma 4. A singular semigroup of order more than 2 has at least
one non-trivial homomorphism.

Thus we have

Theorem 1. There is no non-trivial indecomposable D0.

§ 3. Next, let us call DE into question. First suppose that L
consists of only one element. (We can treat the case of M similarly.)
Denote by EM the set of μ£M such that (μ, λ) GEφφ. On the other
hand, it must hold that (μ, \)£E for any μ£EM due to (C2). By this
contradiction, we get

Lemma 5. For DE, both L and M contain at least two elements.

Now let Lμ— {λ; (μ, λ) 6 E} and Mλ— {μ; (μ, λ) e E}, where we permit
Lμ and Mλ to be empty. Suppose that there are distinct μ1 and μ2 such
that Lμι —Lμ2. Among elements of DE we introduce a relation

0/)~0D, (λ, /^)~(λ, μ2) if Lμι=rLμ2.

Of course it is not only an equivalence relation, but a congruence rela-
tion. In fact, when (λ, μj—(λ, μ2), we have
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(λ2 , μs) (λ, μ,) =0D= (X2 , μ3) (X, μ2) for (μ3 , λ) € E,

(λ2, /*3)(λ, /^) = (X2, ^)~(λ2, μ2) = (λ2, /^3)(λ, /*2) for (μ

Lμι = Lμ2 implies that 0^, λ2) G£ if and only if (μ2ί X2)

If (μλ , X2) e £, (λ, ̂  (λ2 , μ3) =QD= (λ, /*2) (λ2 , μ3) ,

if (/*ι , λ2) e J5, (λ, yc^) (X, , μ3) = (λ, μ3) = (λ, μ2) (λ, , μ3) .

Thus it follows that the equivalence relation (λ, μ^ '(λ, /^2) gives a

non-trivial homomorphism of D£. Similarly, assuming that Mλl = M\2

for some λjΦλjj, the equivalence relation, (λ!,/^)-^^, /^) for any μeM,

determines a non-trivial homomorphism of DE. Thus we have

Lemma 6. If DE is indecomposable, then μλφμ2 implies L
and λiφλ2 implies MλlφMλ2.

These necessary conditions are proved to be sufficient. In its proof,
we should be reminded of the conditions (CJ and (C2) as to E.

Now let ~ be any congruence relation of DE.

Lemma 7. If there is (X1? μL)£D(^DE such that O^ — '(X0 μj, then
Oz>~(λ, μ) for all (λ, μ) £D.

Proof. Choose (λ, μ) arbitrarily. According to (CJ and (C2), there
are μ2 and λ,, such that (μ2> \)^E and (μ19 "λ^^E. Since — is a
congruence relation, O^-—^, μλ) implies that

~ (λ, μ2)\, μ,) = (λ, μj ,

and further 0D = O^ίλ,, μ) ~ (λ, ^)(λ2, μ) = (λ, μ) .

Thus the proof of the lemma is completed.

Lemma 8. // there are distinct (\, μj, (λ2, μ2) € D such that
(λi, /^ι)-^'(λ2, μ2), then QD~(\ μ) for all (λ, μ)GZ>, in other words,

(λ, )̂ Φ (λ7, X).

Proof. Suppose μ^μz. By Lemma 6, Z^ΦZ^ and there is λ

such that one of the two (/^, λ) and (μ2y λ) belongs to E and the other

does not to E, say, (μ19 \)eE and (^, \)^E. Then (λ1? ^)(λ, μ)=QD

and (λ2, /^2)(λ, /^) — (λ2, μ) whence O -̂Mλ^ /^). By Lemma 7, we have
Q£»~(X, μ) for all (λ, /*) eZλ Even if X^X2, the proof is similar. Thus
we have the following theorems.

Theorem 2. DE is indecomposable if and only if E satisfies the
following conditions :
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(1) AV+^2 implies Lμ ιΦLμ 2.
(2) λ1Φλ2 implies Mλ lΦMλ 2.

Putting the already obtained lemmas and theorems into together,
we have

Theorem 3. A regular matrix semigroup S with a defining (M, L)-
matrix P is indecomposable and non-trivial if and only if

(1) a non-zero element of a matrix of S is none but 1, being an
element of a semigroup G/={0, 1}, 01 = 10^02^0, Γ = l, and

(2) the defining (M, L)-matrix P fulfils the following conditions.
(2J Each of L and M has a cardinal more than 1.
(22) Each element of P is either 0 or 1, and 0 is certainly contained.
(23) Every two columns differ and every two rows differ.

Thus S is completely determined by a definining matrix P.

§4. As far as the isomorphism problem is concerned, Rees' theory
is applicable and we have

Theorem 4. Two indecomposable regular matrix semigroups S, S*
over G with defining materices P, P* are isomorphic if and only if P*
is a permutated matrix from P. (See foot 4))

Moreover we add the following two theorems.

Theorem 5. Two indecomposable regular matrix semigroups S, S*
over G' with defining matrices P, P* are ant i -isomorphic if and only if
P* is a transposed and permutated matrix from P.

In order to prove that S and S* are anti-isomorphic if P* is trans-
posed and permutated from P, it is sufficient to assume P* to be
transposed from P.

Proof of Theorem 5. Let P be an (M, L) -matrix, (pjf), /eM, ίeL.
P* is a transposed matrix from P, P* = (p%} where p%^=pij\ S is
composed of (L, M) -matrices (x)ij9 and S* is composed of (M, L) -matrices
(x)ji. The mapping defined as

(x)tj -> (x)ji and Os -

is clearly anti-isomorphic. Because, we have

4) P* is a matrix gained by permutating columns and rows of P.
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On the other hand, since G' is commutative, xpjky= yPjkX> where
(x)ij(y)kn corresponds to (y)ttk(x)ji. Thus it has been proved that S and
S* are anti-isomorphic.

Conversely suppose that S and S* are anti-isomorphic. Then,
according to the former half of this theorem, S is anti-isomorphic to a
semigroup S' whose defining matrix P' is a transposed matrix from P.
Since S* and S' are isomorphic, Theorem 4 makes it hold that P* is
permutated from Pr hence P* is a transposed and permutated matrix
from P. The proof of the theorem has been completed.

The proof of the following theorem is very easy.

Theorem 6. An indecomposable regular matrix semigroup S over Gf

with a defining matrix P has an anti-automorphism if and only if P is
a square and permutated matrix from the transposed matrix Pf of P.

§ 5. Here we shall discuss finite indecomposable semigroups. The
structure theory of them is included in the above theorems, for simple-
ness of finite semigroup in the Rees' sense implies complete simpleness.
However we shall be able to investigate the type of a defining matrix
more precisely.

Denote by m and / numbers of elements of M and L respectively.
We shall call a matrix (0y, ), j=l, ,m, / = !,•••,/, an (m, I) -matrix
instead of an (M, L)-matrix. Without loss of generality, we can restrict
ourselves to 2 <!/ <m. The reason is due to Lemma 5 and Theorem 5.

If an (m, /)-matrix, / <ίm, can be a defining matrix of a non-trivial
indecomposable regular matrix semigroup, it is not without saying that
2 <!/ <Lm<^21. Conversely, however, for any /, m such that 2 <!/ <I m<^27,
there exists certainly at least an (m, /)-matrix to be a defining matrix.
We can have, for example, an (m, /)-matrix P in the following manner.

(1) Every row contains 1.
(2) Every two rows differ.
(3) pjΊ = l, l<j = i<l', pJi = Q ίφy, l<^j<l, l<ί<l.

Then it is natural that every column contains 1 and every two columns
differ. Accordingly we have

Theorem 7. In order that there exists at least one (m, I)-matrix,
2<Ll<Lmy which satisfies the conditions stated in Theorem 3, it is necessary
and sufficient that l<Lm<^21.

Immediately from the above theorems we get the following theorem.

Theorem 8. There is a non-trivial indecomposable semigroup of
order n except groups if and only if n—\ is decomposed into a product
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of two factors Im such that 2<l<Lm<^21. Then the semigroup is iso-
morphic or anti-isomorphic to the regular matrix semigroup composed of
(1),7, / = !, • • - , / , /=1, • • • , m, with a zero-matrix adjoined.

Let f(n) be the number of non-isomorphic and not-anti-isomorphic
indecomposable semigroups S of order n except groups, and let g(n) be
the number of non-isomorphic ones. Of course f(n), ^;>3, is equal to
the number of defining matrices giving S. We do not wish to find the
form of /(»), but can persist at least the following corollary.

Corollary. f(n) is unbounded.

Proof. Let np — p2 + \ where p is a prime number. For a defining
(/>, />)-matrix Pp> the two defining (p + ky p+k) -matrices P£+JC, Pp+k

constructed in the following manner.

PP

l 1

1-1

0
:
0
1

0

0
:
0
0

1

where is a unit matrix.

Then it is seen that the correspondence Pp->P*+lc, Pp->Pp+k are one to
one and any Pp+k can be neither permutated nor transposed from any
P*+K. From this it follows that f(np)<^f(ng) for any prime numbers
p<^q. Hence the sequence {f(n)} contains a monotonly increasing
subsequence {f(np)}> completing the proof.

§ 6. Finally we give, for simple example, all distinct types of
defining matrices P for 7 = 2, 3, and give the values of /(«), w<116.

Example 1.

1 0
1 1

1 0
0 1

= 2, m = 1 0
0 1
1 1

100
010
001

100
001
110

100
010
1 1 1

100
110
101

010
110
101

100
110
1 1 1

110
101
1 1 1

110
101
O i l

We mark self-dual ones with
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1=3,

1=3,

100
010
001
110

100
010
001
111

100
010
110
101

010
001
110
101

100
010
110
111

100
010
101
111

100
110
101
111

010
110
101
111

100
110
101
Oil

110
101
Oil
111

100
010
001
110
101

100
010
001
110
111

100
010
110
101
Oil

100
010
110
101
111

010
001
110
101
111

100
110
101
Oil
111

1=3, 100
010
001
110
101
Oil

100
010
110
101
Oil
111

100
010
001
110
101
111

1=3, 100
010
001
110
101
O i l
111

Example 2. The values of /(«) and g(n), «<116.

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Type of P

—
none
none
2x2
none
2x3
none
none
3x3
none
none
3x4
none
none
3x5

/OO

1
4
0
0
2
0
1
0
0
8
0
0

10
0
0
6

*(»)

1
5
0
0
2
0
2
0
0

10
0
0

20
0
0

12

Remarks. After I had written this paper last autumn, I heard
from Dr. Theodore S. Motzkin that he obtained the same results
independently of me.

(Received March 25, 1956)
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