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Abstract 

The assessment of corrosion damage is an important part of the maintenance of steel 

structures. It is important to numerically analyze the characteristics of the corroded 

surface to accurately predict the corroded surface. In this study, four unpainted steel plates, 

SM400A, SM490A, SMA400AW, and SMA490AW, were used for corrosion experiments 

under a new accelerated corrosion test ISO16539 Method B, accelerated corrosion test 

CCT Method A and two atmospheric exposure environments in different regions. The 

corrosion depth of the steel plates was measured by a laser focus measurement system. 

Semivariograms were used in the geostatistical analysis to investigate the spatial 

autocorrelation structure of the corroded surface. By using this method and the ordinary 

kriging technique, a method to simulate the spatial characteristics of the corroded surface 

was proposed. The simulation results showed that the corrosion depth and surface 

morphology of the corroded surface were highly consistent with the experimental results. 

In addition, a deep learning model based on generative adversarial networks (GAN) was 

used to build a predictive model of the corroded surface. The spatial properties of the 

prediction model were validated using the geostatistical analysis method proposed in this 

study, and the results showed that the predicted results had similar spatial properties with 

the actual corroded surfaces. This study proposed a feasible new accelerated corrosion 

test through comparing several corrosion tests. A corrosion prediction model that can be 

used for uniform corrosion of multiple unpainted steels in different corrosion 

environments has been established. It has a positive significance for cost and time savings 

in steel structure maintenance. 
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Chapter 1 Introduction  

1.1 Introductory remarks 

Today, there are still many pre-1930s steel structures in use around the world for public 

service. And during the period of rapid economic growth in Japan between the 1950s and 

1970s, many civil engineering structures, such as road and railway bridges, were also 

built. Many of these infrastructures have suffered varying degrees of damage and 

deterioration more than 50 years after they were built [1.1]. According to 2020 statistics, 

there are approximately 730,000 road bridges in Japan. More than 23% of these bridges 

have been in service for more than 50 years, and by 2030 this percentage will exceed 50% 

[1.2]. In the past years, more and more cases about steel structure deterioration and 

damage have occurred [1.3]. 

A major cause of deterioration and damage to steel structures is corrosion [1.4]. Steel 

corrosion is an electrochemical reaction, i.e., a redox reaction, that occurs on the surface 

of the steel. Anodes and cathodes are produced on the surface of steel. This chemical 

reaction produces iron oxide through iron ions and iron hydroxide, which turns into rust. 

Corrosion causes material loss from the surface of steel members [1.5], which thins the 

cross-sectional area of the steel structure and reduces the stiffness and load-bearing 

capacity of the structure [1.6]. Therefore, this can become a major public safety issue. On 

the other hand, corrosion on the surface of steel members can also hinder safety and 

efficiency in industry, causing significant damage and economic losses. According to 

estimates, the economic losses due to the corrosion on the surface of steel structures 

represent approximately 4% of the gross national product of industrialized countries [1.7] 

[1.8]. Therefore, it is important to treat steel structures against corrosion. Currently, anti-
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corrosion coatings are widely used as anti-corrosion methods such as painting, 

galvanizing or thermal spraying to prevent corrosion. The use of weathering steel depends 

on the environmental conditions to which the steel structure is subjected. Weathering 

steels are made by adding alloying elements such as copper, chromium, and nickel to 

form a dense and stable protective film of rust on the surface in the air to improve the 

corrosion resistance of the steel. These steels are more resistant to corrosion and can be 

used for longer periods of time than ordinary steels. Nevertheless, these anti-corrosion 

methods only delay the time of steel corrosion, and monitoring and controlling corrosion 

on a long-time scale is a difficult task. Therefore, more and more researchers are working 

on more accurate monitoring and prediction of corrosion to guarantee the timely 

maintenance of steel structures. This has become an important task for infrastructure 

maintenance. 

 

1.2 Corrosion tests 

1.2.1 Atmospheric exposure test 

In any case, the sustainability of the steel material or coating shall be properly assessed 

to determine its life expectancy. Then, a series of corrosion experiments need to be 

performed. The most dependable is the direct atmospheric exposure test, by which steel 

materials are exposed to a particular test site and tested using an actual corrosion 

environment. 

The atmospheric exposure test is a test in which specimens are exposed to atmospheric 

conditions to study their chemical and physical properties and changes. Atmospheric 

exposure test methods include direct exposure test methods, under glass exposure test 

methods, and shielding exposure test methods. The direct exposure test method is one of 
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the most widely used methods to expose the specimen to the atmospheric environment 

that directly affects the corrosion durability of the material to observe the progress of 

corrosion of the specimen. The atmospheric exposure test is affected by environmental 

factors at the exposure test site, such as temperature, humidity, precipitation, and the 

amount of salt in the air, so the results of corrosion durability vary depending on the 

geographical location of the exposure test site across Japan. When a compliant test 

method is performed at a designated exposure test site, data such as start time, installation 

angle, and environmental factors should be recorded [1.9]. 

Because atmospheric exposure tests are conducted under real atmospheric conditions, the 

actual corrosion durability of steel products can be accurately assessed. Also, the 

durability results of steel from atmospheric exposure tests can provide criteria for 

assessing the corrosion durability of steel based on the outcomes of various accelerated 

corrosion tests. However, the disadvantages are that real corrosion is a long-term process, 

atmospheric exposure tests take a long time, and the assessment is carried out under the 

limited conditions of exposure test sites in different regions of Japan, making them less 

generalizable. 

 

1.2.2 Accelerated corrosion test 

To address the drawbacks of atmospheric exposure tests, accelerated corrosion tests can 

be performed using corrosion gas pedals, which accelerate corrosion under conditions 

that are more severe than the actual corrosion environment [1.10]. Standardized test 

methods, such as the salt spray test (SST) authorized by ISO 9227 [1.11], the cyclic 

corrosion test (CCT) authorized by ISO 14993, and other standards [1.12], [1.13] are 

widely used to assess the corrosion resistance of surface-treated steel plates. These 
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accelerated corrosion tests impose severe corrosion environments on the steel materials, 

such as brine spraying, continuous wet/dry cycles, etc. Compared to the actual corrosion 

environment, the corrosion of the steel material or the deterioration of the coating is 

accelerated during the required test cycle. 

The salt spray test specified in JIS Z 2371 is a method to evaluate corrosion resistance by 

spraying a 5% concentration of sodium chloride (NaCl) solution in a salt spray test 

chamber to accelerate the corrosion of metallic materials or parts with electroplated or 

painted coatings. The combined cycle test accelerates the degradation state of metallic 

materials, plating, coatings, and paints by repeating salt spray, drying, and wetting cycles 

in an environmental test apparatus. The combination of drying and wetting cycles enables 

corrosion evaluation closer to the actual environment than the salt spray test. In recent 

years, it has been used to evaluate the durability and estimate the service life of products 

and materials, particularly in the automotive industry [1.14]. 

Advantages of accelerated corrosion tests include the ability to evaluate corrosion 

resistance relatively earlier than atmospheric exposure testing, the ease of quantifying the 

relative relationship to comparative materials and standards, and the potential for 

reproducible experiments that simulate real environments. Several previous studies have 

been conducted to examine the connection between accelerated corrosion tests and 

atmospheric exposure tests for various steel materials. Despite the limited test 

requirements and materials, the tendency of results of the two tests was similar [1.15], 

[1.16]. However, although accelerated corrosion tests are effective in assessing the 

sustainability of metals or coated materials under certain situations in the short term, the 

correlation between actual corrosion environments and accelerated corrosion tests is not 

clearly defined. Researchers have recognized the difficulty of complete consistency 
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between accelerated corrosion tests and the actual corrosion environments [1.17]. Several 

previous studies have pointed out that the correlation between CCT and corrosion in the 

actual environment is not clear regarding the evaluation of corrosion resistance of surface-

treated steel plates for household appliances, and the superiority of corrosion resistance 

between materials may be reversed between CCT and the actual environment [1.18]. 

These two cases may not reflect the real corrosion environment in terms of the corrosion 

resistance order and corrosion pattern of the steel. Some accelerated tests on steels for 

automotive products and galvanized steels have also shown different trends [1.14]. This 

suggests that some accelerated corrosion tests are not reflective of the actual corrosion 

environments of the vehicle. The different accelerated corrosion tests do not consistently 

rank the durability of the materials. Therefore, it is also important to investigate the 

relationship between accelerated corrosion tests and atmospheric exposure tests when 

applying any accelerated corrosion test to assess the sustainability of metals and coated 

materials. 

 

1.3 Spatial analysis of corrosion 

Corrosion of deteriorating steel structures can be a serious danger to safety if not 

maintained in a timely manner. Consequently, the estimation and prediction of corrosion 

conditions are of great importance during the maintenance of steel structures. 

Nevertheless, in general environments, corrosion behavior usually takes a long time. 

Traditional monitoring methods based on visual inspection and experience to determine 

the extent of corrosion are both time-consuming and inaccurate. Therefore, it would be 

of great interest for practical maintenance if a fast and accurate corrosion simulation and 

prediction model could be established mathematically. For example, it is possible to 
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assess whether the corrosion conditions observed during periodic steel bridge inspections 

are likely to lead to serious damage before the next inspection. It makes sense to be able 

to predict when the damage will become severe even with a short cycle of repeated 

inspections, so that maintenance can be performed from a long-term perspective. In 

addition, it is difficult to obtain detailed information about the distribution of corroded 

surface profiles during normal inspections, but through specific numerical analysis, the 

spatial characteristics of corroded surface profiles can be predicted, allowing more 

accurate information to be obtained using finite element analysis and other methods to 

assess the load-bearing capacity of the structure. A quantitative standard for the 

progression of corrosion is also provided, rather than relying only on rough experience. 

Therefore, with the development of numerical simulation techniques, more effective 

prediction of corrosion has become of increasing interest. These new techniques allow 

the numerical analysis of the spatial properties of steel structures, modeling of corroded 

surfaces, and prediction of the corroded surface of steel structures to save monitoring time 

and offer an early warning for facility maintenance. 

In previous studies, numerical analysis of corroded surfaces was important for modeling 

corrosion damage and determining the corrosion state [1.19]. Fractal and spatial 

autocorrelation have already been applied to assess the surface characteristics of corroded 

parts obtained from actual structural members [1.20]. Furthermore, Monte Carlo 

modeling methods have been applied to evaluate the progress of the corrosion process 

with the use of the probability distributions of the corrosion growth rates [1.21], [1.22]. 

And a predictive model was developed to consider the variation of corrosion rate by 

Bayesian inference [1.23]. However, since the objective materials in every approach are 

limited, the relationship between corrosion damage and deterioration is still a difficult 
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task. A widely applicable approach is needed to effectively predict corrosion behavior 

over time. 

Semivariogram is one of the spatial statistical methods that elucidate the spatial 

autocorrelation structure of corroded surfaces and their time-dependent features [1.24]. 

Semivariogram is a method for quantitatively evaluating the spatial correlation of 

distances and variances of every data, which was evolved from mining to detect the spatial 

distribution pattern of deposits [1.25]. This analytical approach has been used in 

numerous areas such as mining, meteorology, economics, and geography [1.26]. 

 

1.4 Prediction of corrosion 

Thompson et al. noted that the cost of maintenance for aging such as corrosion may be 

more than two to ten times the cost of the material used [1.27]. Such indirect costs could 

be greatly minimized by improving the administration of infrastructure maintenance. 

Therefore, either conducting corrosion tests or numerical analysis of corroded surfaces, 

and ultimately developing an efficient corrosion prediction model would be of practical 

engineering significance. 

Abbas et al. outlined recent advances and future trends in the management of asset 

maintenance strategies for corroded steel structures in extreme marine environments. 

They provided an extensive review and analysis of corrosion prediction models and 

industry best practices. The application of state-of-the-art technologies including 

computerized maintenance management systems (CMMS), artificial intelligence (AI), 

and Bayesian networks (BN) were as well discussed [1.28]. Kiefner and Kolovich 

developed an approach to derive plausible corrosion rates and to build integrity 

reassessment intervals for metallic losses due to pipeline corrosion [1.21]. The corrosion 
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pit depth at a point in time was used in this method, and it could be determined in a variety 

of ways, which include directly measured, indirect extrapolation from inspection data, 

and a combination of both. Through Monte Carlo modeling, the approach allowed the 

determination of corrosion rate with an 80% confidence. 

Kainuma et al. used regression tree analysis to delineate corrosion areas based on surface 

characteristics of corrosion. They then used semivariograms to create a prediction model 

and used a general kriging model to predict the corrosion depth at arbitrary locations 

[1.24]. This approach attained reliable prediction accuracy for the evaluated corroded 

surfaces. In a different study [1.29], a frame was developed to build a prediction model 

for corrosion damage. It modeled the corrosion growth rate according to time using a 

generalized extreme value distribution that varies with time. Bayesian extrapolation was 

applied to evaluate the network parameters and to build a reliable prediction model. The 

model has been demonstrated to be dependable and robust in different environments. The 

variation of the corroded surface is considered to be stochastic because of the lack of 

information on the factors influencing the corrosion progress and their changes over time 

[1.30],[1.31],[1.32]. The probability distribution of corrosion rates is associated with the 

properties of the corroded surface, which is the base for simulation and prediction models 

[1.33]. 

Nevertheless, each of the mentioned approaches has been limited to the objective material 

and is not sufficiently generalizable to corrosion environments. In recent years, deep 

learning methods for image synthesis have been extensively used. Deep generation 

methods, in particular generative adversarial networks (GAN), have shown advanced 

capabilities. Ganz et al. [1.34] presented an improved image synthesis on the basis of 

observation generators as a representative of the synthesis procedure of convolutional 
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sparse coding (CSC) and its multilayer version (ML-CSC). Also on the basis of GAN, 

Chen et al. [1.35] developed a generator-based series strategy to address the challenge of 

converting high-resolution remote sensing images into maps for cartography. The series 

strategy resulted in higher quality multi-scale map generation. Saseendran et al. [1.36] 

proposed a conditional generative adversarial network (CGAN) to generate images with 

a specific number of objects defined from a given class. Yu et al. [1.37] worked on various 

improvements to improve the performance of GAN in image generation, including 

proposing a novel double contrast loss to improve the performance of the discriminator, 

revisiting the attention in the generator, and proposing a reference attention mechanism 

in the discriminator. Combining the above improvements, the model achieves significant 

improvements in Fréchet Inception Distance (FID) on several benchmark datasets. 

Several studies have been conducted to use SVM (Support Vector Machine) for the 

quantitative evaluation of pipeline corrosion [1.38] [1.39]. The corrosion of weathering 

steel bridges, which often undergo serious surface corrosion damage resulting in 

structural performance degradation, was studied. Conventional manual monitoring and 

categorization approaches are time-consuming and very subjective, and do not offer 

quantitative assessments. Yan et al [1.40] developed an innovative image-based approach 

to quantitatively assess the corrosion of weathering steel bridges. With the advancement 

of deep learning techniques, they have been extensively applied to modeling and 

prediction missions. However, applications in corrosion prediction are rare. In addition, 

unsupervised learning for corrosion prediction requires further study. 

 

1.5 Objective of this study 

In this study, a series of experiments were conducted on uncoated steel plates under 
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different corrosive environments, and the experimental data were numerically analyzed 

using geostatistical analysis and deep learning-based analysis methods. The main 

objectives of this study are as follows: 1) To investigate the relationship between 

corrosion progress and corrosion time for different types of steel under different corrosion 

environments through experiments on unpainted steel plates in different corrosion 

environments. 2) To quantify the spatial characteristics of the corroded surface of steel 

plates using the method of geostatistical analysis and to investigate how the spatial 

characteristics of the corroded surfaces change over time. 3) To propose a deep learning-

based approach to a corrosion prediction model that can make accurate predictions of 

corroded surfaces. 

Therefore, this study goes from experiments to data analysis to building a corrosion 

prediction model that can be practically applied. The achievements of this study can 

eventually be applied to the actual maintenance of steel structures. For example, it is 

possible to evaluate whether the corrosion condition observed during a five-yearly 

periodic inspection of a steel bridge is likely to lead to serious damage before the next 

inspection. Even if inspections are repeated on a five-year cycle, it is useful to be able to 

predict when damage will become serious to perform maintenance from a long-term 

perspective. In addition, it is difficult to obtain detailed information on the distribution of 

corroded surface properties during normal inspections, but with the spatial numerical 

analysis, it can predict the spatial characteristics of corroded surface properties, making 

it possible to evaluate the load-bearing capacity of structures using finite element analysis 

and other methods, obtaining more precise information. This study contributes a corrosion 

prediction method that can greatly save the cost and time of corrosion maintenance and 

is more accurate in its corrosion status judgment. 
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1.6 Contents of the dissertation 

Considering the observation and analysis of the basic corrosion behavior of steel, this 

study mainly takes weathering steel as the object of study and compares it with normal 

carbon steel, without considering the case of having a coating on the steel plate surface. 

The corrosion depth data of the corroded surface of the steel plate was obtained from 

several corrosion tests, from the basic numerical analysis to the analysis of the spatial 

properties of the corroded surface, and then to the establishment of an effective corrosion 

prediction model. A complete comparative experiment was conducted and a model with 

good generalizability for corrosion assessment was developed. 

This dissertation consists of six chapters including an introduction, in Chapter 1 and 

conclusions, in Chapter 6. In Chapter 2, four steels were subjected to atmospheric 

exposure corrosion tests and accelerated corrosion tests, including a newly developed 

accelerated corrosion test authorized by ISO16539 Method B. This test condition is 

characterized by the integration of a procedure of uniform spraying of artificial seawater 

on the surface of the specimen surface and the process of repeated drying/wetting cycles 

at a constant absolute humidity. The relationship between this kind of experimental 

conditions and the actual environment of metal-coated steel supplied with electricity has 

been verified by the developers of this experimental method in local and limited 

conditions [1.41]. By accumulating experimental data, the test method is expected to be 

extended to other industrial areas, such as automotive and infrastructure. Corroded 

surface observation, corrosion depth measurement, and basic statistical analysis were 

performed on the specimens. In Chapter 3, to further investigate the spatial statistical 

properties of the corroded surface, a spatial statistical analysis was performed using a 



16 
 

semivariogram. This method can capture the spatial nature of the corroded surface, 

making a uniform evaluation criterion for steel subjected to corrosion in different 

corrosion environments. The spatial properties of corrosion of different steels in different 

environments were compared to investigate the simulation of accelerated corrosion tests 

on the real corrosive environment. In Chapter 4, in order to build an efficient corrosion 

model that can be practically applied, adversarial learning was used to create the 

generation of corroded surfaces in the future. A generative adversarial network (GAN) 

was used as the training model because the aim of this chapter was to predict the next 

stage of corrosion based on the current stage of corrosion and to determine the 

experimental time of the present corrosion state. The input to the GAN model shall be the 

present data rather than a traditional random vector. To expand the diversity of the dataset, 

Gaussian noise and GAN were used to enrich the dataset, which could increase the 

accuracy of the prediction model. Combined with UNet [1.42] and MobileNetV2 [1.43], 

the model could be used to predict the next stage of corrosion (output) based on the 

current corrosion state (input). The prediction model could as well be used to recognize 

the corrosion stage and the number of days of corrosion. According to the experimental 

outcomes, the prediction model achieved a high accuracy in predicting the corroded 

surface of steel plates. This proposed method enables quicker and more accurate 

prediction of corrosion behavior than conventional approaches, which typically rely on 

personal experience. The method can result in significant cost savings in the evaluation 

and maintenance of steel structures. In Chapter 5, the accuracy of the prediction model 

was validated in conjunction with Chapters 3 and 4. As one of the drawbacks of deep 

learning methods, some parameters in neural networks often do not make practical sense. 

Therefore, the spatial statistical analysis method in Chapter 3 was used to verify whether 
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the prediction model can accurately predict the spatial properties of corroded surfaces.  

References 

1.1 Fujino, Y. and Siringoringo, D.M., 2008, July. Structural health monitoring of bridges in Japan: 

An overview of the current trend. In Fourth international conference on FRP Composites in Civil 

Engineering (CICE2008) (pp. 22-24). 

1.2 Al Deen Taher, S.S. and Dang, J., 2023. Autonomous multiple damage detection and 

segmentation in structures using mask R-CNN. In Experimental Vibration Analysis for Civil 

Engineering Structures (pp. 545-556). Springer, Cham. 

1.3 Farhey, D.N., Thakur, A.M., Buchanan, R.C., Aktan, A.E. and Jayaraman, N., 1997. Structural 

deterioration assessment for steel bridges. Journal of Bridge Engineering, 2(3), pp.116-124. 

1.4 Pidaparti, R.M., Fang, L. and Palakal, M.J., 2008. Computational simulation of multi-pit 

corrosion process in materials. Computational Materials Science, 41(3), pp.255-265. 

1.5 Secer, M. and Uzun, E.T., 2017. Corrosion damage analysis of steel frames considering lateral 

torsional buckling. Procedia engineering, 171, pp.1234-1241. 

1.6 Bonopera, M., Chang, K.C., Chen, C.C., Lin, T.K. and Tullini, N., 2018. Compressive column 

load identification in steel space frames using second-order deflection-based methods. 

International Journal of Structural Stability and Dynamics, 18(07), p.1850092. 

1.7 Popoola, L.T., Grema, A.S., Latinwo, G.K., Gutti, B. and Balogun, A.S., 2013. Corrosion 

problems during oil and gas production and its mitigation. International Journal of Industrial 

Chemistry, 4(1), pp.1-15. 

1.8 Awad, M.K., Mustafa, M.R. and Elnga, M.M.A., 2010. Computational simulation of the 

molecular structure of some triazoles as inhibitors for the corrosion of metal surface. Journal of 

molecular structure: theochem, 959(1-3), pp.66-74. 

1.9 Morcillo, M., Chico, B., Díaz, I., Cano, H. and De la Fuente, D., 2013. Atmospheric corrosion 

data of weathering steels. A review. Corrosion Science, 77, pp.6-24. 

1.10 Suzumura, K. and Nakamura, S.I., 2004. Environmental factors affecting corrosion of galvanized 

steel wires. Journal of materials in civil engineering, 16(1), pp.1-7. 

1.11 ISO9227:2017. Corrosion tests in artificial atmospheres – salt spray tests. 

1.12 ISO14993:2018. Corrosion of metals and alloys – accelerated testing involving cyclic exposure 

to salt mist, dry and wet conditions. 

1.13 SAE J 2334. 2016. Laboratory cyclic corrosion test. 

1.14 LeBozec, N., Blandin, N. and Thierry, D., 2008. Accelerated corrosion tests in the automotive 

industry: a comparison of the performance towards cosmetic corrosion. Materials and 

corrosion, 59(11), pp.889-894. 



18 
 

1.15 Draẑić, D.M. and Vaŝĉiẑ, V., 1989. The correlation between accelerated laboratory corrosion tests 

and atmospheric corrosion station tests on steels. Corrosion science, 29(10), pp.1197-1204. 

1.16 Lin, C.C. and Wang, C.X., 2005. Correlation between accelerated corrosion tests and atmospheric 

corrosion tests on steel. Journal of applied electrochemistry, 35(9), pp.837-843. 

1.17 Fujita, S. and Mizuno, D., 2007. Corrosion and corrosion test methods of zinc coated steel sheets 

on automobiles. Corrosion science, 49(1), pp.211-219. 

1.18 Fujii, K., Ohashi, K. and Kajiyama, H., 2006. Corrosion aspect of electrical appliances–

development of new accelerated corrosion Test simulating appliances environment (1). Zairyo-

to-Kankyo, 55, pp.349-355. 

1.19 Xue, L., 2007. Damage accumulation and fracture initiation in uncracked ductile solids subject 

to triaxial loading. International journal of solids and structures, 44(16), pp.5163-5181. 

1.20 Fujii, K., Kaita, T., Hirai, K. and Okumura, M., 2002. Applicability of spatial auto-correlation 

model for corroded surface modeling in corroded steel plate. J. Struct. Eng, 48, pp.1031-1038. 

1.21 Kiefner, J.F. and Kolovich, K.M., 2007, March. Calculation of a corrosion rate using Monte Carlo 

simulation. In CORROSION 2007. OnePetro. 

1.22 Caleyo, F., Velázquez, J.C., Valor, A. and Hallen, J.M., 2009. Probability distribution of pitting 

corrosion depth and rate in underground pipelines: A Monte Carlo study. Corrosion 

Science, 51(9), pp.1925-1934. 

1.23 Vereecken, E., Botte, W., Lombaert, G. and Caspeele, R., 2021. A Bayesian inference approach 

for the updating of spatially distributed corrosion model parameters based on heterogeneous 

measurement data. Structure and Infrastructure Engineering, 18(1), pp.30-46. 

1.24 Kainuma, S., Yang, M., Xie, J. and Jeong, Y.S., 2021. Time-dependent prediction on the localized 

corrosion of steel structure using spatial statistical simulation. International Journal of Steel 

Structures, 21(3), pp.987-1003. 

1.25 Wang, S., Si, G., Wang, C., Cai, W., Li, B., Oh, J. and Canbulat, I., 2022. Quantitative assessment 

of the spatio-temporal correlations of seismic events induced by longwall coal mining. Journal 

of Rock Mechanics and Geotechnical Engineering. 

1.26 Arbia, G., Ghiringhelli, C. and Nardelli, V., 2022. Effects of Confidentiality‐Preserving Geo‐

Masking on the Estimation of Semivariogram and of the Kriging Variance. Geographical 

Analysis. 

1.27 Thompson, N.G., Yunovich, M. and Dunmire, D., 2007. Cost of corrosion and corrosion 

maintenance strategies. Corrosion Reviews, 25(3-4), pp.247-262. 

1.28 Abbas, M. and Shafiee, M., 2020. An overview of maintenance management strategies for 

corroded steel structures in extreme marine environments. Marine Structures, 71, p.102718. 



19 
 

1.29 Kim, K., Lee, G., Park, K., Park, S. and Lee, W.B., 2021. Adaptive approach for estimation of 

pipeline corrosion defects via Bayesian inference. Reliability Engineering & System Safety, 216, 

p.107998. 

1.30 Melchers, R.E., 2005. The effect of corrosion on the structural reliability of steel offshore 

structures. Corrosion science, 47(10), pp.2391-2410. 

1.31 Shibata, T., 1996. 1996 WR Whitney Award lecture: Statistical and stochastic approaches to 

localized corrosion. Corrosion, 52(11). 

1.32 Alamilla, J.L., Oliveros, J. and García-Vargas, J., 2009. Probabilistic modelling of a corroded 

pressurized pipeline at inspection time. Structure and infrastructure engineering, 5(2), pp.91-104. 

1.33 Caleyo, F., Velázquez, J.C., Valor, A. and Hallen, J.M., 2009. Probability distribution of pitting 

corrosion depth and rate in underground pipelines: A Monte Carlo study. Corrosion 

Science, 51(9), pp.1925-1934. 

1.34 Ganz, R. and Elad, M., 2021. Improved Image Generation via Sparse Modeling. arXiv preprint 

arXiv:2104.00464. 

1.35 Chen, X., Yin, B., Chen, S., Li, H. and Xu, T., 2021. Generating Multi-scale Maps from Remote 

Sensing Images via Series Generative Adversarial Networks. arXiv preprint arXiv:2103.16909. 

1.36 Saseendran, A., Skubch, K. and Keuper, M., 2021. Multi-Class Multi-Instance Count 

Conditioned Adversarial Image Generation. In Proceedings of the IEEE/CVF International 

Conference on Computer Vision (pp. 6762-6771). 

1.37 Yu, N., Liu, G., Dundar, A., Tao, A., Catanzaro, B., Davis, L.S. and Fritz, M., 2021. Dual 

contrastive loss and attention for gans. In Proceedings of the IEEE/CVF International Conference 

on Computer Vision (pp. 6731-6742). 

1.38 Luo, Z., Hu, X. and Gao, Y., 2013. Corrosion research of wet natural gathering and transportation 

pipeline based on SVM. In ICPTT 2013: Trenchless Technology (pp. 964-972). 

1.39 Zhao, H., Zhang, X., Ji, L., Hu, H. and Li, Q., 2014. Quantitative structure–activity relationship 

model for amino acids as corrosion inhibitors based on the support vector machine and molecular 

design. Corrosion Science, 83, pp.261-271. 

1.40 Yan, B., Goto, S., Miyamoto, A. and Zhao, H., 2014. Imaging-based rating for corrosion states of 

weathering steel using wavelet transform and PSO-SVM techniques. Journal of Computing in 

Civil Engineering, 28(3), p.04014008. 

1.41 Kajiyama, H., Fujita, S., Fujii, K. and Sakai, M., 2006. Problem of Conventional Accelerated 

Corrosion Tests and Development of New Accelerated Corrosion Test: Development of New 

Accelerated Corrosion Test Simulating Electrical Appliance. Corrosion Engineering, 55(8), 

pp.475-490. 



20 
 

1.42 Ronneberger, O., Fischer, P. and Brox, T., 2015, October. U-net: Convolutional networks for 

biomedical image segmentation. In International Conference on Medical image computing and 

computer-assisted intervention (pp. 234-241). Springer, Cham. 

1.43 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C., 2018. Mobilenetv2: Inverted 

residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and 

pattern recognition (pp. 4510-4520). 

 
 
 
 

 

  



21 
 

Chapter 2 Accelerated corrosion tests and atmospheric 

exposure tests on unpainted steel 

2.1 Introduction 

In this chapter, corrosion tests were carried out on specimens of four types of steel in four 

corrosion environments. The four types of steel include two normal carbon steels and two 

weathering steels. Weathering steel can be used in the construction of steel bridges and is 

a high strength, low alloy steel with good resistance to atmospheric corrosion. In the 

suitable environment, it will form an adherent protective rust to prevent further corrosion. 

Normal carbon steel is rarely used without anti-corrosion coatings in the construction of 

steel structures. This study, it was used for comparison with weathering steels and to 

analyze the basic corrosion behavior of steel plate surfaces. The four corrosion 

environments included two accelerated corrosion tests and two atmospheric corrosion 

tests in different regions, and the applicability of the accelerated corrosion tests was 

verified by comparing these tests. 

In the experiments of this chapter, three stages were set for the corrosion duration of the 

accelerated corrosion tests to investigate the progress of corrosion, and three specimens 

were used for each stage in order to enrich the sample size, a total of 96 specimens were 

subjected to corrosion tests. The appearance of the rust layer on the corroded surface of 

the steel plates at each stage was recorded. After removing the rust, the corroded surface 

of each stage of the specimen was measured. Basic data statistics and comparative 

analysis were performed using the average corrosion depth. In this chapter, a comparative 

analysis of the corrosion progress of different steel types under different corrosion 

environments was carried out to investigate the relationship between corrosion progress 
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and corrosion time of weathering steel and normal carbon steel under different corrosion 

environments. At the same time, the accelerated corrosion test and the atmospheric 

exposure test in the real environment were compared, and the degree of simulation of the 

accelerated corrosion test on the atmospheric exposure test was confirmed. 

 

2.2 Material and specimen 

2.2.1 Material 

In this study, four materials of steel, SM400A, SM490A, SMA400AW, and SMA490AW, 

were used for the experiments. Normally, it is necessary to paint steel materials in steel 

structures to avoid and minimize corrosion. In this study, in order to research the 

fundamental corrosion behavior of the ordinary steel materials after coating degradation, 

as well as weathering steel materials generally used without painting, the experimental 

specimens were unpainted. The chemical compositions and the mechanical properties of 

the materials used as the experimental specimens are listed in Table 2-1. SM400A and 

SM490A are carbon steel specified by JIS G 3106. SMA400AW and SMA490AW are 

weathering steel specified by JIS G 3114. 

 

Table 2-1. Chemical compositions and mechanical properties of material. 

 

Chemical compositions (wt%) Mechanical properties 

C Si Mn P S Cu Ni Cr 

Yield 

stress 

(N/mm2) 

Tensile 

strength 

(N/mm2) 

Elongation 

(%) 

SM400A 0.18 0.17 0.5 0.015 0.006 - - - 279 442 29 

SM490A 0.16 0.02 1.04 0.011 0.005 - - - 426 542 20 

SMA400AW 0.12 0.2 0.67 0.015 0.004 0.31 0.09 0.49 305 445 33 

SMA490AW 0.12 0.22 1.14 0.015 0.002 0.31 0.09 0.49 391 514 30 
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2.2.2 Specimen 

Figure 2-1 illustrates the shape and size of the specimen. The materials were incised into 

rectangular steel plates, 150 mm long, 70 mm wide and 9 mm thick. The surface of each 

specimen was blasting treated to remove the mill scale. The side surfaces and bottom 

surfaces of the steel plates were coated with anti-corrosive tape to confirm the corrosion 

progress of the top surface only during the corrosion tests. All edges of the top surface of 

each specimen were also wrapped with 5 mm anti-corrosion tape so that the non-corroded 

portion of the edge served as a reference for corrosion depth measurements. A rectangular 

area of 50 mm * 60 mm at the center of the specimen surface was selected as the corrosion 

depth measurement area for this study, considering the possible influence of the anti-

corrosion tape on the junction of the corroded surface and the anti-corrosion tape. 
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(a) Photograph of the specimen 

 

(b) Detailed parameters of the specimen 

 
Figure 2-1. The shape and size of the specimen. 
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2.3 Conditions of corrosion tests and experimental setups 

2.3.1 Direct atmospheric exposure corrosion test 

The atmospheric exposure corrosion tests were carried out at the fields of the Japan 

Weathering Testing Center. In consideration of the climatic characteristics of Japan, there 

 
Figure 2-2. The locations of the atmospheric exposure test fields. 

 
Figure 2-3. The appearance of the atmospheric exposure test. 
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are different atmospheric corrosion environments. Therefore, a location for a severe 

corrosion environment and a location for a general corrosion environment were selected 

to facilitate comparison. One of the sites was the Miyakojima exposure test and research 

center, located at 24°44′ N, 125°9′ E, 2 km from the nearest coastal area and 50.0 m from 

sea level. This site is a harsh environment with a maritime subtropical climate and 

degradation factors such as high temperature and humidity, abundant solar radiation, and 

large amounts of sea salt particles. The other site was the Choshi exposure test and 

research center, located at 35°43′ N, 140°45′ E, 4 km from the nearest coastal area and 

53.6 m from sea level. This site has a general corrosion environment [2.1]. Figure 2-2 

illustrates the locations of the experiment sites. 

Figure 2-3 illustrates the appearance of the atmospheric exposure test. The steel plates 

were arranged in a horizontal position on the experiment stand according to JIS Z 2381 

[2.2]. The specimens were directly exposed without any rooftops and eaves. The 

corrosion depths of the surfaces of the specimens facing skyward were estimated. 

The direct atmospheric exposure tests were performed on three specimens for each type 

of steel for 6 months from April 2021 at Miyakojima and three specimens for each type 

of steel for 12 months from September 2020 at Choshi. A total of 24 specimens were 

subjected to atmospheric exposure tests. The basic environmental conditions for each test 

site during the experiment period are presented in Table 2-2. 
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2.3.2 Accelerated corrosion test ISO16539 Method B 

Figure 2-4 illustrates the test procedure of ISO16539 Method B. Figure 2-5 illustrates the 

experimental setup for this test. The device for synthetic ocean water spraying and the 

test chamber for applying uniform temperature and humidity (SH-642, ESPEC Corp.) 

were separated. Synthetic ocean water with a salinity of 3.5% was sprayed on the surface 

of the steel plate. The target salt deposition of 28.0 ± 2.8 g/m2 per specimen was achieved 

Table 2-2. Environment conditions at exposure test sites. 

Site Period Average 

temperature 

(℃) 

Average 

relative 

humidity 

(%) 

Average 

precipitation 

(mm) 

Airborne salt 

(mdd) 

Miyakojima 2021.04 22.5 79 0.8 0.28 

2021.05 26.7 92 5.4 0.14 

2021.06 28.0 93 11.9 0.36 

2021.07 28.8 87 4.4 0.17 

2021.08 27.9 92 9.0 0.27 

2021.09 28.0 89 6.7 0.17 

Choshi 2020.09 23.7 89 6.9 0.14 

2020.10 17.2 82 9.0 0.12 

2020.11 13.7 79 8.4 0.07 

2020.12 7.2 71 1.1 0.13 

2021.01 5.1 68 2.5 0.14 

2021.02 7.5 59 1.7 0.36 

2021.03 12.0 74 5.0 0.13 

2021.04 13.8 68 3.9 0.30 

2021.05 18.0 82 3.8 0.07 

2021.06 20.8 86 4.6 0.08 

2021.07 24.1 92 15.0 0.07 

2021.08 25.9 90 12.4 0.05 

 



28 
 

by the measurement of weight increase just after spraying. The processes of drying (60 ℃, 

35 %RH) and wetting (40 ℃, 95 %RH) were repeated by every 3 hours with the transition 

 
Figure 2-4. The procedure of accelerated corrosion test ISO16539 Method B. 

 
Figure 2-5. Experimental system for accelerated corrosion test ISO16539 Method B. 
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process of 1 hour. The one cycle consisting of the drying, the transition, the wetting, and 

the transition was 8 hours. This cycle continued for 8 runs, then, the surface of the 

specimen was rinsed with fresh water. After that, the synthetic ocean water was sprayed 

on the surface of the specimen, then, the drying and wetting procedures were continued 

for 11 runs. These test cycles took 7 days. 

This test condition was based on the corrosion behavior of the metallic coated steels for 

the electric supplies in a couple of actual corrosion environments [2.3]. The developers 

of this test emphasized the importance of the control of the amount of salt deposition over 

a wide range and the relationship between the amount of salt deposition and the corrosion 

rate. The results of corrosion environment monitoring showed that the dry/wet cycle could 

be controlled by changing the temperature/humidity under the condition of constant 

absolute humidity. It was preferable to set the wetting rate to less than 50% in the dry/wet 

cycle. The developer of this test mentioned that the amount of salt deposition and the 

dry/wet conditions of 60 ℃, 35%RH and 40 ℃, 95%RH of this test were set closer to the 

actual environments compared to the other Salt Spray Test (SST) and Cyclic Corrosion 

Test (CCT) conditions [2.4]. In addition, ISO16539 mentions that this test condition can 

better reproduce the corrosion phenomenon in the atmospheric environments containing 

large amounts of sea salt than other accelerated corrosion tests such as the neutral salt 

spray test (NSS) by ISO9227 and the wet (salt/fog)/dry/humidity test by ISO14993 [2.5].  

The accelerated corrosion test under this condition was performed on three specimens for 

each type of steel for 1 month (28 days), 3 months (84 days), and 6 months (168 days), 

respectively. A total of 36 specimens were subjected to the accelerated corrosion test 

ISO16539 Method B. 
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2.3.3 Accelerated corrosion test CCT Method A 

This is an accelerated corrosion test named Cyclic Corrosion Test (CCT) Method A 

developed by Public Works Research Institute (PWRI), which is a developed accelerated 

corrosion test widely used in Japan. CCT has been proven to be effective in accelerated 

corrosion tests in steel structures, the automotive industry, and coating protection [2.6] 

[2.7] [2.8].  Figure 2-6 shows the test condition of CCT Method A. Figure 2-7 shows the 

experimental system for this test. One complete cycle required 24 h. It included 1 hour of 

wetting (30 ℃, 95%RH), 2 hours of surface spraying with saltwater (30 ℃, 5%NaClaq), 

6 repetitions of one and half hours of wetting (50 ℃, 95%RH), 1.5 hours of drying (50 ℃, 

20%RH), and another 1.5 hours of drying (30 ℃, 20%RH). 

Same as the accelerated corrosion test ISO16539 Method B. The accelerated corrosion 

test by this condition was performed on three specimens for each type of steel for 1 month 

(28 days), 3 months (84 days), and 6 months (168 days), respectively. A total of 36 

specimens were subjected to the accelerated corrosion test by Cyclic Corrosion Test 

Method A. 

Therefore, in this study, a total of 96 (24 + 36 + 36) specimens were subjected to corrosion 

tests. 

 

 
Figure 2-6. The procedure of accelerated corrosion test CCT Method A. 
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2.4 Experimental results 

2.4.1 Corroded surface observation 

As the rust of the corroded surface needs to be removed when measuring its corrosion 

depth, the rust generated on the surface of the specimen after each corrosion test was 

observed prior to the corrosion depth measurement. Figure 2-8 shows the results of the 

specimen surface observations of 4 kinds of steel in 3 corrosion tests. The appearance of 

the corroded surface of the specimen prior to the removal of the rust produced by each 

corrosion test is shown. 

In Miyakojima and Choshi atmospheric exposure tests, the surfaces of the steel plates 

were covered with a relatively adherent rust layer that could not be easily removed by 

hand. The color of the rust layer appears to be brown or orange. Visually, there was no 

 
Figure 2-7. Experimental system for accelerated corrosion test CCT Method A. 
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obvious difference between the rust of weathering steel and normal carbon steel. 

In the accelerated corrosion test by ISO16539 Method B, the outer surfaces of the 

specimens were covered with a reddish-brown rust layer for the 28-day test period. The 

same rust layers were observed for the 84-day and 168-day test periods. These rust layers 

were very brittle and could be easily removed by hand. For the 28-day and 84-day test 

periods, there was no significant difference between the rust layers of weathering steel 

and normal carbon steel. However, for the 168-day test period, the rust layers of normal 

carbon steel were darker than that of weathering steel and the rust layers flaked off more 

 
Figure 2-8. Rust observations of 4 kinds of steel in each corrosion test. 
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easily. The yellowish-brown rust layers on the surfaces of the specimens appear inside 

the outer reddish-brown rust layers. These yellowish-brown rust layers were not easily 

scraped off. After brushing the relatively adherent rust off the surfaces of the specimens 

with a wire brush, the normal carbon steel specimens reveal dark red rust layers, while 

the weathering steel specimens reveal reddish-grey rust layers.  

In the accelerated corrosion test, CCT Method A developed by PWRI, all types of steel 

showed an uneven rust layer. For the 28-day test period, the corroded surfaces were 

covered by a reddish-brown rust layer. For the 28-day and 84-day test periods, the 

specimens had a reddish-grey rust layer. Visually, there was no significant difference 

between the rust layer of weathering steel and normal carbon steel. Compared to the 

accelerated corrosion test by ISO16539 Method B, the accelerated corrosion test CCT 

Method A seems to progress corrosion more quickly for the same experimental time. 

 

2.4.2 Corrosion depth measurement and results 

The rust on corroded surfaces was removed by blasting. After scraping off the rust on the 

corroded surfaces of the specimens, the corrosion depth data were measured by a laser 

focus measuring system, which resolution was 0.2 µm, and the measurement interval was 

0.3 mm. Figure 2-9 shows the setup of the laser focus measuring system and the 

measurement area, a rectangular region of 50 mm * 60 mm in the center of the specimen. 

As shown in Figure 2-1, the reference spots were arranged at the edges of the surface of 

the specimen where the corrosion did not happen for being covered by the anti-corrosion 

tape. The baseline surface was set by three reference spots in the not corroded section. 

The difference in displacement between the baseline surface and the measured point was 

determined as the corrosion depth of the measured point. The mean corrosion depths for 



34 
 

every specimen were calculated from the measurements. In addition, the measured data 

was used for the spatial statistical analysis of the corrosion distribution of the corroded 

surfaces. 

 

  

 
Figure 2-9. Rust observations of 4 kinds of steel in each corrosion test. 
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Figure 2-10 illustrates the mean corrosion depths of the specimens for the four kinds of 

steel in the atmospheric exposure tests. The magnitudes of the corrosion depths by the 

short terms of the exposure tests were small. Therefore, the standard deviations were 

relatively large in comparison with the mean values. From the figure, it could be observed 

that the mean corrosion depth of the weathering steel surface was lower than the mean 

corrosion depth of the normal carbon steel surface. Figure 2-11 and Figure 2-12 show the 

 
(a) SM400A                               (b) SM490A 

 

 
(c) SMA400AW                              (d) SMA490AW 

 
Figure 2-10. Mean corrosion depths of the specimens for the four kinds of steel (SM400A, 

SM490A, SMA400AW, and SMA490AW) in the two atmospheric exposure tests. 
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relationship between the mean corrosion depth and the period of the accelerated corrosion 

test by synthetic ocean water salt-deposition process, and the relationship between the 

mean corrosion depth and the period of the accelerated corrosion test CCT Method A for 

four kinds of steel on each specimen. According to previous research, the power 

approximation curve was used to fit the mean corrosion depth [2.9]. The coefficients of 

determination of the fitted curves for all four steels, R2, were high. The mean corrosion 

depths of the accelerated corrosion tests increased with the test periods. From the figures, 

it could be observed that in the two accelerated corrosion tests, the corrosion depth of 

weathering steel was significantly smaller than that of normal carbon steel at the early 

stage of the tests (28 days), but with the increase of the experiment time, the corrosion 

depth of weathering steel was gradually similar to that of normal carbon steel. On the 

other hand, comparing these two accelerated corrosion tests, the corrosion progress of the 

four kinds of steel in the accelerated corrosion test CCT Method A was slightly faster than 

that in the accelerated corrosion test by ISO16539 Method B, especially in the late test 

time (84 days, 168 days). 
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(a) SM400A                               (b) SM490A 

 

 
(c) SMA400AW                              (d) SMA490AW 

 
Figure 2-11. The relationship between the mean corrosion depth and the period of the accelerated 
corrosion test ISO16539 Method B for four kinds of steel (SM400A, SM490A, SMA400AW, and 

SMA490AW) on each specimen. 
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(a) SM400A                               (b) SM490A 

 

 
(c) SMA400AW                              (d) SMA490AW 

 
Figure 2-12. The relationship between the mean corrosion depth and the period of the 
accelerated corrosion test CCT Method A for four kinds of steel (SM400A, SM490A, 

SMA400AW, and SMA490AW) on each specimen. 
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Table 2-3 shows the averages of the mean corrosion depths of four kinds of steel in 

different corrosion environments. The averages of the mean corrosion depths of normal 

carbon steel and weathering steel specimens were 0.089 mm & 0.044 mm at Miyakojima 

for 6 months, and 0.073 mm & 0.059 mm at Choshi for 12 months. The averages of the 

mean corrosion depths of normal carbon steel and weathering steel specimens in 

ISO16539 Method B and CCT Method A were 0.218 mm & 0.143 mm and 0.267 mm & 

0.211 mm at 28 days. The accelerated test gave greater corrosion depths than the exposure 

tests. The average mean corrosion depth by the accelerated corrosion test ISO16539 

Method B of 28 days for normal carbon steel was 2.4 to 3.0 times larger than those by the 

atmospheric exposure tests of 6 months at Miyakojima and 12 months at Choshi. And the 

average mean corrosion depth by the accelerated test ISO16539 Method B of 28 days for 

weathering steel was 2.4 to 3.1 times larger than those by the exposure tests of 6 months 

at Miyakojima and 12 months at Choshi. The average mean corrosion depth by the 

accelerated test CCT Method A of 28 days for normal carbon steel was 3.0 to 3.7 times 

larger than those by the exposure tests of 6 months at Miyakojima and 12 months at 

Table 2-3. Averages of the mean corrosion depths of each kind of steel (mm). 

 Miyakojima  Choshi ISO16539 CCT Method A 

days 180 365 28 84 168 28 84 168 

SM400A 0.089  0.073  0.210  0.373  0.733  0.266  0.602  1.072  

SM490A 0.089  0.074  0.225  0.329  0.757  0.268  0.538  1.009  

Average 0.089  0.073  0.218  0.351  0.745  0.267  0.570  1.040  

SM400AW 0.048  0.048  0.135  0.591  0.671  0.232  0.581  0.870  

SMA490AW 0.044  0.069  0.152  0.597  0.684  0.190  0.577  0.992  

Average 0.046  0.059  0.143  0.594  0.677  0.211  0.579  0.931  
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Choshi. And the average mean corrosion depth by the accelerated test CCT Method A of 

28 days for weathering steel was 3.6 to 4.6 times larger than those by the exposure tests 

of 6 months at Miyakojima and 12 months at Choshi. 

 

2.5 Summary 

In this chapter, the corrosion progress of two normal carbon steels and two weathering 

steels under different corrosion environments were compared. The basic data analysis and 

comparison of the corrosion progress of the steels in different corrosion environments 

were also carried out. And these basic analyses will be used for the spatial statistical 

analysis in Chapter 3. 
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Chapter 3 Spatial statistical analysis of corroded surface 

3.1 Introduction 

In Chapter 2, the corrosion depth data of the corroded surfaces were obtained for different 

cases by four kinds of steel in four corrosion environments. Although the basic statistical 

analysis was carried out by methods such as surface observation and average corrosion 

depth, there was no in-depth analysis of the spatial properties of the corroded surfaces. 

Quantification of the corrosion situation is an important topic. In this chapter, the spatial 

properties of the corroded surfaces of the steel plates were analyzed using the 

semivariogram function as a method of spatial statistical analysis. The spatial properties 

of the corroded surfaces of different steel materials under accelerated corrosion tests and 

atmospheric exposure tests were compared by means of range and sill, which represent 

the spatial statistical information of the corroded surfaces and are mentioned later in this 

chapter, to verify whether the two accelerated corrosion tests performed in this study can 

simulate the real atmospheric corrosion environment. 

 

3.2 Semivariogram 

In statistics, the kriging variogram model is a method of interpolation based on the 

gaussian process governed by prior covariances [3.1]. To make a prediction with the 

kriging interpolation method, two tasks are necessary. The first step is to reveal the rules 

of dependency. The variograms and covariance functions are generated to estimate the 

statistical dependence values that depend on the autocorrelation model. The second step 

is to predict the unknown values. In this step, semivariogram is used to fit the prediction 

model. 
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Kriging weights the surrounding measured values to originate a prediction for an 

unmeasured location. The general formula is formed as a weighted sum of the data 

described by equation (3.1). 

�̂�𝑍(𝑠𝑠0) = � 𝜆𝜆𝑖𝑖𝑍𝑍(𝑠𝑠𝑖𝑖)
𝑁𝑁

𝑖𝑖=1
 (3.1) 

Where 𝑍𝑍(𝑠𝑠𝑖𝑖) is the measured value at the 𝑖𝑖-th location; 𝜆𝜆𝑖𝑖 is an unknown weight for 

the measured value at the i-th location; 𝑠𝑠0  is the prediction location; �̂�𝑍(𝑠𝑠0)  is the 

predicted value at the location of 𝑠𝑠0; 𝑁𝑁 is the number of measured values. 

𝜆𝜆𝑖𝑖  depends on a fitted model to the measured points, the distance to the prediction 

location, and the spatial relationships among the measured values around the prediction 

location. For clarifying the spatial autocorrelation structure on the corroded surface of the 

corroded specimens, a semivariogram has been used to extract the spatial statistics of 

range, and sill representing the properties of the corroded surface [3.2] [3.3] [3.4]. 

The semivariogram is an indicator of the spatial correlation between the corrosion depth 

at an arbitrary location and the corrosion depth at a distance from the arbitrary location 

 

 
Figure 3-1. Spatial modeling of measured points for semivariogram analysis. 
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on the corroded surface. In the spatial modeling of measured points on the corroded 

surface using semivariogram, all pairs of locations separated by a distance, ℎ , is 

calculated with the difference squared between the corrosion depths of the paired 

locations. Figure 3-1 shows the image of the corrosion depth and the distance of a pair of 

measured points. This process repeats for each measured point. 

The range and sill, which are representing the autocorrelation structure of the corroded 

surface, were calculated from the semivariogram by determining, 𝛾𝛾(ℎ) , shown in 

equation (3.2). 

𝛾𝛾(ℎ) =
1

2|𝑁𝑁(ℎ)|
� �𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑘𝑘�

2𝑁𝑁(ℎ)

𝑖𝑖=1
 (3.2) 

Where 𝛾𝛾(ℎ) is the range; 𝑁𝑁(ℎ) is the set of all pairwise Euclidean distances 𝑗𝑗 - 𝑘𝑘 = ℎ; 

|𝑁𝑁(ℎ)| is the number of distinct pairs in 𝑁𝑁(ℎ); 𝑧𝑧𝑗𝑗, 𝑧𝑧𝑘𝑘 are the corrosion depths at spatial 

 

Figure 3-2. The structure of a semivariogram. 
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locations 𝑗𝑗 and 𝑘𝑘, respectively. 

If two locations, 𝑗𝑗 and 𝑘𝑘, are close to each other in terms of the distance measure of 

𝑑𝑑(𝑗𝑗,𝑘𝑘), they are expected to be similar, so the difference in their values, 𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑘𝑘, will be 

small. As 𝑗𝑗 and 𝑘𝑘 get farther apart, they become less similar, so the difference in their 

values, 𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑘𝑘, will become larger. This can be seen in the following Figure 3-2, which 

shows the anatomy of a typical semivariogram. 

Spatial autocorrelation quantifies a basic principle of geography: things that are closer are 

more alike than things farther apart. Thus, pairs of locations that are closer (far left on the 

x-axis of the semivariogram cloud) should have more similar values (low on the y-axis of 

the semivariogram cloud). As pairs of locations become farther apart (moving to the right 

on the x-axis of the semivariogram cloud), they should become more dissimilar and have 

a higher squared difference (moving up on the y-axis of the semivariogram cloud). 

The variance of the difference increases with distance, so the semivariogram can be 

thought of as a dissimilarity function. Several terms are often associated with this function, 

and they are also used in Geostatistical analysis. The height that the semivariogram 

reaches when it levels off is sill’. It is often composed of two parts: a discontinuity at the 

origin, called the nugget effect, and the sill; added together, these give the sill’. The nugget 

effect can be further divided into measurement error and microscale variation. 

Theoretically, at zero separation distance, the semivariogram value is 0. However, at an 

infinitely small separation distance, the semivariogram often exhibits a nugget effect, 

which is a value greater than 0. The nugget effect is simply the sum of measurement error 

and microscale variation, since either component can be zero, the nugget effect can be 

composed wholly of one or the other. The distance at which the semivariogram levels off 

to the sill’ is the range. 
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In this study, the semivariogram analysis was carried out for all directions assuming 

isotropy because the corroded surface properties did not have spatial variation in specific 

directions. Consequently, the semivariogram calculated from this analysis can only be 

treated as a function of distance. There are deviations of the points on the empirical 

semivariogram from the model; some points are above the model curve, and some points 

are below. However, if add the distance each point is above the line and add the distance 

each point is below the line, the two values should be similar. To fit a model to the points 

forming the empirical semivariogram, several types of semivariogram models are 

available. The most frequently applied variogram functions are the spherical, exponential, 

and Gaussian models. The spherical and exponential functions have essentially a similar 

shape, but their effective ranges are different. The low-range spherical variogram 

describes observables with spatial dependencies over short distances. Exponential 

variograms describe correlation lengths over longer distances. A Gaussian model is of a 

fundamentally different shape describing a different spatial dependency. Therefore, in this 

study, the spherical model is the most suitable semivariogram model. The previous studies 

also show that the spherical model could fit the semivariogram of the corroded surfaces 

of the steel plates [3.5] [3.6] [3.7]. Its features are that it has a linear growth when the 

distance between 2 points is short (closer to the point of origin); however, when it passes 

the range value, it will be a line parallel to the horizontal axis. In other words, this model 

shows a progressive decrease of spatial autocorrelation until some distance, beyond which 

autocorrelation is zero. The formula of the spherical model is described by equation (3.3). 

𝛾𝛾 =

⎩
⎨

⎧
0, ℎ = 0

𝐶𝐶0 + 𝐶𝐶 �
3
2
ℎ
𝑎𝑎
−

1
2
ℎ3

𝑎𝑎3
� , 0 < ℎ ≤ 𝑎𝑎

𝐶𝐶0 + 𝐶𝐶, ℎ > 𝑎𝑎

 (3.3) 
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Where 𝐶𝐶0 is the nugget constant; 𝐶𝐶 is the sill; 𝑎𝑎 is the effective range. 

From the above, the spatial autocorrelation structure of the whole corroded surface in this 

study can be quantitatively evaluated by the spatial statistics (sill and range) calculated 

from the theoretical semivariogram by the spherical model. 

 

3.3 Sill and range results of each specimen 

Using an SM400A specimen from the exposure test at Miyakojima as an example, Figure 

3-3 shows how to calculate the sill and range of the corroded surface of this specimen.  

The spherical model presented in equation (3.3) is consistent with the experimentally 

measured values. Tables 3-1 and Table 3-2 show the specific sill and range values for 

every specimen, respectively. 

 

Figure 3-3. The calculation of the sill and range of the corroded surface. 
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Table 3-1. Results of sill (mm2). 
 Miyakojima Choshi ISO16539 CCT Method A 

days 180 365 28 84 168 28 84 168 

SM400A 

0.00173 0.00058 0.00123 0.00203 0.01000 0.00214  0.01685  0.02468 

0.00214 0.00068 0.00094 0.00220 0.01395 0.00197  0.01559  0.02133 

0.00189 0.00071 0.00116 0.00261 0.01489 0.00216  0.01346  0.02077 

SM490A 

0.00227 0.00044 0.00128 0.00267 0.01083 0.00148  0.00538  0.02319 

0.00270 0.00091 0.00064 0.00202 0.01462 0.00154  0.00308  0.02011 

0.00208 0.00057 0.00058 0.00213 0.01315 0.00140  0.00316  0.01673 

SMA400AW 

0.00094 0.00059 0.00084 0.00390 0.00681 0.00142  0.02404  0.02843 

0.00049 0.00078 0.00098 0.00436 0.01129 0.00231  0.03015  0.03213 

0.00083 0.00098 0.00120 0.00415 0.00896 0.00211  0.02712  0.02977 

SMA490AW 

0.00089 0.00089 0.00096 0.00426 0.00560 0.00290  0.02196  0.02731 

0.00094 0.00071 0.00113 0.00369 0.00632 0.00434  0.02543  0.02974 

0.00057 0.00051 0.00087 0.00333 0.00460 0.00288  0.02144  0.02916 
Table 3-2. Results of range (mm). 

 Miyakojima Choshi ISO16539 CCT Method A 

days 180 365 28 84 168 28 84 168 

SM400A 

1.720 1.028 0.581 6.442 20.495 5.477  7.641  20.144  

1.796 1.158 0.579 7.986 17.678 5.828  6.096  22.434  

1.654 1.232 0.552 8.658 10.773 5.976  8.143  19.883  

SM490A 

1.693 1.260 5.515 7.425 10.687 4.382  3.664  17.002  

1.842 0.885 1.108 7.816 17.393 2.939  4.755  16.838  

1.708 1.046 1.589 6.651 8.482 3.112  6.881  19.354  

SMA400AW 

1.924 1.499 2.660 5.658 6.692 5.251  7.253  7.899  

1.880 1.040 2.778 5.687 7.080 6.805  5.179  7.931  

1.795 0.552 2.237 6.712 7.208 5.112  6.873  8.181  

SMA490AW 

1.997 1.092 1.963 6.085 6.392 6.534  12.159  16.184  

2.091 1.303 1.682 6.721 6.324 5.768  6.979  7.881  

1.083 1.501 3.368 5.827 5.854 5.469  7.295  9.322  
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3.4 Relationship between mean corrosion depth and spatial statistical values 

The previous research has verified that the spatial statistical values of the corroded steel 

surfaces demonstrated the dependency on the mean corrosion depth [3.7]. The research 

on the relationship between the spatial statistical values and the mean corrosion depth of 

corroded surfaces makes it possible to compare the spatial properties of steels in different 

corrosive environments. In this section, the relationship between the spatial statistical 

values and the mean corrosion depth of the four kinds of steel in different corrosive 

environments was examined. According to previous studies, their relationship can be 

approximated by some functions [3.3]. The spatial statistics values and average corrosion 

depths from the long-time accelerated test (168 days) may be too large to be compared 

with atmospheric data of one year or less, and using any model that fits the range or sill 

will give similar results. However, when using an approximate curve fit, consideration 

needs to be given to whether it is realistic. When the mean corrosion depth is zero, it 

means that corrosion has not yet started, and at this point, the spatial properties 

representing sill and range should also be zero. Therefore, the fitted curve should pass 

through the zero point. Then, as the corrosion becomes more severe, the corrosion depth 

at any point on the corroded surface will be increasingly affected by the surrounding point 

corrosion. This means that the fitted curve should be an increasing function. As corrosion 

proceeds, the range of corrosion depths affecting any point cannot be infinite. Therefore 

the power function is the appropriate fitting method. 

In this study, the relationship between spatial statistics values (sill and range) and mean 

corrosion depth of four kinds of steel under the accelerated corrosion test by ISO16539 

Method B and CCT Method A were investigated, and they were compared with the spatial 

statistics values and mean corrosion depth under atmospheric exposure environment to  
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(a) SM400A in four kinds of corrosion environments 

 
(b) SM490A in four kinds of corrosion environments 

 
Figure 3-4. The relationships between the sill and the mean corrosion depth. 
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(c) SMA400AW in four kinds of corrosion environments 

 
(d) SMA490AW in four kinds of corrosion environments 

 
Figure 3-4. The relationships between the sill and the mean corrosion depth. 
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(a) SM400A in four kinds of corrosion environments 

 
(b) SM490A in four kinds of corrosion environments 

 
Figure 3-5. The relationships between the range and the mean corrosion depth. 
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(c) SMA400AW in four kinds of corrosion environments 

 
(d) SMA490AW in four kinds of corrosion environments 

 
Figure 3-5. The relationships between the range and the mean corrosion depth. 
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verify the simulation effect of two accelerated corrosion tests on the actual corrosion 

environment. Figure 3-4 shows the relationships between the sill and the mean corrosion 

depth. Figure 3-5 shows the relationships between the range and the mean corrosion depth.  

Because of the short test time of the atmospheric exposure test, it is equivalent to the early 

stage of the accelerated corrosion tests. From the figure can be observed, weathering steel 

and normal carbon steel have different spatial properties of corrosion, and different 

standards of the same type of steel (SM400A & SM490A, SMA400AW & SMA490AW) 

have similar spatial properties. The early stages of both accelerated corrosion tests can fit 

the atmospheric exposure test, but their spatial statistics of corrosion are not similar. Root 

Mean Square Error (RMSE) is calculated for discussing the accuracy of the fitted curve. 

The RMSE is the standard deviation of the residuals (prediction error), which indicates 

the degree of concentration of the data near the best-fit line. It is often used in regression 

analysis to verify experimental results. Equation (3.4) explains the calculation of RMSE. 

The smaller the value of RMSE, the more the accelerated corrosion test can simulate the 

actual exposure test.  

RMSE = �
1
𝑁𝑁
� (𝑌𝑌𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2

𝑁𝑁

𝑖𝑖=1
 (3.4) 

Where 𝑁𝑁 is the number of specimens of a certain type of steel in Miyakojima and Choshi; 

𝑌𝑌𝑖𝑖  is the spatial statistics values in Miyakojima and Choshi; 𝑓𝑓(𝑥𝑥𝑖𝑖)  is the predicted 

values based on fitting curves of two accelerated corrosion tests. 

The RMSE results of the sill and range by the power function models of two accelerated 

corrosion tests are shown in Table 3-3. Basically, when the steel is normal carbon steel, 

the RMSE value of accelerated corrosion test CCT Method A is smaller, which means 

that for normal carbon steel, the corroded surface properties of steel under accelerated 
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corrosion test by ISO16539 Method B are not as similar as those of accelerated corrosion 

test CCT Method A to atmospheric exposure test. When the steel is weathering steel, the 

RMSE value of the accelerated corrosion test by ISO16539 Method B is smaller, which 

means that for weathering steel, the corroded surface properties of the steel under 

ISO16539 Method B are closer to the atmospheric exposure test. 

 

3.5 Summary 

In this chapter, the applicability of the accelerated corrosion test ISO16539 Method B for 

assessing the corroded surface properties of the unpainted steel was investigated by 

comparing it with the atmospheric exposure tests and the accelerated corrosion test CCT 

Method A. Spatial statistical analysis was performed on the corroded surfaces of 

specimens that were subjected to the atmospheric exposure tests and two accelerated 

corrosion tests. The results showed that the corrosion properties of unpainted steels in 

actual atmospheric environments could be predicted in a relatively short period of time 

by accelerated tests ISO16539 Method B and CCT Method A. The semivariogram 

representing the geometric properties of the corroded surface profile showed a similar 

trend in the same type of steel. However, the values of the spatial properties of the 

corroded surface showed differences in different types of steel. Under accelerated test 

Table 3-3. RMSE of sill and range. 

  

Sill (mm2) Range (mm) 

ISO16539 CCT Method A ISO16539 CCT Method A 

SM400A 0.024  0.018  1.371  0.478  

SM490A 0.029  0.027  0.653  0.785  

SMA400AW 0.011  0.019  0.481  2.084  

SMA490AW 0.010  0.006  0.649  2.528  
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CCT Method A, the spatial properties of corroded surfaces of normal carbon steels were 

closer to those of exposure tests. And under accelerated test ISO16539 Method B, the 

spatial properties of corroded surfaces of weathering steels were closer to those of 

exposure tests. Therefore, different accelerated corrosion tests can be selected according 

to the actual situation to simulate the real corrosion situation. 
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Chapter 4 A corrosion prediction model using generative 

adversarial network (GAN) 

4.1 Introduction 

In recent years, artificial intelligence has been developing rapidly, and neural networks 

have been developed from simple artificial neural networks to various kinds of deep 

neural networks, which have been applied in various fields [4.1]. 

Generative adversarial network (GAN) is a product of the development of neural 

networks and a more active field of deep learning in recent years. It uses the idea of the 

game to optimize the generator, and then reuses the generator to generate data after 

completing training. In 2014, Ian Goodfellow et al. proposed GAN, and GAN started a 

revolution in the field of deep learning [4.2]. This revolution has produced some major 

technological breakthroughs. The rise of GAN was inevitable, and both academia and 

industry began to embrace and welcome it. First, the best thing about GAN is that its 

learning nature is unsupervised. GAN also does not require labeled data, which makes 

GAN powerful because the job of labeling data is very tedious. Secondly, the application 

potential of GAN makes it tremendous in many fields. It can generate high quality images, 

image enhancement, generate images from text, convert images from one domain to 

another, etc. GAN has two networks, the generator network, and the discriminator 

network. These two networks can be neural networks, ranging from convolutional neural 

networks, and recurrent neural networks to autoencoders. In this configuration, the two 

networks participate in a competitive game and try to outperform each other while helping 

them to complete their own tasks. After thousands of iterations, if all goes well, the 

generator network can perfectly generate realistic false images, and the discriminator 
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network can determine well whether the image is real or false. In other words, the 

generator network transforms random noise vectors from the potential space (not all GAN 

samples from the potential space) into samples from the real dataset. Training in GAN is 

a very intuitive process. 

Today, GAN has a large number of practical use cases in a variety of industries. For 

example, in the field of image processing, face photo generation is possible, Tero Karras 

et al. conducted a study to generate face photos that are very realistic [4.3]. The photos 

were generated with the faces of famous people as input, resulting in the generation of 

cases with the facial features of famous people. Realistic photos can also be generated. 

Andrew Brock et al. used the BigGAN technique to generate synthetic photos [4.4]. The 

case photos are almost indistinguishable from real photos. Image transformation is also 

possible. Phillip Isola et al. in 2017 proposed a method for image-to-image transformation 

based on conditional generative adversarial networks [4.5]. The network not only learns 

the mapping relationship from the input image to the output image but is also able to learn 

the loss function used to train the mapping relationship. In addition, it can improve image 

quality, image stylization or coloring artwork generation, and video generation, among 

other more interesting tasks. Due to the excellent performance of GAN in the field of 

image processing, the technique has been applied to many other fields where image 

processing is required. Such as autonomous driving, medical care, geostatistical analysis, 

etc. Likewise, in the traditional construction industry, especially in the maintenance of 

infrastructure, the use of new technologies can greatly improve efficiency. The 

establishment of a GAN-based corrosion prediction method is expected. 
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4.2 Methodology 

4.2.1 Generative adversarial network (GAN) 

Synthetic data is a machine learning algorithm that learns the random statistical patterns 

implied in real-world data to generate "fake" corresponding data. Generative adversarial 

network (GAN) is widely used in various fields for its useful performance. GAN is not a 

simple way to copy and imitate from training samples, nor to combine and average 

multiple training data, but to deeply learn the statistical laws inherent in training data. 

Generative adversarial network models based on neural networks provide different ideas 

for generating synthetic data. There are usually two modules in the GAN model 

framework: the generative model and the discriminative model. The generative model is 

responsible for processing random noise to simulate fake data similar to the real training 

samples. The discriminative model is responsible for identifying the fake data generated 

by the generator in the training samples. The two models play and learn from each other, 

and eventually, the fake data produced by the generator will be enough to pass off as real.  

Although there are generators and discriminators in the GAN model, it is generally 

expected to generate data that is comparable to reality. Therefore, the focus of GAN is on 

the generators. Before introducing specific GAN models, the concept of "generation" 

needs to be explained. Generation is the process by which a model learns some data and 

then generates similar data. For example, the model is asked to look at some images of 

steel corrosion and then generate the corrosion images themselves. Many techniques 

could be used for the generation before GAN was proposed. For example, Auto-encoder 

(AE), proposed by Rumelhart et al, can be used to process high-dimensional complex 

data, and it facilitated the development of neural networks [4.6]. The structure of the auto-
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encoder is shown in Figure 4-1. Usually, the input image is fed to NN Encoder to obtain 

a latent code, which is usually much smaller than the dimension of the input object, and 

it is a compact representation of the input object. Next, this latent code is fed to the NN 

Decoder for decoding, and the reconstructed original object is output. The auto-encoder 

neural network is an unsupervised learning algorithm (training example not labeled) that 

uses a back-propagation algorithm that works to make the output as close to the input as 

possible. However, both the Encoder and Decoder of AE use DNN, which is a nonlinear 

transformation process, so there is often no regularity in transforming between points on 

latent space. One way to solve this problem is to introduce noise to expand the coding 

area of the image so that it can cover the distorted blank coding area. The robustness of 

the output is enhanced by increasing the diversity of the input. Therefore, Variational 

Auto-Encoder (VAE) was proposed by DP Kingma et al, which is to add suitable noise to 

the encoding in the structure of AE [4.7]. VAE is an unsupervised generative model whose 

theoretical basis is based on the Gaussian mixture model. Although VAE is much better 

than the AE model training, the images it generates will be blurred compared to GAN 

using adversarial learning directly. This is because it is by directly calculating the mean 

square error between the generated image and the original image, so the obtained loss 

may be very different in the goodness of the generated image even if it is the same. 

 

Figure 4-1. The structure of auto-encoder. 
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VAE uses KL-divergence and encoder-decoder to approximate the real distribution. 

However, GAN has gained popularity over the years for its "end-to-end" flexibility and 

implicit objective function. VAE training relies entirely on a hypothetical loss function 

and KL divergence to approximate the real distribution. Instead of assuming a single loss 

function, GAN allows a zero-sum game between discriminator D and generator G. On 

the one hand, generator G aims to generate fake samples (loss evaluation) to fool 

discriminator D into believing that they are real samples. On the other hand, the 

discriminator D has to distinguish the real sample x from the fake sample G(z) as the final 

goal (loss evaluation). In general, discriminator D is a stronger network than generator G 

in GAN training, because network G has to learn from the discriminative process of D in 
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order to pass off fake as true. 

Figure 4-2 illustrates the basic structure of a GAN model. Where z is random noise; G is 

the generator; G(z) is generated data; x is the training set; D is the discriminator. A 

rudimentary GAN model takes a random variable (either a Gaussian distribution, or a 

uniform distribution between 0 and 1) and inverse samples the probability distribution 

through a parameterized probability generating model (usually parameterized with a 

neural network model), resulting in a generated probability distribution. The principle of 

GAN is that the generator network generates faked images based on random noise z, and 

the discriminator network judges the images as real or fake. The goal of the discriminator 

is to try to judge the real image as real and judge the discriminator faked picture as fake 

 

Figure 4-2. The basic structure of a GAN model. 
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to improve the accuracy of judging real and fake. The goal of the generator is to try to 

make the faked images look real and reduce the accuracy of the discriminator. Therefore, 

based on this adversarial principle, Equation (4.1) shows the formula for discriminator D. 

It is a binary classification problem that uses a cross entropy loss function as the 

optimization objective of the discriminator. Let D(x) be the probability that the image is 

real, then the objective function is: 

𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑉𝑉(𝐷𝐷) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟�𝑙𝑙𝑙𝑙𝑙𝑙�𝐷𝐷(𝑥𝑥)�� + 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧�𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))�� (4.1) 

Equation (4.2) shows the formula of the generator G. The objective of G is to fight against 

the discriminator D, its objective function wants the model to generate images with the 

highest possible value of D(x) to fool the discriminator: 

𝑚𝑚𝑖𝑖𝑚𝑚𝐺𝐺𝑉𝑉(𝐺𝐺) = 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧�𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))�� (4.2) 

Thus, combining Equation (4.1) and Equation (4.2) gives Equation (4.3), which is the 

standard formula for the original GAN. It is a minimax game in which G wants to 

minimize V while D wants to maximize it. 

𝑚𝑚𝑖𝑖𝑚𝑚𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟�𝑙𝑙𝑙𝑙𝑙𝑙�𝐷𝐷(𝑥𝑥)�� + 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧�𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))�� (4.3) 

Where 𝑃𝑃𝑟𝑟  is real data distribution; 𝑃𝑃𝑧𝑧  is Gaussian random noise distribution; G is a 

generative network, whose input is a random noise that captures the distribution of the 

real data during training, thus generating the most realistic data possible and making D 

wrong; D is a discriminative network that determines whether the generated data is real 

or not. Its input parameter is x, and the output D(x) represents the probability that x is real 

data, where a value of 1 means 100% real data, and a value of 0 means that it cannot be 

real data. 

Combining Figure 4-2 and Equation (4.3), the training steps for the GAN model are as 
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follows. 

The first step generates the fake image, then fixes the generator so that it does not update 

the parameters and makes the loss smaller by updating the parameters of the discriminator. 

The label of the real image is 1, and the generated fake image is 0. The loss is the measure 

of whether the discriminator labels the real image. The loss is a measure of the accuracy 

of the discriminator in labeling the real image as 1 and the fake image as 0. The smaller 

the loss value of the model, the better. Therefore, the discriminator can distinguish the 

real image and the fake image. The second step is to fix the discriminator and the training 

set, update the parameters of the generator, and make the loss of the discriminator bigger 

and bigger, so that the discriminator cannot distinguish them at all. This time, the 

parameter update repeats the first step, fixing the generator, and iterating continuously. 

Eventually, the generated image will be indistinguishable from the real image. 

GAN has many advantages over traditional models. There are two different networks 

instead of a single network, and the training method is adversarial. The gradient update 

information of G in GAN comes from discriminator D, not from the data samples. GAN 

can generate clearer and more realistic samples than all other models. Compared to VAE, 

GAN has no variational lower bound, and if the discriminator is well trained, the 

generator can learn the distribution of the training samples perfectly. 

 

4.2.2 Conditional generative adversarial network (CGAN) 

In some classical GAN models (WGAN, LSGAN, DCGAN, etc.), the input noise is often 

obtained by random sampling from the sample space, and the generated image belongs to 

a random class. These models are unable to generate data of a specified class. Combined 

with the characteristics of this study, because there are a variety of steel and a variety of 
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corrosion environments, it is expected that the model can generate the data of the specified 

category as required. Therefore, the conditional generative adversarial network (CGAN) 

proposed by Mehdi Mirza et al. is used to produce data with specified patterns, and also 

to solve to some extent the drawback that the original GAN training is so free that it is 

unstable on some complex datasets [4.8]. 

The CGAN model is supervised, and it utilizes the label information in the dataset. In the 

traditional GAN, Discriminator's scoring is very simple and brutal, generating images 

with higher scores for more realistic ones and lower scores for more blurred ones. 

However, when label information is introduced, the scoring rules need to become stricter. 

That is, a blurred image is still scored low, but in a clear and realistic generated image, if 

the image does not match its label, it is also required to be scored low. In the conventional 

discriminator of the original GAN, it only needs to check whether the image is real or not, 

it does not need to pay attention to the content of the image. Therefore, in CGAN, the 

discriminator also has an additional input c, which represents the content of the image. 

The discriminator at this time does not only check if the image is real, but also if c and 

the input image x are matched. The structure of CGAN is very similar to the original GAN, 
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and its model is shown in Figure 4-3. The way CGAN introduces the label c is very 

straightforward, which is to add a one-hot vector, which is the label information of the 

image, to the input layer of the generator and discriminator. The whole optimization 

objective becomes Equation (4.4). 

𝑚𝑚𝑖𝑖𝑚𝑚𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑟𝑟�𝑙𝑙𝑙𝑙𝑙𝑙�𝐷𝐷(𝑥𝑥|𝑐𝑐)�� + 𝐸𝐸𝑧𝑧~𝑃𝑃𝑧𝑧�𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧|𝑐𝑐))�� (4.4) 

According to the formula, both the generator and discriminator are transformed into the 

form of conditional probabilities, which are computed given a label vector c. Thus, each 

category c corresponds to an objective function subordinate to itself. With this constraint, 

 
Figure 4-3. The structure of a conditional generative adversarial network (CGAN) model. 

z

G

G(z) x

D

real, 1
fake, 0

real datafake data

c Random 
noise

Generator

Generated 
data

Training 
set

Discriminator

Additional 
input



68 
 

if an image is generated that is clear but the categories do not match the labels, it will also 

be scored as a fake. Therefore, the category of the generated data can be changed by 

adjusting the value of the labels. 

 

4.2.3 Information maximizing generative adversarial network (InfoGAN) 

In contrast to CGAN, the information maximizing generative adversarial network 

(InfoGAN) uses unsupervised learning to obtain some potential feature representations, 

which include the categories of the data. If there is a dataset with no label information, 

but there are still potential category differences, InfoGAN provides an unsupervised 

 
Figure 4-4. The structure of an information maximizing generative adversarial network 

(InfoGAN) model. 

z

G

G(z) x

D

real, 1
fake, 0

real datafake data

c

Q

c’

Random 
noise

Generator

Generated 
data

Training 
set

Discriminator

Additional 
input

Additional 
term



69 
 

method to identify potential category differences in the data, and can generate data of a 

given category by controlling the latent code. 

The structure of InfoGAN is shown in Figure 4-4. InfoGAN splits the input to the 

Generator into two parts, a latent code, denoted as c, and a noise vector z, as in the 

traditional GAN. Where c typically consists of two parts, one discrete and one continuous. 

To introduce c, Xi Chen et al. constrain c by means of mutual information, which can also 

be understood as a process of self-coding [4.9]. The specific operation is that the output 

of the generator, passes through a classifier to see if it yields c. This can be seen as the 

inverse process of the anto-encoder. The rest of the discriminator is the same as the 

original GAN. From a loss function perspective, the loss function of InfoGAN becomes 

Equation (4.5) 

𝑚𝑚𝑖𝑖𝑚𝑚𝐺𝐺𝑚𝑚𝑎𝑎𝑥𝑥𝐷𝐷𝑉𝑉𝐼𝐼(𝐷𝐷,𝐺𝐺) = 𝑉𝑉(𝐷𝐷,𝐺𝐺) − 𝜆𝜆𝜆𝜆(𝑐𝑐;𝐺𝐺(𝑧𝑧, 𝑐𝑐)) (4.5) 

Compared to the original GAN, there is an additional term 𝜆𝜆𝜆𝜆(𝑐𝑐;𝐺𝐺(𝑧𝑧, 𝑐𝑐))  ,which 

represents the mutual information between c and generator's output. The larger this term 

is, the more relevant c is to the output. 

 

4.3 Model architecture 

In this study, Gaussian noise and GAN were employed to increase the dataset. As a type 

of deep learning framework, a generative adversarial network (GAN) studies from a 

dataset and generates new data with similar statistics. According to the characteristics of 

this study, using two models to do adversarial learning not only predicts the time of 

corroded surface and steel type, but also enables the simulation of corrosion, so the use 

of GAN the model is very suitable for this research. GAN is usually applied for data 

augmentation, particularly when the dataset is limited. In this study, since only a limited 
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amount of data was available as the initial dataset. GAN generated new training samples 

according to the data collected from corrosion tests. Even if not the same, the distribution 

of the newly generated data is quite similar to the initial dataset. In this study, GAN and 

its two variants InfoGAN and CGAN were chosen as the experimental model. This study 

takes reference from the characteristics of InfoGAN, and uses Gaussian noise to simulate 

the random template as used in InfoGAN, and achieves higher efficiency than InfoGAN. 

For CGAN, the input data of the generator is the category and random vector. However, 

the dataset in this research involves not only categories of steel plates but also categories 

of corrosion. A single classification code can hardly meet the needs of this research. 

Meanwhile, the goal of this research is to predict the next stage of corrosion data based 

on the current corrosive status, which cannot be achieved using CGAN.  

UNet was the generator and MobileNetV2 was the discriminator for the GAN model. The 

UNet was initially designed for the segmentation task of Biomedical images, which have 

a great characteristic that they are single channel (black and white images) [4.10]. And 

corrosion in this research can also be seen as single channel data, so UNet was used as 

the generator of GAN. There are two paths in the architecture. One is the contraction path 

(or the encoder), a traditional stack of convolutional and max-pooling layers, which 

captures the context in the image. The other path is the symmetric expanding path (or 

decoder) which enables precise localization using transposed convolutions. It can handle 

images of any size and it is a fully convolutional network (FCN). Figure 4-5 explains the 

details of UNet. Here the input data is the real corrosion data and Gaussian noise, and the 

output is the simulated corrosion situation of the next phase [4.10]. 
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MobileNetV2 is considered as an effective model to be used for feature extraction, object 

detection, and segmentation. It is a mobile architecture based on an inverted residual 

structure, using depthwise separable convolution as efficient building blocks. The model 

allows the decoupling of the input/output domains from the expressiveness of the 

transformation, which provides a convenient framework for further analysis. Its 

capabilities have been validated in many applications. The structure difference between 

it and UNet is large, and the number of parameters of MobileNetV2 is smaller and lighter 

than other classification models, which makes it more suitable as a discriminator for GAN. 

To better fit the discriminator, an additional Sigmoid activation function was added at the 

end of MobileNetV2, 0 as Fake, and 1 as Real. The generator is primarily used to simulate 

 
 

Figure 4-5. The structure of UNet. 
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the next phase of regression of the input corrosion data, the discriminator is used to 

determine whether the input data is the data generated by the generator. In addition, the 

discriminator that was used in this study could be used to predict the kind of steel and the 

phase of corrosion. The Adam optimizer was used in the model. Figure 4-6 illustrates the 

model architecture and procedure [4.11]. The input corroded surface data was 2-

dimensional data. Since the corrosion depth measurement of the corroded surface was a 

rectangular area of 50 mm * 60 mm with a measurement interval of 0.3 mm, the size of 

the original input image was 167 * 200. However, MobileNetV2 requires a specific size 

to be specified and due to the nature of MobileNetV2 and UNet convolution, they are 

better at handling square images. Therefore, the input corroded surface image was resized 

to a size of 200 * 200. The MSE Loss was used in the model. MSE derivative is not too 

 
 

Figure 4-6. The structure of the GAN model. 
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computationally intensive and is commonly used. The formula of MSE is shown in 

Equation (4.6): 

𝑀𝑀𝑀𝑀𝐸𝐸 =
1
𝑚𝑚
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (4.6) 

Where 𝑦𝑦𝑖𝑖 is the predicted value; 𝑦𝑦�𝑖𝑖 is the labeled value. 

Since this study is a multi-classification task, the Cross Loss of a single image is shown 

in Equation (4.7). 

𝐶𝐶𝐶𝐶𝑙𝑙𝑠𝑠𝑠𝑠 𝐿𝐿𝑙𝑙𝑠𝑠𝑠𝑠 = −�(𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�
𝑛𝑛

𝑖𝑖=1

) + (1 − 𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑦𝑦�) (4.7) 

Where 𝑚𝑚 is the number of categories; 𝑦𝑦 is the labeled value; 𝑦𝑦� is the predicted value. 

 

4.4 Dataset settings 

In this chapter, the corrosion depth data of the specimen corroded surfaces obtained in 

Chapter 2 was used as training sets and testing sets. In the experimental design of this 

section, the data set was used in six cases, which are six configurations of the training and 

testing sets. As shown in Table 4-1, “S1”, “S2”, “S3”, and “S4” correspond to the 

corroded surface data of the specimens in the four corrosion tests mentioned in Chapter 

2: Accelerated corrosion test ISO16539 Method B; Accelerated corrosion test CCT 

Method A developed by PWRI; Direct atmospheric exposure test Atmospheric exposure 

I conducted at Miyakojima; And direct atmospheric exposure test Atmospheric exposure 

II conducted at Choshi. In Scenario 1, the corrosion data "S1" of ISO16539 Method B is 

the training set, and the corrosion data "S3" of Atmospheric exposure I is the testing set. 
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In Scenario 2, the corrosion data "S1" of ISO16539 Method B is the training set, and the 

corrosion data "S4" of Atmospheric exposure II is the testing set. In Scenario 3, the 

corrosion data "S2" of CCT Method A is the training set, and the corrosion data "S3" of 

Atmospheric exposure I is the testing set. In Scenario 4, the corrosion data "S2" of CCT 

Method A is the training set, and the corrosion data "S4" of Atmospheric exposure II is 

the testing set. In Scenario 5, the corrosion data "S1" and "S2" of ISO16539 Method B 

and CCT Method A are the training set, and the corrosion data "S3" of Atmospheric 

exposure I is the testing set. In Scenario 6, the corrosion data "S1" and "S2" of ISO16539 

Method B and CCT Method A are the training set, and the corrosion data "S4" of 

Atmospheric exposure II is the testing set. 

 

4.5 Model training 

The input corroded surface data was 2-dimensional data. Since the corrosion depth 

measurement of the corroded surface was a rectangular area of 50 mm * 60 mm with a 

measurement interval of 0.3 mm, the size of the original input image was 167 * 200. And 

the input corroded surface image was resized to a size of 200 * 200. The learning rate was 

0.0001, Adam optimizer was used, and the batch size of the generator and the 

discriminator was 4. The sigma activation function was chosen to be sigma = variance2. 

The leaky rate was 0.2. The Adam beta value was [0.5, 0.99]. The training steps of the 

Table 4-1. Training set and testing set. 

 Scenario1  Scenario2  Scenario3  Scenario4  Scenario5 Scenario6 

Training set S1  S1  S2  S2  S1+S2 S1+S2 

Testing set S3  S4  S3  S4  S3 S4 
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model were: Gaussian noise and the data from the former phase were used as inputs to 

UNet, and the data from the next phase were the targets. MobileNetV2 was used to 

determine whether the input was generated by UNet or the real corrosion, and each step 

was trained according to the GAN model. At the end of each epoch, only the UNet was 

trained and the gap between the generated data and the real data was fine-tuned. 

 

4.6 Comparative results 

In this section, the root mean square error (RMSE) was used as the primary assessment 

indicator. RMSE is the standard deviation of the residuals, it shows how well the data are 

concentrated around the best-fit curve. It is often used in prediction and regression 

analyses to validate experimental results. The aim of this RMSE is to observe the 

difference between the corroded surface simulated by GAN and the real corroded surface. 

A model is expected to have an RMSE value that is as small as possible. the calculation 

of RMSE is performed by Equation (4.8), which is the same as Equation (3.4) mentioned 

in Chapter 3. 

RMSE = �
1
𝑁𝑁
� (𝑌𝑌𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2

𝑁𝑁

𝑖𝑖=1
 (4.8) 

Where 𝑁𝑁 is the number of corrosion depths that need to be predicted; 𝑌𝑌𝑖𝑖 is the actual 

measured corrosion depth data; 𝑓𝑓(𝑥𝑥𝑖𝑖) is the corrosion depth data predicted by the trained 

model. 

Comparative experiments were performed on four distinct models. The baseline model 

XceptionNet and the three GAN-based augmentation models: GAN, CGAN, and 

InfoGAN. 

XceptionNet is a conversational neural network architecture that relies entirely on deeply 
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separable convolutional layers. It outperforms Inception V3 on several datasets, achieving 

state-of-the-art performance on different problems [4.12]. The history of convolutional 

neural network design began with LeNet-style models [4.13], which were simple stacks 

of convolution (for feature extraction) and pooling (for spatial subsampling). In 2012, 

these ideas were rewritten into the AlexNet architecture [4.14], where convolution 

operations are repeated multiple times between maximum pooling operations, allowing 

the network to learn richer features at each spatial scale. The ensuing trend was to make 

this network style deeper, such as the VGG architecture in 2014 [4.15]. 

A new type of network emerged at this time, the Inception architecture introduced by 

Szegedy et al. in 2014 [4.16] as GoogleNet (Inception V1), which was later changed to 

Inception V2 [4.17], Inception V3 [4.18], and more recently Inception-ResNet [4.19]. The 

initial phase itself was inspired by the earlier NetworkIn-Network architecture [4.20]. 

Since its first introduction, Inception has been one of the best performing series on 

ImageNet datasets [4.21], as well as on internal datasets used by Google, in particular 

JFT [4.22]. Inspired by the inception module, and arguably an improvement to inception 

V3, mainly the depthwise separable convolution is used to replace the inception module 

in the original Inception V3. The inception structure is somewhere between the regular 

convolution and the depthwise separable convolution. Figure 4-6 shows the structure of 

Inception V3. It can be seen that the core idea of Inception is to concatenate the feature 

maps generated by various feature extraction methods such as 1 * 1 convolution, 3 * 3 

convolution, 5 * 5 convolution, pooling, etc. to achieve the effect of fusing multiple 

features. 

Xception is a modification of the inception V3 structure, which uses depthwise separable 
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convolution to replace the inception module in inception V3. Xception is based on the 

assumption that the mapping of channel correlation and spatial correlation in the 

convolutional neural network feature mapping can be completely decoupled. Because this 

assumption is a stronger version of the assumption under the inception architecture, the 

architecture is named Xception. In short, the Xception architecture is a linear stack of 

deeply separable convolutional layers with residual connections. This makes the 

architecture very easy to define and modify, only 30 to 40 lines of code are needed to use 

high-level libraries like TensorFlow-Slim, unlike architectures like VGG-16 [4.23], but 

much more complex to define with Inception V2 or V3. 

Table 4-2 shows the results of the comparative experiments. From the results, all the 

 
 

Figure 4-7. The structure of inception V3. 
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models with the GAN-based model have better performance than the baseline model 

XceptionNet. Since both InfoGAN and CGAN require a huge amount of data for training, 

they don’t demonstrate advantages over GAN in this study. Using GAN for augmentation 

outperforms all other models in four scenarios (Scenario 2, Scenario 4, Scenario 5, and 

Scenario 6,). Therefore, using the GAN model as the prediction model is better in this 

study. Since both atmospheric exposure tests at Miyakojima and Choshi had only one 

stage of corrosion depth data, it was difficult to validate the corrosion prediction results 

of the prediction model. Therefore, a comparison of the corroded surface condition of the 

actual steel plate in stage three (168 days) under ISO16549 Method B corrosion 

environment and the corroded surface condition obtained by the corrosion prediction 

model was used as an example to demonstrate the performance of the corrosion prediction 

model. In this example, the predicted corroded surface condition was obtained by 

inputting the actual corroded surface data of the first stage (28 days). 

Figure 4-8, Figure 4-9, Figure 4-10, and Figure 4-11 illustrate the comparison of the 

corrosion on steel plates in stage three (168 days) from the accelerated corrosion test 

ISO16539 Method B and corresponding simulated corrosion generated by the prediction 

model. Figure 4-8, Figure 4-9, Figure 4-10, and Figure 4-11 are corresponding to four 

Table 4-2. Comparative Results. 

 

Train: S1 

Test: S3 

Train: S1 

Test: S4 

Train: S2 

Test: S3  

Train: S2 

Test: S4  

Train: S1+S2 

Test: S3 

Train: S1+S2 

Test: S4 

GAN 0.392  0.423 0.462 0.337  0.198 0.244 

InfoGAN 0.368  0.455  0.433 0.363 0.233 0.347 

CGAN 0.467 0.470 0.439 0.452 0.313 0.299 

XceptionNet 0.952 1.492 0.882 0.587 0.902 0.884 
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types of steel plates involved in this study. Taking Figure 4-8 as an example, it shows the 

corrosion of steel plate type SM400A in stage three. Figure 4-8 (a) shows the real steel 

plate and Figure 4-8 (b) is the simulated steel plate. The colors demonstrate the status of 

the corrosion. The yellow color means it is slightly corrosive. The red (and dark) color 

means the corrosion is worse. Figure 4-8 (a) and (b) demonstrate a similar pattern of the 

distribution of corrosion, which means this corrosion prediction model can accurately 

simulate the corrosion on the measured area. Similarly, Figure 4-9, Figure 4-10, and 

Figure 4-11 demonstrate the excellent performance of this corrosion prediction model in 

simulating or predicting the corrosion on the other three types of steel plates (SM490A, 

SMA400AW, and SMA490AW).  
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(a) The corrosion on ISO16539 type SM400A steel plate stage three 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) The corrosion on simulated type SM400A steel plate stage three 

 
Figure 4-8. The corrosion on ISO16539 type SM490A steel slate stage three and corresponding 

simulated corrosion. 
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(a) The corrosion on ISO16539 type SM490A steel plate stage three 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) The corrosion on simulated type SM490A steel plate stage three 

 
Figure 4-9. The corrosion on ISO16539 type SM490A steel slate stage three and corresponding 

simulated corrosion. 
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(a) The corrosion on ISO16539 type SMA400AW steel plate stage three 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) The corrosion on simulated type SMA400AW steel plate stage three 

 
Figure 4-10. The corrosion on ISO16539 type SM400AW steel slate stage three and 

corresponding simulated corrosion. 
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(a) The Corrosion on ISO16539 type SMA490AW steel plate stage three 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) The corrosion on simulated type SMA490AW steel plate stage three 

 
Figure 4-11. The corrosion on ISO16539 type SMA490AW steel slate stage three and 

corresponding simulated corrosion. 
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4.7 Summary 

The deterioration and damage of aging steel structures have led to huge economic losses 

and safety hazards. A big reason for the damage is the corrosion of steel members, which 

can cause the loss of material from the surface of steel members and reduce the thickness, 

stiffness, and load-bearing capacity of the steel structure. It is worth a thorough 

investigation to simulate and predict the corrosion on steel structures and to further 

achieve more effective and efficient maintenance management. Traditional corrosion 

assessment takes a long time and lacks clear criteria. However, the studies in this field 

have limitations on the target material or environment, and lack of generality. In this 

chapter, a GAN-based machine learning model was proposed to augment the dataset and 

simulate and predict the corrosion of SM400A, SM490A carbon steel, and SMA400AW, 

SMA490AW weathering steel in four environments: ISO16539 Method B, CCT Method 

A, Atmospheric exposure I at Choshi, Atmospheric exposure II at Miyakojima. The 

proposed method could effectively predict the corrosion behavior of uncoated steel 

structures over time and under different circumstances. It could achieve faster and more 

accurate predictions of corrosion. UNet was used to simulate the corroded surface. The 

structure of UNet determines that the distribution of the generated data was very close to 

the original data. MobileNet-V2 required a small number of parameters and had a 

relatively high score among other image classification algorithms. Meanwhile, the GAN 

structure was better controlled compared to CGAN and InfoGAN. The GAN structure 

composed of UNet and MobileNet-V2 provided outstanding performance to address the 

research problems in this study. Through comparative experiments, the corrosion 

prediction model achieved high prediction accuracy and was verified to be reliable and 

generally applicable. 
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However, while using RMSE as the accuracy evaluation method was a good way to 

determine which model had better results, it did not determine whether the model actually 

accurately predicts changes in the spatial properties of the corroded surface. Therefore, 

in the next chapter, a validation method of the prediction model combined with the spatial 

properties of the corroded surface is proposed. 
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Chapter 5 Validation of the prediction model combined with 

the spatial properties of the corroded surface 

5.1 Introduction 

In Chapter 4, a prediction model for the corroded surface of a steel plate was developed. 

However, it was impossible to measure the corrosion depth of the same steel plate at 

different times because measuring the corrosion depth of the steel plate requires rust 

removal. The steel plates at different stages are different so that there is no continuity in 

time, and each specimen is independent. Therefore, in this case, it was not enough to use 

only the RMSE mentioned in Chapter 4 as a method to judge the accuracy of the corrosion 

prediction model. Because the use of RMSE as the accuracy of the corrosion prediction 

model judgment criteria, was the current stage of the corrosion depth data of the specimen 

as input to get the corrosion depth data of the future stage, and the object used to calculate 

the RMSE was the corrosion depth data of other specimens of the future stage, not the 

specimen. Therefore, in Chapter 4, RMSE could only be used as a criterion for comparing 

the performance of each corrosion prediction mode, and the specific prediction capability 

of the corrosion prediction model needs to be confirmed by other methods. Meanwhile, 

as one of the disadvantages of deep learning methods, some parameters in the neural 

network often cannot have practical meaning. Therefore, it is necessary to investigate 

whether this corrosion prediction model can have excellent performance in simulating the 

future corroded surface. The spatial statistical analysis method in Chapter 3 can be 

combined to verify whether the prediction model can accurately predict the spatial 

properties of the corroded surface. In this chapter, because both accelerated corrosion test 

ISO16539 Method B and accelerated corrosion test CCT Method A have corrosion depth 
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data for 3 stages (28 days, 84 days, 168 days), the corrosion prediction model obtained in 

Chapter 4 was used to predict the corroded surfaces for the second and third stages (84 

days, 168 days) of these two accelerated corrosion tests. By comparing the spatial 

property parameters of the predicted corroded surfaces with those of the actual corroded 

surfaces, it is possible to confirm whether the corrosion prediction model can perform 

well in simulating the corroded surfaces of future steel plates. 

 

5.2 Comparative results of predicted and actual values of spatial property 
parameters 

In order to combine the spatial statistical analysis method in Chapter 3 to verify whether 

the corrosion prediction model in Chapter 4 can accurately predict the spatial properties 

of the corroded surface, the corrosion prediction model is first needed to obtain the 

corrosion depth data of the simulated corroded surface of the steel plate. In this section, 

the corroded surface data of four steels from the first stage (28 days) of accelerated 

corrosion test ISO16539 Method B and accelerated corrosion test CCT Method A were 

used as the input to the corrosion prediction model. Then the corrosion depth data of the 

corroded surface of the steel plates in the second and third stages (84 days, 168 days) 

were obtained by the prediction model. The spatial property parameters, sill and range, of 

the corroded surfaces simulated by the corrosion prediction model, were then calculated 

using the semivariogram. Sill and range were calculated in the same way as mentioned in 

Chapter 3. The predicted spatial property parameters of the corroded surface of the second 

and third stages were compared with those of the actual accelerated corrosion test results 

by ISO16539 Method B and CCT Method A at the second and third stages. Table 5-1 and 

Table 5-2 show the predicted and actual comparative results of sill and range, respectively. 
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Because the corrosion depth data from the first stage were used as input to the corrosion 

prediction model, the predicted results of corroded surface spatial property parameters for 

the first stage of the two accelerated corrosion tests were not available. 

The comparison between the predicted and actual values of the spatial property 

parameters of corroded surfaces obtained by the prediction model was examined. Figure 

5-1 and Figure 5-2 show the comparative results of the sill for normal carbon steel and 

weathering steel under the accelerated corrosion test ISO16539 Method B corrosion 

environment, respectively. And Figure 5-3 and Figure 5-4 show the comparative results 

of the range for normal carbon steel and weathering steel under the accelerated corrosion 

test ISO16539 Method B corrosion environment, respectively.  

Figure 5-5 and Figure 5-6 show the comparative results of the sill for normal carbon steel 

and weathering steel under the accelerated corrosion test CCT Method A corrosion 

environment, respectively. And Figure 5-7 and Figure 5-8 show the comparative results 

of the range for normal carbon steel and weathering steel under the accelerated corrosion 

test CCT Method A corrosion environment, respectively. 

 



91 
 

 

Table 5-1. Comparative results of sill (mm2). 
 ISO16539 CCT Method A 

days 28 84 168 28 84 168 

SM400A 

(prediction) 

- 0.00311  0.00953  - 0.01721  0.02288  

- 0.00208  0.01874  - 0.01467  0.02001  

- 0.00296  0.00798  - 0.01332  0.01982  

SM490A 

(prediction) 

- 0.00289  0.02418  - 0.00477  0.02112  

- 0.00294  0.02001  - 0.00418  0.01983  

- 0.00221  0.01046  - 0.00521  0.01900  

SMA400AW 

(prediction) 

- 0.00453  0.00864  - 0.02433  0.02933  

- 0.00488  0.00901  - 0.02701  0.03199  

- 0.00410  0.01883  - 0.02513  0.02988  

SMA490AW 

(prediction) 

- 0.00498  0.01513  - 0.02388  0.02897  

- 0.00471  0.01430  - 0.02181  0.02661  

- 0.00422  0.00832  - 0.01998  0.03142  

SM400A 

(actual) 

0.00123 0.00203 0.01000 0.00214  0.01685  0.02468 

0.00094 0.00220 0.01395 0.00197  0.01559  0.02133 

0.00116 0.00261 0.01489 0.00216  0.01346  0.02077 

SM490A 

(actual) 

0.00128 0.00267 0.01083 0.00148  0.00538  0.02319 

0.00064 0.00202 0.01462 0.00154  0.00308  0.02011 

0.00058 0.00213 0.01315 0.00140  0.00316  0.01673 

SMA400AW 

(actual) 

0.00084 0.00390 0.00681 0.00142  0.02404  0.02843 

0.00098 0.00436 0.01129 0.00231  0.03015  0.03213 

0.00120 0.00415 0.00896 0.00211  0.02712  0.02977 

SMA490AW 

(actual) 

0.00096 0.00426 0.00560 0.00290  0.02196  0.02731 

0.00113 0.00369 0.00632 0.00434  0.02543  0.02974 

0.00087 0.00333 0.00460 0.00288  0.02144  0.02916 
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Table 5-2. Comparative results of range (mm2). 
 ISO16539 CCT Method A 

days 28 84 168 28 84 168 

SM400A 

(prediction) 

- 6.045  15.554  - 6.983  24.156  

- 6.104  20.003  - 7.224  20.553  

- 8.986  20.865  - 7.898  21.101  

SM490A 

(prediction) 

- 7.360  11.765  - 3.884  20.117  

- 8.901  20.338  - 5.673  19.234  

- 8.602  15.218  - 7.112  17.283  

SMA400AW 

(prediction) 

- 7.563  7.695  - 7.321  8.324  

- 4.606  7.310  - 7.110  8.100  

- 3.002  7.369  - 6.121  7.358  

SMA490AW 

(prediction) 

- 7.012  6.218  - 8.322  12.565  

- 7.361  4.332  - 7.192  14.198  

- 7.549  4.966  - 10.311  11.106  

SM400A 

(actual) 

0.581 6.442 20.495 5.477  7.641  20.144  

0.579 7.986 17.678 5.828  6.096  22.434  

0.552 8.658 10.773 5.976  8.143  19.883  

SM490A 

(actual) 

5.515 7.425 10.687 4.382  3.664  17.002  

1.108 7.816 17.393 2.939  4.755  16.838  

1.589 6.651 8.482 3.112  6.881  19.354  

SMA400AW 

(actual) 

2.660 5.658 6.692 5.251  7.253  7.899  

2.778 5.687 7.080 6.805  5.179  7.931  

2.237 6.712 7.208 5.112  6.873  8.181  

SMA490AW 

(actual) 

1.963 6.085 6.392 6.534  12.159  16.184  

1.682 6.721 6.324 5.768  6.979  7.881  

3.368 5.827 5.854 5.469  7.295  9.322  
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(a) The sill results of SM400A steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The sill results of SM490A steel plate 
 

Figure 5-1. Comparative results between the predicted and actual sill values for normal carbon 
steel under ISO16539 Method B. 
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(a) The sill results of SMA400AW steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The sill results of SMA490AW steel plate 
 
Figure 5-2. Comparative results between the predicted and actual sill values for weathering steel 

under ISO16539 Method B. 
 

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035

0 28 56 84 112 140 168 196

Si
ll,

 𝛾𝛾
1/

2
(m

m
)

Test period, t (days)

Experiment
Prediction

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035

0 28 56 84 112 140 168 196

Si
ll,

 𝛾𝛾
1/

2
(m

m
)

Test period, t (days)

Experiment
Prediction



95 
 

  

 

 

 
(a) The range results of SM400A steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The range results of SM490A steel plate 
 
Figure 5-3. Comparative results between the predicted and actual range values for normal carbon 

steel under ISO16539 Method B. 
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(a) The range results of SMA400AW steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The range results of SMA490AW steel plate 
 

Figure 5-4. Comparative results between the predicted and actual range values for weathering 
steel under ISO16539 Method B. 
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(a) The sill results of SM400A steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The sill results of SM490A steel plate 
 

Figure 5-5. Comparative results between the predicted and actual sill values for normal carbon 
steel under CCT Method A. 
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(a) The sill results of SMA400AW steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The sill results of SMA490AW steel plate 
 
Figure 5-6. Comparative results between the predicted and actual sill values for weathering steel 

under CCT Method A. 
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(a) The range results of SM400A steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The range results of SM490A steel plate 
 
Figure 5-7. Comparative results between the predicted and actual range values for normal carbon 

steel under CCT Method A. 
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(a) The range results of SMA400AW steel plate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) The range results of SMA490AW steel plate 
 

Figure 5-8. Comparative results between the predicted and actual range values for weathering 
steel under CCT Method A. 
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From these comparative results, the prediction results of the sill and range obtained by 

the corrosion prediction model are similar to the actual sill and range values. Because the 

corrosion prediction model was not available for the corrosion depth data of the first stage 

(28 days), the comparison time of sill and range was the second stage (84 days) and the 

third stage (168 days). Among them, the prediction results for the second stage (84 days) 

were better than those for the third stage (168 days). This is because the input of the 

prediction model was the data of the first stage (28 days), and the prediction model is 

more accurate in predicting the near future than the far future. 

 

5.3 Validation of the prediction model  

Comparing the predicted values of sill and range with the actual values of sill and range 

in Table 5-1 and Table 5-2, in this study, the small sample size was obtained, using a 

student t-test, it is any statistical hypothesis test in which the test statistic follows a 

student's t-distribution under the null hypothesis [5.1]. It is most commonly applied when 

the test statistic would follow a normal distribution if the value of a scaling term in the 

test statistic were known (typically, the scaling term is unknown and therefore a nuisance 

parameter). When the scaling term is estimated based on the data, the test statistic—under 

certain conditions—follows a student's t distribution. The t-test's most common 

application is to test whether the means of two populations are different. 

The values marked by "*" are less than 0.05, which means the predicted value is 

significantly different from the actual value, implying that the prediction model is not 

accurate. Therefore, the results in Tables 5-3 and 5-4 show that the predicted and actual 

values of the two spatial property parameters, sill and range, were not significantly 

different (most P values are greater than 0.05) in all cases except for sill at 168 days and 
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range at 84 days in the accelerated corrosion test ISO16539 Method B for SMA490AW, 

indicating that the predictions of spatial properties by this deep learning-based model 

were consistent with the actual corrosion situation. Based on this accuracy judgment 

criterion, this corrosion prediction model can predict the spatial properties of the corroded 

surface of unpainted steel plates with an accuracy of 93.75% (30 / 32). 

 

Table 5-3. t-test results (p-values) of sill and range for prediction model in ISO16539 Method B. 

 ISO16539 Method B 

 Sill (mm2) Range (mm) 

days 84 168 84 168 

SM400A 0.295  0.826  0.609  0.495  

SM490A 0.262  0.272  0.165  0.382  

SMA400AW 0.238  0.430  0.524  0.076  

SMA490AW 0.067  0.032*  0.024*  0.154  
 

Table 5-4. t-test results (p-values) of sill and range for prediction model in CCT Method A. 

 CCT Method A 

 Sill (mm2) Range (mm) 

days 84 168 84 168 

SM400A 0.884  0.437  0.917  0.465  

SM490A 0.354  0.989  0.748  0.381  

SMA400AW 0.451  0.841  0.603  0.815  

SMA490AW 0.567  0.874  0.920  0.611  
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5.4 Summary 

In Chapter 5, the accuracy of the prediction model was validated in conjunction with 

Chapters 3 and 4. As one of the drawbacks of deep learning methods, some parameters in 

the neural network are often not practically meaningful. Therefore, the spatial statistical 

analysis method in Chapter 4 was used to verify whether the prediction model can 

accurately predict the spatial properties of corroded surfaces. The applicability of the 

corrosion prediction model was verified by conducting a student t-test on the predicted 

and actual results, which confirmed that there was no significant difference between the 

predicted and actual results. 
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Chapter 6 Conclusions 

In the modern maintenance of steel infrastructure, corrosion has been a matter of great 

concern. If there is no systematic method to detect and control the corrosion of steel 

structures, it will not only bring huge economic losses to society, but also threaten people's 

safety. Therefore, researchers have conducted many studies on the control of corrosion of 

steel structures. The traditional judgment of the corrosion situation mostly relies on visual 

inspection and experience, and the judgment of the corrosion progress of different steel 

in different corrosive environments will be very different. Therefore, the study of 

corrosion requires a large number of experiments. However, corrosion in the natural 

environment is usually a long process. The study of corrosion based on the natural 

environment of corrosion is very difficult, the use of accelerated corrosion tests to 

simulate the actual corrosion environment can greatly accelerate the progress of corrosion, 

thereby improving the efficiency of corrosion research under various circumstances. 

In recent years, with the development of data science, the use of numerical analysis 

methods to quantify the progress of corrosion has received more and more attention. The 

use of numerical analysis to model corrosion can save a lot of labor costs in the 

maintenance of steel facilities, and is more accurate than traditional corrosion detection 

and control. 

This study starts from the basic corrosion tests, from the analysis of the basic corrosion 

progress to the analysis of the spatial properties of the corroded surface, and finally to 

establish an efficient and convenient corrosion prediction model. 

In Chapter 2, atmospheric exposure corrosion tests and accelerated corrosion tests were 

conducted on normal carbon steel (SM400A, SM490A) and weathering steel 



106 
 

(SMA400AW, SMA490AW). Corroded surface observation, corrosion depth 

measurement, and basic statistical analysis were carried out on the specimens. The 

average corrosion depths of different steels in different corrosive environments were 

compared. The average corrosion depths of normal carbon steel and weathering steel 

specimens were 0.089 mm and 0.044 mm at Miyakojima for 6 months and 0.073 mm and 

0.059 mm at Choshi for 12 months. In ISO16539 Method B and CCT Method A, the 

average corrosion depths for normal carbon steel and weathering steel specimens were 

0.218 mm and 0.143 mm, and 0.267 mm and 0.211 mm at 28 days. The accelerated test 

provided greater corrosion depths than the exposure test. The accelerated test ISO16539 

method B provided an average corrosion depth for normal carbon steel at 28 days that is 

2.4 to 3.0 times greater than the 6-month Miyakojima and 12-month Choshi exposure 

tests. In contrast, the average 28-day average corrosion depth of weathering steel by 

accelerated test ISO16539 Method B was 2.4 to 3.1 times greater than the 6-month and 

12-month exposure tests at Miyakojima and Choshi. In the 28-day accelerated test of CCT 

Method A, the average mean corrosion depth for normal carbon steel was 3.0 to 3.7 times 

greater than in the 6-month Miyakojima and 12-month Choshi exposure tests. In the 28-

day accelerated test CCT Method A, the average mean corrosion depth of weathering steel 

was 3.6 to 4.6 times that of the 6-month Miyakojima and 12-month Choshi exposure tests. 

In Chapter 3, a spatial statistical analysis was performed using semivariogram in order to 

further investigate the spatial statistical properties of the corroded surfaces. This method 

captured the spatial nature of the corroded surface, allowing a uniform evaluation 

criterion for the steel subjected to corrosion in different corrosive environments. The 

spatial properties of corrosion of different steels in different environments were compared 

to confirm the extent to which the two accelerated corrosion tests simulate the real 
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corrosive environment. In addition, the applicability of the accelerated corrosion test of 

ISO16539 Method B for assessing the corrosion characteristics of unpainted steel was 

confirmed by comparison with the exposure test and the accelerated corrosion test CCT 

Method A. The corrosion properties of unpainted steel under actual atmospheric 

conditions could be predicted in a relatively short period of time by accelerated tests 

ISO16539 Method B and CCT Method A. The semivariogram representing the spatial 

statical properties of the corroded surface profile showed the same trend for the same type 

of steel. However, the values of the spatial characteristics of the corroded surface showed 

differences in different types of steel. Under the accelerated test CCT method A, the 

spatial properties of the corroded surface of normal carbon steel were closer to the 

properties of the exposure test. While in the accelerated test ISO16539 method B, 

weathering steel corroded surface spatial properties were closer to the spatial properties 

of the exposure test. Therefore, according to the actual situation, different accelerated 

corrosion tests could be selected to simulate the real corrosion situation. 

In Chapter 4, adversarial learning was used to simulate the generation of future corrosion 

on steel surfaces to build an efficient corrosion model that can be practically applied. The 

model could predict the next stage of corrosion based on the current corrosion state of the 

corroded surface. The prediction model could also be used to identify the corrosion stages 

and the number of days of corrosion. According to the experimental results, the model 

achieved high accuracy in predicting the corroded surfaces of steel plates. This proposed 

method could predict corrosion behavior faster and more accurately than traditional 

methods that usually rely on personal experience. 

In Chapter 5, the accuracy of the prediction model was validated in conjunction with 

Chapters 3 and 4. As one of the drawbacks of deep learning methods, some parameters in 



108 
 

the neural network are often not practically meaningful. Therefore, the spatial statistical 

analysis method in Chapter 4 was used to verify whether the prediction model can 

accurately predict the spatial properties of corroded surfaces. The applicability of the 

corrosion prediction model was verified by conducting a student t-test on the predicted 

and actual results, which confirmed that there was no significant difference between the 

predicted and actual results. 

In summary, firstly, this study conducted accelerated corrosion tests and atmospheric 

exposure tests on different types of uncoated steel to verify the simulation degree of 

accelerated corrosion tests on atmospheric exposure tests. A feasible verification method 

was provided, and the corrosion effect of a new accelerated corrosion test (ISO16539 

Method B) was confirmed. Secondly, by using spatial statistical analysis and deep 

learning methods, a corrosion prediction model that can be effective for a variety of steels 

and a variety of corrosion environments was developed. This study contributes positively 

to reducing the cost and time of corrosion monitoring of steel structures and simplifying 

the maintenance process. 

In future works, more specimens and corrosion time will be added to make the model 

more accurate. In addition, it will take into account the corrosion of coated steel plates 

and develop a corrosion prediction model for coated steel structures. 
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