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内容梗概

本論文は，筆者が大阪大学 大学院工学研究科 電気電子情報通信工学専攻に在学中およ
び NTT物性科学基礎研究所においておこなった，量子もつれを用いた高次元量子鍵配送
のためのスケーラブルなタイムビン量子状態制御に関する研究をまとめたものであり，以
下の 6章で構成される．
第 1章は序論であり，本研究の背景として，量子コンピュータ技術の発展などに伴う現

代暗号通信の抱えるリスクと，その対策としての量子鍵配送 (QKD)技術，また近年の高
次元量子状態を用いた QKDの研究について述べる．QKDは，どのような計算機を用い
ても解読不可能な，ワンタイムパッド暗号のための共通鍵を配布する手法である．量子も
つれ状態と呼ばれる特異な相関特性を持つ光子対を用いると，QKDシステムが実装可能
なだけでなく，その安全性を相関特性に基づいて証明することが可能である．QKDとし
ては 2次元量子状態 (2値の物理量を取る量子状態)を用いたシステムが長年研究されて
いるが，近年，秘密鍵生成率の向上を目的として，高次元量子状態 (多値の物理量を取る
量子状態)を用いた QKDシステムの研究が活発化している．様々な光のモードを利用し
た高次元量子状態が検討されている中で，タイムビン量子状態は光ファイバ伝送中の擾乱
に強く，通信に適した量子状態として知られる．序論では，2次元 QKDシステムや様々
な光のモードを用いた研究などを概観し，通信の基本三要素である信号の生成/伝送/測定
の観点から，高次元タイムビン量子もつれ状態を用いる本研究の位置づけを明確化する．
第 2章では，まずタイムビン量子状態や量子もつれ状態の定義，後の章の基盤となる状

態密度演算子や測定演算子の意味，量子もつれ状態が持つ特異な相関特性などの，量子情
報理論の基礎的事項について述べる．また，2次元量子もつれ QKDの代表的なプロトコ
ルの一つである BBM92およびその安全性証明の概略について紹介し，高次元 QKDへの
拡張やその安全性を議論するための基礎とする．
第 3章では，高次元量子もつれ状態を実験的に検証するために用いられる CGLMP不

等式について議論する．まず，量子もつれ状態が持つ特異な相関特性を検証するためのベ
ル不等式を紹介し，古典的な相関を記述する隠れた変数理論では説明不可能な測定値の
相関が得られることを，2次元量子もつれ状態の場合について紹介する．この不等式を高
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次元量子もつれ状態に拡張した CGLMP不等式の場合，量子情報理論でしばしば用いら
れる最大量子もつれ状態ではなく，CGLMP 不等式のために最適化した量子もつれ状態
により不等式の大きな破れが得られる．このような最適化した量子もつれ状態を，高次
元タイムビン量子状態の場合に簡便かつ安定に生成/測定する手法について述べたのち，
CGLMP不等式の破れおよび最適化による破れの増大を実験的に検証する．これにより，
高次元タイムビン量子もつれ状態が特異な相関特性を示すこと，最適化による差が明確に
確認できるほどに安定した状態制御が可能であることを実証する．
第 4章では，量子状態トモグラフィー (QST)と呼ばれる，高次元タイムビン量子状態
を記述する状態密度演算子の推定法を提案し，この手法により高次元タイムビン量子もつ
れ状態の 100km伝送後の特性を評価する．量子もつれ状態を通信プロトコルに応用する
には，光ファイバを介した量子状態の長距離伝送が不可欠であるが，この場合，伝搬損失
により光子が失われるために，伝搬後の量子状態測定は長時間化する．提案手法を用い
ることで，少ない装置数および設定パラメータ数で測定が可能となることを示す．また，
QSTにより得られた状態密度演算子から様々な物理量/情報量を見積もることで，伝送後
における高次元タイムビン量子状態の 2次元量子状態に対する優位性を示す．
第 5章では，高次元量子状態を用いた QKDプロトコルの一つである，(d+ 1)測定基
底 QKDプロトコルとその実装法について議論する．d次元量子状態の場合には，(d+ 1)
種類の測定系を用いることにより，2つの測定系しか用いない QKDプロトコルよりも高
い秘密鍵生成率を達成することができる．これまで，このようなプロトコルの安全性証明
は次元数 dが素数の場合に限られていた．そこでまず，有限体を利用した一般化Weyl演
算子，一般化ベル基底および対応する測定基底である相互不偏基底 (MUB)を用いること
により，安全性証明の適用可能範囲を素数の累乗次元に拡張する．また，この証明に利用
されるMUBを高次元タイムビン量子状態に対して効率的に実装する手法を提案する．4
次元タイムビン量子状態に対して提案手法を実装し，(d + 1)測定基底 QKDプロトコル
に適用可能な低いシンボルエラーレートを達成できることを示す．
第 6章は，本論文の結論であり，本研究で得られた結果を総括する．
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第 1章

序論

現代の情報社会の安全性を保証するうえで，通信の暗号化は必要不可欠である．現代暗
号で広く使われている公開鍵暗号の安全性は，一方向性関数と呼ばれる計算量が非対称で
ある関数の性質を拠り所としている．例えば，代表的な公開鍵暗号である RSA 暗号は，
素数の積の計算は容易である一方，その逆過程である素因数分解は現代コンピュータでは
困難であることを利用して安全性を保証している．これに対し，近年開発が活発化してい
る量子コンピュータ [1, 2]を用いて，Shorのアルゴリズム [3]と呼ばれる量子力学の性質
を利用したアルゴリズムを実行すると，素因数分解が多項式時間で解けることが知られて
いる．ただし，一部エラーが生じても正しく計算される誤り耐性量子コンピュータの実現
には技術的な課題がまだ多く，ただちに公開鍵暗号が解読されるというわけではない．さ
らには，量子コンピュータに対しても安全性を保証するポスト量子暗号と呼ばれる暗号技
術の研究も盛んにおこなわれているが，基本的には計算量的安全性に基づいており，新規
のアルゴリズムにより暗号が解読されるリスクからは逃れられない．上記の公開鍵暗号方
式に対し，共通鍵暗号の一つであるワンタイムパッド暗号は，情報理論的に安全であり，
どのような計算機やアルゴリズムを用いても絶対に解読が不可能なことが数学的に証明さ
れている [4]．ただし，非常に強固な安全性を持たせるために，送信情報と同じビット数
の乱数列を共通鍵として 1回だけ使用するものとしている．そのため，乱数列をどのよう
に安全かつ効率的に送受信者間で共有するかがワンタイムパッド暗号通信の重要な課題と
なる．
量子鍵配送 (QKD：Quantum Key Distribution) は量子状態のもつ性質を利用して，

ワンタイムパッド暗号のための乱数列を離れた 2者間で共有する技術である．例えば，最
初に提案された QKD プロトコルである BB84[5] では，量子力学的な光の状態である光
子の 2 次元基底状態，およびその重ね合わせ状態に 0 と 1 のビット情報をエンコードし
た量子ビットを用いて，乱数列を共有する．特定の基底状態のみを使って共有する乱数列
は容易に盗聴可能であるが，重ね合わせ状態を含めた一般的な量子状態をコピーすると，
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図 1.1 量子もつれ状態を用いた QKDの模式図

ノークローニング定理 [6] により量子状態が変化してビットエラーが生じる．そのため，
通信エラーから盗聴量の上限を見積もることができ，データ処理によりその分を除外する
ことにより安全な鍵を共有することが可能である．

BB84は，送信者 Aliceが 1光子の量子状態を準備して受信者 Bobが量子状態を測定す
る，Prepare and Measure (P&M)型の非対称な QKDプロトコルである．一方，図 1.1
に示すように，量子もつれ状態 [7]という量子力学的な相関をもった 2光子状態を第三者
Charlieが用意し，Aliceと Bobがともに量子もつれ状態に対する測定を行うことで乱数
列を共有する，BBM92 と呼ばれる対称形のプロトコルが知られている [8]．このような
プロトコルは，P&M型に対して Entanglement-based (EB)型のプロトコルと呼ばれる．
BBM92で用いられる 2光子量子もつれ状態は最大もつれ状態と呼ばれる状態 (ベル基底
状態とも呼ばれる)であり，第 2章で詳しく議論するように，次のような性質をもつ．

• 各光子を Alice，Bobが各々測定した結果は完全にランダムである．
• 一方の測定結果を得ると，他方の量子状態が一意かつ瞬時に定まるという相関
性がある．

• もつれを構成する 2光子以外とは一切の相関を持たない．

1 番目と 2 番目の性質より，Alice が測定を行った後の Bob が持つ光子の状態は，ラン
ダムに量子状態を準備することで得られる量子状態と等価とみることができる．Charlie
ではなく Alice自身が量子もつれ状態を準備すると，これは BB84における Aliceの状態
準備と同じである．そのため，安全性を理論的に考察する上では，BB84 と BBM92 は
等価なプロトコルといえる．一方，実装上は，システム構成や用いる光源に差異がある．
P&M型は，通常の光通信で用いられる装置により送信系を実装できるが，状態生成のた
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めに数百MHzから GHzクロックで動作する真の乱数源を必要とする．また一般に微弱
コヒーレント光を疑似的な単一光子として用いるために，光子数分岐攻撃と呼ばれる盗聴
に対して脆弱であり，それに対処するためデコイ法 [9–11]と呼ばれる対策が必要となる．
これにはランダムな強度変調および位相変調が必要であり，送信系が複雑化する．これに
対し EB型は，量子もつれ状態生成のために特殊な非線形光学結晶を必要とする一方，状
態生成に関する乱数生成やランダムな強度変調/位相変調などは不要である．また，BB84
の安全性を BBM92との等価性に基づいて論じる際には，Aliceが生成する状態について，
平均的な生成状態が基底によらないなどの仮定を置くことになる一方，BBM92の安全性
証明にはそのような制約がない．さらに，BBM92は Aliceと Bobの位置づけが対称的で
あるため，Charlieをセンターノードとするスター型ネットワークを構成すれば，要求に
応じて通信相手を切り替えることができる．

BBM92では，前記ベル基底状態の 2番目の性質を利用して共通鍵を生成する．すなわ
ち，Aliceと Bobは特定の対となる測定手法を用いて各光子を測定することにより共通の
乱数を得る．さらに，モノガミー性として知られる 3番目の性質により，得られた共通乱
数の情報は外部に一切漏洩していない，すなわち秘密鍵であることが証明される．ただ
し，これらの性質は理想的なベル基底状態の場合である．不完全な量子もつれ状態につい
ての安全性証明にはさらなる工夫が必要であるが，量子もつれ蒸留という処理を用いた証
明方法 [12–14]では，不完全な量子もつれ状態から純粋量子もつれ状態を抽出する手順を
追加し，純粋量子もつれ状態の特性をもとに QKDの安全性を証明している．
量子もつれ蒸留を用いた安全性証明の概略は次の通りである．この証明において，鍵共

有過程は通信路を介して量子もつれ状態を共有することと等価とみなす．通信路は盗聴行
為や外部環境からのノイズなどの影響を受けるため，Alice，Bob間で共有される量子も
つれ状態は不完全なものとなる．第 2章で詳しく述べるが，不完全な量子もつれ状態は，
時間位置エラーと位相エラーの 2種類のエラーを複合的に伴う 4種の量子もつれ状態によ
り記述できる．ここで，CSS符号 [1]と呼ばれる量子誤り訂正符号を用いると，この 2種
類のエラーに対するシンドローム測定によって，各エラーがどの光子に対して生じたかを
検出することができる．測定により一部の量子ビットは失われるものの，検出したエラー
パターンに応じて誤りを訂正することで，シンドローム測定時に失われず残った量子もつ
れ状態を不完全さが補償された純粋な量子もつれ状態とすることができる．先に述べたよ
うに，Aliceと Bobはエラー訂正後の純粋な量子もつれ状態を特定のペアとなる手法で測
定することにより，ランダムかつ同一の乱数列を安全に共有する事ができる．従って，エ
ラー訂正さえ可能であるならば，盗聴者の攻撃を限定することなく，Alice，Bob間で秘
密鍵を共有することができる．なお，CSS 符号の実装には，不完全な量子状態に対する
誤り訂正が必要であり，これには量子コンピュータを用いる．ただし，Shor-Preskill の
証明 [13] では，この量子誤り訂正を用いる QKD は，ビット誤り訂正と秘匿性増強と呼
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ばれる測定後のデータ処理によって等価的に実装できることが示されている．すなわち，
量子誤り訂正後に測定を行う手順と，測定後に現代コンピュータによるデータ処理を行う
手順がブラックボックス的に等価であり，実際に量子コンピュータを用いる必要はない．
これは，意図した量子状態を保持して誤り訂正を行わなくてはならない量子コンピュータ
と，通常は情報として意味のない乱数の共有を目的とした QKDの違いに起因しており，
QKDが実用化に近い技術であることの大きな理由と言える．
以上述べたように，量子もつれ状態はQKDプロトコルに利用できるのみならず，QKD
の安全性証明にも密接に関連している．したがって，量子もつれ状態の性質を理解するこ
とは，単に量子状態の検証のみならず，QKDの安全性証明の観点からも重要である．
上述のように，QKDでは高度な量子技術 (例えば量子コンピューティング)を用いるこ
となく安全性が証明されたシステムが実装可能である．そのため，量子情報技術のなかで
ももっとも実用化に近い技術の一つと考えられており，多くのプロトコルの提案や原理実
証実験が行われ [15–26]，世界各国で QKDネットワークのテストベッド実験も報告され
ている [27–30]．ただし，実用化に向けて活発に研究が進めらている QKDであるが，こ
れまでは，上述の 0と 1の二値の情報である量子ビット，すなわち二次元量子状態を用い
たプロトコルが主に研究開発されてきた．これに対し近年，より多くのビット情報を単一
光子にエンコードできる高次元量子状態を用いた QKDの研究が活発化している [31–40]．
高次元量子状態は，多値の情報を扱うことができる量子状態である．高次元の量子状態を
用いると，一つの光子で多ビット情報を送ることが可能であり，これは現代光通信で直交
振幅変調 (QAM：Quadrature Amplitude Modulation)の多値度を増加させる際の利点
に相当する．さらには，QKDにおいて高次元量子状態を利用すると，秘密鍵生成に必要
なエラーレート閾値を改善できることが理論的に知られており [41–44]，QKD の性能改
善に繋がることが期待されている．
高次元量子状態としては，時間モードを利用したタイムビン量子状態または時間エネル
ギー不確定性に基づく量子もつれ状態 [31–33, 45–49]，周波数モードを利用した周波数ビ
ン量子状態 [50–54]，ビーム断面の振幅分布モード (マルチモード多重に相当)を利用した
光軌道角運動量 (OAM：Orbital Angular Momentum)量子状態 [34–36, 55–59]，ビーム
の空間位置モード (マルチコア多重に相当)を利用した量子状態 [37–40, 60]，さらには偏
波などを含めた複数の異なるモードを組み合わせた量子状態 [61–63] など，様々な形態が
研究されている．中でも OAMを用いた高次元量子状態は，液晶空間位相変調器 (SLM：
Spatial Light Modulator) を用いることにより自由度の高い変調が可能であり，100次元
の量子もつれ状態が実現されている [59]．しかしながら，空間モードは状態を保持したま
ま伝送することが難しく [64]，QKDへ応用するには多くの技術的課題がある．
これに対しタイムビン量子状態は，光子の時間位置および隣接パルス間の位相差を物理
量とする量子状態であるために，ファイバ伝送中の擾乱に対して安定である．また，第 3
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章で述べるように，コヒーレンスの高いレーザ光源と非線形光学結晶により，容易に高品
質な高次元量子もつれ状態を生成できる．高次元化にあたっては，占有する時間幅が拡が
るため，単位時間当たりの状態数は制約されることになる．ただし，実際の伝送装置で
は，単一光子検出器や検出信号を記録するタイムインターバルアナライザ (TIA：Time
Interval Analyzer) によって単位時間当たりの状態測定回数が律速されるため，QKD性
能の大きな劣化要因とはならない．実際に，4次元のタイムビン量子状態を用いて，26.2
Mbps という QKD としては高速な秘密鍵生成実験が報告されている [32]．しかしなが
ら，QKDの高性能化が期待できる高次元タイムビン量子状態ではあるが，いくつかの原
理実証実験が報告されているのみで，高次元量子状態を用いた QKDの高性能特性を最大
限引き出す研究はなされていない．
例えば，量子もつれ状態の検証として，隠れた変数理論が長年 2次元量子もつれ状態に

ついて検証されている．秘密鍵として Aliceと Bobの間で相関のある乱数列を共有する
だけであれば，量子もつれでなくてもコイントスなどの確率事象も利用可能である．この
場合の測定結果は元となるコインという変数に紐づいた相関を持ち，これから共通の乱
数列が得られる．しかしながら，仮にこのコインの状態を盗聴者 Eveが知ってしまうと，
すべての乱数は盗み取られていることになる．一方，第 2 章および第 3 章で詳しく述べ
るように，純粋な量子もつれ状態が示す相関特性は，このような何らかの変数 (隠れた変
数)を媒介する相関特性とは全く異なる．逆に言えば，相関特性が隠れた変数を媒介とす
るものか否かが，量子もつれ状態であるか否かの指標となる．この課題について，隠れた
変数があるとすれば測定結果が満たすべき不等式が知られており，提案者にちなんでベル
不等式と呼ばれている [65]．ベル不等式が破られれば量子もつれ状態であるといえる．そ
のため，ベル不等式の検証は量子もつれ状態生成の検証手法として広く用いられている．
ベル不等式の高次元バージョンである CGLMP不等式 [66]の検証は，これまでいくつか
の高次元量子状態について報告されているが [47, 48, 50, 51, 55, 57]，高次元タイムビン
量子状態に対する検証はなされていない．また，CGLMP 不等式では，最大もつれ状態
よりも，ある種の最適化を施した量子もつれ状態の方がより大きな破れを示すことが理論
的に示されているが [50, 57]，最適化による不等式の破れの明瞭な増加は観測されていな
かった．
また，QKDシステムの実用化には長距離伝送が不可欠である．2次元量子もつれ状態

については，300 km 光ファイバ伝送実験 [67]や人工衛星による 1200 km伝送実験 [68]
など，多数の伝送実験が行われており [69–72]，さらに量子もつれ状態を利用した 100 km
超の量子通信プロトコル実装実験も報告されている [73–76]．100 km というのは，主要
エリア間を接続するメトロアクセスネットワークでの利用や，離島間での量子通信が可能
となる距離である．一方，これまでの高次元量子もつれ状態の伝送距離は自由空間で 1.2
km，光ファイバで 15 kmにとどまっており [52, 63]，長距離伝送の報告例はない．高次
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元タイムビン量子状態は，2次元タイムビン量子状態と同様に，安定な長距離伝送の可能
性を有しているが，実際の実験的検証は報告がなかった．
さらに，実際に QKDシステムを構築するにあたっては，用いる QKDプロトコルに応
じた測定系を実装する必要がある．これまで，BB84/BBM92の高次元量子状態を用いた
QKDへの拡張として，2種類の測定を用いた 2測定基底 QKDプロトコルが主に実装さ
れている [31–40]．ここで，測定基底の数は異なる種類の測定数に対応し，状態の次元数
は一つの測定が取りうる値の数に対応する．相互不偏基底 (MUB：Mutually Unbiased
Bases)と呼ばれる 2種類の特別な基底で測定することで，それぞれ高次元系に拡張した
システムの時間位置エラーと位相エラーを推定し，それに応じたデータ処理を施すことに
より安全な秘密鍵共有が可能となる．一方，第 2章で BBM92と Six-stateプロトコルの
差異として詳述するが，測定基底の数が多いと時間位置エラーと位相エラーの結合確率分
布の推定が可能となり，誤り訂正を効率化して高い秘密鍵生成率を得ることができる．d
次元量子状態の場合，(d + 1)種類のMUBを用いることで，このような高次元量子状態
の優位性を活かした鍵生成率向上が可能である [41–44, 77]．しかしながら，2 測定基底
QKDプロトコルに対しては任意の次元の量子状態について安全性証明がなされていた一
方，(d + 1)測定基底 QKDプロトコルに対して安全性が証明されているのは素数次元の
量子状態についてのみであった．また，OAM量子状態を用いた実装報告がある一方 [77]，
タイムビン量子状態の場合に (d+ 1)MUBを効率よく実装する手法は知られていない．
上記のような背景のもと，本論文では，高速でロバストな高次元量子もつれ QKD実現
に向けた，スケーラブルなタイムビン量子状態の状態制御を研究目的とする．具体的に
は，以下の 3つの項目を主な内容とする．

• 高次元タイムビン量子もつれ状態変調手法の実装と CGLMP不等式の破れ測
定による検証 (第 3章)

• プロトコル無依存量子もつれ状態評価手法によるタイムビン量子もつれ状態の
長距離伝送特性の検証 (第 4章)

• 高次元量子状態の高性能性を最大限引き出す QKDプロトコルのためのスケー
ラブルな測定系実装 (第 5章)

これらの研究項目は，高次元量子もつれ QKDに関して，通信の 3つの基本動作である信
号の生成 (送信)/伝送/測定 (受信)をカバーしたものと言える．
本論文の構成は以下の通りである．
第 1章「序論」に続いて，第 2章では，タイムビン量子状態の基礎的事項について述べ
る．具体的には，1光子のタイムビン量子状態，量子もつれ状態を代表例とする複数光子
のタイムビン量子状態の定義および測定方法，純粋量子もつれ状態の測定によって得られ
る相関のある乱数列の秘匿性，などについて述べる．さらに，QKDに関して，量子もつ
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れ QKDの基本形である BBM92，量子もつれ蒸留に基づくノイズがある QKDの安全性
証明の概略，測定法の多様化により鍵生成率が向上する Six-stateプロトコル，などを紹
介する．
第 3章では，非線形光学結晶を用いた高次元タイムビン量子もつれ状態の生成，および

状態最適化を利用した，ベル不等式の一種である CGLMP不等式 [66]の破れの増加に関
して議論する．先述の通り，高次元タイムビン量子もつれ状態に対して CGLMP不等式
の破れが観測されていないだけでなく，CGLMP 不等式の破れを最大化する特殊な量子
もつれ状態による不等式の破れの明瞭な増加はこれまで観測されていない．本章では，こ
のような特殊なタイムビン量子もつれ状態を振幅変調を用いて生成する手法を実装し，実
際に生成した状態について CGLMP不等式の破れの増加を観測している．これにより高
次元タイムビン量子もつれ状態の隠れた変数理論を検証するとともに，その状態生成手法
の有効性を示す．
第 4章では，前章の手法により生成した高次元タイムビン量子状態を，長距離ファイバ

伝送し，その伝送特性を量子状態トモグラフィー (QST：Quantum State Tomography)
により検証する．QSTとは，量子状態そのものを表す状態密度演算子を推定する技術で
ある．状態密度演算子は量子状態の確率に関する全情報を有しており，状態が備えている
任意の物理量や情報量などは状態密度演算子から導かれる．そのため，特定の測定物理量
によらず，量子もつれ状態の品質を定量的に評価できる．ただし，d次元量子もつれ状態
の QSTには，d4 種類の異なる測定結果が必要となる．長距離ファイバ伝送では伝送損失
のため測定される光子対数はごくわずかであり，高次元量子もつれ状態の QSTには長い
測定時間を要する．そのため，多種の測定結果を効率的に得ることが求められる．そこ
で本章では，多段接続したMach-Zehnder干渉計 (MZI：Mach-Zehnder Interferometer)
を用いた，タイムビン量子状態に対する効率的な QSTを提案/実装し，100 km光ファイ
バ伝送後の高次元タイムビン量子もつれ状態に対して現実的な測定時間内での QSTを行
う．そして，その結果をもとに，伝送可能な秘密鍵生成率の指標となるコヒーレント情報
量を評価し，この高次元タイムビン量子もつれ状態を利用した場合の QKDのシステム性
能を議論する．
第 5章では，d次元量子状態を用いたQKDの具体的なプロトコルの一つである，(d+1)

測定基底 QKDプロトコルで用いられるMUBの実装法を提案し，QKDへの適用性を検
証する．第 4章では，量子もつれ状態自体の評価を目的として，特定の物理量によらない
測定法 (QST)を採用したが，QKD実装においてはプロトコルに応じた測定が必要であ
る．先述の通り，(d + 1)個のMUBを用いることで，高次元量子状態の優位性を活かし
た鍵生成率向上が可能であるが，その安全性証明，またタイムビン量子状態への実装につ
いて課題があった．そこで本章では，既存の安全性証明をもとに，有限体を用いた演算子
や高次元量子もつれ状態の表現を用いて，素数の累乗次元状態へ安全性証明を拡張する．
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さらに，拡張した安全性証明で想定した測定基底と等価な表現に基づき，次元数 d = pN

のタイムビン量子状態について多段接続された logp d 個の多腕干渉計と位相変調器によ
る構成で，(d+ 1)種のMUBを実装する手法について議論する．
最後に第 6章では，本研究で得られた成果を総括する．
以上述べた各章の関係を図 1.2に示す．

図 1.2 本論文の各章の関係．3, 4, 5章が図 1.1における状態生成，伝送，測定に対応する．
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第 2章

タイムビン量子もつれ状態と
量子鍵配送の基礎理論

2.1 緒言
本章では，本論文の研究対象であるタイムビン量子状態に関して，第 3章，4章，5章の

内容に共通する量子情報理論の基礎事項について述べる [1, 78]．まず 2.2節で，1光子の
タイムビン量子状態についての定義，および測定方法について述べる．さらに 2.3節で，
多光子の場合のタイムビン量子状態やその測定手法，量子もつれ状態の測定結果が持つ相
関や秘匿性について述べる．また 2.4節で，量子もつれを用いる QKDプロトコルである
BBM92の具体的な鍵生成手順について述べ，量子もつれ状態が QKDシステムの実装，
および安全性証明にどのように用いられるかを紹介する．さらに，Six-stateプロトコル
と呼ばれる 3種の相互不偏基底 (MUB: Mutually Unbiased Basis)を用いたプロトコル
に拡張すると，より高い鍵生成率が得られることを述べる．

2.2 1光子のタイムビン量子状態
2.2.1 純粋量子状態と状態ベクトル
タイムビン量子状態は光子の時間位置を物理量とする量子状態である．光のエネルギー

を極限まで減衰すると，離散的なエネルギー値となる．この光エネルギーの最小単位を光
子と呼ぶ．ここで，この単一光子を用いる変復調方式として，2値パルス位置変調 (PPM：
Pulse Position Modulation) を考える．すなわち，2 つの時間スロット {t0, t1} を用意
し，光子が時間位置 t0 にあればビット 0，時間位置 t1 にあればビット 1とする．量子力
学では，それぞれをヒルベルト空間上のケットベクトルとして，|0⟩ , |1⟩と表す [図 2.1(a),
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図 2.1 2次元タイムビン量子状態の模式図．(a) 単一光子が必ず時間位置 t0 で検出さ
れる状態．(b) 単一光子が必ず時間位置 t1 で検出される状態．(c)単一光子がどちらの
時間位置にも同時に存在する重ね合わせ状態．

(b)]．このような二値の量子状態は時間スロット (タイムビン) によってビットを表現で
きることから，タイムビン量子ビットと呼ばれる．二つの状態は量子状態であるため，両
者の確率的な重ね合わせ状態も一つの量子状態 |ψ⟩とみなすことができる [図 2.1(c)]．こ
の状態は次のように表される．

|ψ⟩ = c0 |0⟩ + c1 |1⟩ (2.1)

ただし，c0, c1 は |c0|2 + |c1|2 = 1を満たす複素数であり，確率振幅という．単一光子の
みを考えているため厳密には異なるが，レーザ光を減衰して疑似的な単一光子として用い
る微弱コヒーレント光では，各パルスの持つ複素電界振幅の相対的な関係が確率振幅に対
応すると考えてよい．
一般に，量子状態 |ψ⟩ にある光子を測定したときに状態 |ϕ⟩ として測定される確率
は，| ⟨ψ|ϕ⟩|2 で与えられる (Bornの規則)．ただし，⟨ψ|は |ψ⟩のエルミート共役であり，
⟨ψ|ϕ⟩は |ψ⟩と |ϕ⟩のヒルベルト空間上の内積を表す．例えば，|ψ⟩ = |0⟩ , |ϕ⟩ = |1⟩とす
れば，時間スロット t0 に用意した光子を測定し，時間スロット t1 で光子が検出される確
率が | ⟨0|1⟩|2 で与えられる．上記の二つの時間位置のパルスがそれぞれ明確に区別可能で
あれば，|0⟩が |1⟩，または |1⟩が |0⟩として測定されることはなく，|0⟩は |0⟩，|1⟩は |1⟩
と必ず測定される．この条件は次式により表現される．

| ⟨i|j⟩|2 = δi,j (2.2)

ただし，i, j ∈ {0, 1}，δi,j はクロネッカーのデルタである．このような状態を基底状態と
いい (ユークリッド空間上の単位ベクトルに相当)，基底状態の集合を正規直交基底とい
う．この基底は時間位置を観測物理量とする量子状態の集合 {|0⟩ , |1⟩}であるため，時間
位置基底と呼ばれる．一方，式 (2.1)で表される重ね合わせ状態を状態 |i⟩として測定す
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る確率は，

| ⟨ψ|i⟩|2 = |(c∗
0 ⟨0| + c∗

1 ⟨1|) |i⟩|2

= |c∗
i ⟨i|i⟩|2

= |ci|2 (2.3)

となる．ただし，上付きの ∗は複素共役を表す．上式は，確率振幅の絶対値の二乗が対応
する時間位置における光子検出確率を表すことを示している．これは，古典電磁気学にお
いて，複素電界振幅の絶対値の二乗が光強度を表すことに対応する．
これらの規則から，式 (2.1)の量子状態 |ψ⟩，およびそのエルミート共役である ⟨ψ|を

次のような縦ベクトル，および横ベクトルを用いて表現することができる．

|ψ⟩ =
(
c0
c1

)
(2.4)

⟨ψ| =
(
c∗

0 c∗
1
)

(2.5)

このようなベクトルによる表記を用いることで，Bornの規則 | ⟨ψ|ϕ⟩|2 がベクトルの内積
を用いて計算できる．なお，規格化条件 |c0|2 + |c1|2 = 1を満たさない量子状態は，規格
化することでここまで述べた状態と物理的には同一視できる．一方，非規格化状態を含め
たベクトル空間を考察対象とすると，数学的な取り扱いにおいて都合がよい．非規格化状
態を含めた任意の |ψ⟩が属するベクトル空間 V は，∀ |ψ⟩ ,∀ |ϕ⟩ ∈ V について，⟨ψ|ψ⟩ ≥ 0
を満たす内積 ⟨ψ|ϕ⟩を備えた 2次元ヒルベルト空間である．

BB84/BBM92 や，後述する Six-state プロトコルでは，状態 |0⟩ , |1⟩ に加えて次のよ
うな重ね合わせ状態を利用する．

|+⟩ = 1√
2

(|0⟩ + |1⟩) (2.6)

|−⟩ = 1√
2

(|0⟩ − |1⟩) (2.7)

|L⟩ = 1√
2

(|0⟩ + i |1⟩) (2.8)

|R⟩ = 1√
2

(|0⟩ − i |1⟩) (2.9)

これらのタイムビン量子状態は偏波量子状態に対応付けることができ，式 (2.6)–(2.9)は
順に，右斜め 45 度直線偏波，左斜め 45 度直線偏波，左回り円偏波，右回り円偏波と等
価である．各状態を表す記号は，|+⟩ , |−⟩ は右辺に現れる記号からそのように表され，
|L⟩ , |R⟩は対応する円偏波状態のジョーンズベクトルとの類似性から，このように表され
る．これらの状態では，|0⟩ と |1⟩ の確率振幅の絶対値が等しく，相対位相が異なってい
る．Bornの規則により，{|+⟩ , |−⟩}，および {|R⟩ , |L⟩}の各集合が正規直交基底を成す
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図 2.2 同じ測定確率分布を与える二つの異なる状態の測定過程．(a) 量子状態 |+⟩に
対する時間位置測定．(b) 一様ランダムに選ばれた量子状態 |0⟩ , |1⟩に対する時間位置
測定．

ことが確認できる．したがって，タイムビン量子状態を，式 (2.1)のような |0⟩ , |1⟩の展開
形に代わり，|+⟩ , |−⟩の線形結合，あるいは |R⟩ , |L⟩の線形結合で表すことができる．こ
れらの基底は相対位相が状態を区別する物理量であるため，位相基底と呼ばれる．なお，
ここでは二つの位相基底を区別する際には，位相基底 {|+⟩ , |−⟩}，位相基底 {|R⟩ , |L⟩}と
具体的に集合を明示して区別する．第 5章で高次元量子状態の位相基底について述べる際
には，各位相基底を表す集合にインデックスを割り当てて区別する．
式 (2.6)–(2.9)で表される 4つの重ね合わせ状態は，各確率振幅の絶対値の二乗が等し
く 1/2であるため，時間位置に関する測定，すなわち状態 |0⟩か |1⟩かを判定する測定を
行うと，測定結果は一様ランダムとなる [図 2.2(a)]．このランダム性は量子状態に原理的
に備わっているものであり，例えば 0, 1の乱数に基づいて |0⟩または |1⟩が選ばれた状態
のランダム性 [図 2.2(b)]とは質的に異なる．後者の場合，乱数を発生させた時点で原理的
に |0⟩か |1⟩は定まっている一方，前者は測定するまでどちらか分からない，重ね合わせ
状態である．前者のような純粋量子状態は，後者のような非量子状態または古典状態とは
一線を画す．古典状態はここまで述べた純粋量子状態として記述できないため，2.2.2節
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図 2.3 d = 4の時の高次元タイムビン量子状態の模式図．(a) 単一光子が必ず時間位
置 t0 で検出される状態．(b) 単一光子が全ての時間位置に同時に存在する重ね合わせ
状態．

で古典状態を記述できる状態密度演算子を導入した後，再びこの違いについて議論する．
{|+⟩ , |−⟩}および {|R⟩ , |L⟩}の各状態について，時間位置の測定を行うと |0⟩か |1⟩か

は一様ランダムになるのと同様に，{|+⟩ , |−⟩}の各状態に対して，|R⟩であるか |L⟩であ
るか，またはその逆の測定を行った場合も，測定結果は一様ランダムとなる．このように
二つの正規直交基底について，一方の基底状態を他方の基底状態として測定した時に，結
果が一様ランダムであるとき，二つの基底は相互不偏であるという．
一般に，閉じた系での量子状態の変化は，確率の保存則のためにユニタリー演算子 Û に

よって記述される．外部との相互作用がある場合の確率保存則を満たす状態変化では，完
全正値トレース保存 (CPTP：Completely Positive Trace Preserving)写像に拡張される
が，ここでは深入りしない．元の量子状態 |ψ⟩が Û によって変換されるとき，変換後の状
態は Û |ψ⟩となる．例えば，時間位置基底状態 |0⟩ , |1⟩をそれぞれ位相基底状態 |+⟩ , |−⟩
へ変化させるアダマール変換は，次のユニタリー演算子 Ĥ で与えられる．

Ĥ = |+⟩⟨0| + |−⟩⟨1| (2.10)

なお，アダマール変換は，量子コンピュータで量子状態を重ね合わせ状態として初期化す
る際などにしばしば用いられるほか，第 5章で述べる 2N 次元における相互不偏基底と密
接な関わりがある．
より高次元のタイムビン量子状態は，用意する時間スロットの数を増加させるこ

とで定義できる (図 2.3)．明確に区別可能な d 個の時間スロットについて，時間位置
ti(i ∈ [0, · · · , d − 1])に単一光子が確定的に存在する状態を |i⟩と表記すると，任意の純
粋量子状態 |ψ⟩は |ψ⟩ =

∑
i ci |i⟩と表される．ただし，ci は

∑
i |ci|2 = 1を満たす確率

振幅であり，|ψ⟩は d次元ヒルベルト空間の元 (ケットベクトル)である．また，高次元量
子状態の場合も，{|0⟩ , · · · , |d− 1⟩}は時間位置基底と呼ばれる．また，|+⟩ , |−⟩の高次
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元量子状態への拡張として，例えば 4次元量子状態の場合に，∣∣ψ++〉 = 1
2

(|0⟩ + |1⟩ + |2⟩ + |3⟩) (2.11)∣∣ψ+−〉 = 1
2

(|0⟩ − |1⟩ + |2⟩ − |3⟩) (2.12)∣∣ψ−+〉 = 1
2

(|0⟩ + |1⟩ − |2⟩ − |3⟩) (2.13)∣∣ψ−−〉 = 1
2

(|0⟩ − |1⟩ − |2⟩ + |3⟩) (2.14)

といった量子状態を考えることができる．これらの状態は，単一光子が 4つの時間位置に
同時に存在する重ね合わせ状態 [図 2.3(b)]であり，各パルス間の相対位相だけが異なって
いる．上記 4つの量子状態は，4次元ヒルベルト空間の正規直交基底を構成する．また，
各確率振幅の二乗が |ci|2 = 1/4，すなわち 4値の測定値の場合の一様ランダムな分布と
なるため，時間位置基底に対して相互不偏である．高次元量子状態の相互不偏基底につい
ては第 5章で詳細に議論する．

2.2.2 混合量子状態と状態密度演算子
前節において，図 2.2に示す二つのモデルを例題として議論したように，重ね合わせ状
態により表現される確率事象と，サイコロなどによる古典的な確率事象は質的に異なって
いる．前者は状態そのものだけでなく，測定系との組み合わせで初めて確率的になる事象
であり，状態生成時あるいは状態自体のランダムさによる確率事象ではない．そのため，
状態ベクトルによる純粋量子状態の表現ではこのような古典状態を表すことができず，よ
り一般的な表現手法が必要となる．そのような古典状態を含んだ一般的な混合量子状態
は，状態密度演算子によって記述される．本節ではこのことについて述べる．
まず，純粋量子状態 |ψ⟩ =

∑
i ci |i⟩に対して測定を行い，その結果，|ϕ⟩ =

∑
i di |i⟩と

して観測される確率 | ⟨ψ|ϕ⟩ |2 について考察する．これは前節の，|+⟩ 状態に対して時間
位置を測定し，時間スロット t0 で光子が観測されたため状態 |0⟩と判定される例などの一
般化である (|ψ⟩ = |+⟩ , |ϕ⟩ = |0⟩)．この確率の表記を次のように変形する．

| ⟨ψ|ϕ⟩|2 =

∣∣∣∣∣∑
i

c∗
i di

∣∣∣∣∣
2

=

(∑
i

d∗
i ci

)
·

(∑
i

c∗
i di

)
= ⟨ϕ|ψ⟩⟨ψ|ϕ⟩
= ⟨ϕ| ρ̂ψ |ϕ⟩ (2.15)

ただし，ρ̂ψ := |ψ⟩⟨ψ|を導入した．この ρ̂ψ を純粋状態 |ψ⟩に対する状態密度演算子とい
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う．あるいは，上記測定確率は次のようにも表される．

| ⟨ψ|ϕ⟩|2 =

∣∣∣∣∣∑
i

c∗
i di

∣∣∣∣∣
2

=
∑
i

ci

∑
j

c∗
jdj

 d∗
i

=
∑
i

⟨i|ψ⟩ · ⟨ψ|ϕ⟩ · ⟨ϕ|i⟩

= Tr(|ψ⟩⟨ψ|ϕ⟩⟨ϕ|)

= Tr
(
ρ̂ψP̂ϕ

)
= Tr

(
P̂ϕρ̂ψ

)
(2.16)

ここで，Tr はトレース，すなわち演算子 Â に対して Tr
(
Â
)

=
∑
i ⟨i| Â |i⟩ を計算する

操作を表す．また，P̂ϕ = |ϕ⟩⟨ϕ| は状態 |ϕ⟩ への測定を表す射影測定演算子である．式
(2.15), (2.16) 自体は Born の規則の変形であり，物理的に新しいものを導入したわけで
はない．しかし，元の Bornの規則が状態ベクトルの内積の絶対値の二乗という形式であ
るのに対し，式 (2.15), (2.16)では状態密度演算子 ρ̂ψ についての 1次式で測定確率を求
めている．このため，複数の純粋量子状態が確率的に生成される状況において，平均測定
確率を生起確率による重みづけ線形和として求めるのに適した記述となっている．
そこで図 2.4(a) のように，量子状態 |ψi⟩ の生起確率が pi で与えられる混合量子状態

の，状態 |ϕ⟩ への射影測定について考える．この時，測定結果が状態 |ϕ⟩ となる確率は，
上記の式展開を適用することにより，次のように表される．∑

i

pi| ⟨ψi|ϕ⟩|2 =
∑
i

pi ⟨ϕ|ψi⟩⟨ψi|ϕ⟩

= ⟨ϕ|

(∑
i

pi |ψi⟩⟨ψi|

)
|ϕ⟩

= Tr

(
P̂ϕ
∑
i

piρ̂ψi

)
(2.17)

ここで，混合量子状態に対応する状態密度演算子 ρ̂を，構成する各量子状態 |ψi⟩の状態
密度演算子 ρ̂ψi

の生成確率 pi による重みづけ総和，

ρ̂ =
∑
i

piρ̂ψi (2.18)

とする．このように，混合量子状態の状態密度演算子を考えると，純粋量子状態 (あるひ
とつの iで pi = 1)であるか，混合量子状態 (複数の iで pi > 0)であるかに関わらず，式
(2.17)より，量子状態 ρ̂に対する測定結果が |ϕ⟩となる確率が ⟨ϕ| ρ̂ |ϕ⟩あるいは Tr(Pϕρ̂)
で与えられる．これは図 2.4(a)の量子状態を，図 2.4(b)のように平均的な量子状態とし
て取り扱うことに相当する．一般に，測定確率は 0以上，また確率の総和は 1であること
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図 2.4 複数の純粋量子状態の平均としての混合量子状態．(a) ランダムに生成された
純粋量子状態に対する測定と，(b) 純粋量子状態の平均としての混合量子状態に対する
測定は，完全に同一の測定確率分布を与える．なお，(a)において並列に描かれている
測定装置は，それぞれの確率的な事象にあわせて便宜上描いているだけであり，観測者
が用いる測定装置は単一かつ同一のものである．

から，⟨ϕ| ρ̂ |ϕ⟩ ≥ 0かつ∑i ⟨i| ρ̂ |i⟩ = Tr(ρ̂) = 1が満たされており，ρ̂はトレース 1の半
正定値エルミート演算子となっている．半正定値性 (⟨ϕ| ρ̂ |ϕ⟩ ≥ 0)から，状態密度演算子
は全て非負の実数固有値を持つ．また，トレースは固有値の総和に等しく，その総和が 1
であるから，形式的には固有値を何らかの確率と解釈できる．実際，式 (2.18)を構成する
量子状態 |ψi⟩が全て直交していれば，固有値は各状態の生起確率に等しく，その固有状態
は |ψi⟩である．
式 (2.18) を状態密度演算子の定義とするには，各純粋量子状態やその生成モデルが既
知である必要があるが，この情報が常に得られる保証はない．さらには，後で議論する量
子もつれ状態にある二光子のうち，一方の光子のみに着目した時の状態密度演算子に対し
て，上記のような古典的な乱数によるモデルは厳密には不適切である．そのため，より一
般化して，単にトレース 1の半正定値エルミート演算子を状態密度演算子の定義とする．
上記の混合量子状態に対する状態密度演算子の導入において，図 2.4(a) の状況であれ
ば，式 (2.18)によって図 2.4(b)の状態密度演算子を考える事ができた．一方，逆の命題
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である「図 2.4(b) の量子状態は図 2.4(a) のモデルによって実現された」，すなわち「あ
る状態 ρ̂が ρ̂ =

∑
i piρ̂ψi

と分解できる時，その状態は量子状態 ρ̂ψi
を確率 pi で生成す

ることにより得られた」は一般に正しくない．例えば，確率 1/2で |0⟩または |1⟩である
量子状態の状態密度演算子 ρ̂0/1 と，確率 1/2で |+⟩または |−⟩である量子状態の状態密
度演算子 ρ̂± は，実際にそれぞれ生成された過程は違っているにも関わらず同じ演算子
ρ̂0/1 = ρ̂± となる．さらに，上記の ρ̂の導入から分かるように，ρ̂は射影される状態 |ϕ⟩
に依存しない．したがって，任意の |ϕ⟩に対して ⟨ϕ| ρ̂0/1 |ϕ⟩ = ⟨ϕ| ρ̂± |ϕ⟩ であり，測定確
率は量子状態を生成する過程に依存せず，状態密度演算子のみで定まる．そのため，量子
状態を生成するモデルが不明な場合，観測値から量子状態について知りうる最大の情報は
状態密度演算子である．このように，観測者にとって ρ̂0/1, ρ̂± の量子状態に違いはなく，
状態密度演算子は量子状態についての全ての情報を含む．
純粋量子状態がベクトルで記述できたように，状態密度演算子は行列で表すことができ

る．例えば，状態密度演算子は，時間位置基底状態 |i⟩およびそのエルミート共役 ⟨j|の
展開形として，一般に次式のように表される．

ρ̂ =
∑
ij

rij |i⟩⟨j| (2.19)

上式は，i行 j 列の要素を rij とした行列表現により状態密度演算子が記述できることを
示している．逆に言うと，rij を要素とする行列を求めることで状態密度演算子が推定さ
れる．先に述べたように，観測者にとって状態密度演算子は量子状態に関する全ての情報
を含む．したがって，状態密度演算子の推定は量子状態そのものの測定であると言ってよ
い．このようにして量子状態を調べる手法を量子状態トモグラフィーという．第 4 章で
は，この手法により高次元タイムビン量子状態を評価する．
上記のように，状態密度演算子は与えられた量子状態についての測定確率に関するすべ

ての情報を含むため，状態密度演算子から任意の物理量や状態に関する情報を得ることが
できる．例えば，量子状態のエントロピーを表す von Neumanエントロピー S(ρ̂)は次式
で定義される．

S(ρ̂) = − Tr(ρ̂ log2 ρ̂) (2.20)

上式に状態密度演算子の対角化表示 ρ̂ =
∑
i pi |ψi⟩⟨ψi| を代入すると，S(ρ̂) =

−
∑
i pi log2 pi となる．すなわち，確率 pi で直交量子状態 |ψi⟩をとる量子状態の状態密

度演算子 ρ̂の von Neumanエントロピーは，その状態の生起確率 pi の Shannonエント
ロピー H(pi)となる．
前節にて，図 2.2に示す 2つのモデルを題材として議論した通り，式 (2.6)で表される

純粋状態 |+⟩の時間位置についての測定と，一様ランダムに |0⟩ , |1⟩を生成した混合状態
の時間位置についての測定は，どちらも一様ランダムな測定結果を与える．したがって，
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その測定結果の確率分布が持つエントロピーはどちらも 1ビットである．一方，状態密度
演算子は前者が ρ̂ = |+⟩⟨+|，後者が ρ̂ = 1/2 |0⟩⟨0| + 1/2 |1⟩⟨1|と表される．これより，前
者の von Neumanエントロピーは 0ビットとなり，これは不確定さがない状態であるこ
とを意味する．これに対し，後者の von Neumanエントロピーは 1ビットであり，1量
子ビットとしては最大不確定状態となる．この違いは，測定結果の確率分布は量子状態と
測定の組み合わせによって定まるのに対し，von Neumanエントロピーは量子状態自体の
持つエントロピーであることに起因する．すなわち，状態 |+⟩について時間位置測定では
なく，|+⟩もしくは |−⟩のどちらであるかを判定する射影測定を行えば，必ず |+⟩となり
不確定さがない測定結果が得られる．一方，後者の量子状態について，|+⟩ , |−⟩への射影
測定を行ってもやはり一様ランダムな結果となる．

2.2.3 量子測定演算子と遅延Mach-Zehnder干渉計による測定
2.2.2 節にて，状態密度演算子 ρ̂ψ を導入するとともに，測定操作を記述する演算子と
して射影測定演算子 P̂ϕ について述べた．本節では，この射影測定演算子のより一般的な
測定演算子への拡張，および関連する演算子である正定値作用素測度について述べたの
ち，本論文で主な測定手段となる遅延 Mach-Zehnder 干渉計の場合の具体例について議
論する．
まず，一般化の前に，先の射影測定演算子が持つ性質を整理する．二次元ヒルベルト空
間を考え，時間位置基底状態 |0⟩ , |1⟩への射影測定演算子を P̂0, P̂1 と表す (それぞれ時間
位置 t0, t1 での光子の検出に対応)．量子状態 ρ̂ に対してこの射影測定を行った時の測定
確率は，先述の通りそれぞれ Tr

(
P̂0ρ̂

)
,Tr
(
P̂1ρ̂

)
で与えられる．2次元タイムビン量子状

態では，光子は必ず時間位置 t0, t1 のどちらかで検出できる．したがって，任意の状態密
度演算子 ρ̂に対する測定確率の保存則として，

Tr
(
P̂0ρ̂

)
+ Tr

(
P̂1ρ̂

)
= 1 (2.21)

が成り立つ．トレースの線形性から，Tr
(
P̂0ρ̂

)
+ Tr

(
P̂1ρ̂

)
= Tr

{
(P̂0 + P̂1)ρ̂

}
である．

この関係が任意の ρ̂に対して成り立つこと，また ρ̂のトレースが 1であることから，

P̂0 + P̂1 = 1̂ (2.22)

が成り立つ．ただし，1̂は恒等演算子である (変化を生じない演算子であり，実数の乗算
での 1に相当)．
一方，測定後の量子状態について考える．2.2.1節で述べたように，純粋量子状態 |ψ⟩に
ユニタリー変換 Û を施した後の状態は Û |ψ⟩となる．また，そのエルミート共役から，ユ
ニタリー変換により ⟨ψ| → ⟨ψ| Û†となる．ただし，上付きの †は元の演算子のエルミート
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共役，→は時間発展による状態の変化を表す．よって，状態密度演算子 ρ̂ =
∑
i pi |ψi⟩⟨ψi|

を考えれば，そのユニタリー変換後の量子状態は，Û ρ̂Û† =
∑
i piÛ |ψi⟩⟨ψi| Û† と表せ

る．射影測定演算子による状態変化も同様の記述が可能であるが，ユニタリー変換と異な
り単一の演算子での確率保存は成り立たないため，測定後の状態は規格化が必要である．
例えば，時間位置 t0 で光子が検出されたという条件下での測定後の量子状態について考
える．測定前の状態が純粋量子状態 |ψ⟩ = c0 |0⟩ + c1 |1⟩の場合，射影測定後の量子状態
は次式で与えられる．

|ψ⟩ → P̂0 |ψ⟩ = |0⟩ ⟨0|ψ⟩
= (⟨0|ψ⟩) |0⟩
= c0 |0⟩ (2.23)

これは，測定前に重ね合わせ状態状態 |ψ⟩ であったタイムビン量子状態が，時間位置 t0

での光子検出により，時間位置基底状態 |0⟩に変化したことを表している (波動関数の収
縮)．ただし，これは非規格化量子状態であるから，c0 で割って規格化する必要がある．
同様に，測定によって ⟨ψ| → ⟨ψ| P̂ †

0 = c∗
0 ⟨0| の状態変化が生じる．よって，純粋量子状

態の密度演算子 ρ̂ψ = |ψ⟩⟨ψ|の時間発展は次式のように表せる．

ρ̂ψ → P̂0ρ̂ψP̂
†
0 = |c0|2 |0⟩⟨0|

= Tr
(
P̂0ρ̂ψ

)
|0⟩⟨0| (2.24)

これらの関係から，混合量子状態の密度演算子 ρ̂の場合の，規格化を含めた時間発展が次
式のように表せる．

ρ̂ → P̂0ρ̂P̂
†
0

Tr
(
P̂0ρ̂

) (2.25)

上式は，条件付き確率分布の状態密度演算子版と考えればよい．なお，P̂0 = |0⟩⟨0|を用い
て式 (2.25)を展開すれば，混合量子状態に対する測定後の状態密度演算子も |0⟩⟨0|，すな
わち時間位置 t0 に光子が存在する状態であるという自明な結果が得られる．射影測定演
算子 P1 についても同様である．
また，射影測定演算子は P̂iP̂i = P̂i を満たす．これは，例えば時間位置 t0 で光子を観

測したのちに，続けて時間位置 t0 への射影測定を行っても，一度だけ射影測定するのと
結果的に変わらないことを意味する．これは後の一般の測定には要求されない，射影測定
特有の性質である．射影測定演算子はエルミート演算子であるため，P̂ †

i P̂i = P̂iP̂i = P̂i

も成り立つ．そのため，トレースの巡回性 Tr
(
ÂB̂Ĉ

)
= Tr

(
B̂ĈÂ

)
= Tr

(
ĈÂB̂

)
を用

いて，Tr
(
P̂0ρ̂

)
= Tr

(
P̂ †

0 P̂0ρ̂
)

= Tr
(
P̂0ρ̂P̂

†
0

)
などの書き換えが可能である．



20 第 2章 タイムビン量子もつれ状態と量子鍵配送の基礎理論

図 2.5 測定演算子と測定後の状態および測定確率の関係．(a) 2 次元タイムビン量子
状態と時間位置基底状態への射影測定の場合．(b) 一般の量子状態と量子測定演算子の
場合．

ここまで射影測定演算子の性質をいくつか確認したが，測定演算子として重要な点は，
1) 状態密度演算子と組み合わせて測定確率が計算できる，2) 測定後の状態密度演算子が
記述できる，3) 測定確率の総和が 1となる，の 3点である [図 2.5(a)]．
上記の射影測定演算子は，単一の純粋量子状態への射影測定演算子であり，行列で表
現した際のランクが 1 であるため，ランク 1 の射影測定演算子と呼ばれる．この他に
も，例えば d 次元タイムビン量子状態の場合に，k < d − 1 として，時間位置が k − 1
以下であるか，k 以上であるかを一括で判定する射影測定演算子 P̂<k =

∑
i<k |i⟩⟨i| と

P̂≥k =
∑
i≥k |i⟩⟨i| を考えることができる．これらの射影測定演算子はそれぞれランク

k, d− kの射影測定演算子である．また，この後詳述する遅延Mach-Zehnder干渉計のよ
うに，測定前のヒルベルト空間の次元と，測定後のヒルベルト空間の次元が一致しないよ
うな測定を考えることもできる．これらの一般の量子測定は次の条件を満たす測定演算子
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M̂i によって記述される．

Pr(i) = Tr
(
M̂iρ̂M̂

†
i

)
(2.26)

ρ̂′
i = M̂iρ̂M̂

†
i

Pr(i)
(2.27)∑

i

M̂†
i M̂i = 1̂ (2.28)

ただし，Pr(i) はラベル i の測定結果を得る確率，ρ̂′
i はラベル i の測定結果を得た後の

条件付き量子状態を表す状態密度演算子である．式 (2.28) は確率の保存則，すなわち∑
i Pr(i) =

∑
i Tr
(
M̂iρ̂M̂

†
i

)
= Tr

(∑
i M̂

†
i M̂iρ̂

)
= 1から要請される．ただし，トレー

スの巡回性，およびトレースの線形性による Trと総和の入れ替えを用いた．射影測定演
算子とは異なり，M̂iM̂i = M̂i は満たされなくてもよい．例えば，タイムビン量子状態
を一度偏波量子状態に変換して測定を行う演算子などを考える事が出来るが，いったん
時間自由度から偏波自由度に変換をした後，続けて同じ変換を施すことは出来ないため，
M̂iM̂i = M̂i は成り立たない．
以上の関係は図 2.5(b) のようにまとめられる．図 2.5(a) の射影測定演算子の場合と，

測定確率などの形式が異なって見えるが，先に述べた射影測定演算子特有の性質を用いれ
ば，同等の関係であることが分かる．
量子測定演算子や射影測定演算子を用いると，測定結果の確率だけでなく測定後の量子

状態も記述できる．例えば，偏波を状態変数とする量子状態に対して偏光子に通すという
測定を行うと，偏光子通過後の状態は，直線偏光光子状態となる．タイムビン量子状態の
場合も，例えば光カー効果による相互位相変調を利用した光子数測定 [79]などにより，測
定後に光子が残るような測定を原理的には考えることが出来る (量子非破壊測定 [79–81])．
一方，時間位置の測定を光子検出器を用いて行う場合には，測定後の光子状態は存在せ
ず，測定確率のみが関心事となる．ここで Êi = M̂†

i M̂i と表記すると，測定確率が

Pr(i) = Tr
(
M̂iρ̂M̂

†
i

)
= Tr

(
M̂†
i M̂iρ̂

)
= Tr

(
Êiρ̂

)
(2.29)

と表され，これは演算子 Êi によって測定確率が与えられることを示している．ここで，
式 (2.28) より，∑i Êi = 1̂ である．また，任意の純粋量子状態 ρ̂ = |ψ⟩⟨ψ| に対して
Pr(i) = Tr

(
Êiρ̂

)
= ⟨ψ| Êi |ψ⟩ ≥ 0 であり，密度演算子同様に Êi も半正定値演算子と

なっている．このように，測定確率のみを推定する演算子の集合 {Êi} を正定値作用素
測度 (POVM：Positive Operator-Valued Measure) という．例えば，単一光子検出器
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図 2.6 タイムビン量子状態に対する具体的な測定実装法．(a) 単一光子検出器による
時間位置測定．(b) 遅延Mach-Zehnder干渉計を使った重ね合わせ状態の測定．

を用いて時間位置を測定する場合，時間位置 ti で光子が検出される事象は，射影測定
M̂i = P̂i = |i⟩⟨i| に対応すると考えられ，その POVM 要素 Êi は Êi = P̂ †

i P̂i = P̂i と
なる．
ここまで，量子測定演算子および POVMに関する一般論を述べた．以降は，タイムビ
ン量子状態の場合の，これらの具体的な演算子の表式と実装法について議論する．時間位
置に関する測定は，図 2.6(a) のようにタイムビン量子状態を光子検出器に入力して検出
時刻を測定する，というシンプルな構成で行われる．上述のように，この場合の量子測定
演算子や POVM要素には，時間位置基底状態への射影測定演算子が対応する．
一方，|+⟩や |R⟩などの重ね合わせ状態に対する測定には，遅延Mach-Zehnder干渉計

(MZI：Mach-Zehnder Interferometer)がよく用いられる．例えば，二次元タイムビン量
子状態に対する |+⟩ , |−⟩への射影測定系は，図 2.6(b)に示す構成により実装される．被
測定状態を時間スロットの間隔 τ に等しい遅延時間を持つMZIに入力する．MZIでは，
入力側ビームスプリッタによって光子が二経路へ分岐され，長経路では τ だけ時間遅延さ
れるとともに伝搬遅延位相 θ が付与される．これにより，被測定状態中の |0⟩ , |1⟩は次式
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のように時間発展する．

|0⟩ → 1√
2

|0⟩s + eiθ
i√
2

|1⟩l (2.30)

|1⟩ → 1√
2

|1⟩s + eiθ
i√
2

|2⟩l (2.31)

ただし，添え字の s, l はそれぞれ干渉計の短経路と長経路を通る光子，|2⟩ は時間位置
t2 = t1 + τ に光子が存在する状態を表す．これが，MZI 出力側ビームスプリッタ直前
の状態となる．二経路を経た光子状態は出力側ビームスプリッタで合波される．ここで，
|k⟩s , |k⟩l はそれぞれ次式のように時間発展する．

|k⟩s → 1√
2

|k⟩x + i√
2

|k⟩y (2.32)

|k⟩l → i√
2

|k⟩x + 1√
2

|k⟩y (2.33)

ただし，添え字の x, y はそれぞれ図 2.6(b)中の出力ポート x, y に出力される光子状態を
表す．式 (2.32), (2.33)を式 (2.30), (2.31)に代入すると，MZI入力前の状態 |0⟩ , |1⟩の，
MZI通過に伴う一連の時間発展が次のように表される．

|0⟩ → 1
2

(
|0⟩x + i |0⟩y − eiθ |1⟩x + ieiθ |1⟩y

)
(2.34)

|1⟩ → 1
2

(
|1⟩x + i |1⟩y − eiθ |2⟩x + ieiθ |2⟩y

)
(2.35)

ここで，改めて θ → θ + π とし，ポート xへの出力状態に着目すると，MZI通過を表
す演算子 M̂x が次式で与えられることが分かる．

M̂x = 1
2

1∑
k=0

(
|k⟩x + eiθ |k + 1⟩x

)
⟨k| (2.36)

同様に，出力ポート y への透過を表す演算子 M̂y が次式で与えられる．

M̂y = 1
2

1∑
k=0

(
− |k⟩y + eiθ |k + 1⟩y

)
⟨k| (2.37)

ただし，MZI出力後の光子に対する伝搬位相分の任意性があるため，全体にかかる位相項
は無視した．MZIからの出力状態を単一光子検出器で測定すると，図 2.6(b)の単一光子
検出器直前に描かれた時間位置 t0, t1, t2 のどこか一つで光子が検出される．先述の通り，
光子検出器による測定は時間位置への射影測定に対応する．よって，ポート xにおける時
間位置 j での光子検出に対応する測定演算子 M̂x

j および POVM要素 Êxj は，次式で与え
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られる．

M̂x
j = |j⟩⟨j|x M̂x (2.38)

Êxj = M̂x†
j M̂x

j = M̂†
x |j⟩⟨j|x M̂x (2.39)

式 (2.36)を式 (2.39)に代入すると，POVM要素が具体的に次式のように表される．

Êx0 = 1
4

|0⟩⟨0| (2.40)

Êx1 = 1
2

(
|0⟩ + eiθ |1⟩√

2

)(
⟨0| + e−iθ ⟨1|√

2

)
(2.41)

Êx2 = 1
4

|1⟩⟨1| (2.42)

出力ポート y についても同様である．上式は，時間位置 t0, t2 における光子検出確率が，
状態 |0⟩ , |1⟩への射影測定の測定確率に比例し，時間位置 t1 における光子検出確率が状態(
|0⟩ + eiθ |1⟩

)
/
√

2への射影測定の測定確率に比例することを示している．これは時間位
置 t1 では，入力した 2パルスが遅延によって重なり合って干渉し，干渉の結果が重ね合
わせ状態への射影測定に対応するためである．一方，出力ポート y においてはビームスプ
リッタでの位相シフトにより干渉パターンが反転しており，POVM要素は次式となって
いる．

Êy1 = 1
2

(
|0⟩ − eiθ |1⟩√

2

)(
⟨0| − e−iθ ⟨1|√

2

)
(2.43)

すなわち，時間位置 t1での光子検出確率は状態
(
|0⟩ − eiθ |1⟩

)
/
√

2への射影測定の測定確
率に比例する．なお，上式においては，∑j

(
Êxj + Êyj

)
= 1̂となっている．これは，エネ

ルギー保存則を表しており，MZIでの測定では入力された光子 (最小単位の光エネルギー)
がどちらかのポートおよびいずれかの時間位置において必ず検出されることを示してい
る．式 (2.41), (2.43) において θ = 0 とすると，Êx1 = (1/2) |+⟩⟨+| , Êy1 = (1/2) |−⟩⟨−|
となる．これは，ポート xでは状態 |+⟩ が，ポート y では |−⟩が測定されることを意味
している．
これまで述べたのは 2次元タイムビン量子状態についてであったが，より高次元の場合
には，用意した数の時間スロットを収容するように式 (2.36), (2.37)の総和の範囲を拡張
すればよい．また，異なる遅延時間のMZIの場合には，式中の |k + 1⟩x などの時間シフ
ト +1を対応する遅延時間に変更することで，測定演算子を得ることができる．後の第 3
章，および第 4章では，複数のMZI通過を表す演算子を，通過する回数分乗ずることに
よって，多段接続したMZIの測定演算子を導出する．
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2.3 多光子のタイムビン量子状態
2.3.1 多光子の量子状態と量子もつれ状態

図 2.7 (a) 二光子が同一の時間スロット中に存在する状態の模式図．便宜上光子 A，
Bとしているが区別はできない．(b)二つの異なる伝送路を伝搬するタイムビン量子状
態 |00⟩AB の模式図．二光子は伝送路により識別できる．(c) 光子対の重ね合わせ状態
(量子もつれ状態)の模式図．

2.2節では，1光子の純粋量子状態と混合量子状態およびその測定について述べた．本
節では，量子もつれ状態を含む複数光子の量子状態について述べる．なお，2光子状態と
しては，同一の時間スロットに複数個の光子が存在する状態 [図 2.7(a)]ではなく，異なる
伝送路に光子が存在する状態 [図 2.7(b)]について考える．2光子をまとめてひとつの量子
状態とみなした状態は，各 1光子量子状態ベクトルの組合せを記述可能な，テンソル積を
用いて表される．たとえば，二つの光子 A, Bがともに時間位置 t0 に確定的に存在する状
態は，|0⟩A ⊗ |0⟩B と表される．ただし ⊗はテンソル積であり，文脈上明らかな時には ⊗
を省略し，|0⟩A |0⟩B や |00⟩AB ，あるいは単に |00⟩と表記する．この表記を一般化する
と，時間位置 ti, tj に 2光子がそれぞれ確定的に存在する状態は |i⟩A |j⟩B と表される．さ
らにこれを重ね合わせ状態まで拡張した一般の 2 光子の純粋タイムビン量子状態 |ψ⟩AB
は，次式で表される．

|ψ⟩AB =
∑
ij

cij |i⟩A |j⟩B (2.44)
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ただし，cij は
∑
ij |cij |2 = 1を満たす確率振幅である．例えば，次式のような状態を考

える． ∣∣Ψ00〉
AB

= 1√
2

(|00⟩ + |11⟩)AB (2.45)

この状態は，図 2.7(c)に示すように，光子 A, Bがともに時間位置 t0 に存在する状態 |00⟩
と，光子 A, Bがともに時間位置 t1 に存在する状態 |11⟩の重ね合わせ状態である．また，
すぐ後に確認するように，この状態は量子もつれ状態である．さらに光子の数および経路
数が多い場合には，|i⟩A |j⟩B |k⟩C · · · というように，光子数分だけテンソル積の数を増や
せばよい．

|i⟩A ⊗ |j⟩B などの状態は，光子 A, B それぞれの状態の単純な掛け合わせによって
表されている．このように，全体の量子状態 |ψ⟩AB が個々の量子状態 |ϕ⟩A , |χ⟩B の積
|ψ⟩AB = |ϕ⟩A ⊗ |χ⟩B と表される状態を，プロダクト (掛け合わせ)状態という．古典的
な確率分布でいえば，独立な確率変数 A, Bの結合確率分布が，それぞれの確率変数の周
辺確率分布の積で表されることに相当する，独立な 2光子状態である．状態ベクトルと同
様に，プロダクト状態の状態密度演算子も各光子の状態密度演算子のテンソル積として表
すことができる．すなわち，光子 A, Bを表す状態密度演算子を ρ̂A, ρ̂B とすると，2光子
全体の状態密度演算子は ρ̂AB = ρ̂A ⊗ ρ̂B と表される．
さらに，これを一般化して，確率分布 pi に従ってプロダクト状態 ρ̂iAB = ρ̂iA ⊗ ρ̂iB が存
在する状態の密度演算子は，平均として

ρ̂AB =
∑
i

piρ̂
i
A ⊗ ρ̂iB (2.46)

と表される．式 (2.46) のように書くことができる状態をセパラブル (Separable) 状態と
いう．このような状態は，生起確率が pi で与えられるある変数 iを介した古典的な相関
をもった状態と言える．
一方，式 (2.45)の量子状態

∣∣Ψ00〉は，その状態密度演算子 ρ̂AB =
∣∣Ψ00〉〈Ψ00

∣∣をどの
ように分解しても，式 (2.46) のように各プロダクト状態の線形結合で書くことができな
い．このようなセパラブルではない 2光子量子状態を量子もつれ状態という．量子もつれ
状態をセパラブル “ではない”状態という間接的な定義をする理由は，第 3章で詳しく議
論する隠れた変数理論と関わりがある．先に述べたように，セパラブル状態はある変数 i

を介した古典的な相関をもった状態と言える．2.2.2節で述べたように，状態密度演算子
が式 (2.46)のように分解できることは，そのような変数 iを介して量子状態が実際に生成
されたことを意味しない．しかしながら，そのようなモデルによって測定値の分布を再現
することは可能である．一方，量子もつれ状態を式 (2.46) のように表されない状態と定
義するということは，量子もつれ状態が有する測定値の分布/相関特性は，なんらかの変
数 iが介在するとしたモデルでは説明できないことを示唆する．すなわち，ここまでその
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他の状態に対して補足したような古典的なアナロジーやイメージで説明できない，量子力
学的な記述によって初めて記述できる状態が量子もつれ状態である．逆に言うと，そのよ
うなモデルでは説明できない測定結果が得られれば，被測定状態は量子もつれ状態である
と結論できる．第 3章では，そのような相関特性評価により量子もつれ状態を実験的に検
証している．
上記では，2光子量子状態を記述するヒルベルト空間の基底状態として，|ij⟩AB を採用し

た．一方，1光子状態が {|0⟩ , |1⟩}, {|+⟩ , |−⟩},または {|R⟩ , |L⟩}の線形結合で表されたの
と同様に，同じ 2光子量子状態を別の基底状態で記述することもできる．例えば，式 (2.45)
で表される重ね合わせ状態

∣∣Ψ00〉に，次式で定義される量子状態 ∣∣Ψ01〉 , ∣∣Ψ10〉 , ∣∣Ψ11〉を
加えた 4つの状態は互いに直交しており，これらを基底状態として 2次元 2光子のヒルベ
ルト空間の基底が定義される．∣∣Ψ01〉

AB
= 1√

2
(|00⟩ − |11⟩)AB (2.47)∣∣Ψ10〉

AB
= 1√

2
(|01⟩ + |10⟩)AB (2.48)∣∣Ψ11〉

AB
= 1√

2
(|01⟩ − |10⟩)AB (2.49)

上記の 4状態が正規直交基底をなすこと，すなわち∣∣∣〈Ψij
∣∣∣Ψi′j′

〉∣∣∣2 = δii′δjj′ (2.50)

が成り立つことは，式 (2.45)–(2.49)より容易に確認できる．したがって，任意の 2次元
2光子純粋状態を |ψ⟩AB =

∑
ij cij

∣∣Ψij
〉と記述することができる．なお，上記 4状態は

すべて量子もつれ状態となっている．この基底 {
∣∣Ψij

〉
}はベル基底とも呼ばれ，BBM92

の安全性証明など量子情報分野の様々な場面で登場する．また，第 5章では，有限体を利
用して高次元量子状態に拡張した一般化ベル基底を用いることで，高次元 QKDプロトコ
ルの安全性証明を行う．

2.3.2 量子状態の全系と部分系および最大もつれ状態
図 2.8のように，全量子系が与えられている時の，その部分系について考える．2光子

の状態密度演算子 ρ̂AB が与えられたとき，その部分系であるどちらか一方の光子の状態
密度演算子は，他方の光子についての部分トレースを取ることで得られる．光子 B に対
する部分トレースは TrB(ρ̂AB) =

∑
i ⟨i|B ρ̂AB |i⟩B で与えられるが，これは物理的には

手元に光子 Aのみがあり，光子 Bについて何も情報が得られないことを意味する．この
時，光子 B は何も処理がされていなくてもよいし，測定やユニタリー変換など何らかの
操作が施されていてもよいが，光子 Aの状態を考えるにあたり，光子 Bについてのこれ
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図 2.8 量子状態の全系と部分系の関係図．部分トレースは，全系から部分系を抽出す
る操作である．一方，純粋化は部分系のみが与えられた時に，取りうる全系を数学的に
再構成することに相当する．図では全系=2光子，部分系=光子 Aであるが，多光子や
光子 Bなども同様である．

らの情報は考慮されない．古典的な確率分布で言えば，確率変数 A, Bの結合確率分布か
ら，確率変数 Aのみの周辺確率分布を求める操作に相当する．光子 Bの情報を用いない
のは，条件付き確率分布ではなく周辺確率分布に相当する状態を考える，ということであ
る．例えば，ベル基底状態

∣∣Ψ00〉にある 2光子のうち光子 Aの状態密度演算子 ρ̂A は，次
のように得ることができる．

ρ̂A = TrB(
∣∣Ψ00〉〈Ψ00∣∣)

=
1∑
i=0

⟨i|B
(∣∣Ψ00〉〈Ψ00∣∣) |i⟩B

= 1
2

(|0⟩⟨0|A + |1⟩⟨1|A)

= 1
2
1̂A (2.51)

この状態密度演算子は，2.2節で議論した，状態 |0⟩ , |1⟩が一様ランダムな乱数によって
選びだされた古典状態の状態密度演算子と同じである．前述の通り，この量子状態 ρ̂A の
von Neuman エントロピー S(ρ̂A) は，2 次元量子状態としては最大の 1 ビットである．
このような von Neumanエントロピーが最大である状態を最大混合状態という．ρ̂A は恒
等演算子に比例しており，任意の 2次元正規直交基底 {|ϕ0⟩ , |ϕ1⟩}において，どちらかの
状態への射影測定の測定確率が ⟨ϕi| ρ̂A |ϕi⟩ = 1/2 · ⟨ϕi| 1̂ |ϕi⟩ = 1/2，すなわち一様ラン
ダムとなる．次節でみるように，このランダムな測定結果は光子 B に対する測定結果と
相関があるが，部分トレースではその情報が得られない．この場合，上記の考察におい
て，光子 Aを状態 |ϕ0⟩ , |ϕ1⟩とするための乱数の役割を，光子 Bが担っていると考える
ことができる．ただし，光子 Bの測定が光子 Aより先に行われる必要はなく，あくまで
乱数の役割を担うモデルが構築可能なだけである．同様にして，光子 B についても最大
混合状態であることが確認できる．
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一方，もとのベル基底状態
∣∣Ψ00〉自体は純粋量子状態であり，その von Neumanエン

トロピーは S
(∣∣Ψ00〉〈Ψ00

∣∣) = 0ビットである．このことは，状態
∣∣Ψ00〉に対してベル基

底 {∣∣Ψij
〉} のどの状態であるかを判定する射影測定 (これをベル測定という) を行えば，

確率 1 で
∣∣Ψ00〉 という測定結果が得られることからも示唆される．このようにベル基底

状態は，個々の光子に関して測定を行うと，どのような測定を用いても完全にランダムな
結果となる一方，全状態の測定には不確定さがない．
ベル基底状態のように，一方の光子の量子状態が最大混合状態となるような純粋量子も

つれ状態は，最大もつれ状態と呼ばれる．次式で与えられる量子状態 |ΨMES⟩AB は，d次
元最大もつれ状態の例である．

|ΨMES⟩AB = 1√
d

d−1∑
i=0

|ii⟩AB (2.52)

この状態における光子 Aの状態密度演算子は ρ̂A = 1̂/dであり，S(ρ̂A) = log2 dの最大
混合状態となっている．
ここまで，ある 2 光子の純粋状態 |ψ⟩AB が与えられたときに，その部分系の量子状

態 ρ̂A を求める手法について述べた．一方，ある混合状態 ρ̂A が与えられたときに，補助
系 R を加えることにより，全系として純粋状態とすることができる．この手法を純粋化
(Purification)という．純粋化によって，例えば図 2.8のように，最大混合状態から最大
もつれ状態を構成することができる．ただし，純粋化はあくまで数式的な操作であって，
光子 Aが与えられたときに，対応する純粋量子状態を物理的に得る手法ではない．最大
混合状態から最大もつれ状態を構成する例のように，補助系 Rに対応する物理系が実際
に存在する可能性はあるが，そのような系が実在する保証はない．なお，後述する量子も
つれ蒸留は，不完全な量子もつれ状態から純粋量子もつれ状態を取り出す物理的な手法で
あるが，純粋化とは別の概念である．
光子 Aの状態密度演算子が ρ̂A =

∑
i λi |ψi⟩⟨ψi|と対角化できる場合，補助系 Rを用い

た ρ̂A の純粋化状態は次式で表される．

|ψ⟩AR =
∑
i

√
λi |ψi⟩A |i⟩R (2.53)

ここで，|i⟩R は系 Rでの d次元正規直交基底の元である．正規化された直交状態であれ
ば，この状態は任意に形成することができる．したがって，次式の状態もまた ρ̂A の純粋
化状態となる．

|ψ⟩AR =
∑
i

√
λi |ψi⟩A ⊗ ÛR |i⟩R (2.54)

ここで，ÛR は d′ × dアイソメトリー演算子である (ただし d′ ≥ d)．アイソメトリー演算
子はユニタリー演算子の拡張であり，d次元ヒルベルト空間から，d′ 次元ヒルベルト空間
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中の d次元部分空間へのユニタリー変換である．この場合，見かけ上次元が増加するが，
実質的には d× dユニタリー変換となっている．例えば，古典的なアイソメトリー演算子
の例として，3入力 3出力ビームスプリッタ透過による，光電場の経路状態の変化につい
て考えてみる．ビームスプリッタの入力ポートの一つは光ターミネータで終端されている
とする．3入力 3出力ビームスプリッタによる光電場の変換は，原理的には 3次元ユニタ
リー演算子で記述できるが，終端のために，実効的には 2入力 3出力のビームスプリッタ
となっており，光電場の状態変化は入力が 2次元，出力が 3次元の演算子で記述される．
この場合，出力として観測される電場の状態は，見かけ上 3次元ベクトルで表される．し
かし，仮にこのビームスプリッタによる時間発展を巻き戻した時に，終端した入力ポート
から光が入力されているような出力側の光電場は現れない．したがって，見かけ上 3次元
であるが，実効的には入力と同じ次元，すなわち 2次元部分空間上の光電場しか出力側に
は現れない．このように，見かけ上の入出力の次元が異なるが実効的な次元が等しく，エ
ネルギー保存 (量子力学では確率の保存)が成り立つ演算子がアイソメトリー演算子であ
る．光子 Aについては次元が既知であるが，一般の補助系については次元に制限がないた
めに，このような拡張が必要となる．任意の純粋化状態は式 (2.54)のように記述できる．
このように純粋化において，系 Rにアイソメトリー変換の自由度があることは，4つの
ベル基底状態

∣∣Ψij
〉すべてにおいて，光子 Aの状態が最大混合状態となっていることか

らも示唆される．自由度があるということは，補助系 Rが実際にどのような状態である
かは，系 R自身を測定しない限りわからないということである．ただし，情報に関連する
量は，アイソメトリー変換を施してもしばしば不変である．例えば，式 (2.54) の状態か
ら，補助系 Rの密度演算子が次式で与えられる．

ρ̂R =
∑
i

λiÛR |i⟩⟨i|R Û
†
R (2.55)

上式において，|i′⟩R = ÛR |i⟩R とすれば，|i′⟩ の直交性より，ρ̂R は固有値 λi をもつ状
態 |i′⟩で対角化される．よって，任意の純粋化において，補助系 Rの von Neumanエン
トロピー S(ρ̂R)は，固有値 λi を確率分布とみなした Shannonエントロピー H(λi)に一
致する．ほとんどの場合，このように状態を再定義することでアイソメトリー変換の自
由度を考慮する必要がなくなり，基本的には純粋化状態として式 (2.53) のみを考えれば
よいことになる．さらに，補助系 R の von Neuman エントロピーは，もとの光子 A の
von Neumanエントロピー S(ρ̂A)に等しい．特に，光子 Aが純粋状態であり，その von
Neumanエントロピーが 0であるならば，純粋化における補助系 Rの von Neumanエン
トロピーは，いかなる場合でも 0である．第 5章では，高次元 QKDにおいて，この補助
系 Rがすべて盗聴者 Eveに所有されているという最悪の状況を想定することで，盗聴者
Eveの持ちうる情報量の上限を求め，この情報量を除去した安全な秘密鍵の生成効率を見
積もっている．
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2.3.3 2光子の量子測定とベル基底状態の相関
量子もつれ状態の相関特性の具体例として，2 光子状態の測定について考える．演算

子 M̂A, M̂B で表される測定を光子 A, Bそれぞれに対して行う場合の，全体の測定演算
子 M̂AB は M̂A ⊗ M̂B で表される．例えば，図 2.9(a) のように，光子 A は射影測定に
より |0⟩A に射影され，光子 B については何もしないという測定を記述する演算子は，
M̂AB = |0⟩⟨0|A ⊗ 1̂B である．この測定を式 (2.45) で表される量子もつれ状態

∣∣Ψ00〉 に
対して行った時の状態変化は，次のように記述される．(

|0⟩⟨0|A ⊗ 1̂B
) ∣∣Ψ00〉 =

(
|0⟩⟨0|A ⊗ 1̂B

) 1√
2

(|00⟩ + |11⟩)AB

= 1√
2

(|0⟩⟨0|A |00⟩AB + |0⟩⟨0|A |11⟩AB)

= 1√
2

|00⟩AB (2.56)

上式は，1/2の確率で，測定後の状態が |00⟩AB となることを示している．同様に，光子
Aに対して状態 |1⟩へ射影測定を行うと，1/2の確率で状態 |11⟩AB となる．この考察は，

図 2.9 量子もつれ状態に対する測定値の相関関係．(a) 光子 Aに時間位置基底状態へ
の射影測定を行い，|0⟩が観測されたときの光子 Bの状態．(b) 光子 Aに位相基底状態
への射影測定を行い，|+⟩が観測されたときの光子 Bの状態．
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光子 Aに対して時間位置基底状態への射影測定を行うと，その測定結果は一様ランダム
であり，かつ光子 Bに対して何も行わなかったにも関わらず，2光子ともに同じ時間位置
基底状態に射影されることを示している．そのほかのベル基底状態についても同様の測定
を行うと，2光子 A, Bは

∣∣Ψ01〉では同じ時間位置基底状態に，∣∣Ψ10〉 , ∣∣Ψ11〉では光子 B
の時間位置を反転した時間位置基底状態 (|01⟩もしくは |10⟩)にそれぞれ射影される．こ
のように，量子もつれ状態にある 2光子間には，ベル基底状態のインデックスに従った相
関特性が存在する．この相関特性を利用すると，離れた 2者がそれぞれの光子 ABを時間
位置基底状態に射影測定することにより，同一の 2値乱数を共有することができる．
一方，図 2.9(b)のように，

∣∣Ψ00〉の光子 Aを位相基底状態 |+⟩ , |−⟩へ射影測定した時
の状態変化は，次のように記述される．(

|+⟩⟨+|A ⊗ 1̂B
) ∣∣Ψ00〉 =

(
|+⟩

(
⟨0| + ⟨1|√

2

)
A

⊗ 1̂B

) ∣∣Ψ00〉
= 1√

2
(
|+⟩⟨0|A

∣∣Ψ00〉+ |+⟩⟨1|A
∣∣Ψ00〉)

= 1
2

(|+⟩A |0⟩B + |+⟩A |1⟩B)

= 1√
2

|+⟩A ⊗
(

|0⟩B + |1⟩B√
2

)
= 1√

2
|++⟩AB (2.57)

上式は，確率 1/2で 2光子ともに |+⟩である測定結果が得られることを示している．|−⟩
についても同様である．これらの結果は，ベル基底状態を位相基底状態 |+⟩ , |−⟩ を用い
て次式のように書き直すことでも理解できる．∣∣Ψ00〉

AB
= 1√

2
(|++⟩ + |−−⟩)AB (2.58)∣∣Ψ01〉

AB
= 1√

2
(|+−⟩ + |−+⟩)AB (2.59)∣∣Ψ10〉

AB
= 1√

2
(|++⟩ − |−−⟩)AB (2.60)∣∣Ψ11〉

AB
= 1√

2
(|−+⟩ − |+−⟩)AB (2.61)

このように，
∣∣Ψ00〉 , ∣∣Ψ10〉では光子 A, Bともに同じ測定結果，

∣∣Ψ01〉 , ∣∣Ψ11〉では反転
した測定結果が得られる．時間位置基底測定時の相関特性と合わせて整理すると，

∣∣Ψij
〉

は，i = 1だと時間位置基底での測定結果が光子 A, Bで反転し，j = 1だと位相基底での
測定結果が反転する．ベル基底状態においては，光子 A, Bのどちらか一方の量子ビット
に対して，時間位置基底状態 |0⟩と |1⟩を入れ替える時間位置反転，あるいは |+⟩と |−⟩
を入れ替える位相反転により，4つの状態を相互に変換することができる．光子 A, Bに
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ついて同じ測定結果が得られるように設計されたシステムにおいては，
∣∣Ψ00〉のみがどち

らの基底についても正しい結果を与え，その他の状態は時間位置エラーまたは位相エラー
を誘起する．
ここで，ベル基底状態に備わっている量子相関特性と古典的相関特性の違いについて述

べる．まず，次の密度演算子 ρ̂AB で表される混合量子状態を考える．

ρ̂AB = 1
2

(|00⟩⟨00| + |11⟩⟨11|)AB (2.62)

このような状態は，一様ランダムな 0, 1の乱数に従って状態 |00⟩ , |11⟩を生成することに
より得られる．この状態は，時間位置基底状態への射影測定では，2光子 A, B間で完全
な相関性を有する．しかしながら，同じ状態に対して光子 Aを位相基底状態 |+⟩に射影
測定すると，光子 Bは完全混合状態となる．この場合，光子 Bに対していかなる測定を
行ったとしても，その測定結果は光子 Aの測定結果とは全く無相関となる．前述のよう
に，量子もつれ状態に対しては，射影する基底を変えた測定を行っても，2光子の測定結
果は完全な相関を持つ．これに対し，式 (2.62)で表されるような混合状態，すなわち古典
的相関のある 2光子状態では，そのような相関がない．
また，純粋化においても量子もつれ状態と式 (2.62)の古典状態には違いがある．まず，

式 (2.62)で表される古典状態の純粋化を考える．これに補助系 Rを加えて純粋化した状
態 |ψ⟩ABR は次式で与えられる．

|ψ⟩ABR = 1√
2

(|000⟩ + |111⟩)ABR (2.63)

上式は，光子 A, Bに加えて，補助系 Rの状態も時間位置基底に関して完全な相関性を示
している．したがって，この光子 A, Bを用いる QKDシステムにおいて，補助系 Rが盗
聴者 Eveに入手されると，光子 A, Bの時間位置基底に関する情報は完全に盗聴されてい
ることになる．これに対し，ベル基底状態はそのままで純粋状態である．あえて補助系 R
を加えた純粋化状態として表すと，補助系 Rの状態を任意の量子状態 |ϕ⟩R として，

|ψ⟩ABR =
∣∣Ψ00〉

AB
⊗ |ϕ⟩R (2.64)

となる．この場合，光子 A, Bの状態や測定結果に関わらず，補助系 Rは任意の状態 |ϕ⟩R
となっており，光子 A, Bとは全く相関が無い．
以上述べたように，純粋量子もつれ状態には

• 各光子 A, Bを各々測定した結果は完全にランダムである．
• 一方の測定結果を得ることで，他方の量子状態が一意に定まる．
• もつれを構成する 2光子以外とは一切の相関を持たない．
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という，古典状態とは異なる特異な性質が備わっている．この性質を利用することで，究
極的に安全な QKDシステムを構築することができる．

2.4 BBM92の安全性証明と Six-stateプロトコル
前節にて，純粋な量子もつれ状態は外部と相関を持たないことを述べた．本節では，ノ
イズのある QKDシステムにおいて，外部と相関のない安全な鍵を共有する手法の概略を
紹介する．ただしここでは，第 1章で述べた Shor-Preskillの証明 [13]ではなく，原理的
に等価でより直感的な，小芦による Shor-Preskillの証明の解説に基づいて説明する [14]．

BBM92では次頁に示すプロトコル 1の手順に従って，秘密鍵を生成する．なおここで
は，BB84の安全性証明に展開可能なように，オリジナルの BBM92(図 1.1)ではなく，そ
れを Prepare and Measure型と等価とみなせるように変形したプロトコルを示してある．
以下，プロトコル 1について，いくつか補足する．Alice/Bobの測定結果の不一致，すな
わち共有した乱数列のエラーはすべて伝送路の影響によるものと考え，実際の測定装置の
不完全性に起因するエラーはここでは考えない．別の言い方をすると，検出器のノイズな
どの装置の不完全性によるエラーも伝送路によるものとみなすということである．これは
最悪設定として，共有した乱数のエラーは全て盗聴行為によるものとみなす考え方に基づ
く．ただし，厳密には全ての装置の不完全性に対して，このような取り扱いが可能なわけ
ではない．例えば，Aliceと Bob双方の位相基底の実装が大きくずれており，実際には位
相基底の代わりに時間位置基底が実装されるような不完全性が生じた場合，後で述べる位
相エラーが評価できなくなり，安全性を担保できない．このような実装と理論のずれの定
量化や，装置の具体的な動作に依存しないプロトコルの研究は，理想的な安全性証明と実
用的な安全性の乖離を補完する研究として進められているが [21, 82–84]，ここではそこ
まで深入りしない．なお，ここでは原理説明のため，伝送損失による光子の損失はないも
のとしているが，Bobに光子が届いた事象のみを対象とすれば，鍵生成手順としての不具
合はない．さらに，手順 6において，パリティ検査行列を用いた誤り訂正を想定している
が，これは後述のプロトコル 2との等価性を考慮したためであり，実際には他の誤り訂正
法を用いてもよい．
プロトコル 1では，光子送受信後に「認証付き一般通信路」を用いて，各種情報交換を
行っている．このことについて説明する．Alice と Bob は光子を送るための伝送路だけ
でなく，基底情報交換/誤り訂正などのために一般通信路も併用している．この一般通信
路としては，通常のインターネット通信などを用いる．ただし，Alice，Bobは互いの送
信情報について必ず認証を行うものとする．これは，一般通信情報を改竄されると鍵の安
全性が保証できなくなるからである．この認証は，一般通信情報について，ランダムに選
んだハッシュ関数によりハッシュ値を計算し，さらにハッシュ値をワンタイムパッド方式
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プロトコル 1 BBM92
1: Aliceは 2つの光子 A, Bをベル基底状態

∣∣Ψ00〉として準備する．そして，一方の光
子を伝送路を介して Bob に送る．この伝送路に対しては，あらゆる盗聴が可能であ
るとする．

2: Alice と Bob は各々が保有している光子に対して，ランダムに時間位置基底状態
{|0⟩ , |1⟩}もしくは位相基底状態 {|+⟩ , |−⟩}への射影測定を行う．

3: Aliceと Bobは上記の送受信を繰り返した後，各測定に際して時間位置/位相基底の
どちらへの射影測定を行ったかを認証付き一般通信路 (盗み聞きはできるが改竄はで
きない通信路) を用いて通知しあう．そして，元々ペアであった 2光子について，基
底が異なる測定結果は破棄し，同じであった測定結果を残す．

4: Aliceと Bobはベル基底状態にあった 2光子から得られた測定結果のペアの一部をラ
ンダムに選んで通知しあい，時間位置/位相基底それぞれの測定結果の誤り率 (不一致
率)を推定する．誤り率推定に用いた測定結果は廃棄する．

5: 残った測定結果ついて，状態 |0⟩または |+⟩の測定結果を得た場合にビット 0を，状
態 |1⟩または |−⟩を得た場合にビット 1を割り当て，ランダムなビット列を生成する．
これをシフト (sift)鍵と呼ぶ．

6: 手順 4で推定した誤り率を基に，Aliceは線形誤り訂正符号に従ってパリティ検査行
列Hz を生成し，それを自身のシフト鍵 κA に乗じた zA = κAHT

z を計算する．Alice
は用いた符号情報と zA を，認証付き一般通信路を用いて Bob に通知する．Bob は
自身のシフト鍵 κB に対して zB = κBHT

z を計算し，シンドローム sz = κA ⊕ κB を
得る．さらに，Bobは得られたシンドロームを用いてシフト鍵に対する誤り訂正を行
い，Aliceと同一のビット列を得る．これを訂正鍵という．

7: 先の誤り率から，盗聴者 Eveに漏洩し得る情報量の上限を推定し，訂正鍵に対して秘
匿性増強と呼ばれる鍵の圧縮処理を施して，外部漏洩のない秘密鍵を得る．

で暗号化して送ることで，安全に実装することができる [85]．ハッシュ値の長さは一般通
信情報ビット数や QKDによって新たに共有される秘密鍵ビット数と比べて十分短くてよ
く，認証に用いる秘密鍵量は十分に小さい．このように QKDでは，認証のための短い秘
密鍵を事前に共有しておく必要がある．したがって，厳密には，QKDは小さい秘密鍵量
を増幅するシステムであり，ゼロから秘密鍵を生成するものではない．

BBM92で生成される秘密鍵の安全性は，次頁の量子もつれ蒸留を用いたプロトコル 2
によって得られる秘密鍵と等価であることが知られている [13, 14]．なお，プロトコル 2
には安全性証明に関わるビット数などの量も記してある．
このプロトコル 2の安全性は以下のように考察される．プロトコル 2では，Aliceは 2
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プロトコル 2 量子もつれ蒸留による等価プロトコル
1: Aliceは 2つの光子 A, Bをベル基底状態

∣∣Ψ00〉として準備し，光子 Bを伝送路を介
して Bobに送る．この過程を N(1 + 2ξ)回繰り返す．

2: Aliceはランダムに Nξ 個の光子対を選び，認証付き一般通信路を介して，どの光子
対を選んだかを Bob に通知する．その後，Alice と Bob は当該光子対を時間位置基
底状態に射影測定する．同様に，残りの光子対からランダムに選んだ Nξ 個の光子対
を位相基底状態に射影測定する．そして，認証付き一般通信路を介して，全ての測定
結果を通知しあう．

3: 手順 2で得られた測定結果から，残りの N 光子対について，時間位置基底への射影
測定を行うとした場合の誤り (時間位置エラー) の個数の上限 Nz を推定する．同様
に，位相基底への射影測定を行うとした場合の誤り (位相エラー)の個数の上限Nx も
推定する．

4: Aliceと Bobは，最大 Nz 個の誤りを訂正する線形誤り訂正符号に基づいて，各々の
N 個の光子に対してユニタリー変換を施す．そして，Aliceと Bobはシンドロームに
対応する光子を時間位置基底へ射影測定する．Aliceは，Bobにシンドロームの測定
結果を通知する．Bobは，Aliceの測定結果と自身の測定結果を基に時間位置誤りパ
ターンを特定し，光子 Bに対して時間位置基底における誤り訂正を行う (時間位置エ
ラー訂正)．

5: Aliceと Bobは，上限 Nx 個の誤りがある時の誤りパターンの総数と同じパターン数
の誤りを訂正可能な線形誤り訂正符号に基づいて，手順 4で時間位置誤り訂正された
光子にユニタリー変換を施す．Aliceと Bobはシンドロームに対応する光子に対して
位相基底への射影測定を行う．Aliceは，Bobにシンドロームの測定結果を通知する．
Bobは，Aliceの測定結果と自身の測定結果を基に位相誤りパターンを特定し，光子
Bに対して位相基底における誤り訂正を行う (位相エラー訂正)．

6: Aliceと Bobは残りの光子対を時間位置基底状態へ射影測定し，その測定結果を秘密
鍵とする．

つの光子 A, Bをベル基底状態
∣∣Ψ00〉として生成し，光子 Bを Bobに送信するが，伝送

路ではノイズの発生や盗聴行為による状態変化などが起こるため，伝送後に元のベル基底
状態

∣∣Ψ00〉が保たれている保証はない．前述の通り，ベル基底状態は 2次元 2光子の量子
状態を記述するヒルベルト空間の基底をなすため，任意の 2 光子状態の密度演算子 ρ̂AB

はベル基底状態の線形結合として，ρ̂AB =
∑
iji′j′ riji′j′

∣∣∣Ψij
〉〈

Ψi′j′
∣∣∣ と表される．さら

に，プロトコル 2では複数の光子対をまとめて取り扱っているため，プロトコル 2の手順
4開始時点における全体の量子状態は，光子対 A0B0, A1B1, · · · , AN−1BN−1 それぞれに
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ついてのベル基底状態のテンソル積の線形結合で表され，22N 次元ヒルベルト空間中の量
子状態として記述される．ここで，考察対象としている N 光子対状態は，この 22N 次元
ヒルベルト空間上の任意のケット状態からなる密度演算子ではなく，ベル基底状態によっ
て対角化される特殊な状態であると仮定する．すると，N 光子対量子状態の密度演算子
ρ̂AB は次式で与えられる．

ρ̂AB =
∑
i,j

p(i, j)
∣∣Ψi0j0

〉〈
Ψi0j0

∣∣
A0B0

⊗ · · · ⊗
∣∣ΨiN−1jN−1

〉〈
ΨiN−1jN−1

∣∣
AN−1BN−1

=
∑
i,j

p(i, j)
∣∣∣Ψi, j

N

〉〈
Ψi, j
N

∣∣∣ (2.65)

ここで，in, jn は n 番目光子対のベル基底における状態を示すインデックス，i =
(i0, · · · , iN−1)，j = (j0, · · · , jN−1) は各光子対状態を表すインデックスを要素とするベ
クトル，p(i, j)はN 光子対が状態 (i, j)である確率であり，

∣∣∣Ψi, j
N

〉
:=
∣∣Ψi0j0

〉
A0B0

⊗ · · · ⊗∣∣ΨiN−1jN−1
〉
AN−1BN−1

である．式 (2.65)の状態は，確率 p(i, j)に従って各光子対をベル
基底状態からランダムに選んだ状態と言える．
図 2.10に，プロトコル 2の手順 4以降の処理を図示する．プロトコル 2では，手順 2,

3 によって，ランダムに選んだ 2Nξ 個の光子対に対する測定結果から，未測定の N 光
子対における時間位置/位相エラーの個数の上限 Nz, Nx が見積もられている．そのため，
確率 p(i, j) は，これらの上限よりも少ないエラーを持つ N 光子対状態 (i, j) のみが無視
できない確率を持つ．2.3.3節で述べたように，ベル基底状態

∣∣Ψij
〉のインデックス iが

1の場合は時間位置基底における測定結果が反転する．よって，ベクトル iにおいて，値
が 1である要素数は高々 Nz 個であり，それ以上である確率は十分小さい．もし iの中身
が推定できれば，要素が 1である光子対の光子 Bに対し，時間位置基底状態 |0⟩ , |1⟩を反
転する操作を施すことによって，i → 0，すなわち

∣∣∣Ψi, j
N

〉
→
∣∣∣Ψ0, j

N

〉
と状態を変化させ，

時間位置誤りを訂正することができる．ベクトル iは 0, 1のビット列であり，1の箇所が
時間位置誤りを示す誤りパターンとみなすことができる．このように，iを古典的な誤り
パターンとみなせば，時間位置基底測定の誤り率を ez = Nz/N として，長さ ≈ NH(ez)
のシンドロームを持つ線形誤り訂正符号によって iを推定し，誤りを訂正することができ
る．このような古典的な誤り訂正手法が，以下の手順により量子ビットに対しても適用可
能である．
まず，Nz 個のビット誤りを訂正可能な線形誤り訂正符号が存在し，そのシンドローム

sz がパリティ検査行列 Hz により sz = iHT
z と与えられるものとする．Alice は自身の

持つ N 光子全体にユニタリー演算子 Ûz を作用させ，ユニタリー変換後の光子の最後の
≈ NH(ez) 個の光子を，時間位置基底状態に射影測定する．同様に，Bob も同じユニタ
リー演算子 Ûz による変換および時間位置基底状態への射影測定を行う．次に，Aliceは
一般通信路を介して，Bobに測定結果を送り，Bobは受け取った測定結果と自身の測定結
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図 2.10 プロトコル 2の手順 4以降の処理を表す模式図．量子通信路を用いてN 光子
対が共有されたところから誤り訂正を行い，純粋量子もつれ状態

∣∣Ψ0,0
N′′

〉
を蒸留したの

ち，秘密鍵を得る．

果との排他的論理和を取る．この時，排他的論理和によって得られた結果がシンドローム
sz となるようなユニタリー演算子 Ûz を構成することが可能である [14]．この過程では，
Aliceの測定結果を得ることによってランダムな符号選択が行われ，Bobはシンドローム
と符号情報の和から符号の情報を取り除くことで，シンドロームを得る．そして，Bobは
このシンドローム sz を用いてユニタリー変換前のエラーパターン iを推定し，これとユ
ニタリー演算子 Ûz から変換後のエラーパターンを得る．こうして得られた変換後のエ
ラーパターンを基に，状態 |0⟩ , |1⟩を反転する操作を施すことにより，ビットエラーが訂
正された量子もつれ状態

∣∣∣Ψ0, j′

N ′

〉
が得られる．ただし，シンドローム作成に用いた光子対

は測定によって失われるため，量子もつれ光子対の数は N ′ ≈ N (1 − H(ez))に減少して
いる．また，位相エラーパターンも Ûz および光子対数減少の影響で j → j′ と変化して
いる．
次に，上記により得られた時間位置誤りが訂正された状態に対して，上記と同様の操作
を位相基底についても施す．これにより，

∣∣∣Ψ0, j′

N ′

〉
→
∣∣∣Ψ0, 0

N ′′

〉
と誤り訂正された状態を得

る．ただし，得られた光子対の数は位相誤り訂正のシンドローム作成のための測定数だ
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け減少しており，位相基底測定の誤り率を ex = Nx/N とすると，残った光子対の数は
N ′′ ≈ N (1 − H(ez) − H(ex))個となっている．なお，時間位置誤りの訂正時に，j → j′

と位相エラーパターンが変化しているために，ベクトル j′ の値が 1となる要素数はNx 個
が上限とはならない．ただし，j′ のパターン数は，元のベクトル jの値が 1となる要素数
が Nz 個以下であるパターン数を超えないため，j′ を訂正可能な符号を見つけることは可
能である．誤り訂正後の量子もつれ状態は十分 1 に近い確率で純粋な量子もつれ状態で
あることから，手順 6において，すべての光子対について時間位置基底で測定を行うと，
Aliceと Bobは，同一かつ外部に漏洩していない秘密鍵を得ることができる．すなわち，
プロトコル 2で共有された鍵は，非常に小さな確率で誤り訂正が失敗することはあるもの
の，十分に安全であると言える．
上記プロトコル 2 についての安全性の議論は，プロトコル 1 にも適用することができ

る．上記誤り訂正過程では N 光子全体に対するユニタリー変換 Ûz を用いている．この
実装には量子コンピュータが必要であり，一見プロトコル 1とは別物に思えるが，プロト
コル 2における時間位置エラー訂正/位相エラー訂正過程は，プロトコル 1におけるシフ
ト鍵に対する誤り訂正/ 訂正済み鍵に対する秘匿性増強とそれぞれ等価であることが知ら
れている [13, 14]．そのため，そのままプロトコル 1に対応付けることができる．
上記プロトコルで共有される，1光子対当たりの秘密鍵生成率は，光子対の数N が無限

大の極限では，次式で与えられる．

r∞ = 1 − H(ez) − H(ex) (2.66)

ただし，H(e) = −e log2 e− (1−e) log2(1−e)は Shannonエントロピーであり，ez, exは
それぞれ伝送路の時間位置エラーレートおよび位相エラーレートである．式 (2.66)は，時
間位置エラー訂正と位相エラー訂正をそれぞれ独立に施した場合の表式となっている．こ
れは，時間位置基底 {|0⟩ , |1⟩}，位相基底 {|+⟩ , |−⟩}のみを用いた測定では，手順 2, 3に
おいてそれぞれのエラーの独立な確率分布しか推定できないことによる．一方，式 (2.8)
(2.9)で表される別の位相基底 {|L⟩ , |R⟩}への射影測定を用いると，時間位置エラーと位
相エラーの結合確率分布を得ることができる．これを利用すると，位相エラー訂正におい
て，時間位置エラーが生じた光子対と，生じなかった光子対とに分けて位相エラー訂正を
行うことにより，より高い秘密鍵生成率が得られることが知られている [86]．このような
プロトコルは，6つの量子状態への射影測定を用いるため，Six-stateプロトコルと呼ばれ
る [16]．
第 5章では，d次元量子状態の場合の Six-stateプロトコルに対応する，(d+ 1)測定基

底 QKDプロトコルの安全性証明を提示し，さらにプロトコルに必要な測定の効率的な実
装方法を提案/実証している．
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2.5 結言
本章では，本論文の基盤として，1光子および 2光子のタイムビン量子状態とその測定
の基礎について述べた．2光子状態の特殊な形態である量子もつれ状態に備わっている相
関特性について，古典的な相関との違いおよび秘匿性に言及しながら述べ，純粋量子もつ
れ状態を用いることで秘密鍵が共有可能であることを示した．さらに，BBM92およびそ
れと等価な量子もつれ蒸留を用いた QKDプロトコルを紹介し，後者に基づいた QKDの
安全性証明の概略について述べた．
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第 3章

高次元タイムビン量子もつれ状態生
成制御と CGLMP不等式による検証

3.1 緒言
本章では，高次元タイムビン量子もつれ状態の生成および検証について述べる．量子も

つれ状態の検証には，2光子間の相関特性が隠れた変数により記述可能か否かを検証する
ベル不等式の，高次元量子状態への拡張である CGLMP不等式を用いている．そこで，ま
ず 3.2節で隠れた変数理論およびその検証に用いる不等式を紹介する．その後，CGLMP
不等式の破れを最大化する最適量子もつれ状態について述べ，3.3節でタイムビン量子も
つれ状態について最適量子もつれ状態の効率的な生成方法について述べる．続いて 3.4節
で，CGLMP 不等式の検証に必要なフーリエ変換基底状態への射影測定の実装方法とし
て，マッハツェンダー干渉計 (MZI)を 2段カスケード接続する構成による測定について
述べたのち，3.5節および 3.6節で，これらの手法の実効性を実験により検証する．

3.2 局所的な隠れた変数理論
3.2.1 CHSH不等式
第 2章で，量子もつれ状態 [式 (2.45), (2.47)–(2.49)]のもつ相関特性と，乱数に基づい

て状態 |00⟩ , |11⟩を生成して得られた状態 [式 (2.62)]の持つ相関特性の違いについて述べ
た．どちらの場合でも，各光子の測定結果はランダムとなるが，後者の場合にランダムと
なるのは，元となる乱数を知らないためであり，測定結果自体は測定前に既に決まってい
る．一方，量子もつれ状態の場合にランダムな結果が得られるのは，本質的に確率的な重
ね合わせに由来しており，測定前には測定値は原理的に確定していない．
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また，純粋量子もつれ状態は，片方の光子について測定を行うと，他方の光子の量子状
態が瞬時に混合量子状態から純粋量子状態に変化する．今，光子 A, Bの観測者をそれぞ
れ Alice, Bobとする．例えば，図 2.9のように光子 Aを時間位置基底 (または位相基底)
で測定すると，光子 Bも時間位置基底状態 (位相基底状態)に射影される．このような量
子状態の変化は，二つの光子がどれほど離れていても瞬時に起こるため，一見すると，光
子 Aの測定結果が，光速を超えた速度で光子 Bに伝わったかのように見える．しかしな
がら，この状態の変化は光子 Aの測定結果を実際に知るまで分からない．そのため，光
子 Aを測定した Aliceから見たときには光子 Bの状態が変化するが，Bobから見た光子
Bの状態は，別途 Aliceから測定結果を知らされるまで完全混合状態のままである．した
がって，状態の変化を情報伝達に利用するには追加の通信が必要であり，光速を超えると
いった相対性理論に反した情報伝達を可能にする現象ではない．
上記の現象は，一つの波動関数が物理的に離れた 2地点にわたって存在することに起因
する．これを波動関数の非局在性という．Einstein, Podolsky, Rosenは上記の測定結果
の非実在性，また波動関数の非局在性に疑問を呈し [7]，その反証として隠れた変数理論
が提示された．これは，観測不可能な何らかの物理量 (隠れた変数)が存在し，これを介
在して二光子がつながっており，これを知らないために観測結果はランダムに見える (古
典相関状態において乱数を知らないことに類似)，とする考え方である．この理論によれ
ば，隠れた変数を含めれば，物理現象は決定論的に記述されることになる．いわば，量子
力学が与える予測結果と同じものを，古典的に説明可能な論理構成により与える理論と言
える．このように，光速を超えた情報伝達が起こらないような隠れた変数によって，測定
結果の相関を説明する理論を，局所的な隠れた変数理論という．量子力学によらずにその
ような古典的理論でも，もつれ現象が説明可能であるならば，隠れた変数を知ることで測
定結果を確定的に予測できることになり，前章で述べた QKDの安全性証明が成り立たな
くなる．Einstein らの問題提起に答えるべく，局所的な隠れた変数理論が正しいとすれ
ば，測定結果において成り立つべき不等式としてベル不等式が提案された [65]．この不等
式が成り立たなければ (これをベル不等式の破れという)，隠れた変数というものでは相関
性が説明できず，量子力学が正しいということになる．そのため，ベル不等式は量子もつ
れ状態を実験的に検証する手法として広く用いられている．なお，量子もつれ対のことを
上記問題提唱者の名前をとって，EPRペアと呼ぶことがある．
ベル不等式にはいくつかのバリエーションがあり，ここでは，その一つである CHSH不
等式 [87]を紹介する．CHSH不等式とは，次頁のプロトコル 3で得られた測定値 (図 3.1)
が満たすべき不等式である．これが破られるか否かで，隠れた変数理論が検証される．
なおプロトコル 3では，実験と対応付けしやすいよう，Charlieは光子 A, Bを送ると
しているが，送信するものは，量子力学的な粒子 (量子)に限定されない．相関パラメータ
S を得る要件は，Aliceと Bobそれぞれの測定系の選択肢が二つであること，および測定
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プロトコル 3 CHSH不等式
1: Charlieは，十分離れた地点にいる Aliceと Bobに，二つの光子 A, Bをそれぞれ送
信する (図 3.1)．

2: Aliceと Bobはそれぞれ，2種類の測定系をランダムに選んで，光子 A, Bを測定す
る．ここで，選択する測定系を a, b ∈ {0, 1}で表し，Aliceと Bobの測定結果をそれ
ぞれ Aa, Bb = ±1と表すこととする．

3: Aliceと Bobは選択した測定系，および測定結果を通知しあい，その積 AaBb を計算
する．

4: 上記の手順 1～3を繰り返し，相関の強さを表す相関パラメータ

S = A0B0 +A0B1 −A1B0 +A1B1 (3.1)

の平均値 ⟨S⟩を計算する．この ⟨S⟩が満たす不等式，−2 ≤ ⟨S⟩ ≤ 2を CHSH不等式
という．

図 3.1 プロトコル 3の模式図

により得られる結果は二値であることである．例えば，カードの表裏それぞれに ±1のど
ちらかを記入し，シールで見えないようにしたものを Aliceと Bobに配布した後，Alice
と Bobが表裏の一方だけシールをめくって ±1を観測することを考えると，表裏の選択
は測定系の選択，シールをめくって観測した値は観測結果，とみなすことができ，この系
は CHSH不等式の検証に用いることができる．以下，隠れた変数のモデルとして，この
カードの例を引用しながら，隠れた変数があるとすれば上記 CHSH不等式が満たされる
ことを説明する．
まず，局所実在性という概念を導入する．実在性とは，測定を行う前に測定結果そ

のものはすでに定まっている，という性質のことを指す．上記のカードの例で言えば，
Alice/Bobがシールをめくって ±1を観測する前に，Charlieがカードを配布した時点で
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観測結果は定まっている，つまり実在している．一方，局所性は，片方の測定は，他方の
測定に影響を与えないという性質である．例えば，Aliceがカードの表のシールをめくっ
て +1を得る場合，Bobの測定をいかに工夫しても Aliceの観測結果は変わらない．すな
わち，A0 = +1という値が実在する時，Bobの測定の選択がどうであろうと A0 = +1で
ある．言い換えると，配られたカードに対して A0B0 を測定する場合と，A0B1 を測定す
る場合とで，A0 の値が変わることはない．ただし，Charlieが Alice/Bobが選択する測
定系を事前に知っている場合，Charlieは測定系に応じたカードを配ることで，両者の測
定結果に局所性が成り立たないような相関を持たせることができる．そのため，隠れた変
数に対して局所性が成り立つためには，Alice/Bobが Charlieに分からないように測定系
を選択することが前提条件となる．なお，局所性の検証を厳密に行うには，一方の測定情
報が他方の測定時点で伝達不可能なように十分離れた Aliceと Bobがほぼ同時に測定を
する必要がある．このような厳密な実験は極めて大がかりとなるため，通常はそのような
大規模な実験は行わず，Aliceと Bobの装置を独立に用意することで，局所性を検証する．
ここで，Aliceと Bobは片方の測定系の測定結果だけではなく，二つの測定系の測定結
果双方を得ることができたとする．この時，局所実在性のため，一回の試行の測定結果
Aa, Bb は ±1 のいずれかに確定している．ここで，Alice と Bob の測定結果の相関度を
表すパラメータとして，

S := A0B0 +A0B1 −A1B0 +A1B1 (3.2)

を導入する．A0/1, B0/1 の値は ±1であるので，S の絶対値は，次式となる．

|S| = |A0B0 +A0B1 −A1B0 +A1B1|
= |A0(B0 +B1) −A1(B0 −B1)|
= 2 (3.3)

ただし，(B0 + B1), (B0 − B1)の二つの値は，必ず 0と 2の組となることを用いた．上
式は S が ±2のどちらかの値しか取りえないことを示している．
次に，上記測定を多数回行うことを考える．その際，Aliceと Bobの測定結果には，何
らかの変数 (隠れた変数)λを仲立ちとした相関があるとする．すなわち，測定結果 Aa, Bb

は λの関数 Aa(λ), Bb(λ)とする．さらに，この λはカード配布が各回ごとに独立に行わ
れることから，各回ごとに異なる値をとるものとし，その確率密度分布を p(λ) とする．
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すると，S の平均値 ⟨S⟩は次式のように表される．

|⟨S⟩| = |⟨A0B0⟩ + ⟨A0B1⟩ − ⟨A1B0⟩ + ⟨A1B1⟩|

=
∣∣∣∣∫ ∞

−∞
dλ p(λ) {A0(λ)B0(λ) +A0(λ)B1(λ) −A1(λ)B0(λ) +A1(λ)B1(λ)}

∣∣∣∣
≤
∫ ∞

−∞
dλ p(λ) |A0(λ)B0(λ) +A0(λ)B1(λ) −A1(λ)B0(λ) +A1(λ)B1(λ)|

= 2 (3.4)

したがって，次式が成り立つ．
−2 ≤ ⟨S⟩ ≤ 2 (3.5)

上式は，隠れた変数 λ を仮定したときに満たされるべき不等式であり，提案者である
Clauser, Horn, Shimony, Holtの頭文字からCHSH不等式と呼ばれる [87]．
次に，上記測定において，Charlieがカードではなくベル基底状態

∣∣Ψ00〉を配るものと
する．そして，測定として次の量子状態

|+1; θ⟩ = |0⟩ + eiθ |1⟩√
2

(3.6)

|−1; θ⟩ = |0⟩ − eiθ |1⟩√
2

(3.7)

への射影測定を想定し，状態 |+1; θ⟩が観測された時の測定結果を +1，状態 |−1; θ⟩が観
測された時の測定結果を −1とする．この場合，測定系の選択 (カードの例では表をめく
るか裏をめくるか)は，θの設定で行われる．すなわち，Aliceについては θ = 0とすれば
測定系 0(a = 0)，θ = π/2とすれば測定系 1(a = 1)，Bobについては θ = π/4とすれば
測定系 0(b = 0)，θ = −π/4とすれば測定系 1(b = 1)，がそれぞれ選択される．このよう
に測定系を定義すると，測定を多数回行った時の Aliceと Bobの測定結果 Aa と Bb の積
の平均値が，次式で与えられる．

⟨AaBb⟩ =
∑

Aa,Bb∈{±1}

AaBb
∣∣⟨Aa; θa|

〈
Bb; θb

∣∣Ψ00〉
AB

∣∣2
=

∑
Aa,Bb∈{±1}

AaBb

∣∣∣∣ 1
2
√

2

(
1 +AaBbe

−i(θa+θb)
)∣∣∣∣2

= cos (θa + θb) (3.8)

これを ⟨S⟩ = ⟨A0B0⟩+⟨A0B1⟩−⟨A1B0⟩+⟨A1B1⟩に代入し，さらに θa ∈ {0, π/2}, θb ∈
{π/4,−π/4}を用いると，次式が得られる．

⟨S⟩ = 2
√

2 (3.9)
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上式は，量子もつれ状態を配布/測定すると，⟨S⟩は CHSH不等式の上限値の
√

2倍とな
ることを示している．すなわち，CHSH不等式が破られる．なお，この

√
2倍というのは

量子力学が与える最大値であり，Tsirelson限界として知られている [88]．以上述べたよ
うに，量子もつれ状態を測定すると，隠れた変数理論では説明できない結果が得られる．
なお，量子状態であっても，セパラブル状態 (非量子もつれ状態)の場合には，測定結果の
相関を説明可能な隠れた変数によるモデルを作ることができるため，CHSH 不等式が満
たされる．言い方を変えると，CHSH 不等式の破れは量子もつれ状態特有の現象と言え
る．そのため，量子もつれ状態の実験的検証手段として広く用いられている．

3.2.2 CGLMP不等式と最適量子もつれ状態
前節では，測定値が ±1 の 2 値である測定系についてのベル不等式である，CHSH 不
等式を紹介した．一方，d次元量子状態の場合には，d個の測定値が得られる．このよう
な多値の測定系についてのベル不等式として，Collins, Gisin, Linden, Massar, Popescu
提案によるCGLMP不等式が知られている [66]．CGLMP 不等式においても，Alice と
Bob はそれぞれ 2 種類の測定系 a, b ∈ {0, 1} を用いて測定する．ただし，得られる測定
値は Aa, Bb ∈ {0, · · · , d − 1}の d値となる．この場合の相関パラメータ Sd は，次式で
定義される．

Sd =
[d/2]−1∑
k=0

(
1 − 2k

d− 1

)
{ + [Pr(A0 = B0 + k) + Pr(B0 = A1 + k + 1)

+ Pr(A1 = B1 + k) + Pr(B1 = A0 + k)]
− [Pr(A0 = B0 − k − 1) + Pr(B0 = A1 − k)

+ Pr(A1 = B1 − k − 1) + Pr(B1 = A0 − k − 1)]}
(3.10)

ただし，Pr(∗)は括弧内の引数を mod dで評価した時の確率である．なお，CHSH不等
式の場合とは異なり，相関パラメータを確率を用いた期待値として定義している．この相
関パラメータ Sd は，d = 2とすると，CHSH不等式の相関パラメータの期待値 ⟨S⟩に一
致する．式 (3.10)で与えられる Sd に対して，前節と同様にして局所的な隠れた変数理論
を適用すると，Sd ≤ 2であることが導かれる．これが CGLMP不等式である．
ここで，式 (2.52)で表される d次元最大量子もつれ状態 |ΨMES⟩を測定対象とした場
合の Sd について考える．まず，量子もつれ状態への射影測定として，次式で与えられる
フーリエ基底状態への測定を考える．

|θl⟩ = 1√
d

d−1∑
k=0

exp(iθlk) |k⟩ (3.11)
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ただし，l ∈ {0, · · · , d − 1} は測定値 Aa, Bb を示すインデックスであり，θl は Alice と
Bobの測定系 a, bによって定まるパラメータである．具体的には，測定系 a, b ∈ {0, 1}に
ついて θl は次式のように設定される．

θl = 2π
d

×
{

(l + αa) for Alice
(−l + βb) for Bob (3.12)

αa =
{

0 for a = 0
1/2 for a = 1 (3.13)

βb =
{

1/4 for b = 0
−1/4 for b = 1 (3.14)

上記のように表した射影測定系および d 次元最大量子もつれ状態 |ΨMES⟩ を用いて式
(3.10)を計算すると，相関パラメータ Sd が次式のように表される．

Sd = 2
d2

[d/2]−1∑
k=0

(
1 − 2k

d− 1

)(
1

sin2[π(k + 1/4)/d]
− 1

sin2[π(k + 3/4)/d]

)
(3.15)

上式は，d = 2では CHSH不等式と同じく S2 = 2
√

2 ≈ 2.8284，d = 4では S4 ≈ 2.8962
となる．これらの値は，CGLMP不等式 Sd ≤ 2を満たしていない．したがって，d次元
最大量子もつれ状態を測定すると，CGLMP不等式の破れが観測されることになる．

2次元系，すなわち d = 2の場合，最大量子もつれ状態の測定によって得られる S2 値
は S2 = 2

√
2であり，これが量子力学が与える最大値となっている．したがって，原理的

にこれより大きな不等式の破れを観測することはできない．一方，d ≥ 3の場合，上記の
量子もつれ状態測定で得られる Sd 値が量子理論限界とは限らない．CGLMP不等式の提
案においては，数値計算による測定の最適化により，上記のフーリエ基底を用いた測定が
不等式の破れを最大化することが示唆されており [66]，さらに，フーリエ基底に測定を固
定して状態を最適化した場合に，最大量子もつれ状態よりも大きな破れを示す，最適化さ
れた量子もつれ状態が存在することが指摘されている [50, 57]．

CGLMP 不等式の破れを最大化する量子もつれ状態 (以後，最適量子もつれ状態と呼
ぶ)は，相関パラメータ Sd を演算子化することによって導くことができる．式 (3.10)の
定義式が示すように，Sd は，Aliceと Bobの測定結果が一定の条件を満たす確率の線形
結合となっている．一方，Alice/Bob の測定系は，式 (3.11) で表されるフーリエ基底状
態への射影測定となっている．したがって，任意の二光子状態 ρ̂AB に対して，Aliceが測
定結果 Aa = la，Bobが測定結果 Bb = lb を得る確率は，次式で定義される射影測定演算
子 P̂QM (Aa = la, Bb = lb)を用いて，Tr{P̂QM (Aa = la, Bb = lb)ρ̂AB}と表すことがで
きる．

P̂QM (Aa = la, Bb = lb) = |θla⟩A |θlb⟩B ⟨θla |A ⟨θlb |B (3.16)

式 (3.10) 中の確率 Pr(∗) は上記射影測定結果に関する確率の線形和で表される．よっ
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て，各 Pr(∗)に対応した測定演算子を，上記のランク 1の射影測定演算子の線形和として
表すことができる．例えば，Pr(A0 = B0 + k) に対応する，ランク d の射影測定演算子
P̂ (A0 = B0 + k)は次式のように表される．

P̂ (A0 = B0 + k) =
d−1∑
c=0

P̂QM (Aa = c+ k,Bb = c) (3.17)

その他の確率についても同様である．式 (3.10)中の確率 Pr(∗)をこれらの射影測定演算
子で置き換えると，演算子化した相関パラメータ Ŝd を得ることができる．この Ŝd を用
いれば，任意の量子状態 ρ̂AB に対する相関パラメータの値が，Sd = Tr

(
Ŝdρ̂AB

)
とし

て求まる．これは，射影測定演算子 P̂ や POVM要素 Ê について，対応する測定確率が
Tr
(
P̂ ρ̂AB

)
,Tr
(
Êρ̂AB

)
で求まるように導出したのと同様に，相関パラメータを演算子化

したものである．
ここで，二光子の状態密度演算子を ρ̂AB =

∑
i λi
∣∣ψi〉〈ψi∣∣

AB
と対角化すれば，次式が

成り立つ．

Sd = Tr
(
Ŝdρ̂AB

)
=
∑
i

λi Tr
(
Ŝd
∣∣ψi〉〈ψi∣∣

AB

)
=
∑
i

λi
〈
ψi
∣∣
AB

Ŝd
∣∣ψi〉

AB

≤ ⟨ψmax|AB Ŝd |ψmax⟩AB (3.18)

ただし，状態
∣∣ψi〉

AB
の中で 〈ψi∣∣

AB
Ŝd
∣∣ψi〉

AB
が最大となる状態を |ψmax⟩AB とした．

よって，Sd を最大化する量子状態としては，混合量子状態ではなく純粋量子状態のみを
考えればよい．そこで，⟨ψ|AB Ŝd |ψ⟩AB を最大化する純粋量子状態 |ψ⟩AB を考える．こ
れは，相関パラメータ演算子 Ŝd の固有状態のうち，固有値が最大の量子状態である．そ
こで，相関パラメータ演算子 Ŝd を対角化することにより，最適量子もつれ状態を得るこ
とができる．この手順を d = 4のシステムについて行うと，次式で表される最適量子もつ
れ状態 |ΨOES⟩が得られる．

|ΨOES⟩ = 1√
2(1 + γ2)

(|00⟩ + γ |11⟩ + γ |22⟩ + |33⟩) (3.19)

ただし，γ ≈ 0.739である．この最適量子もつれ状態を測定すると S4 ≈ 2.9727となり，
最大量子もつれ状態を測定した場合の S4 ≈ 2.8962よりも不等式の破れが大きくなる．そ
の他の次元についても，表 3.1に示すように，状態の最適化によって CGLMP不等式の
破れを増加させることができる [57, 66]．



3.3 自発的パラメトリック下方変換による高次元タイムビン量子もつれ状態生成 49

表 3.1 最大量子もつれ状態および最適量子もつれ状態に対する相関パラメータ Sd

d |ΨMES⟩の場合 |ΨOES⟩の場合
2 2.8284 2.8284
3 2.8729 2.9149
4 2.8962 2.9727
5 2.9105 3.0157
...

...
...

第 1章でも述べた通り，これまで CGLMP不等式の破れは，周波数の位置や光軌道角
運動量 (OAM)，時間エネルギー不確定性を利用した高次元量子状態を用いて観測され
ているが [47, 48, 50, 51, 55, 57]，高次元タイムビン量子状態については未報告であっ
た．あるいは異なる角周波数光を基底状態とする，周波数ビン量子もつれ状態を利用した
|ΨOES⟩の生成実験が報告されているが [50]，最大量子もつれ状態 |ΨMES⟩と最適量子も
つれ状態 |ΨOES⟩との明確な差は観測されていない．そこで本研究では，自発的パラメト
リック下方変換による制御性の高い高次元タイムビン量子もつれ状態生成法，およびカス
ケード接続したMZIによる安定な測定法を実装し，高次元タイムビン量子状態に対する
上記の CGLMP不等式の破れの増加特性を実証することで，これらの状態生成法/測定法
の有用性を示す．

3.3 自発的パラメトリック下方変換による高次元タイムビン
量子もつれ状態生成

実験的にタイムビン量子もつれ状態を生成するには，光非線形現象のひとつである，自
発的パラメトリック下方変換 (SPDC：Spontaneous Parametric Down Conversion) が
主に用いられる．本節ではこれについて述べる．なお，SPDCとしては，2次の非線形光
学効果を用いるタイプと，3次の非線形光学効果を用いるタイプがある．ここでは前者に
ついて述べるが，量子もつれ状態生成という観点からは両者は本質的に同じである．

2次非線形光学効果による SPDCは，角周波数 ω3 の光から，ω3 = ω1 + ω2 を満たす
2つの角周波数の光が発生する過程である．ここで，角周波数 ω3 の光をポンプ光，角周
波数 ω1, ω2 の光をそれぞれシグナル光，アイドラー光と呼ぶ．角周波数 ω の単一光子の
エネルギーは，プランク定数 h を 2π で割った値である，換算プランク定数 ℏ = h/2π
を用いて ℏω で与えられる．したがって，光子描像では，SPDC は高いエネルギー ℏω3

の光子一つが，エネルギー保存則を満たすように，ℏω1, ℏω2 のエネルギーをもつ二つの
光子に変換される過程とみなすことができる (図 3.2)．なお，この周波数関係から必ず
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図 3.2 2次非線形光学結晶を用いた SPDC過程の模式図

ω3 > ω1, ω2 であり，高い周波数の光から低い周波数の光が発生することから，下方変換
と呼ばれている．

SPDC は，非線形光学結晶に対して高強度のポンプ光を入射することで発生する．こ
こで，ポンプ光は十分高強度であるため古典力学的な電磁場として取り扱い，シグナル光
とアイドラー光は，光子数 0の真空場から数光子程度の状態であるため，量子力学的な電
磁場として扱う．量子力学では，電磁場は生成消滅演算子によって記述される．角周波数
ωl の光子の電界振幅に対応する演算子 (消滅演算子)を âl，そのエルミート共役 (生成演
算子，電界振幅の複素共役に相当)を â†

l とする．âl, â†
l は光子数確定状態に対して作用さ

せることで，それぞれ角周波数 ωl の光子ひとつを減らす/増やす性質がある．非線形光学
現象の効率を決める位相整合条件が満たされている状況下で，非線形光学結晶中にポンプ
光を入射すると，結晶内の伝搬に伴ってこれらの演算子は次の微分方程式に従って時間発
展する [89]．

dâ†
1

dt
= iω1â

†
1 + isâ2e

iω3t (3.20)

dâ2

dt
= −iω2â2 − isâ†

1e
−iω3t (3.21)

ただし，sは非線形相互作用の強さを表すパラメータであり，ポンプ光の電場の大きさに
比例する．厳密には，ポンプ光は結晶内を伝搬するにつれて，シグナル/アイドラー光子
生成のため減少するので (ポンプデプレッション)，sは時間の関数である．ただし，ここ
ではポンプ光は十分強く，また発生するシグナル/アイドラー光子は少数であるため，sは
定数とみなしてよい．この場合，式 (3.20), (3.21)は解析的に解くことができ，その解は



3.3 自発的パラメトリック下方変換による高次元タイムビン量子もつれ状態生成 51

次のように表される．

â†
1(t) = [â†

1(0) cosh(st) + iâ2(0) sinh(st)]eiω1t (3.22)

â2(t) = [â2(0) cosh(st) − iâ†
1(0) sinh(st)]eiω2t (3.23)

ただし，â†
1(0), â2(0)は結晶入射時の生成消滅演算子である．先に述べたように，SPDC

はエネルギー保存則 ℏω3 = ℏω1 + ℏω2 を満たすように，ポンプ光子からシグナル/アイド
ラー光子が生成される過程であるので，2つの光子は必ずペアで発生する．ここで，tを
光パルスが結晶を通過する時間とすると，結晶出力時のシグナル光の光子数演算子 n̂out

1

は，次式で表される．

n̂out
1 =â†

1(t)â1(t)

=[â†
1(0) cosh(st) + iâ2(0) sinh(st)][â1(0) cosh(st) − iâ†

2(0) sinh(st)]

=â†
1(0)â1(0) cosh2(st) +

[
â†

2(0)â2(0) + 1
]

sinh2(st)

+ i sinh(st) cosh(st)
(
â1(0)â2(0) − â†

1(0)â†
2(0)

)
(3.24)

上式を導くにあたり，生成消滅演算子の交換関係 [âi, â†
j ] = âiâ

†
j − â†

j âi = δij を用いた．
量子力学では，観測物理量の平均値は，時間発展した物理量演算子を初期状態のブラと

ケットではさみ込んだ内積で与えられる (ハイゼンベルグ描像)．そこで，入力状態はシグ
ナル光，アイドラー光がともに真空場 |vac⟩であるとすると，出力シグナル光の平均光子
数 µ1 が，

µ1 = ⟨vac| n̂out
1 |vac⟩ (3.25)

で与えられる．真空状態から光子数を減らすことはできないため，âl(0) |vac⟩ = 0が成り
立つ (l = 1, 2)．また，この式のエルミート共役から，⟨vac| â†

l (0) = 0も成り立つ．これら
より，式 (3.24)を式 (3.25)に代入すると，µ1 = sinh2(st)となる．この表式は，|st| ≪ 1
であり，生成される光子数が十分少ない場合には，µ1 ≈ s2t2 と近似される．ここで，媒
質伝搬時間 tは定数であり，sはポンプ光の振幅に比例しているので，出力平均光子数は
s2 に比例，すなわちポンプ光強度に比例する．そこで，ポンプ光強度を適切に設定して
s2t2 ≪ 1 とすると，発生する光子対は概ね 1 ペアのみとなる．この時，平均光子数と 1
光子対の生成確率は近似的に比例関係にあるため，1光子対の確率振幅の大きさ (すなわ
ち，生成確率の平方根)は，ポンプ光強度の平方根に比例する．
ここまで，ひとつのパルス内での SPDCについて述べた．すなわち，このパルスの時

間位置を t0 とすると，同じ時間位置 t0 にシグナル光子，アイドラー光子が存在する状態
|00⟩が生成される．ここで，図 3.3のように時間位置 t1 のパルスを追加して 2連ポンプ
パルスとし，二つの時間位置をあわせて光子対が 1ペアだけ生成されるようにポンプ光強
度を設定する．すると，光子対が発生した場合，それがどちらの時間位置にあるかは観測



52 第 3章 高次元タイムビン量子もつれ状態生成制御と CGLMP不等式による検証

図 3.3 SPDCによる 2次元タイムビン量子もつれ状態生成

しないとわからない．これはすなわち，時間位置 t0, t1 それぞれに 1光子対が存在する状
態 |00⟩ , |11⟩の重ね合わせ状態である [90]．この状態 |ψ⟩は次式のように表される．

|ψ⟩ ∝ s0 |00⟩ + s1e
iϕ |11⟩ (3.26)

ただし，s0, s1 は，それぞれ時間位置 t0, t1 におけるポンプ光強度で決まる定数であり，ϕ
は二つのポンプ光パルスの相対位相である．ここで，s0 = s1, ϕ = 0とすれば，発生状態
は，光子対が発生したという条件下で，ベル基底状態

∣∣Ψ00〉となる．
同様にして，上記を d連続ポンプパルス列に拡張すると，次式で表される d次元のタイ
ムビン量子もつれ状態が得られる [45, 91]．

|ψ⟩ ∝
d−1∑
k=0

ske
iϕk |kk⟩ (3.27)

ただし，sk, ϕk は，それぞれパルス時間位置 tk のポンプ光強度および位相で決まる定数
である．ここで，ポンプパルスの強度は同一，かつ同位相とすると，上式は式 (2.52)と等
価となり，d次元最大量子もつれ状態 |ΨMES⟩が得られることになる．また，前節で述べ
た，CGLMP不等式の破れを最大化する量子もつれ状態 |ΨOES⟩[式 (3.19)]は，d = 4の
場合，ポンプパルス光強度の比を 1 : γ2 : γ2 : 1とすると生成される (図 3.4)．このよう
に，SPDCにおいてポンプパルス列を適切に設定することにより，制御された高次元タイ
ムビン量子もつれ状態を生成することができる．
前節で述べた通り，これまでに異なる角周波数光を基底状態とする，周波数ビン量子も
つれ状態を利用した |ΨOES⟩の生成実験が報告されているが [50]，ベル不等式の破れに関
して，最大量子もつれ状態 |ΨMES⟩と最適量子もつれ状態 |ΨOES⟩との明確な差は確認さ
れていなかった．周波数ビン量子もつれ状態の生成にも，SPDCが用いられるが，非線形
光学結晶の分散などのために，非線形デバイス構造の調整により発生光子対の確率振幅を
制御することは難しい．そこで報告例 [50]では，SPDCで生成した量子もつれ状態に対
し，プログラマブル周波数フィルタを用いた周波数等化による振幅調整を施し，|ΨMES⟩
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図 3.4 最適もつれ状態 |ΨOES⟩を生成するためのポンプ光の強度変調

あるいは |ΨOES⟩を生成している．この場合，原理的に光子損失があるため，生成効率が
低い．これに対し，上記で述べたタイムビン量子もつれ状態生成は，ポンプ光により光子
対の確率振幅を制御することができ，このような等化操作が不要である．さらに第二次高
調波生成 (SHG：The Second Harmonic Generation)を用いてポンプ光を生成すること
で，ポンプ光パルスの制御は，光通信で広く使われている光変調器を用いて精度よく実装
することができる．そこで本論文では，この量子もつれ状態生成手法を用いて CGLMP
不等式の破れの増加観測実験を行った．

3.4 多段接続Mach-Zehnder干渉計によるもつれ状態測定
3.4.1 フーリエ基底状態への射影測定
本節では，CGLMP不等式の評価に必要なフーリエ基底状態への射影測定を，多段接続

したMZIを用いて実装する手法について述べる [31, 32, 92]．前節で述べた通り，フーリ
エ基底状態は，式 (3.11)で表される時間位置基底状態の重ね合わせ状態である．2.2.3節
にて，2次元タイムビン量子状態については，遅延MZIを用いてこのような重ね合わせ
状態への射影測定が実装可能であることを述べた．より高次元のタイムビン量子状態の場
合は，図 3.5に示すように，遅延時間の異なるMZIを多段に接続することで，すべての
時間位置基底状態の重ね合わせ状態への射影測定が可能となる．
ここで，4次元タイムビン量子状態に対する，多段接続 MZIの測定演算子について述

べる．まず，遅延時間 τ のMZIに 4次元タイムビン量子状態を入力したときの，一方の
出力ポートへの光子の透過を表す測定演算子は，式 (2.36) の総和の範囲を拡張すること
により，次式のように与えられる．

M̂1x = 1
2

3∑
k=0

(
|k⟩ + eiθ |k + 1⟩

)
⟨k| (3.28)
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図 3.5 多段接続したMZIによるフーリエ基底測定

ただし，表記の煩雑さを避けるため，出力ポートを示すインデックスは省略した．
遅延時間が τ かつ 2経路の伝搬遅延位相差が θ の 1段目MZIからの出力は，遅延時間
が 2τ かつ 2経路の伝搬遅延位相差が 2θ の 2段目MZIに入力される．この 2段目MZI
への入力状態は，1段目MZIの出力なので，5次元状態となっている (図 3.5)．よって，
この入力状態に対する 2段目MZI透過を表す測定演算子は，次式で与えられる．

M̂2x = 1
2

4∑
k=0

(
|k⟩ + ei2θ |k + 2⟩

)
⟨k| (3.29)

図 3.5 に示すように，2 段目 MZI の出力端に置かれた光子検出器では，7 つの時間ス
ロットで光子を検出しうる．このうち中央の時間位置 t3 での光子検出事象は，入力され
た 4つの時間位置状態すべての干渉の結果として生じる．この測定系は，1段目の τ 遅延
干渉計透過，2段目の 2τ 遅延干渉計透過，時間位置 t3 での光子検出，の多段構成となっ
ているので，測定全体を記述する演算子 M̂total および対応する POVM 要素 Êtotal は，
それぞれ次式のように表される．

M̂total = |3⟩⟨3| M̂2xM̂1x

= |3⟩⟨3|

{
1
2

4∑
k=0

(
|k⟩ + ei2θ |k + 2⟩

)
⟨k|

}{
1
2

3∑
k=0

(
|k⟩ + eiθ |k + 1⟩

)
⟨k|

}

= ei3θ

2
|3⟩
{

1
2
(
e−i3θ ⟨3| + e−i2θ ⟨2| + e−iθ ⟨1| + ⟨0|

)}
= ei3θ

2
|3⟩⟨θ| (3.30)

Êtotal = M̂†
totalM̂total

= 1
4

|θ⟩⟨θ| (3.31)
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上式は，多段接続された二つのMZIの伝搬遅延位相を，各MZIの遅延時間に比例した値
に設定すると，フーリエ基底状態 |θ⟩への射影測定が実装できることを示している．そこ
で，θ を式 (3.12)–(3.14) を満たす値とすることで，CGLMP不等式の評価に必要な測定
系が実装できる．
以上では，4次元量子状態に対する測定系の実装方法について述べた．この手法は，さ

らに 4τ 遅延MZI，8τ 遅延MZI，· · ·，2N−1τ 遅延MZIと，干渉計を多段に接続するこ
とにより，2N 次元系に拡張できる．また，本論文では単一の検出器を用い，θを変化させ
る手法を用いているが，ツリー構造で多段に MZIを接続することで，2N − 1個の MZI
と 2N 個の検出器を用いた 2N 個のフーリエ基底状態への射影測定の一括実装が可能であ
り，近年の 2測定基底 QKDプロトコルの実装で用いられている [31, 32, 92]．なお，干
渉計を用いたフーリエ基底状態への射影測定の実装方法としては，マルチポートビームス
プリッタからなる，多腕干渉計を用いる手法も知られている [47]．この測定系は，被測定
量子状態の次元数と同じ数の分岐遅延経路で構成されており，測定にあたってはそれら
の制御/安定化が必要となる．これに対して，本論文で用いる多段MZI系は，d次元状態
に対して log2 d個の伝搬遅延位相のみ制御/安定化が必要であり，実験で制御すべきパラ
メータ数が少ないという利点を持つ．

3.4.2 対称なノイズモデルと干渉縞の明瞭度
前節で，CGLMP 不等式の評価に必要なフーリエ基底状態への射影測定を，多段接続

MZIにより実装する手法について述べた．CGLMP不等式の破れの検証では，特定の位
相の組み合わせにおける光子検出割合を測定する．一方，CGLMP 不等式の簡易な評価
法として，上記のフーリエ基底状態の位相 θ を 0から 2π まで連続的に変えた時の光子検
出数に現れる干渉縞の明瞭度を調べる手法がしばしば用いられる．

CGLMP不等式の Sd と明瞭度を対応させるには，特定のノイズモデルを仮定する必要
があり，これには通常，対称なノイズを表す分極解消チャネルが採用される．密度演算子
が ρ̂AB で表される d次元 2光子量子状態を，分極解消チャネルに入力したときの出力状
態を表す状態密度演算子は，次式で与えられる．

ρ̂mix = λmixρ̂AB + 1 − λmix

d2 1̂ (3.32)

ただし，λmix はノイズによる理想状態からの劣化度合を示すパラメータである．d次元 2
光子完全混合状態 1̂/d2 は，ノイズにより完全ランダムになった状態に対応する．すなわ
ち，このノイズモデルは，確率 λmix で元の量子状態 ρ̂AB を，確率 1 − λmix でランダム
なノイズ状態 1̂/d2 を出力するモデルとなっている．ここで，演算子化した相関パラメー
タ Ŝd を用いると，ノイズにより劣化した CGLMP不等式の相関パラメータ S̃d は，元の
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量子状態に対する Sd を用いて，次式のように与えられる．

S̃d = Tr
(
Ŝdρ̂mix

)
= λmix Tr

(
Ŝdρ̂AB

)
+ 1 − λmix

d2 Tr
(
Ŝd1̂

)
= λmix Tr

(
Ŝdρ̂AB

)
= λmixSd (3.33)

ただし，上記計算過程では Tr
(
Ŝd

)
= 0であることを用いた．上式は，CGLMP不等式

を破る，すなわち S̃d ≥ 2となるために必要なノイズパラメータの閾値 λc が，λc = 2/Sd
で与えられることを示している．これより，高い Sd 値を与える量子状態を測定すると，
小さい λc 値で CGLMP不等式を破ることが可能となり，測定系のノイズ耐性が高いこと
が分かる．

CGLMP不等式の破れを実証するのに必要な λc は，以下のようにして干渉縞の明瞭度
と対応付けられる．まず，式 (3.32)の状態密度演算子で表される量子状態が，フーリエ基
底状態へ射影測定される確率を求める．フーリエ基底状態の位相として，Aliceの位相が
θA，Bobの位相が θB である時の，Aliceと Bobの同時検出確率 Pr(θA, θB)は次式で与
えられる．

Pr(θA, θB) = ⟨θA| ⟨θB | ρ̂mix |θA⟩ |θB⟩

= λmix ⟨θA| ⟨θB | ρ̂AB |θA⟩ |θB⟩ + 1 − λmix

d2 ⟨θA| ⟨θB | 1̂ |θA⟩ |θB⟩

= λmix ⟨θA| ⟨θB | ρ̂AB |θA⟩ |θB⟩ + 1 − λmix

d2

= λmix Pr(θA, θB ; ρ̂AB) + 1 − λmix

d2 (3.34)

ただし，Pr(θA, θB ; ρ̂AB) = ⟨θA| ⟨θB | ρ̂AB |θA⟩ |θB⟩ とした．具体的には，被測定状態が
4次元最大量子もつれ状態 |ΨMES⟩ または 4次元最適量子もつれ状態 |ΨOES⟩である時，
Pr(θA, θB ; ρ̂AB)はそれぞれ次式で与えられる．

Pr(θA, θB ; |ΨMES⟩⟨ΨMES|) = |⟨θA| ⟨θB |ΨMES⟩|2

= 1
4

cos2
(
θA + θB

2

)
cos2 (θA + θB) (3.35)

Pr(θA, θB ; |ΨOES⟩⟨ΨOES|) = |⟨θA| ⟨θB |ΨOES⟩|2

= 1
8(1 + γ2)

[
cos
{

3
2

(θA + θB)
}

+ γ cos
(
θA + θB

2

)]2

(3.36)

これらの確率の最大値はそれぞれ 1/4または (1+γ)2

8(1+γ2) であり，最小値はともに 0である．
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干渉縞の明瞭度 V は，θA, θB をそれぞれ [0, 2π]の範囲で変化させた時の，光子検出確
率 Pr(θA, θB)の最大値 max Pr(θA, θB) および最小値 min Pr(θA, θB)を用いて，次のよ
うに定義される．

V := max Pr(θA, θB) − min Pr(θA, θB)
max Pr(θA, θB) + min Pr(θA, θB)

(3.37)

式 (3.34)–(3.37) および式 (3.33) から求まる，CGLMP 不等式の破れの観測に必要な
ノイズパラメータの閾値 λc を用いると，CGLMP不等式の破れの観測に必要な明瞭度の
下限 Vc が求まる．具体的には，4次元最大量子もつれ状態の場合は Vc = 81.7%，4次元
最適量子もつれ状態の場合は Vc = 80.1%となる．よって，最適もつれ状態を用いると，
よりノイズが大きく明瞭度が低い場合でも，量子もつれ状態を検証しやすくなる．
ただし，明瞭度による検証法はあくまで簡易な手法であり，高い明瞭度を観測したから

といって，直ちに CGLMP 不等式の破れが実証できたとは結論付けられない．例えば，
干渉縞の形状が歪んでいる場合には，CGLMP不等式の破れが観測できたとは言えない．
また，通常，明瞭度を測る際には，θB を固定し，θA を [0, 2π] の間で変化させて明瞭度
を測定するが，θB の設定値が一つだけだと，セパラブル状態 (非もつれ状態)であっても
同様の干渉縞を示すことがあり得る．したがって，真に量子もつれ状態を検証するには，
CGLMP不等式を直接評価することが必要となる．

3.5 実験系
前節までで述べた，4次元タイムビン量子もつれ状態生成法および CGLMP不等式評

価法を，実験により検証した．本節ではその実験系について述べる．
図 3.6に実験系構成を示す．波長 1551.1 nmのCWレーザ光を 2段接続 LiNbO3 光強

度変調器 (IM)により変調し，パルス幅 100 ps/パルス間隔 1 nsの 4連続パルス列を繰り
返し周波数 125 MHzで生成する．IM1はポンプ光強度比が最適もつれ状態を生成する比
率となるように強度変調するため，IM2はNRZ光をパルス化するために用いる．4連パ
ルスは，エルビウム添加光ファイバ増幅器 (EDFA) で増幅後，ファイバブラッググレー
ティングフィルタ (FBG) により雑音光が除去されたのち，可変光減衰器 (VATT) によ
り，後段の SPDCで発生する光子対の数が 4連パルス当たり平均で 0.01となるように光
パワーが設定される．その後，4連パルス列は周期的分極反転ニオブ酸リチウム (PPLN)
導波路に入力され，導波路内で生じる第二次高調波生成 (SHG)によって，波長 780 nm
の光パルス列に変換される．そして，光バンドパスフィルタ (BPF)により，波長 1551.1
nmの光を除去したパルス列を，SPDCによる量子もつれ状態生成のためのポンプ光とす
る．このポンプパルス列は次段の PPLN導波路に入力され，ここで発生する SPDCによ
り 4次元タイムビン量子もつれ状態が生成される．ここで発生するシグナル/アイドラー
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図 3.6 実験系．CW laser: CW レーザ光源，IM: 光強度変調器，EDFA: エルビウ
ム添加光ファイバ増幅器，FBG: ファイバブラッググレーティングフィルタ，VATT:
可変光減衰器，PPLN: 周期的分極反転ニオブ酸リチウム，BPF: 光バンドパスフィル
タ，WDM: 波長分離フィルタ，PC: 偏波コントローラ，Pol: 偏光子，遅延MZI: 遅
延Mach-Zehnder干渉計，SNSPD: 超伝導ナノワイヤ単一光子検出器，TIA: タイム
インターバルアナライザ

光は，位相整合条件を満たす広い波長域にわたり生成される．この中から 3.3節で述べた
ω1 + ω2 = ω3 を満たす，1555 nm と 1547 nm の光を透過帯域幅 100 GHz の波長分離
フィルタ (WDM)によって抜き出し，前者を Aliceに，後者を Bobにそれぞれ送信する．
実験に用いた干渉計には偏波依存性があるため，送信された光パルス列は，偏波コント
ローラ (PC)および偏光子 (Pol)によって偏波状態が調整された後，多段遅延MZIに入力
される．このMZIは平面光波回路 (PLC)技術により作製されており，基板の温度制御，
および光路上に取り付けられた薄膜ヒータによる熱光学効果を介した屈折率制御によっ
て，安定した干渉動作が得られる [93, 94]．この薄膜ヒータへの印加電流によりMZIの 2
経路の伝搬位相差を設定して，3.4.1節で述べたフーリエ基底状態への射影測定を実装す
る．2段MZIから出力されたパルス列は，光子検出効率が最大となるように偏波が調整
された後，超伝導ナノワイヤ単一光子検出器 (SNSPD)に入力される．SNSPDの光子検
出効率は，Aliceと Bobでそれぞれ 19, 17%であった．SNSPDでは，光子を入力してい
ないときにも，誤って検出信号を出力するダークカウントという現象が生じるが，どちら
の検出器においてもダークカウント率は 10 cps (counts/sec)以下であった．SNSPDか
らの検出信号はタイムインターバルアナライザ (TIA)に入力され，測定対象となる時間
位置における，2 つの SNSPD での同時検出数 (同時計数) がカウントされる．以上によ
り，CGLMP不等式の評価に必要な測定値を得る．



3.6 実験結果 59

3.6 実験結果
3.6.1 最大量子もつれ状態の場合
前節で述べた実験系により，最大量子もつれ状態 |ΨMES⟩を生成/測定した．本節では，

その実験結果を述べる．
3.4.2節で述べたように，CGLMP不等式の簡易な評価法として，Bob側の位相 θB を

固定し，Alice側の位相 θA を [0, 2π]で変化させたときの，干渉パターンの明瞭度を測定
する方法がしばしば用いられる．そこでまず，この干渉縞測定を行った．図 3.7に，Bob
の射影位相を θB = 0または π/4とした時の，90秒間同時計数の測定結果を示す．横軸
は Aliceの射影測定フーリエ基底状態 |θA⟩の位相，縦軸は同時計数である．赤丸は Bob
側の位相が θB = 0の時，青三角は θB = π/4の時の結果である．また，同時計数がポア
ソン分布に従うという仮定の下での標準偏差をエラーバーにより示している．
最大量子もつれ状態を測定した場合の干渉縞の θA, θB 依存性は，式 (3.35) の

Pr(θA, θB ; |ΨMES⟩⟨ΨMES|) で与えられる．そこで，測定によって得られた同時計数に対
し，次式によるフィッティングを行った．

Cfit
MES(θA, θB) = m1

Pr(θA, θB ; |ΨMES⟩⟨ΨMES|)
max Pr(θA, θB ; |ΨMES⟩⟨ΨMES|)

+m2 (3.38)

ただし，max Pr(θA, θB ; |ΨMES⟩⟨ΨMES|) = 1/4 であり，m1,m2 は曲線のフィッティン
グパラメータである．同じ図 3.7に，θB = 0, π/4の同時計数それぞれについて，上式に

図 3.7 最大もつれ状態 |ΨMES⟩を測定した場合の，Aliceの干渉計位相 θA に対する同時計数
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表 3.2 最大量子もつれ状態 |ΨMES⟩に対する，CGLMP不等式検証のための同時計数 [/2 min]

Bob
基底 b = 0 基底 b = 1

[rad] π
8 − 3

8π − 7
8π − 11

8 π −π
8 − 5

8π − 9
8π − 13

8 π

0 605 72 34 49 493 36 37 67
基底 π

2 46 453 74 17 62 545 31 38
a = 0 π 29 40 508 85 30 45 555 27

Alice 3
2π 102 32 33 535 26 26 48 671
π
4 102 529 40 47 515 94 23 53

基底 3
4π 30 28 473 28 22 445 92 24

a = 1 5
4π 47 15 97 581 25 28 581 98
7
4π 611 22 18 48 67 27 34 600

よるフィッティング曲線を赤と青の実線で示す．このフィッティングパラメータから，式
(3.37)の明瞭度 V が次式によって求められる．

V = m1

m1 + 2m2
(3.39)

フィッティングの結果，θB = 0, π/4それぞれに対して，V = 98.25±0.86, 99.96±0.94%
であった．3.4.2節で述べた通り，最大量子もつれ状態の場合に，CGLMP不等式の破れ
を観測するために必要な明瞭度は V ≥ 81.7%である．したがって，θB = 0, π/4のどち
らの場合においても，CGLMP 不等式の破れを示唆する干渉パターンが観測できたと言
える．
ただし，3.4.2節で述べた通り，明瞭度による評価は特定のノイズモデルを仮定した簡易
な手法であり，CGLMP不等式の破れを直接示すものではない．そこで，式 (3.12)–(3.14)
で与えられる位相の組合せにおける同時計数測定を行い，CGLMP不等式の相関パラメー
タ S4 を直接評価した．表 3.2に，各 θA, θB の組合せについて，2分間測定を行った時の
同時計数を示す．この測定結果から，式 (3.10) 中の確率を求め，相関パラメータを計算
したところ，S4 = 2.774 ± 0.025 を得た．ただし，誤差範囲は同時計数がポアソン分布
に従うと仮定して計算したものである．この値は，CGLMP不等式 S4 ≤ 2と比べ，標準
偏差の 31倍大きな値となっている．よって，4次元タイムビン量子もつれ状態を用いて，
CGLMP不等式の破れを明確に観測することができたといえる．
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3.6.2 最適量子もつれ状態の場合
次に，CGLMP不等式の破れを最大化する，最適量子もつれ状態 |ΨOES⟩の生成/測定

実験を行った．本節ではその実験結果について述べる．
3.3節で述べたように，SPDCのポンプ光パルス列を強度変調する事によって，最適量

子もつれ状態を生成することができる．図 3.6に示す実験系の IM1により，4連ポンプパ
ルスの強度比を 1 : γ2 : γ2 : 1(ただし，γ < 1)に変調して，最適もつれ状態を生成した．
波長分離フィルタにより取り出したシグナル光を，直接 SNSPDで測定した時の，光子検
出数のヒストグラムを図 3.8に示す．横軸は TIA上の光子検出時刻，縦軸は各時刻にお
ける光子検出数の相対値である．図には 3 周期分の 4 連パルスの測定結果が示されてお
り，各ピークの高さが，それぞれの時間位置での光子検出確率に対応する．この光子検出
数の比から，|ΨOES⟩の振幅の変調パラメータ γ は γ = 0.738と推定された．この値は，
最適値 γ = 0.739に近い値であり，強度変調器によるポンプ光変調というシンプルな手法
により，最適量子もつれ状態が生成されたことが示唆される．
上記のように生成した最適量子もつれ状態に対して，干渉縞測定実験を行った．図 3.9

に，Bob側の位相を θB = 0で固定して Alice側の位相を変化させたときの，60秒間の同
時計数を示す．4 連パルス当たりの平均光子数は 0.02 とした．横軸は Alice の射影測定
フーリエ基底状態 |θA⟩の位相，縦軸は最大値で規格化した同時計数である．比較のため，
図には最大量子もつれ状態測定時の規格化同時計数 [図 (3.7)]もプロットしてある．赤丸

図 3.8 波長分離フィルタ直後で測定した，最適量子もつれ状態 |ΨOES⟩に対する規格
化シングルカウント
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図 3.9 最適もつれ状態 |ΨOES⟩ を測定した場合の，Alice の干渉計位相 θA に対する
同時計数 [/60 sec](Bobの位相は θB = 0)

が最大量子もつれ状態に対する測定結果，青三角が最適量子もつれ状態に対する測定結果
である．エラーバーは，同時計数がポアソン分布に従うとした時の標準偏差である．最適
量子もつれ状態の測定結果は，最大量子もつれ状態の測定結果に比べて，θA = 3π/4およ
び 5π/4付近の小さなピークの値が高く，また，θA = π/2, 3π/2近傍の極小値の位置がそ
れぞれやや左または右側にシフトしている．この測定結果に対して，前節と同様に，次式
によるフィッティングを行った．

Cfit
OES(θA, θB) = m1

Pr(θA, θB ; |ΨOES⟩⟨ΨOES|)
max Pr(θA, θB ; |ΨOES⟩⟨ΨOES|)

+m2 (3.40)

ただし，max Pr(θA, θB ; |ΨOES⟩⟨ΨOES|) = (1 + γ)2

8(1 + γ2)
であり，m1,m2 は曲線のフィッ

ティングパラメータである．図 3.9に青色の実線で示されているのが，フィッティングに
よって得られた曲線である．これより得られる干渉縞の明瞭度は V = 97.72 ± 1.30%で
あった．さらに，同様の測定/フィッティングを Bob側の位相を θB = π/4として行った
ところ，V = 97.44 ± 0.96%であった．最適量子もつれ状態を測定した場合の，CGLMP
不等式の破れ観測に必要な明瞭度は V ≥ 80.1% である．したがって，本実験により，
CGLMP不等式の破れを示唆する干渉パターンが観測がされたと言える．
次に，CGLMP 不等式そのものを評価する相関パラメータの位相の組み合わせについ
て，同時計数を測定した．表 3.3に，各 θA, θB の組合せについて，2分間測定した結果を
示す．この測定結果から相関パラメータを計算したところ，S4 = 2.913 ± 0.023 であっ
た．この値は，CGLMP不等式の閾値 2を標準偏差の 39倍上回っており，最大量子もつ
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表 3.3 最適量子もつれ状態 |ΨOES⟩に対する，CGLMP不等式の検証のための同時計数 [/2 min]

Bob
基底 b = 0 基底 b = 1

[rad] π
8 − 3

8π − 7
8π − 11

8 π −π
8 − 5

8π − 9
8π − 13

8 π

0 544 38 21 60 517 54 33 30
基底 π

2 57 426 46 24 24 458 47 53
a = 0 π 29 63 470 25 20 26 453 53

Alice 3
2π 30 49 63 408 57 43 21 445
π
4 57 462 64 42 517 40 18 84

基底 3
4π 52 29 422 35 57 398 44 20

a = 1 5
4π 70 28 51 439 56 80 430 31
7
4π 459 55 48 30 44 40 71 408

れ状態測定時の値より大きい．すなわち，本実験により最適化された高次元タイムビン量
子もつれ状態により，CGLMP 不等式の破れが増大することが初めて観測された．最適
量子もつれ状態自体は QKD性能を向上させるものではないが，これまで検証されていな
かった不等式の明確な破れの増加が実証できるほどに，高い安定性と制御性をもつ高次元
タイムビン量子もつれ状態が生成/測定できることが示されたと言える．

3.7 結言
本章では，高次元量子もつれ状態の生成方法およびその実験的検証について述べた．一

般に，量子もつれ状態の判定には，古典的な隠れた変数理論から導き出されるベル不等式
が破られるか否かが基準となる．そこでまず，ベル不等式の高次元量子状態への拡張であ
る CGLMP不等式について述べ，量子もつれ状態を最適化することで，より大きな不等
式の破れが観測可能であることを示した．そして，SPDC を用いたタイムビン量子もつ
れ状態の生成法において，ポンプ光の強度制御という簡便な方法により，不等式の破れを
最大化する最適量子もつれ状態が生成できることを示した．また，CGLMP 不等式の破
れ観測に必要なフーリエ基底状態への射影測定を，多段接続MZIを用いて実装する手法
について述べた．そして，これら SPDC による状態生成法と MZI による測定法を用い
た検証実験を行い，4次元タイムビン量子もつれ状態についての CGLMP不等式の破れ
を初めて観測した．また，ポンプ光強度変調を用いた最適量子もつれ状態生成法により，
CGLMP 不等式の破れが増大することを初めて実験的に観測し，上記量子もつれ状態生
成/測定法の高い安定性と制御性を示した．
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第 4章

量子状態トモグラフィーを用いた
高次元量子もつれ状態の長距離伝送
特性評価

4.1 緒言
本論文では，QKDへの応用を想定し，長距離ファイバ伝送が可能な高次元量子もつれ

状態として，タイムビン状態を採り上げている．そこで本章では，前章の手法で生成した
高次元タイムビン量子状態の長距離伝送特性を検証する．ただし，特性評価にあたって
は，QKDプロトコルで用いられている測定法ではなく，量子状態トモグラフィー (QST:
Quantum State Tomography)と呼ばれる手法を用いる．これは，QKDに限らず，他の
量子通信システムへの応用も視野に入れているためである．QSTを用いれば，特定の測
定法によらず，もつれ状態そのものの特性あるいは品質を一般的に評価することができ
る．まず 4.2節にて，QSTによる状態密度演算子の推定について述べる．長距離伝送さ
れた量子状態を測定する場合，伝搬損失のためにごく少数の光子しか受信できず，統計的
な測定に長時間を要する．そのため，簡便なセットアップによる効率的な測定系の実装が
必要となる．そこで本論文では，既存の 2次元タイムビン量子状態に対する QST[90]を
拡張し，2値の遅延位相をもつMZIをカスケード接続した構成による，高次元タイムビ
ン量子状態に対する効率的な QSTの実装法を提案する．
量子状態の定量的な評価にあたっては，QSTによって推定された状態密度演算子から

様々な指標を見積もることになる．そこで 4.3 節では，高次元量子もつれ状態に関わる
いくつかの指標を紹介する．そして 4.4節にて，提案した QSTの原理実証実験，および
100 kmファイバ伝送後の量子状態に対する QSTにより，長距離伝送後の 4次元タイム
ビン量子もつれ状態の品質を検証する．
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4.2 量子状態トモグラフィー
2.2.2節で述べたように，古典状態を含む一般的な混合量子状態は，状態密度演算子に
よって記述される．状態密度演算子は与えられた量子状態についての測定確率に関するす
べての情報を含んでおり，状態密度演算子から任意の物理量や状態に関する情報を得るこ
とができる．したがって，状態密度演算子を推定することで，特定の量子通信プロトコル
によらない，量子状態そのものの評価が可能となる．
量子状態トモグラフィー (QST: Quantum State Tomography)[95, 96]は，複数の測定
結果の確率分布から，状態密度演算子を推定する手法である．これまで，高次元量子状態
に対する QSTとしては，光軌道角運動量 (OAM)/周波数位置/時間エネルギー不確定性
に基づく量子状態に対する実装法が知られている他 [50, 56, 97]，高次元タイムビン量子
状態に対する QSTも近年報告されている [49]．この手法では，d次元時間位置基底状態
のうち，特定の二つの時間位置基底状態 |i⟩ , |j⟩を縦/横偏波状態 |H⟩ , |V ⟩に変換し，偏
波量子状態に対する QSTを適用することで高次元量子状態に対する QSTを行っている．
しかしながら，実験系が複雑であることに加え，二次元部分空間への射影を用いるため
に，多数のパラメータの組み合わせについて測定する必要がある．本章では，QSTによ
り長距離伝送後の量子もつれ状態を検証するが，ファイバ損失によって多数の光子が失わ
れるため，測定に長時間を要する．したがって，測定に用いる設定パラメータ数が少ない
QSTが望まれる．そこで本節では，既存の 2次元タイムビン量子状態に対する QST[90]
を拡張して，高次元タイムビン量子状態に対するコンパクトな QSTを提案する．

4.2.1 2次元タイムビン量子状態に対する QST

本節では，本論文で提案する手法の基礎となる，既存の 2次元タイムビン量子状態に対
する QST[90] について説明する．なお，複数光子全体を表す状態密度演算子の QST に
は，各光子に対する QST実装に必要な測定を組み合わせればよいことが知られているた
め [95]，ここでは量子もつれ状態のような 2光子に対する QSTではなく，1光子の 2次
元タイムビン量子状態に対する QSTについてのみ述べることとする．
状態密度演算子 ρ̂は，時間位置基底による展開形として，一般に式 (2.19)のように表
すことができる．2次元の場合，式 (2.19)は次式となる．

ρ̂ =
∑

i,j∈{0,1}

rij |i⟩⟨j| (4.1)

QSTとは，上記の rij を要素とするエルミート行列を推定することである．2次元の場合
は 2 × 2の行列であるため，合計 4つの実数パラメータを推定することになる．ただし，
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状態密度演算子は，確率の総和である Tr(ρ̂) = 1，すなわち r00 + r11 = 1という制約条
件があるため，推定すべきパラメータ数は 3である．
ρ̂がエルミート演算子であることを利用すると，式 (4.1)は Pauli演算子を用いた展開

形でも表現できる．ここで，Pauli演算子とは，次式で与えられる 3つのエルミートかつ
ユニタリーな演算子である．

σ̂x =
(

0 1
1 0

)
= |+⟩⟨+| − |−⟩⟨−| (4.2)

σ̂y =
(

0 −i
i 0

)
= |L⟩⟨L| − |R⟩⟨R| (4.3)

σ̂z =
(

1 0
0 −1

)
= |0⟩⟨0| − |1⟩⟨1| (4.4)

ただし，行列表現は，演算子を時間位置基底 |0⟩ , |1⟩ およびそのエルミート共役 ⟨0| , ⟨1|に
より展開した時の表式である．一般に演算子を異なる基底で表現すると行列表現は異なる
ものとなるが，本章ではつねに時間位置基底による行列表現を用いる．また，式 (4.4)の
σ̂z = |0⟩⟨0|−|1⟩⟨1|という表式は，̂σz の固有状態は |0⟩ , |1⟩ ,その固有値がそれぞれ+1,−1
であることを示している．σ̂x, σ̂y も同様に，固有状態がそれぞれ {|+⟩ , |−⟩}, {|L⟩ , |R⟩}
であり，±1の固有値を持つ．

Pauli演算子は，全てトレースレス，すなわちトレースが 0の演算子であり，さらに次
の関係式を満たしている．

σ̂2
x = σ̂2

y = σ̂2
z = 1̂ (4.5)

σ̂xσ̂y = −σ̂yσ̂x = iσ̂z

σ̂yσ̂z = −σ̂zσ̂y = iσ̂x

σ̂zσ̂x = −σ̂xσ̂z = iσ̂y

(4.6)

Pauli演算子を用いると，式 (4.1)の状態密度演算子 ρ̂は次式のように書き直される．

ρ̂ = 1
2
(
1̂ + sxσ̂x + syσ̂y + szσ̂z

)
(4.7)

ここで sx, sy, sz は実数パラメータである．上式は，QST としてはこの 3 つの実数
sx, sy, sz を推定すればよいことを示している．ここで，Pauli演算子がトレースレスであ
ること，および式 (4.5), (4.6)から，次式が成り立っている．

sz = Tr(σ̂z ρ̂) (4.8)

式 (4.4)の固有値展開形を用いると，この表式は次のように書き直される．

sz = Tr(|0⟩⟨0| ρ̂) − Tr(|1⟩⟨1| ρ̂)
= ⟨0| ρ̂ |0⟩ − ⟨1| ρ̂ |1⟩ (4.9)
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図 4.1 遅延MZIを用いた 2次元タイムビン量子状態の QST

σ̂x, σ̂y についても同様である．上式は，Pauli演算子 σ̂i(i ∈ {x, y, z})の固有状態に対す
る測定確率の差によって，対応する si が決定できることを示している．式 (4.2)–(4.4)に
示されているように，3つの Pauli演算子の固有状態は，それぞれ時間位置基底 {|0⟩ , |1⟩}，
位相基底 {|+⟩ , |−⟩}，位相基底 {|L⟩ , |R⟩} の各基底状態である．したがって，これらの
状態への射影測定を実装すれば，2次元タイムビン量子状態への QSTが実装できたこと
になる．
なお，2.2.1節で述べた通り，位相基底 {|+⟩ , |−⟩}および {|L⟩ , |R⟩}は，水平/垂直偏
波を基底とするジョーンズベクトルとの類似性からこのように表記される．この類似性か
ら式 (4.9)をながめると，sx, sy, sz は規格化したストークスベクトルの 3つの成分に対応
することが分かる．したがって，2次元量子状態の QSTは，古典電磁気学ではストーク
スベクトルによる偏波状態の推定に対応すると言える．
上記 3つのパラメータは，遅延MZIを用いて測定することができる [90]．2.2.3節で述
べたように，2 次元タイムビン量子状態を遅延 MZI に入力すると，3 つの異なる時間位
置で光子が検出され得る (図 4.1)．この時，式 (2.40), (2.42) の POVM 要素 Êx0 , Ê

x
2 が

示すように，MZI出力における時間位置 t0, t2 での光子検出は，被測定状態に対する時間
位置基底への射影測定となる．一方，式 (2.41), (2.43)の POVM要素 Êx1 , Ê

y
1 が示すよ

うに，時間位置 t1 での光子検出は，出力ポートに応じてそれぞれ状態
(
|0⟩ + eiθ |1⟩

)
/
√

2
および状態 (

|0⟩ − eiθ |1⟩
)
/
√

2 への射影測定となる．ここで，θ = 0 とすれば位相基底
{|+⟩ , |−⟩}への射影測定が，θ = π/2とすれば位相基底 {|L⟩ , |R⟩}への射影測定が実装
される．すなわち，設定パラメータが二値の遅延位相である遅延MZIを用いることによ
り，2次元タイムビン量子状態の QSTが実装できる．
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なお，図 4.1の構成では，MZIの出力双方に光子検出器を配置しているが，QST実装
においては一方が不要となる．これは，位相基底の 2 つの基底状態，例えば状態 |+⟩ と
|−⟩への射影測定確率の和が 1であり，一方の測定確率が分かれば他方の測定確率は観測
しなくても分かるためである．ただし，時間位置基底の測定は双方用いる必要がある．こ
れは，ある状態への射影測定確率を実験的に推定するためには，その状態への射影測定で
検出された光子数を，基底を構成する全ての状態への射影測定で検出された光子数で規格
化した，検出割合によって推定するためである．ただし，規格化のための光子数はどれか
一つの基底での検出光子の総数が分かればよい．これはどの基底においても確率の合計
は 1であるから，別の基底での検出光子の総数が期待値としては同じであるためである．
よって時間位置基底での検出光子数の総数が分かれば，位相基底での検出光子数の総数を
実際に測定する必要はない．図 4.1で言えば，青色の点線で囲われた部分での光子検出の
総数が分かれば，橙色の点線で囲われた部分での光子検出の総数は不要である (ただし，
分岐比にあたる POVM要素の係数分の補正は必要)．したがって，単一のMZI，単一の
光子検出器，および 2種の位相パラメータのみで QSTをコンパクトに実装できる．

4.2.2 高次元タイムビン量子状態に対する QST

本節では，前節で述べた 2次元タイムビン量子状態に対する QSTを，高次元タイムビ
ン量子状態に拡張する．
まず，高次元量子状態の QSTのために，測定系が満たすべき条件を考察する．d次元

量子状態の密度演算子 ρ̂は，式 (2.19)中の rij を要素とする d× dエルミート行列によっ
て表される．2 次元量子状態の密度演算子は式 (4.2)–(4.4) の Pauli 演算子の線形和で表
された．同様に，d次元量子状態の密度演算子は，エルミート性に着目して Pauli演算子
を高次元化した，一般化 Gell–Mann演算子 Ĝi の線形和として記述できる [96]．
まず，一般化 Gell–Mann演算子は次のようにして定義される．時間位置基底で展開し

た行列表現において，j 行 k 列の要素のみが 1であり (j, k ∈ [0, · · · , d− 1])，その他の要
素が全て 0である演算子を êkj := |j⟩⟨k|とする．この êkj を用いて，次の 3つの演算子を
定義する．

Θ̂k
j := êkj + êjk (4.10)

Ξ̂kj := −i(êkj − êjk) (4.11)

Υ̂r
r :=

√
2

r(r + 1)

r−1∑
j=0

êjj − rêrr

 (4.12)

ただし，0 ≤ j < k ≤ d− 1，および 0 < r ≤ d− 1である．例えば，d = 3の場合，Θ̂k
j
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および Ξ̂kj は下記の演算子となる．

Θ̂1
0 =

0 1 0
1 0 0
0 0 0

 , Θ̂2
0 =

0 0 1
0 0 0
1 0 0

 , Θ̂2
1 =

0 0 0
0 0 1
0 1 0

 (4.13)

Ξ̂1
0 =

0 −i 0
i 0 0
0 0 0

 , Ξ̂2
0 =

0 0 −i
0 0 0
i 0 0

 , Ξ̂2
1 =

0 0 0
0 0 −i
0 i 0

 (4.14)

式 (4.13), (4.14)を，それぞれ σ̂x, σ̂y の行列表現である式 (4.2), (4.3)と比較すれば，そ
のインデックスの行と列のみを抽出した小行列が同一であり，その他の成分は 0の行列で
あることが分かる．すなわち，Θ̂k

j および Ξ̂kj は，|j⟩ , |k⟩により形成される 2次元部分空
間において，それぞれ σ̂x, σ̂y に対応する演算子となっている．一方，d = 3の場合の Υ̂r

r

は，次式のように表される．

Υ̂1
1 =

1 0 0
0 −1 0
0 0 0

 , Υ̂2
2 = 1√

3

1 0 0
0 1 0
0 0 −2

 (4.15)

式 (4.4)の σ̂z の行列表現と比較すれば，Υ̂1
1 の左上 2 × 2の小行列が σ̂z に等しいことが

分かる．また，Υ̂2
2 についても，トレースレスな対角行列という σ̂z と同じ特徴を持ってい

る．すなわち，Υ̂r
r は σ̂z の d次元系への拡張とみなす事ができる．一般化 Gell–Mann演

算子 Ĝi とは，上記演算子 Θ̂k
j , Ξ̂kj , Υ̂r

r に恒等演算子 1̂を加えたものである．なお，本論文
においては Ĝi のインデックス iの順序は重要ではないため，Ĝ0 = 1̂となることのみ定
めておく．
上記一般化 Gell–Mann演算子 Ĝi を用いると，d次元量子状態の密度演算子 ρ̂が次の
ように表される．

ρ̂ =
d2−1∑
i=0

giĜi (4.16)

ただし，gi は実数パラメータであり，確率の総和の Tr(ρ̂) = 1から g0 = 1/dである．
ここで，状態密度演算子が ρ̂である光子をN 個用意し，射影測定演算子 P̂j で表される
測定を各光子に対して行うことを考える．この時の検出光子数の期待値 nEj は次式で与え
られる．

nEj = N Tr
(
P̂j ρ̂
)

= N
d2−1∑
i=0

Aijgi (4.17)

ただし，Aij := Tr
(
P̂jĜi

)
とした．式 (4.17) は，射影測定 P̂j を行った時の検出光子数

nEj と，式 (4.16)の展開係数 gi を関係付ける線形方程式となっている．したがって，任意
の gi を求めるためには，Aij を i行 j 列目の要素とする行列のランクが，gi の自由度，す
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図 4.2 4次元タイムビン量子状態の等価な量子ビット表現

なわち d2 − 1である必要がある．さらに，実際の実験の際には，検出光子数の合計 N も
測定することになる．そこで，改めて Ngi を QSTで推定すべきパラメータと考えれば，
QSTが実行可能である条件は，Aij を要素とする行列のランクが d2 となることである．
上記条件を満たす測定演算子 P̂j を考えるには，2K 次元タイムビン量子状態を，K 個

の等価な 2次元量子状態で表現するアプローチが有効である．具体例として，4次元タイ
ムビン量子状態，すなわちK = 2の場合について考える (図 4.2)．この場合の時間位置基
底状態を |0⟩ , |1⟩ , |2⟩ , |3⟩とする．各状態 |i⟩のインデックス iを 2桁のビット q1q0 を用
いて表すと，各時間位置基底状態は 2つの量子ビットからなる状態，|00⟩ , |01⟩ , |10⟩ , |11⟩
として表現できる (図 4.2左側)．このような等価な表現は，量子コンピュータ上で整数値
を複数量子ビットによって表現する際など，量子情報分野でしばしば用いられる [1]．こ
こで，q0 が表す量子ビットに着目すると，図 4.2右上に示すように，黒の点線で囲んだ時
間位置 {t0, t2}が |0⟩を，黄色の点線で囲んだ時間位置 {t1, t3}が |1⟩をそれぞれ表してい
る．この 2 つのブロックは点線で囲んだ構造が等しくかつ時間差が τ となっている．し
たがって，q0 が表す等価な量子ビットは，物理的にはブロック間の時間差 τ を持つ 2次
元タイムビン量子状態と言える．同様に，図 4.2右下に示すように，q1 が表す等価な量子
ビットは，物理的にはブロック構造の時間差 2τ を持つ 2次元タイムビン量子状態である．
前節で述べたように，2次元タイムビン量子状態への QSTは，遅延時間がタイムビン

量子状態の時間差に等しいMZIにより実装可能である．さらに，二つの量子ビットから
なる全系の状態密度演算子に対する QSTは，各量子ビットに対する QST測定の組み合
わせで実装できることが知られている [95]．2次元タイムビン量子状態の QSTに必要な
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図 4.3 多段接続MZIを用いた 4次元タイムビン量子状態の QST

測定は，{|0⟩ , |1⟩ , |+⟩ , |L⟩}の 4状態への射影測定であった．これらの組み合わせとして
は，例えば，|00⟩ , |01⟩や |0+⟩ , |0L⟩ , |++⟩などの状態への射影測定が考えられる．
このような測定系実装としては，3.4.1 節でも述べた多段接続 MZI が有効である．図

4.3に，4次元タイムビン量子状態に対する QST測定系の構成を示す．ただし，3.4.1節
で示した構成とはMZIの順序が入れ替わっているが，QSTの実行可能性について本質的
に差異はない．ここでは，後述する測定の効率化を目的として 2τ 遅延MZIを前段に配置
している．

4次元タイムビン量子状態を，遅延時間 2τ かつ伝搬位相差が θ2 のMZIに入力すると，
その出力端では入力パルスが 2タイムスロット分ずれて重なり合うため，6つのタイムス
ロットに光子が存在しうる．このうち，中心の 2つのタイムスロットでは干渉が起こる一
方，その他のタイムスロットでは干渉が生じない．q1 と等価な量子ビット (図 4.2 右下)
に着目すると，最初の 2パルスでの光子検出が |0⟩への射影測定，最後の 2パルスでの光
子検出が |1⟩への射影測定，そして中心の 2パルスでの光子検出が |θ2⟩の射影測定に対応
している．これは，前節で述べた 2次元タイムビン量子状態の QST測定と同様であり，
2τ 遅延 MZI 透過過程は q1 で表される量子ビットへの QST 測定と等価とみなすことが
できる．
この 2τ 遅延MZI出力を τ 遅延MZIに入力する．τ 遅延MZI透過過程は q0 で表され
る量子ビットへの QST測定に対応すると考えられ，その出力ポートにおける各タイムス
ロットでの光子検出確率を求めることで，2つの量子ビット全体，すなわち高次元タイム
ビン量子状態全体の QSTが可能となる．ここで，各MZIの伝搬遅延位相 θ2, θ1 は，それ
ぞれ 0もしくは π/2とすればよい．すなわち，4つの測定パラメータ設定により QSTが
実装される．
ただし，上記測定系による QSTの説明は，2次元測定系の原理による直感的なもので
あり，提案手法は先述の |00⟩ , |01⟩や |0+⟩ , |0L⟩ , |++⟩などへの射影測定による QSTで
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はない．例えば，入力時の時間位置が t1 にあるパルスからは，後段 MZI 出力タイムス
ロット t1, · · · , t4 のいずれかで光子が検出されるが，これらでは全て他のパルスと干渉し
ている (図 4.3)．そのため，MZIの伝搬遅延位相を変化させるだけでは，|01⟩への射影測
定を行うことはできない．したがって，上記測定系が真に QSTを実装可能かどうかを検
証する必要がある．

QST の可否を決める条件は，式 (4.17) に現れる Aij を要素とした行列のランクが d2

か否かであった．そこで，2段MZI構成で実行可能な全ての POVM要素を求め，Aij の
ランクを調べることにより，上記提案測定系で QSTが可能かどうかを判定する．本測定
系による全ての POVM 要素は次のように求められる．第 2 章および第 3 章で述べた通
り，図 4.3の 2τ 遅延MZIの出力ポート 2xへの透過を表す測定演算子は次式で与えられ
る．

M̂2x = 1
2

3∑
k=0

(
|k⟩ + eiθ2 |k + 2⟩

)
⟨k| (4.18)

同様に，τ 遅延MZIの出力ポート 1xへの透過を表す測定演算子は次式となる．

M̂1x = 1
2

5∑
k=0

(
|k⟩ + eiθ1 |k + 1⟩

)
⟨k| (4.19)

後段の τ 遅延MZI出力ポートでは，7つの時間位置で光子を検出し得る．時間スロット
tl(l ∈ [0, 6])での光子検出は時間位置基底状態 |l⟩への射影測定となっており，その測定
演算子は M̂D1 = |l⟩⟨l|で与えられる．したがって，2τ 遅延MZIおよび τ 遅延MZIの遅
延位相をそれぞれ θ2, θ1 とすると，時間位置 tl で光子を検出する場合の，量子測定演算子
M̂D1
lθ1θ2

および対応する POVM要素 ÊD1
lθ1θ2

は，次式で表される．

M̂D1
lθ1θ2

= M̂D1M̂1xM̂2x (4.20)

ÊD1
lθ1θ2

= (M̂D1
lθ1θ2

)†M̂D1
lθ1θ2

(4.21)

ここで，M̂D1 はランク 1の射影測定演算子なので，ÊD1
lθ1θ2

も何らかの純粋量子状態への
射影を表す，ランク 1の射影測定演算子を定数倍した演算子となる．表 4.1上段に，各検
出時間位置の M̂D1

lθ1θ2
を示す．表には，図 4.3中の検出時間位置および伝搬遅延位相との

対応関係が分かりやすいように，インデントを挿入してある．
状態密度演算子が ρ̂である光子に対して，ここで想定している条件の測定を N 回繰り

返す時の検出光子数の期待値 nD1
lθ1θ2

は，次式で与えられる．

nD1
lθ1θ2

= N Tr
(
ÊD1
lθ1θ2

ρ̂
)

(4.22)

式 (4.22) と式 (4.17) を比較すると，ÊD1
lθ1θ2

に適切な順序でインデックスを与えなおし，
P̂j と対応付けることで，行列のランク評価による QST実行の可否を評価できることが分
かる．



74 第 4章 量子状態トモグラフィーを用いた高次元量子もつれ状態の長距離伝送特性評価

表 4.1 光子検出器および光子検出の時間位置毎の量子測定演算子

光子検出器 検出時間位置 量子測定演算子 M̂DX
lθ1θ2

D1 t0
1
4 |0⟩ ⟨0|

t1
1
4 |1⟩(⟨1|+eiθ1 ⟨0| )

t2
1
4 |2⟩(⟨2|+eiθ1 ⟨1|+eiθ2 ⟨0| )

t3
1
4 |3⟩(⟨3|+eiθ1 ⟨2|+eiθ2 ⟨1|+ei(θ1+θ2) ⟨0|)

t4
1
4 |4⟩( eiθ1 ⟨3|+eiθ2 ⟨2|+ei(θ1+θ2) ⟨1|)

t5
1
4 |5⟩( eiθ2 ⟨3|+ei(θ1+θ2) ⟨2|)

t6
1
4 |6⟩( ei(θ1+θ2) ⟨3|)

D2 t0 − 1
2 |0⟩ ⟨0|

t1 − 1
2 |1⟩ ⟨1|

t2 − 1
2 |2⟩(⟨2| −eiθ2 ⟨0| )

t3 − 1
2 |3⟩(⟨3| −eiθ2 ⟨1| )

t4 − 1
2 |4⟩( −eiθ2 ⟨2| )

t5 − 1
2 |5⟩( −eiθ2 ⟨3| )

上記のランク評価により，各MZIの位相 θ1, θ2 をそれぞれ 0, π/2とした時の後段MZI
出力ポートでの全ての光子検出事象を用いることで，QSTが可能であることが確認でき
る．さらに，その他の出力ポートでの光子検出事象を用いると，より多くの情報を得る
ことができる．上記と同様の手順により，図 4.3の光子検出器 D2での測定演算子が，表
4.1下段のように表される．光子検出器 D2での光子検出は，光子検出器 D1のみの構成
で検出されない分の光子損失を回避するとともに，光子検出器 D1とは異なる測定演算子
となるため，得られる情報量の増加をもたらす．MZI の順序が異なる場合でも得られる
情報量は増加するが，1段目のMZIの遅延時間を 2τ とする方が多くの種類の測定演算子
を実装できるため，測定の効率化が期待できる．さらに，τ 遅延MZIのもう一つのポー
ト 1y での光子検出を利用すると得られる情報量をさらに増やすことができるが，本論文
の実験では用意できる光子検出器数と検出効率の制限から，図 4.3の構成を用いている．
先に述べたように，高次元タイムビン量子状態に対する QSTとしては，特定の二つの
時間位置基底状態 |i⟩ , |j⟩を取り出し，それぞれを直線偏波状態に変換する測定法が報告
されている [49]．この手法では，2次元の偏波状態への射影測定を行うため，一度に実装
可能な測定演算子は 2個であり，全体の QSTのためには設定パラメータを多数組み合わ
せた測定を行う必要がある．また，本提案構成に類似の多段干渉計を用いて，時間エネル
ギー不確定性に基づく量子もつれ状態に対する QSTを行った報告例がある [97]．しかし
ながら，そこでは，前述の等価量子ビット上の {|0⟩ , |1⟩ , |+⟩ , |L⟩}の組み合わせに相当す
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る測定を正確に実装するために，特定の組み合わせにおいて干渉計の片側のパスをブロッ
クしている．また，時間エネルギー不確定性に基づく量子もつれ状態の場合，検出時刻の
相対時間によって状態が定義されるため，その他の検出時刻における光子検出を利用する
ことができず，多数の測定パラメータを必要とする．これに対し，本提案手法は，単一の
測定パラメータにおける複数の時間位置での光子検出を用いており，解析は複雑であるも
のの，log2 d 個の MZI と d 個の測定パラメータという簡便なセットアップにより QST
が実装できる．このことは，効率の良い測定が要求される長距離伝送された量子状態の
QSTとして，大きな利点となる．

4.2.3 MZI経路毎の伝搬損失の補正
前節で述べた多段MZIの測定演算子は，デバイスが理想的である時のものであり，現

実の測定系の測定演算子として，さらに理想状態からの差分を取り込むことが可能であ
る．本研究の測定系では PLC干渉計を用いるが，この場合，干渉計内のビームスプリッ
タの分岐比誤差や，2経路の伝搬損失差が装置の不完全性として避けられない．また，光
子検出効率が検出器ごとに異なり，これは実効的に光子損失の不均一性となる．これらの
光子損失の差は，干渉時の重ね合わせの重み付けで補正することにより測定演算子に取り
込むことができる．これらの補正を加えた演算子は次のように表される．

M̂2x =

∑3
k=0

(
|k⟩ +

√
∆η2xe

iθ2 |k + 2⟩
)

⟨k|√
2 (1 + ∆η2x)

(4.23)

M̂2y =
∑3
k=0

(
− |k⟩ +

√
∆η2ye

iθ2 |k + 2⟩
)

⟨k|√
2 (1 + ∆η2y)

(4.24)

M̂1x =

∑5
k=0

(
|k⟩ +

√
∆η1xe

iθ1 |k + 1⟩
)

⟨k|√
2 (1 + ∆η1x)

(4.25)

ÊD1
lθ1θ2

= ∆η1M̂
†
2xM̂

†
1xM̂

†
D1M̂D1M̂1xM̂2x (4.26)

ÊD2
lθ1θ2

= M̂†
2yM̂

†
D2M̂D2M̂2y (4.27)

ここで，∆η2x,∆η2y,∆η1x は，対応するインデックスの出力ポートから観測したときの，
MZIの分岐光路に依存した相対的な透過率，∆η1 は検出器 D1, D2の検出効率を損失に
換算したときの比を表す．なお，この補正を加えた場合，光子損失により光子検出確率の
合計が 1にならないため，厳密にはこれらの演算子の集合を POVMとみなすことはでき
ない．ただし，QSTで必要な情報は相対的な検出割合であるため，精度改善のために補
正を行った演算子を用いることができる．
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4.2.4 最尤推定法による演算子の正定値化
前節までに述べた QSTは，式 (4.17)の線形方程式を解くことで，測定結果から密度演
算子を求める手法である．原理的にはこれにより密度演算子を求めることが可能である
が，前節で述べた以外の実装上の誤差やノイズ，観測光子数の統計的な誤差などの要因に
より，得られた密度演算子はしばしば不正確なものとなる．特に重要な課題として，得ら
れた密度演算子が非物理的な演算子となることが知られている．すなわち，密度演算子は
本来半正定値であり，全ての固有値が非負であるはずのところを，推定した密度演算子が
負の固有値を持ってしまうことがある．QSTを用いる理由は，推定した演算子を用いて
様々な物理量や情報量を見積もるためであるが，負の固有値をもつ演算子では，これらが
正しく評価できない．例えば，第 2章で述べた von Neumannエントロピーは，固有値を
確率とみなした時の Shannonエントロピーとなるため，固有値が負であると確率が負と
いうことになり，エントロピーは計算不可能である．
この問題を解決するために，密度演算子が必ず正定値演算子となるようにパラメータ化
した上で，最尤推定法を用いてパラメータを求める手法が通常用いられる [56, 90, 95, 97]．
ある行列 Rが正定値エルミート行列であることと，三角行列 T およびそのエルミート共
役 T † を用いたコレスキー分解 R = TT † が存在することは，等価である．なお，コレス
キー分解は T を下三角行列とした分解であるが，正定値性の観点では上三角行列として
も本質的には変わらない．逆に，このように分解した T の各要素をパラメータとすれば，
Rは常に正定値エルミート行列となる．そこで，式 (2.19)中の rij を要素とする d× dエ
ルミート行列を，三角行列によってパラメータ化して，密度演算子が必ず正定値演算子と
なるようにする．具体的には，まず，三角行列 T に対応する演算子 T̂ を用いて，密度演
算子 ρ̂および，測定系への入射光子数 N を次式のように表す．

ρ̂ = T̂ T̂ †

Tr
(
T̂ T̂ †

) (4.28)

N = Tr
(
T̂ T̂ †

)
(4.29)

次に，パラメータ推定に最尤推定法を適用するために，演算子 T̂ が与えられたときの，
測定光子数の確率分布を求める．式 (4.17), (4.22), (4.28)および (4.29)から求まる，j 番
目の測定での検出光子数の期待値を nEj ，対応する測定結果を nMj とする．一般に光子検
出数はポアソン分布に従うと考えられる．これをガウス分布で近似すると，期待値 {nEj }
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が与えられた時，検出光子数 {nMj }を得る確率が次式で表される．

Pr
(
{nMj }; {nEj }

)
=
∏
j

1√
2πnEj

exp

[
−
(
nMj − nEj

)2

2nEj

]
(4.30)

したがって，最尤推定を行うには，次式で与えられる対数尤度関数 Lを最小化するような
T̂ を数値計算によって求めればよい．

L
(
T̂
)

=
∑
j

[(
nMj − nEj

)2

nEj
+ lnnEj

]
(4.31)

ただし，上式を得るには，対数を取った後，符号は反転した上で余分な定数を除去して
いる．
式 (4.31)を最小化する T̂ を用いて尤もらしい密度演算子 ρ̂を再構成することができる．

ただし，その計算に必要な nEj などは，単純に式 (4.17), (4.22)の対応関係のみを用いる
と，重複した結果を含む．例えば，光子検出器 D1が時間位置 t0 で光子検出する事象は，
MZIの相対位相の設定に関わらず，常に |0⟩への射影測定に対応する (図 4.3)．したがっ
て，これらの結果は一つの結果としてまとめたうえで，最尤推定に用いる必要がある．そ
こで，次の条件を満たすような，検出器のラベル DX ∈ {D1, D2}，光子検出の時間位置
l，MZIの相対位相 θ1, θ2 の組を要素とする集合 Vj を導入する．

∀(DX, l, θ1, θ2) ∈ Vj ,
∀ (DX ′, l′, θ′

1, θ
′
2) ∈ Vj′

ÊDXlθ1θ2

Tr
(
ÊDXlθ1θ2

) =
ÊDX

′

l′θ′
1θ

′
2

Tr
(
ÊDX

′

l′θ′
1θ

′
2

) for j = j′ (4.32)

ÊDXlθ1θ2

Tr
(
ÊDXlθ1θ2

) ̸=
ÊDX

′

l′θ′
1θ

′
2

Tr
(
ÊDX

′

l′θ′
1θ

′
2

) for j ̸= j′ (4.33)

上記の条件を満たす集合 Vj を総当たりによる条件評価によって構成することで，冗長性
を除去した nEj , Êj が，次のように得られる．

nEj =
∑

(DX,l,θ1,θ2)∈Vj

nEDXlθ1θ2
= N Tr

(
Êj ρ̂

)
(4.34)

Êj =
∑

(DX,l,θ1,θ2)∈Vj

ÊDXlθ1θ2
(4.35)

測定結果 nMj も同様にして得られる．このように測定結果をまとめたのち，式 (4.31)の
最小化による最尤推定によって，正定値性が保証された密度演算子 ρ̂を再構成する．
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4.3 量子もつれ状態の評価指標
前節で述べた高次元量子状態に対する QST によって得られるのは密度演算子であり，
量子状態の定量的な評価には，得られた密度演算子から目的にあった指標を見積もる必要
がある．本節では，いくつかの評価指標とその意味について述べる．

4.3.1 フィデリティ
フィデリティ [1, 78]は，二つの状態密度演算子 ρ̂と σ̂ の近さを表す指標であり，次式
で定義される．

F (ρ̂, σ̂) :=
[
Tr
√√

σ̂ρ̂
√
σ̂

]2

(4.36)

ただし，
√
σ̂ は，演算子 σ̂ の各固有状態について，対応する固有値の平方根を取る操作

を表す．フィデリティは 0 ≤ F (ρ̂, σ̂) ≤ 1 を満たし，ρ̂ = σ̂ の時，かつその時に限り
F (ρ̂, σ̂) = 1となる．また，ρ̂, σ̂それぞれの台 (各演算子の固有状態のうち，非ゼロの固有
値を持つ固有状態によって形成される部分空間)が，互いに直交する時，かつその時に限
り F (ρ̂, σ̂) = 0となる．したがって，1に近いほど二つの状態は類似しており，0に近い
ほど二つの状態は異なっていると言える．特に，一方の量子状態が σ̂ = |ψ⟩⟨ψ|の純粋量
子状態である場合，F (ρ̂, σ̂) = ⟨ψ| ρ̂ |ψ⟩であり，これは ρ̂を σ̂へ射影測定したときの測定
確率を意味する．このことは，フィデリティ F が，ある量子状態 ρ̂を別の量子状態 σ̂ と
して射影測定した時の測定確率を一般化したものとみなせることを示唆している．なお，
2乗を用いる式 (4.36)に代わり，F (ρ̂, σ̂) := Tr

√√
σ̂ρ̂

√
σ̂ とする流儀も広く用いられて

いるが，本論文では測定確率としてより直感的な解釈に近い式 (4.36) を採用する．ρ̂ を
QSTによって再構成した被観測状態の密度演算子，σ̂ を理想的な量子もつれ状態 (例えば
|ΨMES⟩[式 (2.52)])とすれば，フィデリティが 1に近いほど，理想的な量子もつれ状態が
観測できたと言える．
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4.3.2 トレース距離
トレース距離 [1, 78] は，二つの状態密度演算子 ρ̂ と σ̂ の間の距離を表す指標であり，

次式で定義される．

D(ρ̂, σ̂) := 1
2

Tr |ρ̂− σ̂|

= 1
2

Tr
√

(ρ̂− σ̂)† (ρ̂− σ̂)

= 1
2

Tr
√

(ρ̂− σ̂)2 (4.37)

トレース距離は 0 ≤ D(ρ̂, σ̂) ≤ 1を満たし，ρ̂ = σ̂の時，かつその時に限り，D(ρ̂, σ̂) = 0
となる．また，ρ̂, σ̂ それぞれの台が互いに直交する時，かつその時に限り，D(ρ̂, σ̂) = 1
となる．したがって，トレース距離が 0に近いほど二つの状態は類似しており，1に近い
ほど二つの状態は異なっていると言える．なお，トレース距離の定義として係数 1/2の規
格化を行わない流儀もしばしば用いられるが，本論文ではより直感的な式 (4.37) を採用
する．トレース距離は，三角不等式などの距離に関する公理を満たし，理論上扱いやすい
ため，量子情報分野で広く用いられている．
トレース距離には次のような操作論的な解釈が与えられている．量子状態 ρ̂あるいは σ̂

がそれぞれ確率 1/2で与えられた時に，どちらの状態であるのかを 2値の測定結果によっ
て判定することを考える．この時，正しく識別する確率 psucc の最大値は次式となること
が知られている (Helstrom限界)[78]．

max psucc = 1
2

{1 +D(ρ̂, σ̂)} (4.38)

上式より，トレース距離は，二つの量子状態 ρ̂, σ̂ を識別する時の，ランダム推定 (確率
1/2)からの増分と考えることができる．psucc = 1/2ということは，2状態が全く区別で
きないことを意味する．したがって，ρ̂を QSTによって再構成した被測定状態の密度演
算子，σ̂ を理想的な量子もつれ状態 |ΨMES⟩[式 (2.52)]とすれば，トレース距離が 0に近
いほど，理想的な量子もつれ状態を観測できたと言える．

4.3.3 リニアエントロピー
リニアエントロピー [95]は，量子状態のランダムさを表す指標であり，次式で定義され

る．
Slin := 1 − Tr

(
ρ̂2) (4.39)

この値は，量子状態が純粋状態であるときに 0 となり，完全混合状態の時に最大値
(d − 1)/dとなる．したがって，リニアエントロピーが小さいほど純粋状態に近く，ノイ
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ズなどの影響が小さい状態であると言える．なお，値域が [0, 1]となるように規格化した
d
d−1

{
1 − Tr

(
ρ̂2)}が用いられることもあるが，ここではピュリティ [78]として知られる

量である Tr
(
ρ̂2)との対応が分かりやすい式 (4.39)を採用する．ρ̂を QSTによって再構

成した被測定状態の密度演算子とすれば，リニアエントロピーが小さいほど，より純粋な
量子もつれ状態を観測できたと言える．

4.3.4 von Neumannエントロピー
2章で述べたように，von Neumannエントロピー [1, 78]は量子状態のランダムさを表
す指標であり，式 (2.20)で定義される．

S(ρ̂) := − Tr(ρ̂ log2 ρ̂) (2.20)

ρ̂ の固有値を確率分布とみなすと，式 (2.20) は固有値の Shannon エントロピーに一致
する．したがって，d 次元量子状態については，0 ≤ S(ρ̂) ≤ log2 d が成り立っており，
S(ρ̂) = 0 は純粋量子状態，S(ρ̂) = log2 d は最大混合状態であることを意味する．ρ̂ を
QSTによって再構成した被測定状態の密度演算子とすれば，von Neumannエントロピー
が小さいほど，より純粋に近い量子もつれ状態を観測できたと言える．

4.3.5 条件付きエントロピーおよびコヒーレント情報量
条件付きエントロピー [1, 78]は，二つの光子 ABに関するエントロピーであり，次式
で定義される．

S(ρ̂AB | ρ̂X) := S(ρ̂AB) − S(ρ̂X) (4.40)

ただし，X ∈ {A,B}である．式 (4.40)は，古典的な確率分布に対する条件付きエントロ
ピーを状態密度演算子に拡張したものであり，古典的な条件付きエントロピーが満たす多
くの性質が成り立つ．ただし，大きな違いとして，古典的な条件付きエントロピーは常に
非負であるのに対し，量子状態に対する条件付きエントロピーは負の値を取りうる．例え
ば，純粋 d次元最大量子もつれ状態 ρ̂AB = |ΨMES⟩⟨ΨMES| を光子 Bで条件付けしたとき
の条件付きエントロピーは，

S(ρ̂AB | ρ̂B) = S(ρ̂AB) − S(ρ̂B)

= S(|ΨMES⟩⟨ΨMES|) − S

(
1
d
1̂B

)
= 0 − log2 d

= − log2 d (4.41)

となり，最大量子もつれ状態に対しては負の値となる．なお，条件付きエントロピーが負
の値を取るのは，二つの光子がもつれている時のみであることが知られている [98, 99]．
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したがって，条件付きエントロピーにより観測した状態が量子もつれ状態であるか否かが
判定できる．さらに，光子 Aの次元を dA とした時，

|S(ρ̂AB | ρ̂B)| ≤ log2 dA (4.42)

が成り立つ [78]．光子 A で条件づける場合も同様である．上式は，2 次元量子状態では
−1 bitより小さな条件付きエントロピーは得られないことを示唆している．したがって，
−1 bitより小さな条件付きエントロピーは，高次元量子もつれ状態 (d > 2)であることを
意味する．
このように，負の条件付きエントロピーは量子もつれ状態と密接な関係があるだけでな

く，いくつかの量子通信プロトコルにおいて重要な指標となるため，コヒーレント情報量
[1, 78, 100]としても知られている．光子 Aから光子 Bへのコヒーレント情報量は，次式
で定義される．

I(A⟩B) := S(ρ̂B) − S(ρ̂AB) (4.43)

なお，同様によく用いられる相互情報量 I(A;B) := S(ρ̂A) + S(ρ̂B) − S(ρ̂AB) と異な
り，A,B について一般に非対称な情報量であり，この意味で向きがある．特に，QKD
において，Aliceと Bobが ρ̂AB で記述される 2光子対を共有している時，秘密鍵生成率
r = I(A⟩B)を満たすプロトコルが原理的に存在することが知られている [100]．例えば，
最大量子もつれ状態 |ΨMES⟩を分極解消チャネルに通した後の状態を ρ̂AB とすると，第
5 章で述べる (d + 1) 測定基底プロトコルは，この鍵生成率を満たす [42]．したがって，
ρ̂AB を QSTで推定した被測定状態の密度演算子とすれば，コヒーレント情報量が大きい
ほど，より高い QKD鍵生成率を達成する量子もつれ状態を共有できたと言える．

4.4 量子状態トモグラフィーの実装実験
前節までに述べた，高次元タイムビン量子状態に対する QST実装法を実験により検証

した．本節では，その実験系および得られた結果について述べる．

4.4.1 実験系
本節では，高次元タイムビン量子もつれ状態に対する QST実装の実験系について述べ

る．図 4.4に実験系を示す．第 3章の実験と同様に，波長 1551.1 nmの CWレーザ光を
強度変調器 (IM)を用いて，パルス幅 100 ps/パルス間隔 1 nsの 4連パルスを，繰り返し
周波数 125 MHzで生成する．本実験では第 3章とは異なり，各パルスの強度が等しい最
大量子もつれ状態のみを生成するため，強度変調器は一段構成としている．この 4 連パ
ルスを EDFAにより増幅したのち，2段接続 PPLN導波路に入力し，第二次高調波発生
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図 4.4 実験系．CW laser: CW レーザ光源，IM: 光強度変調器，EDFA: エルビウ
ム添加光ファイバ増幅器，PC: 偏波コントローラ，FBG: ファイバブラッググレー
ティングフィルタ，VATT: 可変光減衰器，PPLN: 周期的分極反転ニオブ酸リチウム，
BPF: 光バンドパスフィルタ，WDM: 波長分離フィルタ，Pol: 偏光子，遅延MZI: 遅
延Mach-Zehnder干渉計，SNSPD: 超伝導ナノワイヤ単一光子検出器

によるポンプ光生成およびそれに続く SPDC により，4 次元タイムビン量子もつれ状態
を生成する．PPLN 出力光から中心波長 1555 nm および 1547 nm のシグナル光子およ
びアイドラー光子を波長分離フィルタ (WDM) によって抜き出し，それぞれを Alice と
Bobへ送信する．Alice/Bobは，偏波コントローラ (PC)と偏光子 (Pol)を用いて偏波状
態を調整したのち，各光子を多段接続された PLC-MZIに入力する．各MZIの 2経路の
伝搬位相差をそれぞれ 0もしくは π/2に設定することにより，4.2.2節で述べた高次元タ
イムビン量子状態の QST測定系を実装する．各 MZIの一方の出力ポートからのパルス
列が，検出効率を最大化するように偏波状態が調整されたのち，SNSPD へ入力される．
SNSPDの検出効率は SNSPD1, 2, 3, 4について，それぞれ 40%, 56%, 34%, 43%, ダー
クカウントはいずれも <30 cpsであった．

4.4.2 実験結果
本節では，前節の実験系による実験結果について述べる．
4.2.3節で述べたように，正確な QSTのためにはMZIの経路毎の伝搬損失およびビー
ムスプリッタ分岐比を補正する必要がある．そこでまず，相対的な透過率を測定した．
MZI内で干渉が起きないように，時間間隔を空けたパルス列を，MZIへ入力したときの
出力光を光子検出した．図 4.5 に，各光子検出器の光子検出数を示す．図 4.5(a) および
(c) の 4 つのピークが，それぞれ時間位置 t0～t3 での光子検出に対応し，図 4.5(b) およ
び (d) の 2 つのピークが，それぞれ時間位置 t0 および t2 での光子検出に対応する．こ
れらの光子検出結果から，MZI 経路の相対的な透過率を求めることができる．例えば，
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図 4.5 単一パルスのポンプから生成した光子対に対する各光子検出器におけるシン
グルカウントのヒストグラム．測定時間は 30 秒．(a) SNSPD 1, (b) SNSPD 2, (c)
SNSPD 3, (d) SNSPD 4

SNSPD 1における時間位置 tl での光子検出数 S1
l は，次の関係を満たす．

S1
0 : S1

1 : S1
2 : S1

3 = 1 : ∆η1x : ∆η2x : ∆η1x∆η2x (4.44)

ただし，∆η2x および ∆η1x は，用いたMZIの各経路の相対的な透過率である (図 4.3の
各MZI出力ポートのインデックスおよび式 (4.23)–(4.25)を参照)．上式より，各相対透
過率を，∆η2x =

(
S1

2 + S1
3
)
/
(
S1

0 + S1
1
) および ∆η1x =

(
S1

1 + S1
3
)
/
(
S1

0 + S1
2
) として

求めることができる．他の相対透過率についても同様に求めた結果を表 4.2に示す．以下
の QSTでは，この相対的な透過率を取り込んでいる．
次に，ポンプ光を 4 連パルス列として 4 次元タイムビン量子もつれ状態を生成した．

なお，本実験では，MZIの位相の設定は可変 CW光源を用いて行った．そのため，可変
CW光源ともつれ光子の周波数差による位相誤差が観測結果に重畳されるため，測定され
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表 4.2 MZI各経路の相対透過率

シグナル光 アイドラー光
∆η2x 1.009 0.8495
∆η2y 0.8300 0.8302
∆η1x 1.063 0.9669

る状態は次式で表される最大量子もつれ状態となる．

∣∣Ψ4
MES(ϕ)

〉
= 1

2

3∑
k=0

exp(iϕk) |kk⟩ (4.45)

ただし，ϕは隣接 2パルスの相対位相である．この量子もつれ状態に対して，前節の実験
系による測定を行った．この時，SNSPD1, 2, 3, 4 でのシングルカウントレートは，そ
れぞれ 17.1, 72.4, 20.6, 82.1 kcpsであった．このカウントレートから，式 (4.26)中の各
検出器の相対透過率 ∆η1 は，シグナル光，アイドラー光それぞれに対して 0.474および
0.501と見積もられた．また，4連パルス当たりの平均光子ペア数は 0.02であった．MZI
位相の設定値の各組合せについて 10秒間の同時計数を測定し，その結果を用いてQSTを
行った．図 4.6に，QSTによって推定した密度演算子を示す．ただし，式 (4.45)の位相
を考慮し，シグナル光子に対する位相回転ユニタリー演算子 Û =

∑
k exp(−iϕ′k) |k⟩⟨k|

を用いて，
∣∣Ψ4

MES(0)
〉に近くなるようにした Û ρ̂Û† を図示している．理想的な 4次元量

子もつれ状態の場合，

ρ̂AB =
∣∣Ψ4

MES(0)
〉〈

Ψ4
MES(0)

∣∣ =
∑
ij

1
4

|ii⟩⟨jj| (4.46)

であり，|ii⟩⟨jj| 成分のみが 1/4 の大きさを持ち，その他の要素および虚部の値は全て 0
となる．図 4.6では，このような理想的な最大量子もつれ状態に見られる，等間隔のくし
状構造の密度演算子が観測されている．
さらに，より定量的に評価するため，4.3 節で述べた各種指標を，QST により得られ
た密度演算子から見積もった．表 4.3 に，15 回の QST における各指標の平均値および
標準偏差を示す．ただし，σ̂AB =

∣∣Ψ4
MES(ϕ)

〉〈
Ψ4

MES(ϕ)
∣∣とし，位相 ϕはフィデリティと

トレース距離をそれぞれ最大化，最小化するように最適化した．表には，3.4.2節で用い
た，CGLMP 不等式の破れを観測するための干渉縞明瞭度の閾値と同様の手順により計
算した，分極解消チャネルの仮定のもとで CGLMP不等式を破る各指標の閾値を併記し
ている．高いフィデリティ，および小さなトレース距離から，理想的な最大量子もつれ状
態に近い状態が観測できていることが分かる．また，低いリニアエントロピーおよび von
Neumannエントロピーから，ノイズが小さく純粋状態に近い量子状態が観測できたこと
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図 4.6 再構成した密度演算子 ρ̂AB の (a)実部および (b)虚部

表 4.3 15回の QSTによって得られた密度演算子 ρ̂から得られた各種指標，および分
極解消チャネルの仮定のもとで CGLMP不等式を破るための閾値．

測定値 閾値
フィデリティ F (ρ̂AB , σ̂AB) = 0.950 ± 0.003 > 0.710
トレース距離 D(ρ̂AB , σ̂AB) = 0.068 ± 0.003 < 0.290
リニアエントロピー Slin(ρ̂AB) = 0.093 ± 0.006 < 0.490
von Neumanエントロピー S(ρ̂AB) = 0.343 ± 0.016 < 2.002

条件付きエントロピー
{

S(ρ̂AB |ρ̂A) = −1.654 ± 0.016
S(ρ̂AB |ρ̂B) = −1.653 ± 0.016

< 0.002

もうかがえる．さらに，2つの条件付きエントロピーはどちらも-1ビット以下の値を示し
ており，高次元量子もつれ状態が観測されたことも示されている．以上の結果より，提案
した測定系による QSTの原理実証に成功したと言える．



86 第 4章 量子状態トモグラフィーを用いた高次元量子もつれ状態の長距離伝送特性評価

4.5 高次元量子もつれ状態の伝送実験
前節で原理実証した QST測定法を用いて，4次元タイムビン量子もつれ状態の 100 km
伝送特性を検証した．本節では，その実験系および実験結果について述べる．

4.5.1 実験系
図 4.7に実験系を示す．前節と同様に，波長 1551.1 nmの CWレーザ光を強度変調し
て，パルス幅 100 ps/パルス間隔 1 ns の 4 連パルスを繰り返し周波数 125 MHz で生成
し，2 段接続した PPLN 導波路中の二次高調波生成 (SHG) および SPDC により，4 次
元タイムビン量子もつれ状態を生成する．波長分離フィルタ (WDM)によって波長 1555
nmおよび 1547 nmの光子を抜き出したのち，各光子をそれぞれ長さ 50 kmの分散シフ
トファイバ (DSF)を通して伝送した．本実験では，ファイバ分散により隣接パルスが重
なることを避けるため，DSFを用いている．DSF 50 kmの伝搬損失は，シグナル光とア
イドラー光それぞれについて，11.8 dBおよび 11.2 dBであった．

DSF 伝送後，各光子は Alice/Bob の受信系に入力される．ここで，受信系で用いた
MZIおよび SNSPDには偏波依存性があるため，入力偏波状態を調節する必要がある．前
節の QST原理実証実験では測定時間が十分短いため，この調節は手動の偏波コントロー

図 4.7 実験系．(a) 4 次元タイムビン量子もつれ状態の生成および伝送系．(b)Alice
と Bob それぞれの測定系．挿入図に本実験での SNSPD の量子効率を示す．PPLN:
周期的分極反転ニオブ酸リチウム，BPF: 光バンドパスフィルタ，PC: 偏波コントロー
ラ，WDM: 波長分離フィルタ，DSF: 分散シフトファイバ，Auto PC: リモート制御
型偏波コントローラ，Pol: 偏光子，遅延MZI: 遅延Mach-Zehnder干渉計，SNSPD:
超伝導ナノワイヤ単一光子検出器
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ラで十分であったが，本実験では伝搬による光子損失を補うため測定時間が長く，DSF
伝搬による偏波回転が時間的に変動するため，これに追従して偏波状態を調節する必要が
ある．そこで，ここでは自動制御型偏波コントローラを用いた．この偏波コントローラは
4段構成のファイバベースの偏波回転部からなり，奇数段目がポアンカレ球上で斜め直線
偏波軸周りの回転，偶数段目が水平/垂直偏波軸周りの回転を与える．この各段の回転角
の値を ±0.1π radの範囲で 0.01π radずつ変化させ，SNSPDの検出光子数が最大となる
ように制御する．偏波制御後の光子を，2段に接続したMZIおよび SNSPDを用いて測
定し，前節と同様にして QSTを行った．

4.5.2 実験結果
本節では，4次元タイムビン量子もつれ状態の 100 km伝送実験の結果について述べる．
前節で述べたように，本実験では測定の長時間化に伴う偏波変動を逐次補償している

が，その他の変動として，温度変動に伴うファイバ長・屈折率の変化等のために，光子の
到着時刻に揺らぎがある．この変動に追従するため，データ解析の際に，光子検出数のヒ
ストグラムと相互相関関数を用いて，タイムスロットを決定した．SNSPDで検出される
のはMZI通過後の光子であるため，一般には干渉パターンが観測される．しかしながら，
シグナル光子/アイドラー光子それぞれの状態は最大混合状態であるため，量子もつれ状
態は同時計数においてのみ干渉特性を示し，単独の光子検出については干渉特性は示さな
い．したがって，単独光子検出数のヒストグラムはMZIの位相の設定によらず，各タイ
ムスロットの検出数比はMZIの各径路のパワー分岐比のみによって決まる．そこで，次
式の相互相関関数 g(τ)が最大となる τ を求めることで，タイムスロットの位置を検出す
ることができる．

g(τ) =
∫ 8T

0
hi(t− τ mod 8T )hm(t)dt (4.47)

ただし，hi(t) および hm(t) はそれぞれ，理想的な光子検出数の基準ヒストグラムと
実際に測定されたヒストグラム，T はパルス間隔である．また，基準ヒストグラム
は，SNSPD 1 に対しては hi(t) =

∑3
l=0
∑3
k=0 δ(t − kT − lT )，SNSPD 2 に対しては

hi(t) =
∑1
l=0
∑3
k=0 δ(t − kT − 2lT )，とした．ただし，δ(t) は Dirac のデルタ関数で

ある．
図 4.8に，Aliceの SNSPD 2におけるタイムスロットのトラッキング結果を示す．横

軸は TIAでの光子検出時刻，縦軸は光子検出数であり，長時間測定の間のデータを一定
の時刻ごとに縦にずらしてプロットしている．また，式 (4.47) の相互相関関数によって
推定したタイムスロットの中心を元に，幅 0.33 nsのタイムウィンドウを橙色の破線で示
す．図に示されているように，QST 1回分にあたる 4時間の測定の間に，タイムスロッ
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図 4.8 Aliceの SNSPD 2におけるタイムスロットのトラッキング結果．長時間測定
中の各時刻における，1分間のシングルカウントのヒストグラムを一定の間隔でずらし
てプロットしている．

トが 4 nsと大きくシフトしているが，上記の手法で正確に追従できている．このタイム
スロットを自動的に追従させて解析した同時計数をもとに，QSTを行った．なお，TIA
で記録される時刻は，TIA の同期用チャネルへの電気信号を基準とした相対的な時刻で
ある．本実験では，同期用チャネルへの電気信号は，同じ実験室内の送信系用パルスジェ
ネレータからの信号に同期させているが，この同期信号を別途光信号に変換し送信するこ
とで，実際の長距離通信においてもこの手法は有効である [29]．あるいは，波長分割多重
技術を利用して，同一のファイバでもつれ光子対と同期信号を伝送することにより，上記
タイムスロット推定を簡略化あるいは高精度化することも可能である．

100 km伝送後の 4次元タイムビン量子もつれ状態に対する QSTを連続して 4回行っ
た．各MZIの設定値毎の測定時間は 15分であり，QST 1回分の測定時間は 4時間であっ
た．この時の，4連パルス当たりの送信平均光子ペア数は 0.03，Alice(Bob)の SNSPD 1
および 2 での光子検出レートはそれぞれ 3.3 および 7.7 (2.9 および 12) kcps であった．
この光子検出レートの比から，各検出器間の相対的な透過率 ∆η1 は，シグナル光，アイ
ドラー光それぞれに対して，0.8507および 0.4812と推定された．一方，∆η2x など，そ
の他の相対透過率は SNSPD等に依存せず，MZIの特性によって決まるため，前節の実
験結果である表 4.2の値を用いた．これらの値と同時計数を元に，QSTにより 2光子の
密度演算子 ρ̂AB を推定した．
図 4.9に，QSTによって推定した密度演算子を示す．前節の実験と同様に，4次元量子
もつれ状態特有のくし状の密度演算子が得られている．また，この QSTによって得られ
た密度演算子 ρ̂AB から，量子もつれ状態の品質を示す各種指標を見積もった．表 4.4に，
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図 4.9 再構成した密度演算子 ρ̂AB の (a)実部および (b)虚部．ただし，4回の QST
の結果を平均したものを示している．

表 4.4 100 km伝送後の QSTによって得られた密度演算子 ρ̂AB から得られた各種指標．

フィデリティ F (ρ̂AB , σ̂AB) = 0.935 ± 0.015
トレース距離 D(ρ̂AB , σ̂AB) = 0.081 ± 0.019
リニアエントロピー Slin(ρ̂AB) = 0.121 ± 0.026
von Neumann エントロピー S(ρ̂AB) = 0.437 ± 0.063

条件付きエントロピー
{

S(ρ̂AB |ρ̂A) =
S(ρ̂AB |ρ̂B) =

−1.557 ± 0.067
−1.557 ± 0.066

4 回の QST から得られた各指標の平均値，および標準偏差を示す．前節と同様に，100
km伝送後においても高品質な 4次元タイムビン量子もつれ状態が観測されていることが
分かる．特に，-1.557ビットという条件付きエントロピーの値は，伝送後でも確かに高次
元のもつれ状態が保たれていることを示している．また，4.3.5節で述べた通り，負の条
件付きエントロピーであるコヒーレント情報量は，その情報量に等しい秘密鍵生成率を達
成する QKDプロトコルの存在を示唆する．したがって，何らかの適切なプロトコルを用
いると，この伝送後の量子もつれ状態から，光子対検出イベント当たり 1.557ビットの秘
密鍵を生成することができる．
以上の結果から，高次元 QKDに利用可能な高品質な高次元量子もつれ状態の 100 km

伝送に初めて成功したと言える．
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4.6 結言
本章では，高次元タイムビン量子もつれ状態に対する QSTを用いたもつれ状態の長距
離伝送について述べた．長距離伝送においては，光ファイバ伝送中の伝搬損失によって
光子が失われるため，統計的物理量を得る測定に長時間を要する．そこで，既存の 2 次
元タイムビン量子状態に対するコンパクトな QSTを基礎として，少数の干渉計と測定パ
ラメータによる現実的な時間で測定可能な高次元タイムビン量子状態に対する QSTを提
案した．また，QSTによって得られる状態密度演算子から定量的な品質評価を行うため
の，各種評価指標について述べた．その後，第 3 章の手法により生成した 4 次元タイム
ビン量子もつれ状態に対して，提案した QST の原理実証実験を行った．QST により推
定した密度演算子から条件付きエントロピーなど，各種評価指標を見積もり，高品質な 4
次元タイムビン量子もつれ状態生成を確認するとともに，提案した QSTの有効性を示し
た．さらに，100 km光ファイバ伝送後の 4次元タイムビン量子もつれ状態に対して同様
の QSTを行い，伝送後の量子もつれ状態の品質を評価した．推定した密度演算子から見
積もられたコヒーレント情報量は 1.557ビットであり，2次元量子もつれ状態では不可能
である光子対当たり 1 ビット以上の秘密鍵生成を可能とする高品質な 4 次元量子もつれ
状態が，100 km伝送後でも保たれることを実証した．
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第 5章

(d + 1)測定基底 QKDプロトコルの
ための相互不偏基底測定

5.1 緒言
本論文ではここまで，高次元 QKDへの応用を目的とした，高次元タイムビン量子もつ

れ状態の生成と伝送について述べてきた．本章では，高次元 QKD プロトコルの安全性
証明の詳細と，QKD実装に必要となる相互不偏基底 (MUB: Mutually unbiased bases)
の，タイムビン量子状態に対する実装法について述べる．まず 5.2節にて，d次元量子状
態を用いた，(d + 1)測定基底 QKDプロトコルについて述べる．次に 5.3節にて，上記
プロトコルの安全性証明に必要となる，有限体を用いた一般化Weyl演算子および一般化
ベル基底 [101]を導入し，これらを用いて既存の安全性証明 [42]の適用可能範囲を，素数
次元から素数の累乗次元へと拡張する．また，2測定基底 QKDプロトコルの安全性証明
についても触れ，2種類のプロトコルの違いである，エラーの相関特性の見積もりに関し
て議論する．
上記プロトコルの実装にあたっては，各基底状態への射影測定系を少ない装置数で効率

的に構成することが望まれる．そこで 5.4 節では，安全性証明に利用した MUB[101] と
等価な別のMUBの表現 [102]が持つ構造を利用し，pN 次元タイムビン量子状態に対し
て，1 個の位相変調器，logp d 個の干渉計，(p + 1) 個の単一光子検出器を構成要素とす
る，(d + 1) 個の MUB の基底状態への射影測定法を提案する．そして 5.5 節および 5.6
節にて，上記提案手法を 4次元タイムビン量子状態に対して実装し，その有用性を実験的
に検証する．
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5.2 (d + 1)測定基底 QKDプロトコル
本節では，(d+ 1)測定基底 QKDプロトコルについて述べる．
2.4節で述べたように，BB84/BBM92では二つの正規直交基底を測定基底として用い
るが，これらの基底は相互不偏基底 (MUB)[101, 102]と呼ばれる基底となっている．今，
B0,B1 を d次元ヒルベルト空間の二つの正規直交基底とする．各基底から選んだ 2状態
∀ |ψ0⟩ ∈ B0,

∀ |ψ1⟩ ∈ B1 に対して，

|⟨ψ0|ψ1⟩|2 = 1/d (5.1)

が成り立つとき，二つの基底 B0,B1 は相互不偏であるという．言い換えれば，ある基底
の基底状態を別の基底の基底状態で射影測定した時，測定結果が一様ランダムであるよう
な基底がMUBである．d次元ヒルベルト空間においては，全て互いに相互不偏である基
底が最大で (d+ 1)個存在する．2.2.1節で述べたように，2次元ヒルベルト空間では，時
間位置基底および 2 つの位相基底は全て互いに相互不偏の条件を満たしており，上記の
(d+ 1)個のMUBの例となっている (図 5.1)．この 3つのMUBのうちの 2つを利用す
ることで BB84や BBM92のように安全な QKDプロトコルを実装できる．さらに，2.4
節で触れたように，この 3つの基底に含まれる計 6つの量子状態を用いた Six-stateプロ
トコルは，BB84/BBM92よりも高い鍵生成率を達成することができる．すなわち，より
多くの基底を実装することで，鍵生成率を向上することが可能となる．
第 1章で述べたように，高次元の量子状態を利用することで，光子あたりのエンコード
可能な情報量を増加させ，QKDの鍵生成率を向上させることが可能である．d次元QKD

図 5.1 2 次元ヒルベルト空間での (2+1) 個の MUB の関係．各基底は Pauli 演算子
σ̂x, σ̂y, σ̂z の固有状態である．
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プロトコル 4 (d+ 1)測定基底 QKDプロトコル
1: Alice は 2 つの光子 AB を d 次元最大もつれ状態 |ΨMES⟩ として準備する．そして，
一方の光子を伝送路を介して Bob に送る．この伝送路に対しては，あらゆる盗聴が
可能であるとする．

2: Alice(Bob)は自身が保有している光子に対して，ランダムに (d+ 1)個のMUBの基
底状態 (複素共役を取った基底状態)への射影測定を行う．

3: Aliceと Bobは上記の送受信を繰り返した後，各測定に際してどの基底を用いて射影
測定を行ったかを認証付き一般通信路を用いて通知しあう．そして，元々ペアであっ
た 2光子について，基底が異なる測定結果は破棄し，同じであった測定結果を残す．

4: Aliceと Bobはベル基底状態にあった 2光子から得られた測定結果のペアの一部をラ
ンダムに選んで通知しあい，各基底の測定結果の誤り分布ベクトル q

Z
および q

r
(測

定結果の差の確率分布)を推定する．誤り分布ベクトル推定に用いた測定結果は廃棄
する．

5: 残った測定結果ついて，各基底内の状態のインデックスに応じた値を割り当て，多値
の乱数列を生成する．これをシフト (sift)鍵と呼ぶ．

6: 手順 4で推定した誤り分布ベクトルをもとに，認証付き一般通信路を用いて Aliceと
Bobは情報を交換し，シフト鍵に対する誤り訂正を行う．これを訂正鍵という．

7: 先の誤り分布ベクトルから，盗聴者 Eveに漏洩し得る情報量の上限を推定し，訂正鍵
に対して秘匿性増強と呼ばれる鍵の圧縮処理を施して，外部漏洩のない秘密鍵を得る．

においても，BB84/BBM92の高次元拡張に当たる 2測定基底 QKDと，Six-stateプロ
トコルの高次元拡張に当たる (d+ 1)測定基底 QKDが存在し，このプロトコルではより
多くの基底を用いるため，同じシンボルエラーレートで高い鍵生成率を達成可能である
[41–44]．

(d+ 1)測定基底 QKDプロトコルを，上記のプロトコル 4に示す．以下，プロトコル
4についていくつか補足する．
まず，次元 d は素数の累乗次元 (d = pN ) であるとする．(d + 1) 個の MUB のう

ち，一つの基底を時間位置基底 BZ =
{∣∣∣e(Z)

i

〉
= |i⟩

∣∣∣ i ∈ {0, · · · , d− 1}
}
とし，その

他 d 種類の基底を全て位相基底とする．また，r ∈ {0, · · · , d − 1} 番目の位相基底を
Br =

{∣∣∣e(r)
j

〉
=
∑
iH

(r)
ij |i⟩

∣∣∣ j ∈ {0, · · · , d− 1}
}
とする．具体的な確率振幅 H

(r)
ij は次

節で与える．また，
∣∣∣e(r)∗
j

〉
=
∑
iH

(r)∗
ij |i⟩ のように，時間位置基底で展開したうえで，

その確率振幅の複素共役を取った状態を，複素共役を取った基底状態とする (これはエル
ミート共役とは異なる)．時間位置基底の確率振幅は常に 1であるため，時間位置基底状
態の複素共役を取った状態は，時間位置基底状態に等しい．
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r 番目の位相基底における Aliceの測定値は，
∣∣∣e(r)
a

〉
を測定した場合 aとなる．Bobの

測定値については，
∣∣∣e(r)∗
b

〉
を測定した場合 bとなる．時間位置基底についても同様であ

る．これらの測定結果をもとに，r 番目の位相基底における誤り分布ベクトルが，次式で
定義される．

q
r

= {q0
r , q

1
r , · · · , q(d−1)

r } (5.2)
qtr = Pr (a⊖ b = t | r) (5.3)

ただし，⊖は，a, bを有限体 GF [pN ]上の元とみなした時の，有限体上の減算を表す演算
子であり，tはエラーを表す．時間位置基底についても同様に q

Z
, qtZ を定義する．

このように，(d + 1) 個の MUB の基底状態への射影測定を実装し，そのエラーの分
布から安全な鍵の長さを推定するプロトコルが (d + 1) 測定基底 QKD プロトコルであ
る．なお，プロトコル 4では，第 1章および第 2章で述べた，量子もつれ状態を準備する
Entangledment-based(EB)型のプロトコルとしているが，BBM92と BB84が対応する
ように，このプロトコルにおいても Prepare and Measure(P&M)型のプロトコルを考え
ることができる．例えば，Aliceが |ΨMES⟩を測定した結果，自身の持つ光子が

∣∣∣e(r)
j

〉
で

あったとする．この条件の元で Bobへ送る量子状態 |ψj⟩B′ は，次式で与えられる．

|ψj⟩B′ =
〈
e

(r)
j

∣∣∣
A

|ΨMES⟩AB′

=

(∑
i

⟨i|AH
(r)∗
ij

)(
1√
d

∑
i

|ii⟩AB′

)

= 1√
d

∑
i

H
(r)∗
ij |i⟩B′ (5.4)

上記の状態 |ψj⟩B′ を規格化すると，
∣∣∣e(r)∗
j

〉
B′
に等しいことが分かる．時間位置基底につ

いても同様である．したがって，プロトコル 4は，量子もつれ状態を準備する代わりに，
状態

∣∣∣e(r)∗
j

〉
B′
をランダムに生成して Bobに送信し，Bobが複素共役を取った (d+ 1)個

のMUBを用いて測定するプロトコルと等価である．また，Aliceと Bobの用いる基底を
入れ替えれば，複素共役を取らずに元のMUBを用いた P&M型のプロトコルも，同じ安
全性を持つことが分かる．
この (d+1)測定基底QKDプロトコルの安全性証明は，これまで次元 dが素数の場合に
限り示されている [42–44]．また，液晶空間位相変調器 (SLM：Spatial Light Modulator)
により生成した光軌道角運動量 (OAM：Orbital Angular Momentum) 量子状態を用い
たプロトコルの実装は報告されているものの [77]，タイムビン量子状態については SLM
のようなフレキシブルな変調装置がなく，タイムビン量子状態に対する上記プロトコルの
スケーラブルな実装法は知られていない．以降の節では，この安全性証明の素数の累乗次
元への拡張およびタイムビン量子状態の場合のスケーラブルな実装手法について述べる．
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5.3 d = pN についての安全性証明
5.3.1 有限体を用いた一般化Weyl演算子およびベル基底とMUB

本節では，(d + 1)測定基底 QKDプロトコルの安全性証明の基となる，有限体を用い
たWeyl演算子および一般化ベル基底と，(d+ 1)個のMUBについて述べる．

2.3.1節で述べた通り，ベル基底は下記の 4つの量子もつれ状態からなる，2次元 2光
子状態が属するヒルベルト空間の基底である．∣∣Ψ00〉

AB
= 1√

2
(|00⟩ + |11⟩)AB (2.45)∣∣Ψ01〉

AB
= 1√

2
(|00⟩ − |11⟩)AB (2.47)∣∣Ψ10〉

AB
= 1√

2
(|01⟩ + |10⟩)AB (2.48)∣∣Ψ11〉

AB
= 1√

2
(|01⟩ − |10⟩)AB (2.49)

これらの状態は，光子 Aもしくは Bどちらかに対して，時間位置反転 (|0⟩と |1⟩の入れ
替え)，位相反転 (|+⟩と |−⟩の入れ替え)，あるいはその両方を施すことで，他のベル基
底状態に変換することができる．この状態変化は何らかのユニタリー変換を施すことに
よって実現される．4.2.1節で述べた Pauli演算子がこれらのユニタリー変換となってお
り，式 (4.2)および式 (4.4)から，σ̂x が時間位置反転，σ̂z が位相反転のユニタリー変換で
あることが分かる．これらを用いると，ベル基底状態を次のように表すことができる．∣∣Ψij

〉
AB

=
(
1̂ ⊗ σ̂jzσ̂

i
x

) ∣∣Ψ00〉
AB

(5.5)

また，σ̂zσ̂x = iσ̂y なので，グローバルな位相を無視すれば，4つのベル基底状態は基準と
なる

∣∣Ψ00〉
AB
およびそれに 3つの Pauli演算子のいずれかを乗じて得られた状態からな

ることが分かる (図 5.2)．一方，各 Pauli演算子の固有状態からなる基底が，2次元ヒル
ベルト空間の 3つのMUBであった (図 5.1)．これらの関係から，3つのMUBと QKD
のエラーの間は，Pauli演算子を介して関連していることが示唆される．Six-stateプロト
コルでは，この関係を利用して 3つのMUBでの測定結果から，時間位置反転エラーと位
相反転エラーの結合確率分布を推定している．そこで，高次元 QKDへの拡張にあたって
は，Pauli演算子の高次元化方法が手掛かりとなる．

4.2.2 節では，Pauli 演算子のエルミート性に着目した高次元化として，一般化 Gell–
Mann演算子を導入した．一方，Pauli演算子のユニタリー性に着目した高次元化として，
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図 5.2 式 (5.5)で表される，ベル基底状態と Pauli演算子による状態変化の関係

次のWeyl演算子が知られている [42]．

Ûij =
d−1∑
k=0

ωkj |k + i mod d⟩ ⟨k| (5.6)

ただし，i, j ∈ {0, · · · , d− 1}，ωは 1の d乗根，mod dは dで割った余りの算出を表す．
Ûi0 =

∑d−1
k=0 |k + imod d⟩ ⟨k|は，時間位置基底状態に作用したときに状態を iシフトす

る演算子であるから，時間位置反転演算子 σ̂x のユニタリーな高次元拡張である．また，
Û0j =

∑d−1
k=0 ω

kj |k⟩ ⟨k|は，時間位置基底状態に作用したときに，状態のインデックスに
比例して位相を 2πj/dシフトする演算子であるから，位相反転演算子 σ̂z のユニタリーな
高次元拡張である．σ̂y が σ̂x と σ̂z の積で表せたように，その他の Ûij をこの二つの演算
子の積によって表すことができる．

Pauli演算子の固有状態が 3つのMUBを成したのと同様に，次元 dが素数である時，
Weyl 演算子の固有状態は (d + 1) 個の MUB を成す．ただし，U00 = 1̂ を除き Ûij は
(d2 − 1)種類存在するため，Pauli演算子の場合とは異なり固有状態が重複し，(d2 − 1)
種類の演算子のうち (d− 1)種類が同一の固有状態を持つ．
この Weyl 演算子を用いると，d 次元に一般化したベル基底状態

∣∣Ψij
〉
AB

= (Ûij ⊗
1̂) |ΨMES⟩AB が定義できる．この状態は全て d次元最大量子もつれ状態であり，d次元 2
光子状態が属するヒルベルト空間の基底を成す．先行研究 [42]では，このWeyl演算子に
よって一般化したベル基底状態を用いて，QKD プロトコルの安全性解析を行っている．
上記で述べた通り，Weyl演算子を用いた (d + 1)個のMUBの構成方法は，素数次元に
ついてのみ成り立つ．そのため，BB84や BBM92の拡張である 2測定基底 QKDプロト
コルの安全性解析は任意の dに対して成り立つ一方，(d+ 1)測定基底 QKDプロトコル
の安全性解析は，MUBが構成できないため，素数次元以外では成り立たない．
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しかしながら，有限体を利用してWeyl演算子を拡張することにより，素数の累乗次元
においても (d + 1) 個の MUB を構成することができる [101, 103]．例えば，d が素数 p

と正整数 N により，d = pN と表されるものとする．このとき，有限体を用いた一般化
Weyl演算子が次式で与えられる．

V̂ij =
d−1∑
k=0

γ(k⊕i)⊙j |k ⊕ i⟩ ⟨k| (5.7)

ただし，γ は 1の p乗根，⊕,⊙はそれぞれ有限体上の加算および乗算を表す 2項演算子で
ある．また，i, j, kは，有限体上の 2項演算子に対しては有限体GF (pN )の元として扱い，
その他の通常の演算子や関数においては，整数として扱うものとする．例えば，γ(k⊕i)⊙j

を計算するにあたっては，まず (k ⊕ i) ⊙ j を有限体として計算した後，その結果を整数
として γ のべき乗を求める．ここで，有限体の定め方は無数に存在するが，r ∈ GF (pN )
について，そのベクトル表現 r⃗ = (r0, r1, · · · , rN−1)T (ただし，r =

∑N−1
n=0 rnp

n かつ
ri ∈ {0, · · · , p− 1})を考えたときに，有限体上の加算 ⊕が，各ベクトル成分毎の通常の
代数和と mod p演算によって得られるように定める．
一般化Weyl演算子の固有状態を考えることにより，(d + 1)個のMUBを構成するこ

とができる [101]．ただし，素数次元のWeyl演算子 Ûij と異なり，1の d乗根 ω ではな
く 1 の p 乗根 γ を用いるため，一般化Weyl 演算子の固有値は縮退しており，単一の演
算子だけでは固有状態は一意に定まらない．しかし，いくつかの一般化Weyl演算子の同
時固有状態を考えることで，固有状態を一意に定めることができる．時間位置基底状態∣∣∣e(Z)
k

〉
は，∀lに対する V̂0,l の同時固有状態である．また，前節の位相基底状態

∣∣∣e(r)
k

〉
は，

∀lに対する V̂l,r⊙l の同時固有状態である．さらに，位相基底状態
∣∣∣e(r)
j

〉
=
∑
iH

(r)
ij |i⟩ の

確率振幅 H
(r)
ij は，有限体を用いて次式のように表される．

H
(r)
ij := 1√

pN

{
αr⊖i

}∗
γ⊖i⊙j (5.8)

ただし，
αri =

{∏N−1
m,n=0 i

r⊙(im2m)⊙(in2n) (p = 2)
γ⊖(r⊙i⊙i)⊘2 (pは奇素数)

(5.9)

であり，⊖,⊘は有限体上の減算および除算を表す 2項演算子である．また，これらの状
態と一般化Weyl演算子の間に，次の関係が成り立つ．

V̂ij

∣∣∣e(r)
k

〉
= γi⊙k {αri }

∗
∣∣∣e(r)
r⊙i⊖j⊕k

〉
(5.10)

V̂ij

∣∣∣e(Z)
k

〉
= γ(k⊕i)⊙j

∣∣∣e(Z)
i⊕k

〉
(5.11)
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一般化Weyl演算子を用いた場合，一般化ベル基底状態を次式のように定義できる．∣∣Ψij
〉
AB

= (V̂ij ⊗ 1̂) |ΨMES⟩AB (5.12)

この一般化ベル基底状態は，一般化Weyl演算子およびその複素共役のテンソル積からな
る演算子の固有状態であり，次式が成り立つ．

V̂ij ⊗ V̂ ∗
ij

∣∣∣Ψi′j′
〉
AB

= γi
′⊙j⊖i⊙j′

∣∣∣Ψi′j′
〉
AB

(5.13)

これらの一般化Weyl演算子と一般化ベル基底状態およびMUBの性質を用いることで，
(d+ 1)測定基底 QKDプロトコルの安全性を示すことができる．

5.3.2 安全性証明
本節では，(d+ 1)測定基底 QKDプロトコルの安全性証明について述べる．
2.4節で概略を述べた BBM92の安全性証明では，複数の光子ペアに対して量子誤り訂
正を行い，誤りのない量子もつれ状態を抽出した後に測定を行うことで，盗聴の恐れのな
い乱数列の共有が可能であることを示した．そこでは，伝送路で盗聴者 Eveが行う盗聴方
法については一切の仮定を置いておらず，物理的に可能なあらゆる盗聴に対して安全であ
ることが示された．より詳しくは，Eveの盗聴法としては，コヒーレント攻撃 (Coherent
attack)と呼ばれる複数の光子ペアにまたがった，もっとも一般的なユニタリー操作を想
定していた．この他，安全性証明においてしばしば仮定される盗聴法として，一般化個
別攻撃 (General individual attack)やコレクティブ攻撃 (Collective attack)が知られて
おり，一般化個別攻撃 <コレクティブ攻撃 <コヒーレント攻撃，の順に強力な盗聴法と
なっている [104]．
一般化個別攻撃では，Aliceが送信した伝送路中の各光子に対して，Eveが用意した補
助系との間に相関を持たせるユニタリー変換を施した後に，Alice/Bobの公開通信情報に
関わらず，各補助系に対して同一の測定を行うことで鍵情報を得る [図 5.3(a)]．この際，
各光子と補助系に作用させるユニタリー変換は同一のものとし，Aliceと Bobの間で共有
される光子ペア列は，独立同一分布 (IID：Independent and identically distributed)な
状態密度演算子となる．
コレクティブ攻撃は，Eve が伝送路中の各光子と補助系との間に同一のユニタリー変
換を施す点は，一般化個別攻撃と同様である．ただし，ユニタリー変換後の各補助系を
個別に測定するのではなく，補助系全体にまたがった量子力学的な一括測定を行う [図
5.3(b)]．この際，ユニタリー変換後の補助系は量子メモリに保存しておき，量子状態伝送
後に Alice/Bob が公開する情報に基づいて最適化した測定を補助系に施す．補助系の測
定タイミングや方法は，Alice/Bob間で共有される状態に影響を与えないため，共有され
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図 5.3 3種類の盗聴方法．(a)一般化個別攻撃 (b)コレクティブ攻撃 (c)コヒーレント攻撃

る光子ペアの分布が IIDである点などは一般化個別攻撃と同様であるが，最適化された一
括測定を行うため，より多くの情報が得られ，IIDという条件下ではもっとも強力な盗聴
法となる．
一方，コヒーレント攻撃は，各光子と補助系個別にユニタリー変換を施すのではなく，

それら全てにまたがった大きなユニタリー変換を施す，もっとも一般的かつ強力な盗聴方
法である [図 5.3(c)]．この場合，Alice/Bob間の光子ペアの分布は一般に IIDとはならな
い．コヒーレント攻撃に対して安全性が証明されれば，最も強力な安全性が保証されたこ
とになるが，非常に多くのパラメータが関わるために，コレクティブ攻撃より安全性の証
明が難しい．
なお，上記の他に，伝送路で光子を一度測定し，測定値に応じて新しく光子を用意し再

送する，なりすまし攻撃 (Intercept resend attack)がよく知られているが，これは一般化
個別攻撃におけるユニタリー変換を，想定しやすい形態に具体化した盗聴法と言える．
以下，コレクティブ攻撃に対する安全性証明について議論する．上記の通り，これはコ

ヒーレント攻撃よりも弱い盗聴方法であり，一見するともっとも一般的なものではない．
しかしながら，用いる光子ペア数が無限大の極限において，安全性証明から見積もられる
秘密鍵生成率は，多くのプロトコルにおいてコヒーレント攻撃とコレクティブ攻撃で一致
する．本論文で扱う QKDプロトコルについても，量子 de Finneti定理 [105, 106]を適
用することにより，両者で秘密鍵生成率が一致することが示される．量子 de Finneti定
理とは，i番目の光子と j 番目の光子を入れ替えても，量子状態に変化がない対称な量子
状態について成り立つ定理である．本論文のプロトコルでは，Alice/Bobは各光子ペアを
それぞれ測定した結果からシフト鍵ビットを生成するが，一般通信路を利用して適当な置
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換情報を共有し，鍵とする乱数列の順番をランダムに置換しても，鍵の安全性は変わらな
い．この置換は，原理的には光子ペアの測定前に行ってもよく，したがって光子ペア列は
対称な量子状態とみなせるため，量子 de Finneti定理が適用可能である．
量子 de Finneti定理によれば，対称な量子状態から一部の光子ペアを捨てたとき，残
された光子ペアの状態は，トレース距離の観点からはほとんど IIDな量子状態の確率混合
と十分近い状態となる．光子ペア数が無限大の極限においては，捨てる光子ペアの割合，
IIDでないペアの割合およびトレース距離は 0に漸近する．したがって，光子ペア数が無
限大の極限では，無視できる数の光子ペアを捨てることで，IIDを仮定した安全性の議論
が有効となり，コレクティブ攻撃に対する安全性証明によって，一般に安全な秘密鍵生成
率を導出することができる．なお，同じく IIDの条件下でも，通常一般化個別攻撃による
盗聴量はコレクティブ攻撃によるものよりも少ない．すなわち，IIDの条件下では，コレ
クティブ攻撃がもっとも強力な盗聴法となる．
では，コレクティブ攻撃に対する安全性を論じる．まず，Alice と Bob が共有する
光子ペア列は IID であり，各光子ペアの状態密度演算子が ρ̂′

AB で与えられるとする．
Alice と Bob は，各々の MUB での測定結果から式 (5.2), (5.3) のエラー確率を推定
する．r 番目の位相基底での Alice と Bob の測定結果が t だけシフトする確率は，集
合
{∣∣∣e(r)

a e
(r)
b

∗〉 ∣∣∣ t = a⊖ b
}
の各状態への射影測定確率の和として表せる．ここで，式

(5.10) より，
{
V̂ij ⊗ V̂ ∗

ij

∣∣∣e(r)
a e

(r)
b

∗〉 ∣∣∣ t = a⊖ b
}
も同じエラー t を表す状態の集合であ

る．したがって，r 番目の位相基底で tだけシフトするエラーを観測する確率は次式のよ
うに表される．

qtr=
∑
a⊖b=t

〈
e(r)
a e

(r)
b

∗∣∣∣ ρ̂′
AB

∣∣∣e(r)
a e

(r)
b

∗〉
=
∑
a⊖b=t

〈
e(r)
a e

(r)
b

∗∣∣∣ 1
d2

∑
ij

V̂ †
ij ⊗ V̂ Tij ρ̂

′
ABV̂ij ⊗ V̂ ∗

ij

∣∣∣e(r)
a e

(r)
b

∗〉
(5.14)

上式は，ρ̂′
AB の代わりに，演算子 V̂ †

ij ⊗ V̂ Tij でランダム化した状態である

ρ̂AB = 1
d2

∑
ij

V̂ †
ij ⊗ V̂ Tij ρ̂

′
ABV̂ij ⊗ V̂ ∗

ij (5.15)

を測定したとしても，そのエラー確率は変わらないことを表している．時間位置基底のエ
ラー確率についても同様である．ランダム化しても Alice/Bob が得る鍵の分布は変わら
ないため，実際にこのランダム化を行っても行わなくても，鍵の安全性に変化はない．こ
のランダム化を仮に行うとすると，Aliceと Bobで一般化Weyl演算子のインデックス ij

を共有した上でランダム化する必要がある．この情報は一般通信路から Eve に漏洩する
が，インデックス ij を知っている Eveから見た状態 V̂ †

ij ⊗ V̂ Tij ρ̂
′
ABV̂ij ⊗ V̂ ∗

ij と状態 ρ̂′
AB
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は，ユニタリーな変化分しか差がないため，情報量として違いがない [107]．したがって，
ρ̂AB に対する秘密鍵生成率は，元の ρ̂′

AB に対する秘密鍵生成率の下限を与える．
ここで，ρ̂AB の一般化ベル基底による展開形を考える．一般化Weyl演算子と一般化ベ

ル基底状態の固有方程式 [式 (5.13)]より，次式が成り立つ．〈
Ψi′j′

∣∣∣ ρ̂AB ∣∣∣Ψi′′j′′
〉

= 1
d2

〈
Ψi′j′

∣∣∣∑
ij

V̂ †
ij ⊗ V̂ Tij ρ̂

′
ABV̂ij ⊗ V̂ ∗

ij

∣∣∣Ψi′′j′′
〉

= 1
d2

∑
ij

〈
Ψi′j′

∣∣∣ γ⊖i′⊙j⊕i⊙j′
ρ̂′
ABγ

i′′⊙j⊖i⊙j′′
∣∣∣Ψi′′j′′

〉
= 1
d2

∑
ij

γi⊙(j′⊖j′′)⊖(i′⊖i′′)⊙j
〈

Ψi′j′
∣∣∣ ρ̂′
AB

∣∣∣Ψi′′j′′
〉

= δi′,i′′δj′,j′′

〈
Ψi′j′

∣∣∣ ρ̂′
AB

∣∣∣Ψi′′j′′
〉

(5.16)

ただし，上式を導くにあたり∑i γ
i⊙(j′⊖j′′) = dδj′,j′′ を用いた．上式は，ρ̂AB は，ρ̂′

AB

を一般化ベル基底で展開し，対角成分のみを残した状態であることを示している．これら
の考察から，安全性解析としての一般性を失うことなく，Alice/Bob間で共有される量子
状態を，次式の一般化ベル基底対角化状態として取り扱うことができる．

ρ̂AB =
d−1∑
j,k=0

λjk
∣∣Ψjk

〉〈
Ψjk

∣∣
AB

(5.17)

ただし，λjk ≥ 0 かつ∑jk λjk = 1である．上式の一般化ベル基底対角化状態に対するエ
ラー測定確率を求めると，λjk と誤り分布ベクトルの関係式として，次式を得る．

qtZ=
d−1∑
k=0

λtk (5.18)

qtk=
d−1∑
j=0

λj,k⊙j⊖t for k ∈ {0, · · · , d− 1} (5.19)

また，これらの逆関係として，次式を得る．

λjk = 1
d

(
d−1∑
s=0

qs⊙j⊖k
s + qjZ − 1

)
(5.20)

式 (5.20)は，(d+ 1)個のMUB測定によって得られた誤り分布ベクトルから，式 (5.17)
の Alice/Bob 間で共有したとみなせる状態 ρ̂AB が推定できることを示している．これ
は，対角化という限定的な状況下での量子状態トモグラフィーと言える．このようにして
推定された ρ̂AB を用いて，Eveの盗聴量の最大値を見積もり，それから最終秘密鍵生成
率を得る．
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2.3.2節および 2.3.3節で述べたように，混合状態に対して補助系を付け加えると，全体
として純粋状態を構成することができる．補助系 Eによる ρ̂AB の純粋化は，次式で与え
られる．

|ψ⟩ABE =
d−1∑
j,k=0

√
λjk

∣∣Ψjk
〉
AB

∣∣ϕjk〉
E

(5.21)

ここで，
∣∣ϕjk〉

E
は，少なくとも d2 次元より大きなヒルベルト空間中の正規直交状態であ

る．上式の状態に更に追加で補助系を増やしても，|ψ⟩ABE は純粋状態であるため追加補
助系とは無相関であり，そこから盗聴されることはない．また，補助系 Eをさらに補助系
E1, E2, · · · と細かく分割し，その一部のみを Eveが所持することも可能であるが，分割
した部分系から得られる情報量は，全系 Eから得られる情報量よりも小さい．あるいは，
Eveが補助系 Eを持っていれば，後から自身でそのような分割操作が可能であり，部分系
のみを持っているという条件は Eveが補助系 Eを持っている時の測定最適化に含まれる，
と考えてもよい．したがって，盗聴者 Eveが補助系 Eを所有していると想定して，盗聴
量の上限を見積もることができる．
そこで以降では，Eve が補助系 E を所有しているものとして議論を展開する．Eve の
盗聴量としては，Aliceのシフト鍵について Eveが知っている情報量を考える．またここ
では，Aliceと Bobは，高い割合で時間位置基底測定を行い，その測定結果からシフト鍵
を生成することとし，位相基底での測定結果は，誤り分布ベクトルの推定による盗聴量の
上限見積もりにのみ利用するものとする．このような非対称な基底選択は，安全性解析を
簡単化するだけでなく，Alice/Bobが一様ランダムに基底選択した場合の基底不一致によ
るビット廃棄の割合を低減できる．
古典的には Eveの盗聴量は，Alice/Eveそれぞれの測定値を表す確率変数間の相互情報
量 I(A;E)から見積もられる．しかし今の場合，Aliceの測定は具体的に定義されている
一方，Eveは物理法則に反しない限りあらゆる測定が可能としており，測定値を定式化で
きない．このような量子測定で得られる相互情報量の上限は Holevo限界として知られて
おり [1, 78]，その上限値である Holevo情報量は次式で与えられる．

χ(A;E) = S(ρ̂E) −
∑
a

p(a)S(ρ̂E|a) (5.22)

ただし，ρ̂E は Eveの持つ補助系の状態密度演算子，ρ̂E|a は Aliceの測定結果 aで条件付
けた Eveの持つ補助系の状態密度演算子，p(a)は Aliceの測定結果 aが観測される確率
である．
任意の一般化ベル基底状態の部分系の量子状態は最大混合状態となるため，式 (5.21)
の状態をもとに考えると，式 (5.22)において p(a) = 1/dである．また，2.3.2節で述べ
たように，純粋化前の密度演算子 ρ̂AB の von Neumannエントロピーと，純粋化で付与
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された補助系 Eの密度演算子 ρ̂E の von Neumannエントロピーは等しいため，λjk を要
素としたベクトル λを用いて，S(ρ̂E) = H(λ) となる．そこで以下，式 (5.22)の残る項
S(ρ̂E|a) を計算するために，ρ̂E|a を求める．前述のように，シフト鍵は時間位置基底で
の測定結果から生成される．Alice/Bobがそれぞれ測定値 a, bを得たという条件下での，
Eveの補助系 Eの非規格化量子状態は，次式で与えられる．

⟨ab|AB |ψ⟩ABE =
d−1∑
j,k=0

√
λjk

〈
ab
∣∣Ψjk

〉
AB

∣∣ϕjk〉
E

(5.23)

ここで，式 (5.7), (5.12)より，
〈
ab
∣∣Ψjk

〉
= ⟨ab|

∑
i

1√
d
γ(i⊕j)⊙k |i⊕ j, i⟩

= 1√
d

⟨ab|b⊕ j, b⟩ γ(b⊕j)⊙k

= 1√
d
δa,b⊕jγ

a⊙k (5.24)

であるから，式 (5.23)は次のように書き換えられる．

⟨ab|AB |ψ⟩ABE = 1√
d

∑
k

√
λa⊖b,kγ

a⊙k ∣∣ϕa⊖b,k〉
E

=
√∑

k′ λa⊖b,k′

d

∑
k

√
λa⊖b,kγ

a⊙k√∑
k′ λa⊖b,k′

∣∣ϕa⊖b,k〉
E

=

√
qa⊖b
Z

d

∑
k

√
λa⊖b,kγ

a⊙k√
qa⊖b
Z

∣∣ϕa⊖b,k〉
E

(5.25)

ただし，上式の 2行目から 3行目への式変形において式 (5.18)を用いた．ここで，
∣∣∣ϕ̃a⊖b

〉
E

=
∑
k

√
λa⊖b,kγ

a⊙k√
qa⊖b
Z

∣∣ϕa⊖b,k〉
E

(5.26)

とする．この
∣∣∣ϕ̃a⊖b

〉
E
は規格化された純粋状態となっている．また，aを固定したとき，∣∣ϕa⊖b,k〉

E
が異なる b, kについて直交しているため，

∣∣∣ϕ̃a⊖b
〉
E
は異なる bについて直交し

ている．式 (5.25), (5.26)より，

p(a)ρ̂E|a =
∑
b

⟨ab|AB |ψ⟩ABE ⟨ψ|ABE |ab⟩AB

= 1
d

∑
b

qa⊖b
Z

∣∣∣ϕ̃a⊖b
〉〈
ϕ̃a⊖b

∣∣∣
E

(5.27)
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となり，p(a) = 1/dであるから，次式が成り立つ．

ρ̂E|a =
∑
b

qa⊖b
Z

∣∣∣ϕ̃a⊖b
〉〈
ϕ̃a⊖b

∣∣∣
E

(5.28)

∣∣∣ϕ̃a⊖b
〉
E
は異なる bについて直交しているので，上式は対角化されており，固有値が時間

位置基底での誤り分布ベクトル q
Z
の要素で与えられている．したがって，aの値にかか

わらず，S(ρ̂E|a) = H(q
Z

)となる．
以上をまとめると，Aliceのシフト鍵に対する Eveの盗聴量の上限値である Holevo情
報量が，次式で与えられる．

χ(A;E) = H(λ) − H(q
Z

) (5.29)

Alice と Bob は，シフト鍵に誤り訂正を施した後，秘匿性増強により盗聴量分を鍵圧縮
して最終的な秘密鍵を共有する．誤り訂正鍵の長さは，Alice/Bob の測定値を表す確率
変数間の相互情報量 I(A;B)から求まる．今，Aliceが測定値 aを得る確率は全て等しく
p(a) = 1/dであり，さらに aで条件付けた Bobの測定値 bの確率分布が誤り分布ベクト
ル q

Z
で与えられるため，

I(A;B) = log2 d− H(q
Z

) (5.30)

である．したがって，鍵生成に用いる光子ペア数が無限大の極限で，Alice/Bobがシャノ
ン限界を達成する誤り訂正手法を用いるとき，(d + 1)測定基底 QKDプロトコルの秘密
鍵生成率は次式で与えられる．

r∞ = I(A : B) − χ(A : E)
= log2 d− H(λ) (5.31)

上記鍵生成率となるように，秘匿性増強による鍵圧縮を施すことで，盗聴の恐れのない一
様乱数を Alice, Bob間で共有することが出来る．すなわち，素数の累乗次元での (d+ 1)
測定基底 QKDプロトコルの安全性が証明されたと言える．
なお，上記の秘密鍵生成率の導出過程は，先行研究 [42]の議論を有限体によって一般化
したものとなっている．先行研究においては，誤り分布ベクトルと λjk の関係式 (5.19),
(5.20) などの有限体での計算式が，通常の四則演算および mod d演算となっている．次
元 dが素数である時，有限体の計算は四則演算および mod dで実現できるから，上記の
証明で得られた結果は素数次元において先行研究の内容を含んでおり，素数次元から素数
の累乗次元への一般化となっている．
以上論じたのは素数の累乗次元への拡張であり，その他の次元への一般化が課題として
残るが，この実現は難しいことが予想される．素数の累乗次元における (d+1)個のMUB
の構成方法は，1989年にWoottersらによって初めて与えられた [102]．以降，その他の
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次元における (d+ 1)個のMUBの構成は様々に試みられているが，最も小さな次元であ
る d = 6においても 3つしか見つかっておらず，そもそも構成可能であるか否かが不明で
ある [101, 108]．このように一般の次元での (d+ 1)個のMUBの存在は未だ未解決な問
題であり，MUBが (d+ 1)個存在しなければ QKDプロトコルとして実装できない．
上記の安全性証明を利用して，2測定基底 QKDプロトコルの鍵生成率も導出できる．

2測定基底 QKDプロトコルでは，(d+ 1)個のMUBのうち 2つの基底だけを利用する．
ここで，時間位置基底と r = 0 の位相基底の二つを用いるものとする．この場合，誤り
分布ベクトルのうち，q

Z
および q0 しか得ることができないため，λjk を一意に定める

ことができない．そのため，最悪条件として，Eveの盗聴量上限値である Holevo情報量
χ(A;E)を推定する際，q

Z
および q0 による拘束条件の下で，χ(A;E)を最大化するよう

に λjk を最適化することになる．
λjk は，Alice/Bob間で共有される状態が

∣∣Ψjk
〉
AB
となる確率である．拘束条件は，式

(5.18), (5.19)より，

qtZ =
d−1∑
k=0

λtk (5.18)

qt0 =
d−1∑
j=0

λj,⊖t (5.32)

である．上式は，時間位置基底および r = 0の位相基底における誤り確率は，λjk の周辺
確率分布になっており，λjk が時間位置シフトエラーおよび位相シフトエラーの結合確率
分布であることを示している．このことは，次のように考えることでも理解できる．
量子もつれ状態

∣∣Ψjk
〉
AB
は，一般化Weyl演算子を最大量子もつれ状態 |ΨMES⟩AB の

光子 A に作用させることで得られる．一般化Weyl 演算子は次のように二つのWeyl 演
算子の積に分解できる．

V̂ij = V̂0j V̂i0 (5.33)

ここで，分解した二つの一般化Weyl演算子は，次式のように表すことができる．

V̂i0 =
d−1∑
k=0

|k ⊕ i⟩ ⟨k| =
d−1∑
k=0

∣∣∣e(Z)
k⊕i

〉〈
e

(Z)
k

∣∣∣ (5.34)

V̂0j =
d−1∑
k=0

γk⊙j |k⟩ ⟨k| =
d−1∑
k=0

∣∣∣e(0)
k⊖j

〉〈
e

(0)
k

∣∣∣ (5.35)

式 (5.34)より，V̂i0 は時間位置基底の値を iシフトする演算子，また式 (5.35)より，V̂0j

は r = 0の位相基底の値を ⊖j シフトする演算子，である．式 (5.33)のように V̂ij が二つ
の演算子の積で表せるため，

∣∣Ψjk
〉
AB
は，二つの基底の状態のインデックスを Alice 側
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だけシフトした，すなわちエラーが生じた状態とみなせる．したがって，λjk は二つのエ
ラーの結合確率分布となっている．
式 (5.29)より，Holevo情報量は χ(A;E) = H(λ) − H(q

Z
) で与えられる．λjk が 2種

類のエラーの結合確率分布であることから，χ(A;E)は時間位置基底でのエラーで条件付
けた，r = 0 の位相基底でのエラーの条件付きエントロピーとなっている．条件付きエ
ントロピーは二つのエラーが無相関である時に最大化される．したがって，2 測定基底
QKDプロトコルにおける Eveの盗聴量の上限は，

χ(A;E) = H(q0) −
{

H(q0) + H(q
Z

) − H(λ)
}

= H(q0) − I(q0; q
Z

)
= H(q0) (5.36)

で与えられ，秘密鍵生成率は

r∞ = I(A : B) − χ(A : E)
= log2 d− H(q

Z
) − H(q0) (5.37)

となる．
上記 2測定基底 QKDプロトコルの秘密鍵生成率は，d = 2の時，式 (2.66)で与えられ
る BB84/BBM92の秘密鍵生成率と一致する．2.4節で，BB84/BBM92と Six-stateプ
ロトコルの違いは，2種類のエラーの間の相関が見積もれるか否かであることを述べた．
上記 2種類の高次元 QKDプロトコルの安全性証明は，相関が見積もれるか否かがプロト
コルの違いとして現れることを示している．このように，(d + 1)測定基底 QKDプロト
コルは，2種類のエラーの相関を見積もることにより高い秘密鍵生成率を実現するプロト
コルと言える．

5.3.3 平均シンボルエラーレート閾値の導出
前節では，各基底の誤り分布ベクトルから λjk を求めることにより，(d + 1)測定基底

QKDプロトコルの秘密鍵生成率 [式 (5.31)]を導出した．しかしながら，誤り分布ベクト
ルは多数のパラメータを含むため，QKDシステム性能の直感的な指標には不向きである．
そこで本節では，式 (5.31)をもとに，秘密鍵を生成するために満たすべき，平均シンボル
エラーレートの上限 (閾値)を導出する．
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まず，λのエントロピーについて，次式が成り立つ．

H(λ)=
∑
j,k

−λjk log2 λjk

= −λ00 log2 λ00 −
∑

(j,k)̸=(0,0)

λjk log2 λjk

= −λ00 log2 λ00 − (1 − λ00) log2(1 − λ00)

+(1 − λ00)
∑

(j,k)̸=(0,0)

[
− λjk

1 − λ00
log2

λjk
1 − λ00

]
≤ −λ00 log2 λ00 − (1 − λ00) log2(1 − λ00) + (1 − λ00) log2(d2 − 1)

= −λ00 log2 λ00 − (1 − λ00) log2
1 − λ00

d2 − 1
(5.38)

ただし，不等式への移行には，(d2 − 1)次元のエントロピーの最大値が log2(d2 − 1)であ
ることを用いた．ここで，式 (5.20)から，λ00 が次式で与えられる．

λ00= 1
d

(
d−1∑
r=0

q0
r + q0

Z − 1

)

= 1
d

(
d−

d−1∑
r=0

er − eZ

)

= 1 − d+ 1
d

ē (5.39)

ただし，eZ , er はそれぞれ時間位置基底および r 番目の位相基底のシンボルエラーレー
ト，ēはこれらの相加平均である．したがって，平均シンボルエラーレート ēを用いて，
秘密鍵生成率の下限が次式で与えられる．

r∞ = log2 d− H(λ)

≥ log2 d+ λ00 log2 λ00 + (1 − λ00) log2
1 − λ00

d2 − 1

= log2 d+
(

1 − d+ 1
d

ē

)
log2

(
1 − d+ 1

d
ē

)
+ d+ 1

d
ē log2

{
1

d(d− 1)
ē

}
(5.40)

なお，上式は対称なノイズモデルである，分極解消チャネルの場合の秘密鍵生成率 [42]に
一致する．式 (5.40)において，r∞ の下限が 0となる時の ēが平均シンボルエラーレート
閾値となる．例えば，d = 4 ではこの閾値は 23.17 % となり，平均シンボルエラーレー
トがこれより小さければ，常に秘密鍵生成が可能である．平均シンボルエラーレート閾値
を用いる性能評価法は，詳細なエラー分布によらないため，扱いが容易という利点を有す
る．ただし，これは秘密鍵生成率の下限から算出した閾値であり，仮にこの閾値より大き
な平均シンボルエラーレートであっても，式 (5.31) と元の誤り分布ベクトルをもとに算
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出すると，秘密鍵が生成可能となる場合がある．したがって，(d + 1)測定基底 QKDプ
ロトコルの性能を正しく評価するには，式 (5.31)に基づいて行うことが必要である．

5.4 高次元タイムビン量子状態に対する (d + 1)相互不偏基
底測定手法

本節では，前節で述べた (d+ 1)個のMUBの，タイムビン量子状態に対する実装法に
ついて述べる．
これまで高次元 QKD としては，2 測定基底 QKD プロトコルが主に実装されており

[31–40]，高次元タイムビン量子状態については，3.4.1節で述べたツリー上に多段接続し
た MZI 構成が報告されている [31, 32]．ただし，ツリー構造のため MZI を (d − 1) 個，
光子検出器を d個用いており，dが大きいとデバイス数が増大する．さらに，式 (3.11)に
示すフーリエ基底を利用しているため，状態生成や測定系の位相精度が 1/dに比例し，装
置の高い制御性が要求される．特定の次元でこれらの問題が緩和された基底を用いた実装
[33]や，一つの基底に含まれる一部の状態だけを利用する手法 [109, 110]が報告されてい
るが，スケーラブルな一般的実装法は確立されていない．また，(d + 1)基底 QKDプロ
トコルとしては SLMで生成した OAM量子状態を用いた実装報告があるが [77]，タイム
ビン量子状態については，SLMのようなフレキシブルな変調器がないため，用いるMUB
の特性を適切に利用した実装の工夫が必要である．
前節で述べた式 (5.8)の位相基底以外に，次式で表される位相基底を用いても，d = pN

である (d+ 1)個のMUBを構成することができる [102]．∣∣∣ψ(r)
n

〉
=
∑
m

B(r)
mn |m⟩ (5.41)

B(r)
mn =


1√
2N

exp
[
π
2 i
(∑N−1

j=0 rjm⃗
TA(j)m⃗+ 2m⃗ · n⃗

)]
(p = 2)

1√
pN

exp
[

2π
p i
(∑N−1

j=0 rjm⃗
TA(j)m⃗+ m⃗ · n⃗

)]
(pは奇素数)

(5.42)

ただし，m⃗, n⃗, r⃗はそれぞれ整数m,n, rの p進数ベクトル，rj は r⃗の j 番目の要素，であ
る．また，A(j) は N ×N 対称行列であり，そのm行 n列要素 Amn は次式を満たす．

pm ⊙ pn = ⊕N−1
k=0 A

(k)
mnp

k (5.43)

上式より，A(j) は有限体の乗算によって一意に定められる．また，式 (5.42)は整数を要
素とするベクトルと行列のみで計算可能であるが，A(j) により有限体の代数的構造を反
映した計算式となっている．前節で述べた位相基底状態 [式 (5.8)]と，上記の位相基底状
態 [式 (5.42)] は表式が大きく異なっているが，状態や基底のインデックス r, n を並べ替
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えると，同一のMUBであることが示される (付録 A)．したがって，式 (5.41), (5.42)の
MUBによっても，前節と同様にして，(d+ 1)測定基底 QKDプロトコルを実装できる．
式 (5.42)は p = 2と p = 奇素数とで場合分けされているため，まずは p = 2の場合の

実装法について論じる．式 (5.42) より，位相基底状態は，時間基底で展開したときの確
率振幅の大きさが等しく，位相だけが変調された重ね合わせ状態となっている．また，位
相項の∑N−1

j=0 rjm⃗
TA(j)m⃗ + 2m⃗ · n⃗は，0または 1を要素とするベクトルと行列からな

るため，必ず整数値となり，任意の N において，必要な位相は {0, π/2, π, 3π/2}の高々
4値である．したがって，位相基底状態は，d連続パルスに対し，4値位相変調 (QPSK：
Quadrature Phase Shift Keying) を施した状態と言える．一方，時間位置基底状態は，
d 連続のタイムスロットのうち，一つのタイムスロットにのみ 1 光子が存在する状態で
ある．(d + 1)測定基底 QKDプロトコルの実装法には，量子もつれ状態を用いる EB型
と，単一光子の状態を Aliceが準備して Bobに送る P&M型があるが，後者では上記の
状態を準備すればよいことになる．理想的には単一光子を用いるプロトコルであるが，実
用上は平均光子数 1 以下の微弱コヒーレント光を疑似単一光子として代用できる．した
がって，光IQ変調器 (In-phase and Quadrature-phase modulator)によりレーザからの
コヒーレント光を変調し，光減衰器で単一光子レベルまで減衰すれば，(d+ 1)個のMUB
の基底状態を容易に生成できる．
一方の測定系構築については，上記の B

(r)
mn を要素とする行列 B(r) の構造を利用する．

この行列は，二つの行列の積 B(r) = D(r)B(0) と分解することができる．ここで，D(r)

は対角ユニタリー行列であり，m番目の対角要素が次式で与えられる．

D(r)
mm = exp

iπ2
N−1∑
j=0

rjm⃗
TA(j)m⃗

 (5.44)

ここで，行列 B(r),D(r) に対応する演算子 B̂(r), D̂(r) を用いると，r番目の位相基底にお
ける n番目の基底状態

∣∣∣ψ(r)
n

〉
を，次式のように表すことができる．∣∣∣ψ(r)
n

〉
=
∑
m

B(r)
mn |m⟩ = B̂(r) |n⟩

= D̂(r)B̂(0) |n⟩

= D̂(r)
∣∣∣ψ(0)
n

〉
(5.45)

したがって，任意の d次元量子状態の状態密度演算子 ρ̂が与えられた時，量子状態
∣∣∣ψ(r)
n

〉
への射影測定確率が，次式で与えられる．〈

ψ(r)
n

∣∣∣ρ̂∣∣∣ψ(r)
n

〉
=
〈
ψ(0)
n

∣∣∣D̂(r)†ρ̂D̂(r)
∣∣∣ψ(0)
n

〉
(5.46)
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上式は，状態
∣∣∣ψ(r)
n

〉
への射影測定は，D̂(r)† によるユニタリー変換を施したのちに状態∣∣∣ψ(0)

n

〉
への射影測定を行うことと等価であることを示している．ここで，時間位置基底状

態 |m⟩に対して D̂(r)† |m⟩ = D
(r)∗
mm |m⟩ であり，これは D̂(r)† が表すユニタリー変換は，

位相基底のインデックス rに応じたパターンで，時間位置基底状態に位相変調を施す操作
に対応することを示している．したがって，高次元タイムビン量子状態に対するこのユニ
タリー変換は，位相変調器によって実装できる．よって，r 番目の基底選択のための位相
変調を施した後，

{∣∣∣ψ(0)
n

〉}
への射影測定を行う構成により，任意の r 番目の位相基底測

定が実装できる．∣∣∣ψ(0)
n

〉
= B̂(0) |n⟩ であるから，この状態は時間位置基底状態に対して B̂(0) のユニタ

リー変換を施した状態である．ここで，式 (5.43)より，

B(0)
mn = 1√

2N
exp(iπm⃗ · n⃗) (5.47)

と表されるが，これは 2N 次元アダマール変換となっている．4.2.2節では，2N 次元の高
次元タイムビン量子状態を，N 個の 2次元タイムビン量子状態 (図 4.2)にモデル化して，
効率的な QSTを提案した．2N 次元アダマール変換は，この等価な N 個の 2次元タイム
ビン量子状態全てに対して，2次元アダマール変換を施す操作に等しい．2次元アダマー
ル変換のユニタリー演算子は，式 (2.10)で与えられる．

Ĥ = |+⟩⟨0| + |−⟩⟨1| (2.10)

したがって，量子状態
∣∣∣ψ(0)
n

〉
= B̂(0) |n⟩は，等価な N 個の 2次元量子状態を用いて記述

すると，量子状態 |+⟩ , |−⟩の N プロダクト状態 (アダマール基底状態)となる．4.2.2節
で述べたように，このような状態への射影測定は，多段接続した遅延MZIを用いて実装
可能である．
図 5.4(a)に，ツリー構造の多段接続MZIによる 4次元アダマール基底への射影測定実
装法を示す．パルス間隔 τ の 4 次元タイムビン量子状態を 2τ 遅延 MZI に入力すると，
出力の 6つのタイムスロットのうち，点線で囲われた中心の 2つのタイムスロットにおい
て，入力パルス列内の 2 つのパルスが干渉する．この干渉は，MZI の伝搬遅延位相を 0
とすると，時間間隔 2τ の等価な量子ビット q1 に対する，|+⟩ , |−⟩状態への射影測定に対
応する．この出力パルス列をさらに τ 遅延MZIに入力すると，初段MZIで干渉したパル
ス列が中心の出力タイムスロットで干渉する．τ 遅延MZIの伝搬遅延位相も 0とするこ
とで，この干渉を時間間隔 τ の等価な量子ビット q0 に対する，|+⟩ , |−⟩状態への射影測
定に対応づけることができる．したがって，多段接続したMZIの全ての出力ポートにお
いて，中心のタイムスロットにおける光子検出事象を記録すれば，各等価な量子ビットに
対する |+⟩ , |−⟩ 状態のテンソル積の，全組み合わせの射影測定が実装できる．この手法
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図 5.4 多段接続 MZI によるアダマール基底への射影測定実装法．(a) ツリー構造，
(b)遅延線による時分割多重構成

はさらに 4τ 遅延MZI，8τ 遅延MZIとツリー構造を拡張することで，任意の 2N 次元タ
イムビン量子状態の測定系に拡張できる．しかしながら，上記ツリー構造を用いた測定系
は，d− 1個のMZIおよび d個の単一光子検出器を必要とする．これはフーリエ基底を用
いた実装 [31, 32]と同じであり，スケーラブルな装置構成とはならない．ただし，フーリ
エ基底への測定系とアダマール基底への測定系では，MZI の伝搬遅延位相が異なってい
る．前者では，後段の 2つの τ 遅延MZIは異なる伝搬遅延位相を持つ．一方，アダマー
ル基底測定系では全てのMZIの伝搬遅延位相が 0であり，後段の 2つの τ 遅延MZIは
遅延時間/伝搬遅延位相ともに同一である．本論文ではこのことに着目して，測定に必要
なMZIの個数を削減する．
図 5.4(b)に，本論文で提案する 4次元アダマール基底への射影測定系構成を示す．こ

こでは，2τ 遅延MZIの 2つの出力が τ 遅延MZIの 2つの入力にそれぞれ接続されてい
る．ただし，接続経路の一方に遅延時間 τ ′ の遅延線が挿入されており，τ 遅延干渉計の
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入力部のビームスプリッタにおいて，二つの入力が干渉しないように設定されている．な
お，図 5.4(b)では，τ ′ = τ/2とした場合の時間位置関係が図示されているが，入力部の
ビームスプリッタで干渉が生じない限り，τ ′ は任意の値とすることができる．例えば，状
態生成の繰り返しレートを低下させ，τ ′ ≥ 8τ 等にすれば，光子検出器の時間分解能に対
する要求条件を緩和できる．2入力の τ 遅延MZIでは，|+⟩と |−⟩の出力ポートが上側
ポート入力と下側ポート入力で反転するが，|+⟩ , |−⟩ への射影測定としては変わりはな
い．したがって，遅延線による時分割多重効果により，図 5.4(b)の構成も 4次元アダマー
ル基底測定系となっている．より高次元の 2N 次元アダマール基底についても，同様に遅
延線による時分割多重を用いることにより，N = log2 d個のMZIおよび 2台の単一光子
検出器により射影測定系が構成できる．さらに，先に述べた位相基底切り替え手法と組み
合わせると，1台の位相変調器，log2 d個の遅延MZI および 2個の光子検出器からなる
構成で，全ての位相基底についての射影測定が実現できる．
一方，時間位置基底での射影測定は，パルス列を干渉させずに単一光子検出器で測定す
ることにより実装される．これには，多段MZI測定系前段でビームスプリッタによりパ
ルス列を分岐し，分岐したパルス列を単一光子検出器で測定すればよい．このような受信
系では，MZI出力にて光子検出されるか (位相基底測定)，ビームスプリッタ分岐光から
光子検出されるか (時間位置基底測定)によって，受動的かつ確率的に測定基底が選択さ
れることになる．5.3.2節で述べた非対称な基底選択の選択確率は，ビームスプリッタの
分岐比で設定される．時間位置基底測定系を加えることによる単一光子検出器数の増加分
は高々 1台，すなわち任意の 2N 次元の (d+ 1)測定基底を 3個の光子検出器で実装可能
であり，スケーラブルであることに変わりはない．
なお，上記構成では，最終段のMZI出力のうち，全ての入力パルスの干渉が生じるタ
イムスロットのみを利用するため，その他のタイムスロットでの光子検出は実効的に光子
損失となる．実効的な光子損失の大きさは N × 3 dB であるため，光子損失を含めると
スケーラブルな構成とは言い難い．ただし，遅延MZIの入力部のビームスプリッタを高
速な光スイッチで置換することで，原理的には実効的な光子損失のないアダマール基底測
定が実現できる [111, 112]．これは次のように理解できる．図 5.4(b)において，2τ 遅延
MZIの入力部ビームスプリッタを高速光スイッチで置換すると，等価な量子ビット q1 の
|0⟩ に対応するパルスを長経路，|1⟩ に対応するパルスを短経路に振り分けることができ
る．このスイッチによる経路振り分けを行うと，図中の点線で囲われたタイムスロットの
みに光子が存在し，それ以外のタイムスロットで光子は検出されない．この操作を τ 遅延
MZIで等価な量子ビット q0 にも施すことで，アダマール基底測定で用いるタイムスロッ
トでのみ，光子が検出されるようにできる．高速光スイッチは追加の挿入損失を通常伴う
が，受動的な構成の実効光子損失との比較から，光スイッチ当たり 3 dB以下の挿入損失
であれば，スイッチを利用した能動的な構成により損失を改善できる．
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ここまで，d(= 2N ) 次元タイムビン量子状態に対する (d + 1) 個の MUB 実装法につ
いて述べた．上記の議論は，他の素数の累乗次元にも容易に拡張できる．pが奇素数の場
合，式 (5.42)の位相項は∑N−1

j=0 rjm⃗
TA(j)m⃗+ m⃗ · n⃗ で与えられ，この項は 0から p− 1

までの値を要素とするベクトルおよび行列から成るため，p = 2の場合と同様に整数値と
なる．この整数値に，i 2π

p を乗じたものが位相値となるため，d = pN の場合に取りうる
位相値は

{
2π
p k

∣∣∣ k ∈ [0, p− 1]
}
の p値である．したがって，pを固定してN を大きくし

ても必要な位相精度は変わらない．pが装置実装可能な位相値数より十分小さければ，大
きな pN 次元状態についても，光 IQ変調器により容易に生成可能である．
上記は (d+1)MUBの量子状態生成に関する議論であるが，状態測定についても，p = 2

の場合と同様に，行列の分解 B(r) = D(r)B(0) が利用できる．D(r) は対角ユニタリー行
列であり，この変換に対応する基底切り替え操作は位相変調器によって実現できる．一
方，式 (5.42)より，B(0) の要素は次式で与えられる．

B(0)
mn = 1√

pN
exp

(
i
2π
p
m⃗ · n⃗

)
(5.48)

上式は，N 個の p次元フーリエ変換のテンソル積となっている．したがって，2N 次元ア
ダマール基底状態が |+⟩ , |−⟩の N プロダクト状態となったのと同様に，pN 次元タイム
ビン量子状態と等価な N 個の p次元量子状態を考えることができ，各 p次元量子状態の
フーリエ基底状態

|fk⟩ = 1
√
p

∑
m

exp
(
i
2πmk
p

)
|m⟩ for k ∈ [0, p− 1] (5.49)

の N プロダクト状態が
∣∣∣ψ(0)
n

〉
となっている．したがって，式 (5.49)で表される p次元

フーリエ基底への射影測定に対応する干渉計を N 個多段に接続することにより，所要の
測定系が構築される．3.4.1節で述べたように，時間エネルギー不確定性を利用した 3次
元量子もつれ状態に対するフーリエ基底測定の実装法として，3本腕遅延干渉計を用いる
手法が報告されている [47]．この手法はタイムビン量子状態にも適用でき，さらに p本腕
遅延干渉計とすることで，p次元タイムビン量子状態にも拡張できる．この p本腕遅延干
渉計において，p = 2であれば，これまで述べてきた遅延MZIとなる．したがって，pが
奇素数である高次元状態については，1台の位相変調器，logp d個の p本腕遅延干渉計お
よび p 個の光子検出器からなる構成で，全ての位相基底についての射影測定が実現でき
る．時間位置基底への射影測定が，ビームスプリッタによる分岐で並列実装できることも
同様である．このように，提案手法を用いることで，任意の素数の累乗次元について，装
置数が次元に対して対数的に増加する構成により，(d+ 1)個のMUB測定が実装できる．
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5.5 実験系
前節で提案した 4次元タイムビン量子状態に対する (d + 1)MUB状態生成法および測
定法を実験により検証した．本節ではその実験系について述べる．なお，本実験では，量
子もつれ状態を利用した QKDプロトコルの実証ではなく，提案した状態生成/測定手法
の原理実証を目的とするため，量子もつれ光源に代わり，P&M型の送信系を用いる．本
節の測定系を二つ用意して量子もつれ状態の各光子にそれぞれ適用すれば，EB型のプロ
トコルが実装できる．
図 5.5に実験構成を示す．波長 1559.0 nmの CWレーザ光を LiNbO3 光 IQ変調器に
より変調し，時間位置基底状態に対応する単一パルス，もしくは位相基底状態に対応する
4 連続パルス列を，パルス幅 33 ps/パルス間隔 500 ps および繰り返し周波数 250 MHz
で生成する．上述のように，QKD プロトコルの実装ではなく提案する生成/測定系の原
理実証が目的であるため，ここではランダムな変調パターンではなく，時間位置基底状態
および位相基底状態を順に生成する変調パターンを用いた．生成したパルス列は 2台の光
可変減衰器 (VATT)により，平均光子数が 1 M photons/sの微弱コヒーレント光となる
ように減衰される．
生成した微弱コヒーレント光は，二つの測定系によって検出される．一つは，位相基
底への射影測定系である．まず微弱コヒーレント光の偏波を偏波コントローラ (PC) に
よって調整した後，LiNbO3 位相変調器 (PM)に入力する．ここでの位相変調パターンに
よって，対角ユニタリー行列 D(r) に対応した位相基底切り替えを行う．位相変調された
微弱コヒーレント光は，遅延時間 1 ns，伝搬遅延位相 0の PLC-MZIに入力される．こ
の PLC-MZIからの出力を光ディレイライン (DL)に入力し，約 250 psの相対遅延を与
えたのち，遅延時間 500 ps，伝搬遅延位相 0の PLC-MZIに入力する．この出力を超伝
導ナノワイヤ単一光子検出器 (SNSPD)で検出し，光子検出時刻をタイムインターバルア

図 5.5 4 次元タイムビン量子状態に対する MUB 状態生成/測定の実験系．点線部は
ファイバパッチケーブルの接続によって選択される．CW: CW レーザ光源，IQ 変調
器: LiNbO3 in-phase and quadrature-phase変調器，VATT: 可変光減衰器，PC: 偏
波コントローラ，PM: LiNbO3 位相変調器，MZI: 遅延Mach-Zehnder干渉計，DL:
光ディレイライン，SNSPD: 超伝導ナノワイヤ単一光子検出器
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ナライザ (TIA)で 60秒間記録して，前節で述べた位相基底状態への射影測定を行う．2
つの SNSPDの検出効率はともに 56 %，ダークカウント率は 100 cps以下であった．ま
た，SNSPD1，2での，シングルカウントレートはそれぞれ 52，47 kcpsであった．一方，
時間位置基底への射影測定では，PMおよび MZIを取り除き，パルス列を直接 SNSPD
に入力して光子検出時刻を TIAにて記録した．この時のシングルカウントレートは 546
kcps であった．なお，SNSPD や TIA 等の電気回路で生じるタイミングジッタのため，
TIAで記録された光子検出時刻のヒストグラムの半値全幅は，入力光パルス幅 33 psより
も広い 78 psであった．

5.6 実験結果
本節では，前節で述べた実験系の測定結果について述べる．
図 5.6(a) に，光子が ra 番目基底の na 番目状態として準備され，かつ測定基底が rb

番目基底とした時に，光子が nb 番目状態として検出された条件付確率 Pr (nb|ra, na, rb)
を示す．ここで，ra(rb) = 0 が時間位置基底であり，式 (5.41) で表される r 番目位相
基底は ra(rb) = r + 1 により対応付けられる．生成量子状態

∣∣∣ψ(ra)
na

〉
と測定量子状態∣∣∣ψ(rb)

nb

〉
が同じ基底，すなわち ra = rb の場合，これらは正規直交基底であることから，∣∣∣〈ψ(ra)

na

∣∣∣ψ(rb)
nb

〉∣∣∣2 = δna,nb
となる．図 5.6(a) のブロック対角項では，このような特性を

示す確率分布が観測されており，それぞれの基底が正規直交基底となっていることが分か
る．一方，生成量子状態

∣∣∣ψ(ra)
na

〉
と測定量子状態

∣∣∣ψ(rb)
nb

〉
が異なる基底，すなわち ra ̸= rb

の場合，MUB の条件式 (5.1) より，
∣∣∣〈ψ(ra)

na

∣∣∣ψ(rb)
nb

〉∣∣∣2 = 1/d となる．図 5.6(a) の非ブ
ロック対角項では，このような一様分布に近い確率分布が観測されている．したがって，
本実験により 5つの 4次元MUBから予想される確率分布を，簡便な生成/測定系を用い
て観測できたと言える．

QKDに応用する際の重要な性能指標はシンボルエラーレートであり，これは図 5.6(a)
のブロック対角項から見積もることができる．図 5.6(b)に，見積もられた各基底ごとの
平均シンボルエラーレートを示す．SNSPD の低ダークカウント，低ジッタ特性のため
に，時間位置基底 (rb = 0)にて 0.6 %という，QKDとしては低いシンボルエラーレート
が得られている．一方，rb = 1の位相基底，すなわちアダマール基底では，2.3 %とやや
高く，その他の位相基底 (rb = 2, 3, 4)ではさらに高いエラーレート (4.5, 4.0, 4.3 %)と
なっている．アダマール基底でのやや高いシンボルエラーレートの原因としては，IQ変
調器で生成したパルス振幅の不均一性や，4.2.3節で述べた遅延MZIにおける経路に依存
する伝搬損失による消光比劣化などが考えられる．これらは，IQ変調器への印加信号の
最適化や，遅延 MZI 内の光経路での対称 MZI 型可変減衰器の利用 [113, 114] などによ
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図 5.6 実験結果．(a) 光子検出の条件付確率分布 Pr (nb|ra, na, rb) (b) 基底一致時
(ra = rb)の平均シンボルエラーレート 1 − 1

4

∑
na=nb

Pr (nb|ra, na, rb)

り，改善できる余地がある．アダマール基底以外の位相基底測定での高いエラーレート
は，送信側 IQ変調器および受信側位相変調器の不整合が原因と考えられる．5.4節で述
べた通り，4次元アダマール基底状態は，等価な 2量子ビット上の |+⟩ , |−⟩のプロダクト
状態であり，各パルスの確率振幅は全て実数である．そのため，送信側 IQ変調器は実質
的には強度変調器として動作し，受信側位相変調器は無変調でよい．一方，その他の位相
基底状態の確率振幅は複素数であり，送受信において，適切に位相変調する必要がある．
この位相変調ずれにより，測定エラーが増加したものと考えられる．このエラーレートは
変調器の動作条件の最適化によって改善される余地がある．
以上述べたように，基底によってばらつきはあるものの，どの基底においても，5.3.3節
で求めた QKD 動作閾値である 23.17 % より十分小さなシンボルエラーレートが得られ
た．したがって，提案手法により，(d+ 1)測定基底 QKDプロトコルに適用可能なMUB
状態生成/測定系が実証されたと言える．

5.3.2 節で述べた通り，図 5.6(a) のブロック対角項の実験結果に対して，式 (5.20) を
用いて λjk を導出することで，2 種類のエラーの相関の詳細を取り込んだ鍵生成率 [式
(5.31)]の評価ができる．表 5.1に結果を示す．表から，λ00 が支配的な項であり，等価な
EB型プロトコルで言えば，エラーのない一般化ベル基底状態

∣∣Ψ00〉に近い状態が測定さ
れているため，高い鍵生成率が期待される．しかしながら，得られた値のうちいくつかは
負の値となっており，これは非物理的な結果である．4.2.4 節で述べた QST における問
題と類似の問題と言え，原因として，理想的な状態生成/測定からのずれや，統計的な揺
らぎによるずれなどが考えられる．この負の値のために，この結果から式 (5.31) により
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表 5.1 実験結果から見積もられた一般化ベル基底の係数 λjk

k

j 0 1 2 3
0 0.9606 0.0084 0.0159 0.0091
1 0.0052 -0.0039 0.0049 -0.0040
2 0.0047 0.0046 -0.0053 -0.0022
3 0.0063 -0.0029 -0.0047 0.0033

秘密鍵生成率を求めることはできない．QSTの場合には，三角行列により正定値化した
上で，最尤推定により物理的な制約の中で尤もらしいパラメータを求めた．一方，秘密鍵
生成率を求めるにあたって重要な点は安全性であり，例え尤もらしい値であっても，真に
生成可能な秘密鍵生成率よりも大きな生成率を見積もってしまった場合，その差の分だけ
最終的な秘密鍵は盗聴されていることとなる．そのため，上記ずれの問題を考慮した秘密
鍵生成率評価手法の開発が，より実用的な QKD実装のための今後の課題と言える．

5.7 結言
本章では，d次元タイムビン量子状態を用いる (d+ 1)測定基底 QKDプロトコルおよ

びその実装法について述べた．QKD において最も重要な事柄は安全性である．そこで，
まずプロトコルの具体的な手順について述べた後，さらに有限体を利用して一般化した
Weyl演算子および一般化ベル基底を用いて，素数の累乗次元における (d + 1)測定基底
QKDプロトコルの安全性証明を展開した．また，上記安全性証明を応用して 2測定基底
QKDプロトコルの秘密鍵生成率を導出し，二つのプロトコルの相違点として，推定され
るエラーの相関特性の差について議論した．
続いて，安全性証明で用いた MUB と等価な別の MUB の表現が持つ構造を利用し

て，pN 次元タイムビン量子状態に対して，装置数が次元数に対して対数的に増加する，
(d + 1)MUB の基底状態への射影測定装置を提案した．提案手法を 4 次元タイムビン量
子状態に対して実装し，光子検出の条件付確率分布およびシンボルエラーレートを評価
した．5つの基底全てにおいて，秘密鍵を生成するための平均シンボルエラーレート閾値
23.17 %より小さなシンボルエラーレートを観測し，提案手法を用いて (d+ 1)測定基底
QKD プロトコルのための，高次元タイムビン量子状態生成/測定が可能であることを実
証した．
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第 6章

結論

本論文は，筆者が大阪大学 大学院工学研究科 電気電子情報通信工学専攻在学中および
NTT物性科学基礎研究所在籍中に行った，量子もつれを用いた高次元量子鍵配送のため
のスケーラブルなタイムビン量子状態制御に関する研究成果をまとめたものである．以
下，本研究で得られた成果を総括する．
第 2章では，本論文の研究対象であるタイムビン量子状態に関する量子情報理論の基礎

事項について述べた．特に，これまで深く研究が進んでいる，2次元タイムビン量子状態
および 2次元量子もつれ状態を題材にして，量子もつれ状態の持つ特異な性質である，部
分系のランダム性，もつれた光子間の強い相関性，およびその他の系と相関を持たないモ
ノガミー性の議論を展開した．さらに，2次元量子もつれ状態を利用した QKDプロトコ
ルの代表例である，BBM92の具体的な鍵生成手順について述べたのち，量子もつれ状態
により QKDシステムが実装できるのみならず，量子もつれ状態を用いない QKDプロト
コルの安全性を証明できる点を明示した．
第 3章では，高次元量子もつれ QKDの信号生成に対応する，高次元タイムビン量子も

つれ状態の生成制御および CGLMP不等式による検証について述べた．まず，局所的な
隠れた変数理論と，2次元量子もつれ状態の検証に用いられる CHSH不等式について詳
述した後，高次元量子もつれ状態の検証に用いられる CGLMP不等式およびその破れを
最大化する最適量子もつれ状態について議論した．また，自発的パラメトリック下方変換
および多段接続した遅延 MZI を用いた測定による CGLMP 不等式の破れの検証実験を
行い，最大量子もつれ状態と最適量子もつれ状態の破れの差が明確に観測されるような，
安定かつ高品質な高次元タイムビン量子もつれ状態の生成/制御が可能であることを明ら
かにした．
第 4章では，高次元量子もつれ QKDの信号伝送に関わる事項として，量子状態トモグ

ラフィー (QST) を用いた高次元量子もつれ状態の長距離伝送特性評価について述べた．
まず，既存の 2次元タイムビン量子状態に対する遅延MZIを用いた QSTについて述べ
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たのち，多段遅延MZIを用いて効率的に高次元タイムビン量子状態に拡張する手法を提
案した．次に，伝送特性評価に用いる各種指標について議論し，提案手法の原理実証実験
および 100 kmファイバ伝送後の特性評価実験を行った．提案 QSTによって得られた伝
送後の状態密度演算子をもとに評価したコヒーレント情報量から，伝送後も，2次元量子
状態では得られない 1ビット以上の QKD秘密鍵生成に利用可能な，高品質な高次元タイ
ムビン量子状態が保持されていることを明らかにした．
第 5章では，高次元量子もつれ QKDの信号測定に関連して，(d + 1)測定基底 QKD
プロトコルのための相互不偏基底 (MUB)測定について述べた．まず，(d + 1)測定基底
QKDプロトコルの具体的な鍵生成手順について述べたのち，有限体を用いた一般化Weyl
演算子および一般化ベル基底について述べ，これらを利用して上記プロトコルの安全性証
明適用可能範囲を素数次元から素数の累乗次元へと拡張した．また，上記安全性証明で利
用されるMUBの，高次元タイムビン量子状態に対する効率的な実装法を提案した．4次
元タイムビン量子状態の場合に提案手法を実装し，QKD秘密鍵生成に必要な値よりも十
分低いシンボルエラーレートが達成できることを明らかにした．
以上の研究成果により，高次元量子もつれ QKD に向けた通信の 3 つの基本動作であ
る状態生成 (送信)/伝送/測定 (受信)に関して，高次元タイムビン量子状態を用いたシス
テムが高品質で安定かつスケーラブルに構築できる可能性が示された．今後は，これらの
各要素を実際に組合せ，高速で安全な QKDシステムとして評価していくことが課題とな
る．QKD は，一時は “無条件安全な” 暗号通信と呼ばれることもあったが，近年ではこ
のような呼称は避ける傾向にある．これは，第 2章や第 5章で触れたように，本論文での
安全性の議論は，状態生成/測定装置が理想的に動作した時の，“通信路に対するあらゆる
盗聴法に対して”安全性を評価したものであり，これらの装置に関する暗黙の仮定が破れ
たとき，システムの安全性は必ずしも保証されないためである．そのため，本論文の要素
を単に組み合わせることで，直ちに実用的な QKD装置として動作するというものではな
く，システム全体としての安全性の評価が不可欠である．第 2章でも触れたように，この
ようなより高い安全性を確保するために，装置の不完全性も議論に取り込んだ安全性解析
や，装置についての仮定を極力なくした装置無依存型 QKDなどが，2次元 QKDや 2測
定基底プロトコルについて進展を見せており，本論文で議論した (d+ 1)測定基底プロト
コルにおいても同様の進展が期待される．このプロトコルに限らず，QKDの最終目標で
ある高速で安全な暗号通信には，実装の技術的課題に加え標準化やアプリケーションへの
応用研究など広い領域で課題が存在するが，本論文の研究成果が将来の安全な情報通信を
支える研究の一助となれば幸いである．
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付録 A

2種類の相互不偏基底の等価性証明

付録 Aでは，式 (5.42)で表される確率振幅を持つ位相基底と，式 (5.8)で表される確
率振幅を持つ位相基底が，インデックスの並び替え以外は等価であることを示す．これら
の位相基底は，次元数 d = pN の場合，pが 2か奇素数かによって表式が異なる．そこで
まず，A.1 節にて p = 2 の場合について述べる．p が奇素数の場合の等価性は既に文献
[103]で知られているが，簡潔な証明を A.2節で紹介する．
各論の前に，どちらの場合についても共通する事項について述べておく．d = pN 次元

ヒルベルト空間MUBの考察にあたっては，位数 pN の有限体 GF (pN )を考える．位相
基底や状態のインデックスは GF (2N ) の元，例えば r ∈ [0, d − 1] とする．r は有限体
GF (pN )の元であり，また整数 Zの元でもあるとする．原則として，有限体の元として
扱う場合には四則演算子 ⊕,⊖,⊙,⊘を用いることとし，整数 Zの元として扱う場合には
四則演算子 +,−,×, /や総和演算子∑等を用いる．π/2などの実数値との積は実数値と
して扱うものとする．また，整数や有限体の元としてだけでなく，r =

∑N−1
n=0 rnp

n に対
して，そのベクトル表現 r⃗ = (r0, r1, · · · , rN−1)T も用いる．有限体上の加算 ⊕は，この
ベクトル表現において要素ごとの和を取ったのち，各要素の剰余 mod pにより与えられ
る．また，有限体上の乗法の構造を反映した，N ×N 対称行列の集合 {A(k)}N−1

k=0 を次式
によって定める．

pm ⊙ pn = ⊕N−1
k=0 A

(k)
mnp

k (5.43)

ただし，A(k)
mn は行列 A(k) のm行 n列目の要素である．A(k) は可逆である．すなわち，

写像 fk : GF [pN ] → GF [pN ]を

fk(r) = A(k)r⃗ mod p = ⊕N−1
m,n=0A

(k)
mnrnp

m (A.1)

によって定めた時，この写像は全単射である．
また，1の p乗根を γ = exp

(
i 2π
p

)
と表す．繰り返し用いる性質として，γ はべき乗の

周期が pであるから，r ∈ GF (pN )に対し rの最小桁 r0 を用いて，γr = γr0 が成り立つ．
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A.1 2の累乗次元の場合
r, i, j ∈ {0, . . . , 2N − 1}，r 番目位相基底における j 番目基底状態を

∣∣∣ψ(r)
j

〉
=∑

iB
(r)
ij |i⟩ とし，B(r)

ij を次式とすると，これらの位相基底はMUBを成す [102]．

B
(r)
ij := 1√

2N
exp

{
i
π

2

(
N−1∑
k=0

rk⃗i
TA(k)⃗i+ 2⃗i · j⃗

)}
(A.2)

一方，r 番目位相基底における j 番目基底状態を
∣∣∣e(r)
j

〉
=
∑
iH

(r)
ij |i⟩とし，H(r)

ij を次
式とすると，これらの位相基底はMUBを成す [101]．

H
(r)
ij := 1√

2N
{
αr⊖i

}∗
γ⊖i⊙j (A.3)

ただし，

αri :=
N−1∏
m,n=0

ir⊙(im2m)⊙(in2n) (A.4)

である．
以下では，これらの位相基底が等価である，すなわち B

(r′)
ij′ ,H

(r)
ij について，ある r, r′

間および j, j′ 間の置換に対応する写像が存在することを示す．まず，GF (2N )では加算
⊕と減算 ⊖が等しいことより，次式が成り立つ．

γ⊖i⊙j = γi⊙j

= exp
(
iπ
(⃗
i TA(0)j⃗

))
= exp

(
iπ
(⃗
i ·

−−−→
f0(j)

))
(A.5)

また， {
αr⊖i

}∗= {αri }
∗

=
N−1∏
m,n=0

(−i)r⊙(im2m)⊙(in2n)

=
N−1∏
m,n=0

(−1)
∑N−1

k,l=0
rkA

(1)
kl
imA

(l)
mnin

×
N−1∏
m,n=0

(−i)
∑N−1

k=0
r′

kimA
(k)
mnin mod 2 (A.6)
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が成り立つ．ただし，r′ = f0(r) とした．A(k) が対称行列であることを用いると，式
(A.6)の第 1項は次式のように表される．

N−1∏
m,n=0

(−1)
∑N−1

k,l=0
rkA

(1)
kl
imA

(l)
mnin=

N−1∏
n=0

(−1)
∑N−1

k,l=0
rkA

(1)
kl
A(l)

nni
2
n

= exp
(
iπ
(⃗
i · a⃗

))
(A.7)

ただし，an =
∑N−1
k,l=0 rkA

(1)
kl A

(l)
nn mod 2 とした．また，A(k) が対称行列であることか

ら，次式が成り立つ．∏
n ̸=m

(−i)
∑N−1

k=0
r′

kimA
(k)
mnin mod 2=

∏
n≤m

(−1)
∑N−1

k=0
r′

kimA
(k)
mnin mod 2

=
∏
n≤m

(−1)
∑N−1

k=0
r′

kimA
(k)
mnin

=
∏
n ̸=m

i
∑N−1

k=0
r′

kimA
(k)
mnin (A.8)

したがって，式 (A.6)の第 2項を，次式のように表すことができる．
N−1∏
m,n=0

(−i)
∑N−1

k=0
r′

kimA
(k)
mnin mod 2=

N−1∏
n=0

(−i)
∑N−1

k=0
r′

kA
(k)
nn in mod 2 ∏

m ̸=n

i
∑N−1

k=0
r′

kimA
(k)
mnin

= exp

{
i
π

2

(
N−1∑
k=0

r′
k⃗i
TA(k)⃗i

)}

×
N−1∏
n=0

(−i)(
∑N−1

k=0
r′

kA
(k)
nn in mod 2)+

∑N−1
k=0

r′
kA

(k)
nn in

= exp

{
i
π

2

(
N−1∑
k=0

r′
k⃗i
TA(k)⃗i

)}
exp

(
πi
(⃗
i · b⃗
))

(A.9)

ただし，
bn =

{
0 if

∑N−1
k=0 r′

kA
(k)
nn ∈ {0, 3} mod 4

1 if
∑N−1
k=0 r′

kA
(k)
nn ∈ {1, 2} mod 4

(A.10)

とした．
式 (A.2) で表される確率振幅と，式 (A.3) の確率振幅を変形して得られる式 (A.5)–

(A.7) および式 (A.9)を比較すると，次式の写像によるインデックスの割り当てにより，
H

(r)
ij = B

(r′)
ij′ が成り立つことが分かる．

r′ = f0(r) (A.11)
j′ = f0(j) ⊕ a⊕ b (A.12)
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f0 が全単射であることから，上記 2 式の写像はともに全単射である．したがって，{{∣∣∣e(r)
j

〉 ∣∣∣ j} ∣∣∣ r} と {{∣∣∣ψ(r′)
j′

〉 ∣∣∣ j′
} ∣∣∣ r′

}
は，基底および状態のインデックスの置換の

もとで，同一のMUBである．

A.2 奇素数の累乗次元の場合
r, i, j ∈ {0, . . . , 2N − 1}，r 番目位相基底における j 番目基底状態を

∣∣∣ψ(r)
j

〉
=∑

iB
(r)
ij |i⟩ とし，B(r)

ij を次式とすると，これらの位相基底はMUBを成す [102]．

B
(r)
ij := 1√

pN
exp

{
i
2π
p

(
N−1∑
k=0

rk⃗i
TA(k)⃗i+ i⃗ · j⃗

)}
(A.13)

一方，r 番目位相基底における j 番目基底状態を
∣∣∣e(r)
j

〉
=
∑
iH

(r)
ij |i⟩とし，H(r)

ij を次
式とすると，これらの位相基底はMUBを成す [101, 103]．

H
(r)
ij := 1√

pN

{
αr⊖i

}∗
γ⊖i⊙j (A.14)

ただし，
αri := γ⊖(r⊙i⊙i)⊘2 (A.15)

である．この場合，γ のべき乗の周期性と式 (A.1)から，次式が成り立つ．{
αr⊖i

}∗ = γ(r⊘2)⊙i⊙i

= exp

(
i
2π
p

N−1∑
k=0

f0(r ⊘ 2)k⃗i TA(k)⃗i

)
(A.16)

γ⊖i⊙j = exp
{
i
2π
p

(⃗
i ·

−−−−→
f0(⊖j)

)}
(A.17)

したがって，次式の写像によるインデックスの割り当てにより，H(r)
ij = B

(r′)
ij′ が成り立つ

ことが分かる．

r′ = f0(r ⊘ 2) (A.18)
j′ = f0(⊖j) (A.19)

f0 が全単射であることから，上記 2 式の写像はともに全単射である．したがって，{{∣∣∣e(r)
j

〉 ∣∣∣ j} ∣∣∣ r} と {{∣∣∣ψ(r′)
j′

〉 ∣∣∣ j′
} ∣∣∣ r′

}
は，基底および状態のインデックスの置換の

もとで，同一のMUBである．
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