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1. Introduction. The classical linear fractional groups L,(g) over
a finite field of ¢=2" elements are in a sense simple groups with the
simplest structure. These groups L,(¢) and the simple groups defined
in [2] have many properties in common. Among other things they are
doubly transitive permutation groups in which there is no regular normal
subgroup and no non-identity element leaving three distinct elements
invariant. The class of doubly transitive permutation groups of odd
degree satisfying the preceding conditions is called the class of (Z7)-
groups and has been studied in detail [4]. The main result of [4] says
that the class of (ZT)-groups consists of simple groups L,(¢) and the
groups defined in [2]. There are many properties characteristic to (Z7T)-
groups (see [3]). The purpose of this note is to give two more charac-
terizations of these groups.

In a (ZT)-group let H be either a Sylow 2-group or its normalizer.
Then if x is an element ==1 of H, the centralizer Cg(x) is a part of H.
The following theorem gives a partial converse.

Theorem 1. Let H be a proper subgroup of a finite group G satisfy-
ing the property that H contains the centralizer of any of its non-identity
elements. If the order of H is even, then we have one of the following
cases :

(1) G is a Frobenius group and H is either the Frobenius kernel or one
of its complements ; and

(2) G is a (ZT)-group and H is either a Sylow 2-group or the normalizer
of a Sylow 2-group of G.

The next theorem assumes a different property. In a finite group
G define M to be the set of maximal subgroups of G each of which
contains either a Sylow 2-group of G or the centralizer of an element.
In a (ZT)-group an intersection of two distinct subgroups of M is cyclic
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(see the survey of subgroups given in [4]). Theorem 2 is again a par-
tial converse to this statement.

Theorem 2. Let G be a group of even order satisfying the property
that two distinct maximal subgroups in WM have a cyclic intersection. Then
we have one of the following cases :

(1) a Sylow 2-group of G is normal ;
(2) G possesses a normal 2-complement ;

(3) G is isomorphic to the special linear group SL(2, 5) over the field of
5 elements ; and

(4) G is a (ZT)-group.

Both theorems characterize a (Z7)-group as a non-abelian simple
group satisfying the property in question.

2. Preliminaries. Let G be a finite group. Assume that G has a
subgroup U containing a Sylow 2-group S of G. We assume the follow-
ing conditions to be satisfied :

(i) There exists an involution not contained in U;
(ii) UDNLS);
(iii) If » is an inuolution in U, U contains Cg(v).

Lemma 1. Under (i) and (iil), two involutions of G are conjugate.

Proof. Let # and ¢ be two involutions such that #€ U and ¢¢ U.
Suppose by way of contradiction that » is not conjugate to £. Then the
order of uf is even. Hence a power v of ut¢ is an involution which com-
mutes with both » and ¢. By (iii) applied to # we see that € U. Again
by (iii) applied to » we have f€ U, which contradicts the definition of Z.
Since # and ¢ are arbitrary Lemma 1 follows.

The set C, of conditions is defined as the set of conditions from

@) up to (),

Lemma 2. If C, is satisfied, then U has only one conjugate class of
involution.

Proof. Let # be an involution of the center of the Sylow 2-group
S of G. By definition S is a part of U. If v is an involution of S,
there is an element g€ G such that v=u*=g'ug. Then S? is contained
in Cg(v). By (ii), S® is a Sylow 2-group of U. Hence there is an ele-
ment w of U which transforms S® into S. The element gw belongs to
the normalizer Ng(S) of S. By (ii) we conclude that gw € U. This yields
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the desired conclusion g€ U.
We consider two more conditions :

(iv) U contains an involution j such that the centralizer J=Cg(7) satis-
fies the following property : if # and v are two distinct involutions
and if wv € J, then uc U;

(v) U contains an involution j such that /=Cg(j) is a normal subgroup
of U.

Lemma 3. Under C,, U is a product of J and -a group D of odd
order.

Proof. By (iv) each coset of J not contained in U contains at most
one involution. In view of Lemmas 1 and 2, a counting argument proves
that each coset of U contains exactly »=[U: J] involutions. Let ¢ be
an involution not contained in U. Then the coset Ut contains exactly 7
involutions #,=t%, ¢,, -+, f,_,. The elements ¢ (/=1, 2, ---, v—1) are ele-
ments of U and they are incongruent modulo J by (iv). If D is defined
to be the intersection UnU*, D contains all the elements f#i{. Hence
U=JD. Since D=D!, the order of D is odd by (iii).

Lemma 4. Under C, the condition (V) implies (iv).

Proof. C, implies that involutions of U are conjugate. Hence (V)
implies that every involution of U is contained in the center of J.
Suppose that # and v are two different involutions and that x=wuv be-
longs to /. Then « inverts x. If x=x"', x is an involution and (iii)
yields that € U. Assume x==x"'. The set of elements which transform
x into x or x~' form a subgroup C¥(x) and [C¥(x): Cg(x)]=2. The set
of involutions of J is contained in Cqi(x). We enlarge this set to a Sylow
2-group P of C¥(x). Since u inverts x, P contains an involution w which
is not contained in Cgi(x). This is however impossible because w com-
mutes with some involution of PN Cg(x), which forces w to be in U by
(iii).

Lemma 5. Under C, if x==1 of U is strongly real, then Cq(x) =U.
Hence Cy and U==] imply

[G:U]l<1+]]].

Proof. By a strongly real element we mean an element which is a
product of two involutions. By (iv) and Lemma 1, a strongly real ele-
ment of odd order commutes with no involution. If x°=1, the assertion
follows from (iii). Assume that x is of odd order and that Cg(x)CU.
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As is seen from the proof of Lemma 3 an element outside of U is a
product of an involution ¢ and an element y of J. If yix=xyf, then

x7ly'xy = x7'xt .
This element belongs to J since J is normal in U. Hence by (iv) we
have x“tx=¢. This is impossible. Each coset of U other than U itself
produces exactly »—1 strongly real elements of odd order in U and those
elements are all distinct. Hence the inequality follows.
The last condition to be considered is the following :

(vi) The order of D in Lemma 3 is relatively prime to |]|.
Lemma 6. C, implies that U is a Frobenius group provided D-==1.

Proof. Let x be a non-identity element of D=UNU’. Since |D] is
relatively prime to |J|, Lemma 1 implies that x commutes with no in-
volution. As in the proof of Lemma 5 we have Cgix) & U. Similarly
Ce(x)ZU'. Hence Cg(x)D. This is true for all element ==1 of D.
The conclusion follows.

Theorem 3. Let G be a finite group and U a subgroup of G. If
the set of conditions C, is satisfied, then either a Sylow 2-group of G con-
tains only one involution or G is a (ZT)-group.

Proof. If a Sylow 2-group of G contains more than one involution,
we have U==] in the notation of Lemma 3. Hence by Lemma 5

[G:Ul=1+1]I.

On the other hand U is by Lemma 6 a Frobenius group. Hence any
element of U—J is conjugate to an element of D. Since Cgi(x)=D for
xe€D— {1}, every element of D is strongly real. Hence we have an
equality [G: U]=1+1]].

As a transitive permutation group on the cosets of U, G is doubly
transitive and J is regular on cosets ==U. Since D is abelian we have
DNnD*={1} for x€G—NgxD). It is easy to see that no element ==1
leaves more than 2 cosets invariant. By definition G is a (ZT)-group.

3. Proof of Theorem 1. A subgroup H of a group G is said to
satisfy the condition (c) if H contains the centralizer of any of its non-
identity elements. The following lemma is obvious.

Lemma 7. If subgroups H; (i=1, 2, ---, m) satisfy the condition (c),
then the intersection N H; does the same.
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Lemma 8. If a subgroup H satisfies the condition (c), then H is a
Hall subgroup of G.

This is an easy consequence of a theorem of Sylow and a basic
property of p-groups.

Lemma 9. If a proper normal subgroup N of G satisfies the condi-
tion (c), then G is a Frobemius group with kernel N.

Proof. Since N is a Hall normal subgroup, there is a complement
H. it is easy to verify that

HAH* = {1} for x¢H.

Suppose that G is a Frobenius group with kernel N. Let K be a
complement of N. Then N is nilpotent by a theorem of Thompson [5].
A result of Zassenhaus [6] yields that if p is the smallest prime divisor
of |K]|, K contains a central element of order p. It is now easy to prove
that a proper subgroup H satisfying the condition (c) is either N or a
subgroup conjugate to K.

We assume in the following that G is not a Frobenius group. We
distinguish two cases according as Ng(H)=H or not.

Consider first the case Ng(H)==H. Then the group U=Ng(H) is a
Frobenius group with kernel H. Since U==G, the condition (i) of the
second section is satisfied. Since H is nilpotent (ii) is also true. The
condition (iii) is obvious and the nilpotency of H implies (v). If ¢ is an
involution not contained in H, HN H* satisfies the condition (c) by Lemma
8. Hence by the remark on Frobenius groups we have HNH*={1}.
This implies the condition (vi).

Theorem 3 is applicable and yields that G is a (ZT)-group. We
remark that the assumption Ng(H)=FH implies that a Sylow 2-group
of G contains at least two involutions.

Suppose next that Ng(K)=K for every proper subgroup K of even
order which satisfies the condition (c). Let H be a subgroup which
satisfies the condition (c), contains a fixed Sylow 2-group S of G and is
minimal subject to these two restrictions. Then H contains Ng(S). Hence
C, of the second section is satisfied for U=H. We want to prove the
condition (iv) for H. Suppose that # and » are involutions of G and that
x=uv € Cg(j) for some involution j of H. Then a Sylow 2-group con-
taining fis a part of H. Hence an involution w of H inverts x. Then
wu € C(x) = H, which implies that « € H.

Since G is not a Frobenius group, there is an involution ¢ such that
D=HNH?" is a proper subgroup of H. By Lemmas 7 and 9, Ng(D) is a
Frobenius group with kernel D. Since D satisfies condition (c), the in-
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volution ¢ inverts every element of D. Hence D is abelian. If T is a
complement of D in Ng(D)N H, an involution outside of H centralizes T.
By (¢) for H we have NgD)NH=NgxD)=D. This means that H is a
Frobenius group and D is a complement to the Frobenius kernel of H.
The conditions (v) and (vi) are satisfied. Theorem 3 yields the assertion.
Again the assumption D== {1} implies that a Sylow 2-group of H con-
tains at least two involutions.

4. Proof of Theorem 2. Let G be a group satisfying the assump-
tion of Theorem 2. We assume that a Sylow 2-group S of G is not
normal and that G does not have a normal 2-complement. This implies
in particular that S is not cyclic. Hence S is contained in a unique
maximal subgroup of G. Let U be the maximal subgroup containing S.

We assume furthermore that G contains no normal subgroup of
prime order. We want to prove that U satisfies C, of the section 2.

Since U is the unique maximal subgroup of G containing S, U con-
tains Ng(S). Hence by a theorem of Sylow U coincides with its nor-
malizer.

If the condition (i) is not satisfied, the set of involutions of U
generates a normal subgroups 7 of G. Since Ng(U)=U, I is cylic. Hence
G contains a central involuton contrary to the assumption.

The condition (ii) has been verified. If an involution # is in the
center of S, Cg(u) is a proper subgroup containing S. Hence Cg(u) is a
part of U. If j is any other involution of S, Cs(7)NU contains a non-
cyclic subgroup of order 4. Hence by the basic assumption Cg(7) & U.
This proves (iii).

In order to prove the condition (iv) for U let # and v be involutions
of G such that x=uwv € Cg(j) for some involution j of U. By the same
argument as in the corresponding part of the proof of Theorem 1, the
interesection of U and the group G¥(x) which consists of the totality of
elements transforming x into x or x' is not cyclic. Hence U contains
C¥%(x) and in particular » € U.

By Lemma 3, U is a product of J=C4(j) and D, where D=UnU*
for an involution ¢ not contained in U. If J=U, S is a (generalized)
quaternion group. Hence by a theorem of Brauer-Suzuki [0], G=JN
where N is a normal subgroup of maximal odd order. Since SN is not
contained in J, we have G=SN. This is not the case. Hence U==].
Put »r=[U:J]. Then JnD is a subgroup of index » in D. If Jn D= {1},
we find an element x==1 of JND so that C%(x) contains j, # and D.
This is implies that {7, D} is cyclic. This is clearly not the case. Hence
JnD={1}. This implies in particular that the involution ¢ inverts every
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element of D.

If x==1 is in D, C¥(x) contains ¢# and D. Hence Cy(x) is cyclic.
This implies that |D| is relatively prime to []J|. At the same time we
see that for each prime divisor of |[D| the transfer theorem of Burnside
is applicable. Hence U contains a normal complement to D. This normal
complement must coincide with /. Thus the conditions (v) and (vi) are
satisfied. Theorem 2 is an easy consequence of Theorem 3.

It remains to treat the case when G contains a normal subgroup of
prime order. Suppose that G contains a normal subgroup N of prime
order p but G/N contains no normal subgroup of prime order. Since
G/N satisfies the same assumption as G, we may assume that G/N is a
(ZT)-group. If |N| is an odd prime p, then a Sylow p-group of G is
abelian because a Sylow p-group of G/N is cyclic. Hence a theorem of
Zassenhaus [6] yields the existence of a normal subgroup of index p.
Assume p=2. If a Sylow 2-group of G splits over N, then G splits over
N. Hence the non-trivial extension is possible only when a Sylow 2-
group of G/N is of order 4. In this case G/N is isomorphic to L,(5) and
a classical theorem of Schur [1] says that G is isomorphic with SL(2, 5).
Theorem 2 follows by induction.

We remark that the following theorem is true.

Theorem 4. Let N be a subgroup of the center of G. If G/N is a
(ZT)-group, then the extension of G over N splits unless G=SL(2, 5).

UNIVERSITY OF ILLINOIS AND
THE INSTITUTE FOR ADVANCED STUDY

(Received May 27, 1963)

After completing this work the author learned that J. G. Thompson has used some of the
lemmas in the section 2 in his unpublished work. The same idea appeared also in the recent
work of the author to appear elsewhere. The last half of section 2 is closely related to the idea
of W. Feit in his paper appeared in Amer. J. of Math (1960).
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