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Abstract

There have been many experiments on adaptive control in laboratories and industries.

The rapid progress in microelectronics and integrated circuit technology was a strong

stimulation. Interaction between theory and experimentation resulted an active develop-

ment of the field. As a result, the development of adaptive controllers is now accelerating

and started to appear commercially. One of the primary reason for introducing adaptive

control was to obtain controllers that could adapt to changes in process dynamics in the

presence of system uncertainties. It has been found that adaptive techniques can also

be used to provide automatic tuning of controllers.

Previous works have been developed for various complex systems such as intercon-

nected and/or large-scale systems under different perspectives. However, they typically

do not guarantee an optimal solution while estimating the unknown uncertainty param-

eters of the system dynamics. In addition, poor transient performance due to uncertain-

ties is solved by increasing adaptive gains to rapidly suppress the uncertainties. However,

large adaptive gains may lead to high frequency oscillation and system instability.

Performance guarantee related to nominal tracking is also an issue in research works

for the development of distributed adaptive control architectures and realizing a desirable

tracking. Therefore, it is important to evaluate the performance degradation caused by

adaptation in terms of the performance index of the reference model which achieves

optimal tracking and a robust performance.

This dissertation proposes four approaches for adaptive control of uncertain dynam-

ical system for tracking problem. Each approach includes the evaluation of performance

degradation of the adaptive control law. First is model reference adaptive control scheme

for optimal LQ tracking in the presence of uncertainties. A new reference model selec-

tion is introduced by using linear quadratic regulator theory. Second is adaptive control

proposed for H∞ tracking of uncertain dynamical systems. A reference model which

achieves a robust tracking in the presence of L2 disturbances is introduced by using

H∞ control with transients. Third is a distributed model reference adaptive control

scheme for optimal tracking of an interconnected dynamical system in the presence of

system/interconnection uncertainties. Here, an adaptive control law is developed for

the uncertain interconnected dynamical system, where it employs the specified reference

ii



Abstract iii

model. The final is distributed adaptive control proposed for H∞ tracking of intercon-

nected uncertain dynamical systems. It is shown that the boundedness of the error

dynamics behaviors as well as zero tracking error in the steady state is guaranteed by

the proposed distributed adaptive control in the presence of disturbances and uncertain-

ties. An explicit error bound of tracking is also established. Numerical examples were

discussed to show applicability of the theoretical findings.
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4.7 Adaptive gains Ŵ3 (ηi = 50) . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Output tracking for y1, ym1(ηi = 15) . . . . . . . . . . . . . . . . . . . . . 50
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5.5 Adaptive gains for Ŵ2 (ηi = 100) . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Output tracking for y3, ym3 (ηi = 100) . . . . . . . . . . . . . . . . . . . . 66
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5.11 Adaptive gains Ŵ2 (ηi = 10) . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.12 Output tracking for y3, ym3 (ηi = 10) . . . . . . . . . . . . . . . . . . . . . 66
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Chapter 1

Introduction

1.1 Background

Every dynamical system is subjected to system uncertainty due to parameter variations,

disturbances, and model simplifications used to describe the physical system behavior.

Although the fixed gain robust controllers can deal with uncertainties, the adaptive

control approaches work effectively with less information about the uncertain dynamical

system to be controlled. An adaptive control system automatically compensates for

variations in system dynamics by adjusting the controller characteristics so that the

overall system performance is maintained at a desirable level [1].

Such controllers have been used in several applications with varying or uncertain

parameters such that high-performance aerial vehicles, large scale systems, underwater

vehicles, vibration suppression, flow control, drug dosing control system, and so on [2].

For example, a dissertation [3] focuses on the high performance robust control of non-

linear systems in the presence of parametric uncertainties and uncertain nonlinearities

(e.g., disturbances) and its application to the control of mechanical systems.

In fact, adaptive control can achieve a good performance without precise knowl-

edge about systems to be controlled and it can deal with uncertain systems because

it can tolerate large parametric uncertainties to ensure the desired tracking perfor-

mance. An adaptive control architecture was also proposed in [4, 5] to the application

of longitudinal-direction motion control of a nonlinear aircraft system. The response

control of a base-isolated structure equipped with magneto-rheological dampers under

earthquake excitations [6] and active suppression to isolate payloads from floor vibrations

and direct disturbance forces [7] is also proposed for facing the challenges of uncertainty.
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Introduction 2

The nature of fixed gain controllers is static because they cannot improve their perfor-

mance based on their past and current measurements, while most systems are naturally

dynamic. These fixed gain controllers are only suitable for time invariant systems, while

most process dynamics in nature are inherently time-varying. For example, aircraft

dynamics due to variations in atmospheric conditions, speed, and altitude. Moreover,

the performance of modern linear time-invariant (LTI) robust controls like H2, H∞ [8],

and µ-synthesis [9], and other fixed-gain controls may deteriorate for large uncertainty,

caused by unexpected conditions such as failure or degradation in system components.

However, adaptive controller can improve its performance online and can be less

dependent to the accuracy of the mathematical models of the system unlike the fixed gain

controllers which heavily rely on mathematical models. It automatically compensates

for variations in system dynamics by adjusting the controller characteristics so that the

overall system performance remains the same, or rather maintained at optimum level.

Adaptive controls can also be easily implemented as an addition on top of other control

schemes (e.g., robust and optimal controls, which are of fixed gain nature). While robust

control is a powerful method to overcome parameter variations of the system model, it

also depends on the range of uncertainty domain itself [10].

Therefore, to cope with the challenging issue of tracking problems under uncertainty,

modern control approaches like adaptive control need to satisfy a certain degree of

robustness and adaptivity. Adaptive controllers have been widely used control schemes

because of their adaptation mechanisms that mostly rely on the initial knowledge as well

as previous and current measurements about the process or plant being controlled [10].

The distinctive feature of adaptive control is that the knowledge of plant parameters

are not required and can still achieve boundedness of signals, system stability, and/or

asymptotic output/state tracking.

Generally adaptive controllers are classified as direct and indirect adaptive controls,

deterministic and stochastic systems as well as feedback and feed-forward adaptive con-

trols. To begin with the well-known model reference adaptive control (MRAS) solved

via MIT and the Lyapunov rules, it is used such that the closed loop system is matched

with a reference model which has been extensively studied and its theory and design

techniques have been developed for decades [11]. In MRAC, the tracking error between

the plant model under uncertainty and the reference model is used as a control signal

to drive the adaptation and to suppress undesired effects of uncertainty [1]. In addi-

tion to the adaptability, a stable and optimal control approach is required to achieve

optimal tracking performance with some sense of robustness that follows the desired

reference model as closely as possible particularly in the presence of system uncertainty

and external disturbances.
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In this dissertation, an adaptive control for tracking problem which is robust in

handling control effectiveness uncertainty, matched plant uncertainty, and external dis-

turbance uncertainty of a dynamical system is presented.

1.2 Related Works

One of the important research topics in large scale systems is understanding the stability

and performance analysis for uncertain interconnected systems. In fact, adaptive control

has been extensively studied for various complex systems such as interconnected and/or

large-scale systems under different perspectives. Many adaptive control approaches have

been developed for systems with uncertain dynamics to track the desired trajectory [12–

16]. However, they typically do not guarantee an optimal solution while estimating the

unknown uncertainty parameters of the system dynamics. Poor transient performance

due to the existence of large uncertainties such as control effectiveness failure or changes

in system parameters is solved by increasing the adaptive gains to rapidly suppress the

uncertainties and achieve fast adaptation. However, high learning rate may introduce

high frequency oscillations, which lead to system instability with poor transient perfor-

mance [17, 18]. Thus, an appropriate selection of control input is needed so that the

tracking error is minimized. In addition, several approaches have also been developed

to adaptive control for uncertain dynamical systems with disturbances. In certain cases,

due to uncertainty and/or disturbances, an adaptive control system may have poor sta-

bility margin and thus poor transient response, which requires our further investigation

about performance guarantees. See, for example, standard textbooks[19, 20] and/or

some papers[21–23]. In this regard, this dissertation consists on this issue in the context

of linear quadratic (LQ) tracking[24].

Since several uncertainties should be treated in large-scale systems composed of sev-

eral subsystems and interconnections, decentralized adaptive control was proposed in

[25, 26], where bounded disturbances and nonlinear uncertainties are considered. After

that, such a decentralized adaptive scheme was further investigated in [27, 28], where

it is proved that the output of the system can asymptotically track the output of the

reference model if all decentralized controllers share their prior information. On the

other hand, the paper [13] presented a distributed control, where each controller which

applies to each subsystem uses the information about her neighbors. Performance guar-

antee is also an issue even in decentralized adaptive control. In fact, the paper [13]

provided an error bound of tracking based on a Lyapunov solution of a given reference

model. This technique has further been investigated in the context of several type of

uncertain systems in [14, 15, 29]. In this regard, when we introduce a performance index
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and consider an optimal tracking, it is natural to explore a performance guarantee with

respect to the index. However, an available result does not exist. For example, the paper

[12] considered an adaptive optimal control for large-scale systems, where an asymptotic

optimality was investigated, while any error bound of tracking is not provided. It is

important to evaluate the performance degradation caused by adaptation in terms of

the performance index of the reference model which achieves optimal tracking. Then,

an appropriate selection of control input which incorporates the evaluation of perfor-

mance degradation is needed so that the tracking error is minimized for the nominal

system and an explicit error bound of the optimal tracking is obtained. For example,

an adaptive control with performance enforcement is proposed for a class of uncertain

dynamical systems that consist of actuated and unactuated portions that are physically

interconnected to each other [29]. A decentralized adaptive control of interconnected

systems is developed for stabilization and tracking via several approaches [30, 31].

Considering a wide array of applications of interconnected systems, another major

research area is the development of distributed control architectures such that the subsys-

tems perform given tasks through local interactions. Particularly, distributed adaptive

control for a class of multiagent systems with model uncertainties is proposed to track the

desired trajectory [32–34]. For instance, a distributed adaptive control approach is pro-

posed for uncertain multi-agent systems with coupled dynamics [35–37]. A distributed

adaptive control law is proposed for large-scale systems with unknown interconnection

parameters [38] and for large-scale modular systems interconnected physically [13] via

graph theoretic approach. As explained earlier since performance guarantee is also an

issue in distributed adaptive control, a work [13] provided an error bound of tracking

based on a Lyapunov solution of a given reference model. This technique has further

been investigated in the context of several type of uncertain systems in [35–38]. When

we introduce a performance index for realizing a desirable tracking, it is natural to ex-

plore a performance guarantee with respect to the index. However, there are few available

results in this context. For example, a paper [37] considers a distributed adaptive control

for large-scale systems, where boundedness of the internal signals is investigated, while

any performance guarantee related to nominal tracking is not provided.

In this regard, this dissertation discuses on evaluation the performance degradation

caused by adaptation in terms of the performance index which is used for designing the

reference model as LQ optimal tracking [24]. Here, an appropriate selection of control

input which incorporates the evaluation of performance degradation is needed so that

the tracking error is minimized for the nominal system and an explicit error bound of

the optimal tracking is obtained.
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This research introduces a new set of adaptive control approaches for uncertain

dynamical systems. The following approaches are proposed in this dissertation:

• Adaptive control for optimal LQ tracking

• Adaptive control for H∞ tracking

• Distributed adaptive control for optimal LQ tracking

• Distributed adaptive control for H∞ tracking

Each proposed approach has its corresponding chapter which contains detailed expla-

nation of its process and analyses of its properties, including stability analysis and per-

formance evaluation. Simulations are also provided for demonstrating the theoretical

results of the analyses.

1.3 Purpose and Contribution

The purpose of this dissertation is to develop novel adaptive control schemes for optimal

tracking of uncertain dynamical systems which is robust to disturbances. The resulting

approaches and their details are as follows:

The first approach, considers an optimal tracking problem to an uncertain dynamical

system using adaptive control scheme with a reference model with performance index.

The linear quadratic regulator (LQR) theory is applied to the nominal system to optimize

its response, where the optimal tracking gains are calculated by solving the algebraic

Riccati equation (ARE)[9]. The main contribution of this approach is to provide an

adaptive control for optimal tracking of uncertain dynamical systems. The reference

model parameters designed are identical with those of the optimal tracking system but

without uncertainties. That is, an optimal tracking control law for the nominal system

is employed and an adaptive tracking control law for the uncertain system is derived. In

addition, it is shown that the performance evaluation of the proposed adaptive control

law in the context of optimal tracking. The control law is based on Lyapunov stability

theory and is able to tune the gains of the control input and to suppress the influence of

the uncertainties. The theoretical analysis shows that the proposed algorithm guarantees

closed loop stability and convergence of the uncertain dynamical system state trajectories

to desired state trajectories. Finally, numerical examples demonstrate the applicability

of the theoretical results.

The second, proposes an adaptive control for H∞ tracking of uncertain dynamical

systems. To this end, employing H∞ control with transients[39–41], a reference model
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which achieves a robust tracking in the presence of L2 disturbances is introduced. Then

an adaptive control law for uncertain dynamical systems is developed, where the law

utilizes the specified reference model. It is shown that the proposed adaptive control

guarantees the boundedness of the error dynamics behaviors in the presence of distur-

bances and uncertainties, where it achieves zero tracking error in the steady state as

well. Furthermore, an explicit error bound of tracking, which enables us to evaluate a

transient performance of the control system is established. Numerical examples illustrate

that the theoretical results developed in this paper are useful.

The third, considers a class of large-scale dynamical systems with uncertain inter-

connection between the subsystems. A distributed control, where each controller which

applies to each subsystem uses the information about her neighbors is investigated. First

a performance index and consider an optimal tracking problem for each nominal sub-

system introduced. In addition, a reference model as optimal tracking for the nominal

subsystem is constructed, where a Riccati solution of an LQ regulator determines the

model. Then a distributed adaptive tracking control law is developed for the intercon-

nected uncertain dynamical system, where the Riccati solution for optimal tracking is

used in the update rule of the adaptive gain. It is shown that the proposed adaptive

control law achieves the desirable optimal tracking asymptotically as well as the bound-

edness of all signals. It is also established that an explicit error bound with respect

to the nominal optimal tracking, where a role of the learning rate of the update rule

is clarified. Numerical examples illustrate that the theoretical results developed in this

paper are useful. A preliminary version of this approach was presented at a conference

[24], where an adaptive tracking of a single plant is considered for a step-type reference

signal. Then it is extended with a distributed adaptive tracking of an interconnected

system for a general reference signal, which clarifies a possible performance guarantee

for a type of adaptive control law.

The fourth, follows this line of research [24]. It focuses on a class of interconnected

dynamical systems that is characterized by sets of uncertain dynamics with an unknown

physical interconnection between these dynamics. Specifically, a distributed adaptive

control is proposed for realizing a robust tracking of uncertain dynamical systems. To

this end, employing H∞ control with transients[39–41], a reference model which achieves

an H∞ tracking in the presence of L2 disturbances is introduced. Then a distributed

adaptive control law for uncertain dynamical systems is developed, where the law uti-

lizes the specified reference model. It is shown that the proposed distributed adaptive

control guarantees the boundedness of the error dynamics behaviors in the presence of

disturbances and uncertainties, where it achieves zero tracking error in the steady state

as well. Furthermore, an explicit error bound of tracking, which enables us to evaluate

a transient performance of the control system is established.
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Numerical examples are discussed to illustrate that the results developed in this

dissertation are useful. However another scenario showing the effectiveness of these

theoretical findings can be further applied to electrical power systems like adaptive

generator exciter control and adaptive load-frequency control, aircraft control systems,

and active control of vibration suppression. In addition the results can also be used

as an effective approach for mechanical robot manipulator controller design due to the

presence of nonlinearity and uncertainties in robot dynamic models. More generally,

the results can also be applied to distributed coordinated tracking control for a class of

uncertain multiagent systems and so on.

In a very general form table 1.1 summarizes the contribution of this dissertation.
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1.4 Organization

This dissertation is organized as follows. Chapter 1 contains notations and definition

used in this. Related works and some important concepts related to this study are also

discussed in this chapter. The succeeding chapters discuss the proposed approaches for

uncertain dynamical systems. In Chapter 2, optimal tracking problem to an uncertain

dynamical system using LQ adaptive control scheme is presented. Chapter 3 introduces

the concept of adaptive control for H∞ tracking of uncertain dynamical systems. This

approach is applied to interconnected uncertain dynamical systems with disturbance in

Chapter 4. In Chapter 5, discuss the distributed adaptive control scheme for class of in-

terconnected dynamical systems that is characterized by sets of uncertain dynamics with

an unknown physical interconnection between these dynamics. Finally, the conclusion

of this dissertation is stated in Chapter 6.

1.5 Preliminaries

In this dissertation, R denotes the set of real numbers, Rn denotes the set of n-dimensional

real column vectors, and Rn×m denotes the set of n×m real matrices. In addition, P T

is written for the transpose of a real matrix P , QT for the transpose of a real matrix Q,

R−1 for the inverse of a matrix R, rank S for the rank of a matrix S, and tr(U) for the

trace of a square matrix U . Furthermore, it is defined

∥f∥ =

(∫ ∞

0
fT (t)f(t)dt

)1/2

,

that is, ∥f∥ denotes the L2 norm of a function f .



Chapter 2

Adaptive control for optimal LQ

tracking of uncertain dynamical

systems

2.1 Overview

As mentioned in the previous chapter, optimal tracking problem to an uncertain dynam-

ical system using adaptive control scheme with a reference model and performance index

will be discussed. This approach addressed the use of LQR theory which is applied to

the nominal system in order to optimize the response of the uncertain dynamical system.

This chapter describes theoretical analysis that shows the performance evaluation

of the proposed adaptive control law in the context of optimal tracking. The control

law is based on Lyapunov stability theory which is able to tune the gains of the control

input and to suppress the influence of the uncertainties. Theoretical analysis that shows

that the proposed algorithm guarantees closed loop stability and convergence of the

uncertain dynamical system state trajectories to the desired state trajectory will also be

discussed in this chapter. Finally, numerical examples demonstrate the applicability of

the theoretical results.

10
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2.2 Problem formulation

Consider an uncertain dynamical system given by

ẋp(t) = Axp(t) +B[Λup(t) + ∆(xp(t))],

yp(t) = Cxp(t), (2.1)

where xp(t) ∈ Rn is the state vector which is assumed to be available for control,

up(t) ∈ Rm is the control input restricted to the class of admissible controls consisting of

measurable functions, and yp(t) ∈ Rm is the controlled output. The matrices A ∈ Rn×n,

B ∈ Rn×m, and C ∈ Rm×n represent the nominal known part of this system, where the

pair (A,B) is controllable and the pair (C,A) is observable. On the other hand, the

matrix Λ ∈ Rm×m and the vector-valued function ∆ : Rn → Rm represent the uncertain

unknown part of the system.

When Λ = I and ∆(xp) ≡ 0, we have the nominal system

ẋn(t) = Axn(t) +Bun(t),

yn(t) = Cxn(t), (2.2)

where xn(t) ∈ Rn, un(t) ∈ Rm, and yn(t) ∈ Rm correspond to xp(t), up(t), and yp(t) for

the nominal system of (2.1), respectively.

In this regard, we introduce the following assumption for Λ and ∆(xp).

Assumption 2.1. The control effectiveness Λ is an unknown symmetric and positive

definite matrix. The state dependent matched uncertainty ∆(xp) is linearly parameterized

as

∆(xp) = Fα(xp),

where F ∈ Rm×s is an unknown weight matrix and α : Rn → Rs is the corresponding

basis function.

For this system (2.1), we consider a reference signal r(t) ∈ Rm of a step type function

r(t) =

r−, t < 0,

r+, 0 ≤ t,
(2.3)
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where r− and r+ are constant vectors. It is known that the controlled output yn(t) of

(2.2) can achieve any r+ in the steady state if and only if

rank

[
A B

C 0

]
= n+m. (2.4)

We assume this condition for (2.1) as well.

The objective of this paper is to construct an adaptive control law for up(t) such that

the output yp(t) of the given system (2.1) asymptotically tracks the reference signal r(t)

of (2.3) in the presence of the system uncertainty described by Λ and ∆(xp) satisfying

Assumption 2.1. In particular, we employ an optimal tracking control law for the nominal

system (2.2) and derive an adaptive tracking control law for the uncertain system (2.1)

with a performance guarantee related to the nominal optimality.

2.3 Reference model selection

We first consider the nominal system (2.2) and revisit a standard optimal tracking for

the reference signal (2.3)[42].

It should be noted that there exist a unique state x∞ and a unique control input u∞

for which yn(t) = r+ in the steady state. They are calculated as

[
x∞

u∞

]
=

[
A B

C 0

]−1 [
0

r+

]
(2.5)

under the condition (2.4). We denote the variations of xn(t) and un(t) from x∞ and u∞

by

x̃n(t) = xn(t)− x∞, ũn(t) = un(t)− u∞, (2.6)

and the tracking error of the controlled output yn(t) by

en(t) = r(t)− yn(t).

Using these notations, the variation system is defined by

˙̃xn(t) = Ax̃n(t) +Bũn(t),

en(t) = −Cx̃n(t). (2.7)
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To obtain a good transient behavior of tracking to the reference signal r(t), we apply

linear quadratic regulator theory to the variation system (2.7) with the performance

index

Jn =

∫ ∞

0
{eTn (t)Qen(t) + ũTn (t)Rũn(t)}dt, (2.8)

where Q ∈ Rm×m and R ∈ Rm×m are symmetric and positive definite matrices. Then

the optimal control law which minimize Jn with respect to (2.7) is given by

ũn(t) = −R−1BTPx̃n(t), (2.9)

where P ∈ Rn×n is a symmetric and positive definite solution of the Riccati equation

ATP + PA− PBR−1BTP + CTQC = 0. (2.10)

When the control law (2.9) is applied to the variation system (2.7), the resultant closed

loop system is stable, and x̃n(t) → 0, en(t) → 0 as t → ∞, where the minimum value of

Jn is given by

min
ũn

Jn = x̃Tn (0)Px̃n(0). (2.11)

Using (2.5) and (2.6), we rewrite the control law (2.9) as

un(t) = Kxn(t) +Hr(t) (2.12)

for the nominal system (2.2), where

K = −R−1BTP (2.13)

H =
[
−K I

] [A B

C 0

]−1 [
0

I

]

=
[
0 I

] [ I 0

K I

]−1 [
A B

C 0

]−1 [
0

I

]

=
[
0 I

] [A+BK B

C 0

]−1 [
0

I

]
=
{
−C(A+BK)−1B

}−1
. (2.14)

That is, the optimal tracking control law for the nominal system (2.2) is composed of

a feedback from the state xn(t) and a feedforward from the reference signal r(t). The
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resultant control system with (2.2) and (2.12) is described by

ẋn(t) = (A+BK)xn(t) +BHr(t),

yn(t) = Cxn(t). (2.15)

When there is no uncertainty in the system (2.1), the optimal tracking (2.15) repre-

sents the best achievable behavior. We therefore consider an adaptive control framework

for (2.1) which asymptotically realizes the optimal tracking (2.15). To this end, we em-

ploy the optimal tracking system (2.15) as the reference model. Then we develop a

model reference adaptive control and derive its performance guarantee regarding the

index (2.8).

2.4 Adaptive control scheme

Let us go back to the uncertain dynamical system (2.1). Since we have selected (2.15)

as the reference model, we rewrite (2.1) as

ẋp(t) = (A+BK)xp(t) +BHr(t)

+BΛ[up(t) + δ(t)],

yp(t) = Cxp(t), (2.16)

where we define

δ(t) = −Λ−1[Kxp(t) +Hr(t)−∆(xp(t))]

= −Wσ(xp(t), r(t)).

In fact, from Assumption 2.1, the signal δ(t) must be parameterized by using an unknown

weight W ∈ Rm×q and the corresponding basis function σ : Rn+m → Rq which contains

xp(t), r(t), and α(xp(t)), where q ≤ n+m+ s.

Then we introduce an adaptive feedback control law

up(t) = Ŵ (t)σ(xp(t), r(t)), (2.17)

where we define the update rule of the adaptive control gain Ŵ (t) ∈ Rm×q as

˙̂
W (t) = −ηBTP (xp(t)− xn(t))σ

T (xp(t), r(t)). (2.18)



Adaptive control for optimal LQ tracking of uncertain dynamical systems 15

It should be noted that xn(t) of (2.18) is generated by (2.15). The learning rate η is a

positive real number and P is the symmetric and positive definite solution of the Riccati

equation (2.10).

Now, let us define the errors from the ideal case as

xe(t) = xp(t)− xn(t), ye(t) = yp(t)− yn(t),

We(t) = Ŵ (t)−W,

where xn(t) and yn(t) are from (2.15). With (2.15), (2.16), (2.17), and (2.18), we have

ẋe(t) = (A+BK)xe(t) +BΛWe(t)σ(xp(t), r(t)),

ye(t) = Cxe(t), (2.19)

Ẇe(t) = −ηBTPxe(t)σ
T (xp(t), r(t)) (2.20)

which describes the error dynamics from the reference model (2.15).

The next theorem presents the result of this section.

Theorem 2.2. Consider the uncertain dynamical system described by (2.1) subject to

Assumption 2.1. Consider, in addition, the reference model given by (2.15) and the

adaptive feedback controller given by (2.17) and (2.18). Then, the solution (xe(t),We(t))

given by (2.19) and (2.20) is Lyapunov stable and

lim
t→∞

ye(t) = 0

for all (xe(0),We(0)).

Proof. Consider a candidate of Lyapunov function

V (xe,We) = xTe Pxe +
1

η
trW T

e ΛWe,

where η and P are taken from (2.18) and Λ of (2.1) satisfies Assumption 2.1, which

means that P = P T > 0 and Λ = ΛT > 0. Thus the function V (xe,We) is in fact

a continuously differentiable function such that V (0, 0) = 0 and V (xe,We) > 0 for all

(xe,We) ̸= (0, 0).
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Differentiating this candidate along the trajectories of (2.19) and (2.20), we have

V̇ (xe(t),We(t))

= ẋTe (t)Pxe(t) + xTe (t)Pẋe(t) +
2

η
trẆ T

e (t)ΛWe(t)

= xTe (t)
(
(A+BK)TP + P (A+BK)

)
xe(t)

+ 2xTe (t)PBΛWe(t)σ(xp(t), r(t))

− 2tr
(
σ(xp(t), r(t))x

T
e (t)PBΛWe(t)

)
= xTe (t)

(
(A+BK)TP + P (A+BK)

)
xe(t)

= −xTe (t)
(
CTQC +KTRK

)
xe(t), (2.21)

where we use the fact that the Riccati equation (2.10) can be rewritten as

(A+BK)TP + P (A+BK) = −(CTQC +KTRK)

with K of (2.13). Since Q = QT > 0 and R = RT > 0, we see that

V̇ (xe(t),We(t)) ≤ 0,

which means that

V (xe(t),We(t)) ≤ V (xe(0),We(0))

holds ∀t ≥ 0. Hence the solution (xe(t),We(t)) given by (2.19) and (2.20) is Lyapunov

stable.

Now, let us recall a standard fact∫ t

0
V̇ (xe(τ),We(τ))dτ

= V (xe(t),We(t))− V (xe(0),We(0)),

which holds for all t ≥ 0. With (2.21), we have

−V̇ (xe(t),We(t)) = xTe (t)
(
CTQC +KTRK

)
xe(t)

≥ yTe (t)Qye(t).

Note also that V (xe(t),We(t)) ≥ 0.
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Thus we obtain ∫ t

0
yTe (τ)Qye(τ)dτ

≤ −
∫ t

0
V̇ (xe(τ),We(τ))dτ

≤ −
∫ t

0
V̇ (xe(τ),We(τ))dτ + V (xe(t),We(t))

= V (xe(0),We(0)) (2.22)

for all t ≥ 0.

We therefore see that∫ ∞

0
yTe (t)Qye(t)dt ≤ V (xe(0),We(0)), (2.23)

Furthermore, since ẏe(t) = Cẋe(t) and ẋe(t) of (2.19) is represented by the signals xe(t),

We(t), and r(t), we can see that

sup
t≥0

(
ẏTe (t)Qẏe(t)

)
< ∞. (2.24)

In fact, xe(t) and We(t) are bounded as we have proved above, while r(t) of (2.3) is

bounded as we have assumed.

The boundedness of xp(t) follows the boundedness of xe(t) and xn(t) of (2.15). Using

(2.23), (2.24), and A.1 we conclude that the tracking error ye(t) satisfy

lim
t→∞

ye(t) = 0

with Q = QT > 0. for any (xe(0),We(0)).

Remark 2.3. Theorem 2.2 establishes Lyapunov stability for the error dynamics of the

proposed adaptive control in the presence of uncertainties. The theorem also shows that

zero steady state tracking error is achieved by this control.

2.5 Performance evaluation

Since the proposed adaptive control given by (2.17) and (2.18) employs the optimal

tracking system (2.15) as the reference model, one of our interests should be to evaluate

the performance degradation from the optimal response.
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To this end, we first rewrite the minimum value (2.11) of the performance index (2.8)

as

min
ũn

Jn =

∫ ∞

0
x̃Tn (t)

(
CTQC +KTRK

)
x̃n(t)dt, (2.25)

where K is the optimal gain (2.13). Referring the above, we define a performance index

for the adaptive control as

Je =

∫ ∞

0
xTe (t)

(
CTQC +KTRK

)
xe(t)dt. (2.26)

This index (2.26) is in fact suitable for evaluating the degradation caused by adaptation

since its weight matrix coincides with that of (2.25) and Je becomes 0 if the perfect

tracking xp(t) = xn(t) is achieved.

For this index (2.26), we have the following result.

Theorem 2.4. Consider the uncertain dynamical system described by (2.1) subject to

Assumption 2.1. Consider, in addition, the reference model given by (2.15) and the

adaptive feedback controller given by (2.17) and (2.18). Then, the index (2.26) is bounded

as

Je ≤ xTe (0)Pxe(0) +
1

η
trW T

e (0)ΛWe(0). (2.27)

Proof. In the proof of Theorem 2.2, we have established (2.21) and (2.22), which implies

that ∫ t

0
xTe (τ)

(
CTQC +KTRK

)
xe(τ)dτ

≤ V (xe(0),We(0))

holds for all t ≥ 0. Thus it turns out that∫ ∞

0
xTe (t)

(
CTQC +KTRK

)
xe(t)dt

≤ V (xe(0),We(0)),

which establishes the bound (2.27).

Remark 2.5. The upper bound given by Theorem 2.4 guarantees the transient perfor-

mance of the proposed adaptive control. It shows that the performance of the adaptive
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controller applied to the uncertain dynamical system captured by xe(t) cannot be more

than the right hand side of (2.27). In addition, if we make the learning rate η large, the

transient performance will be better which will be confirmed in the numerical example

below.

Regarding the conservativeness of the performance evaluation if perfect tracking

is achieved (xe(t) = xp(t) − xn(t) = 0) and there is no estimation error (We(t) =

Ŵ (t)−W = 0), then the performance index Je ≤ 0.

2.6 Numerical example

Consider an uncertain second order mass-spring-damper system shown in Fig. 2.1, where

a mass is hanging on a spring and damper. The equation of motion is

Mpẍ(t) + Cpẋ(t) +Kpx(t) = u(t), (2.28)

where Mp, Cp, and Kp refers to mass, damping constant and spring constant of the

system respectively, which are unknown and uncertain parameters.

Let us introduce the state xp(t) as

xp(t) =

[
x(t)

ẋ(t)

]
.

Then the mass-spring-damper system (2.28) can be represented as the form of (2.1) with

A =

[
0 1

0 0

]
, B =

[
0

1

]
, C =

[
1 0

]
,

Λ =
1

Mp
, F =

[
−Kp

Mp
− Cp

Mp

]
, α(xp(t)) = xp(t),

where the uncertain parameters are represented as Λ and F which satisfy Assump-

tion 2.1.

Figure 2.1: Mass-spring-damper system
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cati P (η = 15)
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Figure 2.8: Output with Lyapunov P
(η = 15)

0 5 10 15 20 25
-4

-2

0

2

4

Figure 2.9: Adaptive gains with Lya-
punov P (η = 15)
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Since (A,B) is controllable, (C,A) is observable, and the condition (2.4) is satisfied,

we can obtain an optimal tracking control law (2.12) for the nominal system (2.2). In

fact, we have a symmetric and positive definite solution P of (2.10) as

P =

[√
2 1

1
√
2

]
(2.29)

when we choose Q = 1 and R = 1 in (2.8). Then the optimal tracking gains are

K =
[
−1 −

√
2
]
, H = 1. (2.30)

In this case, the proposed adaptive control gain (2.18) employs the Riccati solution P

of (2.29), where

σ(xp(t), r(t)) =

[
xp(t)

r(t)

]
.

We remark that the standard adaptive control gain [1] (see B.5) is also updated

according to the same form (2.18), but P is chosen as a Lyapunov solution of

P (A+BK) + (A+BK)TP = −Q.

For the reference model (2.15) with the gains (2.30), an example is

P =
1

2

[
2
√
2 1

1
√
2

]
(2.31)

with Q = I.

Generally, Theorem 2.2 and 2.4 shows the boundedness and convergence of all signals

including Ŵ (t). However, W can be calculated as:

W = Λ−1
[
K −F H

]
=
[
−1 3 1− 3

√
2
]

Let us compare the proposed adaptive control based on the Riccati solution (2.29)

with the standard adaptive control [1] based on the Lyapunov solution (2.31) via a

numerical example. We set the unknown and uncertain parameters of (2.28) as Mp = 3,

Cp = 1, and Kp = 2. We set all of the initial states and gains as zero.

Figs. 2.2-2.5 show the step responses and the gain behaviors of the proposed adap-

tive control based on the Riccati solution (2.29), where Figs. 2.2-2.3 are with η = 5,

while Figs. 2.4-2.5 are with η = 15. On the other hand, Figs. 2.6-2.9 show the step
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responses and the gain behaviors of the standard adaptive control based on the Lya-

punov solution (2.31), where Figs. 2.6-2.7 are with η = 5, while Figs. 2.8-2.9 are with

η = 15. Note that yp(t) and yn(t) are indicated as solid and dashed lines, respectively,

in Figs. 2.2, 2.4, 2.6, and 2.8. The elements Ŵ1(t), Ŵ2(t) and Ŵ3(t) of the adaptive gain

Ŵ (t) =
[
Ŵ1(t) Ŵ2(t) Ŵ3(t)

]
are indicated as solid, dashed, and dash-dotted lines,

respectively, in Figs 3, 5, 7 and 9. In Figs. 2.2-2.5, all signals are bounded and yp(t)

tends to yn(t) as t tends to infinity, which is consistent with Theorem 2.2. Furthermore,

comparing Fig. 2.2 and Fig. 2.4, we see that a larger η gives a better performance, which

is consistent with Theorem 2.4. Regarding optimality, comparing Fig. 2.2 and Fig. 2.6 or

Fig. 2.4 and Fig. 2.8, we see that the proposed adaptive control shows a better transient

response. This justifies employing the Riccati solution in the update rule of the adaptive

control gain.

2.7 Summary

In this chapter, model reference adaptive control scheme is proposed for optimal LQ

tracking in the presence of uncertainties. A new reference model selection is introduced

by using linear quadratic regulator theory. That is, we employ an optimal tracking

control law for the nominal system and derive an adaptive tracking control law for the

uncertain system with a performance guarantee related to the nominal optimality. Then

the adaptive control law achieves the desired behavior such that the output of the uncer-

tain dynamical system asymptotically tracks a given reference signal in the presence of

the system uncertainty. The optimal and stable performance of the uncertain dynamical

system is guaranteed by the LQR controller introduced to the nominal system and the

adaptive tuning law developed based on Lyapunov stability theory to compensate the

uncertainties. Numerical examples show that the proposed control algorithm is able to

adaptively track the optimal response of the reference model and to suppress the influ-

ence of the uncertainties.



Chapter 3

Adaptive control for H∞ tracking

of uncertain dynamical systems

3.1 Overview

The previous chapter introduced optimal tracking for uncertain dynamical systems using

LQR control theory approach for stability analysis and evaluation of performance degra-

dation. This chapter proposes an adaptive H∞ control for robust tracking of uncertain

dynamical systems by employing H∞ control with transients[39–41] in the presence of

L2 disturbances. A reference model which achieves a robust tracking in the presence of

L2 disturbances is introduced by using H∞ control with transients. Then an adaptive

control law is developed for uncertain dynamical systems, where it employs the specified

reference model.

This chapter shows that the proposed adaptive control guarantees the boundedness

of the error dynamics as well as zero tracking error in the steady state is guaranteed by

the proposed adaptive control in the presence of disturbances and uncertainties. Fur-

thermore, an explicit error bound of tracking, which enables us to evaluate a transient

performance of the control system is also established. Finally, numerical examples illus-

trate that the theoretical results developed in this paper are useful.

23
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3.2 Problem formulation

Consider an uncertain dynamical system given by

ẋp(t) = Axp(t) +B[Λup(t) + ∆(xp(t))] + Ed(t),

xp(0) = xp0,

yp(t) = Cxp(t), (3.1)

where xp(t) ∈ Rn is the state vector which is assumed to be available for control,

up(t) ∈ Rm is the control input restricted to the class of admissible controls consisting of

measurable functions, yp(t) ∈ Rm is the controlled output, and d(t) ∈ Rp is an unknown

disturbance. Here we assume that d ∈ L∞ ∩L2 and ḋ ∈ L∞. In other words, we assume

that d(t) satisfies

sup
t≥0

dT (t)d(t) < ∞,

∫ ∞

0
dT (t)d(t)dt < ∞,

sup
t≥0

ḋT (t)ḋ(t) < ∞.

Notice here that we have limt→∞ d(t) = 0 if d ∈ L2 and ḋ ∈ L∞ [43]. The matrices

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and E ∈ Rn×p represent the nominal known part of

this system, where the pair (A,B) is controllable and the pair (C,A) is observable. On

the other hand, the matrix Λ ∈ Rm×m and the vector-valued function ∆ : Rn → Rm

represent the uncertain unknown part of the system. Here we introduce the following

assumption.

Assumption 3.1. The control effectiveness Λ is an unknown symmetric and positive

definite matrix. The state dependent matched uncertainty ∆(xp) is linearly parameterized

as

∆(xp) = Fα(xp), (3.2)

where F ∈ Rm×s is an unknown weight matrix and α : Rn → Rs is the corresponding

given basis function.

For this system (3.1), we define its nominal system as

ẋn(t) = Axn(t) +Bun(t) + Ed(t), xn(0) = xp0

yn(t) = Cxn(t), (3.3)
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where xn(t) ∈ Rn, un(t) ∈ Rm, and yn(t) ∈ Rm correspond to xp(t), up(t), and yp(t) for

the nominal system of (3.1), respectively. That is, the system (3.1) takes its nominal

behavior when Λ = I and ∆(xp) ≡ 0.

In this chapter, we consider a reference signal r(t) ∈ Rm of a step type function

r(t) =

r−, t < 0,

r+, 0 ≤ t,
(3.4)

where r− and r+ are constant vectors. It is known that the controlled output yn(t) of

(3.3) can achieve any r+ in the steady state if and only if

rank

[
A B

C 0

]
= n+m. (3.5)

We assume this condition for (3.1) as well.

The objective of this chapter is to construct a robust adaptive control law for up(t)

such that the output yp(t) of the given system (3.1) asymptotically tracks the reference

signal r(t) of (3.4) in the presence of the L2 disturbance d(t) and the system uncer-

tainty described by Λ and ∆(xp) satisfying Assumption 3.1. In particular, we provide

a reference model via an H∞ type robust tracking control for the nominal system (3.3)

and derive a robust adaptive tracking control law for the uncertain system (3.1) with a

performance guarantee related to an H∞ type measure. Here, the performance measure

is the induced norm of the tracking error over all possible disturbances and initial states.

3.3 Reference model selection

In this section, we select a suitable reference model for our adaptive control. To this end,

we employ an H∞ control design [39–41] in order to design a robust tracking control law

for the nominal system (3.3) to the reference signal (3.4).

We first introduce a variation system for tracking control. Since limt→∞ d(t) = 0,

there exist a state x∞ and a control input u∞ which achieve yn(t) = r+ in the steady

state, independently of d(t). They are uniquely determined as

[
x∞

u∞

]
=

[
A B

C 0

]−1 [
0

r+

]
(3.6)
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under the condition (3.5). We write the variations of xn(t) and un(t) from x∞ and u∞

as

x̃n(t) = xn(t)− x∞, x̃n0 = xp0 − x∞

ũn(t) = un(t)− u∞, (3.7)

and the tracking error of the controlled output yn(t) as

en(t) = r(t)− yn(t).

Using these notations, the variation system is defined by

˙̃xn(t) = Ax̃n(t) +Bũn(t) + Ed(t), x̃n(0) = x̃n0,

en(t) = −Cx̃n(t). (3.8)

In this way, we can recast the original tracking problem as a stabilization problem of

the variation system. That is, if a feedback control law

ũn(t) = Kx̃n(t) (3.9)

stabilizes the variation system given by (3.8), it turns out that limt→∞ x̃n(t) = 0, i.e.,

limt→∞ yn(t) = r+.

In order to select a suitable control law (3.9) for tracking in the presence of L2

disturbance d(t), we employ a robust control design which is called H∞ control with

transients [39]. That is, in this chapter, we utilize a performance specification

sup

{
∥en∥2

∥d∥2 + x̃Tn0Rx̃n0

}1/2

< γ, (3.10)

where γ ∈ R is a specified positive number and R > 0 is a positive definite matrix which

is weight for the initial uncertainty. The supremum is taken over all x̃n0 ∈ Rn and d ∈ L2

which satisfy ∥d∥2 + x̃Tn0Rx̃n0 ̸= 0. Then, we see that there exists a state feedback (3.9)

which stabilizes (3.8) and achieves (3.10) if and only if there exist X = XT ∈ Rn×n and

G ∈ Rm×n which satisfy the linear matrix inequalities
AX +XAT +BG+GTBT E XCT

ET −γ2I 0

CX 0 −I

 < 0,

[
X I

I γ2R

]
> 0, (3.11)
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where such a state feedback gain K of (3.9) is obtained by

K = GX−1. (3.12)

This is a direct consequence of the existing work [41]. Throughout this chapter, we

assume that such a X exists for a given γ > 0.

As a matter of fact, the performance (3.10) is guaranteed by the feedback gain (3.12)

as follows. When we define

P = X−1 (3.13)

and use (3.12), we can rewrite (3.11) as

P (A+BK) + (A+BK)TP +
1

γ2
PEETP

+ CTC < 0, (3.14)

γ2R > P = P T > 0, (3.15)

where we see that A + BK is Hurwitz, i.e., the resultant closed-loop system is stable.

The inequality (3.14) together with (3.8) and (3.9) implies that

d

dt

(
x̃Tn (t)Px̃n(t)

)
= x̃Tn (t)

(
P (A+BK) + (A+BK)TP

)
x̃n(t)

+ x̃Tn (t)PEd(t) + dT (t)ETPx̃n(t)

< − 1

γ2
x̃Tn (t)PEETPx̃n(t)− x̃Tn (t)C

TCx̃n(t)

+ x̃Tn (t)PEd(t) + dT (t)ETPx̃n(t)

= −
(
γd(t)− 1

γ
ETPx̃n(t)

)T (
γd(t)− 1

γ
ETPx̃n(t)

)
− x̃Tn (t)C

TCx̃n(t) + γ2dT (t)d(t)

≤ −eTn (t)en(t) + γ2dT (t)d(t) (3.16)

for any x̃n(t) ̸= 0. Integrating this inequality from 0 to ∞, with (3.15), we have

∥en∥2 − γ2 ∥d∥2 < x̃Tn0Px̃n0 < γ2x̃Tn0Rx̃n0,

where we use limt→∞ x̃Tn (t)Px̃n(t) = 0 which is guaranteed by the closed-loop stability.

The above inequality shows that the performance specification (3.10) holds.
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Using (3.6) and (3.7), we rewrite the control law (3.9) as

un(t) = Kxn(t)−Kx∞ + u∞

= Kxn(t) +Hr(t) (3.17)

for the nominal system (3.3), where K is given by (3.12) and H is represented as

H =
[
−K I

] [A B

C 0

]−1 [
0

I

]
=
{
−C(A+BK)−1B

}−1
. (3.18)

The resultant control system with (3.3) and (3.17) is described by

ẋn(t) = (A+BK)xn(t) +BHr(t) + Ed(t), xn(0) = xp0

yn(t) = Cxn(t). (3.19)

Since it achieves the performance specification (3.10), it is suitable as a reference model

for adaptive control. However, the unknown d(t) should be excluded in the reference

model. Also, the initial states of the given system and the reference model may be

different. Thus, in this chapter, we use the system

ẋm(t) = (A+BK)xm(t) +BHr(t), xm(0) = xm0

ym(t) = Cxm(t) (3.20)

as the reference model for adaptive control, where xm(t) ∈ Rn is the state, K is given

by (3.12) based on the LMIs (3.11), and H is given by (3.18) with this K.

3.4 Adaptive control scheme

Let us go back to the uncertain dynamical system (3.1). According to the selected

reference model (3.20), we rewrite (3.1) as

ẋp(t) = (A+BK)xp(t) +BHr(t) + Ed(t)

+BΛ[up(t) + δ(t)], xp(0) = xp0

yp(t) = Cxp(t), (3.21)
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where we define

δ(t) = −Λ−1[Kxp(t) +Hr(t)−∆(xp(t))]

= −Wσ(xp(t), r(t)).

In fact, from Assumption 3.1, the signal δ(t) must be parameterized by using an unknown

weight W ∈ Rm×q and the corresponding basis function σ : Rn+m → Rq which contains

xp(t), r(t), and α(xp(t)), where q ≤ n+m+ s.

Then we introduce an adaptive feedback control law

up(t) = Ŵ (t)σ(xp(t), r(t)), (3.22)

where we define the update rule of the adaptive control gain Ŵ (t) ∈ Rm×q as

˙̂
W (t) = − η

γ2
BTP (xp(t)− xm(t))σT (xp(t), r(t))

Ŵ (0) = Ŵ0. (3.23)

Notice that xm(t) of (3.23) is generated by (3.20). The learning rate η is any positive

real number, the specification γ for the nominal system is the one in (3.10), and P is a

symmetric and positive definite matrix defined by (3.13), where X is a solution of the

linear matrix inequalities (3.11).

Now, let us define the errors from the ideal case as

xe(t) = xp(t)− xm(t), xe0 = xp0 − xm0

ye(t) = yp(t)− ym(t),

We(t) = Ŵ (t)−W, We0 = Ŵ0 −W

where xm(t) and ym(t) are defined in (3.20). With (3.20), (3.21), (3.22), and (3.23), we

have

ẋe(t) = (A+BK)xe(t) + Ed(t)

+BΛWe(t)σ(xp(t), r(t)),

xe(0) = xe0,

ye(t) = Cxe(t), (3.24)

Ẇe(t) = − η

γ2
BTPxe(t)σ

T (xp(t), r(t)),

We(0) = We0, (3.25)
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which describes the error dynamics from the reference model (3.20).

The next theorem presents the result of this section.

Theorem 3.2. Consider the uncertain dynamical system described by (3.1) subject to

Assumption 3.1. Consider, in addition, the reference model given by (3.20) and the

adaptive feedback controller given by (3.22) and (3.23). Then, the solution (xe(t),We(t))

given by (3.24) and (3.25) is bounded and

lim
t→∞

ye(t) = 0

for all (xe0,We0).

Proof. Consider a candidate of Lyapunov function

V (xe,We) = xTe Pxe +
γ2

η
trW T

e ΛWe,

where η and P are taken from (3.23) and Λ of (3.1) satisfies Assumption 3.1, which

means that P = P T > 0 and Λ = ΛT > 0. Thus the function V (xe,We) is in fact

a continuously differentiable function such that V (0, 0) = 0 and V (xe,We) > 0 for all

(xe,We) ̸= (0, 0).

Differentiating this candidate along the trajectories of (3.24) and (3.25), we have

d

dt
V (xe(t),We(t))

= ẋTe (t)Pxe(t) + xTe (t)Pẋe(t) +
2γ2

η
trẆ T

e (t)ΛWe(t)

= xTe (t)
(
P (A+BK) + (A+BK)TP

)
xe(t)

+ xTe (t)PEd(t) + dT (t)ETPxe(t)

+ 2xTe (t)PBΛWe(t)σ(xp(t), r(t))

− 2tr
(
σ(xp(t), r(t))x

T
e (t)PBΛWe(t)

)
= xTe (t)

(
(A+BK)TP + P (A+BK)

)
xe(t)

+ xTe (t)PEd(t) + dT (t)ETPxe(t)

< −yTe (t)ye(t) + γ2dT (t)d(t)
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for any x̃e(t) ̸= 0, which partially follows completing the square used in (3.16). Inte-

grating this inequality from 0 to any T > 0, we have∫ T

0
yTe (t)ye(t)dt+ V (xe(T ),We(T ))

≤
∫ T

0
γ2dT (t)d(t)dt+ V (xe0,We0). (3.26)

Since d ∈ L2, the right-hand side of the inequality is bounded. Thus, V (xe(T ),We(T ))

is bounded for any T > 0, which implies that the solution (xe(t),We(t)) is bounded.

Also, the boundedness of the right-hand side of (3.26) implies that

lim
T→∞

∫ T

0
yTe (t)ye(t)dt < ∞. (3.27)

Furthermore, since ẏe(t) = Cẋe(t) and ẋe(t) of (3.24) is represented by the signals xe(t),

d(t), We(t), xp(t), and r(t), we can see that

sup
t≥0

ẏTe (t)ẏe(t) < ∞. (3.28)

In fact, xe(t) and We(t) are bounded as we have proved above, while d ∈ L∞ is bounded

and a step type function r(t) of (3.4) is bounded. The boundedness of xp(t) follows the

boundedness of xe(t) and xm(t) of (3.20). With (3.27), (3.28), and [43], we obtain

lim
t→∞

ye(t) = 0.

This completes the proof of the theorem.

Remark 3.3. Theorem 3.2 establishes boundedness of the error dynamics behaviors via

the proposed adaptive control in the presence of disturbances and uncertainties. The

theorem also shows that zero steady state tracking error is achieved by this control.

3.5 Performance evaluation

Since the proposed adaptive control given by (3.22) and (3.23) employs an H∞ control

(3.20) for the nominal system (3.3) as the reference model, one of our interests should

be to evaluate the performance degradation due to introduction of adaptive mechanism.
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In this regard, let us recall the performance specification (3.10) for the nominal

system. It says that

∥r − yn∥

≤ γ
(
∥d∥2 + (xp0 − x∞)TR(xp0 − x∞)

)1/2
(3.29)

holds for any d ∈ L2, xp0 ∈ Rn, and x∞ ∈ Rn. On the other hand, when we use the

adaptive control of (3.20), (3.22), and (3.23), we can evaluate the tracking error ∥r−yp∥
similarly as follows.

Theorem 3.4. Consider the uncertain dynamical system described by (3.1) subject to

Assumption 3.1. Consider, in addition, the reference model given by (3.20) and the

adaptive feedback controller given by (3.22) and (3.23). Then, the tracking error is

bounded as

∥r − yp∥

≤ γ
{(

∥d∥2 + (xp0 − xm0)
TR(xp0 − xm0)

+
1

η
tr(Ŵ0 −W )TΛ(Ŵ0 −W )

)1/2
+
(
(xm0 − x∞)TR(xm0 − x∞)

)1/2}
(3.30)

for any d ∈ L2, xp0 ∈ Rn, xm0 ∈ Rn, x∞ ∈ Rn, and Ŵ0 ∈ Rm×q.

Proof. Since (3.29) holds for (3.19), we have

∥r − ym∥

≤ γ
(
(xm0 − x∞)TR(xp0 − x∞)

)1/2
(3.31)

for the reference model (3.20) which does not contain d ∈ L2. Regarding the adaptive

control, we have established (3.26), which means that

∥ye∥2 ≤ γ2∥d∥2 + V (xe0,We0).

Thus we have

∥yp − ym∥

≤ γ
(
∥d∥2 + (xp0 − xm0)

TR(xp0 − xm0)

+
1

η
tr(Ŵ0 −W )TΛ(Ŵ0 −W )

)1/2
. (3.32)



Adaptive control for H∞ tracking of uncertain dynamical systems 33

These evaluations (3.31) and (3.32) together with the triangle inequality

∥r − yp∥ ≤ ∥r − ym∥+ ∥ym − yp∥ (3.33)

gives the tracking error bound of the theorem.

Remark 3.5. This bound given by Theorem 3.4 shows a transient performance of the

proposed H∞ adaptive control. It says that L2 type gain from the disturbance and

the initial values to the tracking error of the adaptive control is bounded by γ as that

of the corresponding nominal closed-loop system (3.19) is. In addition, if we use large

learning rate η, the transient performance becomes better, which will be confirmed in

the numerical example below.

Regarding the conservativeness of the performance evaluation if perfect tracking is

achieved (xe0 = xp0−xm0 = 0) and there is no estimation error (We0(t) = Ŵ0(t)−W =

0), then the tracking error is bounded the same as the nominal system.

3.6 Numerical Example

In this section, we demonstrate the proposed adaptive control through a numerical

example. Referring [44, 45], we selected the known part of the system (3.1) as

A =

[
−1.0189 0.9051

0.8223 −1.0774

]
, B =

[
−0.0022

−0.1756

]
,

C =
[
1 0

]
, E =

[
0 0.1

]T
, α(xp(t)) = xp(t),

while we chose the unknown part of the system (3.1) as

Λ = 0.5, F =
[
1 2

]
, d(t) = 9e−t/10 sin t,

where Assumption 3.1 is satisfied. When we solve the LMIs (3.11) with γ = 1 and

R = 3I, we obtained

X =

[
1.1469 −0.1202

−0.1202 2.9155

]
,

G =
[
21.9789 −10.1665

]
,
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Figure 3.1: Output with η = 700
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Figure 3.2: Adaptive gains with η =
700

which gives the tracking gains are

K =
[
18.8795 −2.7087

]
, H = −18.0361.

Also, with (3.13), we have

P =

[
0.8757 0.0361

0.0361 0.3445

]
,

which is used in the proposed adaptive control gain (3.23), where we set

σ(xp(t), r(t)) =

[
xp(t)

r(t)

]
.

Based on the setting above, we performed numeral simulations, where all of the

initial conditions were set as zero. Figs. 3.1, 3.2, 3.3, and 3.4 show the step responses

and the gain behaviors of the proposed adaptive control, where Figs. 3.1 and 3.2 are

with η = 700, while Figs. 3.3 and 3.4 are with η = 3500. Note that yp(t) and ym(t)

are indicated as solid and dashed lines, respectively, in Figs. 3.1 and 3.3. The elements

Ŵ1(t), Ŵ2(t) and Ŵ3(t) of the adaptive gain

Ŵ (t) =
[
Ŵ1(t) Ŵ2(t) Ŵ3(t)

]
are indicated as solid, dashed, and dash-dotted lines, respectively, in Figs. 3.2 and 3.4.

In these figures, we see that all signals are bounded and yp(t) tends to ym(t) as t tends to

infinity, which is consistent with Theorem3.2. Furthermore, comparing Figs. 3.2 and 3.4,

we see that a larger η gives a better performance, which is consistent with Theorem 3.4.

Overall, the proposed adaptive control shows good transient responses.
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Figure 3.3: Output with η = 3500
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Figure 3.4: Adaptive gains with η =
3500

3.7 Summary

In this chapter, an adaptive control for H∞ tracking of uncertain dynamical systems is

proposed. Particularly, an H∞ type control[39–41] for a suitable reference model selec-

tion is employed. Then an adaptive control law for uncertain dynamical systems with

L2 disturbance is developed. Finally it is proved that the proposed adaptive control

guarantees the boundedness of the error dynamics behaviors in the presence of distur-

bances and uncertainties, where it achieves zero tracking error in the steady state as well.

Furthermore, we have established an explicit error bound of tracking, which enables us

to evaluate a transient performance of the control system.



Chapter 4

Distributed adaptive control for

optimal LQ tracking of uncertain

interconnected dynamical systems

4.1 Overview

The work in chapter two [24], introduced an adaptive control for optimal tracking of a

single plant is considered for a step-type reference signal. On the other hand, this chapter

deals with a distributed adaptive control; for optimal tracking of an interconnected

system for a general reference signal, which clarifies a possible performance guarantee

for a type of adaptive control law.

In this chapter a distributed model reference adaptive control scheme for optimal

tracking to a class of large-scale dynamical systems with uncertain interconnection be-

tween the subsystems is considered in which each controller applied to each subsystem

uses information about its neighbors. A reference model selection which achieves an

optimal tracking for the nominal system is introduced by using linear quadratic regula-

tor theory. Then an adaptive control law is developed for the uncertain interconnected

dynamical system, where it employs the specified reference model.

It is shown that the proposed control law achieves the desired behavior such that

the output of the system asymptotically tracks the output of the reference model in the

presence of the uncertainties. In addition, the boundedness of all signals and establish-

ment of an explicit error bound with respect to the nominal optimal tracking, where a

role of the learning rate of the update rule is clarified. Numerical examples illustrate

that the theoretical results developed in this chapter are useful.

36
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4.2 Problem formulation

Let us consider an interconnected system consisting of N uncertain dynamical subsys-

tems with uncertain interconnection.

The topology of the interconnection is expressed by a graph G = (V, E), where V =

{1, 2, . . . , N} is the set of the nodes each of which corresponds to a subsystem, and E ⊆
V×V is the set of the edges which represents the interaction among the subsystems. The

set of neighborhood of the i-th subsystem is denoted by Ni = {j ∈ V|(i, j) ∈ E}, where
the i-th subsystem is affected by the j-th subsystem through uncertain interconnection

if j ∈ Ni. Here we assume that G is known and time-invariant.

With the graph G, we describe the dynamics of the i-th subsystem as

ẋi(t) = Aixi(t) +Bi[Λiui(t) +
∑
j∈Ni

∆i,j(xj(t)) + ∆i,i(xi(t))], xi(0) = xi0,

yi(t) = Cixi(t), (4.1)

where xi(t) ∈ Rni is the state, ui(t) ∈ Rmi is the control input restricted to the class

of admissible controls consisting of measurable functions, yi(t) ∈ Rmi is the controlled

output. Throughout this chapter, the subscripts i and j correspond to the i-th and the

j-th subsystems, respectively, i.e., i ∈ V and j ∈ Ni ⊂ V. The matrices Ai ∈ Rni×ni ,

Bi ∈ Rni×mi , and Ci ∈ Rmi×ni represent the nominal part of the subsystem, where

the pair (Ai, Bi) is controllable and the pair (Ci, Ai) is observable. On the other hand,

the matrix Λi ∈ Rmi×mi and the vector-valued function ∆i,j : Rnj → Rmi represents

the uncertain part of the subsystem as well as the uncertain interaction among the

subsystems. That is, ∆i,i(xi(t)) expresses the uncertain part of the i-th subsystem itself,

while ∆i,j(xj(t)) (j ̸= i) expresses the uncertain influence from the j-th subsystem to

the i-th subsystem.

In this regard, we introduce the following assumption for Λi and ∆i,j(xj(t)).

Assumption 4.1. The control effectiveness Λi of the i-th subsystem is an unknown

symmetric and positive definite matrix. The state dependent uncertainty ∆i,j(xi) of the

i-th subsystem is linearly parameterized as

∆i,j(xj) = Fi,jαi,j(xj),

for all j ∈ Ni∪{i}, where Fi,j ∈ Rmi×si,j is an unknown weight matrix and αi,j : Rnj →
Rsi,j is a given basis function.
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For each subsystem (4.1), we define the corresponding nominal system as

ẋi(t) = Aixi(t) +Biui(t), xi(0) = xi0,

yi(t) = Cixi(t). (4.2)

That is, when Λi = I and ∆i,j(xj(t)) ≡ 0 for all j ∈ Ni ∪ {i}, the i-th subsystem (4.1)

takes its nominal behavior.

In this chapter, we consider a reference signal ri(t) ∈ Rmi generated by

ẋri(t) = Arixri(t), xri(0) = xri0,

ri(t) = Crixri(t), (4.3)

where xri(t) ∈ Rri , the eigenvalues of Ari are on the imaginary axis and all distinct from

one another, and the pair (Cri, Ari) is observable. That is, xri(t) and thus ri(t) of (4.3)

are bounded signals which are represented as a linear combination of a constant signal

and sinusoidal signals having several frequencies and phases. The boundedness of xri(t)

will be used for establishing the zero steady state tracking error. We define the initial

time t = 0 at the time when the reference signal is applied. The initial state xri0 of (4.3)

is arbitrary.

It is known that the controlled output yi(t) of the nominal subsystem (4.2) can follow

any reference signal ri(t) in the steady state if

rank

[
Ai − λriI Bi

Ci 0

]
= ni +mi (4.4)

for all eigenvalues λri of Ari. We assume this condition for all subsystems (4.1).

The objective of this chapter is to construct a distributed adaptive control law for

ui(t) of the form

ui(t) = fi(xi(t), xNi(t), xri(t)), (4.5)

such that the output yi(t) of the given system (4.1) asymptotically tracks the reference

signal ri(t) of (4.3) in the presence of the system uncertainty described by Λi and ∆(xi,j)

satisfying Assumption 4.1. Here, xNi(t) denotes the set of xj(t) with j ∈ Ni, and thus the

control law (4.5) utilizes the knowledge of the i-th subsystem itself and its surrounding

neighbors only. In this sense, we call the form (4.5) a distributed adaptive control law.

Then, we employ an optimal tracking control law for each nominal subsystem (4.2)

and derive a distributed adaptive tracking control law for the uncertain interconnected

system (4.1) with a performance guarantee related to the nominal optimality.
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4.3 Reference model selection

In this section, we select suitable reference models for our distributed adaptive control.

To this end, we consider the nominal system (4.2) and revisit a standard optimal tracking

for the reference signal (4.3) [46].

Under the assumption (4.4), there exist a unique state xsi(t) and a unique control

input usi(t) described by

xsi(t) = Lxixri(t), xsi0 = Lxixri0,

usi(t) = Luixri(t) (4.6)

for which the controlled output yi(t) is identical to the reference signal ri(t) [47], where

Lxi and Lui are defined by

LxiAri = AiLxi +BiLui, Cri = CiLxi. (4.7)

We denote the variations of xi(t) and ui(t) from xsi(t) and usi(t) by

x̃i(t) = xi(t)− xsi(t), x̃i0 = xi0 − xsi0,

ũi(t) = ui(t)− usi(t), (4.8)

and the tracking error of the controlled output yni(t) by

ei(t) = ri(t)− yi(t).

Using these notations with (4.7), we have the variation system

˙̃xi(t) = Aix̃i(t) +Biũi(t), x̃i(0) = x̃i0

ei(t) = −Cix̃i(t). (4.9)

To obtain a good transient behavior of tracking to the reference signal ri(t), we apply

linear quadratic regulator theory to the variation system (4.9) with the performance

index

Ji =

∫ ∞

0
{eTi (t)Qiei(t) + ũTi (t)Riũi(t)}dt, (4.10)
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where Qi ∈ Rmi×mi and Ri ∈ Rmi×mi are symmetric and positive definite matrices.

Then the optimal control law which minimizes Ji with respect to (4.9) is given by

ũi(t) = Kix̃i(t), (4.11)

where

Ki = −R−1
i BT

i Pi (4.12)

and Pi ∈ Rni×ni is a symmetric and positive definite solution of the Riccati equation

AT
i Pi + PiAi − PiBiR

−1
i BT

i Pi + CT
i QiCi = 0. (4.13)

When the control law (4.11) is applied to the variation system (4.9), the resultant closed

loop system is stable, and thus x̃i(t) → 0, ei(t) → 0 as t → ∞, where the minimum

value of Ji is given by

min
ũi

Ji = x̃Ti0Pix̃i0. (4.14)

Using (4.6) and (4.8), we rewrite the control law (4.11) as

ui(t) = Kixi(t) +Hixri(t) (4.15)

for the nominal system (4.2), where

Hi = −KiLxi + Lui. (4.16)

That is, the optimal tracking control law for the nominal system (4.2) is composed of

a feedback from the state xi(t) and a feedforward from the state xri(t). The resultant

control system with (4.2) and (4.15) is described by

ẋi(t) = (Ai +BiKi)xi(t) +BiHixri(t), xi(0) = xi0,

yi(t) = Cixi(t). (4.17)

When there is no uncertainty in the system (4.1), the optimal tracking (4.17) repre-

sents the best achievable behavior of each subsystem. We therefore consider a distributed

adaptive control framework for (4.1) which asymptotically realizes the optimal tracking
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(4.17). To this end, we employ

ẋmi(t) = (Ai +BiKi)xmi(t) +BiHixri(t), xmi(0) = xmi0,

ymi(t) = Cixmi(t). (4.18)

as the reference model for each subsystem, where xmi(t) ∈ Rni is the state, Ki is given

by (4.12) based on the performance index Ji of (4.10), and Hi is given by (4.16) with

this Ki.

4.4 Distributed adaptive control scheme

Let us go back to the uncertain interconnected system (4.1). According to the selected

reference model (4.18), we rewrite each subsystem (4.1) as

ẋi(t) = (Ai +BiKi)xi(t) +BiHixri(t) +BiΛi[ui(t) + δi(t)], xi(0) = xi0,

yi(t) = Cixi(t), (4.19)

where we define

δi(t) = −Λ−1
i

Kixi(t) +Hixri(t)−
∑
j∈Ni

∆i,j(xj(t))−∆i,i(xi(t))


= −Wiσi(xi(t), xNi(t), xri(t))

with xNi(t) used in (4.5). In fact, from Assumption 4.1, the signal δi(t) must be linearly

parameterized by using an unknown weight Wi ∈ Rmi×qi and the corresponding basis

function σi : Rni+nNi
+ri → Rqi which contains xi(t), xri(t), and αi,j(xj(t)) (j ∈ Ni∪{i}),

where qi ≤ ni + ri +
∑

j∈Ni∪{i} si,j .

Then we introduce a distributed adaptive control law

ui(t) = Ŵi(t)σi(xi(t), xNi(t), xri(t)), (4.20)

where we define the update rule of the adaptive gain Ŵi(t) ∈ Rmi×qi as

˙̂
Wi(t) = −ηiB

T
i Pi(xi(t)− xmi(t))σ

T
i (xi(t), xNi(t), xri(t)), Ŵi(0) = Ŵi0. (4.21)

The signal xmi(t) of (4.21) is given by (4.18). The learning rate ηi is a positive real

number and Pi is the symmetric and positive definite solution of the Riccati equation

(4.13).
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We see that the control law (4.20) with (4.21) is distributed indeed. In fact, the

basis σi(xi(t), xNi(t), xri(t)) is distributed. Thus, if the interconnection of the overall

system (4.1) is sparse, we enjoy a sparse structure of the control, where the control law

(4.20) with (4.21) utilizes the knowledge of the i-th subsystem itself and its surrounding

neighbors only. See also the numerical example in Section 4.6 for further details.

Now, let us define the errors from the ideal case as

xei(t) = xi(t)− xmi(t), xei0 = xi0 − xmi0,

yei(t) = yi(t)− ymi(t),

Wei(t) = Ŵi(t)−Wi, Wei0 = Ŵi0 −Wi,

where xmi(t) and ymi(t) are defined in (4.18). With (4.18), (4.19), (4.20), and (4.21),

we have

ẋei(t) = (Ai +BiKi)xei(t) +BiΛiWei(t)σi(xi(t), xNi(t), xri(t)), xei(0) = xei0,

yei(t) = Cixei(t), (4.22)

Ẇei(t) = −ηiB
T
i Pixei(t)σ

T
i (xi(t), xNi(t), xri(t)), Wei(0) = Wei0,

(4.23)

which describes the error dynamics from the reference model (4.18).

The next theorem presents the result of this section.

Theorem 4.2. Consider the uncertain interconnected dynamical system described by

(4.1) subject to Assumption 4.1. Consider, in addition, the reference model given by

(4.18) and the distributed adaptive control given by (4.20) and (4.21). Then, all of

the solutions (xei(t),Wei(t)) (i = 1, 2, . . . , N) given by (4.22) and (4.23) are bounded.

Furthermore, all of the tracking errors yei(t) (i = 1, 2, . . . , N) satisfy

lim
t→∞

yei(t) = 0

for any (xei(0),Wei(0)) (i = 1, 2, . . . , N).

Proof. Consider a candidate of Lyapunov function

V =

N∑
i=1

Vi(xei,Wei), Vi(xei,Wei) = xTeiPixei +
1

ηi
trW T

eiΛiWei,

where ηi and Pi are taken from (4.21) and Λi of (4.1) satisfies Assumption 4.1, which

means that Pi = P T
i > 0 and Λi = ΛT

i > 0. Thus the function Vi(xei,Wei) is a
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continuously differentiable function such that Vi(0, 0) = 0 and Vi(xei,Wei) > 0 for all

(xei,Wei) ̸= (0, 0), which implies that V is also positive definite.

Differentiating each component Vi(xei,Wei) of this candidate V along the trajectories

of (4.22) and (4.23), we have

V̇i(xei(t),Wei(t)) = ẋTei(t)Pixei(t) + xTei(t)Pẋei(t) +
2

ηi
trẆ T

ei (t)ΛiWei(t)

= xTei(t)
(
(Ai +BiKi)

TPi + Pi(Ai +BiKi)
)
xei(t)

+ 2xTei(t)PiBiΛiWei(t)σi(xi(t), xNi(t), xri(t))

− 2tr
(
σi(xi(t), xNi(t), xri(t))x

T
ei(t)PiBiΛiWei(t)

)
= xTei(t)

(
(Ai +BiKi)

TPi + Pi(Ai +BiKi)
)
xei(t)

= −xTei(t)
(
CT
i QiCi +KT

i RiKi

)
xei(t), (4.24)

where we use the fact that the Riccati equation (4.13) can be rewritten as

(Ai +BiKi)
TPi + Pi(Ai +BiKi) = −(CT

i QiCi +KT
i RiKi)

with Ki of (4.12). Since Qi = QT
i > 0 and Ri = RT

i > 0, we see that

V̇i(xei(t),Wei(t)) ≤ 0,

which implies that

V =
N∑
i=1

Vi(xei(t),Wei(t)) ≤
N∑
i=1

Vi(xei0,Wei0) < ∞

holds true for all t ≥ 0. Hence all of the solutions (xei(t),Wei(t)) (i = 1, 2, . . . , N) given

by (4.22) and (4.23) are bounded.

Now, let us recall a standard fact∫ t

0
V̇i(xei(τ),Wei(τ))dτ = Vi(xei(t),Wei(t))− Vi(xei0,Wei0),

which holds for all t ≥ 0. With (4.24), we have

−V̇i(xei(t),Wei(t)) = xTei(t)
(
CT
i QiCi +KT

i RiKi

)
xei(t)

≥ yTei(t)Qiyei(t).
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Note also that Vi(xei(t),Wei(t)) ≥ 0. Thus we obtain∫ t

0
yTei(τ)Qiyei(τ)dτ ≤ −

∫ t

0
V̇i(xei(τ),Wei(τ))dτ

≤ −
∫ t

0
V̇i(xei(τ),Wei(τ))dτ + Vi(xei(t),Wei(t))

= Vi(xei0,Wei0) (4.25)

for all t ≥ 0. We therefore see that

∫ ∞

0

(
N∑
i=1

yTei(t)Qiyei(t)

)
dt =

N∑
i=1

∫ ∞

0
yTei(t)Qiyei(t)dt ≤

N∑
i=1

Vi(xei0,Wei0). (4.26)

Furthermore, since ẏei(t) = Ciẋei(t) and ẋei(t) of (4.22) is represented by the signals

xei(t), Wei(t), xi(t), xNi(t) and xri(t), we can see that

sup
t≥0

(
N∑
i=1

ẏTei(t)Qiẏei(t)

)
≤

N∑
i=1

sup
t≥0

ẏTei(t)Qiẏei(t) < ∞. (4.27)

In fact, xei(t) and Wei(t) are bounded as we have proved above, while xri(t) of (4.3) is

bounded as we have assumed. The boundedness of xi(t) and xNi(t) follows the bound-

edness of xei(t) (i = 1, 2, . . . , N) and xmi(t) (i = 1, 2, . . . , N) of (4.18). Using (4.26),

(4.27), and [43] with Qi = QT
i > 0, we conclude that all of the tracking errors yei(t)

(i = 1, 2, . . . , N) satisfy

lim
t→∞

yei(t) = 0

for any (xei(0),Wei(0)) (i = 1, 2, . . . , N).

Remark 4.3. Theorem 4.2 establishes the boundedness of the error signals generated by

the proposed distributed adaptive control in the presence of the system/interconnection

uncertainties for each subsystem. The theorem also shows that zero steady state tracking

error is achieved by this control for all the subsystems.

4.5 Performance evaluation

Since the distributed adaptive control given by (4.20) and (4.21) employs the optimal

tracking system (4.18) as the reference model, one of our interests should be to evaluate

the performance degradation from the optimal response.
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To this end, let us rewrite the minimum value (4.14) of the performance index (4.10)

for the nominal system as

min
ũi

Ji = x̃Ti0Pix̃i0 =

∫ ∞

0
x̃Ti (t)

(
CT
i QiCi +KT

i RiKi

)
x̃i(t)dt,

where Ki is the optimal gain (4.12). For the reference model (4.18), this means that

Jmi =

∫ ∞

0
(xmi(t)− xsi(t))

T (CT
i QiCi +KT

i RiKi

)
(xmi(t)− xsi(t)) dt

= (xmi0 − xsi0)
T Pi (xmi0 − xsi0) . (4.28)

Referring the above, we define a performance index for the adaptive control as

Jei =

∫ ∞

0
(xi(t)− xmi(t))

T (CT
i QiCi +KT

i RiKi

)
(xi(t)− xmi(t)) dt. (4.29)

This index (4.29) is reasonable for evaluating the degradation caused by adaptation

since its weight (CT
i QiCi + KT

i RiKi) coincides with that of (4.28). In fact, when we

evaluate the tracking error from the preferable state xsi(t) which achieves yi(t) = ri(t)

rather than the tracking error from the reference model state xmi(t), if we introduce the

performance index

Jesi =

∫ ∞

0
(xi(t)− xsi(t))

T (CT
i QiCi +KT

i RiKi

)
(xi(t)− xsi(t)) dt,

we immediately obtain its evaluation as

Jesi ≤
(
J
1/2
mi + J

1/2
ei

)2
by employing the triangle inequality. Notice also that the value Jei becomes 0 (i.e., the

value Jesi becomes Jmi) if the perfect tracking xi(t) = xmi(t) is achieved.

For this index (4.29), we have the following result.

Theorem 4.4. Consider the uncertain interconnected dynamical system described by

(4.1) subject to Assumption 4.1. Consider, in addition, the reference model given by

(4.18) and the distributed adaptive control given by (4.20) and (4.21). Then, all of the

indices (4.29) (i = 1, 2, . . . , N) are bounded as

Jei ≤ xTei0Pixei0 +
1

ηi
trW T

ei0ΛiWei0. (4.30)
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Proof. In the proof of Theorem 4.2, we have established (4.24) and (4.25), which implies

that ∫ t

0
xTei(τ)

(
CT
i QiCi +KT

i RiKi

)
xei(τ)dτ ≤ V (xei0,Wei0)

holds true for all t ≥ 0. Thus it turns out that

Jei =

∫ ∞

0
xTei(t)

(
CT
i QiCi +KT

i RiKi

)
xei(t)dt

≤ V (xei0,Wei0) = xTei0Pixei0 +
1

ηi
trW T

ei0ΛiWei0,

which establishes the bound (4.30).

Remark 4.5. The upper bound given by this theorem guarantees the transient perfor-

mance of the proposed adaptive control. It shows that the performance of the distributed

adaptive control applied to the uncertain interconnected dynamical system captured by

xei(t) cannot be more than the right hand side of (4.30) at each subsystem. In addition,

if we make the learning rate ηi large, the transient performance will be better, which

will be confirmed in the numerical example in the following section.

Regarding the conservativeness of the performance evaluation if perfect tracking is

achieved (xei0(t) = xi0(t) − xmi0(t) = 0) and there is no estimation error (Wei0(t) =

Ŵi0(t)−Wi0 = 0), then the performance index Jei ≤ 0.

4.6 Numerical example

Let us consider a mass-spring-damper system having N masses in one line shown in

Fig. 4.1. Each mass mi (1 < i < N) is possibly connected with its neighbors mi−1 and

mi+1 by springs ki−1,i, ki,i+1 and dampers ci−1,1, ci,i+1, that is,

miq̈i(t) = −ki−1,i (qi(t)− qi−1(t))− ci−1,i (q̇i(t)− q̇i−1(t))

− ki,i+1 (qi(t)− qi+1(t))− ci,i+1 (q̇i(t)− q̇i+1(t)) + ui(t), (4.31)

where qi(t) ∈ R is the position of the mass mi to be controlled, and q̇i(t) and q̈i(t) are

its velocity and acceleration, respectively. The force ui(t) ∈ R is applied to the mass mi

as the control input, while we assume that all physical parameters mi > 0, ki−1,i ≥ 0,

ki,i+1 ≥ 0, ci−1,i ≥ 0, and ci,i+1 ≥ 0 are unknown. The cases i = 1 and i = N having

one neighbor are not explicitly stated in this section, though it is clear that they can be

described in a similar way.
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The mass-spring-damper system (4.31) stated above is consistent with the system

description (4.1). In fact, we can rewrite (4.31) as

ẋi(t) = Aixi(t) +Bi[Λiui(t) +
i+1∑

j=i−1

∆i,j(xj(t))],

yi(t) = Cixi(t), (4.32)

where we define

xi(t) =

[
qi(t)

q̇i(t)

]
, Ai =

[
0 1

0 0

]
, Bi =

[
0

1

]
, Ci =

[
1 0

]
, Λi =

1

mi
,

∆i,i−1(xi−1(t)) =

[
ki−1,i

mi

ci−1,i

mi

]
xi−1(t),

∆i,i(xi(t)) =

[
−ki−1,i + ki,i+1

mi
−ci−1,i + ci,i+1

mi

]
xi(t),

∆i,i+1(xi+1(t)) =

[
ki,i+1

mi

ci,i+1

mi

]
xi+1(t).

That is, all unknown parameters are included in Λi and ∆i,j(xj(t)). Apparently, (Ai, Bi)

is controllable, (Ci, Ai) is observable, and the uncertainties Λi and ∆i,j(xj(t)) satisfy

Assumption 4.1. That is, the mass-spring-damper system (4.31) can be represented as

(4.1), where we define Ni = {i − 1, i + 1}. For this system, we consider a sinusoidal

reference signal such as sinωit, i.e., we define the coefficient matrices of (4.3) as

Ari =

[
0 1

−ω2
i 0

]
, Cri =

[
1 0

]
,

where ωi > 0. We see that (Cri, Ari) is observable. Also, the rank condition (4.4) is

satisfied for the eigenvalues of Ari. Actually, we have the solutions of (4.7) as

Lxi =

[
1 0

0 1

]
, Lui =

[
−ω2

i 0
]
.

Figure 4.1: Interconnected mass-spring-damper system
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Regarding the performance index Ji of (4.10) with for Qi = 1 and Ri = 1, we obtain

the positive definite solution of the Riccati equation (4.13) as

Pi =

[√
2 1

1
√
2

]
.

Then the optimal tracking gains (4.12) and (4.16) are

Ki =
[
−1 −

√
2
]
, Hi =

[
1− ω2

i

√
2
]
.

In this way, we can construct the reference model (4.18) which achieves the optimal

tracking for the sinusoidal reference signal.

According to this reference model, we can rewrite the system (4.32) as (4.19), i.e.,

ẋi(t) = (Ai +BiKi)xi(t) +BiHixri(t) +BiΛi[ui(t) + δi(t)],

yi(t) = Cixi(t).

It should be noted that its uncertainty is described as

δi(t) = −Λ−1
i

Kixi(t) +Hixri(t)−
i+1∑

j=i−1

∆i,j(xj(t))


= −Wiσi(xi(t), xNi(t), xri(t)),

where

Wi =
[
−ki−1,i −ci−1,i ki−1,i + ki,i+1 −mi ci−1,i + ci,i+1 −

√
2mi

−ki,i+1 −ci,i+1 (1− ω2
i )mi

√
2mi

]
σi(xi(t), xNi(t), xri(t)) =

[
xTi−1(t) xTi (t) xTi+1(t) xTri(t)

]T
.

That is, due to the sparse structure of the system (4.31) of Fig. 4.1, the basis σi(xi(t), xNi(t), xri(t))

contains only the states of its neighbors, i.e., xi−1(t) and xi+1(t). Since the adaptive con-

trol law (4.20) and the update rule of the adaptive gain (4.21) have the form

ui(t) = Ŵi(t)σi(xi(t), xi+1(t), xri(t)),

˙̂
Wi(t) = −ηiB

T
i Pi(xi(t)− xmi(t))σ

T
i (xi(t), xi+1(t), xri(t)),

these become in fact a distributed control law thanks to the sparse structure of the basis

σi(xi(t), xNi(t), xri(t)).
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Figure 4.2: Output tracking for
y1, ym1(ηi = 50)
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Figure 4.3: Adaptive gains for
Ŵ1(ηi = 50)
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Figure 4.4: Output tracking for
y2, ym2 (ηi = 50)
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Figure 4.5: Adaptive gains for Ŵ2

(ηi = 50)

Now, let us consider a numerical simulation. We investigate the case N = 3, where

we set the unknown and uncertain parameters as m1 = m2 = m3 = 3, k1,2 = k2,3 = 2,

and c1,2 = c2,3 = 1. We chose all initial states are zero except for the reference signal

generators, where we used xr1 = xr2 = xr3 =
[
0 1

]T
. We set ω2

1 = ω2
2 = ω2

3 = 0.1.

Figs. 4.2-4.7 show the tracking responses and the gain behaviors of the proposed

distributed adaptive control for subsystems 1, 2 and 3, respectively, where we set the

learning rates as η1 = η2 = η3 = 50. On the other hand, Figs. 4.8-4.13 show the

tracking responses and the gain behaviors of the proposed adaptive control, where we

use η1 = η2 = η3 = 15. Note that y1(t), y2(t), y3(t) are indicated as solid lines and

ym1(t), ym2(t), ym3(t) are indicated as dashed lines in Figs. 4.2, 4.4, 4.6, 4.8, 4.10, and

4.12. The elements of the adaptive gains Ŵ1(t), Ŵ2(t) and Ŵ3(t) for subsystems 1, 2

and 3 are indicated as solid lines in Figs. 4.3, 4.5, 4.7, 4.9, 4.11, and 4.13.

In Figs. 4.2-4.7, all signals are bounded and yi(t) tends to ymi(t) (i = 1, 2, 3) as t tends

to infinity, which is consistent with Theorem 4.2. Furthermore, comparing Figs. 4.2, 4.4,

and 4.6 with Figs 4.8, 4.10, and 4.12, we see that a larger learning rate ηi gives a better

performance, which is consistent with Theorem 4.4.
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Figure 4.6: Output tracking for
y3, ym3 (ηi = 50)
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Figure 4.7: Adaptive gains Ŵ3 (ηi =
50)
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Figure 4.8: Output tracking for
y1, ym1(ηi = 15)
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Figure 4.9: Adaptive gains Ŵ1 (ηi =
15)
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Figure 4.10: Output tracking for
y2, ym2 (ηi = 15)
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Figure 4.11: Adaptive gains Ŵ2

(ηi = 15)
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Figure 4.12: Output tracking for
y3, ym3 (ηi = 15)
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Figure 4.13: Adaptive gains Ŵ3

(ηi = 15)
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4.7 Summary

In this chapter, a distributed adaptive control such that the output of an uncertain

interconnected dynamical system asymptotically tracks the output of a reference model

in the presence of system/interconnection uncertainties is investigated. The reference

model is constructed as optimal tracking for the nominal system, where a Riccati solution

of an LQ regulator determines the model. Then this Riccati solutionis employed in the

update rule of the adaptive gain, and have shown that the proposed adaptive control

law actually achieves the desirable tracking as well as the boundedness of all signals.

In addition, an explicit error bound regarding optimal tracking is also established. The

numerical examples have shown that the theoretical results developed in this chapter are

useful. Although the state feedback case under no disturbance has been investigated in

this chapter, the extension to the output feedback case in the presence of disturbance can

be an important future work. In this regard, a preliminary result [48] has been obtained,

where L2 disturbance is considered for a single plant in an H∞ tracking setting.



Chapter 5

Distributed adaptive control for

H∞ tracking of uncertain

interconnected dynamical systems

5.1 Overview

The work in Chapter 2 [48], introduced an adaptive H∞ tracking of a single plant is

considered for a step-type reference signal. On the other hand, the present chapter

deals with a distributed adaptive H∞ tracking of an interconnected system for a general

reference signal, which clarifies a possible performance guarantee for a type of adaptive

control law.

In this chapter a novel method is proposed for distributed adaptive control for realiz-

ing a robust tracking of a class of interconnected dynamical systems that is characterized

by sets of uncertain dynamics with an unknown physical interconnection between these

dynamics. A reference model which achieves a robust tracking in the presence of L2

disturbances is introduced by using H∞ control with transients. Then a distributed

adaptive control law is developed for uncertain dynamical systems, where it employs the

specified reference model.

It is shown that the boundedness of the error dynamics behaviors as well as zero

tracking error in the steady state is guaranteed by the proposed distributed adaptive

control law in the presence of disturbances and uncertainties. In addition, an explicit

error bound of tracking, which enables us to evaluate a transient performance of the

control system is established. Numerical examples were discussed to show applicability

of the theoretical findings.

52
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5.2 Problem formulation

Let us consider an interconnected system consisting of N uncertain dynamical subsys-

tems with uncertain interconnection. The topology of the interconnection is expressed

by a graph G = (V, E), where V = {1, 2, . . . , N} is the set of the nodes each of which

corresponds to a subsystem, and E ⊆ V × V is the set of the edges which represents

the interaction among the subsystems. The set of neighborhood of the i-th subsystem

is denoted by Ni = {j ∈ V|(i, j) ∈ E}, where the i-th subsystem is affected by the j-th

subsystem through uncertain interconnection if j ∈ Ni. Here we assume that G is known

and time-invariant.

With the graph G, we describe the dynamics of the i-th subsystem as

ẋi(t) = Aixi(t) +Bi[Λiui(t) +
∑
j∈Ni

∆i,j(xj(t)) + ∆i,i(xi(t))] + Eidi(t), xi(0) = xi0,

yi(t) = Cixi(t), (5.1)

where xi(t) ∈ Rni is the state, ui(t) ∈ Rmi is the control input restricted to the class

of admissible controls consisting of measurable functions, yi(t) ∈ Rmi is the controlled

output. Throughout this chapter, the subscripts i and j correspond to the i-th and the

j-th subsystems, respectively, i.e., i ∈ V and j ∈ Ni ⊂ V. In addition, di(t) ∈ Rpi is an

unknown disturbance. Here we assume that di ∈ L∞ ∩L2 and ḋi ∈ L∞. In other words,

we assume that di(t) satisfies

sup
t≥0

dTi (t)di(t) < ∞,

∫ ∞

0
dTi (t)di(t)dt < ∞, sup

t≥0
ḋTi (t)ḋi(t) < ∞.

Notice here that limt→∞ di(t) = 0 if di ∈ L2 and ḋi ∈ L∞ [43]. The matrices Ai ∈ Rni×ni ,

Bi ∈ Rni×mi , Ci ∈ Rmi×ni , and Ei ∈ Rni×pi represent the nominal known part of the

subsystem, where the pair (Ai, Bi) is controllable and the pair (Ci, Ai) is observable. On

the other hand, the matrix Λi ∈ Rmi×mi and the vector-valued function ∆i,j : Rnj → Rmi

represents the uncertain part of the subsystem as well as the uncertain interaction

among the subsystems. That is, ∆i,i(xi(t)) expresses the uncertain dynamics of the i-th

subsystem itself, while ∆i,j(xj(t)) (j ̸= i) expresses the uncertain influence from the j-th

subsystem to the i-th subsystem.

Here we introduce the following assumption for Λi and ∆i,j(xj(t)).

Assumption 5.1. The control effectiveness Λi of the i-th subsystem is an unknown

symmetric and positive definite matrix. The state dependent uncertainty ∆i,j(xj) of the
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i-th subsystem is linearly parameterized as

∆i,j(xj) = Fi,jαi,j(xj) (5.2)

for all j ∈ Ni∪{i}, where Fi,j ∈ Rmi×si,j is an unknown weight matrix and αi,j : Rnj →
Rsi,j is a given basis function.

For this system (5.1), we define its nominal system as

ẋi(t) = Aixi(t) +Biui(t) + Eidi(t), xi(0) = xi0

yi(t) = Cixi(t). (5.3)

That is, when Λi = I and ∆i,j(xj(t)) ≡ 0 for all j ∈ Ni ∪ {i}, the i-th subsystem (5.1)

takes its nominal behavior.

In this chapter, we consider a reference signal ri(t) ∈ Rmi generated by

ẋri(t) = Arixri(t), xri(0) = xri0,

ri(t) = Crixri(t), (5.4)

where xri(t) ∈ Rri is the state of the reference signal generator, the eigenvalues of Ari

are on the imaginary axis and all distinct from one another, and the pair (Cri, Ari) is

observable. That is, we can deal with a sinusoidal reference signal as well as a step-type

reference signal, while both of them are bounded. We define the initial time t = 0 at

the time when the reference signal is applied. The initial state xri0 of (5.4) is arbitrary.

It is known that the controlled output yi(t) of the nominal subsystem (5.3) can follow

any reference signal ri(t) of (5.4) in the steady state if

rank

[
Ai − λriI Bi

Ci 0

]
= ni +mi (5.5)

for all eigenvalues λri of Ari. We assume this condition for all subsystems (5.1).

The objective of this chapter is to construct a robust distributed adaptive control

law of the form

ui(t) = fi(xi(t), xNi(t), xri(t)), (5.6)

such that the output yi(t) of the given system (5.1) asymptotically tracks the reference

signal ri(t) of (5.4) in the presence of the L2 disturbance di(t) and the system uncertainty

described by Λi and ∆i,j(xi) satisfying Assumption 5.1. Here, xNi(t) denotes the set
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of xj(t) with j ∈ Ni, and thus the control law (5.6) utilizes the knowledge of the

i-th subsystem itself and its surrounding neighbors only. In this sense, we call the

form (5.6) a distributed adaptive control law. Then we provide a reference model via

an H∞ type robust tracking control for the nominal system (5.3) and derive a robust

distributed adaptive tracking control law for the interconnected uncertain system (5.1)

with a performance guarantee related to an H∞ type measure. Here, the performance

measure is the induced norm of the tracking error over all possible disturbances and

initial states for each subsystem.

5.3 Reference model selection

In this section, we select a suitable reference model for our adaptive control. To this

end, we employ an H∞ type control [39–41] in order to design a robust tracking control

law for the nominal system (5.3) to the reference signal (5.4).

We first introduce a variation system for tracking control. Under the assumption

(5.5), there exist a unique state xsi(t) and a unique control input usi(t) described by

xsi(t) = Lxixri(t), xsi0 = Lxixri0,

usi(t) = Luixri(t) (5.7)

for which the controlled output yi(t) is identical to the reference signal ri(t) [47], where

Lxi and Lui are defined by

LxiAri = AiLxi +BiLui, Cri = CiLxi. (5.8)

We denote the variations of xi(t) and ui(t) from xsi(t) and usi(t) by

x̃i(t) = xi(t)− xsi(t), x̃i0 = xi0 − xsi0,

ũi(t) = ui(t)− usi(t), (5.9)

and the tracking error of the controlled output yi(t) by

ei(t) = ri(t)− yi(t).

Using these notations, the variation system is defined by

˙̃xi(t) = Aix̃n(t) +Biũi(t) + Eidi(t), x̃i(0) = x̃i0,

ei(t) = −Cix̃i(t). (5.10)
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In this way, we can recast the original tracking problem as a stabilization problem of

the variation system. That is, if a feedback control law

ũi(t) = Kix̃i(t) (5.11)

stabilizes the variation system given by (5.10), it turns out that limt→∞ x̃i(t) = 0, i.e.,

limt→∞ yi(t) = ri(t).

In order to select a suitable control law (5.11) for tracking in the presence of L2

disturbance di(t), we employ a robust control design which is called H∞ control with

transients [39]. That is, in this paper, we utilize a performance specification

sup

{
∥ei∥2

∥di∥2 + x̃Ti0Rix̃i0

}1/2

< γi, (5.12)

where γi ∈ R is a specified positive number and Ri > 0 is a positive definite matrix

which is weight for the initial uncertainties. The supremum is taken over all x̃i0 ∈ Rni

and di ∈ L2 which satisfy ∥di∥2 + x̃Ti0Rix̃i0 ̸= 0. Then, we see that there exists a state

feedback (5.11) which stabilizes (5.10) and achieves (5.12) if and only if there exist

Xi = XT
i ∈ Rni×ni and Gi ∈ Rmi×ni which satisfy the linear matrix inequalities

AiXi +XiA
T
i +BiGi +GT

i B
T
i Ei XiC

T
i

ET
i −γ2i I 0

CiXi 0 −I

 < 0,

[
Xi I

I γ2i Ri

]
> 0, (5.13)

where such a state feedback gain Ki of (5.11) is obtained by

Ki = GiX
−1
i . (5.14)

This is a direct consequence of the existing work [41]. Throughout this chapter, we

assume that such an Xi exists for a given γi > 0.

As a matter of fact, the performance (5.12) is guaranteed by the feedback gain (5.14)

as follows. When we define

Pi = X−1
i (5.15)

and use (5.14), we can rewrite (5.13) as

Pi(Ai +BiKi) + (Ai +BiKi)
TPi +

1

γ2i
PiEiE

T
i Pi + CT

i Ci < 0, (5.16)

γ2i Ri > Pi = P T
i > 0, (5.17)
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where we see that Ai +BiKi is Hurwitz, i.e., the resultant closed-loop system is stable.

The inequality (5.16) together with (5.10) and (5.11) implies that

d

dt

(
x̃Ti (t)Pix̃i(t)

)
= ˙̃xTi (t)Pix̃i(t) + x̃Ti (t)Pi

˙̃xi(t)

= x̃Ti (t)
(
Pi(Ai +BiKi) + (Ai +BiKi)

TPi

)
x̃i(t)

+ x̃Ti (t)PiEidi(t) + dTi (t)E
T
i Pix̃i(t)

< − 1

γ2i
x̃Ti (t)PiEiE

T
i Pix̃i(t)− x̃Ti (t)C

T
i Cix̃i(t)

+ x̃Ti (t)PiEidi(t) + dTi (t)E
T
i Pix̃i(t)

= −
(
γidi(t)−

1

γi
ET

i Pix̃i(t)

)T (
γidi(t)−

1

γi
ET

i Pix̃i(t)

)
− x̃Ti (t)C

T
i Cix̃i(t) + γ2i d

T
i (t)di(t)

≤ −eTi (t)ei(t) + γ2i d
T
i (t)di(t) (5.18)

for any x̃i(t) ̸= 0. Integrating this inequality from 0 to ∞, with (5.17), we have

∥ei∥2 − γ2i ∥di∥
2 < x̃Ti0Pix̃i0 < γ2x̃Ti0Rix̃i0,

where we use limt→∞ x̃Ti (t)Pix̃i(t) = 0 which is guaranteed by the closed-loop stability.

The above inequality shows that the performance specification (5.12) holds.

Using (5.7) and (5.9), we rewrite the control law (5.11) as

ui(t) = Kixi(t)−Kixsi(t) + usi(t)

= Kixi(t) +Hixri(t) (5.19)

for the nominal system (5.3), where Ki is given by (5.14) and Hi is represented as

Hi = −KiLxi + Lui. (5.20)

That is, the H∞ tracking control law for the nominal system (5.3) is composed of a

feedback from xi(t) and a feedforward from xri(t).

The resultant control system with (5.3) and (5.19) is described by

ẋi(t) = (Ai +BiKi)xi(t) +BiHixri(t) + Eidi(t), xi(0) = xi0

yi(t) = Cixi(t). (5.21)

Since it achieves the performance specification (5.12), it is suitable as a reference model

for adaptive control. However, the unknown di(t) should be excluded in the reference

model. Also, the initial states of the given system and the reference model may be
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different. Thus, in this paper, we employ the system

ẋmi(t) = (Ai +BiKi)xmi(t) +BiHixri(t), xmi(0) = xmi0

ymi(t) = Cixmi(t) (5.22)

as the reference model for adaptive control, where xmi(t) ∈ Rni is the state, Ki is given

by (5.14) based on the LMIs (5.13), and Hi is given by (5.20) with this Ki. Then, we

develop a model reference adaptive control and derive its performance guarantee.

5.4 Distributed adaptive control scheme

Let us go back to the uncertain dynamical system (5.1). Referring to the selected

reference model (5.22), we rewrite each subsystem (5.1) as

ẋi(t) = (Ai +BiKi)xi(t) +BiHixri(t) + Eidi(t) +BiΛi[ui(t) + δi(t)], xi(0) = xi0

yi(t) = Cixi(t), (5.23)

where we define

δi(t) = −Λ−1
i

Kixi(t) +Hixri(t)−
∑
j∈Ni

∆i,j(xj(t))−∆i,i(xi(t))


= −Wiσi(xi(t), xNi(t), xri(t))

with xNi(t) used in (5.6). In fact, from Assumption 5.1, the signal δi(t) must be linearly

parameterized by using an unknown weight Wi ∈ Rmi×qi and the corresponding basis

function σi : Rni+nNi
+ri → Rqi which contains xi(t), xri(t), and αi,j(xj(t)) (j ∈ Ni∪{i}),

where qi ≤ ni + pi +
∑

j∈Ni∪{i} si,j . Then we introduce a distributed adaptive feedback

control law

ui(t) = Ŵi(t)σi(xi(t), xNi(t), xri(t)), (5.24)

where we define the update rule of the adaptive control gain Ŵi(t) ∈ Rmi×qi as

˙̂
Wi(t) = − ηi

γ2i
BT

i Pi(xi(t)− xmi(t))σ
T
i (xi(t), xNi(t), xri(t)), Ŵi(0) = Ŵi0. (5.25)

Notice that xmi(t) of (5.25) is generated by (5.22). The learning rate ηi is any positive

real number, the performance specification γi for the nominal system is the one in

(5.12), and Pi is a symmetric and positive definite matrix defined by (5.15), where Xi

is a solution of the linear matrix inequalities (5.13).
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We see that the control law (5.24) is distributed indeed. In fact, the basis σi(x(t), xNi(t), xri(t))

is distributed and xmi(t) of (5.22) is given by xri(t). Thus, if the interconnection of the

overall system (5.1) is sparse, we enjoy a sparse structure of the control, where the con-

trol law (5.24) utilizes the knowledge of the i-th subsystem itself and its surrounding

neighbors only. See also the numerical example in Section 5.6 for further details.

Now, let us define the errors from the ideal case as

xei(t) = xi(t)− xmi(t), xei0 = xi0 − xmi0

yei(t) = yi(t)− ymi(t),

Wei(t) = Ŵi(t)−Wi, Wei0 = Ŵi0 −Wi

where xmi(t) and ymi(t) are defined in (5.22). With (5.22), (5.23), (5.24), and (5.25),

we have

ẋei(t) = (Ai +BiKi)xei(t) + Eidi(t) +BiΛiWei(t)σi(xi(t), xNi(t), xri(t)), xei(0) = xei0,

yei(t) = Cixei(t), (5.26)

Ẇei(t) = − ηi
γ2i

BT
i Pixei(t)σ

T
i (xi(t), xNi(t), xri(t)), Wei(0) = Wei0, (5.27)

which describes the error dynamics from the reference model (5.22).

The next theorem presents the result of this section.

Theorem 5.2. Consider the uncertain interconnected dynamical system described by

(5.1) subject to Assumption 5.1. Consider, in addition, the reference model given by

(5.22) and the distributed adaptive controller given by (5.24) and (5.25). Then, all of

the solutions (xei(t),Wei(t)) (i = 1, 2, . . . , N) given by (5.26) and (5.27) are bounded.

Furthermore, all of the tracking errors yei(t) (i = 1, 2, . . . , N) satisfy

lim
t→∞

yei(t) = 0

for any (xei0,Wei0) (i = 1, 2, . . . , N).

Proof. Consider a candidate of Lyapunov function

V =
N∑
i=1

Vi(xei,Wei), Vi(xei,Wei) = xTeiPixei +
γ2i
ηi

trW T
eiΛiWei,

where ηi and Pi are taken from (5.25) and Λi of (5.1) satisfies Assumption 5.1, which

means that Pi = P T
i > 0 and Λi = ΛT

i > 0. Thus the function Vi(xei,Wei) is in fact
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a continuously differentiable function such that Vi(0, 0) = 0 and Vi(xei,Wei) > 0 for all

(xei,Wei) ̸= (0, 0), which implies V is also positive definite.

Differentiating this candidate along the trajectories of (5.26) and (5.27), we have

V̇i(xei(t),Wei(t)) = ẋTei(t)Pxei(t) + xTei(t)Pẋei(t) +
2γ2i
ηi

trẆ T
ei (t)ΛiWei(t)

= xTei(t)
(
Pi(Ai +BiKi) + (Ai +BiKi)

TPi

)
xei(t)

+ xTei(t)PiEidi(t) + dTi (t)E
T
i Pixei(t)

+ 2xTei(t)PiBiΛiWei(t)σi(xi(t), xNi(t), xri(t))

− 2tr
(
σi(xi(t), xNi(t), xri(t))x

T
ei(t)PiBiΛiWei(t)

)
= xTei(t)

(
(Ai +BiKi)

TPi + Pi(Ai +BiKi)
)
xei(t)

+ xTei(t)PiEidi(t) + dTi (t)E
T
i Pixei(t)

< −yTei(t)yei(t) + γ2i d
T
i (t)di(t)

for any x̃ei(t) ̸= 0, which partially follows completing the square used in (5.18). Inte-

grating this inequality from 0 to any T > 0, we have∫ T

0
yTei(t)yei(t)dt+ Vi(xei(T ),Wei(T )) ≤

∫ T

0
γ2i d

T
i (t)di(t)dt+ Vi(xei0,Wei0). (5.28)

Since di ∈ L2, the right-hand side of the inequality is bounded. Thus, Vi(xei(T ),Wei(T ))

is bounded for any T > 0, which implies that the solution (xei(t),Wei(t)) is bounded.

Also, the boundedness of the right-hand side of (5.28) implies that

lim
T→∞

∫ T

0
yTei(t)yei(t)dt < ∞. (5.29)

Furthermore, since ẏei(t) = Ciẋei(t) and ẋei(t) of (5.26) is represented by the signals

xei(t), di(t), Wei(t), xi(t), xNi(t), and xri(t), we can see that

sup
t≥0

ẏTei(t)ẏei(t) < ∞. (5.30)

In fact, xei(t) and Wei(t) are bounded as we have proved above, while di ∈ L∞ is

bounded and xri(t) of (5.4) is bounded. The boundedness of xi(t) and xNi(t) follows

the boundedness of xei(t) (i = 1, 2, · · · , N) and xmi(t) (i = 1, 2, · · · , N) of (5.22). With

(5.29), (5.30), and a version of the Barbălat lemma[43], we conclude that all of the

tracking errors yei(t) (i = 1, 2, . . . , N) satisfy

lim
t→∞

yei(t) = 0.

This completes the proof of the theorem.
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Remark 5.3. Theorem 5.2 establishes boundedness of the error dynamics behaviors via

the proposed distributed adaptive control in the presence of disturbances and uncertain-

ties in each subsystem. The theorem also shows that zero steady state tracking error is

achieved by this control.

5.5 Performance evaluation

Since the proposed adaptive control given by (5.24) and (5.25) employs an H∞ control

(5.22) for the nominal system (5.3) as the reference model, one of our interests is to

evaluate the performance degradation due to introduction of adaptive mechanism.

In this regard, let us recall the performance specification (5.12) for the nominal

system (5.3). It says that

∥ri − yi∥ ≤ γi

(
∥di∥2 + (xi0 − xsi0)

TRi(xi0 − xsi0)
)1/2

(5.31)

holds for any di ∈ L2, xi0 ∈ Rni , and xsi0 ∈ Rni . On the other hand, when we use the

adaptive control of (5.22), (5.24), and (5.25), we can evaluate the tracking error ∥ri−yi∥
of the uncertain systems (5.1) similarly as follows.

Theorem 5.4. Consider the uncertain interconnected dynamical system described by

(5.1) subject to Assumption 5.1. Consider, in addition, the reference model given by

(5.22) and the distributed adaptive controller given by (5.24) and (5.25). Then, the

tracking error is bounded as

∥ri − yi∥ ≤ γi

{(
∥di∥2 + (xi0 − xmi0)

TRi(xi0 − xmi0) +
1

ηi
tr(Ŵi0 −Wi)

TΛi(Ŵi0 −Wi)
)1/2

+
(
(xmi0 − xsi0)

TRi(xmi0 − xsi0)
)1/2}

(5.32)

for any di ∈ L2, xi0 ∈ Rni, xmi0 ∈ Rni, xsi0 ∈ Rn, and Ŵi0 ∈ Rmi×qi.

Proof. Since (5.31) holds for (5.21), we have

∥ri − ymi∥ ≤ γi
(
(xmi0 − xsi0)

TRi(xmi0 − xsi0)
)1/2

(5.33)

for the reference model (5.22) which does not contain di ∈ L2. Regarding the adaptive

control, we have established (5.28) for any T > 0, which means that

∥yei∥2 ≤ γ2i ∥di∥2 + Vi(xei0,Wei0).
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Thus we have

∥yi − ymi∥ ≤ γi
(
∥di∥2 + (xi0 − xmi0)

TRi(xi0 − xmi0) +
1

ηi
tr(Ŵi0 −Wi)

TΛi(Ŵi0 −Wi)
)1/2

,

(5.34)

where we use (5.17). These evaluations (5.33) and (5.34) together with the triangle

inequality

∥ri − yi∥ ≤ ∥ri − ymi∥+ ∥ymi − yi∥ (5.35)

gives the tracking error bound of the theorem.

Remark 5.5. This bound given by Theorem 5.4 shows a transient performance of the

proposed distributed H∞ adaptive control. It says that L2 type gain from the distur-

bance and the initial values to the tracking error of the distributed adaptive control is

bounded by γi as that of the corresponding nominal closed-loop system (5.21) is. In

addition, if we use large learning rate ηi, the transient performance becomes better,

which will be confirmed in the numerical example below.

Regarding the conservativeness of this performance evaluation if perfect tracking is

achieved (xei0 = xi0 − xmi0 = 0) and there is no estimation error (Wei0(t) = Ŵi0(t) −
Wi = 0), then the tracking error is bounded the same as the nominal system.

5.6 Numerical Example

In this section, we demonstrate the proposed distributed adaptive control through a

numerical example. Let us consider a mass-spring-damper system having N masses in

one line shown in Figure 5.1. Each mass mi (1 < i < N) is possibly connected with its

neighbors mi−1 and mi+1 by springs ki−1,i, ki,i+1 and dampers ci−1,1, ci,i+1, that is,

miq̈i(t) = −ki−1,i (qi(t)− qi−1(t))− ci−1,i (q̇i(t)− q̇i−1(t))

− ki,i+1 (qi(t)− qi+1(t))− ci,i+1 (q̇i(t)− q̇i+1(t)) + ui(t) + di(t), (5.36)

where qi(t) ∈ R is the position of the mass mi to be controlled, and q̇i(t) and q̈i(t) are

its velocity and acceleration, respectively. The force ui(t) ∈ R is applied to the mass

mi as the control input, while we assume the unknown disturbance force di(t) ∈ R to

mi satisfies di ∈ L∞ ∩ L2 and ḋi ∈ L∞. We also assume that all physical parameters

mi > 0, ki−1,i ≥ 0, ki,i+1 ≥ 0, ci−1,i ≥ 0, and ci,i+1 ≥ 0 are unknown. The cases i = 1

and i = N having one neighbor are not explicitly stated in this section, though it is

clear that they can be described in a similar way.
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The mass-spring-damper system (5.36) stated above is consistent with the system

description (5.1). In fact, we can rewrite (5.36) as

ẋi(t) = Aixi(t) +Bi[Λiui(t) +
i+1∑

j=i−1

∆i,j(xj(t))] + Eidi(t),

yi(t) = Cixi(t), (5.37)

where we define

xi(t) =

[
qi(t)

q̇i(t)

]
, Ai =

[
0 1

0 0

]
, Bi =

[
0

1

]
, Ci =

[
1 0

]
, Ei =

[
0

1

]
,

Λi =
1

mi
, ∆i,i(xi(t)) =

[
−ki−1,i + ki,i+1

mi
−ci−1,i + ci,i+1

mi

]
xi(t),

∆i,i−1(xi−1(t)) =

[
ki−1,i

mi

ci−1,i

mi

]
xi−1(t), ∆i,i+1(xi+1(t)) =

[
ki,i+1

mi

ci,i+1

mi

]
xi+1(t).

That is, all unknown parameters are included in Λi and ∆i,j(xj(t)). Apparently, (Ai, Bi)

is controllable, (Ci, Ai) is observable, and the uncertainties Λi and ∆i,j(xj(t)) satisfy

Assumption 5.1. That is, the mass-spring-damper system (5.36) can be represented as

(5.1), where we define Ni = {i− 1, i+ 1}.

For this system, we consider a sinusoidal reference signal such as sinωit, i.e., we

define the coefficient matrices of (5.4) as

Ari =

[
0 1

−ω2
i 0

]
, Cri =

[
1 0

]
,

where ωi > 0. We see that (Cri, Ari) is observable. Also, the rank condition (5.5) is

satisfied for the eigenvalues of Ari. Actually, we have the solutions of (5.8) as

Lxi =

[
1 0

0 1

]
, Lui =

[
−ω2

i 0
]
.

Figure 5.1: Interconnected mass-spring-damper system
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In the following, we set ω2
i = 0.1 for all i ∈ V.

With γ = 1 and Ri = 3I, we solved the LMIs (5.13). Then we obtained the H∞

tracking gains (5.14) and (5.20) as

Ki =
[
−4.1538 −1.5385

]
, Hi =

[
4.0538 1.5385

]
,

which determines the reference model (5.22). We also have Pi of (5.15) as

Pi =

[
1.3012 0.3253

0.3253 0.4337

]
,

which is used in the update rule (5.25) of the adaptive control gain.

Referring to the above Ki and Hi, we rewrite the system (5.37) as the form of (5.23),

i.e.,

ẋi(t) = (Ai +BiKi)xi(t) +BiHixri(t) + Eidi(t) +BiΛi[ui(t) + δi(t)],

yi(t) = Cixi(t).

It should be noted that its uncertainty is described as

δi(t) = −Λ−1
i

Kixi(t) +Hixri(t)−
i+1∑

j=i−1

∆i,j(xj(t))


= −Wiσi(xi−1(t), xi(t), xi+1(t), xri(t)),

where

Wi =
[
−
[
ki−1,i ci−1,i

] [
ki−1,i + ki,i+1 ci−1,i + ci,i+1

]
+miKi −

[
ki,i+1 ci,i+1

]
miHi

]
σi(xi−1(t), xi(t), xi+1(t), xri(t)) =

[
xTi−1(t) xTi (t) xTi+1(t) xTri(t)

]T
.

That is, due to the sparse structure of the system (5.36) of Figure 5.1, the basis

σi(xi−1(t), xi(t), xi+1(t), xri(t)) contains only the states of its neighbors, i.e., xi−1(t) and

xi+1(t). Since the adaptive control law (5.24) and the update rule of the adaptive gain

(5.25) have the form

ui(t) = Ŵi(t)σi(xi−1(t), xi(t), xi+1(t), xri(t)),

˙̂
Wi(t) = − ηi

γ2i
BT

i Pi(xi(t)− xmi(t))σ
T
i (xi−1(t), xi(t), xi+1(t), xri(t)),

these become in fact a distributed control law thanks to the sparse structure of the basis

σi(xi−1(t), xi(t), xi+1(t), xri(t)).
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Figure 5.2: Output tracking for
y1, ym1(ηi = 100)
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Figure 5.3: Adaptive gains for
Ŵ1(ηi = 100)
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Figure 5.4: Output tracking for
y2, ym2 (ηi = 100)
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Figure 5.5: Adaptive gains for Ŵ2

(ηi = 100)

Now, let us consider a numerical simulation. We investigate the case N = 3, i.e.,

V = {1, 2, 3}, where we set the unknown and uncertain parameters as m1 = m2 = m3 =

3, k1,2 = k2,3 = 2, and c1,2 = c2,3 = 1. We chose all initial states are zero except for the

reference signal generators, where we used xri0 =
[
0 1

]T
for all i ∈ V. We chose the

disturbance as di(t) = e−t/10 sin t, i.e., di ∈ L∞ ∩ L2 and ḋi ∈ L∞ for all i ∈ V.

Figures 5.2–5.7 show the tracking responses and the gain behaviors of the proposed

distributed adaptive control for subsystems 1, 2, and 3, respectively, where we set the

learning rates as η1 = η2 = η3 = 100. On the other hand, Figures 5.8–5.13 show the

tracking responses and the gain behaviors of the proposed adaptive control, where we

use η1 = η2 = η3 = 10. Note that y1(t), y2(t), y3(t) are indicated as solid lines and

ym1(t), ym2(t), ym3(t) are indicated as dashed lines in Figures 5.2, 5.4, 5.6, 5.8, 5.10, and

5.12. The elements of the adaptive gains Ŵ1(t), Ŵ2(t), and Ŵ3(t) for subsystems 1, 2

and 3 are indicated as solid lines in Figures 5.3, 5.5, 5.7, 5.9, 5.11, and 5.13.

In Figures 5.2–5.7, all signals are bounded and yi(t) tends to ymi(t) (i ∈ V) as t tends
to infinity, which is consistent with Theorem 5.2. Furthermore, comparing Figures 5.2,

5.4, and 5.6 with Figures 5.8, 5.10, and 5.12, we see that a larger learning rate ηi gives

a better performance, which is consistent with Theorem 5.4.



Distributed adaptive control for H∞ tracking of uncertain interconnected dynamical
systems 66

0 10 20 30 40 50
-4

-2

0

2

4

Figure 5.6: Output tracking for
y3, ym3 (ηi = 100)
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Figure 5.7: Adaptive gains Ŵ3 (ηi =
100)
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Figure 5.8: Output tracking for
y1, ym1(ηi = 10)
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Figure 5.9: Adaptive gains Ŵ1 (ηi =
10)
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Figure 5.10: Output tracking for
y2, ym2 (ηi = 10)
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Figure 5.11: Adaptive gains Ŵ2

(ηi = 10)
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Figure 5.12: Output tracking for
y3, ym3 (ηi = 10)
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Figure 5.13: Adaptive gains Ŵ3

(ηi = 10)
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5.7 Summary

In this chapter, a distributed adaptive control for H∞ tracking of uncertain intercon-

nected dynamical system is proposed that asymptotically tracks the output of a reference

model in the presence of system/interconnection uncertainties. An H∞ type control[39–

41] for a suitable reference model selection is employed. Then a distributed adaptive

control law for uncertain dynamical systems with L2 disturbance is developed. It is

proved that the proposed distributed adaptive control guarantees the boundedness of

the error dynamics behaviors in the presence of disturbances and uncertainties, where

it achieves zero tracking error in the steady state as well. Furthermore, an explicit error

bound of tracking, which enables us to evaluate a transient performance of the control

system is established. The numerical examples have shown that the theoretical results

developed in this paper are useful. The extension of this work to the output feedback

can be considered as future work.



Chapter 6

Conclusion

6.1 Summary

The number of uncertain dynamical systems in the presence of parametric uncertainties

and uncertain nonlinearities (e.g., disturbances) operating under changing conditions has

been increasing due to the advances in technology and the wide range of possible uses,

such as energy, economy, market competition or healthcare. This is why control systems

with high accuracy, robustness and fast response are needed for tracking problems.

Having an adaptive system is crucial when our process is unknown or when there are

changes in the dynamics of a system, in particular, due to non-linear effects, which can

imply a modification in the type of response. If the modifications are unpredictable,

there has to be a mechanism that can compensate them. As systems are becoming more

complex and connected in large networks, the growth in complexity requires the use of

decision-making processes that can be centralized or distributed.

Previous works have been developed for various complex systems such as intercon-

nected and/or large-scale systems under different perspectives. However, they do not

guarantee an optimal solution while estimating the unknown uncertainty parameters of

the system dynamics. As a result, poor transient performance, system instability or high

frequency oscillation can be introduced to the system. Performance guarantee related

to nominal tracking is also an issue in research works for the development of distributed

adaptive control architectures for realizing a desirable tracking.

In this dissertation, some of the limitations in earlier adaptive control approaches for

tracking problems are addressed. In particular, the objective is to select an appropriate

control input which incorporates stability analysis and the evaluation of performance

degradation from the nominal system with an explicit error bound and zero steady state

error.
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Adaptive LQ tracking control provides an optimal reference model whose param-

eters are identical with the original tracking problem but without uncertainties. The

performance evaluation of the proposed control and closed loop stability analysis of the

uncertain dynamical system are demonstrated.

Adaptive control for H∞ tracking control with transients is introduced for a robust

performance in the presence of system uncertainties. Zero tracking error in steady state

for a step type reference signal and an explicit error bound is established in the presence

of uncertainties and disturbances.

Distributed adaptive LQ control law which utilizes a specified reference model is

investigated for a class of interconnected uncertain dynamical system. The proposed

adaptive control law achieves the desirable optimal tracking asymptotically and achieves

boundedness of all signals. In addition, an explicit error bound with respect to the

nominal optimal tracking and evaluation of performance guarantee is established. The

role of the update rule for the learning rate is also explained.

A distributed adaptive control for a class of interconnected dynamical system em-

ploying H∞ control with transients in the precedence of L2 disturbances for a general

reference input is also proposed. Thus, boundedness of the error dynamics and steady

state error is guaranteed. Performance degradation is also evaluated. However, the

extension to the output feedback case in the presence/absence of disturbance can be

considered as an important work.

While there are several adaptive control approaches not covered by the above pro-

posed techniques in this dissertation, they addressed some of the most important themes

in adaptive control particularly for tracking problems, namely: robustness, consensus,

convergence, and optimization. Additionally, this dissertation has shown that the stabil-

ity analysis, boundedness of the error dynamics and performance evaluation of previous

works can still be attained by applying the novel approaches described in this study.
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6.2 Future works

The proposed adaptive control approaches can still be modified to application of practical

uncertain dynamical systems. Although the distributed adaptive control using state

feedback case with/without disturbance has been investigated in this dissertation, the

extension to the output feedback case in the presence/absence of disturbance can be an

important future work. For the interconnected uncertain dynamical systems, the effect

of using more complex interconnection schemes can be explored. Additional analyses

can also be performed to further characterize the stability and evaluation of performance

degradation properties of the proposed approaches.

The effectiveness of these theoretical findings can be further applied to electrical

power systems like adaptive generator exciter control and adaptive load-frequency con-

trol, aircraft control systems, and active control of vibration suppression. In addition

the results can also be used as an effective approach for mechanical robot manipulator

controller design due to the presence of nonlinearties and uncertainties in robot dy-

namic models. More generally, to distributed coordinated tracking Control for a class

of uncertain multiagent systems and so on.

In general, the advancements of microprocessors and highspeed computing technol-

ogy shall enable further development and practical implementation of adaptive tech-

niques to uncertain dynamical systems. Considering this issue, adaptive control for

multi-input, multioutput (MIMO) systems also deserves further attention and may

worth considering for further study. Some possible future work in this area includes

multi-model adaptive Control and safe-switching, robust-adaptive and adaptive-robust

controls, and model-free control systems like fuzzy or neural networks to minimize the

effect of uncertainty in the absence of complex mathematical burden.



Appendix A

Barbalat Lemma

Lemma A.1. This Lemma gives a simple proof of the property that if a signal is square

integrable and has a bounded derivative, then the signal converges to zero asymptotically.

That is if ϵ(t) ∈ L2 and ϵ̇(t) ∈ L∞ then limx→∞ ϵ(t) = 0.
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Standard adaptive control

Consider an uncertain dynamical system given by

S : ẋ(t) = Ax(t) +B[Λu(t) + ∆(x(t))],

yp(t) = Cxp(t),

where x(t) ∈ Rn is the state vector which is assumed to be available for control,

u(t) ∈ Rm is the control input restricted to the class of admissible controls consist-

ing of measurable functions, and y(t) ∈ Rm is the controlled output. The matrices

A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n represent the nominal known part of this system,

where the pair (A,B) is controllable and the pair (C,A) is observable. On the other

hand, the matrix Λ ∈ Rm×m and the vector-valued function ∆ : Rn → Rm represent the

uncertain unknown part of the system.

In this regard, the following assumption for Λ and ∆(xp) is introduced.

Assumption B.1. The control effectiveness Λ is an unknown symmetric and positive

definite matrix. The state dependent matched uncertainty ∆(x) is linearly parameterized

as

∆(x) = Fα(x),

where F ∈ Rm×s is an unknown weight matrix and α : Rn → Rs is the corresponding

basis function.
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Next consider the reference system capturing a desired closed loop performance given

by:

Sr : xr(t) = Arxr(t) +Brc(t)

yr(t) = Crxr(t), (B.1)

where, xr(t) ∈ Rn is the reference state vector, c(t) ∈ Rm is a given bounded command,

Ar(t) ∈ Rn×n is the reference system matrix, and Br(t) ∈ Rn×m is the command input

matrix.

Assumption B.2. There exists K1 ∈ Rm×n and K2 ∈ Rm×m such that Ar = A+BK1

and Br = BK2 is satisfied with Ar being Hurwitz.

In Chapter 2, the LQR control theory and the MRAC based on the Lyapunov sta-

bility theory are combined. LQR is applied to the nominal system (2.2) to optimize its

response using the tracking control law (2.12) and achieve optimal reference model (2.15)

tracking, which is then used as the target for the controlled system to track the reference

model. Whereas, the MRAC is designed to automatically tune the control parameters to

track the response of the uncertain dynamical system (2.1) to the reference model (2.15)

that exhibits the desired behavior. Furthermore, the proposed adaptive law (2.17) is

able to tune the parameters of the controller to compensate the uncertainties and track

the response to the desired reference model.

Now, the statement of the control problem is given as follows. The aim is to design

a control input u(t) for the uncertain dynamical system to asymptotically drive the

mismatch between S and Sr to zero in the presence of uncertainty in control effectiveness

Λ and model uncertainties ∆(x(t)). Then S can be rewritten as

x(t) = Arx(t) +Brc(t) +BΛ[u(t) + δ(t)],

y(t) = Cx(t), (B.2)

where δ(t) is defined as

δ(t) = −Λ−1[K1x(t) +K2c(t)−∆(x(t))]

= −Wσ(x(t), c(t)).

In fact, from Assumption B.1, the signal δ(t) must be parameterized by using an un-

known weight W ∈ Rm×q and the corresponding basis function σ : Rn+m → Rq which

contains x(t), c(t), and α(x(t)), where q ≤ n+m+ s.
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Then an adaptive feedback control law is introduced as

u(t) = Ŵ (t)σ(x(t), c(t)), (B.3)

where Ŵ (t) is an estimate of W which is defined with the update rule of the adaptive

control gain Ŵ (t) ∈ Rm×q as

˙̂
W (t) = −γBTP (x(t)− xr(t))σ

T (x(t), c(t)). (B.4)

It should be noted that xr(t) of (B.4) is generated by (B.1). The learning rate γ is

a positive real number and P is the symmetric and positive definite solution of the

Lyapunov equation (B.5)

AT
r P + PAr +R = 0, (B.5)

where R is a given positive definite matrix. Now, the errors from the ideal case are

defined as

xe(t) = x(t)− xr(t), ye(t) = y(t)− yr(t),

We(t) = Ŵ (t)−W,

where xr(t) and yr(t) are from (B.1). With (B.1), (B.2), (B.3), and (B.4), the error

dynamics from the reference model can be rewritten as

ẋe(t) = (A+BK1)xe(t) +BΛWe(t)σ(x(t), c(t)),

ye(t) = Cxe(t),

Ẇe(t) = −γBTPxe(t)σ
T (x(t), c(t)).
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