

Title	Two characteristic properties of (ZT)-groups
Author(s)	Suzuki, Michio
Citation	Osaka Mathematical Journal. 1963, 15(1), p. 143-150
Version Type	VoR
URL	https://doi.org/10.18910/9192
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Suzuki, M.
Osaka Math. J.
15 (1963), 143-150

TWO CHARACTERISTIC PROPERTIES OF (ZT)-GROUPS

Dedicated to Professor K. Shoda

By

MICHIO SUZUKI*

1. Introduction. The classical linear fractional groups $L_2(q)$ over a finite field of $q=2^n$ elements are in a sense simple groups with the simplest structure. These groups $L_2(q)$ and the simple groups defined in [2] have many properties in common. Among other things they are doubly transitive permutation groups in which there is no regular normal subgroup and no non-identity element leaving three distinct elements invariant. The class of doubly transitive permutation groups of odd degree satisfying the preceding conditions is called the class of (ZT)-groups and has been studied in detail [4]. The main result of [4] says that the class of (ZT)-groups consists of simple groups $L_2(q)$ and the groups defined in [2]. There are many properties characteristic to (ZT)-groups (see [3]). The purpose of this note is to give two more characterizations of these groups.

In a (ZT)-group let H be either a Sylow 2-group or its normalizer. Then if x is an element $\neq 1$ of H , the centralizer $C_G(x)$ is a part of H . The following theorem gives a partial converse.

Theorem 1. *Let H be a proper subgroup of a finite group G satisfying the property that H contains the centralizer of any of its non-identity elements. If the order of H is even, then we have one of the following cases :*

- (1) *G is a Frobenius group and H is either the Frobenius kernel or one of its complements ; and*
- (2) *G is a (ZT)-group and H is either a Sylow 2-group or the normalizer of a Sylow 2-group of G .*

The next theorem assumes a different property. In a finite group G define \mathfrak{M} to be the set of maximal subgroups of G each of which contains either a Sylow 2-group of G or the centralizer of an element. In a (ZT)-group an intersection of two distinct subgroups of \mathfrak{M} is cyclic

* This research was supported by NSF G 25213 and a Guggenheim fellowship.

(see the survey of subgroups given in [4]). Theorem 2 is again a partial converse to this statement.

Theorem 2. *Let G be a group of even order satisfying the property that two distinct maximal subgroups in \mathfrak{M} have a cyclic intersection. Then we have one of the following cases:*

- (1) *a Sylow 2-group of G is normal;*
- (2) *G possesses a normal 2-complement;*
- (3) *G is isomorphic to the special linear group $SL(2, 5)$ over the field of 5 elements; and*
- (4) *G is a (ZT) -group.*

Both theorems characterize a (ZT) -group as a non-abelian simple group satisfying the property in question.

2. Preliminaries. Let G be a finite group. Assume that G has a subgroup U containing a Sylow 2-group S of G . We assume the following conditions to be satisfied :

- (i) There exists an involution not contained in U ;
- (ii) $U \supseteq N_G(S)$;
- (iii) If v is an involution in U , U contains $C_G(v)$.

Lemma 1. *Under (i) and (iii), two involutions of G are conjugate.*

Proof. Let u and t be two involutions such that $u \in U$ and $t \notin U$. Suppose by way of contradiction that u is not conjugate to t . Then the order of ut is even. Hence a power v of ut is an involution which commutes with both u and t . By (iii) applied to u we see that $v \in U$. Again by (iii) applied to v we have $t \in U$, which contradicts the definition of t . Since u and t are arbitrary Lemma 1 follows.

The set C_x of conditions is defined as the set of conditions from (i) up to (x) ,

Lemma 2. *If C_3 is satisfied, then U has only one conjugate class of involution.*

Proof. Let u be an involution of the center of the Sylow 2-group S of G . By definition S is a part of U . If v is an involution of S , there is an element $g \in G$ such that $v = u^g = g^{-1}ug$. Then S^g is contained in $C_G(v)$. By (iii), S^g is a Sylow 2-group of U . Hence there is an element w of U which transforms S^g into S . The element gw belongs to the normalizer $N_G(S)$ of S . By (ii) we conclude that $gw \in U$. This yields

the desired conclusion $g \in U$.

We consider two more conditions :

- (iv) U contains an involution j such that the centralizer $J=C_G(j)$ satisfies the following property: if u and v are two distinct involutions and if $uv \in J$, then $u \in U$;
- (v) U contains an involution j such that $J=C_G(j)$ is a normal subgroup of U .

Lemma 3. *Under C_4 , U is a product of J and a group D of odd order.*

Proof. By (iv) each coset of J not contained in U contains at most one involution. In view of Lemmas 1 and 2, a counting argument proves that each coset of J contains exactly $r=[U:J]$ involutions. Let t be an involution not contained in U . Then the coset Ut contains exactly r involutions $t_0=t, t_1, \dots, t_{r-1}$. The elements $t_i t$ ($i=1, 2, \dots, r-1$) are elements of U and they are incongruent modulo J by (iv). If D is defined to be the intersection $U \cap U^t$, D contains all the elements $t_i t$. Hence $U=JD$. Since $D=D^t$, the order of D is odd by (iii).

Lemma 4. *Under C_3 the condition (v) implies (iv).*

Proof. C_3 implies that involutions of U are conjugate. Hence (v) implies that every involution of U is contained in the center of J . Suppose that u and v are two different involutions and that $x=uv$ belongs to J . Then u inverts x . If $x=x^{-1}$, x is an involution and (iii) yields that $u \in U$. Assume $x \neq x^{-1}$. The set of elements which transform x into x or x^{-1} form a subgroup $C_G^*(x)$ and $[C_G^*(x) : C_G(x)] = 2$. The set of involutions of J is contained in $C_G(x)$. We enlarge this set to a Sylow 2-group P of $C_G^*(x)$. Since u inverts x , P contains an involution w which is not contained in $C_G(x)$. This is however impossible because w commutes with some involution of $P \cap C_G(x)$, which forces w to be in U by (iii).

Lemma 5. *Under C_5 if $x \neq 1$ of U is strongly real, then $C_G(x) \subseteq U$. Hence C_5 and $U \neq J$ imply*

$$[G : U] \leq 1 + |J|.$$

Proof. By a strongly real element we mean an element which is a product of two involutions. By (iv) and Lemma 1, a strongly real element of odd order commutes with no involution. If $x^2=1$, the assertion follows from (iii). Assume that x is of odd order and that $C_G(x) \not\subseteq U$.

As is seen from the proof of Lemma 3 an element outside of U is a product of an involution t and an element y of J . If $ytx=xyt$, then

$$x^{-1}y^{-1}xy = x^{-1}txt.$$

This element belongs to J since J is normal in U . Hence by (iv) we have $x^{-1}tx=t$. This is impossible. Each coset of U other than U itself produces exactly $r-1$ strongly real elements of odd order in U and those elements are all distinct. Hence the inequality follows.

The last condition to be considered is the following :

(vi) The order of D in Lemma 3 is relatively prime to $|J|$.

Lemma 6. *C_6 implies that U is a Frobenius group provided $D \neq 1$.*

Proof. Let x be a non-identity element of $D=U \cap U^t$. Since $|D|$ is relatively prime to $|J|$, Lemma 1 implies that x commutes with no involution. As in the proof of Lemma 5 we have $C_G(x) \subseteq U$. Similarly $C_G(x) \subseteq U^t$. Hence $C_G(x) \subseteq D$. This is true for all element $\neq 1$ of D . The conclusion follows.

Theorem 3. *Let G be a finite group and U a subgroup of G . If the set of conditions C_6 is satisfied, then either a Sylow 2-group of G contains only one involution or G is a (ZT) -group.*

Proof. If a Sylow 2-group of G contains more than one involution, we have $U \neq J$ in the notation of Lemma 3. Hence by Lemma 5

$$[G:U] \leq 1 + |J|.$$

On the other hand U is by Lemma 6 a Frobenius group. Hence any element of $U-J$ is conjugate to an element of D . Since $C_G(x) \subseteq D$ for $x \in D - \{1\}$, every element of D is strongly real. Hence we have an equality $[G:U] = 1 + |J|$.

As a transitive permutation group on the cosets of U , G is doubly transitive and J is regular on cosets $\neq U$. Since D is abelian we have $D \cap D^x = \{1\}$ for $x \in G - N_G(D)$. It is easy to see that no element $\neq 1$ leaves more than 2 cosets invariant. By definition G is a (ZT) -group.

3. Proof of Theorem 1. A subgroup H of a group G is said to satisfy the condition (c) if H contains the centralizer of any of its non-identity elements. The following lemma is obvious.

Lemma 7. *If subgroups H_i ($i=1, 2, \dots, m$) satisfy the condition (c), then the intersection $\cap H_i$ does the same.*

Lemma 8. *If a subgroup H satisfies the condition (c), then H is a Hall subgroup of G .*

This is an easy consequence of a theorem of Sylow and a basic property of p -groups.

Lemma 9. *If a proper normal subgroup N of G satisfies the condition (c), then G is a Frobenius group with kernel N .*

Proof. Since N is a Hall normal subgroup, there is a complement H . It is easy to verify that

$$H \cap H^x = \{1\} \quad \text{for } x \notin H.$$

Suppose that G is a Frobenius group with kernel N . Let K be a complement of N . Then N is nilpotent by a theorem of Thompson [5]. A result of Zassenhaus [6] yields that if p is the smallest prime divisor of $|K|$, K contains a central element of order p . It is now easy to prove that a proper subgroup H satisfying the condition (c) is either N or a subgroup conjugate to K .

We assume in the following that G is not a Frobenius group. We distinguish two cases according as $N_G(H) = H$ or not.

Consider first the case $N_G(H) \neq H$. Then the group $U = N_G(H)$ is a Frobenius group with kernel H . Since $U \neq G$, the condition (i) of the second section is satisfied. Since H is nilpotent (ii) is also true. The condition (iii) is obvious and the nilpotency of H implies (v). If t is an involution not contained in H , $H \cap H^t$ satisfies the condition (c) by Lemma 8. Hence by the remark on Frobenius groups we have $H \cap H^t = \{1\}$. This implies the condition (vi).

Theorem 3 is applicable and yields that G is a (ZT)-group. We remark that the assumption $N_G(H) \neq H$ implies that a Sylow 2-group of G contains at least two involutions.

Suppose next that $N_G(K) = K$ for every proper subgroup K of even order which satisfies the condition (c). Let H be a subgroup which satisfies the condition (c), contains a fixed Sylow 2-group S of G and is minimal subject to these two restrictions. Then H contains $N_G(S)$. Hence C_3 of the second section is satisfied for $U = H$. We want to prove the condition (iv) for H . Suppose that u and v are involutions of G and that $x = uv \in C_G(j)$ for some involution j of H . Then a Sylow 2-group containing j is a part of H . Hence an involution w of H inverts x . Then $wu \in C_G(x) \subseteq H$, which implies that $u \in H$.

Since G is not a Frobenius group, there is an involution t such that $D = H \cap H^t$ is a proper subgroup of H . By Lemmas 7 and 9, $N_G(D)$ is a Frobenius group with kernel D . Since D satisfies condition (c), the in-

volution t inverts every element of D . Hence D is abelian. If T is a complement of D in $N_G(D) \cap H$, an involution outside of H centralizes T . By (c) for H we have $N_G(D) \cap H = N_H(D) = D$. This means that H is a Frobenius group and D is a complement to the Frobenius kernel of H . The conditions (v) and (vi) are satisfied. Theorem 3 yields the assertion. Again the assumption $D \neq \{1\}$ implies that a Sylow 2-group of H contains at least two involutions.

4. Proof of Theorem 2. Let G be a group satisfying the assumption of Theorem 2. We assume that a Sylow 2-group S of G is not normal and that G does not have a normal 2-complement. This implies in particular that S is not cyclic. Hence S is contained in a unique maximal subgroup of G . Let U be the maximal subgroup containing S .

We assume furthermore that G contains no normal subgroup of prime order. We want to prove that U satisfies C_6 of the section 2.

Since U is the unique maximal subgroup of G containing S , U contains $N_G(S)$. Hence by a theorem of Sylow U coincides with its normalizer.

If the condition (i) is not satisfied, the set of involutions of U generates a normal subgroups I of G . Since $N_G(U) = U$, I is cyclic. Hence G contains a central involution contrary to the assumption.

The condition (ii) has been verified. If an involution u is in the center of S , $C_G(u)$ is a proper subgroup containing S . Hence $C_G(u)$ is a part of U . If j is any other involution of S , $C_G(j) \cap U$ contains a non-cyclic subgroup of order 4. Hence by the basic assumption $C_G(j) \subseteq U$. This proves (iii).

In order to prove the condition (iv) for U let u and v be involutions of G such that $x = uv \in C_G(j)$ for some involution j of U . By the same argument as in the corresponding part of the proof of Theorem 1, the intersection of U and the group $G_G^*(x)$ which consists of the totality of elements transforming x into x or x^{-1} is not cyclic. Hence U contains $C_G^*(x)$ and in particular $u \in U$.

By Lemma 3, U is a product of $J = C_G(j)$ and D , where $D = U \cap U'$ for an involution t not contained in U . If $J = U$, S is a (generalized) quaternion group. Hence by a theorem of Brauer-Suzuki [0], $G = JN$ where N is a normal subgroup of maximal odd order. Since SN is not contained in J , we have $G = SN$. This is not the case. Hence $U \neq J$. Put $r = [U : J]$. Then $J \cap D$ is a subgroup of index r in D . If $J \cap D \neq \{1\}$, we find an element $x \neq 1$ of $J \cap D$ so that $C_G^*(x)$ contains j , t and D . This implies that $\{j, D\}$ is cyclic. This is clearly not the case. Hence $J \cap D = \{1\}$. This implies in particular that the involution t inverts every

element of D .

If $x \neq 1$ is in D , $C_G^*(x)$ contains t and D . Hence $C_U(x)$ is cyclic. This implies that $|D|$ is relatively prime to $|J|$. At the same time we see that for each prime divisor of $|D|$ the transfer theorem of Burnside is applicable. Hence U contains a normal complement to D . This normal complement must coincide with J . Thus the conditions (v) and (vi) are satisfied. Theorem 2 is an easy consequence of Theorem 3.

It remains to treat the case when G contains a normal subgroup of prime order. Suppose that G contains a normal subgroup N of prime order p but G/N contains no normal subgroup of prime order. Since G/N satisfies the same assumption as G , we may assume that G/N is a (ZT)-group. If $|N|$ is an odd prime p , then a Sylow p -group of G is abelian because a Sylow p -group of G/N is cyclic. Hence a theorem of Zassenhaus [6] yields the existence of a normal subgroup of index p . Assume $p=2$. If a Sylow 2-group of G splits over N , then G splits over N . Hence the non-trivial extension is possible only when a Sylow 2-group of G/N is of order 4. In this case G/N is isomorphic to $L_2(5)$ and a classical theorem of Schur [1] says that G is isomorphic with $SL(2, 5)$. Theorem 2 follows by induction.

We remark that the following theorem is true.

Theorem 4. *Let N be a subgroup of the center of G . If G/N is a (ZT)-group, then the extension of G over N splits unless $G=SL(2, 5)$.*

UNIVERSITY OF ILLINOIS AND
THE INSTITUTE FOR ADVANCED STUDY

(Received May 27, 1963)

After completing this work the author learned that J. G. Thompson has used some of the lemmas in the section 2 in his unpublished work. The same idea appeared also in the recent work of the author to appear elsewhere. The last half of section 2 is closely related to the idea of W. Feit in his paper appeared in Amer. J. of Math (1960),

References

- [0] R. Brauer and M. Suzuki, *On finite groups whose 2-Sylow group is a generalized quaternion group*, Proc. Nat. Acad. Sci. U.S.A. **45** (1959), 1757–1759.
- [1] I. Schur, *Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen*, J. reine angew. Math. **132** (1907), 85–137.
- [2] M. Suzuki, *A new type of simple groups of finite order*, Proc. Nat. Acad. Sci. U.S.A. **46** (1960), 868–870.
- [3] M. Suzuki, *Finite groups with nilpotent centralizers*, Trans. Amer. Math. Soc. **99** (1961), 425–470.
- [4] M. Suzuki, *On a class of doubly transitive groups*, Ann. of Math. **75** (1962), 105–145.
- [5] J. G. Thompson, *Normal p -complements for finite groups*, Math. Z. **72** (1960), 332–354.
- [6] H. Zassenhaus, *Über endliche Fastkörper*, Abh. Math. Sem. Univ. Hamburg, **11** (1936), 187–220.