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1. Introduction

Let G be a compact Lie group and hG( ) be an equivariant multiplicative
cohomology theory. Let M and N be closed G-manifolds. In this paper, we
assume that G-actions are differentiable of class C°°. Then for a G-map
/:M->iV, we shall define an "equivariant Gysin homomorphism"

f!:hG(M)-»hG(N),

which is an hG(pt)-module homomorphism. Special cases of /, have been
studied profoundly by Grothendieck, Borel-Serre [13], Hirzebruch [25], [26],
Atiyah-Hirzebruch [3], [4], Dyer [21], Atiyah-Singer [9], [10], Atiyah-Segal
[6], [7], torn Dieck [19] and so on.

In the present paper, we shall study the equivariant Gysin homomor-
phism/, systematically and conceptually.

First we shall establish a localization theory in general and shall obtain
many equations between invariants of a G-manifold and invariants of its fixed
point set by virtue of the uniqueness of our equivariant Gysin homomorphism.
From now on, we call them briefly equations between global and local invariants.

Next we shall establish various kinds of equivariant Riemann-Roch type
theorems in various categories.
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As in the non-equivariant case, there are a lot of applications. For examples,
we shall have integrality and divisibility theorems of equivariant characteristic
numbers. On the other hand, there are particularly interesting applications
peculiar to equivariant cases. Namely equivariant Riemann-Roch theorems
inform us of finiteness properties of some global invariants in our localization
theorem. Accordingly we can often conclude that some global invariants are
independent of the actions or even zero by combining it with the localization
theorem. This is in fact my motivation to establish equivariant Riemann-
Roch type theorems and is essentially an idea due to Hirzebruch.

We first confine ourselves to the weakly complex category. Let G-+ΈG^>
BG be the universal principal G-bundle. By making use of the equivariant
cohomology theories KG(M) and U*(EGxM) explicitly and K(EGxM) impli-

es G

citly, and the formal group law in U* -theory, we shall have an equivariant
Riemann-Roch type theorem where J7* denotes the complex cobordism theory.
As mentioned above, by combining it with the localization theorem, we shall
obtain an equation between an invariant of a manifold (not G-manifold!) and
an invariant expressed in terms of the fixed point set and its normal bundle
and the normal representation, which might be called "G-Tygenus formula'\
As shown by Quillen, the formal group law in ί/*-theory is universal in the
sense of Lazard [39] [31]. It follows that these formulae must be the most
generalized one.

Next we confine ourselves to the Spinc-category. In this category, we
also obtain an equivariant Riemann-Roch type theorem including something

like an "equivariant H-genus". As an application peculiar to the equivariant

case, we shall obtain the vanishing theorem of Sl-genus due to Atiyah-
Hirzebruch [5] by combining it with the localization theorem. This answers
the problem of I.M. Singer [40].

We now turn to the oriented differentiable category of class C°°. Making use
of the strictly multiplicative property of the L-genus [12], we shall have the
G-signature theorem due to Atiyah-Bott-Singer.

In the non oriented category, we shall define equivariant Stiefel-Whitney
classes and shall obtain an equivariant Wu type formula. Hence one might
naturally expect to prove the following conjecture by making use of the equi-
variant Wu type formula: "The equivariant Stiefel-Whitney classes are in-
variants of the G-homotopy type". Since EGxM is not a manifold in general,

the invariance does not follow from the equivariant Wu type formula. For
this reason, we consider EGnxM for all positive integers n where EGn is an n-

G

connected free G-manifold. Then the invariance follows from similar fomulae
for EGnxM.
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Last of all, we shall have an equivariant non-embedding theorem. So far
equivariant non-embedding theorems have been studied for involutions [11]
[32]. We here consider any compact Lie group actions.

In a future publication, we shall define equivariant characteristic numbers
for G-manifolds by making use of the equivariant Gysin homomorphism. As
an application we shall have, for instance, that bordism classes of oriented Tn-
manifolds are characterized by their equivariant characteristic numbers modulo
two torsions. Here we need the recent result of Ossa,

The intention of the present paper is to exploit general theories and various
applications will appear in forthcoming papers.

The author wishes to thank Professor A. Hattori for his kind and helpful
suggestions. Thanks are also due to Professor F. Hirzebruch for inviting him
to Bonn and for his advice, and to Professor D. Zagier for his valuable sug-
gestions.

2. Equivariant Gysin homomorphism

In this section, we shall define an equivariant Gysin homomorphism in
general.

Let X be a compact G-space and ξ be a G-vector bundle over X. We
denote by D(ξ) (resp. S(ξ)) the disk bundle (resp. sphere bundle) associated
with ξ. Let hG( ) be an equivariant multiplicative cohomology theory. An
element t(ξ) of hG(D(ξ)y S(ξ)) is called a Thorn class (or AG-orientation class) if
for any compact G-invariant subspace Y of X, the correspondence x-*(t(ξ) \Y) x
gives an isomorphism

We assume that for any compact G-space Y and any G-map/ Y—>X, the
induced element f*t(ξ) is a Thorn class of the induced bundle f*ξ.

Let M and N be ΛG-oriented closed G-manifolds of class C°°, that is to say,
the tangent bundles of M and N are AG-oriented. Then for a G-map f:M->N,
we define our equivariant Gysin homomorphism

fι:hG(M)^hG(N)

as follows. As is well-known, there is an equivariant embedding e of M in
some G-vector space V. For the proof, see Palais [37]. Since / is G-homotopic
to a differentiable G-map / ' of class C°°, we first define our equivariant Gysin
homomorphism / ' and then define /, to be / ' . The forthcoming Lemma 2.2
will assure that /, is independent of the choice of /'. Therefore we may now
assume that/itself is differentiable of class C°°. Choose a G-invariant Rieman-
nian metric on NX V and let v be an invariant open tubular neighborhood of
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(fχe)(M) in Nx V. Here we need the assumption CTO. Then v is a G-vector
bundle which may be identified with the normal bundle of (fxe)(M) in Nx V.
Denote by D(V) (resp. S(V)) the unit disk (resp. unit sphere) in V. Here we
may assume without loss of generality that D{v) is in iVxInt D(V).

Regarding F a s a G-vector bundle over one point, we assume that V is
λG-oriented. Then the homomorphism /, is defined by the composition of the
following three homomorphisms which we explain in a moment:

φ1:hG(M)->hG{D(v)IS(v))>

φ2: hG(D(v)IS(v)) ->hG(NxD(V)!NxS(V)),

φ3: hG(NxD(V)INxS(V)) -* hG(N).

EXPLANATION. Here hG denotes the reduced cohomology ring as usual,
Let t(M)<=hG(D(TM)IS(TM)) be the orientation class of the manifold M where
TM denotes the tangent G-vector bundle. Similarly let t(N)^h(D(TN)IS(TN))
(resp. t(V)(=hG(D(TV)IS(TV))) be the orientation class of N (resp. V). It is
easy to see that we can choose a canonical orientation class t(v) such that

t(M)X t(v) = (fxe)*{t(N)X t(V)).

Then the homomorphism φλ is defined to be the Thorn isomorphism by making
use of the Thorn class t(v). The homomorphism φ2 is the induced homomor-
phism by the natural collapsing map

NxD(V)INx S(V) -> D(y)IS{v).

The homomorphism φ3 is again defined by the Thorn isomorphism in the
manner of the definition of φλ.

DEFINITION 2.1. Let M be a closed G-manifold and /:M->point be the
constant map. Then we define an index homomorphism

Ind: hG(M)-* hG(pt)

by/, wherept stands for one point.

L e m m a 2.2. The equivariant Gysίn homomorphism is independent of all cho-

ices made and has the following properties:

i) /, depends only on the G-homotopy class of f

ii) /, is an hG(pt)-module homomorphism

iϋ) (fg)ι=frgι

iv) Mx-f*(y))=Mx)-yfσr x^hG(M), y<ΞhG(N)
v ) if f *s a G-embedding of class C°° with a normal bundle v, then f* f(x)—

XG(v)'X for x^hG(M) where XG{v) denotes the equivariant Euler class of v.
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Proof. We show that /, does not depend on the choices of V and e. Let
e':M->V be another G-embedding where V is AG-oriented. Then consider
the following two G-embeddings:

where V®V'c(V@V')k denotes the inclusion into the first factor. It follows
from the transitivity of the Thorn isomorphism that e and e give rise to the same
equivariant Gysin homomorphism. Similarly e' and e' give rise to the same
equivariant Gysin homomorphism. Denote by v(fχe) (resp. v(fχe')) the
normal bundle of the G-embedding:

fχe:M->Nx{VφVf)k

(resp.fxe':M-*Nx(V®V')k).

Since fxe and/xe ' are G-homotopic by a differentiable G-homotopy through
differentiable G-embeddings, v(fχe) is G-equivalent to v(fχe'). If, more-
over, &2^2dim M+4, then two such regular G-homotopies are themselves re-
gularly G-homotopic through regular G-homotopies [46] and the two resulting
bundle equivalences are G-homotopic through G-bundle equivalences. Con-
sequently t(v(fχe)) is chosen uniquely as in the non-equivariant case (cf. [21]).
Namely e and e' give rise to the same equivariant Gysin homomorphism.

The rest of the proof is routine.

3. Localization

We consider the subset S of hG(pt) consisting of Euler classes of λG-oriented
G-vector spaces V such that the group G acts on V without trivial direct sum-
mand. Here we regarded a G-vector space as a G-vector bundle over one
point. Then S is a multiplicative subset of hG(pt). It follows from Lemma 2.2
that we get a localization S~1hG(M) and an induced homomorphism

for a G-map /: M->N (see Bourbaki [14] for notion and notation).
Denote by Fμ each component of the fixed point set of a G-manifold M

and by iμ,\Fμ->M the inclusion map. Denote by Nμ the normal bundle of Fμ.
There exist a G-vector space V without trivial direct summand and a G-map

/: M- U Int D{Nμ) -> F - I n t D(V).

This follows from the classical representation theory and so on. We assume
that V is AG-oriented.
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Then we have

Lemma 3.1 (torn Dieck [18]). The following homomorphism

Σ S-H*: S~ιhG{M) -> 2 S-ιhG{Fy)
μ μ

is an isomorphism where the summation is taken over all the components Fμ of the
fixed point set.

Now we assume the following

ASSUMPTION 3.2. Each Nμ is AG-orientable so that each equivariant Euler
class XG(Nμ) is a unit in S~1hG(Fμ).

Fix an orientation on Nμ and we orient Fμ so that the orientation of Nμ

followed by that of Fμ yields the restriction of the orientation of M.
Let x be an element of S~ιhG(M)y then we have

(Σ s-H*) (Σ s-Hμι) (Σ s-hftx = Σ xG{Nμys-ιi*χ
μ μ μ μ

by Lemma 2.2. Because of Assumption 3.2, we have that

(Σ S-M XG{Nμ)

in Σ ^ ' ^ G C ^ V ) * Since Σ ^ " 1 ^ * i s a n isomorphism by Lemma 3.1, Σ^'Vμi is

also an isomorphism and we have

Thus by the uniqueness and the functorial properties of our equivariant Gysin
homomorphism (Lemma 2.2) we have the following localization theorem.

Theorem 3.3. Under Assumption 3.2, the following diagram commutes:

Σ
Since we shall give several applications of Theorem 3.3 later, we now

give just a few examples.

We make use of the equivariant cohomology theory H*(EGxM:Q) now.
a

For an oriented G-vector bundle ξ, we use the usual Thorn class
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H*(EGx(D(ξ), S(ξ))) as the orientation of ξ.
a

Let T" be the toral group and p=(ρly —, ρn) be an rc-tuple of integers.
Ragarding Tn as *S}x ••• X Sl> we define an irreducible representation p: Tn->
S1=U(Ϊ) by

where s^S}. We identify p with the element pj^ \-pntn of H2(BTn) by
the following translations

ίcomplex irreducible! ^ transgression
representations J

Let Tn act on a closed oriented differentiable manifold M. Denote
by Fμ each component of the fixed point set and by Nμ its normal bundle in
M. Then we can impose a complex vector bundle structure on Nμ so that we
get a decomposition

where /> run through the complex irreducible representations of Tn and Vp

denote their representation spaces and Eμp denote complex vector bundles.
Let γ,: Tn->S1= U(ί) be the irreducible representation defined by 7i(su •••,

sn)=Sf and Y^BTn be the % extension of the universal principal Tw-bundle
ET->BT\

It is easy to see that

ET xiVμ - Σ ETn Xn{Eμp® Vp)

Σ
P

where ® denotes the external tensor product. Hence the total Chern class
dET'xNμ) and the Euler class X(ETn xNμ) of the bundle

mtl s gift

c(EΓxNμ)=U(l+P+,xPl),
Tn P,Pi

are given by

where the total chern class of Eμp is expressed formally as Π ( 1 + Λ ) . Accor-
p» '

dingly it is easily seen that Assumption 3.2 is satisfied in this case.
Let F(t) be the formal power series F(t)=l+a2t

2+a4t
4jι— of t2 and let K

be the multiplicative sequence [25] belonging to the characteristic power series
F(t). Then we have
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Corollary 3.4.

Π F(zj) Π
Ind K(EΓ x TM) = Σ f

Π

Here the total Pontrjagin class of Fμ. is expressed formally as Π (1+*/) and l[Fμ]
denotes the slant product:

ff*(5Γ x Fμ) -> H*(BTn).

Next we consider another kind of applications. Let ω be a partition and
sω be the characteristic class defined as in [34]. Then we have

Corollary 3.5.

REMARK 3.6. Quite similar formulae hold for Stiefel-Whitney classes
instead of Pontrjagin classes. Hence Corollary 3.5 gives us an explicit way to
compute the bordism class [M] of the oriented bordism group from the fixed
point data.

In particular, we have

Corollary 3.7. When an action is non-trivial,

c (τ\/r\ v i \P~^~tιXPi) / Γ F Ί

where dim M=4k.

REMARK 3.8. It is pointed out by D. Zagier that there is an interesting re-
lation between Corollary 3.7 and a residue formula when M=CPm and Tn=Sι.

4. Weakly complex G-actions

Let MU(k) be the unitary spectrum (see Conner-Floyd [17]). In this
section, we shall make use of the following equivariant multiplicative cohomology
theory:

hG(M) = lim [S2k-»Λ(EGxM)+, MU(k)]

which we denote by Un(EGxM) as usual. As is well-known, there exist G-

invariant, ^-connected, finite CW complex EGn such that

EG = lim EGn.
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It follows from Atiyah-Segal [8] that

)

On the other hand, Yosimura has shown in [47] that

lim1

if and only if

Hence we have that

U*(EGxM) » lim U*(EGnxM)
G < G

and

K(EG x M) e* lim K(EGn x M).
G < — G

Let ξ be a complex G-vector bundle over M. According to Conner-
Floyd [17], there exist canonical Thorn classes

tn(ξ) e U*{EGn x D(ξ)IEGn x S(ξ))
G G

such that for the inclusion

i: EGn x D(ξ)IEGn x S(f) -> EGn+1 x D(ξ)IEG»+1 x S(f),

we have i*tn+1(ξ) — tn(ξ). Therefore we have a canonical Thorn class

t{ξ) = {tn(ξ)} eU*(EGxD{ξ)IEGxS(ξ)).

Since the Thorn class ίn(f) is natural for a G-vector bundle map, t(ξ) is also
natural.

Similar arguments are valid for ^-theory and we have

Lemma 4.1. For a complex G-vector bundle ξ over M, there exist Thorn
classes

tu(ξ) <EΞ U*(EG x D(ξ)/EG x S(ξ))
G G

and

tκ(ζ)(ΞK(EG x D(ξ)/EG X S(ξ))
G G

which are natural for a G-vector bundle map and μ1 {f{Jξ)) = tκ{ξ) where μx is
the limit of the Conner-Floyd natural transformation [17].

Let ξ be a complex G-vector bundle over a finite CW-complex M. Then
we shall define a C/*-theory Chern class for the vector bundle EGxξ. Remark

G
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that Conner-Floyd defined the £/*-theory Chern class only for complex vector
bundles over finite CW-complexes. However our lim1 arguments enable us
to define a C/*-theory total Chern class c(EG X ξ) for the vector bundle EG X ξ.

a Q

Although there is no splitting principle in the equivariant ^-theory, we
shall have a "splitting principle" which answers our later purpose. Let ξ be a
complex G-vector bundle over a finite CW complex M. Denote by π: F{ξ)^>
My the equivariant flag bundle. Then by the same way as in the non-equivariant
case, we have

where Lt are complex G-line bundles. It follows that

(1 x π)*(EGx ξ)s*(EGx Z ^ θ - @ { E G x L s ) .
G G G G

Since EGnxF(ξ) is canonically identified with F(EGnXξ) and since
G G

EG" x M i s a finite CW-complex, the homomorphism
G

(1X TΓ)* : U*(EG" xM)-> U*{EG" X F{ξ))

is injective (see Dold [20] and Conner-Floyd [17]). It follows by the lim1

argument that the induced homomorphism

(IXTΓ)*: U*(EGxM)->U*(EGxF(ξ))
G G G

is injective. Repeating this argument, we have

Lemma 4.2. Let ξly •••,?„ be complex G-vector bundles over a finite
CW-cotnplex M. Then there exist a compact G-space F, a G-map π: F-+M and
complex G-line bundles L{ over F such that

and the induced homomorphism

(1 x TΓ)* : U*(EG x M) -> U*(EG x F)
G G G

is injective.

We now would like to define a multiplicative transformation

chGy: KG{M) -» U**(EGxM)®Q[[y]]
G

which might be called an equivariant generalized Chern character in C/*-theory.
For this purpose, we introduce the formal group law F(x, y) in complex cobor-
dism [1], Generally it is known that there exists a unique formal power series
g(t) satisfying
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In fact g(t) is given explicitly by

g(t) = Σ ^ p ? <"+1e U*(pt)®Q[[t]]
» 2 > o # f l

called Mischenko series [35] [39]. Let x be an element of KG(M), then x can be
written as [fi]-[£2] f°Γ some complex G-vector bundles ξu ξ2 on M. Then we
define:

chGy(x) Σ p { ( J k ( i . y ) } Σ

where the total Chern class of EG X ξί (resp. EG X £2) is expressed formally as
G * β

Π (l+^i,y) (resp. Π (l+^2,*)) It is easily seen that the definition does not

depend on the choices of ξt .

Lemma 4.3 i) chGy(x1+x2)=chGy(x1)+chGy(x2)

ii) chGy(x1®x2)=chGy(x1)-chGy(x2).

Proof. The proof of i) is trivial. The multiplicative property (ii) follows
from Lemma 4.2 and the equation

g{Cι(EG x (ξ®v))) = g{cλ(EG x ξ))+g{cx{EG x v))
G G G

for complex G-line bundles ξ,η.
Next we define our equivariant £/*-theory generalized Todd genus as

follows. Let ξ be a complex G-vector bundle over a finite CPF-complex M.
Then we set

Π p Λ e x p ^
* L exp((l+^(^))-l J β

where the total ?7*-theory Chern class of EG X ξ is written formally as

Obviously we have

A weakly complex manifold M of class C°° is a differentiable manifold of
class C°° together with a complex vector bundle structure on TMφR* where
£=1 or 2 according as dim M=\ or 0 mod 2 and ΓM denotes the tangent
bundle.

A weakly complex G-action of class C°° is a G-action of class C°° on a weakly
complex manifold of class C°° preserving the complex structure. Here the
G-action on R* is given trivially.
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In this category, we must modify the definitions in §2 as follows. The
orientation of M is defined by making use of the complex G-vector bundle
TMφR2 in stead of the tangent bundle TM. In order to define our equi-
variant Gysin homomorphism, we choose a sufficiently large complex G-re-
presentation space V such that the normal bundle v in §2 has a complex
vector bundle structure so that we have a complex G-vector bundle isomor-
phism

where TM®R2 (resp. TN®RS) denotes the complex G-vector bundle re-
presenting the weakly complex G-manifold M (resp N).

We are now ready to formulate our equivariant Riemann-Roch theorem
in £/*-theory.

Theorem 4.4. Let M and N be weakly complex G-manifolds of class C°°
such that dim M = dim N mod 2. For a G-map f: M->N, we have a functorial
homomorphism f: KG(M)[[y]]->KG(N)[[y]] such that

f?(chGy(x)-TGy(TM®R*)) = chGy(f(x)).TGy(TN®R*),

where 8=1 or 2 according as dim M= 1 or 0 mod 2 and TM®R* (resp. TN®R2)
denotes the complex G-vector bundle representing the weakly complex G-manifold M
(resp. N) and the action on R* is given trivially. In fact f(x) is given by

\y{TM®Rz)} ®\(dimN+2

where

λΛf) = Σ / λ ' ( f ) , λf'(f): exterior powers,
»" = 0

Sy(ξ) = Σy'S ' ί?), S\ξ): symmetric powers,
i = 0

and ζ denotes the complex conjugate bundle of ξ.

Proof. Let φfσ

y φf and φf be the homomorphisms in §2 in the cases
where hG(M) are KG(M), K(EGxM) and U(EGxM) respectively. Let a:

G G

KG(M)->K(EGxM) be the natural transformation defined by a(x)=EGxx.
G G

By the choices of Thorn classes [6] [17], we have that aφfG=φ?a. It follows
that af?G=f?a.

In virtue of our splitting principle (Lemma 4.2), we have

Lemma 4.5. a(\y(x))-a(S_,(x))=lfσr x<=KG(M), a(\,(ξ-v))=cc{\,(ξ)-
S_y(v))for complex G-vector bundles ξ, η.
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When we write the total £/*-theory Chern class of EGxv formally as
Gr

Γ G » is given by

π / * ,

V
As in §2 of [10], we have

(ΦΪΓchΰyΦHi) = n

Hence we have for x

According to Lemma 4.2, we may assume that

a(v) = L,φ — φ L t and ^(L,) = *, ,

where L, are complex G-line bundles and &=dim v. Then we have

α λ d i m » = λ d i m v α(i')

= Lj® •• ®Lk.

It follows from the fundamental property of the formal power series g(t) that

= g(c1(L1®-®Lk))

Hence we have

Accordingly we have

chGy(\^\ΰ)) = exp(l+jk(<i(«(λdίmV(ί0)))

1
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On the other hand, note that

Hence we have

It follows that

chGy\\v) = c

= Σ exp(l-

= ]V|exp(l-

= Σ y Σ
 e

t j\< <ji

+-y)g(Φ>

Wight

^~y)(~~g(χ

"hGjr(^2y'λ

;χp(l+j)(

®Lj.).

In view of Lemma 4.5, we have

chGyS_y{i>) = chyaS_y(v)

chyaXy(v) chGy\y(ρ)

Putting all this together, we have

i c , (λ ί t a V (p) 5 - ^ ) ) = ^ λ d ί m v

_ chGy\
dim\i>) 1

Π {eχp((l +y)g(x,

Thus we have for x^KG(M),

Now we show the following formula

f?(cheAx) TcJy)-*)

= π n
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where the total ?7*-theory Chern class of the bundle EGx(Nx V)->EG X N is
G Q

expressed formally as Π(1+>Ό

As before we have

It follows that

S_y(v))

which is the required formula.
Since the genus TGy is multiplicative and invertible, we have

TφT1 = TGy{TM®K)'f*{TCy{V)-' TGy{TN®m-i)

It follows from Lemma 2.2 and the above formula that

f?(chGy(x).TGy(TM®R<))

y(.
xTGy(V) TGy(TMφR<).

As before we have

π(l-eχp(l+y)g(y,)\. τ { γ )

Thus we have
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®XdimV(V) \y(V)}].TGy(TNeRz).

We now wish to have a formula without V and v. Note that there is an
isomorphism

of complex G-vector bundles. By making use of this and Lemma 4.5, we
have

= a\y{TM®Re-f*(TN®R*))

= a(\y(TM®R<) S_yf*(TN®R*))

Note that

and

= α(λ ( d i m J V + 5 ) / 2/*(7ΛiVΘ :R
8))

Hence we have

α(λ d i m V(p) λ d i m V ( F ) )

Putting all this together, we have

χ . χ^
mV{V) \y(V)} TGy(TN®R°)

= chyfFa{(-iyάimM-dlmN)/2 x Xdim\v) S_y(v)

®\άimV(V) HΪ)} • TGy(TN®R*)

= chyf?a{(-iγdimM-dimN)/2-x X<dlmM+'!)/2(TM®Rz)

X TCy(TN®R*)

y( TM®R*)) x«"-"+*>/2( TN®R*) - S_ y

x TGy(TN®R*).

This is the required formula. The proof that gf=g f is easy and omitted.
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This makes the proof of Theorem 4.4 complete.

REMARK 4.6. If we use the conjugate Thorn class t{ξ) instead of t(ξ), f(x)
is given by

5. G- 2^-genus formula

In this section we shall derive a formula by combining the localization
Theorem 3.3 and the equivariant Riemann-Roch Theorem 4.4. For sim-
plicity we assume that G is a toral group Tn in this section.

We first calculate the multiplicative set S defined in §3. Let p=(pu •••,£„)
be an zz-tuple of integers. As in §3, p can be regarded as an irreducible repre-
sentation

P: Tn-^S1= 27(1).

Let %•: Tn->S1=U(1) be the irreducible representation defined by y^s^
...isn)=si and Γt->jBΓn be the γ, extension of the universal principal Γn-bundle
ETn-+BTn as in §3. Denote by t{ the £/*-theory Euler class of the bundle Γ, .
Then we have

Lemma 5.1. The set S is generated multίplίcatίvely by g

Proof. The p extension of the universal bundle ETn->BTn is Π Γ 1.

Note that^ 1 (ΠΓ?'))=Σ3p, 5(ίί)-
Hence we have

Since any complex representation of Tn is a sum of such representations />,
the set S is generated multiplicatively by ^ ( Σ P ί ^ ί ) ) w i t n P.^Z, Σ P ? Φ 0

This completes the proof of Lemma 5.1.
We next show that Assumption 3.1 is satisfied in this case. It is shown in

Conner-Floyd [16] that Fμ. has a canonical weakly complex structure and Nμ has
a canonical complex G-vector bundle structure. Therefore it suffices to show
that each Euler class Xτn(Nμ) is a unit in S~ιU*(BT*xFμ). According to
Atiyah-Segal [6], Nμ has the following decomposition

where p run through the complex irreducible representations and Vp denote
their representation spaces and Eμp denote complex vector bundles.
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Lemma 5.2.

X(ET*xNμ) = ή
Tn P,Pj i

Here the total U*-theory Chern class of Eμp is expressed formally as Π
Pj

Proof. As shown in §3, we have

In virtue of Lemma 4.2, we may assume that Eμp is a sum of complex line bundles
EJ

μp. If we denote the £/*-theory first Chern class of i?£p by μxPp we have
that

This completes the proof of Lemma 5.2.
Generally the formal group law F{x,y) has the property:

F(x,y) = x+y-\- Σ aijx
iyi

Put tp=cλ{ Π Γ '). Then tp(ΞS and

X(ETnxNμ) = Π (fp+μ*Py+ Σ ^ ί * ^ , )
Γn P,Pj 3 k,l>l J

= Π«Jl+-

Considcr the formal inverse of X(ETnXιNμ):

XiET'xNv)-1

P,Pj

Since the dimension of Fμ is smaller than or equal to dimM.

m c\ c ^ ΓdimMΊ»x™. = ϋ for m> — .
μ P} L 2 J

Therefore the formal inverse of X(ETnxNμ) has a meaning in the localized

ring S-ιU*{BTnxFμ) and is given by

[dimM/2]

P,Pj »* = 0 ^ * , / ^ l J

Thus we have shown that X(ETn X iVμ) is a unit in
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We can now apply Theorem 3.3 and get

S-1 Ind x = S'-1 Indfe ^ )
\ X{ETnxN»y

for any element x of S~ιU*(ETnxM).
T"

If we take TGy(TM®R°) as x, we have

S-1 Ind TGy(TM@R*)

= S-1 Ind Σ Ty(TFμ®R*) Π
e x p [ ( l + j ) { ^ P ,

Here TFμφR2 denotes the canonical weakly complex structure on Fμ given in

[16].

The following lemma is easy to prove and we omit the proof.

Lemma 5.3. The local index

S-1 Ind: S-1 Σ U*{BΓxFμ) ->S-1U*(BTn)

is induced by the U*-theory slant product

/[Fμ]: U*(BTnxFμ)->U*(BTn) where [Fμ] denotes the fundamental class of Fμ.
From Theorem 4.4 we know that Ind TGy(TM®lV) has the form chGy{f{x))

where/: M->pt.
Let a: U*{X)-+H*(X) be the natural transformation. Then a induces

a® id: U**(X)®Q[[y]]-*H**(X)®Q[M

which is also denoted by a, where ® denotes the completed tensor product.
Denote by t\ the ordinary first Chern class of the bundle Γ, . Then α(ίf ) =

t'i. Since a is multiplicative and since a[CPn]=0 for ?z>0, we have

= a(ίi) = t'i.

Note that chGy(J(x)) has the form

b

where b={bλ, ••-,£„), b^Z and a(b)^Z[y] and the summation is taken finitely.
By applying a to the formula before, we have the following formula in the ordi-
nary cohomology theory
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= Σ a(Ty(TFφR*)) Π

where /[Fμ] denotes also the slant product in the ordinary cohomology theory.
This equation holds even if we regard both terms as functions of t\. Let {/>} be
the set of irreducible representations which occur as normal representations of
the fixed point set. Let τ=(τly •• ,τΛ) be an n-tuple of integers such that
O , />>=Σ τ,P, ̂ 0 for any /> in {/>}.
Set t'i=tTi. Then

lim <tr> p> = sign <r, />>oo .

If sign <r, p>= + l (resp. —1), then

+αU)}]+ Z j ( }

We now define integers d^(Fμ) by

W Λ = Σ dimc Eμp.
<τ,P»o

and

<τ,P><o

Then we have

lim Σ«(Wθff)) Π

Namely the local index tends to a finite number. This fact is valid for any τ
with </r,/>>Φθ, />e {/>}.

Similarly we have

Since the global index is a finite sum of the form a(b) exp (1+jy) <ft, r>ί, the
local property above means that the global index must be independent of ί£.
It follows that

0(6) = 0 for 6Φ0 .
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Thus we can conclude that the global index in Z7*-theory is also a constant, which
belongs to Z[y]. Hence we have

Ty(TM@R*) [Ml = a{Ty(TM®R*)) [M]

which gives the constant above.
Consequently we have shown the following G-T^-genus formula.

Theorem 5.4.

Ty(TM®R*) [M]

In the proof of Theorem 5.4, we have shown the following corollary which
is so called Kosniowski formula.

Corollary 5.5 ([30], [24], [27]). We have

Ty(TMφRe) [M] = 2 {-y)4^T,(TFμ®R*) [Fμ]

= Σ (-yγwTATFrφR') [Fμ]

for any τ with <r;/>>φ0, />e {/>}.

REMARK 5.6. Our Theorem 5.4 means that

Ind T

Namely the evaluation of TGy(TM®Rζ) on [M] vanishes except for the term
of dim M.

6. Spinc-Cr-actions

Let π: Spin (ή)->SO(ή) be the standard double covering. Then Spinc(w)
is the subgroup of Spin(w+2) defined by π~\SO(n) X 5Ό(2)), which is isomor-
phic to S p i n ^ x S 1 as Lie groups. Let Q be a *SΌ(w)-bundle over M. A

Spinc(w)-reduction of Q is a principal Spinc(w)-bundle P over M together with
an ^-bundle/>!: P-*Q such that the diagram

P X S p i n » » P ^

1
Qx SO(n)

commutes, where the horizontal arrows are the actions of Spinc(#) and SO(ή)
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from the right on P and Q respectively and λ is the composite homomorphism

Spinc(n)^SO(n)xSO(2)-+SO(n). The action of S p i n » on P yields the

actions of Z2, S\ Sρin(rc) by the natural inclusions and we have the following

commutative diagram:

P/Spin(w).

All maps are bundle projections and we have

Lemma 6.1. pA: P/Sρin(τz)-^Λί is the Sι-bundle characterizing the
Spin\n)-bundle P-^Min the sense of [38] and P\Z2 is nothing but the fiber product
Q X (P/Spin(«)) where p3 is given by px Xp2 in this case.

Proof, see [38].
Suppose that the bundle Q^M admits a G-action (commuting with the

action of SO(n) from the right) which is compatible with the projection map.
Then a lifting of the action on Q to an action on P is an action of G on P (com-
muting with the action of Spinc(w) from the right) which is compatible with pv

We now study the lifting problem by using the diagram above. By the
invariant integration technic [38], one can modify the results of Stewart [41]
and Su [43] so that each of the followings is a sufficient condition for a lifting in
the fiber bundle P->Q:

"G is 1-connected",

"G is a torus, n>2 and H\M.Z) = 0".

But for our later use, these are not sufficient and we need a different ap-
proach. Because G-manifold O is more complicated than M in general and
we would like to express the lifting obstruction in terms of M.

Lemma 6.2 (Hattori and Yoshida [23]). An Sι-bundle ξ->X admits a lift-
ing of the given action of G on X {commuting with the right action of S1) if and only
if the first Chern class of the above S^bundle lies in the image of j * : H*(EG X X) ->

H*(X) where j:X->EGxX is the inclusion given by χ\->yχx for some fixed y(=

EG.

If the left action of G on M lifts to a left action of G on P/Sρin(n), then
PjZ2 admits a lifting of the action which commutes with the right action of
SO(n)xSι. Because PjZ2 is the fiber product QX (P/Spin(w)) by Lemma 6.1.

In order to lift the action on PjZ2 to an action on P, we need the following
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lemma which is a generalization of Proposition 2.1 in [5].

L e m m a 6.3. Let G be a connected topological group and M be a connected

G-manifold. Let M-+ M be an n-fold covering such that M is connected. Then

there exist canonίcally a connected topological group G and an m-fold covering

homomorphism h: G^>G such that G acts on M inducing via h the given action of

G on M. Here m is smaller than or equal to n.

Proof. Easy and omitted.

DEFINITION 6.4. Let ξ-+X be a principal //-bundle. Then an action
of G on X is called to have a pseudolifting to ξ if and only if there exist a con-
nected topological group G and a covering homomorphism h:G->G such that
G acts on ξ (commuting with action of H from the right) inducing via h the
given action of G on X.

Putting all this together, we obtain easily

Proposition 6.5. Let G be a compact connected Lie group and p:O^>M be

a principal SO(n)-bundle where M is a connected manifold. Suppose that O and

M admit G-actions (commuting with the action of SO(n) from the right) which is

compatible with p. Then there exist a Spin (n)-reduction P of O and a pseudo-

lifting to P if and only if there exist a connected Lie group G and a covering homo-

morphism h:G-+G such that the second Stiefel-Whitney class W2(Q) lies in the

image of the composition of the following homomorphisms:

:*
H\EG X M ) J - > H 2(M: Z) -> H2(M: Z2),

G

where G acts on M via h.

We now study an equivariant Riemann-Roch type theorem in Spinc-
category. In this section, we make use of the equivariant cohomology theories
KG(M) and H*(EGxM:Q). We define a multiplicative transformation

chG: KG(M) -> H**(EGxM: Q)

in the manner of the definition of chGy in §4 by putting - y=0 and by using the
ordinary Chern classes in stead of [/*-theory Chern classes.

We define an equivariant §I-genus StG(f) of a G-vector bundle ξ over M by

where 91 is the genus belonging to the characteristics power series

xβ
sinh xβ exp xβ — exp (—xβ)
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Denote by 5ίG(M) the equivariant Sί-genus of the tangent bundle TM.
Let ξ be an oriented G-vector bundle over a finite CW-complex. In this

section, we make use of the usual Thorn class tG(ξ) of the bundle EGxξ.
β

Let M and N be oriented G-manifolds of class C°°. Then for a G-map/:
M->iV, we get our equivariant Gysin homomorphism

/,: H*(EG xM:Q)-> H*(EG xN:Q).

A map f:M^>N is called a q-map if we are given an element
such that c1=W2(M)—f*W2(N) mod 2. We now assume that dim M=dim N
mod 2.

Let e:M-+V be a G-embedding where V denotes a complex G-representa-
tion space. As in §2 we denote by v the normal bundle of the G-embedding
fxe: M->NxV. Denote by Q the principal SO(2k) bundle associated with
v. Then Q admits the induced G-action. If / is a q-map, then Q has the
Spinc(2&)-reduction P corresponding to cλ. We are now ready to state our
equivariant Riemann-Roch theorem in Sρinc-category.

Theorem 6.6. Suppose that dim M = dim N mod 2 and that P admits a
lifting of the G-action on Q. Then for given ξ^KG(M), there exists
such that

= chG(v) tG(N)

where cG is the first Chern class of the complex line bundle

EGxP x C^EGxM.
G Spirit*) G

REMARK 6.7. The correspondence ξ-*y is not functorial in general.
This contrasts with the non-equivariant case (see Atiyah-Bott-Shapiro [2].).
The reason is that the correspondence depends on the liftings and we can not
choose a canonical lifting of the G-action in general so that the correspondence
is functorial. In fact there are many examples showing that the correspondence
depends on the liftings.

Proof of Theorem 6.6. Let T be the standaid maximal torus of SO(2k)
X SO(2) and xu —,xk,y be the standard base of H\T: Z). Put T'=p'\T). It is
a maxima] torus of Sρinc(2Λ) and covers T twofold. We regard Hι(T: Z) as a
subgroup of H\T: Z) by the monomorphismp*: H\T: Z)-»H\T: Z). Then
we can take {#!,•••,#*, (#i,H h#*+3θ/2} as a base of H\T',Z). Denote by
C2k the Clifford algebra and by Cc

2k its complexification C2k®RC. Previously we
defined Spinc(2&) as the subgroup TΓ"1 (SO(2k) X SO(2)) of Spin(2&+2). But
we now regard Spinc(2&) as the multiplicative subgroup of Cc

2k by the following
inclusions: Spin(2&)->C2k and S1-+C. According to [2], there exists an ir-
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reducible graded C^-module Δ^+ΔjΓ of dimension 2k over C which has the
following properties:

i) At and Aj are invariant if we restrict Cc

2k to Spinc(2&) and are irredu-
cible Spinc(2β)-representations,

ii) the weights of At (resp. Aj) consist of

where δ,= 0 or 1 and the number of 1 in {δ,} is even (resp. odd).
Then we put

E = P x ( Δ ί + Δ f ) .
Spin^(2jfe)

Obviously E admits a canonical G-action which makes E a G-vector bundle.
Extending the notion in [2] equivariantly, we get the equivariant Clifford bundle
C(y) of v and the equivariant C(z>)-module structure on E. Hence we obtain
an element X°(E) of KG(D(v\ S(V)) in the manner of [2].

Let £(G,Spinc(2/0)^£(G,Spinc(2&)) be the universal principal Spinc(2A)-
bundle with G-action. Obviously we can take £(G, Spinc(2&))/Spinc(2&— 1) as
5(G,Spinc(2&-l)) and £(G,Spinc(2*))/Spinc(2/e-l) is isomorphic to E(G,
Spinc(2^)) X 52*"1 as sphere bundles over B(Gy Spinc(2&)) with G-action.

Spinc(2*)

Denote by D the total space of the disk bundle E(Gy Spinc(2&)) X D2k. Then
SpincC2*)

D includes J3(G, Sρinc(2&— 1)) as the total space of the associated sphere bundle.
Let h: M->B(G,Spin0(2k)) be the classifying map of P with G-action.

Since h induces the G-bundle map

D(v) >D

" 1 hi
M > B(G, Sp

we have the following commutative diagram:

KG{D(v\ S(v))JΪ—KG

[ \chG j

H**(EG X (D(P), S(P)): Q) ^ H**(EGX (Z),B(G, Spinc(2λ-1))): Q)

|Φi (lxA)* \Φ
H**(EGxM:Q) <^— H**(EGxB(GySpmc(2k)):Q)

G Gr

where φ and φx are the Thorn isomorphisms.
In the manner of the construction of X^(E), we get an element %£(£")e

KG{DyB(G^Ώmc(2k-\))) where v'=E(G,Spinc(2^)) x R2k and E' = E(G,
Spinc(2Jfe)
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Spinc(2&)) X (Δ++Δ~). In view of the construction, we see that
S i C ( 2 A )

The following diagram

EG x B(G, Spinc(2Λ- \))^BG X B Sp'mc(2k-1)

Ί λv I iχ'#
EG x B(G, Spinc(2&))~£G X B Spinc(2&)

is homotopy commutative where j and j ' are the natural maps induced by the
inclusion Spinc(2&— 1) -> Spinc(2&). Hence the homomorphism (lxΛ)*:

G

H*(EGx(DyB(GySpinc(2k-l))): Q)->H*(EGxB(G,Spmc(2k)): Q) is injective

where k: B(G,Sp'mc(2k))^(D,B(G,Spmc(2k— 1))) is the composition of the
G-homotopy equivalence B(G, Spinc(2&)) ̂  D and the inclusion D->(D,B
(G,SPm

c(2k-l))).
We are now ready to apply the Hirzebruch argument [26] equivariantly as

follows.
We get the same formula for the characters of the Spinc(2&)-representations

Δf in the sense of [12]:

ch At-ch AJ = x, ... *

Therefore we have

chGk*X${E')

ch[EGx{E(G,SPinc(2k)) x
G Spinc(2*)

ch[{EGxE(G,Spmc(2k))} X (At-Aj)]
G SpinCC2*)

where Wξt is the Euler class of {EG X E(G, Spinc(2/ί))} x R2k and c'G is the
G Sρinc(.2k )

first Chern class of {EG X E(G, Spinc(2^))} X C. It follows from the injec-
<? Spin^C2Jfe)

tivity of (lxA)* that

chG(XG

v(E')) = φ ί ^ ^ ' ) " 1 ) .

Thus we have

chGX<ζ{E)

= (1 X h)*chcX${E')
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= (i x

Note that there is an isomorphism

TM@v=f*{TN®V)

of G-vector bundles.

By making use of the following properties:

2) φG(φ)\) (^

where x^KG(N) and the total Chern class c(EGx(NxV)) is written formally

3) (IV) of Lemma 2.2,
we have that

fι(e&2-chG{ξ)-&G(M)) = ec''2*chG(V

for some η^KG(N) where c' is the first Chern class of EGxNx V->EGxN.
G σ

Actually, we don't need ec'/2 by the following observations. If c'ΦO, we
consider the conjugate representation space V of V. If we use VQ)V in stead
of F, we have e'~0.

This makes the proof of Theorem 6.6 complete.

7. An answer to a problem of I.M. Singer

The purpose of this section is to give a topological proof of the following
theorem, which answers the problem of I.M. Singer [40].

Theorem 7.1 [5]. Let M be a compact connected differentiable manifold

of class C°° with W2(M)=0. If a compact connected Lie group G acts differentiably

and non-trivially on M, then U(M) [M]=0.

Proof of Theorem 7.1. If G acts non-trivially on M, then there exists a
circle subgroup S1 of G which acts non-trivially on M. From now on we
consider this ^-action. Let f:M->pt be the constant map. By taking 0 as cu

f becomes a fj-map. Let P be the Spinc(2&) reduction of 0 corresponding to
^ = 0 (see §6). According to Proposition 6.5, the ̂ -action has a pseudolifting
to P. We apply Theorem 6.6 to this new ^-action and get the formula

/,(2t5i(M)) = chsi(v), for some

which has the form:
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Σ ajtxpj ty
Jaj<ZZ

where t denotes the first Chern class of the canonical complex line bundle over

BS1 and almost all the a; are zero.

We now wish to show that chs^(η)=0 by making use of Theorem 3.3.

Let ρn: S1-*S1=U(l) be the complex irreducible representation given by

gt-^gn. Denote by Vn its representation space. Then we can impose a com-

plex vector bundle structure on Nμ so that we have a decomposition:

where the n are positive integers and Eμn are complex vector bundles. Then

we can check Assumption 3.2 as in §5. It follows from Theorem 3.3 that

= Σ *{Fμ) Π
exp(nt+xu.)l2— txp-(nt+xn.)

in the localized ring S~1H**(BS1) where the total Chern class of Eμn is written

formally as Π(l+#«,.) and /[Fμ] denotes the slant product. Hence we have

t = Σ *{Fμ) Π
/2 — exp— (nt+xn.)

This equation holds even if we regard both terms as functions of t. If t ap-

proaches ±00, the local index tends to 0. But the global index with this pro-

perty must be identically 0. This completes the proof of Theorem 7.1.

REMARK 7.3. In the above proof, Theorem 6.6 is essential. Because any

non trivial ^-actions on any connected oriented manifolds have the same local

property as above and there are many examples (for example CP2n) whose

St-genera do not vanish. But it often happens that there exists c^H2(M: Z)

such that exp(r/2)5t(M) [M]=0. This kind of things will be studied in a sub-

sequent paper.

8. G-signature theorem

The purpose of this section is to give a topological proof of the Atiyah-

Singer G-signature theorem. Manifolds which we here work with are

assumed to be closed, oriented differentiable manifolds of class C°°. Since

Ossa gave a topological proof of it for periodic actions [36], we assume that G

is a toral group Γn. We use the notations in §3 freely. Let L( ) be the Hir-

zebruch L-genus. Then by making use of the equivariant cohomology theory
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Theorem 8.1.

Signature of M = Σ L{Fμ) Π
v ppi

Proof. First we analize the global index. It is easy to see the following

Lemma 8.2 Regarding S2m+1x •• x£ 2 ' M + 1 as a skeleton of ETn = S°°X-~

X S°°, ue have the following commutative diagram

Ind
H*(ETnxM) > H*(BTn)

H*{S2m+ιx.- x5 2 w + 1 X n M) -5H*{CP m χ - x

where j is the natural inclusion and zr, w fAe Poincarέ dual of the homology homo-

morphism.

According to Chern [15], the Gysin homomorphism zr, is equivalent to
the integration over the fiber (see Borel-Hirzebrυch [12]) of the fiber bundle

π: S2m+1X ••• X S2m+ιxM -> CPmX- x CPm .
τn

The bundle

S2m+1 x x S2m+1 x TM -> S2m+1 x x S2m+1 x M
rpft rptt

is the bundle along the fiber of the fiber bundle π above. Since CPmX
X CPm is simply connected, the L-genus is strictly multiplicative in π in the
sense of [12], that is,

This holds for arbitrary m. Hence we may conclude that

Ind L(ETnxTM)<=H°(BTn).

Note that the zero dimensional part of Ind(ETnX TM) is equal to the signature

of M. Thus we have shown the following

Proposition 8.3.

Signature of M = Ind L(ETn Xn TM).

On the other hand, one checks Assumption 3.2. It follows that we can
apply Corollary 3.4.

Thus we have in the localized ring
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Signature of M

= Ind L(ETnXnTM)

L{Fμ)L{ETnxNμ)

* n

This makes the proof of Theorem 8.1 complete.

Corollary 8.4 ([10] [24] [27] [28] [29]). Let M be a closed oriented TΛ-
manίfold of class C°°. Then we can orient each component Fμ of the fixed point set
so that we have

Signature of M=*ΣΛ Signature of Fμ.

9. 6r-homotoρy type invariance of equivariant Stiefel-Whitney
classes

I n this section we don't assume orientability of manifolds and make use

of the equivariant cohomology theory H*(EGxM: Z 2 ) . Denote by Sq* the
* 1

Steenrod z'-ίλ squaring operation. Put Sq=*Σι Sq*^and Sq λ = — as formal
ί=o ί+(Sq— 1)

power series. Then both Sq and Sq'1 are multiplicative and Sq Sq~1 = Sq~1 Sq

= 1. For a G-vector bundle ξ over M, we put

WG(ξ) = φ-'Sqφiί), VG(ξ) = Sq-

WG(ξ) = Sqφ^Sq-W), VG(ξ) = φ^Sq

where φ: H*(EGxM: Z2)-+H*(EGx(D(ξ), S(ξ))ι Z2) is the Thorn isomor-
G G

phism. Then WG(ξ) is nothing but the total Stiefel-Whitney class of the

vector bundle

EGxξ-^EGxM,

and is called the equivariant total Stiefel-Whitney class of ξ. Obviously we
have SqVG(ξ)=WG(ξ) and SqVG(ξ)=WG(ξ). It is easy to see that

WG(ξ) WG(ξ)=l,

VG{ξ)'VG(ξ)=ί.

We call VG(ξ), WG(ξ) and VG(ξ) equivariant Wu class, the equivariant dual
total Stiefel-Whitney class and the equivariant dual Wu class respectively.
When ξ is the tangent G-vector bundle TM of M, WG(TM\ VG(TM), WG(TM)
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and VG(TM) are simply denoted by WG(M)y VG(M), WG(M) and VG(M)
respectively.

Then we have

Theorem 9.1. Let M and N be closed (non-oriented) differentiable G-
manίfolds of class C°°. For a G-mapf: M->N, we have

/,(*• Va(M)) = (Sq-WSqx))• VJN) ,
f(x Wc{M)) = (SqfiSq-^yWoiN) ,

forx<=H*(EGxM:Z2).
G

Proof. The idea of the proof is similar to those of the previous theorems
and we have only to remark the following:

Lemma 9.2. For any G-vector bundles ξ and η over M, we have that
i) JVG(ξ), VG(ξ)y WG(ξ) and VG(ξ) are all invertible and WG(ξ).ffG(ξ)=l,

VG(ξ)-VG(ξ) = l;
ϋ) WG(ξ®v)=WG(ξ)-WG(v), VG{ξ®v)=VG(ξ)-VG{η\ WG(ξ®v)=WG(ξy

WG(v),VG(ξ®v)=VG(ξ).VG(v).

REMARK 9.3. The following statement does not hold in the equivariant
case:
"If ξ and η are G-vector bundles such that ξ (Bv are trivial, then WG(ξ)=WG(η)9

vG(ξ)=vG(vy
As is well-known, EG can be written as EG=lim EGn where EGn is an n-

connected free G-manifold. By making use of EGn in stead of EG, we can
define

/,: H*(EGn x M: Z2) -> i/*(£GM X N: Z2)
G G

and Wn

G(ξ), Vβ(ξ), W"G(ξ) and Γg(|) similarly.
Then quite a similar argument proves:

Theorem 9.4. Let M and N be closed dίfferentίable G-manifolds of class
C°°. For a G-mapf: M-+N, we have

/f(*
/f(* Wl{M)) = (SqMSq-'x))' Wi(N),

forxeH*(EGnxM:Z2).

Theorem 9.4 is used to prove the following

Theorem 9.5. WG(M), VG(M), WG(M) and VG(M) are all invariants of the
G-homotopy type.
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Proof. Note that EG" X M and EG* X N are closed manifolds. A G-map
σ σ Γ

f: M-+N induces a map

\χf:EGnxM^EGnxN.
σ G G

For a closed manifold X, we denote by [X] the fundamental homology class
mod 2. It is easy to prove the following.

Lemma 9.6 The homomorphίsm fn is equal to the Poίncarέ dual of the
homology homomorphism of 1 x/. Namely for x^H*(EGn X M: Z2) we have

G G

/ ) , ( ) ( [ ) ( / ) ^ p

Suppose now that/: M-*N is a G-homotopy equivalence. Then

lχf:EGnxM^EGnxN
G G G

is a homotopy equivalence. Moreover we have

(lχ/), (lx/)* = identity.
G G

Because for x<=H*(EG"xN: Z2)
G

= (Π [EG"x JVJΓMl X/)*((1 x/)*(*

= (Π [EG" x N])-1-^ Π (1 X/)*[£GB x M])

= {f\[EGnχN])-1'{xr\[EGnxN])
G G

= X .

Now consider the following commutative diagram:

lxP'

where P: M->* and P': Λ7"->* are the maps to one point *. Let aλ, ~',ak be
a basis of H*(EGn X N: Z2). Then we have

G

<<xrV"c(N),[EGnxN]>
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<Sq-ψ'? fϊSq(lxf)*(ai),

/ ) ( . ) ^ ( ) , [ x

Since 1 xf is a homotopy equivalence, we have
<?

<α, FG(iV), [EG"xiV]>

= <(lxf)*(arV'G(N)),

< ( / ) ( , ) ( / ) (

By combining the above equations, we have

Notice that {(lx/)*α t } is a basis of H*(EGnxM: Z2). According to

the Poincare duality theorem, we can conclude that

This equation holds for an arbitrary integer n. It follows that

VG(M) = lim Vn

G(M) = lim (1 x/)*(FS(iV))
< — < — G

= (1 x/)*(lim 7g(Λ0) = (1 x/)*(FG(iV)).

Namely VG(M) is an invariant of the G-homotopy type. As a consequence,

WG(M) = SqVG(M)

Namely W f̂M) is also an invariant of the G-homotopy type.

Similarly we prove that VG(M) and WG(M) are invariants of the G-homo-

topy type.

This makes the proof of Theorem 9.5 complete.
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Corollary 9.7. (Z2)
k-homotopy equivalent manifolds are (Z2)

k-bordant.

Proof. It suffices to remark that (Z2)*-bordism classes are characterized
by equivariant Stiefel-Whitney numbers [19].

10. Equivariant non-embedding theorem

This section is devoted to a study of an equivariant non-embedding theorem
and its application. We define an equivariant Sl-genus SIG(?) of a G-vector
bundle ξ over M by

where Sϊ is the genus belonging to the characteristic power series

x = 2x

sinh x exp x— exp( — x)

Denote by §tG(M) the equivariant Sϊ-genus of the tangent bundle TM. We
make use of the equivariant cohomology theory H*(EG xM:Q). For an oriented

G-vector bundle ξ, we employ the ordinary Thorn class t(ξ)&H*(EGx(D(ξ),
G

S(ξ)), O) as the orientation of ξ.

Theorem 10.1. Let M2n be a closed oriented differentiable G-manifold of
class C°° and Vn+k a complex G-representation space of complex dimension n-\-k.
Suppose that a G-manifold N which is G-bordant to M is G-embeddable in Vn+k.
Then for any ξ^Im(KG(W)-+KG(M)) (where W is a G-bordism between M and

N), there exists v^R(G) such ^f/,(2*-^ίΛ G (£).S c (Λf))=^^
»=i Vl+exp yj

where f:M-^pt and the total Chern class c(EGx Vn+k) is expressed formally as

Π i

Proof. We first show that we are able to reduce the proof of Theorem
10.1 to that in the case where M itself is G-embeddable in Vn+k. Let ix\M-+
W and i2:N-^>W be the inclusion maps. By assumption, there exists ξ0^
KG{W) such that ifξo=ξ. Put ξ' = ifξ0. Let / ' : N->pt. Then it is easy to
prove that

Hence it suffices to check the case where M itself is G-embeddable in Vn+k.
The idea of the rest of the verification is similar to that of Theorem 6.6. In

stead of the representation Δ + +Δ~, we use the following virtual representation

μ+ = Σ (-l)Iλ i+(-l)V+
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due to Atiyah-Hirzebruch [4], It is proved in a way similar to the proof of

Theorem 6.6 that there exists τ^KG(D(v), S(v)) such that

chGiτ) = φί\{~ 1)*Π (exp *,.-exp(-s,.))/**

+ y Π (exp *,-l) (exp (-*,)-!)/*<} ,

where ^ is the normal G-bundle of M2n in Vn+k and the total Pontrjagin class

P(EGxv) is expressed formally as Π ( l + # ! ) and the Euler class X(EGxv) is
a G

expressed as zλ zk.
1 k

We now show that the term — Π (exp #,—1) (exp(—zλ—1)/^ vanishes in
2 1=1

the equivariant case too. Let ί: M - > D ( y ) c P + l ! and j : M-+D2n+2k(zVn+k be

the inclusion maps. Since H2k(EGx{D2n+2k, S2n+2k-1)) = 0 for n>0, the follow-

ing commutative diagram

H*(EG x (Z>W, S(v)): 0 - ^ > ^ * ( £ G x {D>»™, 52»+2*-'): 0

implies that the Euler class z1"'Zk = 0. Since Π(exp ^,—1) (exp(—#,-)—1)/#, is
divisible by ^ -^, we may assert its vanishing.

Denote by Π (1+*?) the total Pontrjagin class of the bundle EGxTM.
1 = 1 G

Notice the following isomorphisms of G-vector bundles:

Accordingly we have

Π (l+*?) Π (1+*?) = / * Π (l+yl)
ι = l ί = l

It follows that

' ^exp yrjl /exp^ - e x p ( - ^ )\ = ή / 2x{ \ , # "ή* /e
ί=i V 2^f / ί=i \exp x{— exp(—x{)f «=i V 2yf

By our routine arguments, we have
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Πil ( W Π (
«=i Vexp x{— exp(—#,.)/ «=i V 2yf

-n ( e x p ''-^p{~'ι)))

| (-iy π ( e x p * - e x p ( - ^

, 1 A (exp^-l)(exp(-^,.)-l)n
2 " *, /J

. 1 fr (expg,-l)(exp(-g,)-l)n
2 i-i *, J J

- Φs

= ff

Set 57 = ψfβ φ?e((— 1)*?®τ) Then we obtained

exp fff—exp(—

e X p y.— exp(—

This completes the proof of Theorem 10.1.

REMARK 10.2. By making use of the localization theory, we can calculate

the left hand side of the equation in Theorem 10.1

For example, we have

Corollary 10.3. Let (CP4, φ> S1) be the semi-fiee Sι-actίon given by

Then any Sι-manifold M which is Sι-bσrdant to (CP\ φ, S1) is not equivariantly

embeddable in 3p®Ck for any k where p is the representation
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p = id: S1 -> S1 = U(ί)

and Ck denotes the trivial S1-representation space.

Proof. We calculate our index homomorphism by making use of the
localization Theorem 3.3. The fixed point set is the disjoint union CP2\JS2.
Denote by ix: CP2->CP\ i2: S2->CP* the inclusion maps. Since

2x
= 1+higher terms,exp x — exp(—x)

we can express Sϊsi(CP4) as Π — instead of Π ^
» =i exp xt—exp(—x{) *=i exp x{—exp(—x{)

as usual. Denote by x the first Chen class c^L) of the canonical complex line
bundle L over CP*. Similarly denote by t the first Chern class of the bundle
ES1->BS1. Then the equivariant Euler class %x (resp. %2) of the normal bundle
of CP2 (resp. S2) in CJP4 is given by (x+t)2 (resp. (x—t)3). Then we compute

exp Λ f—
e χP(—χi

ι{Uΐ Π ( ^ - -)l[CP2}
l%! « =i \exρ x{—exρ(—x^y

+—iί Π ( ^ )l[S2])
% 2

 l = 1 ^exp x{— exρ(—Λ?, ) / J

?x y/ 2(^) y / [ c p 2 ]
x— exp(—x)l \exp(xJ

rt)—exp(—x—t)/

( ? * y/ 2(^-0 y
Λ— ί)3 \exp x— exp(—x)/ \exp(x—t)—exp(—x-\-t)/

Y ( ? Y/ΓCP21
x+i)—exp(—x— t)l

exp Λ;—exp(—x)/ \exp(x+i)—exp(
2x )Ί i

exp x— exp(—xy \exp(x—t)—exp(—x-{-t)

For a fixed ίΦO, the functions above are analytic on x. We compute the
coefficients of x2 and x as follows. Notice that

( 2x V x2

) = 1——-[-higher terms,
exp x—exp(—x)/ 2

Set

( 2 Y

exp(x-{-t)—exp(—x— f)J
Then we have
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/"(*) = 24(exp(x+t)~txp{-x-t))-\txp{x+t)+txp{-x-t))2

-8(exp(x+t)-exp(-x-t))~2.

Hence the coefficient of x2 in f(x) is given by

i-/"(0) = 12(exp t-exp(-t)y\exp t+exp(~t))2

—4(expί—exp(—t))'2.

The constant term of/(#) is given by

4(exp t—exp(—1))~2.

Accordingly the coefficient of x2 in

( ?* )'(. 2 \ ,
\exp x— exp(—xy \exp(x-\-t)—exp(—x—t)l

is given by

IX {12(exp ί-exp(-ί))"4(exp ί+exp(-ί)) 2-4(exp

_ l χ 4 ( e x p ί - : e x p ( - ί ) ) " 2

Next we compute the local value at S2. Set

Then

f(0) = -24(exp(-ί)-exp t)-\txp(-t)+txp t).

Since 2Λ;/(exp x—exp(—x)) has no x term, the coefficient of x in

( - ?* W ^ V
\exp Λ;— exρ(—Λ?)/ \exp(^—t)—exp(—x-\-i)'

is given by /'(0). By combining the above computations, we have

= 2*(exp t—exρ(—ί))"4{6(exρ ί+exp(—ί))2— 3(exρ ί—exρ(—t))2

-12(expί+exp(-ί))}

Hence we need at least Ap®Ck (^^4).
This completes the proof of Corollary 10.3.
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REMARK 10.4. If we look at the tangential representation at a point (0,

0,0,*,*), we see trivially that at least 3p is necessary. On the other hand, by

the equivariant embedding theorem, {CP*,φ,Sι) is equivariantly embeddable

in jp(BCk for some^ and k.
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