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List of Publications

Residue Assignment in Crystallographic Protein Electron Density Maps

With 3D Convolutional Networks

Ákos Godó, Kota Aoki, Atsushi Nakagawa and Yasushi Yagi,

2022, IEEE Access vol. 10. Pp. 28760-28772 DOI: 10.1109/ACCESS.2022.3156108

Single Shot Residue Localization and Classification in Crystallographic

Electron Density Maps

Ákos Godó, Kota Aoki, Atsushi Nakagawa and Yasushi Yagi,

2022, IEEE Access vol. 10. Pp. 108354-108365 DOI: 10.1109/ACCESS.2022.3213670





Abstract

Can state-of-the-art computer vision methods be applied for protein struc-

ture determination tasks? This thesis answers the above question by defining

the problem of locating and classifying amino acid (AA) residues in protein

electron density (ED) maps as an image segmentation problem.

Proteins are organic macro-molecules whose function depends on their

3D structure. By determining their structure, the information may be used in

computational simulations for drug discovery, bioinformatics and computa-

tional biology.

ED maps are three-dimensional, volumetric data acquired via an imaging

method called X-ray Diffraction (XRD). ED maps can be considered a 3D

image of the protein molecule’s shape.

Two limitations of protein structure determination are the dependency

on sample resolution and processing time. Automatic model building toolk-

its have difficulties below 3 Å resolution which necessitates the use of high-

resolution ED maps to obtain reliable results. Unfortunately, obtaining high-

resolution ED maps is difficult, contributing to a low, approx. 5% success rate

of model building efforts.

Model building toolkits create structural models by mapping the AA se-

quence into the ED map by matching and merging chain fragments. This

is computationally intensive: the process may take hours to days. At lower

resolutions AAs are less discernible, leading to incomplete models or the out-

right inability to handle low resolution ED maps.



The thesis proposes two 3D convolutional neural network (CNN) archi-

tectures to overcome the above limitations. CNNs excel at parallel compu-

tations and effectively utilize the parallel computing capabilities of modern

GPUs, which by itself leads to improved computational times. The proposed

methods assign AA labels directly to ED maps by crop-stitching fixed size

windows, only observing the densities without relying on the AA sequence.

Thus, the computational time scales linearly with the volume of the ED map

instead of the number of residues in the AA chain, resulting in further re-

duced computational time.

A custom data set with annotations for supervised semantic and instance

segmentation is created to train and evaluate network performance. It con-

tains high-, mid- and low-resolution ED maps generated from the same ap-

proximately 7000 proteins, allowing the CNNs to specifically target each

resolution. With low-resolution data in the challenging sub-3 Å range, the

CNNs can be trained to be functional even where state-of-the-art toolkits fail.

A real-life data set from experimental XRD observations of over 500 pro-

tein samples is also established. These samples are used to fine-tune and

measure the practical, real-life performance of the proposed CNNs.

The first proposed CNN architecture, 3D FC-DenseNet matches the per-

formance of state-of-the-art toolkits at high resolutions, and beats them at

medium and especially at low resolutions, which are a failure case for toolk-

its. Its upgrade, MT-StackNet is capable of simultaneous semantic and in-

stance segmentation of ED maps and, due its improved performance, it out-

performs model building toolkits even at high resolutions. It can locate and

classify all AA instances with a single forward pass using a novel offset vec-

tor regression technique.

Both methods process ED maps with better performance and much faster

than model building toolkits, showing that computer vision methods and

CNNs are applicable for protein structure determination tasks.
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Chapter 1

Introduction

1.1 Background & Motivation

Machine learning (ML) and artificial intelligence (AI) may well be the great-

est contributors to scientific and industrial progress in the early 21st century.

Leveraging the immense volume of data accumulated during the informa-

tion age, ML algorithms excel at identifying patterns and features in sets of

data and offer the same or better performance than a human.

Currently, the pinnacle of ML and AI is represented by deep learning and

neural networks (NN). NNs learn to perform various tasks by optimizing

an objective and identifying the relevant features without human interven-

tion being necessary. Their generalization capability is so wide that one may

choose from a number of freely available algorithms [1][2][3] and apply them

for natural language processing [4], object detection [5] or image synthesis [6]

with good results.

The use of NNs also extends into creating so-called expert systems, com-

puter programs which, with the use of AI, can simulate the knowledge and

decisions of experts in particular fields such as healthcare [7] or biology [8].

Applications include early detection of diseases in novel, non-invasive ways

[9], [10] and the development of drug compounds in silico [11], [12].
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While general architectures may perform well out of the box, NNs de-

signed for specific tasks can outperform them. To do so, one needs to con-

sider the constraints of the task they’re being applied to. Designing such

expert systems is multidisciplinary by nature, as it requires familiarity with

both the field of application to define the problem tractably for ML, and NNs

themselves to design an NN architecture capable of leveraging the specifics

of the data.

This work deals with applying AI and ML methods to the field of struc-

tural biology by attempting to create NN-based methods for determining the

structure of proteins based on experimental crystallographic observations.

FIGURE 1.1: Ribbon model of a protein (PDB ID 6E0T [13]). In-
dividual colors represent the different AA residues in the chain.

Proteins (Figure 1.1) are ubiquitous organic macromolecules often referred

to as the ’building blocks of life’ due to their participation in almost all biolog-

ical processes. Their role and function is defined by their three-dimensional

shape. If their structure is determined, the information can be incorporated
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FIGURE 1.2: Structure of an amino acid. The side chain denoted
by R between the basic amino (–NH2) and an acidic carboxyl
(–COOH) functional groups determines the residue’s type and

properties.

into computer simulations and further research e.g. in pharmaceuticals, bioin-

formatics or structural biology. To demonstrate the impact of in silico chem-

istry, with structure-based drug design (SBDD) it is possible to rapidly trial

drug candidate molecules and their compatibility with protein binding sites

using computater simulations [14]. Since no actual laboratory experiment is

needed to calculate various criteria for the drug, SBDD can cut drug discov-

ery costs significantly.

Proteins are chains of amino acid (AA) molecules whose order ultimately

decides a protein’s structure. AAs are small, organic molecules (Figure 1.2)

containing both a basic amino (–NH2) and an acidic carboxyl functional (–

COOH) group [15]. Inbetween these groups, unique side chains can be found,

providing the residue with its physical and chemical properties. Through

the amino and carboxyl groups the AA residues can form a so-called peptide

bond with each other and create a polypeptide chain, a protein. Naturally

occurring proteins are chains of the 20 standard AA residues (Figure 1.3).

Protein structure is organized into levels. Primary structure refers to the

order of AAs in the constituting linear residue chain. A protein’s secondary

structure arises when the residue chain assumes energetically optimal forma-

tions which can be sheets, helices or loops. Tertiary structure is the organiza-

tion of secondary structure elements so that they too achieve functionally or
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FIGURE 1.3: High-resolution electron density maps of the 20
standard AA residues commonly constituting naturally occur-

ring proteins.

energetically optimal states (Figure 1.4).

The process of a protein assuming its 3D shape is referred to as folding.

It is this folded structure that determines what biological processes proteins

can participate in and with what ligand molecules they may interact.

The final structure is dependent on the order of residues in the chain. The

AA sequence can be obtained rapidly and reliably with modern genome se-

quencing techniques [17], but the underlying mechanisms of the folding pro-

cess are not fully understood. Due to this, assigning higher order structures

to the residue chain and predicting the shape of the folded protein remains

difficult even with the recent NN and AI-based breakthroughs [18][19].

Alternatively, one may choose to observe the naturally folded state of pro-

teins. In this case, structure determination refers to re-assigning the primary

structure to the end result of the folding process, inferring the location and

conformation of each residue. To facilitate this, various imaging methods

exist to observe the 3D shape of proteins.
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FIGURE 1.4: Illustration of protein structure and folding. The
primary structure is a chain of AA residues (left). The chain
folds into helices and sheets, forming the secondary structure
elements (middle). The tertiary structure (right) arises from fur-

ther folding of secondary structure elements. Source: [16]

One of the popular imaging methods used for protein structure deter-

mination is X-ray Diffraction (XRD). X-rays are high-energy electromagnetic

waves with wavelengths λxray ≈ 10−8m to 10−12m. Using particle acceler-

ators or X-ray generators, the X-ray wavelength can be fine-tuned to be as

close to a single wavelength as possible, resulting in a so-called monochro-

matic beam.

FIGURE 1.5: Diagram of an X-ray Diffraction experiment. The
crystal is illuminated by powerful X-ray beams, producing a
diffraction pattern on a photographic detector plate. Source:

[22]
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In an XRD experiment (Figure 1.5), a target protein with a known pri-

mary structure is selected, obtained in large quantities and at high concen-

trations crystallized. The crystals are mounted in a high-precision rotational

instrument (Figure 1.6) and illuminated by X-ray beams from multiple an-

gles. Since the wavelength of the electrons λe− and λxray are comparable, the

electrons interact with the electromagnetic waves of the X-rays.

FIGURE 1.6: A high precision, 3-degrees-of-freedom rotational
instrument used in XRD experiments to capture diffraction pat-

terns at various angles. Source: [20]

This interaction scatters the X-ray beams, creating diffraction patterns

recorded on a detector plate such as a CCD sensor or a pixel array detec-

tor (Figure 1.5). By rotating the crystal in various angles, the observed set of

diffraction patterns are then reconstructed into three-dimensional data, rep-

resenting the phase and amplitude of the observations (Figure 1.7).

In a classical camera or microscopy setup where the electromagnetic light

wavelength falls into the visible spectrum, optical lenses can be used to fo-

cus the scattered beams. For very short wavelengths in the X-ray spectrum,

no such lenses exist: they are replaced by Fourier optics. The inverse dis-

crete Fourier-transform of the observed intensities acts a mathematical lens

to acquire the electron density (ED) map.



1.1. Background & Motivation 7

FIGURE 1.7: Illustration of a diffraction pattern and the recon-
structed ED map with the molecular structure inside. Diffrac-

tion pattern source: [21]

Another imaging method rising in popularity is cryogenic electron mi-

croscopy (Cryo-EM). One of the main advantages of Cryo-EM is that it cap-

tures data directly in real space instead of having to process the diffraction

patterns and intensities of XRD from reciprocal space. Furthermore, it has re-

cently experienced what is referred to as a ’resolution revolution’ [23]. Before,

the method had difficulties producing high-resolution samples but nowa-

days this barrier seems broken with more and more high resolution models

being deposited (Figure 1.8) to the EM Data Bank (EMDB) [24]. Unfortu-

nately, due to the recency of the ’resolution revolution’, the amount of high

resolution Coulomb maps is not enough to reliably train a NN model, so this

work limits its scope to XRD ED maps.

Both the ED maps from XRD experiments and Coulomb maps from Cryo-

EM can be considered a volumetric, three-dimensional snapshot of a molecule’s

shape. This poses the question: can state-of-the-art computer vision methods

be applied or repurposed to process ED maps? This work proposes to answer

the question by

(1) defining locating and classifying AA residues in ED maps as an image

segmentation problem,

(2) establishing the to-date largest data set built for ML tasks with XRD ED

maps,
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(3) designing novel 3D convolutional neural network (CNN) architectures

designed for semantic and instance segmentation of XRD ED maps,

(4) demonstrating the capabilities, performance and evolution of said meth-

ods, showing that it is possible to transfer image segmentation knowl-

edge from 2D images to protein structure determination tasks,

(5) showing that the methods have practical use as they can outperform

current toolkits used by experts.

1.2 Structure Determination Difficulties

Broadly speaking, protein structure determination can be split into two cate-

gories:

(1) model building into experimental observations where the goal is to find

and label each AA in maps acquired either via XRD or Cryo-EM; and

(2) ab initio structure prediction, where the goal is to predict the folded

protein structure from the AA sequence.

This work concerns itself with the former category. Although automated

toolkits for model building into experimental observations do exist, the pro-

cess remains difficult and time consuming.

The difficulties begin at sample preparation: crystallizing proteins is un-

fortunately a trial-and-error process. Even if a large quantity of the target

protein can be obtained, there is no guarantee that it will crystallize properly

(or at all) for it to be usable in an XRD experiment. Successful crystallization

depends on a myriad of precise environmental factors (such as temperature,

concentration, pH, etc.) and the resulting protein crystal’s quality can only

be determined after the fact.
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FIGURE 1.9: Comparison of a low-resolution (top) and high-
resolution (bottom) XRD observation. The quality of the
diffraction pattern and consequently the ED map depends on

the quality of the crystal. Diffraction pattern source: [21]

Imperfections in the crystals may reduce the quality and resolution of the

observed images (Figure 1.9). Even if the XRD experiment is a success, there

is still no guarantee that the observed ED map can be used for automated

structure determination.

As of 2022, over 230 million known protein sequences [26] have been

determined and deposited to the European Molecular Biology Laboratory

(EMBL) repository (Figure 1.10). In a stark contrast, only about 200,000 solved

structures have been deposited in databases [27] such as the Protein Data

Bank (PDB) [28] (Figure 1.11). The gap between the number of proteins with

known sequences and of those with solved structures grows at an increas-

ing pace which is illustrated by the staggeringly low success rate of model

building efforts: it is estimated to be around 5.2% [29].

One of the factors limiting the success of automated model building is the

resolution of observed ED maps, measured in Ångstroms (1 Å = 10−10m).

XRD ED maps with a resolution above 3 Å are considered high resolution
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and are difficult to obtain. Over 150,000 structural models, an overwhelming

majority, in the PDB were built into ED maps of at least 3.5 Å resolution (Fig-

ure 1.12). Since only successfully built models are deposited, the large gap

between solved structures and known protein sequences highlights just how

much of a limiting factor ED map resolution is.

The main reason for the reliance on higher resolution samples is that

as resolution decreases (Figure 1.13), the characteristic side chains making

residues distinguishable become less pronounced (Figure 1.9). Human ex-

perts and model building toolkits both rely on the characteristic shapes and

magnitudes of residue electron densities to assign AA labels to the ED maps.

Low resolution samples tend to make automatic methods less reliable or

even non-functional. This may necessitate the manual assignment of residues

which, depending on the human interpretability of the ED map, may take

days and still does not guarantee that a complete or accurate enough model

can be constructed at all.

Literature [30] advises against attempting automated model building into

ED maps worse than 3 Å resolution. For SBDD purposes even higher preci-

sion structural models obtained from ED maps with at least 2.5 Å resolution

are recommended [31].

Summarizing the above, it can be concluded that resolution and compu-

tational time are two of the largest bottlenecks in structure determination.

This necessitates the creation of methods which remain functional with low

resolution ED maps and are capable of rapidly handling large volumes of

samples.



14 Chapter 1. Introduction

F
IG

U
R

E
1.12:

H
istogram

of
the

num
ber

of
structural

m
odels

deposited
to

PD
B.The

decrease
in

num
ber

of
depositions

below
3Å

show
thatitis

significantly
harder

to
build

m
odels

into
low

er
resolution

ED
m

aps.Source:[27]



1.2. Structure Determination Difficulties 15

(a
)

(b
)

(c
)

FI
G

U
R

E
1.

13
:P

re
-p

ro
ce

ss
ed

ED
m

ap
s

at
2

Å
(a

),
3

Å
(b

)a
nd

4
Å

(c
)r

es
ol

ut
io

ns
.I

tb
ec

om
es

ha
rd

er
to

ob
se

rv
e

an
d

di
st

in
gu

is
h

re
si

du
es

as
re

so
lu

ti
on

de
cr

ea
se

s.





17

Chapter 2

Related Work

2.1 Structure Determination & Automatic Model

Building Toolkits

Currently popular automatic model building toolkits take an iterative ap-

proach when building models into experimental observations such as ED

maps. For samples with better than 2.7 Å resolution ARP /wARP [32] per-

forms well when initialized from random atoms or small fragments. Auto-

Build [33] [34] in Phenix [35] relies on RESOLVE [36] for secondary structure

(helices, sheets, loops) assignment which can create 70-90% complete mod-

els for high-quality samples with better than 3 Å resolution. Buccaneer [37]

handles main chain tracing using a Bayesian approach with 72% accuracy at

or below 3 Å resolution and 79% for higher resolutions.

Machine learning has been used to assist the above toolkits. Earlier model

building methods using machine learning relied on pattern matching [38] or

feature-based approaches [39] [40]. In the toolkit Coot [41], NNs [42] are used

to validate the built models.

The above take a more classical statistical approach rather than the com-

puter vision approach this work presents. In [42], after a structural model

is built, various features (e.g. bond angles, resolution and ED map-to-model

correlation) for the protein structural model have to be manually calculated
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and input into a feed-forward NN to regress to a correctness score for the

built model. Although it’s a NN-based approach, since its purpose is protein

structural model evaluation instead of model building, its target is different

from that of the proposed methods of this work.

Seqqy [43] is a Support Vector Machine (SVM) based state-of-the-art method

for ED map primary structure assignment. It consists of 20 (one for each type

of the 20 standard AAs) one vs. all SVM classifiers to determine each side

chain’s class. Seqqy is available as part of the ARP/wARP toolkit and heav-

ily relies on its other modules to perform well: Seqqy assigns AA labels along

the main chain traced by another module within ARP/wARP [44]. Seqqy can

achieve 60% accuracy in sequence assignment at 2-3 Å resolution and up to

50% at lower resolutions. This work will take Seqqy as a basis of compari-

son, since its scope and capabilities (AA labelling) are closest to the methods

proposed below.

2.2 Neural Networks for Volumetric Data Segmen-

tation

ED maps are commonly represented as three-dimensional volumetric data

[45] which is common in bio-imaging where the internal structures are just

as or more important than surfaces. Still, for machine learning tasks the

volumetric representation is used less often than alternatives such as point

clouds [46] [47] [48] [49] or surface meshes [50] [51] [52]. Even though these

representations reduce computational complexity, they would also discard

essential information captured in the volumetric representation (e.g. surface

meshes sacrificing internal structure).

It has been shown that directly operating on volumetric data outperforms
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the 2D slice-based approach due to preserving important spatial relation-

ships [53]. Though, until recently, directly operating on dense inputs with

3D neural networks wasn’t viable due to the large processing power (partic-

ularly memory) requirements.

The 3D UNet [54] was one the first architectures to perform volumetric

data segmentation and serves a basis for later methods. Xin Yang et al. [55]

combined a 3D U-Net with a bi-directional recurrent neural network to seg-

ment prenatal ultrasound volumes. In brain MR segmentation, approaches

such as VoxResNet [56] and various 3D U-Net based architectures [57] [58]

[59] have proven successful. In [60], Lu et al. achieve results surpassing the

2D slice-based approach by using 3D convolutional neural networks to clas-

sify volumetric thyroid images.

Residual [61][62] and dense networks [63] [64] allow the construction of

deeper networks with more learnable parameters while also allowing for im-

proved gradient flow to avoid the problem of vanishing gradients. This is

especially important with 3D volumetric data, which due to its large dimen-

sionality, is prone to encounter the vanishing gradient problem. It has been

shown that 3D ResUNets [65] outperform the classical 3D UNet.

2.3 Neural Networks in Structure Determination

2.3.1 Ab Initio Structure Prediction

Although not directly the scope of this work, significant progress has been

made with ab initio structure prediction as well due to the introduction of

NNs. The AA sequences from proteins lend themselves well for use with

attention-based transformer models [67]. Interestingly, the multi-head atten-

tion in transformers with the AA sequence as its inputs can be considered a
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revival of Protein Contact Networks [68], an approach preceding the preva-

lence of AI, which also used a contact matrix of the sequences to predict pro-

tein structure.

BERT-style models [69] [19] have recently gained traction and are the top

performers for the CASP[70] structure prediction competition. For ab initio

structure prediction, DeepMind’s AlphaFold [19] has been a groundbreaking

improvement. Although it produces high-accuracy structures in general, hu-

man supervision is necessary to validate the predictions. Furthermore, recent

research [71] has revealed doubts about AlphaFold’s performance for novel

structures.

RoseTTA fold [18] also relies on a Transformer style architecture, but un-

like AlphaFold, it relies not only on the sequence information, but also uses

a 2D distance matrix as well. It uses a two-track architecture and connects

the information flow of the two representations in each track. Unfortunately,

they could not leverage the third track, the 3D representation due to memory

limitations despite promising significant performance boosts. Still, it outper-

formed most methods in the CASP14 competition, losing only to AlphaFold.

Despite these advances, the validation of novel structures can be done by

building a structural model into the observed ED map, which emphasizes

the need for efficient methods for model building into experimental observa-

tions.

2.3.2 Semantic Segmentation of ED Maps

Cryo-EM potential maps are analogous to ED maps acquired via crystallog-

raphy [72] [73] in that they are also volumetric snapshots of molecular struc-

ture. Due to this, it is important to consider methods dealing Cryo-EM po-

tential maps as well.
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For model building into experimental observations, Haruspex [74] is a se-

mantic segmentation NN architecture which labels secondary structure ele-

ments (helices, sheets and loops) in Cryo-EM potential maps analogous to

XRD ED maps using a U-Net style architecture. Moritz et al. propose a

cascaded NN architecture for secondary structure segmentation of XRD ED

maps [75].

2.3.3 Instance Segmentation of ED Maps

This work approaches locating individual AA residues as an instance seg-

mentation problem. For 2D problems Mask R-CNN [76] and its offshoots

[77] [78] offer fast and accurate instance segmentation. They perform a multi-

stage process, by first proposing regions of interest (RoI) over the detected

instances. This is why they are also referred to as Region-Proposal Networks

(RPN).

RPNs then standardize the aspect ratio and size of proposed RoIs via an

RoI pooling operation. This is necessary because further processing with

NNs requires fixed size inputs. These RoIs are then refined into pixel-perfect

instance masks.

A2-net [79] is trained for model building into Cryo-EM potential maps

using their custom A2 (short for Amino Acid) data set. A2-net works in man-

ner similar to Mask R-CNN: it extracts individual AA instances and applies

instance classifiers to acquire residue labels.

When dealing with AAs where size and aspect ratio are defining features,

standardizing them via RoI pooling is not viable. Although it is a good fit for

2D images, by closely adhering to the Mask R-CNN, incompatibilities with

the task such as this will inevitably arise. A2-net overcomes the limitations of

the Mask R-CNN RoI pooling layer by proposing an aspect-ratio preserving

RoI pooling (APRoI) module.
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The reliance on extra modules to patch incompatibilities instead of fore-

thought in designing the architecture to match the problem brings with it

a computational overhead. Furthermore, A2-net relies on the AA sequence

to first extract residues through region proposals. This is a single point of

failure: if a residue is not extracted it will not be classified which leads to

incomplete models. Other methods such as Seqqy [80] in ARP/wARP [81]

also rely on such an approach and produce less complete models at lower

resolutions.

An alternative to RPN-based instance segmentation is pixel offset regres-

sion (POR) [82]. Instead of generating and refining instance proposals in

multiple passes, each pixel is assigned a keypoint and an offset vector point-

ing to their keypoint. Pixels sharing a keypoint are considered to be parts of

the same instance. This approach is already being utilized for various appli-

cations [83] [84] that do not rely on instance proposals.

The methods proposed in this work overcome the limitations of both the

RPN-based instance segmentation and the reliance on the AA sequence. This

is achieved by:

• formalizing the AA instance segmentation problem with voxel-precision

with POR in mind from the start to avoid unnecessary computational

overhead when refining the AA instance masks;

• only relying on the ED map as inputs to bypass the single point of fail-

ure the mapping of AA sequence prior to semantic segmentation or

instance classification represents; and

• designing architectures from the ground up to fit the problem definition

instead of patching off-the-shelf methods.
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Chapter 3

Problem Setting

FIGURE 3.1: Medium resolution ED map represented as volu-
metric data. Voxel values correspond to the ρ average electron

density value in the voxel’s volume.

The task of finding and classifying amino acid residues in ED maps is

cast as a computer vision, more specifically image segmentation, problem

with three objectives:

1. assign amino acid class labels to each voxel of ED maps (semantic seg-

mentation);

2. locate groups of voxels which belong to individual amino acid instances

(instance segmentation);



24 Chapter 3. Problem Setting

3. combine the semantic prediction with the instance predictions to clas-

sify each residue in the protein.

3.1 Semantic Segmentation

FIGURE 3.2: The semantic segmentation objective is to produce
a class probability map S(X) (left) by observing the ED map X.
S(X) is composed of multiple channels S(X)c (middle, right),
each corresponding to probabilities of voxels belonging to indi-

vidual AA residues.

The de facto standard of protein crystallography, the ccp4 format [45],

represents ED maps as three-dimensional volumetric data. In these 3D arrays

X ∈ ℜW×H×D, X[x, y, z] = ρ is the average electron density value for a given

(x, y, z) voxel’s volume (Figure 3.1).

The semantic segmentation goal is to generate a multi-channel class prob-

ability map S(X) ∈ ℜW×H×D×C (Figure 3.2 by only observing the ρ density

values in X. S(X)[x, y, z] = c ∈ ℜC is the class probability vector of a voxel

(x, y, z) belonging in each of the possible C classes (AA residue labels).

3.2 Instance Segmentation

The goal of instance segmentation is to locate amino acid instances gk ∈ G

in the input ED map X. Following the idea of POR, This is done via an
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FIGURE 3.3: The instance segmentation objective is to produce
a vector field I(X) ∈ ℜW×H×D×3. Each vector points to the

instance centroid assigned to its voxel.

offset vector field I(X) ∈ ℜW×H×D×3. Every voxel votes for its instance

gk = {(x, y, z)} ∈ G via an offset vector I(X)[x, y, z] pointing at its instance

centroid (xk, yk, zk) (Figure 3.3). An instance is a group of voxels sharing the

same centroid: gk = {(xi, yi, zi)|I(X)[xi, yi, zi] + (xi, yi, zi) = (xk, yk, zk)∀i}.

Since ED maps contain regions other than AA volumes, voxels not be-

longing to the 20 standard residues (e.g. zero-density voxels, solvent molecules,

noise, etc.) are denoted by a zero-vector offset and assigned to a special back-

ground/void instance gBG = {(xi, yi, zi)|I(X)[xi, yi, zi] = 0∀i}.

The number of instances, K, is known from the number of residues con-

stituting the protein’s AA sequence. The NN algorithms described below

take X as their only input and generate S(X) and I(X). Other than when

evaluating results, they do not rely in any way whatsoever on the residue se-

quence (e.g. number of residues per class, residue positions in the sequence

or neighbourhood information, etc.) of the protein.
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3.3 Residue Classification

FIGURE 3.4: Bounding region based instance proposal (left, in-
stance highlighted in blue) includes background and regions of
other instances due to the dense nature of ED maps. Using POR
(right) allows instances to be defined with voxel precision from

the start.

Finally, instance classification is achieved by sampling the class probabil-

ity map in the predicted (xi, yi, zi) voxels of an instance gk, aggregating over

all voxels and taking the most probable as the instance’s amino acid class

label: class(gk) = argmax(∑i S[xi, yi, zi]) where (xi, yi, zi) ∈ gk.

To facilititate the use of POR, instances are defined on a voxel-by-voxel

basis instead of using bounding volumes. Due to the dense packing of AA

residues, instance bounding volumes would have large overlaps with other

instances. Furthermore, they would also contain large volumes of back-

ground voxels (Figure 3.4).

By using a POR-based approach, a more precise more precise definition of

instances is possible. This ensures a one-to-one relationship between voxels

and their instances due to the lack of overlapping bounding volumes.
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Chapter 4

Data Set

4.1 Data Acquisition

The proposed methods of this thesis are 3D CNN architectures trained with

a supervised learning scheme. A data set consisting of ED map samples and

corresponding expected outputs, the ground truth (GT) is necessary to train

and evaluate the performance of NNs. As no public ED map data set with

labels for supervised semantic and instance segmentation exists as of writing,

a custom data had to be established from scratch.

FIGURE 4.1: Overview of the deposition pipeline. The ED map
observed in the XRD experiment and the structural model built

into it are deposited together.

The results of XRD experiments are deposited into open data bases such

as the Protein Data Bank (PDB) [85]. The experimentally acquired ED maps
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FIGURE 4.2: Excerpt from a .pdb structural model file. CRYST,
ORIGX, and SCALE records contain information about the unit
cell. ATOM records contain information about each atom’s

type, parent residue, co-ordinates and element.

(in the .ccp4 format) and the structural models (in the .pdb format [86]) built

into them are deposited together (Figure 4.1).

The structural model descriptor file contains detailed information includ-

ing the experimental configuration and the type and location of residues.

Records pertaining to each residue define both their position of in the residue

chain and also the co-ordinates of all their constituting atoms (Figure 4.2).

First, to determine if the problem can be solved by NNs, a clean ED map

data set is created. This allows the direct observation of network perfor-

mance without noise and artifacts affecting performance measurements. Al-

ready solved structural models from PDB are acquired and fixed resolution

ED maps are generated based on them.

Structural models meeting the following criteria were considered:

1. chain type is protein;

2. no ligands;

3. oligomeric state is 1 (monomer);

4. experimental method is X-ray diffraction.

Training and validation data sets are created from 6990 structural models.

For each structural model, three ED maps are generated with Phenix [35]: at

2 Å, 3 Å, and 4 Å resolution. The ED maps are in the .ccp4 map format [45].
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The result is three data sets consisting of the same proteins, but with each

having ED map samples at a different, fixed resolution. Obtaining three data

sets like so allows the NNs to directly target high, medium or low resolu-

tion samples. Furthermore, this also enables contrasting and comparing the

effects of decreasing ED map resolution (Figure 1.13).

Real-life ED maps have varying resolution and quality, on top of the .pdb

structural model built into them possibly not being completely accurate. The

reliability of structural models is measured via their R-factor values [87]:

R =
||Fobs| − k|Fcalc||

|Fobs|

where |Fobs| is the observed sample intensities, |Fcalc| are the intensities

calculated based on the built structural model and k is a scale factor. The R-

free value describes the discrepancy between experimental observations and

the ideal, calculated values [88] based on the .pdb model. If the R-factor of

an observation is too high, the observation may be closer to noise rather than

actual diffraction data. R = 0.59 corresponds to randomly distributed atoms.

|Fcalc| corresponds to intensities based on the structural model, which can

be reconstructed into a synthetic ED map which looks as if the determined

structural model could be built into it. Structure building toolkits such as

Phenix contain modules to create such synthetic data which closely resem-

ble real-life observations so the R-Factor calculation is precise. This pipeline

(Figure 4.3) is utilized to create the synthetic data set’s ED maps. This ensures

that noise is minimal and that the ED maps on the structural models are as

close to real data as possible (Figure 4.4).

Although the above is an efficient way to determine if the problem can

be solved by the proposed methods, any results achieved on the fixed res-

olution training and validation sets may not reflect performance on actual

experimental data, although the domain gap is minimal. To measure that, a
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FIGURE 4.3: The validation pipeline used to create synthetic
samples closely resembling experimental ED maps in Phenix for
calculating the R-Factor is used to create the fixed resolution ED

maps of the synthetic data set.

data set of ED maps converted to the .ccp4 format directly from experimen-

tally observed reflection data, as opposed to being based on the structural

models (.pdb files).

To ensure the fidelity of the GT (if the R-factor is too high, the GT can’t

be trusted), this dataset is sourced from PDB-REDO [90] instead of the PDB.

PDB-REDO is a repository for structural models refined further after their

initial deposition to PDB, ensuring that the highest quality structural models

are used for GT.

The experimental test set contains 594 proteins between 2–4 Å resolution

with an R-free (the R-factor calculated on a separate, validation set of intensi-

ties) value under 0.35. 50 proteins each from over 2.5 Å, 2.5–3.5 Å, and below

3.5 Å resolutions are reserved for an experimental test set used to measure

performance on real-life data. The rest are reserved for fine-tuning the net-

works after training with the fixed resolution data.
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FIGURE 4.4: Experimentally observed (left) and generated
(right) of a protein (PDB ID 104L [89]) with its structure over-

laid. Phenix generates ED maps very close to real-life data.

4.2 Data Preprocessing

By default, the contents of a .ccp4 format ED map correspond to the so-called

unit cell of the protein crystal. The unit cell represents the smallest unique

part of the protein crystal which repeats infinitely. They organize into a lattice

based on their symmetry space group. It is important to note that due to the

infinite tiling, a unit cell may not enclose an entire ED map of the protein

by only containing fragments which form the ED map once the unit cells are

tiled properly.

FIGURE 4.5: A unit cell in a non-orthonormal basis (left) and
transformed to an orthonormal basis (right). The ribbon model
shows the protein structure, highlighting how more than one

complete ED may be present in the unit cells.
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The unit cell base vectors depend on the space group and may not be

orthonormal. To ensure that AA shapes are consistent across all samples,

each ED map is transformed to the P1 space group, with an orthonormal

basis (Figure 4.5).

This is done by relaying the information from the CRYST, ORIGX and

SCALE records of the .pdb (Figure 4.2) to Phenix. CRYST records contain in-

formation about the unit cell’s parameters and space group. ORIGX records

present the the transformation from orthogonal co-ordinates to the space

group of the crystal. SCALE records contain the transformation from orthog-

onal co-ordinates to crystallographic co-ordinates. During the process, the

ED maps are sampled so that a distance of 2 voxels corresponds to the phys-

ical resolution of the data.

FIGURE 4.6: Unit cells before (left) and after (right) centering
and isolating a single, complete map.

To remove repeats stemming from the repeating crystal nature of the sam-

ples so-called virtual unit cells are centered a complete ED map of each pro-

tein ensuring that the result contains a full ED map of the protein. All regions

outside the 3 Å radii of atom positions are culled from the ED maps, leaving

a volume containing only a single complete ED map (Figure 4.6).

ED map magnitudes are normalized by applying a procedure similar to

the one in [75]. Setting voxels below a threshold intensity value of 1.5 to
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zero creates a uniform background (BG) and clearly separates it from voxels

with actual density information. The minimum of the remaining non-zero

voxels is shifted to zero. To deal with outliers, the intensities are divided by

their median and any voxels with outlying intensity values are clamped to

the 98th percentile.

Due to the varying sizes of ED maps, it is not possible to perform mini-

batch training with them as-is, since that would require equal sized inputs.

Resizing the ED maps is not feasible because that would alter the resolution

of the samples and also undesirably alter the shapes of residue side chains.

Instead, equally sized windows are cropped from the normalized ED maps

(Figure 4.7).

FIGURE 4.7: Equal sized windows with the internals visible.
Cropping windows from the varying size ED maps allows for
mini-batch training. Note how cropping windows may cut

residues in half around the edges.

As the resolution decreases, each voxel corresponds to longer distances,

leading to the field-of-view (FOV) widening if window sizes stay constant.

Combined with residue side chains becoming less defined (Figure 4.8), extra

complexity is present at lower resolutions. To alleviate this, window sizes

are 48 × 48 × 48 voxels for the 2 and 3 Å data sets, and 36 × 36 × 36 voxels

for the 4 Å data set. The reduction in size keeps the FOV consistent at lower

resolutions.
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FIGURE 4.8: As the ED map resolution decreases AA side
chains become less discernible. At high resolutions (left), the
individual atoms and bonds of the PHE residue are easy to
identify, while at low resolutions (right) human interpretation

becomes difficult.

4.3 Data Augmentation

The aim of data augmentation is not specifically to increase the number of

input samples, since there are already over 350,000 input windows across

the three data sets (Table 4.1). Rather, the objective is to balance out the

individual AA residue observation probabilities. This is measured via the

Chi-Square Distance (CSD), defined as:

CSD(H, U) = ∑
c

(H(c)− U(c))2

H(I)
,

where H is the normalized distribution of observation probabilities, and U is

an ideal uniform observation probability distribution. c ∈ [0, C) is a class in

the distributions with H(c) (in the normalized, observed case) and U(c) (in

the ideal case) its observation probability.

Using a breadth-first search algorithm, the ideal number of occurences

for each window in the data set is determined so that they minimize the

CSD. Then, using 3D rotation and selection operations the data sets are aug-

mented.
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FIGURE 4.9: L/D-enantiomers of a chiral AA. The central car-
bon atom is the center of chirality. Since natural proteins only
consist of L-enantiomers and the D-enantiomers are produces
by mirroring or flipping, only rotations are legal augmentation

operations.

Training set augmentation operations are rotations around the primary

axes in multiples of 90° . During the augmentation process, the optimal num-

ber of occurrences (between 1 and 10: the original and 9 possible rotations)

is assigned to each window so that the overall CSD of the fold is minimized.

Inversions and flips are not legal augmentation operations. This is due

to the fact that AA residues are chiral with the exception of the non-chiral

glycine. Chirality, or handedness, is a stereochemical property of tetrahedral

molecules arising from asymmetry around an atom which becomes the cen-

ter of chirality [91]. In tetrahedral molecules such as AAs, if all substituents

are different to a central atom, that atom becomes a chiral center (Figure

4.9). In AAs, the center of chirality is the α-carbon to which the functional

groups and the side chain is attached. Due to this asymmetry, the transfor-

mation capable of permuting the order of substituents short of reassembling

the molecule is mirroring.

The non-superimposable mirrored pairs are referred to as enantiomer

pairs. Although their chemical properties are identical, their physical prop-

erties differ. One enantiomer rotates polarized light left or counterclockwise

hence being named levorotatory enantiomer (L-enantiomer), the other ro-

tates polarized light right or clockwise and is called the dextrotatory enan-

tiomer (D-enantiomer) of the chiral molecule. Due to a natural phenomenon
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FIGURE 4.10: Normalized residue observation probabilities of
the 2Ådata set windows. The dashed line represents the 20-
class uniform distribution with a 0.05 probability for each class.

called homochirality, only the L-enantiomers occur in natural proteins and

as such no D-enantiomers should appear in the data sets either.

Validation sets are augmented via selections: augmented validation sets

consist of 80% of the original windows with the lowest possible CSD. Selec-

tions are preferred over rotations to promote the uniqueness of validation set

windows and reduce redundancy from repeating windows which could af-

fect performance measurements. The effects of augmentation on the number

of windows and CSD are detailed in Figure 4.10 and Table 4.1.
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TABLE 4.1: Comparison of window counts (N) and CSD pre-
and post-data augmentation of the Training (Trn.) and Valida-

tion (Val.) sets

Trn. N Pre N Post Val. N Pre N Post
2 Å 148849 305162 2 Å 37212 29770
3 Å 76403 159601 3 Å 19100 15281
4 Å 90064 188288 4 Å 22516 18013
Trn. CSD Pre CSD Post Val. CSD Pre CSD Post
2 Å 0.3162 0.1192 2 Å 0.3166 0.2555
3 Å 0.3267 0.1185 3 Å 0.3207 0.2735
4 Å 0.3230 0.1494 4 Å 0.3234 0.2702

4.4 Ground Truth Annotation

When a structural model is deposited into repositories such as the PDB, both

the experimental observations and the structural model built into those ob-

servations are deposited together. The GT is based on the structural model

description .pdb file. When building the experimental data set both the ex-

perimentally observed ED map and the .pdb file are downloaded and the ED

map is annotated according to the structural model. For the synthetic data

set only the .pdb file is acquired and the ED maps are generated from it at

fixed resolutions before annotating (Figure 4.11).

By reading the ATOM records of the .pdb file (Figure 4.2), every consti-

tuting atom’s co-ordinates and parent residue type can be obtained. Anno-

tations take the form of Gaussian spheres placed at each atom’s co-ordinates

(Figure 4.12). Sphere radii depend on the resolution: R2 = 3, R3 = 2 and

R4 = 1. The standard deviation is half the radius for all resolutions: σ = R/2.

The semantic segmentation GT, Ŝ(X) ∈ ℜW×H×D×C, is a multi-channel

probability mask describing the expected S(X) semantic output of the net-

work. The Gaussian annotations are placed at the atom co-ordinates in the

GT channel S(X)c corresponding to the parent residue’s assigned class label

c ∈ [0, C).

From each (x, y, z) voxel’s perspective, the end result is a Ŝ(X)[x, y, z] =
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FIGURE 4.11: Since both the synthetic and experimental ED
maps correspond to the respective .pdb structural model de-
scriptor file, the annotation process is the same for both. For ex-
perimental samples the ED maps are directly annotated using
the .pdb file, for synthetic samples the ED map is first gener-

ated from the .pdb at a fixed resolution.

FIGURE 4.12: GT annotations are guided by the .pdb structural
model descriptor file. Using the ATOM records, annotations ac-
cording to the AA type can be placed in the atom co-ordinates.
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(a) (b) (c)

FIGURE 4.13: ASN & ASP (a), GLN & GLU (b) and VAL & THR
(c) were combined into single classes in the semantic segmen-
tation class. This is due to their near identical electron densities

even at 2 Å resolution.

ĉ ∈ ℜC vector describing the likelihood of (x, y, z) belonging in class c ∈

[0, C). To guide the NNs towards increased confidence when rendering pre-

dictions, Ŝ(X) is reduced to a single-channel expected class label mask by ap-

plying the arg max operation over the channels. This results in a W × H × D

shaped GT mask where each value is the expected class label c ∈ [0, C).

The residue pairs of ASP/ASN, GLU/GLN and VAL/THR are easily con-

fused by human experts even at high resolutions due to their similar side

chains. These pairs (Figure 4.13) are grouped into a single class each.

Voxels where X[x, y, z] > 0 but are not parts of the 20 standard AA residues

(solvents, noise, etc.) and those where X[x, y, z] = 0 are assigned to an extra

BG or void class. Voxels that would not receive a semantic class label for

whatever reason by the end of this labeling process also get assigned to the

BG class. This results in C = 18, with 17 AA classes and the additional BG

class.

The instance segmentation GT, Î(X) ∈ ℜW×H×D×3 uses the same Gaus-

sian spheres as above. While creating the semantic annotations for a residue,

its centroid is calculated as the mean of the residue’s atom co-ordinates. All
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voxels’ offset vectors inside the annotation spheres are set to point at the par-

ent residue’s centroid.

Similarly to Ŝ(X), voxels where X[x, y, z] = 0 (non-density points) or

Ŝ(X)[x, y, z, c] = 0, c ∈ [0, 17) (voxels part of the BG) are assigned a zero-

vector offset: Î(X)[x, y, z] = (0, 0, 0).

Using offset vectors instead of the absolute positions in the GT meshes

well with the use of POR and, more importantly, allows the networks to learn

a position-independent encoding of AA locations when performing instance

segmentation.
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Chapter 5

Methods – Semantic Segmentation

This work proposes 3D convolutional NNs as the solution to the problem

definition. First, a custom semantic segmentation NN, the 3DFC-DenseNet

(Figure 5.1) is presented. The motivation of of this network is to show that the

problem of AA label assignment can be defined as a semantic segmentation

problem and that NNs are capable of solving it.

Inspired by the two-dimensional FC-DenseNet [64] family of architec-

tures, it is designed to handle volumetric data as inputs. FC-DenseNets per-

form particularly well in two-dimensional semantic segmentation tasks and

can be considered an upgrade to the U-Net [92].

5.1 3D FC-DenseNet Network Architecture

DenseNet-based architectures [63] consist of so-called Dense Blocks (DB).

Within each DB are multiple Dense Layers containing a convolutional layer, a

ReLU non-linearity, dropout and batch normalization (Figures 5.2, 5.3). The

output of each Dense Layer is concatenated and passed along to the final

Dense Layer to form the output, creating a more dense feature map (hence

the name) and allowing for feature reuse within DBs. The gradient can flow

along these concatenations during back-propagation preventing vanishing

gradients. This is especially beneficial for the large input dimensions of vol-

umetric data and an advantage over 3D U-Net [93] architectures.
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FIGURE 5.2: Diagram of the 3DFC-DenseNet architecture’s
Down Block. Dense blocks consist of four dense layers each,
the concatenations along Dense Layers (DL) enable better gra-

dient flow.

The network architectures are constructed using three-dimensional DBs

to handle volumetric data. Each DB contains four dense layers (a 3 × 3 ×

3 convolution followed by batch normalization and a ReLU non-linearity),

with a growth rate (the number of outputs of each Dense Layer) of 12 and a

dropout probability of 0.2.

Transition Down (TD, Figure 5.2) and Up (TU, Figure 5.3) blocks manip-

ulate feature map sizes between DBs. TD blocks halve feature map sizes

towards the bottleneck via 2 × 2 × 2 max pooling, preceded by a batch nor-

malization layer, a ReLU non-linearity and 1 × 1 × 1 depth convolution. TUs

double feature map sizes from the bottleneck towards the output using a 3D

transpose convolution layer of kernel size 3 × 3 × 3 with a stride of 2 to in-

crease feature map sizes.

The final 1× 1× 1 depth convolution reduces the number of output chan-

nels to correspond to the number of classes. A softmax layer is applied over

the channels to acquire the per-voxel class probabilities as a sparse segmen-

tation mask as the output.

Concatenations along skip connections between TU and TD allows the
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FIGURE 5.3: Diagram of the 3DFC-DenseNet architecture’s Up
Block. Adaptive Zero Padding activates in case of size mis-
matches and solves such problems arising from the use of

strided transpose convolutions.

use of features from before the bottleneck when rendering the output. The

spatial dimensions of the feature maps between corresponding TUs and TDs

must be the same to be able to concatenate them.

Strided transpose convolutions can map multiple input sizes to the same

output size [94]. Transition Ups are used to double feature map dimensions

halved by the 2×2×2 max poolings in Transition Downs meaning they can’t

produce feature maps of odd dimensions. The size mismatches that can arise

due to these can prevent the architecture from using input sizes which pro-

duce odd sized feature maps after max pooling.

As a solution, an adaptive zero-padding is implemented at the connected

TU and TD blocks to resolve size mismatches by zero-padding the feature

map sizes at the TU blocks when needed. The use of ReLU non-linearities

ensure that the minimum activation for each layer is zero meaning the zero-

padding operation will not interfere with the range of values in the layer

outputs. In conjunction with the fully convolutional nature of the architec-

ture this allows any input size to be accepted and avoids having to manually

change network parameters just to fit certain input sizes.
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5.2 Objective Functions

5.2.1 Semantic Segmentation - IoU Loss

To solve the semantic segmentation task, the goal of the network is to maxi-

mize the Intersection over Union (IoU). The IoU defined between two sets A

and B as:

IoU(A, B) =
A ∩ B
A ∪ B

measures the overlap between two sets. It assigns a score in the range of [0, 1]:

0 corresponding to no overlap, and 1 corresponding to a perfect overlap of

the two sets.

In terms of the class probability predictions S(X) and GT Ŝ(X) over for a

class c:

IoU(S(X), Ŝ(X))c =
S(X)c ∩ Ŝ(X)c

S(X)c ∪ Ŝ(X)c

where Ŝ(X)c and S(X)c are the GT and predicted output channels corre-

sponding to class c ∈ [0, C).

It would be simple to define the semantic segmentation objective function

for a class as 1− IoU(S(X), Ŝ(X))c. But to calculate if a (x, y, z) voxel belongs

to class c, one must apply the arg max operation: if arg max(S(X)[x, y, z]) = c,

then (x, y, z) belongs to c. Since the arg max operator is not differentiable, the

IoU can not directly be optimized in this form.

Instead, a surrogate for the IoU, The Lovasz Softmax Loss [95] is the train-

ing objective LLovasz. It approximates the IoU and similarly to the above, it is

calculated per-channel over semantic class probability maps. Although the

implementation in [95] is for 2D data, this work extends the Lovász-Softmax

Loss to handle three-dimensional volumetric data.
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FIGURE 5.4: Residue fragment examples. If the portions ren-
dered in wireframe are cropped, the fragments remaining may

be insufficient for proper segmentation or classification

FIGURE 5.5: One- (left) and two-dimensional (right) positional
weights W in a window of size 36×36×36 with l f rame = 8. By
using positional weighting, the impact of mislabeling residue

fragments around window edges is diminished.

5.2.2 Fragmented Residues & Positional Weighting

Cropping windows introduces the problem of fragmented residues close to

window edges (Figure 4.7). The remaining fragments may not be sufficient

(Figure 5.4) to properly identify a residue. To reduce the error caused by

mislabeling residue fragments in the frame regions a positional weight W ∈

ℜW×H×D (Figure 5.5) is applied to LLovasz to reduce the penalty around win-

dow borders where incomplete instances would appear.

Given a point x along a primary axis in a window of size X with frame

size l f rame, the weighting component W is defined as
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W(x) =


F(d(x, l f rame)), if x ∈ [x, l f rame]

F(d(x, X − l f rame)), if x ∈ [X − l f rame, X]

1, otherwise.

Where d is the L1 distance between two points. The weighted loss for

point x is the product of the Lovász-Softmax Loss, LLovasz, and the loss weight

assigned to that position: LLovasz(x)W(x). In all experiments, F is a decreas-

ing linear function F(x) = (1 − x/l f rame). The full spatial weight can be ob-

tained as an outer product of the x, y and z components: W = Wx ⊗Wy ⊗Wz.

The size of the frame region l f rame in voxels is resolution dependent: l f rame2Å =

8, l f rame3Å = 6, l f rame4Å = 4. Despite being different sizes in voxels, these all

correspond to approx. 8 Å, which was selected so that the even the longest

AA side chains of ARG and LYS would fit.

5.3 Experiments

5.3.1 Ablation Tests

Concatenations & Gradient Flow

The main motivator of basing the 3D FC-DenseNet architecture on the 2D

FC-DenseNet was its use of concatenations within Dense Blocks (Figures 5.2,

5.3) to allow feature reuse and direct gradient flow to deeper layers [64]. An

ablation test is conducted to confirm how well this property translates to a

3D case as well as for this specific problem.

In this ablation test, one configuration is trained with the Dense Block

concatenations enabled, and another one without the concatenations. It is ex-

pected that due to the lack of concatenations enabling stronger gradient flow,

the deeper layers (the bottleneck along with its proximate Up and Down
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blocks) will see their gradient magnitude diminish. It might also affect train-

ing capability.

Each configuration is trained from scratch for 5 epochs. The metrics used

to measure the effects of ablation on performance are the loss and IoU over

validation set windows. To observe the effects on gradients, the gradient L2

norms normalized to have a maximum of 1 are compared.

Adaptive Zero Padding & Size Mismatches

When using the 4 Å data set’s 36×36×36 voxel input size, odd feature map

sizes are produced after two Transition Downs (from 18×18×18 to 9×9×9).

These, due to the above described behavior of strided transpose convolutions

are expected to cause a size mismatch when attempting to concatenate along

the skip connections.

To confirm this and demonstrate the effects of the proposed adaptive zero

padding, the 4 Å configuration is trained both with and without the adaptive

zero paddings before each Transition Up block. It is expected that training

will fail without the zero paddings, as it is not possible to concatenate tensors

with mismatched shapes.

5.3.2 Inference & Performance Metrics

Inference is done in a patch-wise manner, by cropping ED maps into over-

lapping windows and stitching the per window network predictions onto

the input ED map to form a global prediction (Figure 5.6).

Window sizes and l f rame are identical to those used during training, vali-

dation and fine-tuning: 48 × 48 × 48 voxels at high and medium resolutions

(2, 3 Å), and 36 × 36 × 36 voxels at low resolutions (4 Å).

The stride between subsequent windows is the double of l f rame, ensuring

that the fragmented instances of frame regions will re-appear in full in at
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least one subsequent window’s center. In case the global prediction does

not entirely cover the non-BG volumes, additional windows centered on the

missing regions are cropped and processed as a failsafe.

Only the window centers are used to form the global prediction, as the

frame regions may contain fragmented residues (Figure 5.4) the networks

may be unable to segment properly. Network performance is measured over

the global prediction after every window is processed, and not as a per win-

dow average.

Per-voxel semantic segmentation performance is measured by the mean

IoU of the class probability predictions S(X) and GT Ŝ(X) over all non-BG

(where c = 17 is the BG/void) classes:

IoU(S(X), Ŝ(X)) =
1
C

C

∑
c=0

IoU(S(X), Ŝ(X))c

where the IoU of each c class is:

IoU(S(X), Ŝ(X))c =
S(X)c ∩ Ŝ(X)c

S(X)c ∪ Ŝ(X)c

Additionally the True Positive (TP) rate, True Negative (TN) rate and F1-

Score are also measured. A voxel (x, y, z) is considered a TP for class c if

c = arg max Ŝ(X)[x, y, z] = arg max S(X)[x, y, z]

meaning that the most confident predicted and expected class for (x, y, z) are

both c. If a voxel is a TP for class c it is considered to be a TN for every other

class.

A voxel (x, y, z) is considered a False Positive (FP) for class c if

arg max Ŝ(X)[x, y, z] ̸= arg max S(X)[x, y, z] = c
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meaning that the most confident predicted and expected class for (x, y, z) are

not both c. In this case, the voxel is considered a False Negative (FN) for the

arg max Ŝ(X)[x, y, z] class it should have been.

The F1-Score for class c is defined in terms of the above quantities:

F1c =
2TPc

2TPc + FNc + FPc

where, TPc, FNc, FPc are the total TP, FN and FP for class c. Then, similarly to

the IoU above, the average F1-Score is obtained as

F1 =
1
C

C

∑
c=0

F1c

Residue class predictions are obtained by sampling the semantic output

S(X) in the union of each residue atoms’ radii (R2 Å = 3, R3 Å = 2, R4 Å = 1).

The reliance on the .pdb model file (where the atom positions are defined) is

necessary as 3D FC-DenseNet is unaware of individual residue instances.

The predictions S(X)[x, y, z] of each (x, y, z) voxel are averaged to obtain

the residue’s predicted class. This represents a majority voting scheme to

render residue class predictions. This is more in line with what is ultimately

the objective: to provide correct predictions for residue volumes and not nec-

essarily every voxel in the ED map.

Per-residue performance is measured by Rank-1 (R1) and Rank-3 (R3) hit

rates. For a Rank-1 hit, the most confident predicted class must be the same

as the residue’s expected class in the .pdb model file. For a Rank-3 hit, it is

enough that the the expected class is among the top 3 most confident class

predictions.
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5.3.3 Training Configuration & Objective

3D FC-DenseNet is trained separately from scratch in three training and val-

idation runs using the 2 Å, 3 Å, and 4 Å. This allows for direct observation

and comparison of the effects of decreasing resolution on performance.

The 3DFC-DenseNet57 architecture used for the 2 Å and 3 Å samples con-

tains 5 UBs and 5 DBs with a bottleneck of 15 dense layers for a total depth

of 57 layers. To accomodate the reduced input size, the 3DFC-DenseNet49

configuration contains one less UB and DB (Table 5.1), with a total depth of

49 convolutional layers.

TABLE 5.1: Summary of the training configurations used for
training the 2 Å and 3 Å models (3D FC-DenseNet 57) and the
4 Å model (3D FC-DenseNet 49). The latter is one block shal-

lower on the up and down paths

3D FC-DenseNet 57 3D FC-DenseNet 49
3x3x3 Conv.

Down Block x 5 Down Block x 4
(4 Dense Blocks ea.) (4 Dense Blocks ea.)

Bottleneck (15 Dense Layers)
Up Block x 5 Up Block x 4

(4 Dense Blocks ea.) (4 Dense Blocks ea.)
1x1x1 Conv.

Since 3D FC-DenseNet is a novel approach for a newly defined problem

using a fresh data set, its training and validation is done in a 5-fold cross-

validation setup. The data sets are split over proteins into five folds: each

time, a different set of 1,398 ED maps are used for validation and the re-

maining 5592 ED maps for training. Five-fold cross-validation is necessary

to show that the method is stable and that performance does not have biases

towards individual training samples.

5.3.4 Finetuning & Experimental Data

After training and validation, the network models are fine-tuned using the

experimental data set samples in a resolution range ± 0.5 Å around their
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training resolutions. Samples under 2.5 Å resolution are processed by the

2 Å model, those in the 2.5–3.5 Å range by the 3 Å model, and those above

3.5 Å resolution by the 4 Å model.

50 protein ED maps in each resolution range are used for evaluating per-

formance, the rest are used to finetune the models trained on the fixed resolu-

tion training sets. To demonstrate the effects of fine-tuning, performance on

experimental data is evaluated both before and after the fine tuning process.

5.3.5 Comparison to Seqqy & ARP/wARP

3DFC-DenseNet’s mean rank-1 and rank-3 AA labelling performance is com-

pared to that of Seqqy [43]. Seqqy is not available stand-alone, but as a mod-

ule in the ARP/wARP toolkit and runs in conjunction with other modules

performing out-of-scope tasks such as loop closure [96] or refinement and

modification of the input samples through REFMAC [97]. This makes di-

rect comparison difficult and slightly favors Seqqy by allowing it to rely on

additional information and modules.

By default, Seqqy relies on residue sequence information to assign AAs to

the ED maps, while 3DFC-DenseNet does not. As there is an option to omit

the sequence information when using Seqqy, its performance is measured

both with and without the residue sequence provided.

ARP/wARP is designed for iterative model building. Seqqy is run with

default settings for five cycles to build structural models for the ED maps in

the experimental data set. The structural models used in the experimental

data sets serve as the GT here as well. In Seqqy-built models, each predicted

residue is paired to the GT residue with the highest IoU intersecting bound-

ing box.
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5.4 Results & Discussion

5.4.1 Ablation Test Results

Concatenations & Gradient Flow

With concatenations enabled, the improved gradient flow is observable via

the norm of the gradients, especially at deeper layers and the bottleneck (Fig-

ure 5.7). The normalized gradient magnitudes in the bottleneck layers are an

order of magnitude higher with concatenations enabled.

Performance is also affected positively by using concatenations in Dense

Blocks with an average increase of 49.28% (Table 5.2) across all resolutions.

The measured losses are higher and converge slower without concatenations

(Figure 5.7). These results confirm that the use of concatenations in Dense

Blocks are significant contributors to the performance of 3D FC-DenseNet.

TABLE 5.2: Ablation test results: semantic segmentation IoU
measured on the 3Å validation set fold 1, after 5 epochs of train-
ing with (Normal) and without (No Cat) Dense Block concate-

nations

Resolution 2Å 3Å 4Å
Normal IoU 0.7014 0.5365 0.2534
No Cat IoU 0.4750 0.3303 0.1839
% Difference 47.67% 62.43% 37.75%

Adaptive Zero Padding & Size Mismatches

In line with expectations, the odd 9×9×9 feature map size after the second

Transition Down when using the 4 Å data set’s 36×36×36 voxel windows

resulted in a failure case without zero paddings. No odd feature map shapes

are created with the increased 48×48×48 window sizes of the 2 Å and 3 Å

setups.

In these cases the zero paddings are inactive even when enabled, because

no mismatches occur. Zero paddings before skip connection concatenations
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FIGURE 5.7: Ablation test results, comparing runs Runs with
concatenations enabled ("Normal" runs) and disabled ("No Cat"
runs). "Normal" runs optimize faster (Top) and outperform
(Middle) "No Cat" runs. Normalized gradient norms (Bottom)
show that more of the gradient is conserved in deeper layers
with DB concatenations in "Normal" runs. Note the logarith-

mic scale on the bottom chart.
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offer a general solution so that architecture parameters do not have to be ad-

justed by hand on a layer-by-layer basis to fit input sizes. This allows the im-

plementation of problem-specific considerations such as reducing window

sizes to keep the FOV consistent even at lower resolutions.

5.4.2 Training & Validation Results

The results of the 5-fold cross-validation in Table 5.3 show that the proposed

method is stable across all folds of all resolutions and is a viable approach to

segmenting ED maps according to AA residues.

The baseline Rank-1 Hit Rate of a random classifier for an 18-class classi-

fication problem is approximately 0.0556 (naïvely, disregarding data set im-

balance). 3DFC-DenseNet achieves a mean Rank-1 Hit Rate of 0.5054 at 4 Å,

a significant increase over the baseline even at the lowest resolution. The

Rank-1 Hit Rate is 0.7983 at 3 Å and 0.8912 at 2 Å.

The difference between the Rank-1 and Rank-3 AA hit rates increases as

the sample resolution decreases: 3.68% at 2 Å, 7.22% at 3 Å and 27.36% and

4 Å. The correct prediction becomes less likely to be the most confident to-

wards lower resolutions. This hints at increasing confusion between residues

as side chains become harder to distinguish.

The confusion matrix in Figure 5.8(a) for the Rank-1 AA hit rates at 4 Å

supports this. Residues such as ALA and GLY or ILE and LEU become near-

indistinguishable at 4 Å, especially without information about the AA se-

quence. The observed confusion is in line with experimental observations. A

modified similarity matrix from the software O [98] in Figure 5.8(b) confirms

that the classes confused by the network at 4 Å are ones with high similarity.

The detrimental effect of lower resolutions on side chain observability is

demonstrated by the results, especially in the case of the voxel-wise metrics.
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TABLE 5.3: Five-fold cross validation results: the best perform-
ing fold based on Rank-1 Hitrate is marked in bold

2Å Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
IoU 0.8231 0.8346 0.8256 0.8343 0.8229

True Pos. 0.8415 0.8402 0.8346 0.8463 0.8361
True Neg. 0.9998 0.9997 0.9997 0.9998 0.9997

F1-Score 0.8845 0.8858 0.8780 0.8892 0.8835
Rank-1 Hitrate 0.8814 0.8867 0.8783 0.8911 0.8783
Rank-3 Hitrate 0.9154 0.9182 0.9137 0.9191 0.9123

3Å Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
IoU 0.6752 0.6894 0.6663 0.6810 0.6788

True Pos. 0.7231 0.7331 0.7271 0.7311 0.7185
True Neg. 0.9996 0.9996 0.9995 0.9996 0.9996

F1-Score 0.7767 0.7884 0.7775 0.7828 0.7787
Rank-1 Hitrate 0.7906 0.7939 0.7885 0.7983 0.7881
Rank-3 Hitrate 0.8479 0.8498 0.8471 0.8541 0.8462

4Å Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
IoU 0.3316 0.3149 0.3279 0.3052 0.3316

True Pos. 0.4694 0.4615 0.4679 0.4376 0.4652
True Neg. 0.9979 0.9979 0.9979 0.9978 0.9978

F1-Score 0.5224 0.5311 0.5324 0.4978 0.5308
Rank-1 Hitrate 0.5171 0.5004 0.5101 0.4865 0.5132
Rank-3 Hitrate 0.6563 0.6360 0.6487 0.6302 0.6476
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(a)

(b)

FIGURE 5.8: Confusion matrix of the results measured over the
4 Å validation sets (a) and the modified similarity matrix (b),
.slider_matrix [99] from O [98] (lowest similarity score is 1, high-
est is 10). Residues with high similarity tend to be confused by

3D FC-DenseNet.
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The majority voting scheme for per-residue metrics alleviates this: compar-

ing the voxel-wise mean IoU to rank-1 hit rates shows increases of 6.65% at

2 Å, 16.76% at 3 Å and most significantly 56.64% at 4 Å.

FIGURE 5.9: Global class predictions over a 3 Å ED map.

Foreground-background separation is handled well. This is shown quan-

titatively by the high TN rates and qualitatively as correct predictions ’snap’

to non-BG voxels (Figures 5.9, 5.10).

(a) (b)

FIGURE 5.10: Voxels predicted as PHE (a) and CYS (b) in a 2 Å
resolution window. The network outputs ’snap’ closely to the

input densities.
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5.4.3 Experimental Samples

Without fine-tuning, the performance of 3D FC-DenseNet on experimentally

observed ED maps is significantly worse than with the fixed resolution sam-

ples (Table 5.4). This may be partly due to the varying sample resolutions

and additional artifacts due to this being real-life data. Fine-tuning increases

performance for both Rank-1 and Rank-3 hit rates. The fine-tuned results are

comparable to the performance of the methods in use by model building tool

kits.

TABLE 5.4: Comparison of mean validation set and experimen-
tal set hit rates, without and with finetuning (FT)

Resolution Val. R1 Val. R3 Non-FT R1 Non-FT R3 FT R1 FT R3
<2.5 Å 0.8912 0.9192 0.5397 0.6552 0.7116 0.8119

2.5–3.5 Å 0.7983 0.8541 0.3789 0.5327 0.6045 0.7495
>3.5 Å 0.5172 0.6564 0.2072 0.3500 0.3328 0.5122

3D FC-DenseNet matches the performance of seqqy [43] and ARP/wARP

[32] with fine-tuned rank-1 hit percentages of approx. 72.07% vs. 71.16% at

high resolutions. At medium resolutions 3D FC-DenseNet outperforms Se-

qqy’s 41.29% accuracy with 60.47%. Most importantly, it remains functional

at low resolutions, while Seqqy fails even with sequence information present.

Table 5.5 shows that while the option is present in ARP/wARP not to use se-

quence information, it’s not able to perform well without it.

It is important to note that 3D FC-DenseNet is a set of 3 per-resolution

specialist networks, each being able to target a specific resolution range (low,

TABLE 5.5: Comparison of 3D FC-DenseNet’s finetuned rank-
1 (FT R1) and rank-3 (FT R3) mean performance with Seqqy
(ARP/wARP) after five iterations, with (+seq) and without (-

seq) sequence information

Resolution FT R1 FT R3 Seqqy, -seq Seqqy, +seq
<2.5 Å 0.7116 0.8119 0.0628 0.7207

2.5–3.5 Å 0.6047 0.7495 0.0204 0.4129
>3.5 Å 0.3328 0.5122 0.0068 0.0143
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medium and high), while Seqqy is a set of per-residue SVM classifiers hav-

ing to deal with all resolution ranges. According to [80], Seqqy was trained

and tested with a bias towards higher resolution ED maps, its training set

consisted of 1000 ED maps over 2.5 Å resolution and its test set contained

approx. 400 ED maps in the 2–3 Å and an additional approx. 400 in the 3–4 Å

range. Seqqy also heavily relies on AA chain being mapped to the ED map

(main chain tracing) before classifying side chains. If pre-tracing the main

chain fails (or the sequence information is not provided), Seqqy fails even

at high resolutions since it attempts to classify the residues in the locations

specified by the chain tracing process.

The increased performance of 3D FC-DenseNet is due to a combination

of factors: the training and fine-tuning data set itself covers a wider range

of resolutions and better encompasses the task, specialist networks are de-

ployed for each resolution range, and by not relying on the AA sequence, the

networks do not need the main chain pre-traced to assign AA labels, thus by-

passing the single point of failure the reliance on the residue sequence would

represent.

Hit rates are lower for samples with higher R-Free values (Figure 5.11).

Such samples are more common at lower resolutions, leading to a doubly

challenging situation of low resolution and low sample quality.

The average time taken for a 2 Å sample (the largest ones in volume) is

29 seconds using an Nvidia GTX 1080Ti GPU. A smaller protein, 6E0T, takes

about 22 seconds to process by 3DFC-DenseNet while a single cycle with

ARP/wARP takes over 2 minutes and over 7 minutes for 5 cycles. As a more

extreme example, the protein 2Y1V takes up to 15 minutes for 1 cycle with

ARP/wARP and almost 70 minutes for five. 3D FC-DenseNet segments it in

86 seconds.

At the time of writing, the Nvidia GTX 1080Ti GPU used for measur-

ing performance is several hardware generations old, with Nvidia’s 40 series
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GPUs having just released. This underscores how accessible the performance

boosts represented by NN based methods are to the end user: no cutting edge

hardware is required for their use. But even on a CPU, with no optimizations

such as multithreading being implemented, 3DFC-DenseNet takes 196 sec-

onds for 6E0T and 715 seconds for 2Y1V. While significantly slower than the

GPU version, this shows that the decreased computational time is not only

due to the use of GPUs.

Part of the reason why 3D FC-DenseNet is so fast compared to Seqqy

is how their processing time scales. The processing time for Seqqy scales

linearly with the length of the residue chain, while the processing time for

3D FC-DenseNet scales linearly with the volume of the protein’s ED map.

Since a large number of residues may be found in an input volume and

NNs perform batch calculations in parallel as fast as a single input, it can be

seen that 3D FC-DenseNet represents a significant speedup even on readily

available consumer hardware.

3D FC-DenseNet represents an important step towards NN-based auto-

mated model building. It is proof that the task can be treated as an image

segmentation problem, and that the established data sets are adequate in for-

mat and breadth.
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Methods – Simultaneous Semantic

& Instance Segmentation

While 3D FC-DenseNet shows that it is possible to tackle the task with com-

puter vision and image segmentation methods, it is a rather rudimentary

network with several shortcomings and possible improvements. For a net-

work to be useful in practice, it should also be able to locate individual AA

residues on its own, which 3D FC-DenseNet could not do.

3D FC-DenseNet requires different configurations for different window

sizes, making it somewhat inconvenient to deploy. Furthermore, the NN is

not aware of individual AA instances and only assigns the most probable AA

label to each voxel.

An upgraded network architecture should follow up on the strength of

3D FC-DenseNet (improved gradient flow, compatibility with varying input

sizes), improve on its shortcomings (necessity of different configurations, in-

ability to detect individual residues) and also offer improved performance.

The upgrade to the 3D FC-DenseNet was designed with these in mind.

6.1 MT-StackNet Network Architecture

The proposed upgrade to 3D-FCDenseNet is a multi-task stacked residual

network architecture referred to as MT-StackNet (Figure 6.1). The MT-StackNet



66 Chapter 6. Methods – Simultaneous Semantic & Instance Segmentation

C

Residual
Block 

Residual
Block 

Residual
Block 

3x3x3 Dilated Conv
Dilation=2 Stride=2 

Residual
Block 

Residual
Block 

Residual
Block 

3x3x3 Trans. Conv
Stride=2

Residual
Block 

Residual
Block 

Residual
Block 

D
B

U
B

SB

D
B

U
B

SB

+

Resize to
H x W x D

Residual
Block 

Residual
Block 

1x1x1 Depth Conv
Softmax

S(X) 
Sem

antic
O

utput

D
ow

n B
lock

Skip B
lock

U
p B

lock 

C
B

C
B

C
oncat B

lock 

3x3x3 Conv
Batch Normalization

S
kip

C
onnection 

S
kip

C
onnection 

(2n x H
/2 x W

/2 x D
/2)

(4n x H
/4 x W

/4 x D
/4)

(4n x H
 x W

 x D
)

(6n x H
 x W

 x D
)

(n x H
 x W

 x D
)

(7n x H
 x W

 x D
)

concat

1x1x1 D
epth C

onv
I(X) 

Instance  
O

utput

X
Input

ED
 M

ap 

F
IG

U
R

E
6.1:

T
he

proposed
M

T-StackN
et

neural
netw

ork
architecture

for
single

shot
autom

ated
sem

antic
and

instance
segm

entation
ofprotein

ED
m

aps.



6.1. MT-StackNet Network Architecture 67

DB UB

DB UB

DB UB

Bottleneck

FIGURE 6.2: The backbone of the architecture is a residual U-
Net. The final architecture has had the bottleneck removed
and its layers re-distributed along the skip connections as Skip
Blocks. Additionally, Concatenation Blocks have also been
added after Up Blocks to perform the semantic segmentation

task.
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FIGURE 6.3: The internal structure of the ResNet [61] style
Residual Blocks adapted to handle 3D volumetric data. Resid-
ual blocks handle the bulk of the processing in MT-StackNet.

can be considered an evolution of a residual 3D U-Net backbone (Figure 6.2).

MT-StackNet uses residual connections instead of 3D FC-DenseNet’s con-

catenations which retains the improved gradient flow but also allows addi-

tional processing of the residual (Figure 6.3).

It performs both semantic and instance segmentation using shared fea-

ture maps and is capable of outputting both S(X) and I(X) in a single for-

ward pass (Figure 6.4). The most impactful upgrade over 3D FC-DenseNet

is thanks to the added instance segmentation capability: MT-StackNet can

locate and classify residues automatically.
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The architecture consists of four main building blocks: Down Blocks (DB),

Up Blocks (UB), Skip Blocks (SB) and Concatenation Blocks (CB). Each block

contains multiple residual modules [61] in addition to layers specific to the

given block’s task.

The residual modules (Figure 6.3) contain two 3 × 3 × 3 convolutions,

each followed by a batch normalization and a ReLU nonlinearity. The in-

put of the module is added to the output of the second batch normalization

layer. A dropout layer with a slight drop probability of pdrop = 0.2 is in-

cluded after the second convolutional layer to reduce overfitting by prevent-

ing co-adaptation [100] while still being less likely to disturb the newly learnt

features in the Residual Blocks.

DBs contain three residual blocks followed by a strided dilated convolu-

tion layer. Instead of max poolings, dilated convolutions (with a dilation and

stride of 2) downsample the feature map [101]. Each DB output serves as the

input of another DB one stack below.

DBs double the feature map channels and halve their spatial dimensions:

n2i × H/2i ×W/2i × D/2i, where i ∈ N is the current stack depth (e.g. mov-

ing from stack 0 to stack 1 results in a feature map size of (2n× H/2×W/2×

D/2)).

UBs consist of a transpose convolution layer doubling feature map and

three residual blocks. Their task is to restore feature maps to their size from

one stack above. Since its usefulness was already demonstrated with 3D FC-

DenseNet, an adaptive zero-padding is included at transpose convolutions

to solve size mismatches arising from odd-sized feature maps.

SBs contain three residual layers. The input of SBs is the final residual

block’s output from the DB on the corresponding stack level. SB outputs

are summed with the corresponding UB’s transpose convolution output (the

exception being the bottom-most stack where there are no features from a

lower stack to add).
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CBs are used to collect each stack level’s feature maps and concatenate

them. They consist of two residual blocks after resizing the feature maps

to the first level’s spatial dimensions to be able to concatenate them (with

the exception again being the bottom level without a lower feature map to

concatenate).

The input electron density X is a single channel, 3D volumetric array with

dimensions of W × H × D. A 3 × 3 × 3 3D convolution followed by a batch

normalization in the top level of the stack creates the initial W × H × D × n

dimension feature map from the input.

The semantic class probability map output, S(X), is generated using a

1 × 1 × 1 depth convolution layer after concatenating every stack’s feature

maps with CBs. The instance segmentation offset vector field, I(X), is the

output of another depth convolution after the first stack’s UB.

MT-StackNet produces both the semantic and the instance segmentation

output from the same, shared feature maps. By aggregating the features in

the CBs, the semantic segmentation task supervises every level of the feature

stack while the instance segmentation task simultaneously provides class-

agnostic supervision.

Due to the relatively small input sizes, the bottleneck is removed (Fig-

ure 6.2) and its layers re-distributed along the skip connections, forming SBs

(Figure 6.1). This is motivated by not wanting to waste learnable parameters

for feature maps with drastically reduced spatial dimensions.

6.2 Objective Functions

6.2.1 Instance Segmentation – Dice Loss

In the case of the instance segmentation task, the network is tasked to max-

imize the voxel-wise Dice-coefficient of corresponding predicted gk and GT
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ĝk instances. The Dice-coefficient of two sets A and B is generally defined as:

Dice(A, B) =
2(A ∩ B)
|A|+ |B|

Similarly to the IoU, a different formulation is necessary so that it becomes

suitable for use in an objective function.

First, an embedding E is created from I(X) which embeds voxels to the

absolute position where their offset vector points:

E[x, y, z] = I[x, y, z] + (x, y, z)

The unique (û, v̂, ŵ) co-ordinates in the GT embedding Ê correspond to

centroids of GT instances ĝ. Thus, ĝk ∈ ĝ will be groups of points which

embed to these unique co-ordinates in Î(X):

ĝk = {(xi, yi, zi)|Ê[xi, yi, zi] = (ûk, v̂k, ŵk)}

Unfortunately, the values of the output embedding E do not have a one-

to-one correspondence to the predicted instance centroids. Ideally, one could

define gk = {(xi, yi, zi)|E[xi, yi, zi] = (ûk, v̂k, ŵk)}, but due to the imperfect

outputs of the network this is not feasible.

Instead, for training purposes, a relaxation radius δ is defined which al-

lows us to define predicted instances in terms of GT centroids:

gk = {(xi, yi, zi)|E[xi, yi, zi] = (ûk ± δ, v̂k ± δ, ŵk ± δ)}

This means that the networks are allowed to have minor errors in the

I(X) offsets and as long as the offsets point in a δ-sized neighbourhood of

an expected ĝk instance centroid (ûk, v̂k, ŵk), they are grouped together and

represent the location of the predicted instance gk.
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Additionally, a membership probability for the voxels of predicted in-

stances proportional to the distance from the centroid is calculated:

p((xi, yi, zi) ∈ gk) ∝ 1/||E[xi, yi, zi]− (ûk, v̂k, ŵk)||2

For each gk instance, a membership probability mask Mk ∈ ℜW×H×D is

created:

Mk[x, y, z] = 1 − tanh(ReLU(||E[xi, yi, zi]− (ûk, v̂k, ŵk)||2 − δ))

The GT membership mask M̂k is binary:

M̂k[x, y, z] =


1 if (x, y, z) ∈ ĝk

0 if (x, y, z) /∈ ĝk

The Dice coefficient for the predicted instance gk and its corresponding

GT instance ĝk is calculated in a grayscale manner between Mk and M′
k:

Dice(Mk, M̂k) =
2MkM̂k

∑ Mk + ∑ M̂k

Here, since the GT membership mask M̂k is binary, the product MkM̂k

is the pixel-wise intersection and each mask’s respective sum is analogous to

its number of elements.

The reasons for using Dice instead of IoU are mostly technical: the Lovasz

Softmax Loss does not scale well with the number of instances (in the hun-

dreds or thousands per protein). The Dice-coefficient is an analogous metric

which is differentiable out of the box, thus lending itself well for use when

optimizing neural networks.

Each voxel is either part of an AA instance or the BG, resulting in the M̂k

GT masks fully partitioning the input density. Larger δ values correspond to

more lenient assignments but would reduce LDice by gk being larger than ĝk

and including voxels of other instances.
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Although this already introduces an inherent regularization effect, the δ

relaxation parameter is optimized directly for faster convergence. By pro-

viding δ to the optimizer, its value is also optimized along network weight

updates when reducing the Dice loss.

6.2.2 Instance Segmentation – MSE Loss

Initially, the I(X) offsets are expected to be random. To help with early train-

ing, an auxiliary Mean Squared Error (MSE) is calculated:

MSE(I(X), Î(X)) =
1
n ∑

n
(I(Xn)− Î(X)n)

2

The MSE Loss, LMSE is considered over the non-BG voxels of I(X):

LMSE(I(X), Î(X)) =


MSE(I(X), Î(X)) if X[x, y, z] > 0

0 else

LMSE helps orient the I(X) offsets in the early phases of training and

guides the network towards forming the gk instances used by LDice.

6.3 Combined Loss Function

For semantic segmentation, the goal of the network is still to maximize the In-

tersection over Union (IoU) between the network’s semantic output S(X) and

the expected semantic output Ŝ(X). The Lovasz Softmax Loss [95], LLovasz, is

calculated per-channel over the S(X)c semantic class probability maps.

This is the same objective function as the one used when training 3D

FC-DenseNet, allowing for direct comparison. Similarly, the W positional

weighting is applied with same parameters: l f rame2Å = 8, l f rame3Å = 6,

l f rame4Å = 4 and F(x) = (1 − 1/8x).

LMSE is also not expected to perform well in the frame regions. The same

W positional weighting described above is applied to it as well. LDice does
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not have W applied to it. This is because LDice is derived from LMSE, thus

applying W to LDice would mean applying W twice to the same task.

The final, combined objective function is the sum of the above terms:

L = WLLovasz + WLMSE + LDice + ||δ||2

6.4 Experiments

6.4.1 Network Configuration

For 3D FC-DenseNet, different network configurations were necessary for

high-to-medium and low sample resolutions. In an improvement over the

FC-DenseNet57 and FC-DenseNet49 architectures, MT-StackNet handles all

resolutions and input sizes without needing different configurations depend-

ing on sample resolution.

As shown in Figure 6.1, MT-StackNet contains 3 stack levels. 3 residual

blocks are in each DB, SB and UB. CBs have 2 residual blocks. The margin

parameter is initialized to be 2 voxels at all resolutions. This corresponds to

the physical resolution of the data for all samples since they were upsampled

using Phenix when creating the data sets.

The networks are trained from scratch for 10 epochs (by which point the

losses of all configurations converge) using the Adam optimizer with a batch

size of 50 windows.

The initial learning rate is 0.001, reduced epoch-by-epoch with PyTorch’s

Cosine Annealing scheduler by a factor of 0.001 until a final learning rate

value of 0.00001. These hyperparameters lead to a stable and smooth opti-

mization of the objective functions where network weights do not explode.
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6.4.2 Ablation Tests

Ablation tests measure the performance impact of the Bottleneck’s removal

from the 3D ResU-Net Backbone and the addition of SBs along skip connec-

tions. There are 4 possible combinations of configurations: with SBs and

Bottleneck present, either the Bottleneck or the SBs present, and lastly both

removed. The configuration with the Bottleneck present but no SBs corre-

sponds to the baseline 3D ResUNet performance.

Feature maps have significantly reduced in sizes by the time they reach

the Bottleneck. In the 2 and 3 Å cases the Bottleneck would receive a 6 × 6 ×

6 sized feature map, whilst in the 4 Å case a 4 × 4 × 4 one. The learnable

parameters are wasted on such small feature maps, thus it is expected to see

no significant decrease in performance by removing the bottleneck.

Conversely, it would be beneficial to reallocate the Bottleneck’s layers to

higher stack levels, where larger feature map sizes may contain information

that could still be extracted. The SBs represent the Bottleneck distributed

along the skip connections, where the feature map sizes are larger. An in-

crease in performance is expected from their inclusion.

The average, 3 Å case over the validation sets after one epoch of training is

considered when measuring the performance impact of each configuration.

The hyperparameters of the ablation tests are identical to those of the actual

training sessions.

6.4.3 Finetuning & Experimental Samples

The performance of MT-StackNet is also measured on real-life, experimen-

tally acquired samples.

As was the case with 3D FC-DenseNet, the models pre-trained over the

fixed resolution samples are fine-tuned with resolution-appropriate ED maps.

The high-resolution model pre-trained over the 2 Å data set handles samples
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over 2.5 Å resolution. The medium resolution model (pre-trained at 3 Å reso-

lution) handles the 2.5–3.5 Å range, and the ED maps below 3.5 Å are handled

by the low-resolution model (pre-trained at 4 Å resolution).

50 samples in each resolution range are used as an experimental test set

for acquiring the final performance measurements.

6.4.4 Inference & Performance Metrics

Global Predictions

The MT-StackNet inference pipeline follows the same steps as the one with

3D FC-DenseNet (Figure 6.5). To reiterate: input ED maps are cropped into

windows in sequence and input to MT-StackNet to obtain window outputs.

A global prediction covering the ED map is acquired by stitching the window

outputs together. Performance metrics are calculated for the global predic-

tions covering the entire ED map and not on a per-window basis.

Window sizes are identical to those used during training and validation.

The stride between subsequent windows is the double of l f rame (the size of

a window’s frame region), ensuring that the fragmented instances of frame

regions will re-appear in full in at least one subsequent window’s center.

The process is identical for both the semantic output S(X) and offset vec-

tor output I(X), with the only difference being that I(X) undergoes further

processing to obtain instance predictions.

Instance Predictions & Matching

As opposed to training and validation, inference over the test sets assumes

the real-life scenario of there being no GT to match predicted instances to.

Instance localization in this case is done by using K-Means clustering to find

the gk|k ∈ [0, K) instances in the embedding E.
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After instance localization, it is still necessary to match the located in-

stances to GT instances. The goal is to match each gk instance to the closest

ĝl GT instance. The distance between gk and ĝl is the Euclidean distance

between the centroids of gk, (uk, vk, wk), and ĝl, (ûl, v̂l, ŵl):

d(gk, ĝl) = ||(uk, vk, wk)− (ûl, v̂l, ŵl)||2

This is approached as a linear sum assignment problem where the optimal

pairings are obtained by minimizing the costs in the distance matrix D, where

Dkl = d(gk, ĝl). The solver utilized is an openly available implementation

[102] of the shortest path augmentation [103] method.

The end results of this step are paired gk and ĝk instances acquired with-

out having to rely on the GT. Class predictions are then acquired by sampling

the semantic output S(X) in voxels corresponding to the gk instances.

Performance Metrics

As was the case with 3D FC-DenseNet, semantic segmentation performance

is measured in a per-voxel manner using the mean IoU of class probabil-

ity predictions. Since MT-StackNet is an instance segmentation algorithm as

well, instance segmentation performance receives more scrutiny.

The instance segmentation performance metric is the mean Dice-coefficient

of the GT instances ĝk ∈ Ĝ and the paired, predicted instances gk ∈ G:

Dice(Ĝ, G) =
1
K ∑

k
Dice(ĝk, gk)

where the corresponding instances’ Dice-coefficient is calculated point-wise

as

Dice(ĝk, gk) =
2(ĝk ∩ gk)

|ĝk|+ |gk|
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Additionally, instance classification performance is measured via Rank-1

and Rank-3 Accuracy, Precision and Recall of paired instances. As before, for

a prediction to be considered a Rank-1 hit, its top predicted class must match

the GT class, while for a Rank-3 hit it is enough for the GT class to be among

the three predictions with the highest probability.

6.5 Results & Discussion

6.5.1 Ablation Tests

The measured semantic and instance performance metrics in Table 6.1 show

that removing the Bottleneck did not have a negative effect neither semantic

nor instance segmentation performance. Its layers did not contribute to per-

formance and the small feature maps by the bottleneck’s stack level did not

hold any further useful information.

By redistributing the Bottleneck layers to higher stack levels as SBs, net-

work performance significantly increased. The larger feature maps still had

information that could be extracted. In conclusion, the Bottleneck’s layers

redistributed as SBs are a better use of computational performance.

TABLE 6.1: Semantic and instance segmentation performances
with (w/) and without (w/o) Skip Blocks (SB) and Bottleneck

(The best performer is marked in boldface)

Semantic IoU w/ Bottleneck w/o Bottleneck
w/o SBs 0.4008 0.4114
w/ SBs 0.4442 0.5091
Instance Dice w/ Bottleneck w/o Bottleneck
w/o SBs 0.7569 0.7579
w/ SBs 0.7972 0.7988

With the bottleneck removed and SBs added, semantic segmentation per-

formance increases from 40.07% to 50.91% and instance segmentation perfor-

mance goes from 75.69% to 79.88%.
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6.5.2 Training & Validation

Results (Table 6.2) show that MT-StackNet outperforms 3D FC-DenseNet on

all tasks. When provided with GT instance locations for instance classifica-

tion (as was the case with 3DFC-DenseNet), the actual difference in semantic

segmentation performance is shown. Even when having to rely on the im-

perfect predicted instances, MT-StackNet outperforms 3D FC-DenseNet.

Furthermore, the increased performance of MT-StackNet is present for all

AA residues at all resolutions, making MT-StackNet consistently better than

3D FC-DenseNet with no downsides (Figure 6.6).

The networks are very balanced predictors at all resolutions with no sig-

nificant imbalance between precision and recall. The margin parameter δ de-

creases from start to finish (Figure 6.7), meaning that the networks optimize

the instance segmentation losses while making the task harder as training

progresses.

6.5.3 Experimental Results

The performance improvements compared to 3DFC-DenseNet carry over (Fig-

ure 6.8) to the experimental data set as well. Despite the varying resolution

and quality of the experimental samples, MT-StackNet (similarly to 3D FC-

DenseNet) remains functional even with low resolution ED maps (Table 6.3).

The loss graphs (Figure 6.7) show that all the networks continued learning

during finetuning even after convergence on the fixed resolution data sets.

The δ assigment margin increases initially during fine-tuning (Figure 6.7),

but it starts to converge after the first few epochs and remains under the

initial setting of 2. This ultimately means that the networks can assign voxels

to instances with accuracy higher than the samples’ physical resolution.

3D FC-DenseNet outperformed the accuracy of the Seqqy [80] module

in ARP/wARP [81] at medium (60.47% for 3DFCDN vs. 41.29% for Seqqy)
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TABLE 6.2: Fixed resolution data set results comparison be-
tween MT-StackNet (MTSN) and 3DFC-DenseNet (FCDN). GT
for instance segmentation Dice-Coefficient refers to relying on

GT locations instead of predicted instances

2Å MTSN MTSN (GT Instances) FCDN57
Semantic IoU 0.9109 0.9109 0.8343
Instance Dice 0.7937 GT GT

Rank1 Accuracy 0.8613 0.9696 0.8911
Rank3 Accuracy 0.9109 0.9799 0.9191

Precision 0.8560 0.9743 0.9591
Recall 0.8613 0.9696 0.9253

3Å MTSN MTSN (GT Instances) FCDN57
Semantic IoU 0.7763 0.7763 0.6810
Instance Dice 0.8170 GT GT

Rank1 Accuracy 0.8298 0.9139 0.7983
Rank3 Accuracy 0.8893 0.9468 0.8541

Precision 0.8298 0.9214 0.8877
Recall 0.8298 0.9139 0.8344

4Å MTSN MTSN (GT Instances) FCDN49
Semantic IoU 0.4184 0.4184 0.3316
Instance Dice 0.6467 GT GT

Rank1 Accuracy 0.6059 0.6720 0.5171
Rank3 Accuracy 0.8115 0.8710 0.6563

Precision 0.6191 0.7017 0.5540
Recall 0.6059 0.6720 0.5505
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FIGURE 6.6: Per-residue Rank-1 Accuracies of 3D FC-DenseNet
and MT-Stacknet at high (top), medium (middle), and low reso-
lutions (bottom). MT-Stacknet consistently outperforms 3D FC-

DenseNet at all resolutions.



6.5. Results & Discussion 83

TABLE 6.3: Experimental data set results comparison between
MT-StackNet (MTSN) and 3DFC-DenseNet (FCDN). GT for in-
stance segmentation Dice-Coefficient refers to relying on GT lo-

cations instead of instance predictions.

<2.5Å MTSN MTSN (GT Instances) FCDN57
Semantic IoU 0.7575 0.7575 0.6078
Instance Dice 0.7982 GT GT

Rank1 Accuracy 0.7716 0.8670 0.7116
Rank3 Accuracy 0.8542 0.9196 0.8119

Precision 0.7735 0.8734 0.8414
Recall 0.7716 0.8670 0.7567

2.5–3.5Å MTSN MTSN (GT Instances) FCDN57
Semantic IoU 0.6033 0.6033 0.5108
Instance Dice 0.7231 GT GT

Rank1 Accuracy 0.6478 0.7639 0.6047
Rank3 Accuracy 0.7636 0.8518 0.7495

Precision 0.6602 0.7857 0.8142
Recall 0.6478 0.7639 0.6873
>3.5Å MTSN MTSN (GT Instances) FCDN49

Semantic IoU 0.2310 0.2310 0.2182
Instance Dice 0.5341 GT GT

Rank1 Accuracy 0.3282 0.4075 0.3328
Rank3 Accuracy 0.5317 0.6247 0.5122

Precision 0.3626 0.4679 0.4620
Recall 0.3282 0.4075 0.3428
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and low resolutions (33.28% for 3DFCDN vs. 1.43% for Seqqy) and nearly

matched its performance at high resolutions (71.16% for 3DFCDN vs. 72.06%

for Seqqy).

Due to the performance improvements, MT-StackNet outperforms the ac-

curacy of 3D FC-DenseNet on average by 23.53% (Figure 6.9). Consequently,

MT-StackNet now outperforms Seqqy at high resolutions (77.16% for MT-

StackNet vs. 72.06% for Seqqy) as well.

Although Seqqy may perform better than MT-StackNet for some proteins,

this is only true at high resolutions (Figure 6.10) and MT-StackNet consis-

tently outperforms Seqqy on average. Furthermore, Seqqy’s Rank-1 Accu-

racy standard deviations make it less reliable predictor even at high resolu-

tions: its error is 33.54% at high, 37.98% at medium, and 4.67% at low resolu-

tions (although accuracy here is already very low). MT-StackNet maintains a

lower standard deviation (Figure 6.9) across the board: 8.09% at high, 13.22%

at medium, and 9.29% at low resolutions.

It is important to note that Seqqy may produce less than complete mod-

els where not all GT AA residues have a corresponding predicted residue

while MT-StackNet always outputs the requested K number of residues. The

measured accuracy, precision and recall values only consider the matched

residue pairs which skews the measurements in Seqqy’s favour since unas-

signed residue labels are excluded from recall and accuracy calculations. Se-

qqy’s completeness on the experimental data set is 70.25% over 2.5 Å, 41.27%

between 2.5–3.5 Å and 01.76% under 3.5 Å resolution.

With same hardware used for inference as 3DFC-DenseNet (GTX 1080Ti

GPU), MT-StackNet computes results much faster than both 3D FC-DenseNet

and Seqqy. Seqqy attempts to map the AA sequence by constructing frag-

ments and attempting to match and merge the built fragments which is a

computationally intensive task. This leads to seqqy’s computational time

scaling with the number of residues in the protein.
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In comparison, both 3D FC-DenseNet and MT-StackNet’s computational

time scales linearly with the volume of the ED map. Since input windows are

processed in a fixed amount of time regardless of how many residues are in

them, the more AAs there are in a given volume, the greater the performance

gain over Seqqy. Furthermore, thanks to the parallel processing capabilities

of modern GPUs, batches of input volumes take the same amount of time as

a single input window, leading to drastically decreased processing times.

To demonstrate the discrepancy between Seqqy and the proposed meth-

ods’ computational time, two case studies were performed with proteins cho-

sen based on their number of residues. An average sized protein An average

sized [104], 476 residues long protein, PDB ID 6E0T [13], and a considerably

larger 1815 residues long protein, PDB ID 2Y1V [105], are compared. Since

Seqqy does not utilize the GPU, the computational time of 3D FC-DenseNet

and MT-StackNet was measured utilizing only the CPU as well as with GPU

acceleration.

The shorter protein, 6E0T is processed in 10 seconds with MT-StackNet

with GPU acceleration and 64 seconds on the CPU, 22 seconds with 3D FC-

DenseNet with GPU acceleration and 196 seconds without. Seqqy takes ap-

proximately 7 minutes to process 6E0T.

The larger protein, 2Y1V takes 25 seconds with MT-StackNet on the GPU

and 205 seconds without GPU acceleration, 86 seconds with FC-DenseNet

with GPU acceleration and 715 seconds on the CPU. Seqqy requires approx-

imately 70 minutes for 2Y1V.

The improved computational time between 3DFC-DenseNet and MT-StackNet

is due to MT-StackNet being both shallower mostly thanks to the removal of

the bottleneck (MT-StackNet is at most 48 and 44 layers deep for the seman-

tic and instance outputs respectively vs. 3DFC-DenseNet’s 59 layer depth)

and narrower since the feature maps are not being concatenated. This leads

to a more efficient use of parameters and less operations needed overall to



86 Chapter 6. Methods – Simultaneous Semantic & Instance Segmentation

process a sample.

It can be concluded that MT-StackNet is significant upgrade over 3DFC-

DenseNet in capabilities, performance and speed as well.
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FIGURE 6.7: Fixed resolution (Val, solid lines and markers) and
experimental (Exp, dashed lines and empty markers) data set

loss graphs.



88 Chapter 6. Methods – Simultaneous Semantic & Instance Segmentation

F
IG

U
R

E
6.8:

Experim
entalsam

ple
R

ank-1
and

R
ank-3

accuracies.
Lines

representthe
average

accuracies
over

the
experi-

m
entaldata

sets.
C

om
pared

to
the

baseline
setby

3D
FC

-D
enseN

et(FC
D

N
),M

T-StackN
et(M

TSN
,w

ith
G

T
A

A
locations

for
com

parison)presents
im

provem
ents

even
atlow

resolutions
and

w
ith

high
R

-Free
sam

ples
as

w
ell.



6.5. Results & Discussion 89

FIGURE 6.9: Mean Rank-1 Accuracies and Standard Deviations
(error bars) of Seqqy and MT-StackNet on the experimental

Data Set.

FIGURE 6.10: Scatter plot of per-sample Rank-1 Accuracies of
Seqqy and MT-StackNet (MTSN) with predicted residue loca-
tions on the experimental data set. The lines represent the av-

erage accuracy over the experimental data sets.
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Chapter 7

Conclusion

This work proposed a computer vision and machine learning approach to

to classifying and locating AA residues in protein ED maps. The necessary

background of protein structure, XRD and structure determination difficul-

ties were presented, based on which it defined the task as semantic and in-

stance segmentation problem. The proposed methods are 3D CNN architec-

tures capable of directly segmenting volumetric data.

A custom data set for ML tasks involving ED maps was created meet-

ing the problem criteria. To the author’s knowledge, it is the broadest data

set of its kind with over 20,000 generated ED map samples across multiple

resolutions. By containing ED maps at multiple resolutions of the same pro-

tein, it allows the direct observation of the effects of decreasing resolution

on performance. Furthermore, a data set consisting entirely of approx. 600

real-life, experimentally acquired ED maps was created as well to measure

the proposed methods’ practical performance.

The proposed 3D CNN architectures are capable of assigning AA labels

by only observing the ED maps, as opposed to current state-of-the-art struc-

ture determination toolkits which also rely on the protein’s AA sequence.

The methods were measured agains Seqqy, a state-of-the-art structure deter-

mination algorithm part of the popular ARP/wARP toolkit.

3D FC-DenseNet matches the performance of Seqqy at high resolutions
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(above 2.5 Å) and beats it at lower resolutions. It can also segment low resolu-

tion samples below 3.5 Å resolution, where Seqqy fails to assign meaningful

AA labels.

The MT-StackNet architecture is an all-around upgrade to 3D FC-DenseNet

in both capability and accuracy. In addition to being able to locate all residues

in the input in a single forward pass, it outperforms 3D FC-DenseNet by ap-

prox. 23.53%. Both architectures can segment entire ED maps in seconds, a

fraction of the time required by ARP/wARP.

By being able to reliably segment protein ED maps quickly and remaining

functional at low resolutions, the architectures directly target the resolution

and volume bottlenecks currently present in structure determination tasks.

The results compare favorably to existing state-of-the-art methods. Both 3D

FC-DenseNet and MT-StackNet only rely on observing the ED maps.

Furthermore, the presented methods are more than just applications of

existing NN architectures. They have been custom built with novel ele-

ments (adaptive zero padding in 3D FC-DenseNet and POR, SBs, CBs in MT-

StackNet) which improve volumetric data segmentation performance.

Despite these, there remain points for improvement. The increases in per-

formance MT-StackNet presents over 3D FC-DenseNet are weaker with low

resolution samples. A possible reason for this is the limited amount of sam-

ples in the experimental data sets.

The straightforward way to improve this would be to extend the data sets

with further low resolution samples. Alternatively, the fixed resolution data

sets could be made to better resemble real data. Transferring the properties

of the experimental samples to the fixed resolution samples used for pre-

training by simulating their varying resolution and R factor is a possibility.

The data sets themselves hold various future possibilities: by having mul-

tiple resolution ED maps of the same proteins, super-resolution (SR) or recon-

struction tasks could also be directly solved using the data set. In this way,
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FIGURE 7.1: Overview of the possible future enhancement SR
pipeline’s concept. Having an auxiliary reconstruction loss
Lrecon and MT-StackNet’s task losses LMTSN as downstream su-
pervision on top of the adversarial loss Ladversarial may encour-
age the generator to not only create SR densities, but to also

refine them to increase AA classification performance.

low and medium resolution sample quality could be increased via super-

resolution to benefit from MT-StackNet’s (or possibly one of its successors’)

performance on higher resolution samples.

This is more in line with refinement and goes beyond simple SR. By train-

ing a volumetric SR NN (such as VolumeNet [106]) as a generator in an adver-

sarial manner the ED map resolution and detail could be increased. This is

fitting for the data set since ’real’ higher resolution samples exist for all pro-

teins, so the discriminator can be tasked with discriminating SR and ’real’

ED map samples. Additionally, auxiliary reconstruction losses such as the

Structural Similarity Index Measure [107] coupled with L1 distance or fea-

ture similarities may be used to ensure that the generated samples align with

the actual higher resolution targets.

Then, MT-StackNet could serve as downstream supervision to assist with

instance and class specific guidance. In this way the generator would not
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FIGURE 7.2: A Cryo-EM Coulomb map of a protein. Coulomb
maps also fit the problem definition and are compatible with
the methods presented. A dataset for training with Coulombs
maps may be necessary due to them having different features

from ED maps.

only output SR densities, but also refine them as needed to increase perfor-

mance on the AA classification task. An overview of the concept can be seen

in Figure 7.1.

Another popular imaging method is Cryo-EM. The resulting Coulomb

maps obtained from Cryo-EM experiments also fit the problem definition

(Figure 7.2). The network architectures presented in this work could be ap-

plied to Cryo-EM Coulomb maps with little to no modification. Training

with Cryo-EM samples may be necessary as Coulomb maps may have dif-

ferent features from ED maps. Including Cryo-EM samples presents another

extension opportunity for the data set.

Currently the network architectures only utilize considerations from com-

puter vision for performance improvements. By designing network modules

or loss functions with chemical considerations in mind (e.g. incorporating

force fields, torsion angles, bond energies, etc.) networks specific to this task

may be designed.
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As the next step in automated model building, the instance segmentation

GT could be enhanced to regress to atom positions in addition to AA loca-

tions. This would be a significant step towards end-to-end NN-based struc-

ture determination since the knowledge of individual atom positions and the

class of their parent residue is enough to generate a .pdb model file.

All in all, as answer to the central question of the thesis, it can be sum-

marized that computer vision methods and NNs are not only applicable to

protein structure determination tasks, but that they also perform remarkably

well.

Hopefully, this work represents just the first steps towards the next gen-

eration of protein structure determination methods and the approaches pre-

sented here will prove useful for not only those with backgrounds in com-

puter vision, but for experts of structural biology and crystallography as

well.
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