

Title	Trps1のハイポモルフマウスの表現型解析
Author(s)	佐伯, 直哉
Citation	大阪大学, 2023, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/91876
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

学位論文

Trps1 のハイポモルフマウスの表現型解析

大阪大学大学院歯学研究科

口腔科学専攻

療護歯科保健学講座

(障害者歯科治療部)

佐伯 直哉

毛髮鼻指節骨症候群(Tricho-rhino-phalangeal syndrome: TRPS)は転写因子 TRPSI 遺伝子 の変異や欠失により引き起こされる常染色体優性遺伝性疾患であり、2019年の骨系統疾患 の国際分類では遠位肢異形成症のグループに分類されている[1、2]。 TRPS は重篤な症状 を呈する希少疾患であり、患者は先天的に細く疎な毛髪(約90%)、鼻翼低形成(約90%)、 短指趾症(約60%)、指の円錐骨端(約100%)のほか、心臓や腎臓などの奇形を認めるこ とがある(約10%)[3、4]。さらに出生後には、低身長(約50%)、若年からの変形性関節 症発症(約40%)、膝蓋骨の脱臼といった骨格系の病態も顕著となる [3、4、5]。これまで に、骨格系にみられる異常について、Trps1 遺伝子を欠失あるいは機能を喪失させた Trps1 ノックアウト (Trps1-KO) マウスや Trps1 の DNA 結合モチーフである GATA ジンクフィン ガー配列を欠失させた Trps1ΔGATA マウスを用いて詳細に検討されてきた[6、7]。これらの 知見より、Trps1は、インディアンヘッジホッグ(Indian hedgehog: Ihh)と副甲状腺ホルモン 関連ペプチド (Parathyroid hormone-related peptide: PTHrP) が形成するネガティブフィードバ ックループと相互作用して軟骨細胞の肥大化を制御し、またヘッジホッグシグナル下流の 転写因子である Gli3 とともに肥大化時に Wnt5a の発現を上昇させるなど[6、8-12]、正常な 成長板軟骨の維持に必須の役割を持つことが示されてきた [8] (Fig. 1A)。さらに Trps1-KO マウスでは、成長板の成熟と骨膜領域の骨化の調和が崩れ、骨膜の骨化が早期に引き起こさ れることも報告されており、成長板における異常を介してその周囲の組織の分化にも影響

を及ぼしていることも報告されている[13]。このように Trps1-KO マウスは TRPS の病態発 症機序の解明に大きく貢献してきたことに間違いはない。しかしながら Trps1-KO マウスも Trps1AGATA マウスも生後すぐに呼吸不全により死亡するため[8]、前述の骨格系の異常を含 む生後の TRPS 病態の解析の研究が困難であった。

哺乳類の骨組織は、胚発生時に2つの異なる過程を経て形成される。膜内骨化は間葉系細胞の凝集から直接骨芽細胞の分化が起こり、骨が形成される。一方で、哺乳類における主要な骨形成過程である軟骨内骨化では、凝集した未分化間葉系細胞に由来する軟骨細胞によって最初に軟骨が形成され、この軟骨の鋳型が骨組織に置換される[14]。軟骨内骨化を経て形成される長管骨の発生に関する報告は多いのに対して、中軸骨格と四肢骨を連結する肩甲骨や寛骨の発生様式に関する知見は圧倒的に少ない。TRPSでは長管骨の形態異常のみならず、特に下肢帯領域にも形態異常が頻発することが知られている[3]。

股関節は腸骨、恥骨、座骨の3つの骨から構成されており、体重を下肢に伝える運動機能 や腹部臓器の支持機能など重要な機能を果たしている[15]。3つの骨は寛骨臼を中心に融合 し、寛骨は後肢の大腿骨頭と関節を形成して四肢を体幹に固定する[16、17]。それぞれの骨 は体幹部の沿軸中胚葉から発生した間葉系細胞の凝集から始まる軟骨内骨化によって形成 される[18-25]。骨盤の軟骨形成は、将来の寛骨臼近傍から始まり座骨、恥骨と続き、3つの 骨の中心は寛骨臼で融合するように拡大し[22、26]、ヒトの場合、最終的に寛骨臼の完全な 癒合は思春期中期におこる[27、28]。完成した寛骨には「大腰筋溝 (psoas valley)」と呼ばれ る寛骨臼縁を通過する腸腰筋の走行部位に一致する部位が存在する(Fig. 1B)[29]。psoas valleyの形態異常は比較的高い頻度でみられるが、これは腸腰筋の病的肥厚や炎症時に腸腰 筋により股関節に負荷がかかり、その結果起こる腸腰筋インピンジメントが主たる原因の 一つとして知られている[30、31]。TRPS 患者の 45%以上が若年性の変形性股関節症を発症 し[4、32]、大腿骨頭の変形を伴うペルテス病様病変を呈することが多い[33、34、35]。こ れらのことは股関節の正常発生に TRPS1 が関与することを示唆している。

本研究では、生後の TRPS 病態解析にも寄与しうるモデルマウスの作出を試みた。Trps1 遺伝子の発現候補領域の同定をまず行い、そのゲノム候補領域を欠失させた Trps1 低発現型 マウスを新規に作出し、生後の TRPS の病態の一部を再現する動物モデルとなりうるか詳細 に検討した。

Ⅱ. 材料ならびに方法

本研究における動物実験および遺伝子組換え実験は、大阪大学大学院歯学研究科動物実 験委員会の審査・承認(承認番号:動歯-29-016-0、動歯-30-018-0、動歯 R-01-006-0)、大阪 大学遺伝子組換え実験安全委員会の審査・承認 (承認番号 4141、4930)のもとに行った。

1. コンベンショナルTrps1ノックアウトマウスの遺伝子型決定とTrps1ハイポモルフマウ

スの作製

Trps1-KO は和歌山県立医科大学の村垣泰光先生より供与頂いた。CRISPR/Cas9 ゲノム編 集により *Trps1* 転写制御候補領域の欠失マウスを作製した。作製にあたって、プロモーター 上流領域 (Enh1) もしくは 第1イントロン内の約3~4kb (Enh2、3) それぞれを個別に欠 失、あるいは Enh2 と Enh3 の両方を含む約20 kb の領域 (Enh2/3) を欠失させた。Enh1 欠 失 (Δ Enh1) 系統は大阪大学微生物学研究所の伊川正人先生、Enh2 欠失 (Δ Enh2)、Enh3 欠 失 (Δ Enh1) 系統は大阪大学微生物学研究所の伊川正人先生、Enh2 欠失 (Δ Enh2)、Enh3 欠 失 (Δ Enh3)、Enh2/3 欠失 (Δ Enh2/3) 系統はがん研究会の八尾良司先生により作出された。 ゲノム編集に用いたガイド RNA 配列は、 Δ Enh1 では gRNA1 : TCCACTCCTCCCCGTTGCAAagg と gRNA2 : AAGACCAGCATGTATTAACCtgg、 Δ Enh2 では gRNA1 : CGCTGCTGCAAGTTCTGGggg、gRNA2 : GAGGAAACTAAATTAAGCAGagg、 Δ Enh3 では gRNA1 : ACTTTAGGAACAAAACACCAggg、gRNA2 : CAGGCAAGATCAGTTCCCAAggg、 Δ Enh2/3 では gRNA1: : CGCTGCTGCAAGTTCTGGggg と gRNA2 : CAGGCAAGATCAGTTCCCAAggg (小文字は PAM 配列を示す)である。crRNA、tracrRNA、 Cas9 タンパク質複合体を C57BL/6J の受精卵にエレクトロポレーションにて導入し、2 細胞 期まで in vitro で培養したのち、受精卵を偽妊娠雌マウスの卵管に移植した。遺伝子型判定 で欠失を確認できた F0 マウスを C57BL/6J (日本 Slc)野生型マウスと交配し、生まれた仔 を遺伝子型判定した。*Trps1*-KO 系統も C57BL/6J 系統で維持されていたため、これ以降の交 配はすべて C57BL/6J 系統の遺伝的背景で行った。

離乳時の遺伝子型の判定は、生後3週目以降に尾の組織片から精製したゲノム DNA を用 いて、polymerase chain reaction (PCR) 法による野生型および変異型アレルの検出にて行っ た。本研究で使用したプライマーを Table 1 に示す。体重測定は通常の離乳後、4週目から 9週目まで1週ごとに行った。胎生期サンプルの獲得には、膣栓が出現した日の正午を胚発 生日 0.5 日齢(Embryonic (E) 0.5)とした。妊娠した雌マウスは CO₂ チャンバー装置もしく は過剰のペントバルビタール腹腔内投与(ナカライテスク,Kyoto,Japan)により安楽死させ、 帝王切開で胚を採取した。遺伝子型判定には皮膚、肝臓、もしくは尾の組織片から精製した ゲノム DNA を用いた。

2. 骨・軟骨染色、マイクロCT画像、および3次元画像構築

骨と軟骨の染色は、McLoardの報告に従い行った[36]。具体的には、皮膚、内臓を除去し、 95%エタノールで固定した。その後2日間アセトン中で、脂肪を除去した。続いて、3日以 上 0.3% アルシアンブルーと 0.1%のアリザリンレッド溶液を 37℃で1匹につき 10 ml を用 いて染色した。 その後、蒸留水で洗浄し、1% KOH 水溶液により骨格が周囲の組織からは っきり見えるようになるまで浸漬した。

骨盤領域のマイクロコンピュータトモグラフィー(マイクロ CT)解析では、R-mCT2 (Rigaku, Tokyo, Japan)により、FOV (Field of view) 20、90 V、160 A の条件で撮影し、連 続した断層スライス画像を取得した。画像は3次元再構成画像ソフトウェア(TRI/3D-BON; RATOC system engineering Co., Ltd., Tokyo, Japan)を用いて作成した。腸腰筋走行部におけ る寛骨の形態異常の指標となる psoas valley depth [37]は ImageJ ソフトウェアを使用して測 定した。

3. 組織調製、RNA調製およびリアルタイムPCR

生後 3 日目の仔マウスをペントバルビタールの腹腔内過剰投与により安楽死させた後、 冷リン酸緩衝生理食塩水 (phosphate buffered saline: PBS) 中で実体顕微鏡を使用して各種組 織や器官を解剖した。各組織・臓器は、別途、β-メルカプトエタノール添加 350 μl 緩衝液 RLT にて-80°Cで保存した。尾の組織片は遺伝子型判定のため保存した。RNeasy Plus kit (Qiagen, Hilden, Germany) により、製造社の指示通りに RNA 精製を行った。野生型および *Trps1*^{ΔEnh2/3/ΔEnh2/3} から得たサンプルを 30 秒間ホモジナイズし、その後、25°C、10,000 rpm で 3 分間遠心分離し、上清のみをカラム精製工程に使用した。精製した RNA 1 μg から ReverTra Ace (TOYOBO, Osaka, Japan)を使用した逆転写反応により cDNA の調製を行った。リアル タイム PCR には THUNDERBIRD SYBR qPCR mix (TOYOBO) を使用し、20μl で行った。 リアルタイム PCR に用いたプライマーを Table 2 に示す。解析は同腹仔から採取した組織・ 臓器で行い(雌雄の選別は行っていない)、2 匹の別の雌親マウスからの仔を用い解析を 2 回行い、同様の傾向を示す結果を得た(各回コントロール n=3、ΔEnh2/3 n=2-3)。

4. 肉眼的解析、組織切片の作製と組織学的解析

生後 4 週、10 週のマウスを CO₂ チャンバー装置により安楽死させ採取した大腿骨、股関 節は直ちに 4%パラホルムアルデヒド含有 PBS にて 4°Cで 24 時間浸漬固定を行った。一部 は麻酔後、還流固定を行いさらに浸漬固定を行った。固定後、1~2 週間 10%エチレンジア ミン四酢酸 (ethylenediaminetetraacetic acid: EDTA) にて脱灰処理を行った。通法に従って、 脱灰組織のパラフィン包埋を行い、厚さ 4 µm のパラフィン切片を作製した。また、一部肉 眼的解析のため、脱灰前に写真撮影を行った。通法に従い、脱パラフィン、親水処理後、ヘ マトキシリン・エオジン染色またはトルイジンブルー染色を行った。染色された切片に対し て脱水・透徹・封入処理後、光学顕微鏡 (OLYMPUS SZX12) による観察および画像撮影を 行った。

5. in situ hybridization

生後1か月の大腿骨から作製した厚さ4µmのパラフィン切片を解析に供した。Collal、 Col2al、Coll0al、Mmp13 に対するジゴキシゲニン(DIG)標識 cRNA プローブを合成し、 ハイブリダイゼーション、プローブ洗浄後、アルカリフォスファターゼ(AP)標識抗 DIG 抗体で反応させた。その後、BM Purple AP(Roche Diagnostics Corp., Indianapolis, IN)を基質 として用いて発色させた。

6. ウエスタンブロット

10 センチ培養プレートに約 90%コンフルエントになるまでマウス膝関節軟骨を培養し、 直接 750 µl の 5%β-メルカプトエタノールを添加した 1x SDS(Sodium Dodecyl Sulfate: ドデ シル硫酸ナトリウム)サンプルバッファーで回収した。その後、22G 注射針にサンプルを通 し DNA を断裂させ、80℃で 20 分加熱し完全に SDS 化させた。10,000 rpm で 10 分間遠心 後、上清を泳動サンプルとして用いた。1 レーンあたり 15 µl のサンプルをアプライし、10% ポリアクリルアミドゲルを用いて、100 V で約 1 時間電気泳動を行った。その後、ゲルから PVDF メンブレンに 250 mA で 2 時間転写を行った。1%ブロックエース(大日本製薬)を Tris Buffered Saline(0.05% Tween 20 添加; TBST)に溶解した溶液でブロッキング後に、メ ンブレンを抗 Trps1 抗体(Santa Cruz C-17, 26976; 希釈倍率 1:500)により室温で 16 時間 反応させた。TBST でメンブレンを洗浄後、二次抗体 (BIOTINYLATED ANTI-GOAT lgG (H+L) BA-5000; 希釈倍率 1:1000)により室温で 1 時間、さらに HRP 標識 Streptavidin を室温で 1 時間反応させた。TBST でメンブレンを洗浄後、ジアミノベンチジン(TGI, D0078, Tokyo Japan)と過酸化水素(和光純薬)を基質として発色させた。反応は蒸留水による洗浄により停止させた。等量のサンプルの泳動は同様に泳動、転写させたメンブレンをα-Tubulin 抗体(Sigma, ZRB1316-25UL, 1:2000)によるウェスタンブロットにより確認した。

7. ATAC-seq, ChIP-seq

マウス肋軟骨におけるオープンクロマチン領域の検出(Assay for Transposase-Accessible Chromatin sequencing: ATAC-seq)[38]、活性型エンハンサーの指標となるヒストン修飾 (H3K4me2 および H3K27ac)の検出(Chromatin Immunoprecipitation sequencing: ChIP-seq) については共同研究者によって行われ、*Trps1* 遺伝子領域におけるピークデータを本研究で 使用した。H3K4me2 および H3K27ac に対する ChIP ではそれぞれ抗 H3K4me2 抗体(Cell Signaling Technology #9725)、抗 H3K27ac 抗体(Cell Signaling Technology #8173)を用いて、 断裂化したタンパク質-クロマチンの複合体と氷上で4時間反応させた。

8. 細胞培養

初代軟骨細胞の採取は過去の報告に従い行った [39]。 すなわち、回収したマウス膝もし くは肋軟骨を 3 mg/ml のコラゲナーゼで 37℃ 45 分インキュベートし、その後、軟骨組織を 集めてさらに 16 時間 0.5 mg/ml のコラゲナーゼでインキュベートした。セルストレーナー でろ過、1,000 rpm、10 分間の遠心により細胞を沈殿させて、PBS で2回洗浄したのちに実 験に用いた。初代骨芽細胞は生後1週以内のマウス頭頂骨から採取した。すなわち、PBS 中 に実体顕微鏡下で頭頂骨を採取後、PBS に 0.5 mg/ml コラゲナーゼと 1 mg/ml ディスパーゼ を添加した酵素液中で 37℃15 分、5 回反応させた (反応液量は 1 回 4 ml を用いた)。最初 の 1 回目の反応液上清は廃棄し、その後 4 回の反応液上清中に遊離した細胞を回収し、初 代骨芽細胞として用いた。初代軟骨細胞は 10% ウシ胎仔血清 (fetal bovine serum: FBS) を含 む DMEM high glucose 培地、初代骨芽細胞は 10% FBS を含む α-MEM 培地、ATDC5 細胞は 10% FBS を含む DMEM/F-12 培地 (ただし後述のトランスフェクション時は DMEM high glucose を使用)、HEK293 細胞は 10% FBS を含む DMEM high glucose 培地にて維持した。

9. ルシフェラーゼアッセイ

マウス *Trps1* の最小プロモーター0.7 kb 単独、最小プロモーターに Enh1、Enh2、Enh3 領 域を連結した配列をそれぞれホタルルシフェラーゼのルシフェラーゼレポーターベクター に導入した。ScreenFectA (富士フィルム, Osaka, Japan)を用いたトランスフェクションに より、ヒト胎児腎細胞株 (HEK293)、軟骨細胞株 (ATDC5)、肋軟骨細胞、膝軟骨細胞、頭 蓋冠骨芽細胞にレポーターベクターを導入した。トランスフェクション効率を標準化する ために、同時に pTK (チミジンキナーゼ)レニラルシフェラーゼベクターも導入した。トラ USA) を用いてレニラルシフェラーゼとホタルルシフェラーゼの両方の活性をルミノメー ター (Lumat LB9507, Berthold Japan K.K.) で測定した。

10. 軟骨細胞増殖アッセイ

初代軟骨細胞の調整は、通法に従い行った[39]。野生型、*Trps1*^{ΔEnh2/ΔEnh2}、*Trps1*^{ΔEnh3/ΔEnh3}、 *Trps1*^{ΔEnh2/3/ΔEnh2/3}の膝軟骨細胞を 2000 cell/well で播種し、10% FBS-DMEM 中で培養した。3 日目、6日目、9日目でクリスタルバイオレット染色を行い、全細胞数をカウントした。

11. 統計学的解析

実験結果は平均値±標準偏差として表記した。2 群間に対して統計学的検定を行う場合は、 t 検定を用いて比較を行った。3 群間の検定には、Prism 8 を使用し、一元配置分散分析(ONE WAY ANOVA)を行った後、下位検定として Tukey's multiple comparisons test を行った。有 意水準は P<0.05 とした。

Ⅲ. 結果

1. Trps1コンベンショナルノックアウトマウスの表現型

胎生期(E15.5、16.5)の Trps1 コンベンショナルノックアウトマウス(Trps1-KO)にお いて骨格染色(Fig.2)を行った。Trps1-KOの寛骨のサイズは小さく、特に長軸の縮小が顕 著に見られた。さらに下顎骨近位部の下顎角、下顎頭、筋突起のいずれも小さかった。ま た、椎骨体部の低形成が見られた。これらの表現型の一部は過去の報告と一致していた[6]。

2. Trps1転写開始部位上流配列のマウス個体レベルでの寄与の検討

本研究室の先行研究 [40] により、Trps1 転写開始部位の上流に Trps1 遺伝子発現に寄与 しうる配列が存在することが明らかになっており、今回、生後の大腿骨の骨膜・骨内膜に 位置する細胞や成長板軟骨細胞での本領域による転写活性も限定的に認めた (Fig. 3A, B)。 そこで最小プロモーターを残して転写開始部位より上流の約 4 kb を含む配列を欠失させ たマウス (ΔEnh1)をゲノム編集により作出し、交配により両アリルから Enh1 を欠失させ た Trps1^{ΔEnh1/ΔEnh1} と、Enh1 の欠失に加えて片アリルから Trps1 遺伝子を欠失させた Trps1^{ΔEnh1/ΔEnh1} と、Enh1 の欠失に加えて片アリルから Trps1 遺伝子を欠失させた Trps1^{ΔEnh1/ΔEnh1} の匹数を断乳時に数えたところ、Trps1^{ΔEnh1/ΔEnh1} マウスの出現 頻度はメンデルの法則に従っており (82 匹中 23 匹; 28%)、また1年以上生存することが わかった (Fig. 3D)。胎生期 (E17.5) の骨格染色では体長差、上肢、下肢、寛骨、下顎骨に 違いは認めなかった (Fig. 3E-K)。生後 4 週から 9 週目までの体重変化についても野生型、 *Trps1*^{ΔEnh1/+}、*Trps1*^{ΔEnh1/ΔEnh1}では違いが認めなかった(Fig. 3L)。ヒト TRPS 患者の場合、生後に股関節変形症がみられることから[4]、*Trps1*^{ΔEnh1/ΔEnh1}の股関節に対してマイクロ CT 解析、組織学的解析を行ったが、違いは認めなかった(Fig. 4A, B, D, E)。また、成獣マウスの大腿骨骨端部についても違いは認めなかった(Fig. 4G, H, J, K)。次に、Enh1 の欠失に加えて片アリルの *Trps1* 遺伝子を欠失させた *Trps1*^{ΔEnh1/-}の股関節、大腿骨についてマイクロ CT、組織学的解析を行った(Fig. 4C, F, I, L)。股関節の形成過程で生じる psoas valley がマイクロ CT でやや深いことを認めたが(図 4A, C)、結合部分の組織学的解析では異常を認めず(図 4D, F)、大腿骨に関しても同様に異常は認めなかった(図 4G, I, J, L)。

ATAC-seqおよびヒストン修飾ChIP-seqによるTrps1遺伝子のエンハンサー候補領 域の検討

Trps1 遺伝子周囲のオープンクロマチン領域と活性型エンハンサーの指標となるヒスト ン修飾を手掛かりとしたエピゲノム解析を野生型マウスより採取した肋軟骨細胞で行っ た。その結果、Trps1 遺伝子座の転写開始部位近傍に加えて約40kb ある第1イントロン内 で ATAC-seq、ChIP-seq (H3K4me2、H3K27ac) でピークが重なる3~4 kbの領域を2か所 見出し、Enh2、Enh3 として検討することとした (Fig. 5A)。この2か所の候補領域がエン ハンサーの候補になり得るかを検討するため、Trps1 の発現が見られるヒト胎児腎細胞株 (HEK293)、軟骨細胞に分化するマウス細胞株 (ATDC5)、マウス初代肋軟骨細胞、マウス 初代膝軟骨細胞、マウス初代頭蓋冠骨芽細胞で、Enh1 も含めたルシフェラーゼアッセイを 行った。Enh1、Enh2、Enh3 いずれも上記全ての細胞において、コントロールよりも強い転 写活性の上昇を誘導したが、特に Enh2 において、その傾向は顕著であった(Fig. 5B, C)。

4. エンハンサー候補領域を個々に欠失させたマウスの作出、表現型解析

Enh2 と Enh3 をそれぞれ欠失させたマウス (ΔEnh2、ΔEnh3) をゲノム編集により作出 し、成獣マウスの体重変化、股関節、大腿骨について検討した (Fig. 6、7)。*Trps1*^{ΔEnh2/ΔEnh2}、 *Trps1*^{ΔEnh3/ΔEnh3} はコントロール群と比較しても生後 4~9 週での体重変化は認めなかった (Fig. 6A, B)。*Trps1*^{ΔEnh2/-}、*Trps1*^{ΔEnh3/-}では *Trps1*^{ΔEnh1/-}同様に股関節の psoas valley がやや深 いことがわかったが (Fig. 7C, E)、いずれも組織像に違いは認めなかった(Fig. 7F-J)。また、 大腿骨についても形態、組織ともに違いは見られなかった (Fig. 7K-S)。

5. エンハンサー候補領域2か所を同時に欠失させたマウスの作出、表現型解析

次に Enh2、Enh3 を含む約 20kb を同時に欠失させたマウスをゲノム編集により作出した (ΔEnh2/3)。標的領域の欠失はゲノム DNA における PCR 法を用いて判定し(Fig. 5A, 8A)、 さらにスプライシングなどに異常がないことを、第1イントロンをはさむように設計した プライマーを用いた RT-PCR により確認した (Fig. 8B)。個々の臓器・組織を採取し、*Trps1* 遺伝子の発現比較はリアルタイム PCR 法で行った (Fig. 8C) その結果、*Trps1*^{ΔEnh2/3/ΔEnh2/3} で の *Trps1* の発現量は腎臓、股関節、肋骨など複数の部位で低下していた。ウエスタンブロ ット法により *Trps1*^{ΔEnh2/3/ΔEnh2/3} から採取した初代軟骨細胞における TRPS1 蛋白質の発現低 下も確認した (Fig. 8D)。

Trps1^{4Enh2/3/4Enh2/3}の新生仔の骨格染色を行ったところ、全身骨格、寛骨、下顎骨の低形成 が見られ、椎骨椎体部の遅延を認めた(Fig. 9A-E)。そこで、野生型、Trps1^{dEnh2/3/+}、 Trps1^{4Enh2/3/4Enh2/3}の生後の体重変化を生後 4~9 週目までを計測したところ、 Trps1^{4Enh2/3/4Enh2/3} は野生型と比較して有意な体重減少を示した(Fig. 9F)。回収した際の体 長もやや小さかった(Fig. 9G)。また、生後1か月齢のマウスでは Trps 1^{4Enh2/3}の腸骨 と恥骨の骨化遅延が見られた(Fig. 10A, B)。組織学的解析においても腸恥隆起相当部位の 石灰化の遅延を認めた(Fig. 10C, D)。生後 2~3 か月齢のマウスの股関節については組織 学的に違いを認めなかったが、マイクロ CT による形態解析では Trps 1^{ΔEnh2/3/ΔEnh2/3}の psoas valley がコントロールと比較して有意に深かった(Fig. 10G, H, I)。生後のマウスの長管骨 成長板でも Trps1 の発現が認められるため、2~3 か月齢の大腿骨に対してマイクロ CT、 組織学的解析を行った。マイクロ CT 解析では違いは認められなかったが(Fig. 11A-D)、 組織学的解析で Trps I^{ΔEnh2/3/ΔEnh2/3} 成長板の軟骨細胞の増殖層の配列の乱れを認めた(Fig. 11E-H)。軟骨細胞の配列の乱れは1か月齢の Trps I^{ΔEnh2/3/ΔEnh2/3}でも認められた(Fig. 12A, B, G, H)。そこで、in situ hybridization 法により、大腿骨骨端における Collal、Col2al、 Col10a1、Mmp13 の発現パターンを検討したところ Trps1^{ΔEnh2/3/ΔEnh2/3}の二次骨化中心形成領 域内に Col2al の発現が認められた (Fig. 12J)。

次に、Enh2/3 の欠失に加えて片側のアリルの Trps1 遺伝子を欠失させたマウス

(Trps1^{4Enh2/3/-})を交配により作出し解析を行った。生後 3 週を超えて生存している Trps1^{4Enh2/3/}マウスは 29 匹のうち 2 匹だけであった。生後 5 日において生存するマウスを 数えると、41 匹のうち4 匹の Trps1^{4Enh2/3/-}マウスが確認でき、これらは Trps1^{4Enh2/3/+}と Trps1^{+/-} の雌雄マウスの交配により期待される25%の出現頻度から有意に匹数は少なかった。一方 胎生期では、Trps1^{ΔEnh2/3/-}マウスは 50 匹中 12 匹存在した(Fig. 13A)。これらをまとめる と、Trps1-KOのように生後すぐに致死的にはならず、数日は生存するマウスがいることが わかった。生後から成獣の体長も Trps l^{4Enh2/3/-}で明らかに小さいことがわかった(Fig. 13B, C, D)。出生4日目の骨格染色では、寛骨、上腕骨、肩甲骨の二次骨化中心を形成する領 域が小さかった(Fig. 13E-H)。ほかの系統同様に股関節の解析を行うと、psoas valley がこ れまでの系統(ΔEnh1、ΔEnh2、ΔEnh3、ΔEnh2/3、ΔEnh1/-、ΔEnh2/-、ΔEnh3/-)の中で最も 深いことがわかった(生後3か月齢のデータを示す; Fig. 14A, B)。この原因の一つとし て、ヒトにおいては腸腰筋が関係する可能性が示唆されていることなどから組織解剖を行 ったところ、野生型と TrpsI^{ΔEnh2/3/-}の間で腸腰筋の付着部位、走行に違いは認められなかっ た(Fig. 14C, D)。組織学的解析において、Trps1^{ΔEnh2/3/-}の腸恥隆起相当部位に軟骨細胞の 残存が認められた(Fig. 14E-J)。また、Trps1^{ΔEnh2/3/-}の大腿骨では遠位骨端の形態異常が認 められ、マイクロ CT 解析から二次骨化中心の領域が野生型よりも小さいことがわかった (Fig. 15A)。組織学的解析において、Trps1^{ΔEnh2/3/-}の遠位骨端では成長板近傍の骨端部海 綿骨に軟骨細胞が残存しており、これは生後6か月を過ぎた個体でも認めた(データ示さ

ず)。また、組織解剖、マイクロ CT 解析から、*Trps1*^{Δ Enh2/3/-}では膝蓋骨の内側脱臼を認めた た(Fig. 15A)。6か月齢の*Trps1*^{Δ Enh2/3/-}でも膝蓋骨の内側脱臼を認めた。*Trps1*^{Δ Enh2/3/-}新生 仔の骨格染色では、膝蓋骨が定位置に存在したことから(2 匹中 2 匹)(Fig. 15B)、膝蓋 骨の脱臼は後天的に起こることが示唆された。*Trps1*^{Δ Enh2/3/ Δ Enh2/3</sub> と同様に、*Trps1*^{Δ Enh2/3/-}の成 長板では軟骨細胞のカラム状の配列が崩れていた(Fig. 16A-D)。}

6. 培養軟骨細胞増殖アッセイ

Enh2、Enh3、および両方の欠失により認められる骨格系の表現型が軟骨細胞の増殖能異常に起因する可能性を検証するために、野生型、 $Trps1^{\Delta Enh2/\Delta Enh2}$ 、 $Trps1^{\Delta Enh3/\Delta Enh3}$ 、 $Trps1^{\Delta Enh2/3/\Delta Enh2/3}$ の膝軟骨細胞を回収して細胞増殖アッセイを行った。野生型に対して、培養6日目で $Trps1^{\Delta Enh3/\Delta Enh3}$ と $Trps1^{\Delta Enh2/3/\Delta Enh3}$ と $Trps1^{\Delta Enh2/3/\Delta Enh2/3}$ において、9日目で $Trps1^{\Delta Enh2/\Delta Enh2}$ 、

1. Trps1発現制御候補領域について

ノックアウトマウスの表現型解析において、欠失させた遺伝子が個体の生存に必須であ る場合、胎生期もしくは生まれて間もなく死に至る可能性が高く、これら遺伝子の生体内で の機能について得られる知見は限定的となってしまう。Trps1-KO マウスも生後間もなく致 死となるため、特に生後の Trps1 遺伝子の役割についてはいまだ不明な点が多い。新生仔致 死の表現型を回避する手法として時期・組織特異的ノックアウトが考えられる。Trps1-KOの 出生時の致死の原因が骨格異常に起因する呼吸不全である可能性が高いため、Sp7-Cre、 Collal-Cre、もしくは Col2al-Cre マウス系統 [41] などを用いた骨格組織特異的 Trps1-KO においても、コンベンショナル KO 同様に早期に致死となる可能性が考えられた。Prx1-Cre を用いることも検討したが、四肢骨を中心として標的にする Cre 系統であるため [42]、TRPS の病態が現れる中軸骨格、上下肢帯領域における TrpsI 遺伝子の機能解析に不適切であると 考えられた。また、タモキシフェン誘導型 Cre リコンビナーゼによる時期・組織特異的ノッ クアウトマウスの場合、タモキシフェンによる骨への影響の可能性を否定できない[41]。こ れらの理由から本研究では、遺伝子発現制御領域の欠失により Trps1 の発現を低下させたマ ウスを作出することで、出生直後の致死を回避し、生後の特に骨組織における表現型解析が 可能となると考えた。同時に、いまだ知見の少ない Trps1 の発現制御領域も見出せることが できるのではないかと考えた。

Enh1 に関しては、Trps1^{AEnh1/-}でわずかに股関節の形態異常が見られる程度であったこと から、Enh1 が骨格における Trps1 の生理的発現レベルの誘導・維持に必須ではないか、あ るいは相補的に作用する別の領域があることを示唆された。Enh1 は関節軟骨には活性があ るものの成長板軟骨における活性は限定的であることは、Enh1 欠失における軽微な表現型 をある程度説明するものと考えられる[39]。一方、エピゲノム解析から Trps1 の発現制御領 域として候補に上がった Enh2、Enh3 の両方を同時に欠失させたマウスでは骨格系における 顕著な表現型を認めたことから、Enh2、Enh3 を含むゲノム領域が(恐らくは Trps1 の発現 制御を介して)骨格系で果たす役割は大きいものとみられる。一方、個々の領域を個別に欠 失させた場合の表現型はやはり軽微であったことから、これらの2つの領域(Enh2、Enh3) が相補的に協調して骨格形成の際に作用していることが示唆された[43]。ただし、今回 Enh2 と Enh3 の間のゲノム領域も欠失させているため、この領域が骨格形成の制御に関与してい る可能性は否定できない。そのため、今後 Enh2 領域と Enh3 領域のみを同時に欠失させた マウスでの検証も必要であると考えられた。

2. Trps1^{ΔEnh2/3/ΔEnh2/3}の体長差について

野生型と *Trps1*^{ΔEnh2/3/ΔEnh2/3} において出生直後から体長差が認められる要因の一つに、軟骨 細胞の増殖能の違いが考えられた(Fig. 17)。さらに、*Trps1*^{ΔEnh2/3/ΔEnh2/3} では生後1か月で成 長板軟骨細胞の配列の乱れが認められ、生後3か月においてもその傾向は維持されていた。 過去の文献で、長管骨の短いマウスにおける成長板軟骨細胞の配列の乱れが報告されている[44-46]。成長板軟骨細胞の配列の乱れが *Trps1*^{ΔEnh2/3/ΔEnh2/3} で認めた体長差の要因となっている可能性があり、今後さらに検討する必要がある。また、生後1か月の *Trps1*^{ΔEnh2/3/ΔEnh2/3} において、二次骨化中心形成領域に *Col2a1* 陽性細胞、トルイジンブルー陽性細胞を認めたことは、二次骨化中心における骨形成が一時的に遅延していることを示唆している。このことも、少なくとも部分的には *Trps1*^{ΔEnh2/3/ΔEnh2/3} の体長の表現型の要因であると考えらえる。

3. Trps1^{ΔEnh2/3/ΔEnh2/3}の股関節形態異常について

Psoas valley は、腸腰筋の一部で椎骨に付着する最も重要な筋肉の一つであり、椎骨の両 側、骨盤の淵に存在する長い筋肉の走行部位と一致する。遠位端で腸骨筋と結合し、腸腰筋 を形成する。大腰筋は、運動時と静止時の運動力学的機能と、姿勢調整機能を有している。 *Trps1*^{AEnh2/3/AEnh2/3} の股関節では、生後1か月で寛骨臼を形成する部位の骨化が遅れていたも のの、生後3か月経過で組織学的にはキャッチアップが起こっていた。しかしながら生後3 か月の *Trps1*^{AEnh2/3/AEnh2/3} の寛骨臼の形態は、野生型と比べて psoas valley が有意に深かった。 これは大腿骨頭の被覆が浅いことを示し、臼蓋形成不全の病態に類似していることを示唆 する[47,48]。*Trps1*^{AEnh2/3/AEnh2/3} の股関節で認められる psoas valley の形態異常は、寛骨臼の骨 化遅延部分に腸腰筋からの負荷が長期間加わったことによる変形(deformation)である可能 性が考えられる[49]。これらのことを踏まえると、*Trps1*^{AEnh2/3/AEnh2/3}では psoas valley の形態 異常による大腰筋の機能への影響(姿勢調節機能、運動機能)も考えられるため、今後、機 能的な検証も必要と思われる。

4. Trps1^{AEnh2/3/-}の出生後の体長差について

Trps1^{ΔEnh2/3/-}では出生直後から体長差が見られるが、考察2で述べた成長板軟骨細胞の増 殖や配列の異常の他にも、生後の二次骨化中心の形成異常が関与している可能性が考えら れる。生後の骨格成長には、二次骨化中心形成予定領域近傍の「stem cell niche」による幹細 胞の自己複製と成長板への軟骨細胞の供給が関与するという報告がある[50]。Trps1^{ΔEnh2/3/-}で は、生後3か月においても二次骨化中心形成領域にトルイジンブルー陽性細胞が残存して いた。したがって、Trps1^{△Enh2/3/-}では、二次骨化中心おける骨形成の遅れによって stem cell niche が十分に形成されず、成長板への軟骨細胞の供給不足に陥り、生後の骨格成長に影響 した可能性が考えられた。また、二次骨化中心は外力から成長板軟骨を保護する役割を有す ることも報告されている[51]。したがって、Trps1^{ΔEnh2/3/-}では二次骨化中心の形成が不十分な ことによって成長板軟骨細胞を十分に保護できず、体長差となって表れた可能性が考えら れた。生後1か月の Trps1^{ΔEnh2/3/ΔEnh2/3}でも二次骨化中心における Col2al 陽性軟骨細胞の残 存と骨化遅延、および骨端の変形が認められており、これらも成長板軟骨の配列の乱れに関 与している可能性がある。

体長に最も影響するホルモンの一つに成長ホルモン(GH)がある。TRPS に関して GH の

分泌量の関与は未だ一貫した結論に至っていない。TRPS 患者に対する GH の補充の効果は ないとの報告[52、53]と、逆に効果があるとの報告もある[54、55]。また、Merjaneh らは GH 分泌は正常であるが、GH 治療を行った場合に有意に効果があるとしている[56]。これらの 報告は GH 補充がヒト TRPS の低身長治療に対するスタンダードとはならないことを示唆 しており、成長障害の起こる詳細な仕組みのさらなる理解が必要であると思われる。

5. Trps1^{ΔEnh2/3/-}の骨格系の異常と生存数の減少について

大腿骨遠位端の周囲は、主に大腿四頭筋からなる大腿四頭筋腱、膝蓋骨、膝蓋腱、脛骨か ら構成されている。大腿四頭筋は、4 つの異なる筋肉(大腿直筋、外側広筋、中間広筋、内 側広筋)で構成されており、大腿四頭筋腱を介して膝蓋骨に共通の挿入点を持つことで膝の 伸展の際に重要な役割を果たす[57]。

Trps1^{ΔEnh2/3/-}の大腿骨遠位端は、成獣に達しても二次骨化中心に相当する部位に軟骨細胞 が残存していた。この異常が生後6か月でも認められることは、二次骨化中心の成熟遅延の みならず、未成熟な状態で停止していることを示唆している。また、軟骨細胞の残存した未 成熟な骨化状態が長期間続く間、大腿骨周囲の筋肉からの負荷を受け続けることで、大腿骨 の遠位端の変形が起こった可能性が示唆される。

膝蓋骨は、半月形の舟状骨であり、伸展時の作動性と大腿四頭筋の牽引力を増加させる働きがあり[57]、支点となるため外力が集中しやすい。膝蓋腱は、定義上、骨(膝蓋骨)と骨

(脛骨結節)をつなぐため、靭帯ともいわれる。膝蓋腱は、大腿四頭筋と脛骨を結ぶ役割が あり、大腿四頭筋とともに、膝の伸展と関節の安定性に重要な役割を担っている[57、58]。 ヒトの場合、膝蓋骨の亜脱臼の繰り返しで大腿骨の内、外側顆が平坦化し、脱臼を起こすこ とが報告されているが[59]、*Trps1*^{dEnh2/3/-}マウスでも同様に大腿骨骨端の平坦化が認められて いる。従って、今回の膝蓋骨の脱臼の原因の一つは以前の報告同様に膝蓋骨の亜脱臼の繰り 返しによる大腿骨の内・外側顆の平坦化が考えられる。内・外側顆の平坦化がみられた別の 要因として、大腿骨骨端の骨化遅延部への周囲筋の負荷による平坦化が考えられる。 *Trps1*^{AEnh2/3/AEnh2/3}でも生後1か月の段階で二次骨化中心の形成が遅れる傾向が見られること から後者の可能性の方が強いのではないかと考えられた。この原因を突き止めるためには 作出したマウスを生後初期に膝蓋骨を除去した状態で大腿骨の平坦化が起こるかを検証す る必要があるかもしれない。

Trps1^{ΔEnh2/3/-}の psoas valley が深い原因についても膝同様、未熟な psoas valley 相当部位に 腸腰筋による負荷が長期間かかったことが示唆される。しかしながら、*Trps1*^{ΔEnh2/3/-}は成獣 まで生存するマウスが少なく、サンプルもメスしか採取できていないことから、今後オスの サンプルを獲得して検証する必要がある。また、*Trps1*^{ΔEnh2/3/-}は従来の *Trps1*-KO のように生 後すぐには致死的にはならず数日は生存するが、数週間後まで生存するマウスは極めて少 ない。*Trps1* は心臓にも発現が認められるため[40]、ヒトの場合でも見られる先天性の心疾 患を有していた可能性もある。また、*Trps1*^{ΔEnh2/3/-}に骨格の異常を少なからず認めるため、 大部分が呼吸器機能の異常を来した可能性も否定できない。呼吸器機能の障害の結果起こ る成長不全のため、体格が大きくなる周囲の同腹仔よりも栄養状態不良となった結果、餓死 した可能性も考えられるが、死因の特定に関しては議論の余地がある。

6. ヒトTRPSとの症状比較について

今回作出したマウスは骨格系以外の心臓、腎臓や毛包などの組織について詳細に解析が できておらず、骨格系以外の臓器の変化がどの程度ヒト TRPS を再現しているかさらなる解 析が必要である。特にΔEnh2/3系統マウスの新生仔期で腎臓における Trps1 遺伝子の発現に 明らかな低下が認められたため、ヒト TRPS 患者でも見られるような腎臓の発生もしくは腎 機能に何らかの異常が出ている可能性は高い。今回見出したエンハンサー領域は軟骨細胞 でのエピゲノム解析より見出されたものであり、骨格系に表現型が強く現れていることと 矛盾してはいない。一方で、ほぼすべてのヒト TRPS 患者にみられる特徴的な指骨骨端部の 変形は今回作出したマウス系統では観察できず、このことは1)症状が出現する閾値は骨格 によって異なる可能性、2)種の違いによる Trps1の機能の異なる可能性、3)同じ軟骨原基 内でも解剖学的位置の異なる部位で異なる(もしくは複数の)エンハンサーにより制御され ているなどの可能性が考えられた。

25

V. 結論

本研究では、生後 TRPS 疾患のモデルマウスを作製することを目的として、マウス Trps1 遺 伝子のイントロン領域の転写調節領域を探索し、複数の候補モデルを作製し、詳細に検討を 行ったところ、以下の結果を得た。

- (1) マウス Trps1 遺伝子の第1イントロン内に転写制御候補領域(Enh2、Enh3)を同定した。
- (2) 転写制御候補領域(Enh2、Enh3)を同時に欠失させると、軟骨細胞を含む多くの組織で *Trps1*の発現が低下した。
- (3) *Trps1*^{ΔEnh2/3/ΔEnh2/3}では、体の成長が遅れ、股関節の形態、長管骨成長板の組織構造に異常が認められた。
- (4) *Trps1*^{ΔEnh2/3/-}では、股関節の形態、大腿骨成長板の異常に加え、膝蓋骨の内側脱臼も認められた。

以上の結果から、今回作出したマウスは生後のTRPS疾患の一部を再現するモデルマウス として妥当であることが示唆された。

VI. 謝辞

本研究を行うにあたり、終始御懇意なるご指導を賜りました。大阪大学大学院歯学研究科 療護歯科保健学講座(障害者歯科治療部)秋山 茂久 准教授 に心から敬意を表します。 また,本研究を遂行するにあたり、終始様々御指導と御検閲をいただきました大阪大学大学 院歯学研究科 ロ腔分化発育情報学講座(ロ腔解剖学第一教室)阿部 真土 講師および大 庭 伸介 教授に厚く御礼申し上げます。最後になりますが、終始研究に対しご理解とご協 力を頂いた、障害者歯科治療部ならびにロ腔解剖学第一教室の教室員の皆様に厚く御礼申 し上げます。

VII. 文献

[1] Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, Nishimura G, Robertson S, Sangiorgi L, Savarirayan R, Sillence D, Superti-Furga A, Unger S, Warman ML. (2019) Nosology and classification of genetic skeletal disorders: revision. Am J Med Genet A 179(12): 2393-419.

[2] Momeni P, Glöckner G, Schmidt O, Holtum D, Albrecht B, Gillessen-Kaesbach G, Hennekam R, Meinecke P,Zabel B, Rosenthal A, Horsthemke B, Lüdecke HJ. (2000) Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 24:71–74
[3] Maas S, Shaw A, Bikker H, Hennekam RCM. Trichorhinophalangeal Syndrome. (2017) Gene Reviews [Internet]

[4] Maas SM, Shaw AC, Bikker H, Lüdecke H-J, Tuin K, Badura-Stronka M, Belligni E Biamino E, Bonati MT, Carvalho DR, Cobben JM, Man SA, Hollander NSD, Donato ND, Garavelli L, Grønborg S, Herkert JC, Hoogeboom AJM, Jamsheer A, Latos-BielenskaA, Maat-Kievit A, Magnani C, Marcelis C, Mathijssen IB, Nielsen M, Otten E, Ousager LB, Pilch J, Plomp A, Poke G, Poluha A, Posmyk R, Rieubland C, Silengo M, Simon M, Steichen E, Stumpel C, Szakszon K, Polonkai E, Ende J, Steen A, Essen T, Haeringen A, Hagen JM, Verheij JBGM, Mannens MM, Hennekamac RC (2015) Phenotype and genotype in 103 patients with tricho-rhino-phalangeal syndrome. Eur J Med Genet 58(5):279-292

[5] Puliyel JM, Puliyel MM, Varughese S. (1992) The trichorhinophalangeal syndrome with repeated dislocation of the patella. Clin Genet 41(3):139-42

[6] Suemoto H, Muragaki Y, Nishioka K, Sato M, Ooshima A, Itoh S, Hatamura I, Ozaki M, Braun A, Gustafsson E, Fässler R. (2007) Trps1 regulates proliferation and apoptosis of chondrocytes through Stat3 signaling. Dev Biol 312(2):572-581

[7] Napierala D, Sam K, Morello R, Zheng O, Munivez E, Shivdasani RA, Lee B. (2008) Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in

tricho-rhino-phalangeal syndrome. Hum Mol Genet 17(14): 2244-2254

[8] Suemoto H. (2006) Function analyses of TRPS1, a GATA-type transcription factor, during osteochondrogenesis. J Wakayama Med Soc 57(2):74-80

[9] Wuelling M, Schneider S, Schröther VA, Waterkamp C, Hoffmann D, Vortkamp A. (2020) Wnt5a is a transcriptional target of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. Dev Biol 457(1):104-118

[10] Kanno S, Gui T, Itoh S, Gai Z, Sun Y, Oikawa K, Yoshida M, Muragaki Y. (2011) Aberrant expression of the P2 promoter-specific transcript Runx1 in epiphyseal cartilage of Trps1-null mice. Exp Mol Pathol 90(2):143-148

[11] Nishioka K, Itoh S, Suemoto H, Kanno S, Gai Z, Kawakatsu M, Tanishima H, Morimoto Y, Hatamura I, Yoshida M, Muragaki Y. (2008) Trps1 deficiency enlarges the proliferative zone of growth plate cartilage by upregulation of Pthrp. Bone 43(1):64-71

[12] Wuelling M, Kaiser FJ, Buelens LA, Braunholz D, Shivdasani RA, Reinhard Depping, Andrea Vortkamp. (2009) Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Dev Biol 328(1):40-53

[13] Napierala D, Sam K, Morello R, Zheng O, E Munivez E, Shivdasani RA, Lee B. (2008) Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome. Hum Mol Genet 17(14):2244-2254

[14] Long X, Ornitz DM. (2013) Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 5(1):a008334

[15] DeSilva JM, Rosenberg KM. (2017) Anat Rec (Hoboken) 300(4):628-632

[16] Young M, Selleri L, Capellini TD. (2019) Genetics of scapula and pelvis development: An evolutionary perspective. Curr Top Dev Biol 132:311-349

[17] Romer AS, Parsons TS. (1986) The vertebrate body. Saunders College Publishing 6:679.

[18] Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. (2002). Expression of Cre recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis, 33:77–80

[19] Bardeen CR, Lewis WH. (1901) Development of the limbs, body-wall and back in man. Am J Anat 1:1–35

[20] Capellini TD, Handschuh K, Quintana L, Ferretti E, Di Giacomo G, Fantini S, et al. (2011).
Control of pelvic girdle development by genes of the Pbx family and Emx2. Dev Dyn 240(5):1173-89
[21] O'Rahilly R, Gardner E (1975) The timing and sequence of events in the development of the limbs in the human embryo. Anat Embryol (Berl) 148:1–23

[22] Laurenson RD. (1964) The primary ossification of the human ilium. Anat Rec 148:209-217

[23] Fazekas I, Kosa F. (1978) Forensic fetal osteology. Akademiai Kiado 1-413

[24] Pomikal C, Streicher J. (2010) 4D-analysis of early pelvic girdle development in the mouse (Mus musculus). J Morphol 271(1):116-126

[25] Huang R, Christ B, Patel K. (2006) Regulation of scapula development. Anat Embryol (Berl)211:65–71

[26] Adair F. (1918) The ossification centers of the fetal pelvis. Transactions of the American Gynecological Society 43(89): 516–517

[27] Freedman E. (1934) Os acetabuli. AJR Am J Roentgenol 492-495

[28] Stevenson PH. (1924) Age order of epiphyseal union in man. Am J Phys Anthropol 7: 53–93

[29] Kopydlowski NJ, Tannenbaum EP, Smith MV, Sekiya JK. (2014) Characterization of human Anterosuperior Acetabular depression in correlation with Labral tears. Orthop J Sports Med 2(10): 2325967114551328

[30] Domb BG, Shindle MK, McArthur B, Voos JE, Magennis EM, Kelly BT. (2011) Iliopsoas impingement: a newly identified cause of labral pathology in the hip. HSS J 7:145–150

[31] Andronic O, Nakano N, Daivajna S, Board TN, Khanduja V. (2019) Non-arthroplasty iliopsoas

impingement in athletes: a narrative literature review. Hip Int 29:460-467

[32] Lüdecke H-J, Schaper J, Meinecke P, Momeni P, Groß S, Holtum D, Hirche H, Abramowicz MJ,Albrecht B, Apacik C, Christen H-J, Claussen U, Devriendt K, Fastnacht E, Forderer A, Friedrich U, Goodship THJ, Greiwe M, Hamm H, Hennekam RCM, Hinkel GK, Hoeltzenbein M, Kayserili H, Majewski F, Mathieu M, McLeod R, Midro AT, Moog U, Nagai T, Niikawa N, Ørstavik KH, Plöchl C, Seitz C, Schmidtke J, Tranebjærg L, Tsukahara M, Wittwer B, Zabel B, Gillessen-Kaesbach G, Horsthemke B. (2001) Genotypic and Phenotypic Spectrum in Tricho-Rhino-Phalangeal Syndrome Types I and III. Am J Hum Genet 68(1):81-91

[33] Howell CJ, Wynne-Davies R. (1986) The tricho-rhino-phalangeal syndrome. A report of 14 cases in 7 kindreds. J Bone Joint Surg Br 68(2):311-314

[34] Beals PK. (1973) Tricho-rhino-phalangeal dysplasia. Report of a kindred. J Bone Joint Surg Am 55(4):821-826

[35] Giedion A, Burdea M, Fruchter Z, Meloni T, Trosc V. (1973) Autosomal- dominant transmission of the tricho-rhino-phalangeal syndrome. report of 4 unrelated families. review of 60 cases. Helv Paediatr Acta. 28(3):249-259

[36] McLeod MJ. (1980) Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22(3): 299-301

[37] Kuroda Y, Rai A, Saito M, Khanduja V. (2020) Anatomical variation of the Psoas Valley: a scoping review. BMC Musculoskelet Disord 21: 219

[38] Jason D Buenrostro, Paul G Giresi, Lisa C Zaba, Howard Y Chang, William J Greenleaf. (2013)Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin,DNA-binding proteins and nucleosome position. Nat protoc 10: 1213–1218

[39] Gosset M, Berenbaum F, Sylvie Thirion, Claire Jacques. (2008) Primary culture and phenotyping of murine chondrocytes. Nat Protoc 3:1253–1260 [40] Ahmed GN, Takeuchi Y, Fujikawa, Sharaby, JAAE Wakisaka S, Abe M. (2016) Fate mapping of Trps1 daughter cells during cardiac development using novel Trps1-Cre mice. Genesis 54(7):379-388
[41] Elefteriou F, Couasnay G. (2020) Advantages and Limitations of Cre Mouse Lines Used in Skeletal Research. Methods Mol Biol 2230:39-59

[42] Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. (2002) Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33(2):77-80

[43] Schoenfelder S, Fraser P. (2019) Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20:437-455

[44] Weisz-Hubshman M, Egunsula AT, Dawson B, Castellon A, Jiang MM, Chen-Evenson Y, Zhiyin Y, Lee B, Bae Y. (2022) DDRGK1 is required for the proper development and maintenance of the growth plate cartilage. Hum Mol Genet 31(16):2820-2830

[45] Dubail J, Huber C, Chantepie S, Sonntag S, Tüysüz B, Mihci E, Gordon CT, Steichen-Gersdorf E, Amiel J, Nur B, Stolte-Dijkstra I, Eerde AM, Gassen KL, Breugem CC, Stegmann A, Lekszas C, Maroofian R, Karimiani EG, Bruneel A, Seta N, Munnich A, Papy-Garcia D, Dure-Molla MDL, Cormier-Daire V. (2018) SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 9(1):3087

[46] Lamuedra A, Gratal P, Calatrava L, Ruiz-Perez VL, Largo R, Herrero-Beaumont G. (2020) Disorganization of chondrocyte columns in the growth plate does not aggravate experimental osteoarthritis in mice. Sci Rep 10:10745

[47] James CS, Miocevic M, Malara F, Pike J, Young D, Connell D. (2006) MR imaging findings of acetabular dysplasia in adults. Skeletal Radiol 35:378-384,

[48] Tan V, Seldes RM, Katz MA, Freedhand AM, Klimkiewicz JJ, Fitzgerald Jr RH. (2001) Contribution of acetabular labrum to articulating surface area and femoral head coverage in adult hip joints: An anatomic study in cadaver. Am J Orthop (Belle Mead NJ) 30:809-812 [49] Jiang Z, Byers S, Casal ML, Smith LJ. (2020) Failures of Endochondral Ossification in the Mucopolysaccharidoses. Curr Osteoporos Rep 18(6):759-773

[50] Chagin AS, Newton PT. (2020) Postnatal skeletal growth is driven by the epiphyseal stem cell niche: potential implications to pediatrics. Pediatr Res 87(6):986-990

[51] Xie M, Gol'din P, Herdina AN, Estefa J, Medvedeva EV, Li L, Newton PT, Kotova S, Shavkuta B, Saxena A, Shumate LT, Metscher BD, Großschmidt K, Nishimori S, Akovantseva A, Usanova AP, Kurenkova AD, Kumar A, Arregui IL, Tafforeau P, Fried K, Carlström M, Simon A, Gasser, Kronenberg HM, Bastepe M, Cooper KL, Timashev P, Sanchez S, Adameyko I, Eriksson A, Chagin AS. (2020) Secondary ossification center induces and protects growth plate structure. eLife e55212 [52] Naselli A, Vignolo M, Di Battista E, Papale V, Aicardi G, Becchetti S, Toma P. (1998) Trichorhinophalangeal syndrome type I in monozygotic twins discordant for hip pathology. Report on the morphological evolution of coneshaped epiphyses and the unusual pattern of skeletal maturation. Pediatr Radiol 28(11):851–855

[53] Sohn YB, Ki CS, Park SW, Cho SY, Ko AR, Kwon MJ, Kim JY, Park HD, Kim OH, Jin DK. (2012) Clinical, biochemical, and genetic analysis of two korean patients with trichorhinophalangeal syndrome type I and growth hormone deficiency. Ann Clin Lab Sci 42(3):307–312

[54] Stagi S, Bindi G, Galluzzi F, Lapi E, Salti R, Chiarelli F. (2008, 2009) Partial growth hormone deficiency and changed bone quality and mass in type I trichorhinophalangeal syndrome. Am J Med Genet A. 146A(12):1598–1604. Erratum in: Am J Med Genet A 149A (2): 296

[55] Sarafoglou K, Moassesfar S, Miller BS. (2010) Improved growth and bone mineral density in
type I trichorhinophalangeal syndrome in response to growth hormone therapy. Clin Genet. 78:591–
593

[56] Merjaneh l, Parks JS, Muir AB, Fadoju1 D. (2014) A novel TRPS1 gene mutation causing trichorhinophalangeal syndrome with growth hormone responsive short stature: a case report and

review of the literature. Int J Pediatr Endocrinol. 2014(1): 16

[57] Hsu H, Siwiec RM. (2022) Patellar Tendon Rupture. StatPearls [Internet].

[58] Andrikoula S, Tokis A, Vasiliadis HS, Georgoulis A. (2006) The extensor mechanism of the knee joint: An anatomical study. Knee Surg Sports Traumatol Arthrosc 14:214–220.

[59] Miller PR, Klein RM, Teitge RA. (1991) Medial dislocation of the patella. Skeletal Radiol 20(6):429-31

Table 1:ジェノタイピングで使用したプライマー

	5'-TAG TAA AGC AGG CCG TGA AG-3'		
Trps1-KO で野生型判定のために使用したブラ イマー	5'-ACC CAA AGG TCA CTT ACT GG-3'		
	5'-CCA CAC ACT ATT TTC CAT GGG-3'		
<i>Trps1-KO</i> でノックアウトマウスの判定のため に使用したプライマー	5'-CCC CTT CTA TCG CCT TCT TGA-3'		
	5'-AAT CAG TGA AAA ATA TTT GAG-3'		
<i>Enh1</i> で野生型判定のために使用したプライマ ー	5'-TGA GGT TGC TAT GGT TTT CTG-3'		
	5'-TGA GGT TGC TAT GGT TTT CTG-3'		
<i>Enh1</i> で <i>Enh1</i> 欠失の判定のために使用したプラ イマー	5'-TTG CCT GAT ACT GCA GAG T-3'		
	5'-ACT CCC CCC AAT TCC TCT TTT CTC-3'		
<i>Enh2</i> で野生型判定のために使用したプライマ ー	5'-GAC GGG TAT ACC AGG AGA GGA TG-3'		
	5'-GCA AGC TCA TAC AAC TTG CCT GT-3'		
<i>Enh2</i> で <i>Enh2</i> 欠失の判定のために使用したプラ イマー	5'-ACT CCC CCC AAT TCC TCT TTT CTC-3'		
	5'-ACA CGA TGG AAG GTA GTC ATG GA-3'		
<i>Enh3</i> で野生型判定のために使用したプライマ ー	5'-AGG ACT TCC ACT TGT ACG GAG C-3'		
	5'-AGG ACT TCC ACT TGT ACG GAG C-3'		
<i>Enh3</i> で <i>Enh3</i> 欠失の判定のために使用したプラ イマー	5'-ACA CGA TGG AAG GTA GTC ATG GA-3'		
	5'-GAA AAT GGA CCC TGA GGC TTA TG-3		
<i>Enh2/3</i> で野生型判定のために使用したプライ マー	5'-AAA ATG CAA GCT TGG TTT GGT TT-3'		
	5'-TAG TCA AGT CCA CAG GTG GGA AA-3'		
Enh2/3 で Enh2/3 欠失の判定のために使用した プライマー	5'-ATA GAA CAA GTG GCT CCC AGC TC-3'		

Table 2 :	リアルタイ	ムPCR	で使用したプライ	イマー
-----------	-------	------	----------	-----

Trps1	5'-CAG CTC CCA AGA GCA GAC AAA-3'
	5'-GTC AGG CAA TTG GCA CAA AAA-3'
Hprt1	5'-GCA GTA CAG CCC CAA AATGG-3'
	5'-AACAAAGTCTGGCCTGTATCCAA-3'

Fig. 1. 大腿骨骨端部での Trps1 に関連する遺伝子の発現と股関節の構造

(A) 大腿骨骨端部における Trps1 と関連する遺伝子の発現部位と関係性の模式図。

(B) 股関節の寛骨は ilium (腸骨)、pubis (恥骨)、ischium (座骨)の3つの骨から構成 されており、成熟すると癒合部分が骨化して1つの集合体(寛骨)となる。腸骨と恥骨の癒 合部分の外側面で大腰筋が走行する部分の溝(右図青矢印)を大腰筋溝(psoas valley)と呼 ぶ。

Fig. 2. Trps1-KO の骨格染色像

- (A) 野生型(WT)と Trps1-KOマウスの全身骨格染色像。
- (B) 下顎骨の外側面観。
- (C) 寛骨の内側面観。
- (D, E) 野生型(D) と *Trps1*-KO マウス(E) の椎骨腹側観。

ap:下顎角;cd:下顎頭;cp:筋突起;il:腸骨;is:坐骨;pu:恥骨

Fig. 3. *Trps1* 転写開始部位上流配列(Enh1)の欠失がマウス個体に与える影響の検討 (A, B) *Trps1-Cre* 活性マウスの生後1か月(左)と3か月(右)の大腿骨骨端での Cre 活

性の確認。*Trps1-Cre*マウスと ZsGreen 蛍光 Cre レポーターマウスを交配し、得られたダブルトランスジェニックマウスの下肢を解析に用いた。白矢印は成長板での Cre 活性を示す。

(C) ΔEnh1 マウス作製のためのゲノム削除部分の模式図。最小プロモーター(約0.7 kb) を残して転写開始部位より上流の約4 kb を削除。

(D) Enhl のヘテロ接合マウス(*Trps I*^{ΔEnh1/+})どうしを交配させた際に出生した野生型(WT)、 ヘテロ接合型、ホモ KO の各遺伝子型マウスの匹数を示す。

(E) 胎生 17.5 日齢の野生型(Control)と Trps l^{ΔEnh1/ΔEnh1}マウスの全身骨格染色像。

(F,G) 野生型(F)と Trps l^{ΔEnh1/ΔEnh1}(G) マウスの上肢骨格染色像。

(H, I) 野生型(H) と *Trps I*^{ΔEnh1/ΔEnh1}(I) マウスの下肢骨格染色像。

(J) 野生型(Control)と Trps l^{ΔEnh1/ΔEnh1}マウスの下顎骨骨格染色像外側面観。

(K) 野生型(Control)と Trps l^{ΔEnh1/ΔEnh1}マウスの寛骨骨格染色像内側面観。

(L) コントロール、Enh1 のヘテロ接合マウス(*Trps1*^{ΔEnh1/+})とホモ KO マウス(*Trps1*^{ΔEnh1/ΔEnh1}) の生後 4 週目から 9 週目までの体重変化。

Fig. 4.3 か月齢 Trps1-Enh1 変異マウスの股関節と膝関節部の解析

コントロール (A, D, G, J)、*Trps1*^{ΔEnh1/ΔEnh1} (B, E, H, K) と *Trps1*^{ΔEnh1/-}マウス (片アリルは ΔEnh1、もう一方のアリルで *Trps1* 遺伝子を欠失させたもの; C, F, I, L))の股関節正面観 (A, D, B, E, C, F) と大腿骨骨端正面観および矢状断 (G, J, H, K, I, L) のマイクロ CT 像と HE 染 色像。白矢印は Psoas valley を示す。 Mouse Chromosome 15

В

А

С

Fig. 5. Trps1 転写制御候補領域の検討

(A) マウス肋軟骨細胞の *Trps1* 遺伝子領域における ATAC-seq および ChIP-seq (H3K4me2、H3K27ac)のピークデータを示す。*Trps1* 遺伝子の第一イントロン内に、ATAC-seq、H3K4me2 ChIP-seq、H3K27ac ChIP-seq のピークが重複する領域が 2 か所検出され、それぞれを Trps1 enhancer 2 (Enh2)、Trps1 enhancer 3 (Enh3) 転写制御候補領域とした。野生型 (b, c)、ΔEnh2/3 (a, d) のジェノタイピング時に使用したプライマーの設計を a-d で示す。

(B) ルシフェラーゼアッセイによる *Trps1* 転写制御侯補領域の転写活性の検討。使用した レポーターコンストラクトの概略図を示す。最小プロモーターのみ (Control)、最小プロモ ーター+Enh1 (Enh1-Luc; 黄色)、最小プロモーター+Enh2 (Enh2-Luc; 赤色)、最小プロモー ター+Enh3 (Enh3-Luc; 緑) によってホタルルシフェラーゼ遺伝子 (FF; Firefly) の発現が 制御されるレポーターコンストラクトを作製した。

(C) ヒト胎児腎細胞株(HEK293)、軟骨様細胞株(ATDC5)、初代肋軟骨細胞(Costal chondrocyte)、初代膝軟骨細胞(Articular chondrocyte)、初代頭蓋冠骨芽細胞(Calvarial osteoblast)に B で示したホタルルシフェラーゼベクターと導入効率標準化用ベクターを遺伝子導入した。Dual Luciferase Assay Kit (Promega)を用いたルシフェラーゼアッセイの結果を示す。

Fig. 6. Enh2 および Enh3 を個々に欠失させたマウスの体重変化

(A, B) コントロール、Enh2 ヘテロ接合マウス (*Trps1*^{ΔEnh2/+}) とホモ KO マウス (*Trps1*^{ΔEnh2/ΔEnh2})、Enh3 ヘテロ接合マウス (*Trps1*^{ΔEnh3/+}) とホモ KO マウス (*Trps1*^{ΔEnh3ΔEnh3}の生後 4 週目から 9 週目までの体重変化。

Fig. 7. Enh2 および Enh3 を個々に欠失させた生後 3 か月齢マウスの解析

コントロール (A, F, K, P)、Enh2 ホモ KO マウス (*Trps I*^{ΔEnh2} ; B, G, L, Q)、Enh2 ヘテ ロ欠失 ; *Trps I* ヘテロ欠失マウス (*Trps I*^{ΔEnh2/-} ; C, H, M, R)、Enh3 ホモ欠失マウス (*Trps I*^{ΔEnh3} ; D, I, N, P)、Enh3 ヘテロ欠失 ; *Trps I* ヘテロ欠失マウス (*Trps I*^{ΔEnh3/-} ; E, J,

O, S)の股関節(A-J)と大腿骨遠位端(K-S)のマイクロ CT 像と HE 染色像。白矢印は Psoas valley を示す。

Fig. 8. Enh2、Enh3 を同時に欠失させたマウスの作出(Trps1Enh2/3-KO;ストラテジーは Fig. 5(A)を参照)

(A) ジェノタイピング PCR による Enh2/3 の欠失の判定。同腹仔 10 匹の遺伝子型判定結果 を例として示す。変異型遺伝子型判定用プライマーの設計は、ゲノム編集により削除される 遺伝子領域をはさむように設計した(図 5A にプライマーa および d と記載)。削除されてい ないアリルでは 20 kb 以上プライマーの位置が離れているため、通常の伸長反応では増幅さ れない。一方、変異型アリルはプライマー間の距離が約 1 kb と近接し、バンドの増幅がみ られる。野生型アリルの有無は 3 種類のプライマーペアで確認した。すなわち、5 '側と 3' 側それぞれでゲノム編集により削除される部位をはさむように増幅用プライマーを設計 (図 5A には記載せず)、もしくは削除される配列内に増幅用プライマー(図 5A にプライマ ーb および c と記載)を設計した。左側のレーン 1~10 は Enh2/3 ミュータントプライマー で増幅させたとき、欠失アリルで約 1 kb の断片が増幅される。右側レーン 1~10 は野生型 アリル確認用プライマーを用いた反応で約 300 bp の断片が増幅される。

(B) 野生型マウスと Enh2/3 欠失マウスから採取した腎臓(左 2 レーン)、寛骨(中央 2 レ ーン)、肩甲骨(右 2 レーン)から調整した total RNA を用いて RT-PCR を行い、*Trps1* mRNA を確認。プライマーはエキソン 1 とエキソン 2 にフォワードとリバースプライマーが位置 するように設計した。 (C) 生後すぐのマウスより腎臓、心臓、毛包(鼻震毛)、寛骨、肩甲骨、肋軟骨を採取し、 各組織より total RNA を調整し、*Trps1* 遺伝子発現レベルを RT-qPCR で確認した。レファレ ンス遺伝子は *Hprt1* を用い、ΔΔCt 法にて相対発現量を算出した。

(D) 野生型マウスと Enh2/3-KO マウスから調整した膝関節軟骨細胞を培養しコンフルエントになった細胞からライセートを調整し、ウエスタンブロットにて Trpsl および αTubulin を検出した。

Fig. 9. Trps1 Enh2/3-KO (Trps1^{ΔEnh2/3}) マウスの解析

- (A) 野生型(Control)と *Trps1*^{ΔEnh2/3}マウスの全身骨格染色像。
- (B, C) 野生型(B) と *Trps* 1^{ΔEnh2/3}(C) マウスの椎骨骨格染色像。
- (D) 野生型(Control)と Trps I^{ΔEnh2/3}マウスの下顎骨骨格染色像。
- (E) 野生型(Control)と Trps 1^{ΔEnh2/3}マウスの寛骨骨格染色像内側面観。
- (F) コントロール、Enh2/3 のヘテロ接合マウス (*Trps1*^{ΔEnh2/3/+}) と Enh2/3 のホモ KO マウ
- ス (Trps 1^{ΔEnh2/3/ΔEnh2/3})の生後4週目から9週目までの体重変化。
- (G) 生後 10 週目での体格差を示す。

Fig. 10. Trps1△Enh2/3-KOマウスの股関節の解析

(A-H) 生後 1 か月 (A-D) と 3 か月 (E-F) のコントロールと Enh2/3 のホモ KO マウス (*Trps1*^{ΔEnh2/3/ΔEnh2/3}) の股関節のマイクロ CT 像(A, B, G, H)、トルイジンブルー染色像 (C,

- D)、HE 染色像(E,F)。白黒矢印は腸恥隆起部から Psoas valley を示す。
 - (I) Psoas valley depth の測定部位(上図の白矢印)と測定結果(下)。

Fig. 11. 生後 3 か月齢 Trps1 Enh2/3-KO マウスの大腿骨の解析

(A-D) コントロール(A,C) と Enh2/3 のホモ KO マウス(*Trps1*^{ΔEnh2/3}/ΔEnh2/3</sup>; B,D)の大腿 骨遠位端のマイクロ CT 像。C および D は膝蓋骨を含む断層画像を示す。

(E-H) コントロール (E,G) と Enh2/3 のホモ KO マウス (*Trps I*^{ΔEnh2/3/ΔEnh2/3}; F,H) の大腿 骨遠位端の HE 染色像。G、H は E、F それぞれの成長板軟骨部の拡大像を示す。

Fig. 12. 生後1か月齢の Trps1 Enh2/3-KO マウスの大腿骨の解析

コントロールと Enh2/3 のホモ KO マウス (*Trps1*^{Δ Enh2/3}) の大腿骨遠位部のトルイジン ブルー染色像 (A, B, G, H) と *Collal* (C, I)、*Col2al* (D, J)、*Col10al* (E, K)、*Mmp13* (F, L) の in situ hybridization 染色像。 А

PN4days

Fig. 13. Enh2/3 ヘテロ欠失; Trps1 ヘテロ欠失(Trps1^{ΔEnh2/3/-})マウスの解析

(A) *Trps1*^{ΔEnh2/3/+}と *Trps1*^{+/-}の交配により生まれたマウスの胎生期、生後5日、生後3週間 での生存匹数。

(B) 生後3日齢同腹仔の全身像。画像の全てのマウス新生仔は生存している状態である。

(C) 生後7週の全身像。

(D) 生後 11 週の全身像。

(E-H) 生後 4 加齢の野生型(Control) と *Trps1*^{ΔEnh2/3/-}マウスの骨格染色像。全身骨格(E)、 寛骨(F)、上腕骨(G)、肩甲骨(H)の染色像を示す。黒矢印は二次骨化中心形成予定領域 を示す。

Fig. 14. Enh2/3 ヘテロ欠失; Trps1 ヘテロ欠失マウス(Trps1^{ΔEnh2/3/-})の股関節の解析

(A-D) 生後 3 か月齢の野生型(Control) と *Trps1*^{ΔEnh2/3/-}(B, D) マウスの股関節マイクロ CT 像(A, B) と組織解剖写真(C, D)。青矢印は psoas valley に相当する部位を示す。
(E-J) 生後 3 か月齢野生型(E, G, I) と *Trps1*^{ΔEnh2/3/-}(F, H, J) マウスの股関節腸恥隆起相当 部の HE 染色像(E-H) とトルイジンブルー染色像(I, J)。G,H は E,F の*部分の拡大画像を示す。

B Control Trps1^{AEnh2/3/-}

Fig. 15. Enh2/3 ヘテロ欠失; Trps1 ヘテロ欠失マウス(*Trps1*^{△Enh2/3/-})の大腿骨の解析
(A) 生後 3 か月齢の野生型(Control)と *Trps1*^{△Enh2/3/-}マウスの大腿骨遠位骨端部の組織解
剖写真(上段)とマイクロ CT 像(下 2 段)。青*は膝蓋骨、赤*は骨端海綿骨を示す。
(B) 出生直後の大腿骨骨端部の骨格染色像。前面の濃染色分(白矢印)が膝蓋骨を示す。

Fig. 16 生後 3 か月齢の Enh2/3 ヘテロ欠失; Trps1 ヘテロ欠失マウス (*Trps1*^{ΔEnh2/3/-})の大 腿骨の解析

生後3か月の野生型(Control; A, C)と*Trps1*^{ΔEnh2/3/-}(B. D)マウスの大腿骨遠位骨端部の トルイジンブルー染色像。C、DはA、Bそれぞれの軟骨成長板領域の拡大図を示す。

野生型(WT)、Trps1^{ΔEnh2/ΔEnh2}、Trps1^{ΔEnh3/ΔEnh3}、Trps1^{ΔEnh2/3/ΔEnh2/3}の新生仔マウス膝軟骨より 軟骨細胞を回収し、培養3日目、6日目、9日目で全細胞数を計測した結果を示す。