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Introduction. Let X be a nonsingular algebraic surface defined over
the complex number field C. We call X a homology plane (resp. a Q-homology
plane) if the homology groups H(X; Z) (resp. H,(X; Q)) vanish for 1<i<4. We
can also define a logarithmic homology plane X as a normal affine surface which
has only quotient singularities and H(X; Z)=0 for all 7>0.

In our previous paper [7], -homology planes with Kodaira dimension less
than 2 are classified and it is shown that there are many @-homology planes
which have non-trivial automorphisms of finite order. A structure theorem is
given on logarithmic homology planes of Kodaira dimension —oo and 1. In
particular, it is proved that a logarithmic homology plane of Kodaira dimension
— oo is isomorphic to one of the following surfaces:

1 %

(2) €?|G, where G is a small finite subgroup of GL(2, C);

(3) A surface X with an A'-fibration p: X—A' such that every fiber is
irreducible and that there are N multiple fibres H,, -+, H, with respective multi-
plicities d,, ++-, dy, each of them carrying a cyclic quotient singular point of type
d;/e;, where N is an arbitrary positive integer.

Similarly, logarithmic homology planes of Kodaira dimension 1 are studied by
making use of C*-fibrations.

In the present paper we are interested in homology planes with x=2. An
example of a contractible algebraic surface with ©=2, which is a special case of
a homology plane, was first given by C.P. Ramanujam [9] and many examples
were recently found by Gurjar-Miyanishi [2], Miyanishi-Sugie [6] and Petrie-
tom Dieck [11, 12]. We constructed in [6] homology planes by the blowing-up
method from the configurations of two curves on the projective plane P? and
Petrie-tom Dieck [11] from the line arrangements on P?. In order to construct
further examples, we propose to think of algebraic surfaces with fibrations of
curves. As a natural extension of the C-fibrations and the C*-fibrations which
are so effective in the cases of x==—o0 and 1, we shall look into a surface with
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a C**-fibration, where C** is the affine line with two points deleted off. We
can consider a C**-fibration as an analogy of a fibration by curves of genus 2
in the complete case.

Besides, in the study of structures of homology planes, it is an intresting
problem to verify or negate the following:

Homology Plane Conjecture. Let X be a homology plane admitting a
non-trivial automorphism of finite order. Then X is isomorphic to C*.

In §1 of this paper, we classify singular fibers of C**-fibrations, and in
§2 we classify @-homology planes which have C**-fibrations. In §3 we calcu-
late the homology groups H;(X; Z) and the Kodaira dimension x#=#(X) of
certain surfaces listed in §2. Thus, we obtain infinitely many homology planes
and logarithmic homology planes of x=2 and some of these surfaces have, inde-
ed, nontrivial automorphisms of finite order, which negates the above homology
plane conjecture. We give an explicit description of those examples in §4.

By the way, there seems to be a misunderstanding about the difference bet-
ween homology planes and contractible surfaces in the case of x=1. Petrie
proved that contracttble surfaces of x=1 have no non-trivial automorphisms.
There exist, however, homology planes with x=1 which have non-trivial auto-
morphisms. We also include these examples in §5.

Norations: We denote by C¥*) a rational curve C-{N points}. In par-
ticular, C* is a curve C-{1 point} and C** is a curve C-{2 points}. A (—1)
curve means an exceptional curve of the first kind. We refer to Miyanishi
[5] for the definition of Kodaira dimension « and relevant results. We employ
also the notations and results in [7].

1. Singular fibers of C**-fibrations

Let X be a normal affine surface defined over the complex number field
C with a C"*®-fibration z: X —B, where B is a smooth algebraic curve. Let
V be a normal projective surface which contains X as an open subset and is
smooth along D: =V —X. Moreover, we assume that D is an effective divisor
with simple normal crossings and that the fibration = is extended to a P!-fibra-
tion p: V—C, where C is a smooth complete curve. Let f: W—V be a minimal
resolution of singularities of V. Then g=p-f: W—C is a P!-fibration on a
smooth projective surface W and if we set Y=f"}X), p: =p|y: Y—B defines
a C™®fibration on Y. We identify the divisor D on V with the divisor f~(D)
on W.

The following property of a P!-fibration is well-known. We shall make
use of it freely.

Lemma 1.1. Let W be a smooth projective surface with a P*-fibration q:
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W—C and let F be a singular fiber of . Write F= 2“} m; F; as a sum of irreduci-
ble components. Then the following hold: =

(1)  Three irreducible components of F do not meet in one point;

(2) Supp (F) does ont contain a loop;

(3) If my=1 and n>2 there exists a (—1) curve in F other than E,.

We consider first the case where D contains N1 different cross-sections
and denote these sections by S, -*+, Sy+;-  If two or more of S;’s meet in one
point, we blow up these intersection points until the proper transforms of S;’s
are disjoint from each other, and we include the resulting exceptional curves
into the boundary divisor D. We may thus assume that .S,, S, :++, Sy, do not
meet. In this case we call a C¥*-fibration 7: X—C untwisted. If not all of
S;’s are cross-sections, we call a CW*-fibratopm twisted. Since singular fibers
of C¥*)_fibrations on normal surfaces can be obtained easily from the smooth
case, we consider first a smooth affine surface with a C¥*-fibration. We call
a fiber z7}(P) a singular fiber if it is not isomorphic to C¥*) as a subscheme.

Let A be a singular fiber of =, let 4,, --+, A, be all connected components of
A and let 4;; be irreducible components of 4;. Let T: =p~'(= (A4)) be the fiber
of p containing 4. We denote by T; the connected component of 7'N D which
intersects .S;. We may assume that T;==¢ for every 7. Indeed, if T;=¢, blow
up the point 7'N S; and include the exceptional curve into the boundary divisor
D. Note that T; and T; might coincide with each other for different indices 7
and j. Set

a;+1: = the number of points of (4;—4;) and a:=Xa,,
where 4; is the closure of A; in V. Then we have
Lemma 1.2. a<N.

Proof. We have only to consider the connected components 4; for which
a;>1. We assume that ¢;>1 for 1<i<m and a;=0 for m<<i<k. First, there
are a,+1 connected components 7}, --+, T, 4, of T'N D which intersect 4, Sec-
ondly, there are a,+1 connected components T, ., ***, Ty 44,42 of T N D which
intersect A,, at most one of which can be taken from Ty, -, T,,+, since a fiber of
a P'-fibration contains no loops. Let a, be the number of different connected
components in {7y, -+, Tyiy, Toszs **s Taprapre and let By=a,+-a,+2—ay,.
Then a,>a,+a,+1 and 2— B, equals to the number of connected components

a,+8,+2

of the support of 4,+4,-+ 122 T;. In the third step, we need a;+1 connected
=

components Ty .z,43 ***y Tatag+azrs Which intersect A, and at most 2— B, can be
taken from T, -+, Ty 41, Tapse, =+, Typ4ap+2-  Let oy be the number of different
connected components in {T}, -, T, 1sptapeaf and let By=a,+a,+a;+3—as.
Then a;>a,+ {a;+1—(2—B,)} =a,+a,+a;,+1. Continuing this way to the
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m-th step, we see o, > é a;+1. Since a,<N+1, we have the stated inequali-
ty. Q.E.D.

We have also the following lemma.

Lemma 1.3. Assume N>2. If A, is isomorphic to C¥*) then A=A,.4
and A itself is isomorphic to CV¥.

Proof. In this case, the connected components T, :++, Ty4, must be all
different. If T contains a (—1) curve, we contract it. Then the images of
T;'s are all different, though one of T;’s might hecome the empty set and the
image of A4 is still isomorphic to C¥*)., We can thus assume from the be-
ginning that 7T}, ---, Ty, do not contain (—1) curves. Then 4,4 must be a
unique (—1) curve in 7. Contract then 4.4 and let o be the contraction mor-
phism. If T;#=¢ for every 7, then more than three of o(7};)’s intersect in one
point, which contradicts the property of a singular fiber of a P'-fibration.
Therefore at least one component of T,'s is the empty set, say, T;=¢. Then
4,., meets the section S; and there must be a (—1) curve in the fiber T other
than 4 unless 4=7. From the assumption that either T;=¢ or T} contains no
(—1) curves, we conclude that 7—=A=P! and A=C?¥%® as a subscheme.

Q.E.D.

Lemma 1.3 states a property particular to the case N>2. For example,
a C* fibration has a singular fiber of the form mC* (m>2). The following result
is easy to verify if one takes into account that X is affine.

Lemma 1.4. If a;=0, then A; is irreducible and isomorphic to C.

From now on we restrict ourselves to the case where N=2. Let T" be the
union of A;’s for which @;>1 and let A be the union of 4;’s for which a;=0.
Then A=T+A and A is a disjoint union of curves which are isomorphic to C.
With the above notations we have the following:

Lemma 1.5. Let X be a smooth affine surface with an untwisted C**-fibra-
tion p: X—C and employ the notations A, T, T, A, T}'s, etc. as above. Assume
A=¢. Then T and the dual graph of T+S,+S,+S; are described as one of the
following:

0) T'=¢.
(I) T=A4,=C*, 4, is a (—1) curve and (S,+ F\)=(S,+ Fy)=(S,* F,)=1:

S, S,
YE-—O——O--—Q— F,
F, 4,

where T, migth be empty.
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() T=A4,=A,+A4,, where Ay~ A,,==C and either A, or A, is a (—1) curve,
and (S, F) = (S Fy) = (Sy-Fp) = 1:

S, I s,
1 .o _.9___(2_ . F
]{-‘1 AH AIZ SJ

where T, may be empty.

(IL,) T'=A,=C** (This case occurs if A is not a smooth fiber, i.e., A%¢).

(IL) T=A4,=A4,+4y,, A,=C*, A,~=C, A4, is a (—1) curve and (S,-A4,;)=
(Sy-Ay) = (S5 F)=1:

where T3 might be empty.
(II) T'=A4,=A4,+A4,+A4,, A,~=A,~=A,,~=C, 4, and A,, are (—1) curves
and (8, F)) = (Sy- Ap) = (Sy-Fy) = 1:

—2 -2 —1 —(n—+m) 1 —2 —2
T F, o—O0—::--—0 O —0 2% O—:": F
l CL ’ /I Al2 L /I ; 1 ’
m—1 1 13 n—
AS“ SZ S3

where T\ and T3 might be empty.
(II1) T'=A4,]14, A =A4,=C*, A, and A4, are (—1) curves, and (S,-F,)=
(Sy- F3) = (S5-Fy) = 1:

where T, and T, might be empty.
(IIIZ) F=A1_U_A2’ AIZC*) A2=A21+A22, AzlezggC, Al is a (—1) curve,
either /Izl or A, is a (—1) curve and (S, Fy)=(S,+ F,) = (S;- F5)=1:

i———& : O—I )
< ) —o0—- —o——o— @-—I
A22

3

where T, and T, might be empty.
(Il T=Al4, A=A4y+4n 4= Azr’:Azz, Ay=A4,=Ay=A,=C,
either Ay, or Ay is a (—1) curve, either Ay or Ay is a (—1) curve and (S;-F)) =
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(Sp+F3)=(Sy F3)=1:

I S1 ISZ I Sa
T '—_O——O— _9__9__
F, 4, A, F, 4, A»

F,
where T, and T3 might be empty.

Proof. We use the notations set forth before. We can assume that T), T,
and 7, do not contain (—1) curves other than those which intersect at least two
sections.

(1) Case a=1. In this case I'=A4,.

(1-1) Consider the case where 4, is irreducible. Then 4,=C*. We may as-
sume that T,=7T, and A4, intersects 7, and 7,. Then T must contain curves
whose dual graph is given as follows:

T, T,
Fi Al F, Fs

where (S, F))=(S,+F;)=(S;:F;)=1. From the assumption, we see that T
does not contain other components than those included in the above dual graph.
Since there exists a composite of blowing-downs 7 such that (T')=7(F,)=P",
the above dual graph must contain a (—1) curve in the branch on the right
hand side of F, of the graph unless F,=F,. Thus we have F,=F; and 4,
must be a (—1) curve. This case corresponds to (I,) in the statement of the
lemma.

(1-2) If '=A, is reducible, we have 4,=A4,,+A4,, and 4,,=A4,=C. We can
show the statement in (I,) be a similar argument as in (1-1).

2) Case a=a;=2. In this case T'=4,.

(2-1) 1If A, is irreducible, Lemma 1.3 shows that 4 is a smooth fiber.

(2-2) 1If A, is reducible and consists of two components, we have 4,=4,,+4,,
and 4,;=C* and 4,,~—=C. We may assume here that T} and 7, intersect 4,, and
T, intersects with 4,,. Then, by these assumptions we know that the dual
graph of T4 S,4.S,+S; is given as follows:

S, T,
O—o—o—~o\ T,
ce=O- - —O——O
S2 T2 Au Alz Sy
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If 4,, is a (—1) curve, by contracting 4,,, we can easily show T,=T,=¢.
Then since 4,, intersects the sections S; and S, there exists another (—1) curve,
which must be A, and we have T3=¢. If 4, is a (—1) curve, first contract
A,; and continue the contractions of the curves Fy, ::-, F,_, contained in T and
assume that after contracting F,_,, A, becomes a (—1) curve. At this step, we
get to a situation similar to the above. This means that 4, 4, F,, -, F,_,
exhaust all curves in the fiber 7. The statement in (II,) is now easy to prove.
(2-3) If A, is reducible and consists of three components, 4,=A4,,+A4,,+4,;
and 4,=A4,,—~A,;~C. Arguing as in (2,2), we can prove the statement in

(I15).

(3) Case a=2, a;=a,=1. In this case '=A4, || 4,, We divide it into the
following three cases:

(3-1) A, and A4, are irreducible.

(3-2) A, is irreducible and A4, is reducible.

(3.2) A, and A, are reducible.

In each case we argue as in the cases (1) and (2) and obtain accordingly che state-
ments from (III,) to (I1L,). Q.E.D.

The method of obtaining a singular fiber in the case where A=#=¢ from one
of the above singular fibers is explained in [7]. Namely, starting from an ini-
tial point P, in T'N D, we obtain a component of A as follows:

(a) If P, is an intersection point Py=F;N F; of two components F; and F; of
T, let oy: Z,—V be an oscilating sequence of blowing-ups with initial point P,.
The dual graph of the configuration of curves Fy+4-o7'(P,)+F; is given as fol-
lows:
—1
L. o—Oo—0-+..-0~++..=~0—0
F, E, F,
We say that this oscilating sequence of blowing-ups is of type (a).
(b) If P, belongs to only one component F; of T, let o,: Z;—V be an oscilating
sequence of blowing-ups with initial point P,. The dual graph of curves
F;+ o7T'(P,) is given by one of the following:

—1
L o0—o0—0—+++—0—iiiO— 0§
F; E,
—1
L, o—o—o—o0— - i-—0—+ " —0— 0
F, E,

We say that an oscilating sequence producing the dual graph L, or L; is of type
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(b-1) or (b-2), respectively.

Next we choose a second initial point P, from E,. If P, is an intersection
point of E, with other component of the fiber, we perform an oscilating sequence
of blowing-ups of type (a). If P, does not belong to other components of the
fiber, perform an oscilating sequence of blowing-ups of type (b-1).

We proceed this way several times and at the last step we perform an oscila-
ting sequence of blowing-ups of type (b-2). Then we obtain a surface Z and a
(—1) curve E which is an end component of the dual graph of the curves contain-
ed in the fiber corresponding to 7. We include all exceptional curves obtained
by the above sequence of blowing-ups except for E into the boundary divisor
D. Then E—D=C is a component of A. Every component of A is given in
this fashion. We denote by (II,)(, for example, a singular fiber which is ob-
tained by adding £ components of A to (IL,).

Next, we consider the case where affine surfaces have twisted C**-fibrations.
We use here the notations similar to those employed above. Let z: X—C be
a twisted C**-fibration. There are two cases to consider, that is, the case where
p has two sections S; and S, contained in D such that deg p|s,=-1 and deg p|s,
=2, and the case where p has one section contained in D such that deg p|s=3.
We call the first the 2-section case and the second the 3-section case, respectively.

Lemma 1.6. Let X be a smooth affine surface which has a twisted C**-
Sfibration p: X—C.

(A) The 2-section case. Assume A=¢. Then T and the dual graph of
T+S,+S; are exhausted by one of the following graphes (IV-0) to (IV-3) which
correspond to a fiber containing a branch point of p|s,: S;—C and by one of the
modifications of the graphes listed as (1,)-(11;) in Lemma 1.5, where S, meets a
fiber in two points and two branches of the 2-section S, are identified suitably with
two of three sections S,, S, ai.d S,.

(IVy) TI'=¢.

IV, I'=4,=C*:

r. 4 O -0
s, j l s,
(IV,) T'=A,=C* and A4, is a (—1) curve:

1 )

,[‘: ..._9,_..._ —0
Al
S I S,

i
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2

(IVy) T'=A4,=A4,+ A4, Ay=A4,=C, either A, or A, is a (—1) curve:

-2
T: I—O‘_Q____Q_
S[ Au A12 l Sz

or

S, A “a S,

(B) The 3-section case. Assume A=¢. Then T and the dual graph of T+ S
are exhausted by the modifications of the graphes (1)-(IV,) in Lemmas 1.5 and
1.6(A), where the 3-section meets a fiber in either 3 points or 2 points and we
identify accordingiy branches of the 3-section S either with sections S, S, and S,
or with the section S, and the 2-section S,, and the following extra case:

(V) T'=¢, which corresponds to a fiber containing a totally ramified point of p|s.

Proof. Note that we have a<1 in the case (A). The proof in this case is
similar to the one in Lemma 1.5. We omit the details of the proof. Q.E.D.

A singular fiber with A==¢ is obtained by the same way as explained after
Lemma 1.5. We use the notaions like (IV,), for example, to signify a singu-
lar fiber obtained from (IV) by adding three affine lines to A.

Next we consider the case where a surface X has quotient singularities.
Then we have

Lemma 1.7. Let X be a logarithmic affine surface with a C**-fibration
n: Y—>B. We use the same notations as above. Then we have :
(1) A=T+A, and T, together with T is given by one of (I) to (V) listed above
and the following (IV,):
(IV) T'=A,=C* and A, has one singularity of type A,:

4,

[

Sy Se
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(2) Each component of A,.4 has at most one cyclic quotient singular point.
(3) The point (s) indicated below can be a cyclic quotient singular point:
@, Aun4y,
(D),  AuNdy,
(ID; A4uN4, and Ap,NA4,,
(IH)z A N A,
(IIl); AyNA, and AyNA,,,
(V) AyN A
If one of the above points is a singular point, the statement in Lemmas 1.5 and 1.6
concerning the curves A;; being a (—1) curve need not be true.

It is easy to prove the above statement. We omit the details. In order to
indicate a singular fiber of a logarithmic surface as listed above, we refer to it
by the same notations as in the smooth case corresponding to it.

2. Logarithmic Q-homology planes with C**-fibrations

Let X be a logarithmic @-homology plane with a C**-fibration z: X—B.
Let A®, ..., A" be all singular fibers of z. We define 4%, A§) and a{" etc.
for a singular fiber A=A® as in §1. First we cite the following result from
[MS2].

Lemma 2.1. (1) Let X be a rational logarithmic Q-homology plane.

Then the boundary divisor D is simply connected, T'(X, Ox)*=C* and Pic(X) is a
finite group.
(2) Assume that X is a smooth rational surface such that the boundary divisor
D is connected and simply connected, Pic(X) is a finite group and H*(V ; @)—H?
(D; Q) is an isomorphism. Then X is a @-homology plane and we have the following
isomorphisms:

Pic(X)=H,(X; Z)=Coker(H¥V ; Z) - H¥D; Z)) .

Moreover, if H(X; Z)=0 then X is a homology plane.

(3) Assume that X is a rational logarithmic surface such that D is connected and
simply connected, H(W; ) —H*(D U ©; Q) is an isomorphism, where . is the sing-
ular locus of X and © is f~Y(3) (cf. the notaions in §1). Then X is a logarithmic
Q-homology plane and we have the following exact sequence and isomorphisms:

0 H(0T; Z) - Hy(X"; Z) > H(X; Z)—> 0
H\(X° Z)=Pic(W—D—0)=Coker(H(DU®; Z) - HyW; Z)),
where X°: =X —73, and 8T is a disjoint union of the boundaries of closed neighbourho-

ods of singular points. In particular, if H(X; Z)=0 then X is a logarithmic
homology plane.
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In this section, we determine the singular fibers of a logarithmic @-homolo-
gy plane with a C**-fibration z: X—B. First, note that D can contain at most
one complete fiber of p: V'—C since D is simply connected. Therefore B=P"*
or C. From Lemma 2.1. (1)., we also have the following:

Lemma 2.2. Assume that p: V—C is untwisted. Then we have:
Sla® —2(—1) if B=P
1
> a® =21 if B=C.

Proof. Since D is connected and simply connected, we have:

2 if B=P!

]
2 gy —
2 (2=a) {0 if B=cC.

From this follow the above inequalities. Q.E.D.

Let 52 be the number of irreducible components in A%. Since Pic(X) is
a finite group and I'(X, Of)=C%*, rank (Pic(V')) is equal to the number of ir-
reducible components in D. Hence we have the following:

Lemma 2.3. We have:
(1) The untwisted case:

1 f B=—=P'
seo-n={, 7
i=1 2 1f B=C.
(2) The twisted case with a s 2-section:
0 f B=P!
s - {0 ¥
i=1 1 lf B=C.

(3) The twisted case with a 3-section: b=1 for all i if B==C. The case B~=P"!
does not occur.

Now we shall determine the structure of logarithmic @-homology planes
with C**-fibrations.

Lemma 2.4. Let X be a logarithmic Q-homology plane with a C**-fibration
n: X—B. Then the set of all singular fibers of m is given by one of the following :
(1) The case where r is untwisted and B~P";
(UP,) = has only one singular fiber ; AV type (0)e;
(UP,) = has two singular fibers;
(UP,,) A®: type (I)w, A7 type (L,);
(UB,z) A®: type (L), A®: type (L);
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(UP,y) AD: type (I1;)y, A®: type (0)p;
(UP,.) A®: type (IL), A®: type (0)co;
(UP,) 7 has three singular fibers;
(UP,_,) A®: type (IIL), AD: type (L), A®: type (L);
(UPy) A®: sype (IL), A®: type (L), A®: type (L);
(UPyy) A®: type (IL), A®: type (L), A®: type (L,);
(2) The case where m is untwisted and B=C.
(UC,) = has one singular fibers;
(UCy-y) AD: gype (I1L)qy;
(UCi-o) AD:type (I1L);
(UCis) AD: type (1)
(UCi-0) AD: ype (IL)cy;
(UC,s A®: type (IL);
(UGC,) 7 has two singular fibers;
(UC,) A®: type (IIL), A®: type (IIL,);
(UG,s) A®: type (IIL), A®: type (IL)q;
(UC,y) A®: type (IIL), A®: type (IL,);
(UGs—) AD: type (IL)y, AD: type (IL);
(UCyg) A®: type (IL)y, A®: type (IL);
(UCy6) AD: type (IL,), A®: type (IL,);
(3) The case where r is twisted with a 2-section and B=P*;
(TP,) = has two singular fibers, A®: type (IVy)q),
A®: type (IV,) or (IV,) or (IV,);
(TP,) = has three singular fibers, A®: type (IV,) or (IV,) or (IV)),
A®: type (IV)) or (IV,) or (IV,), A®: type (I,);
(4) The case where r is twisted with a 2-section and B=C,
(TC,) = has one singular fiber,
(TCyy)  AD: type (IVy)q) or type (IV2)q) or type (IV,)w;
(TCip) AD: type (IVy);
(TC,) = has two singular fibers;
(TC,y) AW: zype (IV) or (IVy) or (IV,), A®: type (II1,);
(TCpp) AD: type (IV,) or (IV,) or (IV,), A®: type (IL,);
(5) The case wher: = is twisted with a 3-section and B==C.
(T3C,) = has one singular fiber, AW: type (Vo)ay;
(T3C,) = has two singular fibers, AD: type (IV,) or (IV,) or (IV,)
A®: type (IV) or (IV,) or (IV,);
The case B=P" does not occur.

Proof. We make use of the inequalities in Lemmas 2.2 and 2.3. Consider,
for example, the case where 7 is untwisted and B=P'. We have

2(—1) = 3a® and 3 (BO—1)=1,
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where / is the number of singular fibers of z. If /=1, we have a®=0 and
bW=2. If [=2, we may assume b=2, b@=1 and then have either a®=1,
a®=1 or a®=2, a®=0. If /=3, we may assume bP=2, 40=1, p®=1 and
then have a®W=2, a®=1, a®=1. This case divides into two cases: a{’=2 or
aiP=a{P=1. If >4, we may assume bP=2 and b=1 for i >2, but a®¥=2
for at least two #’s with {>2. This contradicts Lemma 1.3. Therefore the
number of singular fibers is at most three. We argue in a similar fashion in the
other cases. Q.E.D.

We can exhibit the configurations of the divisor D on V or DU® on W and
also the configurations of the image curves of D on the relatively minimal model
which is obtained from W by the contraction of curves in the fibers. We remark
that there exists a contraction «: V—3, from V' to a Hirzebruch surface 3, of
degree a such that the images of horizontal components of D are disjoint and
smooth. This means that a=0 if p is untwisted or if p is twisted and has a 3-
section, that a=1 if p is twisted and has a 2-section. Conversely, starting from
3, or ,, we can construct a @-homology plane with a C**-fibration which has
singular fibers as described in Lemma 2.4. Tt is rather easy to show, by means
of criteria given in [5] or by looking into the configuration of the boundary
curves, that @-homology planes with C**-fibrations have also C-fibrations or
C*-fibrations except for the following cases: Type(UP,_,), (UC,_,), (UC,_,)’ (see
below), (TP,) and (TC,_,).

3. H(X; Z) and x(X)

In this section we compute the homology groups and Kodaira dimensions
of @-homology planes given in Lemma 2.4. Some of these surfaces have C-
fibrations or C*-fibrations and the homology groups and Kodaira dimensions
are computed for them in the previous paper [7]. So, we omit the computa-
tion for them and restrict ourselves to the cases listed at the end of §2.

Type (UP,_;). The configuration of singular fibers and sections S;, iS,, S;
of p is given as follows:

oI AR - | TR
S,

X2 9% M,
AN l] /z /3

AV 4o 4® Fig. 1
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We obtain the above configuration starting from a configuration as given in Fig.
1 consisting of curves on P'X P! by oscilating sequences of blowing-ups o:
V—P'x P' with initial points R;, R, R, and R,. We represent by ;, , and /,
the fibers of the first projection p,: P! X P'—P" and by M,, M, and M, the fibers
of the second projection p,: P'x P'—>P'. The projection p, induces a P'-
fibration on V. Let E; (1<i<4) be a unique (—1) curve contained in ¢7(R;).
For example, E, is A" and E, is 45" in the notations of Lemma 1.4. The total
transforms of /;’s and M,’s are written as follows:

a*(l)) ~u, E,+u, E,+(fiber components of D)
o*(L) ~uy, E,+(fiber components of D)

a*(l;) ~u, E,+(fiber components of D)

a*(M,) ~v, E,+v; E;+(other components of D)
o*(M,) ~v,E,+(other components of D)
o*(M;) ~v, E,+(other components of D).

Since I, ~I,~I, and M;~M,~M, on P'x P', H(X; Z) has generators &;:=
[E;] and relations

wEt+ub—u ks =0

U E—u, k5, =0

2,6 +ov385—0,8, =0
2,6, —v,E=0.

Therefore the order of H\(X; Z) is equal to |d|, where

ul u2 _u3 0
0 0 Uy —u,
d= = Uylhy Uy Uy Uy Uy Dy Vy— Uy Us Dy Uy — Uy U3V U,
2, 0 Vg —U,
0 vz 0 _'7)4

The equation d=+-1 has infinitely many solutions of positive integers for #; and
v;. 'The following is a solution of the equation d=+-1:

U=ty =uy=u,=1,v, =m, v,=mn—m+1, v;=m—n,v,=n—1,

where m and # are positive integers such that n>m and #>2. The homology
planes obtained this way are isomorphic to those which we constructed in our
paper [6].

Next we compute the Kodaira dimensions. Write the canonical divisor of
V as Ky~o*(K3,)+G, where G is supported on the exceptional curves of o.
Starting with =, and comparing the multiplicity of the newly obtained excep-
tional curve in G and o*(/)’s and o*(M;)’s inductively at each step, it is easy
to verify the following:
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¥ (h)+o*(l)+o*(l)+o*(M,)+ (M) +o (M)
~U+L+148+ 8+ 8+G+H,

where [} is the proper transform of /; and H is the sum of all exceptional curves
of o with H,.4=H. Since K5, ~—l—Il,—M,—Mj,, we have the following ex-
pression for K,+D:

Ky+D ~ o*(h)+o*(M,)—(E\+E,+-Es+E)) -

There exist many examples of homology planes of Kodaira dimension two. For
example, we will show that x=2 for almost all values of u;’s and v,’s given
earlier as a solution of d=-+1.

(a) case n>=m-+2, v,=mn—m+1orn>m-+2, m>2, v,=mn—m—1.
In this case, we have

2(Ky+D) ~ o*(My)+o*(M,)+20*(l) —2(E,+ E;+E;+E))
~ S+ 8+ (v, B +03 Ey)+0, B+ 2(u, E 1w, Ey) — 2 (E\+ E, + Ey+-E))
+(fiber components of D)
~ 8,+8,+mE,+(n—m—2) E;+(n—3) E,+(fiber components of D).

Therefore 2(Ky,+D) is effective and there exists an effective member A4 of
|2(Ky+D)| whose suppori contains the curves, the configuration of which is
given as follows:

-n -1 =2 —2 —2 —2 -2
O,—O_O_.-- ---.—()
< E ~— —

! ! m—1 —(m—1)0 S, V,—1

Note that —n+14-(m—1)+1+(v,—1)=n(m—1)4-1>1. Therefore if we con-
tract all curves contained in the above graphs other than S, and S,, the proper
transform of S; becomes a nonsingular rational curve of positive self-intersection
number. This shows that Kodaira dimension of X:=V—D is equal to two.

(b) case m=1, n>4 and v,=n—2.

In this case also 2(K,+D) is effective and |2(K,+D)| contains an effective
member whose support contains the union of curves given by the following dual
graph.

E. S S, .
—1 ; l—n‘ —(n—1) - E,
i [ —1 —2
E —2
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If we contract all curves contained in the above graph except S, S,, E, and E,,
then S, and S, become nonsingular rational curves whose self-intersection
numbers are (—1) and the proper transform of S, and that of S, intersect at
one point with multiplicity n—2. From this it is easy to show that #(X)=2.

(c) case n=m-+1, m>3 and v,=m?+1.
In this case we have the following expression for 3(Ky-+D).
3(Ky+D) ~ o*(M))+0* (M) + o*(My)+0*(1)+20% () —3(Eyt-Ey+ B+ E)
~ 8+ 8, +S5+(0, Ey+03E5)+0, By 40, By +-(w, By +u, Ey) +-2u, By
+(fiber components of D)—3(E,+E,+E;+E,)
~ S+ 8,4 S5+ (m—2) E,+(v,—2) E,+(m—3) E,~+(fiber components of D)

Therefore 3(Ky+D) is effective and there exists an effective member of
|3(Ky+D)| whose support contains the union of curves given by the following
dual graph.

E, m—1 —2 v,—1 E,

The similar argument shows that x(X)=2.

Type (UC,_;). The configuration of singular fibers and sections S, S,, S;

of p is given as follows:
P'x P! R i R,
S TJ‘ : M,
| .

%%SJ

AL A®

|4

D s
\(&x_
lq

Fig. 2

We obtain the above configuration starting from a configuration of curves as
given in Fig. 2 on P'X P! by oscilating sequences of blowing-ups o: V—P'x P!
with initial points R, R,, R; and R,. We use the notatonos /;, M, and E; in
the same way as in the previous acse. Write the total transforms of /s and
M;’s as follows:
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o*(h) ~ u, E,+u, E,+(fiber components of D)

a*(l;) ~ u3E3+u,E,+(fiber components of D)

o*(M,) ~ v, E,+v3E;+(other components of D)

a*(M,) ~ v, E,+v,E,+(other components of D).
H\(X; Z) has generators &,: =[E;] and relations:

w &+ 168 =0
usEstu k=0
v, & +v;3&; =0

2§, +v,E,=0.

The order of H(X; Z) is equal to |d|, where d=u,u,v,v,—u,%,v,v; and the
equation d=+-1 should take positive integer solutions for #;’s and v,’s.

On the other hand, a computation shows that we have the same expression
as above for Ky+D and there are many examples of homology planes of x=2
of this type.

Type (UC,_,)’. The configuration of singular fibers and sections S}, S,, S,
of p is given as follows:

V Pl % I)l J\‘Rl J\ Rg ZW
1
o T ﬁI M,
| R, R"
———|— M,
h ly s
AW A®
Fig. 3

We obtain the above configuration starting from a configuration of curves on
P'x P! as given in Fig. 3 by oscilating sequences of blowing-ups o: V—P!Xx P*
with initial points R,, R,, R; and R,. We use the notations /;,, M; and E; in the
same way as in the previous case. Write the total transforms of s and M;’s
as follows.

o*(L,) ~u, E,+u, E,+(fiber components of D)
a*(l;) ~ u3E3+u, E,+(fiber components of D)
o*(M,) ~ v, E,+v; E;+(other components of D)

a*(M,) ~ v,E,+(other components of D)
o*(M3) ~ v,E,+(other components of D).
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H\(X; Z) has generators £;: =[E,] and relations:

& +u &, =0

usEytu k=0

0§ +v363—v,8, =0
—0, &, +v,E,=0.

The order of H(X; Z) is equal to d=u, 1,0, v,+u, 4,0, V31430, 9,. Since u,;’s
and v;’s are positive integers, there are no solutions for d4=4-1. Hence there
exist no homology planes of this type. The divisor Ky,+-D is also given by the
same expression as in the previous cases and there are many examples of Q-
homology planes of x=2 of this type. We remark that the surface correspond-
ing to the values u,=u,=u,=u,~v,=v,=1 and v,=v, has x=0 and isomorphic
to Y {2, 4, 4} according to Fuijta [F].

Type (TP,). The configuration of singular fibers and sections S, S, of p
is given as follows:

v L

A
Fig. 4

We obtain this configuration starting from a configuration of curves 3, as given
in Fig. 4. Let M, be the minimal section of =, and let p, be the morphism from
S, to P! which gives the natural P'-bundle structure on =,. Let C be a 2-
section of =, disjoint from M, and let /; and /, be fibers of p, containing ramifi-
cation points of p,|c and let /; be a third fiber of p,. Consider a divisor Dy=
M,+C+1l+1L+1on 3. First we blow up /;NC, ,N C and their infinitely near
points over C in order to get a simple normal crossing divisor. We call this
surface 3 and let 7: ={—3, be the composition of these four blowing-ups. The
configuration of curves on %/ is given in Fig. 4, where M, is the proper trans-
form of C. Next we perform oscilating sequences of blowing-ups &: V—X1.
We choose an initial point R, on r7%(}) to be one of P, P, and P, if A® has type
(IV,). Similarly, we choose an initial point R, on v7Y(},). Let R; be an initial
point on 77Y(J;). Let o=7-6 and let E;(1<7¢<3) be a unique (—1) curve con-
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tained in ¢~Y(R,). E, is A® and E, is A® in the notations of Lemma 1.4. We
choose G, as E, (resp. G, as E,) if A® has type (IV,) (resp. (IV,)). The same
remark applies also to A®. Write the total transforms of /;’s and M;’s as fol-
lows:

a*(l,) ~u, E,+(fiber components of D)
*(ly) ~u, E,+(fiber components of D)
*(l3) ~uyE;+(fiber components of D)
o*(M,) ~ v, E,+v,E,+(other boundary components)
o*(C) ~ w, E,+w, E,+w, E;+(other boundary components) .
Note that if the initial point R, is P,, w, is 0 and if R, is P, or Py, v, is 0. If
A® has type (IV,), u,=w,=2 and v;=0. The same remark applies also to
A®.  Since L~l~ly and 2M,+2l,~C, H(X; Z) has generators &;: =[E,] and
relations:
783 - 233 =0
&, —  u€s=0
(20,—wy) £+ (2v,—w,) &+ (2us—wg) £5=10,

and the order of H,(X; Z) is equal to |d|, where
d = 1y 23— W3)+Uy Uy 20, — ;) 1y Uy 20, — W,) .

The equation d=+-1 has infinitely many solutions of positive integers for u;, v;
and w,. The following is a solution of the equation d=+-1.

w,=w,=0,u,=1=1,u;=m, v, = v, =n, wy = 2m+4mn+1,

where m, n are positive integers. In the next section we prove that homology
planes corresponding to the above values have involutions.

We compute the Kodaira dimensions of the above examples, Write the
canonical divisor of ¥ as follows:

Ky ~o*(Ks)+2Gi+- G5+ 2H+Hi -+ Z,4-Z,

where Supp (Z,))=7"YP,) Ur"(Q,), Supp(Z;)=7"YR) and we denote the proper
transform of the curve using’. Starting with 3, and checking inductively at each
step, it is easy to prove the following:

o¥(h)+o*(L)+o* () +-o*(My)+0*(C)
~ BB+ B8+ S, H4GE+-2Gi+ 4H A 2Hi+ Zi+ U+ 20+ Uy

where U, is the sum of all exceptional curves contained in =7(P;) U r7}(Q,) with
(U)wea=U, and U, is the sum of all exceptional curves contained in 77}(R) with
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(Up)rea=U,. Since K5 ~—C—I;, we have the following expression for Ky+D:

Ky+D ~Ky+li+1+13+8,+8,+ G2+ Gi+ H:+ Hi+ U+ U,
“(E1+E2+E3)
~ —c*(C)—o*(l)+Z,+2Z,+2G4+-G3i+-2H3+H}
+a*(1)+o*(b)+ o*(ly)+ o *(M,)+o*(C)—3G4—Gs— 3H}— H}
_Z1~Z2—‘(E1+E2+E3)
~ o*(h)+o¥(b)+o*(M)—Gi—Hi—(E,+Ep+-Ey) -

Since

Ho* () +o*(b)+o*(M)} ~ o*(C)+-20%(M,)+30*(h)+30%(L) »

we have

4(Ky+D) ~2(v, E\+v,E)+ (w3 Es+ 2G5+ 2H %)+ 3 (E,\+2G %)+ 3 (E,+2H3)
—4(E\+ E,+E;+ G+ Hj3)+28,+S,+(fiber components of D)
~ (20,—1) E\+(2v,—1) E,++(W;—4) E;+4G3+4H;
+28,+S,+(fiber components of D)
and 4(Ky,+D) is effective. From this expression, it is easy to see that #(X)=2.
If A® has type (IV,), the above number |d| is the order of H(X—%; Z).

The surface obtained this way has a unique A, singular point. We have d=
+2 for the following values:

w=2,0,=0w =2 u=1, v,=m, w,=0, u;=n, wy = 2mn+n+41.

Thus we have examples of logarithmic homology planes, each of which has a
unique 4, singular point.

Type (TC,_,). We use the same notations as in the previous cases. We
obtain a surface V starting from ={ by oscilating sequences of blowing-ups with
initial points R, R, and R,.

.
G,

Qe

Fig. 5
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We choose an initial point R, from Q,, Q, and Q; if A® has type (IV,) and we
choose an initial point R, from P, and P,. Let E; be the unique exceptional
curve contained in ¢”(R;). E, is the proper transform of G, (resp. G,) if AW
has type (IV,) (resp. (IV,)).
Write the total transform of I;’s and M,’s as follows:

a*(l)) ~u, E,+(fiber components of D)

a*(l;) ~u,E;-+us E;+(fiber components of D)

o*(M,) ~ v, E,+v,E,+(other boundary components)

o*(C) ~w, E,+w, E,+w; E;+(other boundary components).
The order of H\(X; Z) (or H(X—Z=; Z) if A® has type (IV))) is equal to |d]
where d=2u,u;v,+u,u,w;—u,u;w,. We note that v,w,=0. Therefore we have
homology planes when v,=0, ,=1 and w,w,—u,v,—+41 and logarithmic ho-
mology planes when v,=0, u,=2 and w,w;—u;v,—-41. The computation of
the Kodaira dimension is similar to the previous case.

Type (T3C,). The configuration of singular fibers and sections of p is
given as follows:

P'xp!

Fig. 6

We start from a nonsingular member C of |3M+1| on P'X P' which totally
ramifies at one point and has two other ramification points when it is considered
a covering of P! through the first projection p,. Here M is a section and /
is a fiber of p,. We can prove that such a curve exists. The calculation of
H\(X; Z) is same as before. In this case, there exist no homology planes.
Also we can show that there exist @-homology planes of x=2 of this type. We
omit the details.
Summarizing the results of this section we obtain the following theorem:

Theorem 1. There exist infinitely many homology planes of k=2 with C**-
Sfibrations of type (UP,.,), (UC,.,), (TP;) and (TC,.,) and there exist infinitely
many logarithmic homology planes of k=2 with C**-fibrations of type (TP,) and
(TC,.,). Conversely, if X is a homology plane or a logarithmic homology plane of
k=2 with a C**-fibration, X belongs to one of the above classes.
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4. Homology planes which have automorphisms

In this section we give examples of homology planes which admit non-
trivial automorphisms of finite order. First we show that homology planes of
type (TP,) with values of u;, v; and w; assigned in the previous section have
involutions. These examples are constructed by tom Dieck and Petrie. We
found out them by differenc approach.

We can start from the following configuration of curves on P? to obtain
the homology plane of type (TP,):

Fig. 7

Let (X,: X,: X;) be the homogeneous coordinates of P? and [, [, and J; be lines
on P? and let C be a conic on P? whose equations are given respectively as fol-
lows:

L X,+X,=0, L: X,—X, =0,

L: X,=0, C: Xi+X;=X3.
Let i: P>—P? be an involution defined by (X,: X: X;)—(X,: —X,: X,). Then
we have i(C)=C, i(l;)=1], and [; is pointwise fixed. Moreover, ¢ has an isolated
fixed point (0, 1, 0). To obtain a homology plane, we first perform the blowing-
ups with centers P, ; N C plus its infinitely near point over C, and , N C plus its
infinitely near point over C. Let o: Z{—P* be the composition of these blowing-
ups. Then we have the following configuration of curves on X1{:

o
" 5y )

2 ur
AR

3

Fig. 8

Next we perform the blowing-ups with centers the point R,, its (r—1) infinitely
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near points consecutively lying on M,;, the point R, and its (n—1) infinitely
near points consecutively lying on M, and perform an oscilating sequence of
blowing-ups with initial point Ry such that, if we set &: J'—Z2{ the composition
of the above blowing-ups, we have

&*(M,) ~ (2m~+4mn—+1) E,-+(other boundary components) and
&*(l) ~ m E;+(other boundary components) ,

where E; represents a unique (—1) curve contained in &7%(R;). Set D=o"
(M,+M,+G,+G,+ G+ H,+ Hy+Hy+1);ea—(E,+-E,+-E;). We give the dual
graph of divisor D+E,+E;,+E, on V in the case where wy=2m+4mn—1(m=>2):

E, My —m
NG % %
—2 1

E, —2 ,

Tt is shown in §3 that the affine surface X: =V —D is a homology plane. Since
we perform the blowing-ups at the intersection points of pairwise stable curves
or at the fixed points of the involution ¢ or the involutions induced by 7, the
involution ¢ is liftable to an involution 7 on ¥ such that (D)=D. Hence ¢
induces an involution ¢ on X, which has a unique fixed point inside X. Thus
we obtain homology planes which have involutions. The quotient surface X/i
is a logarithmic homology plane with a cyclic quotient singular point of Dynkin
type 4, and belongs to the class (TP,).

Next we show that there exist homology planes of #=1 which have non-
trivial automorphisms. A method of constructnig homology planes with #=1
is given in [2]. Let (X,: X;: X;) be the homogeneous coordinates of P2 We
take four lines on P? as follows:

L: X,=0,1:X,=0,L: X,=-X,, ,t X, =X,.
The configuration of four lines is as follows:

By
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First blow-up Py=(0:0: 1) and then perform the oscilating sequences of blow-
ing-ups of type (a) (cf. §1) with initial points P, and P,. Finally we perform
an oscilating sequence of blowing-ups with initial point P, to produce a sin-
gular fiber isomorphic to C on X:=V—D. Leto: V—P? be the composition
of all the above blowing-ups. Let E; be a unique (—1) curve contained in
o"(P;). Write the total transform of /; as follows:

o*(l;) ~ Ey+u; E;+(other boundary components) for 1<:<3

a*(ly) ~ 23 v; E;+-(other boundary components) .
i=1

Set D=c*(ly-+L+b+1L)ea—(E1+E,+E;) and X=V—D. Then the order of
H(X; Z) is |d|, where d=u,u,us—u, u, v;—u,30,—u 14,0, (cf. [2]). The equa-
tion d=+-1 has the following solutions for any prime number p=2:

{(#, v1), (4, v3), (u3, v3)} is a permutation of
{2,1), (4r+1,1), @r+1,7)} if p=4r+1,
{(uy, v,), (4, v5), (us, v3)} is a permutation of

{2, 1), @r+3,1), @r+1,7)} if p=4r+3.

Since the role of /, and /; is symmetric, there are three homology planes accord-
ing to which one of three pairs is assigned to /. Among them, we consider
only those homology planes with v,=1 and therefore we may assume that
(43, v3)=(2r+-1, 7). For a different prime number p, we denote by X¥ a ho-
mology plane with u,=m, m being 2 or 4r+1 if p=4r41 (resp. 2 or 4r+3 if
p=4r+3). We shall show that X’ admits an automorphism of order m.

Let n=exp(2z+/—1/m). Define an action of Z/m on P? by (X,: X,: X;)—

(7' Xp: 7' X,: X). Then Py=(0:0: 1) is a fixed point under this action and /,

is pointwise fixed. We state explicitly the process of blowing-ups o: V—P?;

(i) blow up P,

(ii) blow up P, and its infinitely near points over J, altogether # times,

(iii) blow up Pj and its infinitely near points over / altogether s times, in such
a way that o*() ~uz E;+ -+ and o*(})) ~v;E5+-+-,

(iv) blow up P, and its infinitely near points over /; altogether m times and
blow up an arbitrary point on the last exceptional curve which is not an
intersection point,

where (m, n, s)=(t,, Uy, ;). Define D on V as stated before. Then the dual

graph of D looks like:
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We note that the last blowing-up on the line /; is performed on F. Since the
first 1+4+n-+s+m blowing-ups are performed at the intersection roints of two
components of fibers, it is easy to see that the action of Z/m is liftable to the
blown-up surface. Then at the last step, F' becomes pointwise fixed under the
induced action. Thus the action of Z/m is liftable onto V' and induces an
action on X%. It is clear that this action on X has a unique isolated fixed
point which lies on the unique (—1) curve contained in o~}(F), i.e., on E,.

Summarizing the results in this section we obtain the following theorem:

Theorem 2. (1) There exist infinitely many homology planes with k=2,
each of which admits an involution ¢. This involution ¢ has a unique isolated fixed
point.

(2) For every prime number p=2, there exist homology planes X of k=1 on
which a cyclic group Z|m acts, where m=2, or 4r+1 if p=4r+1 and m=2 or
4r4-3 if p=4r+3. This action has a unique isolated fixed point.
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