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1. Introduction

Let G be a compact Lie group and %;( ) be an equivariant multiplicative
cohomology theory. Let M and N be closed G-manifolds. In this paper, we
assume that G-actions are differentiable of class C=. Then for a G-map
f:M— N, we shall define an “equivariant Gysin homomorphism”

Jiz h(M) = ho(N),

which is an Ag(pt)-module homomorphism. Special cases of f, have been
studied profoundly by Grothendieck, Borel-Serre [13], Hirzebruch [25], [26],
Atiyah-Hirzebruch [3], [4], Dyer [21], Atiyah-Singer [9], [10], Atiyah-Segal
[6], [7], tom Dieck [19] and so on.

In the present paper, we shall study the equivariant Gysin homomor-
phism f; systematically and conceptually.

First we shall establish a localization theory in general and shall obtain
many equations between invariants of a G-manifold and invariants of its fixed
point set by virtue of the uniqueness of our equivariant Gysin homomorphism.
From now on, we call them briefly equations between global and local invariants.

Next we shall establish various kinds of equivariant Riemann-Roch type
theorems in various categories.
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As in the non-equivariant case, there are a lot of applications. For examples,
we shall have integrality and divisibility theorems of equivariant characteristic
numbers. On the other hand, there are particularly interesting applications
peculiar to equivariant cases. Namely equivariant Riemann-Roch theorems
inform us of finiteness properties of some global invariants in our localization
theorem. Accordingly we can often conclude that some global invariants are
independent of the actions or even zero by combining it with the localization
theorem. This is in fact my motivation to establish equivariant Riemann-
Roch type theorems and is essentially an idea due to Hirzebruch.

We first confine ourselves to the weakly complex category. Let G—>EG—
BG be the universal principal G-bundle. By making use of the equivariant
cohomology theories K4(M) and U*(EG%}<M) explicitly and K(EG%M) impli-

citly, and the formal group law in U%*-theory, we shall have an equivariant
Riemann-Roch type theorem where U* denotes the complex cobordism theory.
As mentioned above, by combining it with the localization theorem, we shall
obtain an equation between an invariant of a manifold (not G-manifold!) and
an invariant expressed in terms of the fixed point set and its normal bundle
and the normal representation, which might be called “G-T,-genus formula”.
As shown by Quillen, the formal group law in U*-theory is universal in the
sense of Lazard [39] [31]. It follows that these formulae must be the most
generalized one.

Next we confine ourselves to the Spin‘-category. In this category, we
also obtain an equivariant Riemann-Roch type theorem including something

like an “equivariant U-genus”. As an application peculiar to the equivariant

case, we shall obtain the vanishing theorem of §I-genus due to Atiyah-
Hirzebruch [5] by combining it with the localization theorem. This answers
the problem of I.M. Singer [40].

We now turn to the oriented differentiable category of class C*. Making use
of the strictly multiplicative property of the L-genus [12], we shall have the
G-signature theorem due to Atiyah-Bott-Singer.

In the non oriented category, we shall define equivariant Stiefel-Whitney
classes and shall obtain an equivariant Wu type formula. Hence one might
naturally expect to prove the following conjecture by making use of the equi-
variant Wu type formula: ‘“The equivariant Stiefel-Whitney classes are in-
variants of the G-homotopy type”. Since EG X M 1is not a manifold in general,

the invariance does not follow from the equivariant Wu type formula. For
this reason, we consider EG"X M for all positive integers n where EG” is an n-
G

connected free G-manifold. Then the invariance follows from similar fomulae
for EG"x M.
2]
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Last of all, we shall have an equivariant non-embedding theorem. So far
equivariant non-embedding theorems have been studied for involutions [11]
[32]. We here consider any compact Lie group actions.

In a future publication, we shall define equivariant characteristic numbers
for G-manifolds by making use of the equivariant Gysin homomorphism. As
an application we shall have, for instance, that bordism classes of oriented 7"-
manifolds are characterized by their equivariant characteristic numbers modulo
two torsions. Here we need the recent result of Ossa.

The intention of the present paper is to exploit general theories and various
applications will appear in forthcoming papers.

The author wishes to thank Professor A. Hattori for his kind and helpful
suggestions. Thanks are also due to Professor F. Hirzebruch for inviting him
to Bonn and for his advice, and to Professor D. Zagier for his valuable sug-
gestions.

2. Equivariant Gysin homomorphism

In this section, we shall define an equivariant Gysin homomorphism in
general.

Let X be a compact G-space and £ be a G-vector bundle over X. We
denote by D(£) (resp. S(£)) the disk bundle (resp. sphere bundle) associated
with £. Let hg( ) be an equivariant multiplicative cohomology theory. An
element #(&) of hg(D(E), S(£)) is called a Thom class (or hg-orientation class) if
for any compact G-invariant subspace Y of X, the correspondence x—(¢(§)| Y)-x
gives an isomorphism

ho(Y) — he(D(E| Y), S(E|Y)).

We assume that for any compact G-space Y and any G-map f;Y —X, the
induced element f*#(£) is a Thom class of the induced bundle f*.

Let M and N be hg-oriented closed G-manifolds of class C*, that is to say,
the tangent bundles of M and N are hg-oriented. Then for a G-map f:M—N,
we define our equivariant Gysin homomorphism

fit he(M) — h(N)

as follows. As is well-known, there is an equivariant embedding e of M in
some G-vector space V. For the proof, see Palais [37]. Since f is G-homotopic
to a differentiable G-map f’ of class C=, we first define our equivariant Gysin
homomorphism f{/ and then define f, to be f/. The forthcoming Lemma 2.2
will assure that f; is independent of the choice of f’. Therefore we may now
assume that f itself is differentiable of class C*. Choose a G-invariant Rieman-
nian metric on N XV and let » be an invariant open tubular neighborhood of
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(fxe)(M)in Nx V. Here we need the assumption C=. Then v is a G-vector
bundle which may be identified with the normal bundle of (fxe)(M) in Nx V.
Denote by D(V) (resp. S(V)) the unit disk (resp. unit sphere) in V. Here we
may assume without loss of generality that D(v) is in NxInt D(V).

Regarding V' as a G-vector bundle over one point, we assume that V is
hg-oriented. Then the homomorphism f; is defined by the composition of the
following three homomorphisms which we explain in a moment:

b1 ho(M) = he(D(v)/S(2)) »
$2: ho(D(2)|S(#)) > he(N X D(V)INX S(V)) ,
b3z h(N X D(V)INXS(V)) = he(N) .

ExpLANATION. Here /; denotes the reduced cohomology ring as usual.
Let t(M) € ho(D(TM)/S(TM)) be the orientation class of the manifold M where
TM denotes the tangent G-vector bundle. Similarly let #(N)< A(D(TN)/S(TN))
(resp. H(V)E he(D(TV)[S(TV))) be the orientation class of N (resp. V). It is
easy to see that we can choose a canonical orientation class #(») such that

M) X t(v) = (fxe)*(UN)xyV)).

Then the homomorphism ¢, is defined to be the Thom isomorphism by making
use of the Thom class #(v). The homomorphism ¢, is the induced homomor-
phism by the natural collapsing map

NxD(V)Nx S(V) — D(v)/S®).

The homomorphism ¢; is again defined by the Thom isomorphism in the
manner of the definition of ¢,.

DeriNiTION 2.1. Let M be a closed G-manifold and f: M— point be the
constant map. Then we define an index homomorphism

Ind: hg(M) — he(pt)
by f, where pt stands for one point.

Lemma 2.2. The equivariant Gysin homemorphism is independent of all cho-

ices made and has the following properties:
i} f, depends only on the G-homotopy class of f

ii) f, is an he(pt)-module homomorphism

i) (fgh=fi-&

) f(x- X)) =f(x)- y for x€ho(M), yEhs(N)

v) if fis a G-embedding of class C*= with a normal bundle v, then f* f,(x)=

Xs(v)-x for xEhg(M) where X ;(v) denotes the equivariant Euler class of v.
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Proof. We show that f; does not depend on the choices of IV and e. Let
e':M—V' be another G-embedding where V' is Ag-oriented. Then consider
the following two G-embeddings:

e MSVevercyery,

@MV VOV c(Var)

where V@V’ 'c(VEBV')* denotes the inclusion into the first factor. It follows
from the transitivity of the Thom isomorphism that e and & give rise to the same
equivariant Gysin homomorphism. Similarly e’ and &’ give rise to the same
equivariant Gysin homomorphism. Denote by v(fxé) (resp. v(fxe’)) the
normal bundle of the G-embedding:

fxe:M—Nx(VV')t
(resp. fxe&': M — NxX(VBV')).

Since fx & and fxé&' are G-homotopic by a differentiable G-homotopy through
differentiable G-embeddings, v(fxé) is G-equivalent to »(fxeé’). If, more-
over, k=2dim M4, then two such regular G-homotopies are themselves re-
gularly G-homotopic through regular G-homotopies [46] and the two resulting
bundle equivalences are G-homotopic through G-bundle equivalences. Con-
sequently K(v(fXx&)) is chosen uniquely as in the non-equivariant case (cf. [21]).
Namely ¢ and &’ give rise to the same equivariant Gysin homomorphism.
The rest of the proof is routine.

3. Localization

We consider the subset S of Ay(pt) consisting of Euler classes of Ag-oriented
G-vector spaces V' such that the group G acts on V' without trivial direct sum-
mand. Here we regarded a G-vector space as a G-vector bundle over one
point. Then S is a multiplicative subset of kg(pt). It follows from Lemma 2.2
that we get a localization S™'hg(M) and an induced homomorphism

S71f: S~he(M) — S~hg(N)

for a G-map f: M—N (see Bourbaki [14] for notion and notation).

Denote by F, each component of the fixed point set of a G-manifold M
and by 7,: F,—M the inclusion map. Denote by N, the normal bundle of F\.
There exist a G-vector space V' without trivial direct summand and a G-map

f: M— UInt D(N,) - V—Int D(V).
M

This follows from the classical representation theory and so on. We assume
that V is hg-oriented.
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Then we have

Lemma 3.1 (tom Dieck [18]). The following homomorphism
2387 She(M) — 23 ST he(F )
3 I

is an isomorphism where the summation is taken over all the components F, of the
fixed point set.

Now we assume the following

AssumpPTION 3.2. Each N, is hg-orientable so that each equivariant Euler
class Xo(N,) is a unit in S™g(Fy).

Fix an orientation on N, and we orient F, so that the orientation of N,
followed by that of F, yields the restriction of the orientation of M.
Let x be an element of S~'%;(M), then we have

(52 S71i%) (33 8 ) (51 S71if)x = 53 Xo(N)+ S

by Lemma 2.2. Because of Assumption 3.2, we have that

-1 - Sk y
S-1pk 1. ( X)) SV g1k
(5 57i8) (5570 (85 ) = 57k
in 2387 hy(Fu). Since >3S7%¥ is an isomorphism by Lemma 3.1, 3157, is
] ® ®

also an isomorphism and we have

S~Y¥x 1 \-
= S ! ! ! .
Ty~ B

Thus by the uniqueness and the functorial properties of our equivariant Gysin
homomorphism (Lemma 2.2) we have the following localization theorem.

Theorem 3.3. Under Assumption 3.2, the following diagram commutes:

S7he(M)___ §-1Ind

s ST S-thg(pt)
& Xo(Ny) / c(Pt) .
S~ 1Ind

> S hg(Fy)
m

Since we shall give several applications of Theorem 3.3 later, we now
give just a few examples.

We make use of the equivariant cohomology theory H*(EG X M: Q) now.
G

For an oriented G-vector bundle &, we use the usual Thom class #&)e
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H*(EG X (D(E), S(£))) as the orientation of &.

Let T" be the toral group and p=(p,, :**, p,) be an m-tuple of integers.
Ragarding T" as SiX -+ X S;, we define an irreducible representation p: T"—
S'=U(1) by

p(sy, -+, 5,) = sh1eeeln

where s;&S;. We identify p with the element p,t,4---+p,t, of H(BT") by
the following translations

transgression

{complex irreducible} o H(T") >0 HYBT™.

representations

Let T" act on a closed oriented differentiable manifold M. Denote
by F,. each component of the fixed point set and by N, its normal bundle in
M. Then we can impose a complex vector bundle structure on N, so that we
get a decomposition

NIL = ZP}EI@@VP

where p run through the complex irreducible representations of 7" and V,
denote their representation spaces and E,, denote complex vector bundles.
Let v;: T"—S'=U(1) be the irreducible representation defined by v;(s;, -,
s,)=s; and T;—=BT" be the 7, extension of the universal principal 7"-bundle
ET*—BT".
It is easy to see that
ET"XNyu =2 ET"X(Eu,QV,)
Vi P ™"
=2 (ET"X Vo)QE,,
=3(II TQEu,,
where @ denotes the external tensor product. Hence the total Chern class
¢(ET" x N,) and the Euler class X(ET" X N,) of the bundle ET"X N,—BT" X F,,
™ ™ ™

are given by
AET" XN = IT (1+p+4)
X(ET"XN.) = I1 (b,
where the total chern class of E,, is expressed formally as I;'[ (1+ux,,). Accor-

dingly it is easily seen that Assumption 3.2 is satisfied in this case.

Let F(t) be the formal power series F(t)=1+a,t*+at*+--+- of #* and let K
be the multiplicative sequence [25] belonging to the characteristic power series
F(t). Then we have
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Corollary 3.4.

I1 F(z;) I1 Flp+ s,
Ind K(ET"X TM) = > - - F,].
BT =3y 1
Here the total Pontrjagin class of F, is expressed formally as I (1+23) and [[F,)
denotes the slant product:

H*(BT"X F,) — H*(BT") .

Next we consider another kind of applications. Let w be a partition and
s, be the characteristic class defined as in [34]. Then we have

Corollary 3.5.

o, (TL(14-23)) - S0, [ 1T {1+ (p+- ¥y,
“2 H(P+ Mxﬂi)

RemARK 3.6. Quite similar formulae hold for Stiefel-Whitney classes
instead of Pontrjagin classes. Hence Corollary 3.5 gives us an explicit way to
compute the bordism class [M] of the oriented bordism group from the fixed
point data.

In particular, we have

r,.

D=3 32

Corollary 3.7. When an action is non-trivial,

_ 5 (PHux)”* oy
s(M) = E m/[}?w

where dim M=4k.

ReMark 3.8. It is pointed out by D. Zagier that there is an interesting re-
lation between Corollary 3.7 and a residue formula when M=CP" and T"=S".

4. Weakly complex G-actions

Let MU(k) be the unitary spectrum (see Conner-Floyd [17]). In this
section, we shall make use of the following equivariant multiplicative cohomology
theory:

ho(M) = lim [SZ’“"/\(EG>‘§M)+, MU(k)]
kyoo
which we denote by U ”(EG>(§M ) as usual. As is well-known, there exist G-
invariant, n-connected, finite CW complex EG”" such that

EG = lim EG".
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It follows from Atiyah-Segal [8] that
lim! K(EG"?}(M) =0.
On the other hand, Yosimura has shown in [47] that
lim! U*(EG”)é My=0
if and only if
lim! K(EG”?M) =0.
Hence we have that
U*EG X M) =~ li_r_n U*(EG" X M)
and
K(EG>§M) = lir_n K(EG">(§M) .

Let & be a complex G-vector bundle over M. According to Conner-
Floyd [17], there exist canonical Thom classes

t,(¢) € U(EG" X DE)/EG" X S())
such that for the inclusion
it EG" X D(E)[EG" X S(§) — EG""" X D(E)[EG"' X S(E) ,
we have i*t,,,(£)=t,(€). Therefore we have a canonical Thom class
1) = {(§)} € UNEG X DE)EGX S(E)).-

Since the Thom class #,(£) is natural for a G-vector bundle map, #¥) is also
natural.
Similar arguments are valid for K-theory and we have

Lemma 4.1. For a complex G-vector bundle & over M, there exist Thom
classes
(£) € U(EG x D)/ EG S(&)
and
tH(§) EK(EG X D(E)[EG X S(£))

which are natural for a G-vector bundle map and p, (£7(€))=t*(E) where p, is
the limit of the Conner-Floyd natural transformation [17].

Let & be a complex G-vector bundle over a finite CW-complex M. Then
we shall define a U*-theory Chern class for the vector bundle EG)é £. Remark
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that Conner-Floyd defined the U*-theory Chern class only for complex vector
bundles over finite CW-complexes. However our lim’ arguments enable us
to define a U*-theory total Chern class c(EG)é £) for the vector bundle EG X E.

Although there is no splitting principle in the equivariant K-theory, we
shall have a “splitting principle” which answers our later purpose. Let £ be a
complex G-vector bundle over a finite CW complex M. Denote by =: F(§)—
M, the equivariant flag bundle. Then by the same way as in the non-equivariant
case, we have

n*E=L,@--- DL,
where L; are complex G-line bundles. It follows that
(1 X =)*(EG x E)=(EG X L)® ---EB(EG>(§ L,).
Since EG” X F(¢) is canonically identified with F(EG” >§§) and since
EG”); M is a finite CW-complex, the homomorphism
(1 m)*: U¥(EG"x M) ~ U*(EG"x F(§))

is injective (see Dold [20] and Conner-Floyd [17]). It follows by the lim’
argument that the induced homomorphism

(1 X n)*: U¥(EGX M) — U*(EGx F(§))
@ G
is injective. Repeating this argument, we have

Lemma 4.2. Let &, -, &, be complex G-vector bundles over a finite
CW-complex M. Then there exist a compact G-space F, a G-map nw: F— M and
complex G-line bundles Li over F such that

(1x7)*E; = (EGX L)@ D(EG X LiY)
and the induced homomorphism
1 >G<7z)*: U*(EG); M) — U*(EG>(§ F)
is injective.
We now would like to define a multiplicative transformation

choy: Ko(M) — U**(EG X M)QQ[[y]]

which might be called an equivariant generalized Chern character in U*-theory.
For this purpose, we introduce the formal group law F(x,) in complex cobor-
dism [1]. Generally it is known that there exists a unique formal power series

&(2) satisfying
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Fx,y) = g7 (8(x)+2(9)) -
In fact g(¢) is given explicitly by

) = P N pnc U (o @0[[1]
n+1

>0

called Mischenko series [35] [39]. Let x be an element of Kg(M), then x can be
written as [£,]-[£,] for some complex G-vector bundles &,,&, on M. Then we
define:

choy(x) = 23 exp {(1-+9)g(t, 1)} —20 exp {(1+7)g(t:.0)}
where the total Chern class of EG>(§ &, (resp. EG>(§ &,) is expressed formally as
1}1 (1+4¢,;) (resp. I;[ (1+1.,)). It is easily seen that the definition does not
depend on the choices of &;.
Lemma 4.3 1) chg,(x,4%;)=chg,(%,)+che,(x2)
i) chg,(%,@x2)=chg, (%) chg,(%,).

Proof. The proof of i) is trivial. The multiplicative property (ii) follows
from Lemma 4.2 and the equation

2(a(EGX (E@1) = £(e(BG X E))+8(6(BGX 1)

for complex G-line bundles &, 7.

Next we define our equivariant U*-theory generalized Todd genus as
follows. Let & be a complex G-vector bundle over a finite CW-complex M.
Then we set

— 11 [ elexp(+2)2(E) 43} | <
o) = 11 [ RN} [ e @i,

where the total U*-theory Chern class of EG X & is written formally as TI(1+4¢,).

Obviously we have

TG,(E @’7) = TGy(g ) : Tcy("?) .

A weakly complex manifold M of class C~ is a differentiable manifold of
class C~ together with a complex vector bundle structure on TM @ R* where
&=1 or 2 according as dim M =1 or 0 mod 2 and TM denotes the tangent
bundle.

A weakly complex G-action of class C* is a G-action of class C* on a weakly
complex manifold of class C* preserving the complex structure. Here the
G-action on R* is given trivially.
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In this category, we must modify the definitions in §2 as follows. The
orientation of M is defined by making use of the complex G-vector bundle
TM®R® in stead of the tangent bundle 7M. In order to define our equi-
variant Gysin homomorphism, we choose a sufficiently large complex G-re-
presentation space V' such that the normal bundle » in §2 has a complex
vector bundle structure so that we have a complex G-vector bundle isomor-
phism

TMOR ®v=f*(TNPR)DV,

where TM@R*® (resp. TNPR®) denotes the complex G-vector bundle re-
presenting the weakly complex G-manifold M (resp N).

We are now ready to formulate our equivariant Riemann-Roch theorem
in U*-theory.

Theorem 4.4. Let M and N be weakly complex G-manifolds cf class C=
such that dim M =dim N mod 2. For a G-map f: M—N, we have a functorial
homomorphism f: K o(M)[[y]]—=K o(N)[[y]] such that

[l (choy(x)- To(TMORY) = che,(f(x))- Te(TNOR)

where E=1 or 2 according as dim M =1 or 0 mod 2 and TM @ R’ (resp. TN P R)
denotes the complex G-vector bundle representing the weakly complex G-manifold M
(resp. N) and the action on R is given trivially. In fact f(x) is given by

(—1)imd=dimm)/2 £ Kg {x Q) AmM O/ TN RY)Q
A(TM D R} QRO A TNOR)QS_,(TNDR'),
where
Ay(E) = 23 YN(E), N(E): exterior powers,
Sy(&)= :Z;Ey‘s‘(f), S(&): symmetric powers,

and & denotes the complex conjugate bundle of E.

Proof. Let ¢fe, ¢f and ¢! be the homomorphisms in §2 in the cases
where ho(M) are K (M), K(EG>G<M) and U(EG>G<M) respectively. Let a:

Ky(M)—-K(EG X M) be the natural transformation defined by oc(x)=EG3;< .

By the choices of Thom classes [6] [17], we have that a¢pfo=¢fa. It follows
that a ffe=fa.
In virtue of our splitting principle (Lemma 4.2), we have

Lemma 4.5. a(\,(x))-a(S_,(x)=1 for x€K(M), a(r,(§—n))=a(r(E)-
S_,(n)) for complex G-vector bundles €, 7.



EqQuivarRIANT RiEMANN-RocH THEOREMS 543

When we write the total U*-theory Chern class of EG;(v formally as
I (1+x;), T¢y(v) is given by

(x; {exp (1+3)g(x:)+3} ) .
exp ((1+y)g(x:))—1

As in §2 of [10], we have
($Y) ek, pe(1) = I1 ( 1—exp(1fry)g(x,~)) .

1

Hence we have for xe K (M),

9 (ch,(®)- T,() ™)
= g D hel) (1oL e

IT {exp((14y)g(x:))+} x;
(D )y (1—exp(b9)g(x)
T {exp(L)g() o} (r{ )
_ (— 1) 8™k (x) chy be(1) |
Mooy e )

According to Lemma 4.2, we may assume that
ap)=LD--PL, and ¢,(L;) = x;,
where L; are complex G-line bundles and k=dim ». Then we have
axdim»(y) — Xdimva(y)
= L1® "'®Lk .
It follows from the fundamental property of the formal power series g(2) that
ge(a @)
= ga(La® - QLy))
= 28(01(14))
= z‘_:g(xi) .
Hence we have
ga(a(r ™ () = gle(a(r™(v))))
= —g(a(a( ")) = —2g(x) -
Accordingly we have

che, (W™ () = exp(1+y)g(ci(@(Zi™(9))))
B 1
I exp(14y)g(x)
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On the other hand, note that

a)t"(f») = 7\.‘6{(9)
X‘(L&B ...@Lk)

j <@<j. (L;,®®Ly).

I

Hence we have
cho N(P) = chyani(P)
= 21 exp(1+y)ga(L;®®Ly))

IRe=3r

= .2, =P L)+ +le(Ly)
= 3}, exp(l+9) () = —g,).
It follows that

Shoh(5) = choy(SYN(5))
=23y 2 xp(l+y)(—glw))——g(;)
= II {14y exp(1+y)(—g(x))} -
In view of Lemma 4.5, we have

chgyS_,(7) = chyaS_,(v)
Ch,,a?\,y(ﬂ) Chcyxy(p) .

Putting all this together, we have

ChGy(xdimv(’j) .S —y("_’)) = Chcyxdimv(p) ° ChGyS -y("_’)
_ che AE™(D) _ 1
chohy(7)  II{exp((1+)g(x:))+y}
Thus we have for x€ K (M),

b7 (chey(®) - Tey(v)™)
= che,y(%)+ che,((— D)™ AE™(5) - S_(9)) - choypre(1)
= chgy(x-(— 1) A4™(9) - S_,(7)- p14(1))
= cheypre(w- (— 1" AE™Y(5) - S_,(7)) -

Now we show the following formula

f (chey(x)= Tey(»)™)
—1I (1 —exp(1 +y)g(yi)>chcyf{fa(x. (— D)dimpdim¥(5). g (5)),

H
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where the total U*-theory Chern class of the bundle EG X (NXV)—=EG X N is
expressed formally as TI(1+y;).

As before we have

dYchg,(¢Fe) (1) = TI (l—exp(l-'l-y)g(y.-)) .

It follows that

U (chgy(x)- Tgy(») ™)
= 3 P cho,pi o (— 1™ A1™(9)- S_(5))
= ¢3che,pz 9 Pp1o(x (— 1) NE™(5) - S_(9))
= 3che,($59) 7 fle(w- (= 1)H™AE(5) - S_ (7))
= ¢3che,((39) (1)« fifo(x- (—1)"™ - AH™(2)- S_,(5)))
= 3 (choy,($5) (1) choy f1o(+ (— 15 NE™(5) - S_(9)))
= ($3chey($59) (1)) ch, flfo(x+ (— )™ AE™Y(9) - S_,())
I ((1 —exp(1 +y)g(y,~)> che, fRa(x- (—1)E™AdmY(5). S_ (5))

which is the required formula.
Since the genus T, is multiplicative and invertible, we have

Toy(v)! = T (TMOR)- f*(Te, (V) '+ Ts(TNDRY) ).
It follows from Lemma 2.2 and the above formula that
f{(chgy(x)- To(TMDR)) :
=11 (1—exp(1+y)g(y,~)> Chcyf{fg(x,(__l)dimvxdimv(g).s_y(ﬁ))

13

XTe, (V)T (TMODR®).

As before we have

I (1 —exp(l J.ry)g(y;)). T (V)

t

= (—D)*™ T {exp((1+)8(y:)+5}
= (= 1)V che, (M (V) My (T)) -

Thus we have

1Y (chey(o)- To TMOR)
= ahg [ ffo{(— 1A\ (5) . S_(5)
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A (V) N y(V)}- To(TNDER?) .

We now wish to have a formula without 7 and ». Note that there is an
isomorphism

TMOR ®r=f*(TNOR)®V

of complex G-vector bundles. By making use of this and Lemma 4.5, we
have

a(xy(V)-S_ (%))
= axy(z_ P)
— on, (TMGR —{*(TNGR))
— a(\(TM®R)-S_,f*TNOR)).

Note that

a(AE™ (1)) = gAdimY(p)
and

(AR f*( TN G RE)) ™!

— a(x(dimNH!)/Zf*(m)) .

Hence we have

a(A™(9) - AEmV(F))
— ot(?\.(dimM”)/Z(TMEBIjB) ,x(dimN+e)/2(f*(W@)) .

Putting all this together, we have

[ (chey(x)- Te(TMOR))
= chya fe{(—1)@mM-amNE g NI (5). S_ (5)
N (V)N y(V)} + T TNDR?)
_ chyf,Ka {(_ 1)(dimM—dimN)/2. xe xdim‘v(ﬂ) . S_y( 5)
A (V) n(V)} - To(TNDR)
— chyf!"a {(_ 1)(dimM-dimN)/2 axe x(dimM+E)/Z(TM@BB)
ARV (fXTNDR) - A (TMOR')-S_,f*(TNDR")}
X Ts(TNDR®) '
= chg,[ i o((—1)@mMamM2Z. g\ @I T B R)
QAM(TMDR)) - A GV YTNDR)-S_(TNDR')]
X Te(TNOR").

This is the required formula. The proof that gf=g-f is easy and omitted.
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This makes the proof of Theorem 4.4 complete.

ReEMARK 4.6. If we use the conjugate Thom class #(£) instead of #(&), f(x)
is given by

fE(x A (TMOR)®S_(TNOE) .

5. G-T,genus formula

In this section we shall derive a formula by combining the localization
Theorem 3.3 and the equivariant Riemann-Roch Theorem 4.4. For sim-
plicity we assume that G is a toral group 7™ in this section.

We first calculate the multiplicative set .S defined in §3. Let p=(p,, -+, p,)
be an n-tuple of integers. Asin §3, p can be regarded as an irreducible repre-
sentation

p: T"—> S = U(1).

Let v;: T"->S'=U(1) be the irreducible representation defined by (s,
-++,5,)=s; and T';— BT" be the v, extension of the universal principal 7"-bundle
ET"—>BT"asin §3. Denote by #; the U*-theory Euler class of the bundle T';.
Then we have

Lemma 5.1. The set S is generated multiplicatively by g™'(3]p;g(t;)) with
piEZ: ZP?¢0'

Proof. The p extension of the universal bundle ET"—BT" is [IT%.

Note that g(c,(II T'7))=>p;8(t;).
Hence we have

a(IIT?) = g7(2 pig(t) -

Since any complex representation of 7" is a sum of such representations p,
the set S is generated multiplicatively by g7 *(X)p;g(t;)) with p,eZ, 33pi=0.
This completes the proof of Lemma 5.1.

We next show that Assumption 3.1 is satisfied in this case. It is shown in
Conner-Floyd [16] that F has a canonical weakly complex structure and N, has
a canonical complex G-vector bundle structure. Therefore it suffices to show
that each Euler class X+(N,) is a unit in STU*¥(BT"X F,). According to
Atiyah-Segal [6], N, has the following decomposition

Nu= ?EI’*P®VP1

where p run through the complex irreducible representations and V, denote
their representation spaces and E,, denote complex vector bundles.
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Lemma 5.2.
e(BT" X N2 = IT {1+87(3 pig(t)+8(uxs )} »
X(ET"X Ny) = ngg"@ pig(t:)+8(uxs))) -
Here the total U*-theory Chern class of E,, is expressed formally as IJ (14-px5)).

Proof. As shown in §3, we have
ET"x N = 2 (H P?i)®EMP .
" [

In virtue of Lemma 4.2, we may assume that E,, is a sum of complex line bundles
Ei,. If we denote the U*-theory first Chern class of Ef, by .x,,, we have
that

a{(II T EL} = 7 {2 pig(t) +8(uxs) } -

This completes the proof of Lemma 5.2.
Generally the formal group law F(x,y) has the property:

Flx,y) = aty+ 23 a:x'y’
Put t,=¢,(IIT%"). Then t,&S and
X(ET”X,NM) = II (to+uxe,+ 23 akltﬁl"xzj)
T p,P; B>

II¢ (1 Mxpj(1+k%1aklt‘€“x;;l)}
=1 pl + :, .

Consider the formal inverse of X(ET”" X N):
Tﬂ

X(ET"x N,)™
Tﬂ

w14 33 ak,t,’iuxé;l)"’}
k,1>1
ty

— H_t;l{prmi:l(—l)m

Since the dimension of F, is smaller than or equal to dimM,

dimMj'
5 .

wo; =0 for m>[:
Therefore the formal inverse of X(ET"X N,) has a meaning in the localized
Tﬂ
ring ST'U*(BT" x F,) and is given by
. [dimM /2] .
11 tp—[dan/Z]—l{ 2 (_1)mtp[d.mM/2]—mﬂx:z]_(1+ 2 aklt’;yox;lzj_l)m} .
p,P; m=0 k121

Thus we have shown that X(ET” X N,) is a unit in
Tﬂ
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STU*(BT"x F.).

We can now apply Theorem 3.3 and get

y %
S Indx = ™ Ind(z m—?%ﬂ)
™" "

for any element x of STTU*(ET" x M).
T’l
If we take T';(TM @D R’) as x, we have
S Ind To (TM®R®)

— 871 Ind X T(TF.HR) T
o

P,p;

[CXP[(l {3 p.—g(t,-)+g(wp,-)}]+yJ
exp[(1+5) {23 pig(t:) +8(uxe; )} ] — 11

Here TF.@R® denotes the canonical weakly complex structure on F, given in
[16].

The following lemma is easy to prove and we omit the proof.
Lemma 5.3. The local index
S'Ind: ST I UXBT"XFu) — ST'U*(BT")

is induced by the U*-theory slant product
[[Fu.): U¥(BT" X F,)—>U*(BT") where [F,] denotes the fundamental class of F,.

From Theorem 4.4 we know that Ind T,(TM @ R®) has the form chg,(f(x))
where f: M — pt.
Let a: U*(X)— H*(X) be the natural transformation. Then « induces

a® id: U**(X)@QI[y]] - H**(X)QQ[[]]

which is also denoted by a, where ® denotes the completed tensor product.
Denote by # the ordinary first Chern class of the bundle I';. Then a(t;)=
t{. Since a is multiplicative and since a[CP"]=0 for n>>0, we have

a[CP"]

ag(t) = A (i)
= a(t) =t!.

Note that cf,(f(x)) has the form

2 a(b)exp(1+y) (20 big(t)
where b=(b,, -**,b,), b,&Z and a(b)eZ[y] and the summation is taken finitely.
By applying a to the formula before, we have the following formula in the ordi-
nary cohomology theory
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(*) ; a(b)exp(1-+y) (X2 bitr)
exp[(1+y) D piti +a(nxp,-)}]+y}
= R 7 F.],
2" (TIPSR H LXP[(l +9) B piti+ a1 [F]

where [[F,] denotes also the slant product in the ordinary cohomology theory.
This equation holds even if we regard both terms as functions of #/. Let {p} be
the set of irreducible representations which occur as normal representations of
the fixed point set. Let z=(r, -+, 7,) be an n-tuple of integers such that
{z, p>=217;p;%+0 for any p in {p}.

Set t!=tr;. Then

lim {tz, p> = sign <z, pyoo .
If sign <{z, p>=-+1 (resp. —1), then

lim &P [(14+y){<z, P>t‘|_a(uxa,-)}]+y -1
froo €Xp [(1 +y) {<T) I’> t_'—a(l‘xPj)}]— 1

We now define integers d;(F,) by

d}(Fo) = X dimg Epp .
{T,P)>0

(resp. —y).

and

d=(Fu) = X dimg Eup .

{7,8)<0

Then we have

im . exp [(1+y) {<z, p> t+a(wro)} 1 +y
i BRI a1/

= 3 () CRa(T(TF.@R) [F,]

Namely the local index tends to a finite number. This fact is valid for any =
with {z,p>+0, pE {p}.
Similarly we have

» . exp [(14+y) {<z, PO t+a(ux, )} 1 +y
‘Lr_r}ozp] A(TATF,BR) PI,!,- [exp (T4 {<z, o t+a(uxs )} — 1] [TF4]

= 3} () O T(TFLOR) [Fu] .
Since the global index is a finite sum of the form a(b) exp (14y) <b,z>t, the

local property above means that the global index must be independent of #/.
It follows that

a(b)=0 for b=*0.
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Thus we can conclude that the global index in U*-theory is also a constant, which
belongs to Z[y]. Hence we have

T(TMO®R) [M] = ao(T(TM®R*)) [M]

which gives the constant above.
Consequently we have shown the following G-T',~genus formula.

Theorem 5.4.
T(TM®FK) [M]
=37 (TF.®R) 11 l:exp [(1+y) {'2 pig(ti)-{-g(“x’i)}]_{_yJ .
Ty M=o, exp [(1+_y){§; P:’g(t,')—{—g(pxpj)}]__l [[Fu] -

In the proof of Theorem 5.4, we have shown the following corollary which
is so called Kosniowski formula.

Corollary 5.5 ([30], [24]. [27]). We have
T(TM®R)[M] =23 (—9)7 FWT(TF.OR) [F.]
= 3 () T (TF, R [F,]
for any T with {z,p)>=+0, p< {p}.
REMARK 5.6. Our Theorem 5.4 means that
Ind To(TMOR) € U(x)QQ[ylc U**(BT")RQ[[¥]] -
Namely the evaluation of T, (TM@R®) on [M] vanishes except for the term
of dim M.

6. Spin‘-G-actions

Let z: Spin (n) — SO(n) be the standard double covering. Then Spin‘(n)
is the subgroup of Spin(rn+2) defined by z7'(SO(n)x SO(2)), which is isomor-
phic to Spin(z)x S* as Lie groups. Let Q be a SO(n)-bundle over M. A

Z3

Spin‘(n)-reduction of Q is a principal Spin‘(n)-bundle P over M together with
an S’-bundle p,: P— Q such that the diagram

P x Spin‘(n) —> P
o o
QXSW@——»Q//Z

commutes, where the horizontal arrows are the actions of Spin‘(z) and SO(n)
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from the right on P and Q respectively and A is the composite homomorphism

Spin‘(n)iSO(n)X SO(2)— SO(n). The action of Spin‘(n) on P yields the
actions of Z,, S%, Spin(z) by the natural inclusions and we have the following
commutative diagram:

gy P|Z,

All maps are bundle projections and we have

Lemma 6.1. p,: P/Spin(n)—>M is the S'-bundle characterizing the
Spin‘(n)-bundle P— M in the sense of [38] and P|Z, is nothing but the fiber product
Q X (P[Spin(n)) where ps is given by p, X p, in this case.

M

Proof. see [38]. _

Suppose that the bundle Q—M admits a G-action (commuting with the
action of SO(n) from the right) which is compatible with the projection map.
Then a lifting of the action on Q to an action on P is an action of G on P (com-
muting with the action of Spin‘() from the right) which is compatible with p,.

We now study the lifting problem by using the diagram above. By the
invariant integration technic [38], one can modify the results of Stewart [41]
and Su [43] so that each of the followings is a sufficient condition for a lifting in
the fiber bundle P—Q:

"G is 1-connected”,

"G is a torus, n>2 and H(M:Z) = 0".

But for our later use, these are not sufficient and we need a different ap-
proach. Because G-manifold Q is more complicated than M in general and
we would like to express the lifting obstruction in terms of M.

Lemma 6.2 (Hattori and Yoshida [23]). An S*-bundle &€ — X admits a lift-
ing of the given action of G on X (commuting with the right action of S 1) if and only
if the first Chern class of the above S'-bundle lies in the image of j*: H *(EG X X)—

H*(X) where j: X - EG X X is the inclusion given by x+—y X x for some fixed yE
EG.

If the left action of G on M lifts to a left action of G on P/Spin(n), then
P|Z, admits a lifting of the action which commutes with the right action of
SO(n)x S*. Because P|Z, is the fiber product Q X (P/Spin(n)) by Lemma 6.1.

M

In order to lift the action on P/Z, to an action on P, we need the following
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lemma which is a generalization of Proposition 2.1 in [5].

Lemma 6.3. Let G be a connected topological group and M be a connected
G-manifold. Let M— M be an n-fold covering such that M is connected. Then
there exist canonically a connected topological group G and an m-fold covering
homomorphism h: G—G such that G acts on M inducing via h the given action of
G on M. Here m is smaller than or equal to n.

Proof. Easy and omitted.

DrriNITION 6.4. Let £—X be a principal H-bundle. Then an action
of G on X is called to have a pseudolifting to £ if and only if there exist a con-
nected topological group G and a covering homomorphism 4: G— G such that
G acts on £ (commuting with action of H from the right) inducing via % the
given action of G on X.

Putting all this together, we obtain easily

Proposition 6.5. Let G be a compact connected Lie group and p:Q—>M be
a principal SO(n)-bundle where M is a connected manifold. Suppose that Q and
M admit G-actions (commuting with the action of SO(n) from the right) which is
compatible with p. Then there exist a Spin‘(n)-reduction P of Q and a pseudo-
lifting to P if and only if there exist a connected Lie group G and a covering homo-
morphism h: G — G such that the second Stiefel-Whitney class W,(Q) lies in the
tmage of the composition of the following homomorphisms:

e
HYEGx My1> HYM: Z) - HYM: 7,),
G
where G acts on M via h.

We now study an equivariant Riemann-Roch type theorem in Spin‘-
category. In this section, we make use of the equivariant cohomology theories
Ky (M) and H¥(EG X M:Q). We define a multiplicative transformation

chg: Ko(M) —~ H**(EG X M: Q)

in the manner of the definition of ¢k, in §4 by putting' y=0 and by using the
ordinary Chern classes in stead of U*-theory Chern classes.

We define an equivariant QAI-genus EJAIG(E) of a G-vector bundle £ over M by
9,() = ARG xE),
where % is the genus belonging to the characteristics power series

x2 x
sinhx/2  exp x/2—exp(—x/2)
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Denote by QAIG(M) the equivariant QAI-genus of the tangent bundle TM.
Let £ be an oriented G-vector bundle over a finite CW-complex. In this
section, we make use of the usual Thom class #4(£) of the bundle EG>§E.

Let M and N be oriented G-manifolds of class C*. Then for a G-map f:
M — N, we get our equivariant Gysin homomorphism

: H*(EG X M: Q) > H*(EGx N: Q).
G G

A map f:M— N is called a ¢,-map if we are given an element ¢, € H¥(M: Z)
such that ¢;=Wy(M)—f*W,(N) mod 2. We now assume that dim M =dim N
mod 2.

Let e: M—V be a G-embedding where V' denotes a complex G-representa-
tion space. As in §2 we denote by » the normal bundle of the G-embedding
fxe:M—-NxV. Denote by O the principal SO(2k) bundle associated with
v. Then Q admits the induced G-action. If fis a ¢;-map, then O has the
Spin‘(2k)-reduction P corresponding to ¢;. We are now ready to state our
equivariant Riemann-Roch theorem in Spin‘-category.

Theorem 6.6. Suppose that dim M=dim N mod 2 and that P admits a
lifting of the G-action on Q. Then for given E €K (M), there exists nEK(N)
such that

fleret-cho(§) - Ao(M) = cho(n)-He(N)
where cg is the first Chern class of the complex line bundle
EGXxP x C—EGXM.
G Spin¢(2k) G

RemMark 6.7. The correspondence £—>7 is not functorial in general.
This contrasts with the non-equivariant case (see Atiyah-Bott-Shapiro [2].).
The reason is that the correspondence depends on the liftings and we can not
choose a canonical lifting of the G-action in general so that the correspondence

is functorial. In fact there are many examples showing that the correspondence
depends on the liftings.

Proof of Theorem 6.6. Let T be the standaid maximal torus of SO(2k)
X SO(2) and x,, -++,x,,y be the standard base of HY(T: Z). Put T'=p7X(T). Itis
a maximal torus of Spin‘(2k) and covers T twofold. We regard HY(T: Z) as a
subgroup of HY(T": Z) by the monomorphism p*: H(T: Z)—HT': Z). Then
we can take {x, -+, %, (%, 4 -*+x,+y)/2} as a base of HY(T",Z). Denote by
C,; the Clifford algebra and by C3, its complexification C,,QzC. Previously we
defined Spin‘(2k) as the subgroup z~! (SO(2k)x SO(2)) of Spin(2k+2). But
we now regard Spin‘(2k) as the multiplicative subgroup of Cj, by the following
inclusions: Spin(2k)—C,, and S'—C. According to [2], there exists an ir-
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reducible graded Cj,-module A} -+ Ay of dimension 2* over C which has the
following properties:

i) Aj and Ay are invariant if we restrict C3, to Spin(2k) and are irredu-
cible Spin‘(2k)-representations,

ii) the weights of A} (resp. Ay) consist of

{(— 1)t (1) +5} 2,

where §;=0 or 1 and the number of 1 in {§;} is even (resp. odd).
Then we put
E=P X (Ai+Ay).
Spin¢(2k)

Obviously E admits a canonical G-action which makes E a G-vector bundle.
Extending the notion in [2] equivariantly, we get the equivariant Clifford bundle
C(v) of v and the equivariant C(v)-module structure on E. Hence we obtain
an element X$(E) of Kg(D(v), S(v)) in the manner of [2].

Let E(G, Spin‘(2k)) — B(G, Spin‘(2k)) be the universal principal Spin‘(2k)-
bundle with G-action. Obviously we can take E(G,Spin‘(2k))/Spin‘(2k—1) as
B(G,Spin‘(2k—1)) and E(G, Spin‘(2k))/Spin‘(2k—1) is isomorphic to E(G,
Spin‘(2k)) x S*7! as sphere bundles over B(G,Spin‘(2k)) with G-action.

Spinc(2k)

Denote by D the total space of the disk bundle E(G,Spin‘(2k)) X D*, Then

Spinc(2k)
D includes B(G, Spin‘(2k—1)) as the total space of the associated sphere bundle.
Let h: M — B(G,Spin‘(2k)) be the classifying map of P with G-action.
Since % induces the G-bundle map

D(v) b

|

h
M ——> B(G,Spin‘(2k)),

we have the following commutative diagram:

K (D(v), S()) Jﬁ K (D, B(G,Spin‘(2k—1)))
che (1x B)* che ;
H**EG X (D(v), S(»)): 0) < H *XEG X (D, B(G,Spin‘(2k—1))): Q)
$1 (1 xh)* Iqb
H**(EG X M:Q) << H **(EG X B(G, Spin‘(2k)): Q)

where ¢ and ¢, are the Thom isomorphisms.
In the manner of the construction of X$(E), we get an element X$(E') e
K (D, B(G, Spin‘(2k—1)) where »'—E(G,Spin‘(2K)_>x R* and E'=E(G,
pin¢(2
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Spin"‘(Zk))'s X (A*+A7). Inview of the construction, we see that
pinc(2k)

R*X(E') = XS(E) .
The following diagram

EG X B(G, Spin‘(2k—1))=BG x B Spin‘(2k—1)
1xj 15’
BEG x B(G, Spin‘(2))=BG x B Spin’(2k)

is homotopy commutative where j and j’ are the natural maps induced by the
inclusion Spin®(2k—1) — Spin®(2k). Hence the homomorphism (1Xk)*:
G

H*(EG (D, B(G,Spin'(2k—1))): Q) H*(EG X B(G, Spin’(2k)): Q) is injective

where k: B(G, Spin‘(2k))— (D, B(G, Spin‘(2k—1))) is the composition of the
G-homotopy equivalence B(G,Spin‘(2k))==D and the inclusion D — (D,B
(G, Spin‘(2k—1))).

We are now ready to apply the Hirzebruch argument [26] equivariantly as
follows.

We get the same formula for the characters of the Spin‘(2k)-representations
A¥ in the sense of [12]:

ch A —ch Ay = %, -+ %21 Sl_l;lj/_’;:iz. '
Therefore we have
(1 ky*chgX(E")
= chck*XS(E")

= ch[EG>r§ {E(G, Spin‘(2k)) Spié(Zk)(A;‘—Ak‘)}]
= ch[{EG X E(G,Spin‘°(2k))} oo (Ar —AR)]
= Wi-es2 9 (v") ",
where W$, is the Euler class of {EG X E(G,Spin‘(2k))} X R* and c; is the

Spinc(2k)

first Chern class of {EG X E(G,Spin‘(2k))} o X5 C. It follows from the injec-

pinc(2k)
tivity of (1 X k)* that
cho(XS(E')) = (e Fo(r) 7).
Thus we have
cheXS(E)
= (1 F)*cheXS(E")
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= (L Ry* et ev) )
o G TOBE
Note that there is an isomorphism
TM®v = f¥(TNDY)

of G-vector bundles.
By making use of the following properties:

1) goche=chsdpie,
2) Gucho(@59) ) = IT (1= aho(x)
y.

where x&K(N) and the total Chern class c(EG>I§ (NXV)) is written formally

as [1(1+y3),
3) (IV) of Lemma 2.2,
we have that

S ho(E) - Ho(M)) = ¢l Aol N)
for some 7€ K(IN) where ¢’ is the first Chern class of EGXN X V—EG X N.
e ¢

Actually, we don’t need ¢”/? by the following observations. If ¢’+0, we
consider the conjugate representation space V of V. If we use V@V in stead

of V, we have ¢'=0.
This makes the proof of Theorem 6.6 complete.

7. An answer to a problem of LM. Singer

The purpose of this section is to give a topological proof of the following
theorem, which answers the problem of I.M. Singer [40].

Theorem 7.1 [5]. Let M be a compact connected differentiable manifold
of class C= with Wy(M)=0. If a compact connected Lie group G acts differentiably

and non-trivially on M, then %AI(M ) [M]=0.

Proof of Theorem 7.1. If G acts non-trivially on M, then there exists a
circle subgroup S' of G which acts non-trivially on M. From now on we
consider this S'-action. Let f: M —>pt be the constant map. By taking 0 as ¢,
f becomes a ¢-map. Let P be the Spin°(2k) reduction of Q corresponding to
¢,=0 (see §6). According to Proposition 6.5, the S'-action has a pseudolifting
to P. We apply Theorem 6.6 to this new S'-action and get the formula

Fa(M)) = cha(n),  for some nER(SY)

which has the form:
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j,azj:‘_éza jexpjt,
where ¢ denotes the first Chern class of the canonical complex line bundle over
BS" and almost all the a; are zero.
We now wish to show that chg(7)=0 by making use of Theorem 3.3.
Let p": 8'—S'=U(1) be the complex irreducible representation given by
g—g". Denote by V, its representation space. Then we can impose a com-
plex vector bundle structure on N, so that we have a decomposition:

N:L = EEW‘®V” ’

where the 7 are positive integers and E,, are complex vector bundles. Then
we can check Assumption 3.2 as in §5. It follows from Theorem 3.3 that

. o« 1
AAO0) = RIEN () I

in the localized ring S™*H**(BS") where the total Chern class of E,, is written
formally as II(1+x,) and /[F.] denotes the slant product. Hence we have

. o 1
a;expjt=2VAF ( ) F..
,,éz jexp t=Z3AF) IT exp (nt+x,)/2 — exp— (nt+x,,)[2 IF)
This equation holds even if we regard both terms as functions of z. If ¢ ap-
proaches -+ oo, the local index tends to 0. But the global index with this pro-
perty must be identically 0. This completes the proof of Theorem 7.1.

REMARK 7.3. In the above proof, Theorem 6.6 is essential. Because any
non trivial S'-actions on any connected oriented manifolds have the same local
property as above and there are many examples (for example CP?) whose

N-genera do not vanish. But it often happens that there exists c& HA(M: Z)

such that exp(c/Z)%AI(M) [M]=0. This kind of things will be studied in a sub-
sequent paper.

8. G-signature theorem

The purpose of this section is to give a topological proof of the Atiyah-
Singer G-signature theorem. Manifolds which we here work with are
assumed to be closed, oriented differentiable manifolds of class C*. Since
Ossa gave a topological proof of it for periodic actions [36], we assume that G
is a toral group T". We use the notations in §3 freely. Let L(-) ke the Hir-
zebruch L-genus. Then by making use of the equivariant cohomology theory
H*(ET”;&M: 0), we have
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Theorem 8.1.

Signature of M = ; L(F,) HV (sz ;E:i'bz";_'_i )/ [Fu].
»Pi > wXp; ) —

Proof. First we analize the global index. It is easy to see the following

Lemma 8.2 Regarding S*'X -« X S as a skeleton of ET"=S8"X -
X S=, we have the following commutative diagram
Ind
H*(ET"X M) ——> H*(BT")

Tﬂ

(% 1)* lj*

HA*(S™+15¢ o 5 §215¢ M) 5 H¥(CP™5 - X CP™)
T”

where § is the natural inclusion and =, is the Poincaré dual of the homology homo-
morphism,

According to Chern [15], the Gysin homomorphism 7, is equivalent to
the integration over the fiber (see Borel-Hirzebruch [12]) of the fiber bundle

e Sl o Sl M — CP” X --- X CP™ .
T’l
The bundle
S2mtl e ooose §2mHLse T —> S5 oou s §2mHl e If
™ ™

is the bundle along the fiber of the fiber bundle = above. Since CP™X -
X CP™ is simply connected, the L-genus is strictly multiplicative in # in the
sense of [12], that is,

m L(SP X oee X S >T<”TM) €H(CP" X -+ X CP").
This holds for arbitrary m. Hence we may conclude that
Ind L(ET";& TM)eH(BT").
Note that the zero dimensional part of Ind(E T";ﬁ TM) is equal to the signature
of M. Thus we have shown the following
Proposition 8.3.
Signature of M = Ind L(E T”;ﬁ T™).

On the other hand, one checks Assumption 3.2. It follows that we can
apply Corollary 3.4.
Thus we have in the localized ring ST H*(BT"):
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Signature of M
= Ind L(ET" x TM)
L(Fu)L(ET" X Nu)
X(ET” ;<"N )

=>1Ind
M

_ exp 2(p-+uty) +1
- ; L(¥w) pl.-'!.' <exp 2(p+ux,,)—1 >/[F] '

This makes the proof of Theorem 8.1 complete.

Corollary 8.4 ([10] [24] [27] [28] [29]). Let M be a closed oriented T"-
manifold of class C=. Then we can orient each component F . of the fixed point set
so that we have

Signature of M= Signature of F\.
w

9. G-homotopy type invariance of equivariant Stiefel-Whitney
classes

In this section we don’t assume orientability of manifolds and make use

of the equivariant cohomology theory H *(EG>;M : Z,). Denote by S¢' the
1

1+(Sg—1)
power series. Then both Sg and Sq~* are multiplicative and Sq-Sq~'=Sq~*-Sq
=1. For a G-vector bundle £ over M, we put

We(8) = ¢7'Sqp(1), V(€)= Sq7'¢ 7 Sqe(1),
Wo(£) = Sap™'Sq'¢(1), V() = ¢7'Sq7'¢(1) ,
where ¢: H*(EG?M: Zz)—>H*(EG>é(D(E), S(€)): Z,) is the Thom isomor-

phism. Then Wg(§) is nothing but the total Stiefel-Whitney class of the
vector bundle

Steenrod i-th squaring operation. Put Sq:i} S¢*and Sq~'= as formal
i=0

EGxt(—-EGxM,
G G

and is called the equivariant total Stiefel-Whitney class of £. Obviously we
have SqV(§)=Wy(E) and SqVy(£)=W(). It is easy to see that

WG(E)'WG(E) =1,
V) Ve(E)=1.

We call V(&), Wi(£) and V(&) equivariant Wu class, the equivariant dual
total Stiefel-Whitney class and the equivariant dual Wu class respectively.
When £ is the tangent G-vector bundle TM of M, W(TM), V(TM), Wy TM)
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and V(TM) are simply denoted by WyM), VM), WM) and V(M)
respectively.
Then we have

Theorem 9.1. Let M and N be closed (non-oriented) differentiable G-
manifolds of class C=. For a G-map f: M— N, we have

fix- V(M) = (S¢7* 1(Sg%))-Ve(N) ,
fi(w- Wo(M)) = (Sqf(Sq~'x))- We(N) ,

for s€ HXEGX M: Z,).

Proof. The idea of the proof is similar to those of the previous theorems
and we have only to remark the following:

Lemma 9.2. For any G-vector bundles £ and n over M, we have that

i) W4E), Ve(E), We(E) and V() are all invertible and W(E)- W(£)=1,
Vel®)- Vol)=1; i i
i) We(EDn)=We(E)-We(n), VaED1)=Ve(E)-Vi(n), We(EDn)=W(E)-
We(n), VD)=V (£)-V(n).

ReMARK 9.3. The following statement does not hold in the equivariant
case:

“If £ and % are G-vector bundles such that £@7 are trivial, then W(&)=W4(7),
Va(E)=Vs(n).”

As is well-known, EG can be written as EG=Ilim EG" where EG" is an n-

—_>
connected free G-manifold. By making use of EG" in stead of EG, we can
define

fi: H*(EG”>§M: Z,) — H*(EG”>(§N: Zy)
and WE(&), VE(E), WE(E) and V4(E) similarly.

Then quite a similar argument proves:

Theorem 9.4. Let M and N be closed differentiable G-manifolds of class
C=. For a G-map f: M— N, we have

fila- V(M) = (Sq' f1(Sqx))- VE(N) »
fi(x-We(M)) = (Sqf(Sq™'x))- WE(N)
for xs H*(EG" X M: 7).

Theorem 9.4 is used to prove the following

Theorem 9.5. Wy (M), V (M), W(M) and V(M) are all invariants of the
G-homotopy type.



562 K. KawakuBo

Proof. Note that EG">‘§M and EG">§N are closed manifolds. 4 G-map
f+ M— N induces a map

I1Xf: EG"XM — EG"XN .
G ] G

For a closed manifold X, we denote by [X] the fundamental homology class
mod 2. It is easy to prove the following.

Lemma 9.6. The homomorphism f7 is equal to the Poincaré dual of the
homology homomorphism of 1>(§ f. Namely for x€ H *(EG”Z< M: Z,) we have

Fi(®) = (1)) = (N[EG"X N)) (1 x/)(x N [EG" M])
Suppose now that f: M — N is a G-homotopy equivalence. Then
1>§f‘ EG”>(§M—> EG”>éN
is a homotopy equivalence. Moreover we have
(1 >¢§f)"(1 §f)* = identity.
Because for x& H*(EG" X N: 7))
CPHREHLO)
= (N[EG" XN (1xf)«((1Xf)*(*) N [EG"X M])
= (N[EG"XN]) ™+ (x N (1 X/)«[EG" X M])
= (NEG"XN] ™ (:N[EG"XN]
=x.
Now consider the following commutative diagram:
EG">§M 1%<P
Ixf 1 / EG"x+ = BG"
EG* >¢;<N 1 >‘§P’

where P: M —% and P’: N—* are the maps to one point *. Let «ay,-,a; be
a basis of H¥(EG"X N: Z,). Then we have
G

<a;- VE(N), [EG"XN]>
= (1P e VEIV)), [BGD>

= {P'{(e;*VE(N)), IBG']>
= <Sq7'P(Sqas), [BG']>
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= Sg P (L (13 £)*(Sqers), [BG']
= (SqPY- f1Sg(1% /) (@), [BG'D>
= (SqPISe(UXf)* (e, [BG™D
= PH(1xf) (@) Ve(M), [BG']>
= (X PW((1xf)*(@)-VeM)), [BG']
— (X)) Va(M), [EG"X M]>.
Since 1 X f is a homotopy equivalence, we have
< VE(N), [EG™X ND
= (1xf)*(a:*VE(N)), [EG" X M]>
= 1% *(@)-AxN*(VEN), [EG"XM]>.
By combining the above equations, we have
LX) @)- VM), [EG™ M]>
= (I )¥ (@) (LX) VeV, [EG™x M] .
Notice that {(1 3}<f)*a,»} is a basis of H*(EG”>{§M: Z,). According to
the Poincaré duality theorem, we can conclude that
Ve(M) = (1x/)*(VEeN)) -
This equation holds for an arbitrary integer n. It follows that
Vo(M) = lim V(M) = lim (1 X ))*(VE@N))
= (1xf)*(lim V&(N)) = (1x))*(Ve(N)) -
Namely V(M) is an invariant of the G-homotopy type. As a consequence,
We(M) = SqV (M)
= SgIXN*(Ve(N)
= (1X/)*(SaVe(N))
= (IXN)*(We(N)) -

Namely Wg(M) is also an invariant of the G-homotopy type.
Similarly we prove that V(M) and W(M) are invariants of the G-homo-

topy type.
This makes the proof of Theorem 9.5 complete.
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Corollary 9.7. (Z,)*-hemotopy equivalent manifolds are (Z,)*-bordant.

Proof. It suffices to remark that (Z,)*-bordism classes are characterized
by equivariant Stiefel-Whitney numbers [19].

10. Equivariant non-embedding theorem

This section is devoted to a study of an equivariant non-embedding theorem
and its application. We define an equivariant -genus A, (&) of a G-vector
bundle & over M by

% (8) = UEGx ),
where 2 is the genus belonging to the characteristic power series

X _ 2%
sinhx  exp x— exp(—x)

Denote by (M) the equivariant A-genus of the tangent bundle TM. We
make use of the equivariant cohomology theory H*(EG X M: Q). For an oriented
G

G-vector bundle £, we employ the ordinary Thom class #(&)eH *(EG>(§ (D(®),
S(€)), Q) as the orientation of &.

Theorem 10.1. Let M? be a closed oriented differentiable G-manifold of
class C= and V*** a complex G-representation space of complex dimension n-k.
Suppose that a G-manifold N which is G-bordant to M is G-embeddable in V"**,
Then for any £ Im(K(W)— K (M)) (where W is a G-bordism between M and
N), there exists 7 R(G) such that f,(2+chy(E)-Ae(M))=chg(n). "(Ei’ﬂ)

i=1 \14-exp y;
where f: M — pt and the total Chern class c(EG>(§ V*t®) is expressed formally as

T (14

Proof. We first show that we are able to reduce the proof of Theorem
10.1 to that in the case where M itself is G-embeddable in V***, Let 7;: M —
W and i,: N— W be the inclusion maps. By assumption, there exists &,&
Ky(W) such that ifg,=§. Put £'=1fE,. Let f': N—pt. Then it is easy to
prove that

Fi(27chg(8) - Uo(M)) = f1 (257 +chg(E") - Ac(N)) -

Hence it suffices to check the case where M itself is G-embeddable in V7%,
The idea of the rest of the verification is similar to that of Theorem 6.6. In
stead of the representation A*4A~, we use the following virtual representation

pr = 2 (—DAH(—1N; ER(SORR),
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due to Atiyah-Hirzebruch [4]. It is proved in a way similar to the proof of
Theorem 6.6 that there exists 7€ K (D(v), S(v)) such that

ch(7) = {2 (— VT (exp si—exp(—s))s,
1 k
1 I (exp 2= 1) (exp (—2)— D

where v is the normal G-bundle of M?* in V"** and the total Pontrjagin class
P(EG x v) is expressed formally as I (1+2%) and the Euler class X(EG X v) is
a aq

expressed as 2+,

k
We now show that the term % II (exp 2;—1) (exp(—=;)—1)/z; vanishes in
i=1

the equivariant case too. Let i: M—D(y)CV*** and j: M— D**#*C [*** be
the inclusion maps. Since H*(EG x (D**%*, S*+%*-1)Y=() for n>0, the follow-
G

ing commutative diagram

H*(EGX (D), S(»)): Q) .__, H*(EGX (D2n+2k Ser2h-1y; Q)
(Lsiy* (1"
H*(EG X M: Q)

implies that the Euler class z,---2,=0. Since ]I (exp z;—1) (exp(—z; ) 1)/z;1s
divisible by z,--2;, we may assert its vanishing.

Denote by H (1+x?) the total Pontrjagin class of the bundle EG X TM.
i=1 G

Notice the following isomorphisms of G-vector bundles:
TM@v=M X V*th= fX])n+k,
Accordingly we have
11 (1-4ad)- T (14D = F¥TT (149
It follows that

(P2 - g ) 255

By our routine arguments, we have

fi(2 (i) T (exp - _zi‘;p - ))) i (e e ()
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- f![Zk_l.Ch ) 1=I (exp x; -—exp(—x )) r* ':liI: (eXP (yi);;:(p(—yi))]

:f!(zk—l.ch ®)- l’j(xpz exp( z)))
2

= [ ehe®)- (17 {5 (- )klnl(expm—exp( =)

R

1 & (exp 2;—1) (exp(—2,)—1)
+5 1 /]

3

= gt el (— 118, { & (1) T (R E— xR (5)
+1 0 5 (Ep(=2)-1)]

R

= ¢apotho((—1)*EQT)
= Pachepio((—1)E@T)
= P cho{(@F0) - pie pre((—1)'ERT)}

= b3+ [cho($59) (1) chopic- pro((—1)*ERT)]

= {ps-cho(pe) (1)} - chopie- piea((—1)ERT)

ot ll—exp y; . K. dEa((—1VEQT

=TT (=222 hogle-gto((—1)'E@7).
Set n=¢e-p5e((—1)"E®7). Then we obtained

A2ty T (2 )

exp x;—exp(—x;)

= chg(n)-(— 111 (1—exp %) ( 2, )

Vi i=1 \exp ¥;—exp(—y,)

= che(n) TT (520 )-

This completes the proof of Theorem 10.1.

ReMARK 10.2. By making use of the localization theory, we can calculate
the left hand side of the equation in Theorem 10.1
For example, we have

Corollary 10.3. Let (CP, ¢, S") be the semi-fiee S'-action given by
1

e
(zo,zn 22,2'3,2’4) > (zo’ zl’zz’gz3’gz4) .

Then any S'-manifold M which is S*-bordant to (CP*, p, S*) is not equivariantly
embeddable in 3p@DC* for any k where p is the representation



EqQuivarIANT RiEMANN-RocH THEOREMS 567
p=1d: S'—= 8" = U(1)
and C* denotes the trivial S*-representation space.

Proof. We calculate our index homomorphism by making use of the
localization Theorem 3.3. The fixed point set is the disjoint union CP?U S?
Denote by #,: CP?— CP*, 1,: S2— CP* the inclusion maps. Since

2%

= 1+ higher terms,
exp x—exp(—x)
we can express Ug(CP?) as fI 2x; instead of fI 2;
i=1exp x;—exp(—x;) i=1exp x;—exp(—¥;)

as usual. Denote by x the first Chen class ¢,(L) of the canonical complex line
bundle L over CP*. Similarly denote by ¢ the first Chern class of the bundle
ES'—>BS'. Then the equivariant Euler class X, (resp. X,) of the normal bundle
of CP?(resp. S?) in CP* is given by (x-+¢)* (resp. (x—¢)°). Then we compute

ﬁ<2k—l.in=51 <exp xi—zex;p(——xi)))
- Zk—l{%liik -51;11 <exp x,——zz{p(—xi)) [ICP7

+%2i;k xljl (exp x;—ZZ}ip(—xi))/[SZ]}
- Zk_l{ (x—ll— t)z(exp x—zeip(—x)) (exp (x—i-g(f_e';(tg(—x— t)> J[CP7]

1 2x z 2(x—1t) L
(x—1)*\exp x——exp(——x)) (exp(x—t)—exp(—x+t)) s ]}

=2 {<exp x—ztch(—x))s(exp (x+12) —zexp(—x— t))z/ [CPT]

+(exp x—zea:(p(—x)) 2<exp (x—t)—zexp(—x—|— t)>3/ [Sz]} )

For a fixed t=%=0, the functions above are analytic on x. We compute the
coefficients of x* and x as follows. Notice that

( 2x )3 = l_x_2_|_higher terms.
exp x—exp(—x) z

- 2 :
f@) = (exp(x-i—t)—exp(—x—t)) )

Set

Then we have
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f"(%) = 24(exp(-+1)—exp(—a—1))"Y(exp(w+1)+exp(—x—2))*
—8(exp(x—+1t)—exp(—x—1))72.
Hence the coefficient of x* in f(x) is given by
S 17(0) = 12(exp t—exp(—1)) Hexp t-+exp(—1))
—4(exp t—exp(—1))72.
The constant term of f(x) is given by
4(exp t—exp(—t))72.

Accordingly the coefficient of x* in

2x 3 2 )
(exp x— exp(—x)> (exp (x+t)—exp(—x— t))
is given by
1x {12(exp t—exp(—12))*(exp t+exp(—t))*—4(exp t—exp(—2))™%}
—% X 4(exp t—exp(—1))72.

Next we compute the local value at S?,  Set
f(x) = 8(exp(x—1)—exp(—x-+1)".
Then
- f(0) = —24(exp(—t)—exp t)"*(exp(—2)+exp t).

Since 2x/(exp x—exp(—=x)) has no x term, the coefficient of x in

(e erer—er )
exp x—exp(—x)/ \exp(x—t)—exp(—x+12)
is given by f’(0). By combining the above computations, we have
F(21-As(CPY))
= 2*(exp t—exp(—1))*{6(exp t+exp(—2))*—3(exp t—exp(—1))*
—12(exp t+exp(—1))}

- 2expt !
= 3.2+ texp(—20)+( ZEPLY
exp(—21) 14-exp t>

Hence we need at least 4pPC* (k=4).
This completes the proof of Corollary 10.3.
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RemMARK 10.4. If we look at the tangential representation at a point (0,

0,0,*,*), we see trivially that at least 3p is necessary. On the other hand, by
the equivariant embedding theorem, (CP* ®,S") is equivariantly embeddable
in jpPC* for some j and k.
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Added in proof. Recently Mr. I. Yasui succeeded in computing the homomor-
phism in Theorem 10.1 for semi-free S’-actions on cohomology complex pro-
jective spaces. As a consequence he obtained numerical conditions for equivariant

embeddings.
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