

Title	CELF1 represses Doublesex1 expression via its 5' UTR in the crustacean Daphnia magna
Author(s)	Tirta, Kharisma Yusrifar
Citation	大阪大学, 2023, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/91905
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Abstract of Thesis

Name (YUSRIFAR KHARISMA TIRTA)

Title

CELF1 represses *Doublesex1* expression via its 5' UTR in the crustacean *Daphnia magna* (オオミジンコにおけるCELF1による5' UTRを介した*Doublesex1* 遺伝子発現の抑制)

Chapter 1: General Introduction

Sex determination can be broadly categorized into two groups according to the primary causal agent of sex determination. One is the most researched genotypic sex determination (GSD), in which sex chromosomes determine the sex of the individual. In contrast, environmental sex determination (ESD) uses environmental factors to determine sex. In the recent report, sex determination in ESD species *Daphnia magna* has been brought closer to light. The male-determining gene, *Doublesex1* (*Dsx1*), was reported to be regulated in trans with a lncRNA *DAPALR* and an RNA-binding protein Shep. The model proposed in this intricate mechanism was a noise-canceling for *Dsx1* expression to avoid sex bias. However, the current model is insufficient and needs more supporting data from other *Dsx1*-interacting elements, such as CUGBP Elav-like Family Protein 1 (CELF1). This study aims to elucidate the *Dsx1*-interacting RNA-binding protein (RBP), CELF1 function in regulating *Dsx1* expression for understanding the complex and elegant mechanism of sex determination in *D. magna*

Chapter 2: CELF1 conserved in D. magna and repressed Dsx1 post-transcriptionally

The previous study has identified two RBPs that bind to the $Dsx1\,\alpha$ 5' UTR. One of the RBPs, CELF1, become the focus of this study. I annotated the CELF1 ortholog in D. magna with three RNA-recognition motifs (RRMs) that conserved in diverse species. The expression pattern of CELF1 was similar in males and females, indicating its importance in both sexes. Following injection of CELF1 RNAi in the Dsx1 reporter strain, mCherry fluorescence intensity was increased in both sexes, mirroring the upregulation of Dsx1 activity. On the other hand, the Dsx1 transcript level measurements showed no significant change between the CELF1 downregulated embryos and the control. To validate this result, I overexpressed CELF1 by injecting ectopic CELF1 mRNA in male embryos. The result showed a conspicuous reduction of Dsx1 activity suggested by the low mCherry signal. Consistent with the knockdown experiment, the Dsx1 transcript level also did not change after overexpression. Altogether, these results showed that CELF1 suppressed Dsx1 expression at the post-transcriptional level.

Chapter 3: CELF1 repressed Dsx1 expression via the GU-rich element of the Dsx1 \alpha 5' UTR in embryos

Based on the previous chapter's result, CELF1 was suggested as a post-transcriptional regulator of Dsx1. CELF1 has been known to regulate gene expression by binding to the GU-rich element (GRE) in target mRNA. I found a CELF1 putative binding site in $Dsx1\alpha$ 5' UTR that implements the GRE characteristic. To test whether CELF1 utilizes this GRE to suppress Dsx1 expression, I designed $Dsx1\alpha$ 5' UTR-GFP reporter mRNAs with or without the GRE. The GFP fluorescence showed in vivo translation efficiency of the reporter mRNA under the presence or absence of the GRE. In the absence of GRE, embryos have significantly higher GFP translation than those injected with intact GRE. On the other hand, coinjection with CELF1 mRNA further lowers the GFP intensity. This result indicates that the presence of GRE is essential for Dsx1 expression suppression by CELF1.

Chapter 4: General discussion and conclusion

CELF1 repressed Dsx1 expression at the post-transcriptional level via utilization of GRE in the $Dsx1\alpha$ 5' UTR. This study gives more insight into Dsx1 expression regulation involving the CELF1 that may function as a sink or threshold to control Dsx1 expression so it can avoid sex ambiguity. Furthermore, looking at the nature of CELF1 as the suppressor of Dsx1 and the GRE near the Shep binding site, it is attractive to relate the same titration pathway with DAPALR. This hypothesis is consistent with the fact that DAPALR also shares the same GRE within $Dsx1\alpha$ 5' UTR and a potential synergy between Shep and CELF1 might be involved. Even though this hypothesis needs to be further investigated in the future, the unique role of CELF1 in regulating Dsx1 expression brings clarity to the complex yet the elegant mechanism of sex determination in Ds. Dsx1

論文審査の結果の要旨及び担当者

氏	名 (YUSRIFAR KHARISMA TIRT	A)		
論文審査担当者		(職)	氏	名	
	主査	教授	渡邉	擎	
	副査	教授	本田	孝祐	
	副査	教授	栗栖	源嗣	

論文審査の結果の要旨

本論文は、生態系において重要な位置を占める動物プランクトンの1種であるオオミジンコ(Daphnia magna)を用いて、性決定遺伝子dsx1の5´端非翻訳領域に結合するRNA結合タンパク質の機能に関する研究をまとめたものであり、緒言、総括を含む4章から構成される。

緒言となる第1章では、本研究の背景と目的、およびその意義について記述している。

第2章では、性決定遺伝子dsx105 、端非翻訳領域に結合するRNA結合タンパク質の1つとして同定されたCELF1の機能について解析している。まずこの遺伝子配列からCELF1が種々の生物において保存されているRNA認識モチーフを有しており雌雄双方で機能していることを明らかにした。さらにRNAi法により個体レベルでCELF1遺伝子の発現を抑制したところ、dsx1遺伝子の発現量が上昇することを、dsx1発現を可視化した遺伝子改変ミジンコを用いて明らかにした。一方でdsx1遺伝子の発現量をmRNAレベルで解析したところ、RNAi法によるCELF1発現の抑制の有無にかかわらず変化がなかったことから、発現量の上昇はmRNAの転写後である翻訳レベルで起きていることを示した。

第3章では、第2章で得られた知見をもとにCELF1が、dsx1遺伝子の翻訳をどのように制御しているかを明らかにしている。まずdsx1の5、端非翻訳領域の解析からGREエレメントをCELF1遺伝子産物の認識配列として推定した。さらにこのGREエレメントが実際に機能していることを確認するために、性決定遺伝子dsx1の5、端非翻訳領域に緑色蛍光タンパク質(GFP)を融合させたmRNAを2種類合成した。一方は完全長の5、端非翻訳領域をもつGFPmRNAで、もう一方はGREエレメントを欠失した5、端非翻訳領域をもつGFPmRNAである。この両者をそれぞれミジンコの卵に注入しGFPの発現を計測したところ、GREエレメントを欠失したmRNAがより強い蛍光を発していた。このことはGREエレメントが翻訳の抑制に関与していることを示唆していた。またGRE1遺伝子をコードするGRE1の5、端非翻訳領域に存在するGRE1の5、端非翻訳領域に存在するGRE1の5、端非翻訳領域に存在するGRE1の7の1の翻訳を抑制していることを示した。

第4章では、これら得られた知見を総括し、今後の展望について総括している。

以上のように、本論文は機能が不明であったRNA結合タンパク質であるCELF1について、その機能解析を通じて遺伝子発現制御のメカニズムを明らかにしたものであり、転写されたmRNAが無条件に翻訳されることを防ぐシステムとして機能していることを提案している。細胞や個体において、不要な遺伝子発現を抑制する技術は限られており、本論文の成果は単にRNA結合タンパク質の新たな機能を解明しただけでなく、人為的に遺伝子発現を制御する上でも非常に重要であり、本論文の意義は大きい。

よって本論文は博士論文として価値あるものと認める。