|

) <

The University of Osaka
Institutional Knowledge Archive

Title Efficient Test Script Generation and Maintenance
for Web Applications

Author(s) |tI&, Bhxz

Citation |KFRKZ, 2023, EHIHX

Version Type|VoR

URL https://doi.org/10.18910/91985

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Efficient Test Script Generation and Maintenance

for Web Applications

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2023

Hiroyuki KIRINUKI

Abstract

The speed of business has become increasingly important in recent years, leading to a
need for quick improvements to services. To achieve this, it is necessary to shorten the
software release cycle. Testing is an essential part of the software development process,
and regression testing is a critical component of this. Reducing the costs of regression
testing is a major challenge in shortening the release cycle. End-to-end testing is a crucial
part of regression testing and involves testing applications with a graphical user interface
(GUI) such as interactions between web browsers and users.

Test automation is an effective way to reduce the cost of regression testing. Testing
tools such as Selenium are commonly used to automate end-to-end testing for web appli-
cations. End-to-end test automation involves creating test scripts that describe the steps
in the test procedures.

The first challenge related to test scripts is that locators for identifying web elements
are fragile because they depend on the structure of web pages and the attributes of the
web elements, requiring a significant amount of effort to maintain. The second challenge is
the high cost of implementing maintainable test scripts. This dissertation presents three
studies that address these challenges and improve end-to-end test automation for web
applications.

The first study proposes an approach called COLOR for repairing broken locators in
accordance with software updates. COLOR uses various properties from web pages as
clues and evaluates their reliability. Our experimental results from four open-source web
applications show that COLOR consistently presents the correct locator with an accuracy
ranging from 77% to 93% in the first place and is more robust against page layout changes
compared to structure-based approaches.

The second study proposes an approach for generating modularized test scripts to im-
prove their maintainability. The technique extracts operations useful for test automation
from test logs and generates test cases that cover the features of an application by ana-
lyzing its page transitions. The approach was evaluated using test logs from four testers,
showing that it can generate more complete methods than an existing approach. Our

empirical evaluation also showed that the approach can reduce the time required to im-

plement test scripts by 48% compared to manual implementation. This study contributes
to reducing implementation and maintenance efforts.

The third study proposes a technique to identify web elements to be operated on a
web page by interpreting natural-language-like test cases. The test cases are written in
a domain-specific language that is independent of the metadata of web elements and the
structural information of web pages. Natural language processing techniques are used to
understand the semantics of web elements, and heuristic search algorithms are used to
explore web pages and find promising test procedures. The technique was applied to test
cases for two open-source web applications, with the results showing that it was able to
successfully identify 94% of web elements to be operated on and all the web elements in
68% of the test cases. This study contributes to the easy implementation and maintenance

of test scripts for various users.

List of Publication

Journal

[1-1] Hiroyuki Kirinuki and Haruto Tanno: “Automating End-to-End Web Testing via
Manual Testing”, Journal of Information Processing, Vol. 30, pp. 294-306, 2022.

[1-2] Hiroyuki Kirinuki, Haruto Tanno, and Katsuyuki Natsukawa: “Recommending Cor-
rect Locator for Broken Test Scripts using Various Clues in Web Application”, Com-
puter Software, Vol. 36, No. 4, pp. 3-17, 2019.

International Conference

[1-3] Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto, “Web
Element Identification by Combining NLP and Heuristic Search for Web Testing”,
IEEE 29th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 1044-1054, March 2022.

[1-4] Hiroyuki Kirinuki, Shinsuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto, “NLP-
assisted Web Element Identification Toward Script-Free Testing”, In Proceedings of
the 37th IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 639-643, September 2021.

[1-5] Hiroyuki Kirinuki, Haruto Tanno and Katsuyuki Natsukawa, “COLOR: Correct Lo-
cator Recommender for Broken Test Scripts using Various Clues in Web Appli-
cation”, IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 310-320, February 2019.

Contents

1 Introduction 1
1.1 Background 1
1.2 End-to-End Test Automation for Web Application 1
1.3 Related Work 3

1.3.1 Test script generation Lo, 3

1.3.2 Test script maintenance 3

1.3.3 NLP-based approaches 4

1.4 Contribution of Dissertation 5

1.5 Overview of Dissertation 6
1.5.1 Locator recommendation using various clues for test script mainte-

NANCE .« v v v v v e e e e e e e e e e e 7

1.5.2 Maintainable test script generation via manual testing 7

1.5.3 Web element identification using NLP and heuristic search 8

1.6 Chapter Organization 8

2 Locator Recommendation Using Various Clues for Test Script Mainte-
nance 9
2.1 Imtroduction L 10
2.2 Motivating Exampleo 11

2.2.1 Sample application and test script L. 11
2.2.2 Test script repair 14
2.2.3 Causes of test breakages L. 14
2.3 Approach 14
2.3.1 Recommendation algorithm 15
2.3.2 Application example 19
24 Evaluation e 21
2.4.1 Experimental setup. Lo 21
2.4.2 Weights of properties. Lo 22
243 Results e 25

ii

4

2.5 Discussion e e

2.5.1 How should we determine the weights?
2.5.2 Characteristics of COLOR
2.5.3 Execution time
2.6 Threats to Validity
2.7 Conclusion e
Maintainable Test Script Generation via Manual Testing
3.1 Introduction L
3.2 Page Object e
3.3 Related Work
3.4 Approach
3.4.1 Page-object generation
3.4.2 Test-case generation L
3.4.3 Limitation.
3.5 Evaluation
3.5.1 Experimental setup. L
3.5.2 Page-object generationo oL
3.5.3 Test-case generation oL
3.5.4 Empirical evaluation oL
3.6 Threats to Validity
3.7 Conclusion e

Web Element Identification using NLP and Heuristic Search

4.1 Introduction

4.2 Motivating Example oo
4.3 Approach
4.3.1 Vectorization
4.3.2 Heuristic search algorithm00,
4.4 Evaluation.
4.4.1 Experimental setup.
4.4.2 Results
4.5 Discussion e e e
4.5.1 What are the cases where our approach does not work?
4.5.2 Limitations L
4.5.3 Threats to validity
4.6 Conclusion and Future Work

iii

5 Conclusion

5.1 Summary . .

5.2 Future Work
Acknowledgements

References

v

82
82
83

84

85

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3
4.4
4.5
4.6
4.7

Overview of dissertation e

Login form of Joomla!
Overview of COLOR o
Outline of recommendation algorithm
Application example
MRR calculated by each algorithm

Rank for each broken locator

Owner add page of PetClinic and its page object
Overview of proposed approach
Datum of operation in test log L.
Example of path selection for test-case generation.

Example of generated test case and methods that it calls.

Description input fields and Python snippets to enter the value “test de-
scription” L L
A drop-down list in the log-in module page of Joomla! and a Python snippet
to select the value “Icons”o
An overview of our approach
An example of web element vectorization
An example of page-level search L.
An example of transition-level search
The relationship between the number of test steps and that of plausible or

executable test scripts L

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Test script for Joomla! version 1.5 12
Test script for Joomla! version 2.5 12
Properties used in thisstudy o000 16
Similarity calculation in Figure 2.4 19
Applications for our experiment 20
Heuristic weights 23
Stability, uniqueness, and automatically calculated weights 24
Web pages and features of PetClinic 47
Summary of tests by testers Lo oL 48
Classification of methods in page objects generated with our approach and

APOGEN e 49
Classification and average length of generated test cases 51
Features confirmed from generated test cases 53
Summary of the test scenarios for empirical evaluation 55
The time to implement test scripts (minute) 55
The specification of our DSL Lo oo 65
A summary of the target applications and test cases 71
How test steps are converted into Pythoncode 72
The number of successful identifications 74
Average machine time (in seconds) required per test case. 7

vi

Chapter 1

Introduction

1.1 Background

The speed of business has become increasingly important, and the need for quick service
improvement is essential. To achieve this, it is necessary to shorten the software release
cycle. Software development involves testing to ensure that the software is working prop-
erly before releasing it. In testing, it is necessary to confirm not only that newly added
functions work properly, but also that existing functions work as before. Testing to confirm
that an existing feature still works as before is called regression testing.

Reducing the costs required for regression testing is a major issue in shortening the
release cycle. It has been reported that regression testing accounts for 25% of the total
costs required for development in the case of an enhancement or modification project [1].
When aiming to shorten the release cycle, regression testing needs to be performed many
times in a short period, which makes the costs of regression testing a significant portion of
the total development costs. In today’s fast-paced business environment, spending a large
amount on regression testing may lead to missed business opportunities. Automation of
testing is an effective means of reducing the cost of regression testing, and various research

has been conducted on this topic.

1.2 End-to-End Test Automation for Web Application

Regression testing includes end-to-end testing, which is testing throughout the entire sys-
tem. End-to-end testing for applications with a graphical user interface (GUI) often
involves simulating interactions between the application and its users. This type of test-
ing is important because it helps to ensure that different parts of the system are working
together correctly.

Test automation tools such as Selenium [2] are commonly used to automate end-to-

end tests for web applications. In the case of a web application, the test automation
tool is typically used to automate browser operations and validate the results of those
operations. To perform end-to-end testing automatically, it is necessary to write test
scripts that describe the test procedures.

There are two approaches to automating end-to-end testing: record € replay and
programming [3]. Record & replay tools like Selenium IDE first record the operations
performed by testers on a web browser and convert these operations into test scripts.
When the test scripts are executed, the tool replays the recorded operations as they were
performed. This approach makes it easy to implement test scripts by simply following
the test procedures while operating a web browser. However, the generated test scripts
are not modularized and have low readability, which becomes an issue when maintaining
them over a long period.

In the programming approach, developers implement test scripts in general-purpose
programming languages such as Java and Python, using libraries (e.g., Selenium Web-
Driver) to operate a web browser. Only skilled developers can implement properly mod-
ularized and readable test scripts. Implementing such scripts means that developers can
maintain them more easily compared to using record and replay tools [4].

In testing web applications, each step of the test script is often represented by a
combination of the type of operation to be performed, the input value, and the target of
the operation. For example, a test script for a login form might include steps to enter a
username and password, click the “Login” button, and verify that the user is redirected to
the correct page. One common approach to specifying targets in web application testing
is to use locators, which are a way to uniquely identify a web element on a web page.
For example, the “id” and “name” attributes of a web element can be used as locators.
XPath, which shows the position of web elements within the HTML document object
model (DOM), can also be used as a locator. There is also a technique called image-based
locator [5], which identifies web elements by matching images.

The implementation of test scripts is known to be costly, with initial implementation
time accounting for nearly 90% of the total cost to reach a return on investment [6].
Test scripts include locators for specifying the web elements to be operated on, but
these locators frequently change as applications evolve, requiring maintenance of the test
scripts [7,8]. If significant efforts are required for this maintenance, the cost of implement-
ing the test scripts may not be recouped. Thus, generating maintainable test scripts and

efficiently maintaining them are important challenges.

1.3 Related Work

1.3.1 Test script generation

In the following, we present related studies that have improved upon existing automatic
test generation approaches.

Crawling-based techniques for end-to-end test script generation have been proposed
to minimize the cost of end-to-end testing [9-11]. These techniques generate test scripts
that cover all features of an application through dynamic exploration. GUI ripping is
an approach that automatically traverses GUIs and generates their model for regression
testing [12,13]. Some studies also try generating test scripts by extending existing test
scripts [14-16] or using reinforcement learning [17]. However, the test scripts generated
with these techniques are not complete and require modifications such as adding assertions
by the developer, and maintainability is not considered.

In order to generate useful test scripts, it is necessary to follow the test cases written
by developers or the use cases of the application. In addition, the maintainability of
the generated test scripts should be considered, as developers need to maintain the test
scripts as the application evolves. Thus, it is difficult to incorporate existing approaches

into continuous development as they are.

1.3.2 Test script maintenance

Some researchers have attempted to overcome the fragility of locators. While structure-
based locators are generally considered more fragile than attribute-based locators, devel-
opers often use XPath as a locator since elements do not always have an id or name.
Leotta et al. proposed the robust XPath algorithms ROBULA (ROBUst Locator Al-
gorithm) [18] and ROBULA+ [19]. These algorithms focused on the expressiveness of
XPath. ROBULA starts with a generic XPath returning all nodes ("//*") and refines it
using heuristic XPath specialization steps to increase robustness until only the element of
interest is selected. ROBULA+ enhances ROBULA with additional heuristics. Yandra-
pally et al. [20] presented an approach to robustly identify elements using contextual clues
without recording anything about the internal representation. Their approach identifies
an element relative to other prominent elements on the page (e.g., Click on “LabelA” near
“LabelB”).

Yeh et al. [5] proposed SIKULI, a visual approach to automate operations on a screen
by using images to identify web elements. The advantage of visual locators is that they
are not dependent on the metadata or structure of web pages, and the target elements
are easy to understand visually. Stocco et al. [21] proposed a technique called PESTO

that converts conventional locators to visual locators, but such visual locators are fragile

to changes in user interfaces.

The problem with these approaches is that there is a limit to robustness due to the
difficulty in predicting how the software will be updated. Since the eligible locator varies
depending on the characteristics of the application, the approach of pre-determining the
locator lacks flexibility.

The other approach to dealing with locator changes is repairing locators in accordance
with software updates, which is more flexible than the previous approach if the repair
accuracy is high. Leotta et al. proposed an approach to repair locators using a multi-
locator algorithm [22]. They use five structure-based locators: FirePath absolute, FirePath
relative ID-based, Selenium IDE, Montoto, and ROBULA+. The multi-locator algorithm
selects the best locator among these five locators based on a voting procedure that assigns
different weights to different locators. If this procedure succeeds and the locator with the
most votes is able to identify the element, all other broken locators can be automatically
repaired. However, this approach has a theoretical limit: if all locators are broken, the
multi-locator algorithm cannot correctly identify the element.

Choudhary et al. [23] proposed the WATER (Web Application TEest Repair) approach
to repair locators by mainly using the Levenshtein distance of XPath. They assume that
two elements are likely to be the same across two releases if the Levenshtein distance
between their XPath is small. WATER also takes into account five attributes in case the
Levenshtein distance is the same. The problem with this approach is that it is fragile when
the page layouts of the application are drastically modified. In such cases, the XPath of
the element may be significantly changed and the locator may not be correctly repaired
even using WATER. Hammoudi et al. proposed an incremental test repair approach
called WATERFALL that applies WATER iteratively across a sequence of fine-grained
versions of a web application [24]. Both methods are related to general program repair
techniques [25-29], but these methods focus on locators in test scripts.

Yandrapally et al. [30] proposed an approach to modularize test scripts automatically
to improve their maintainability of test scripts generated by a record and replay tool.
Their approach identifies operations to be modularized by analyzing the test scripts and
the document-object model of an application. Their experimental results showed that the
number of steps can be reduced by 49-75% by converting parts of the test scripts into
a subroutine. However, this approach does not consider how the subroutines follow the

actual use cases of the application.

1.3.3 NLP-based approaches

Several researchers have leveraged natural language processing (NLP) techniques in testing
or operating web applications. Manipulating web applications in natural language would

free us from the problem of implementing test scripts.

Thummalapenta et al. [31] proposed a technique to interpret test cases written in nat-
ural language. Their technique requires that a test step includes all necessary information
for mechanically interpreting it. Dwarakanath et al. [32] proposed using DSL in test cases
to accelerate test automation. However, their technique also requires locators to uniquely
identify web elements.

Lin et al. [33] proposed a technique to identify the topic of input fields for crawling-
based test automation techniques, which can be applied to mine behavioral models, etc.
They showed that their technique improved the accuracy of input topic identification by
up to 22% compared to a rule-based approach. However, their technique only considers
input fields and only identifies pre-trained topics.

Pasupat et al. [34] proposed a machine-learning-based technique to convert a natu-
ral language command (e.g., clicking on the second article) into the web element to be
operated on the page. Their technique can be applied to end-to-end testing, but many
of the commands given in their study are indirect and difficult to interpret with their
model, leading to low conversion accuracy. Bajammal et al. utilized NLP techniques for

accessibility testing [35].

1.4 Contribution of Dissertation

We believe that the challenges to be addressed regarding end-to-end test scripts that have

not been solved by existing studies are as follows:

e Locators are dependent on the structure of web pages and the attributes of web ele-
ments, which can decrease the maintainability of test scripts. Additionally, existing

locator repair techniques rely on structural information, resulting in low accuracy.

e The implementation of test scripts is costly, and existing test script generation tech-

niques do not take maintainability into account.
e It has not yet been possible to directly execute test cases written in natural language.
We present three studies that we have conducted to address these challenges:
1. Locator recommendation using various clues for test script maintenance
2. Maintainable test script generation via manual testing
3. Web element identification using NLP and heuristic search

The first study uses various information obtained from web pages to perform more
accurate locator recommendation. This research contributes to reducing the maintenance

cost of test scripts. The second study reduces implementation and maintenance efforts by

Chapter 3

~

Manual testing logs ~_Generate Chapter 2

J User

J

Maintain

Chapter 4

~

Natural language-

User .
like test cases

Figure 1.1: Overview of dissertation

automatically generating modularized test scripts based on application use cases extracted
from manual testing logs. The third study identifies web elements using NLP and heuristic
search to generate test scripts from natural language-like test cases. The third study is
a first step towards realizing executable test cases using natural language. In this study,
instead of directly executing test cases, we convert natural language-like test cases into
test scripts using NLP and heuristic search. If automated testing could be completed with
only natural language instructions, the first and second research would not be necessary.
However, it is not possible to achieve this with current technology, so we believe that
support for generating and maintaining test scripts using conventional locators is also
necessary.

The second and third techniques both generate test scripts, but they have different
strengths. The second technique is effective at generating test scripts that cover a wide
range of possible use cases, whereas the third technique is better suited for generating test
scripts for specific scenarios specified by users. One of the advantages of these techniques is
that manual testing and test case creation can be done without programming knowledge.
Furthermore, they are often performed even without automated testing, so there is no
need to prepare for generating test scripts.

Although all the techniques proposed in this dissertation are targeted at web appli-
cations, the ideas could potentially be applied to applications with GUI (e.g., mobile

applications).

1.5 Overview of Dissertation

This dissertation is composed of the following three studies. Figure 1.1 shows the overview

of the dissertation and the three studies.

1.5.1 Locator recommendation using various clues for test script main-

tenance

As mentioned in the previous sections, test scripts frequently need to be changed as ap-
plications are updated. The costs of modifying these test scripts are a major obstacle to
test automation due to their fragility. In particular, locators in test scripts are prone to
change. Some prior studies attempted to repair broken locators using structural clues, but
these approaches usually cannot handle radical changes to page layouts.

In this research, we propose a novel approach called COLOR (correct locator rec-
ommender) to support repairing broken locators in accordance with software updates.
COLOR uses various properties as clues obtained from screens (i.e., attributes, texts,
images, and positions). We examined which properties are reliable for recommending
locators by examining changes between two release versions of software, and the reliabil-
ity is adopted as the weight of a property. Our experimental results obtained from four
open-source web applications show that COLOR can present the correct locator in first
place with an accuracy of 77% — 93% and is more robust against page layout changes than

structure-based approaches.

1.5.2 Maintainable test script generation via manual testing

The cost of implementing and maintaining test scripts is a major obstacle to the introduc-
tion of test automation. In addition, many testing activities, such as exploratory testing,
user-interface testing, and usability testing, rely heavily on manual efforts. We propose
an approach to generate test scripts from manual testing recorded by our tool.

The generated test scripts leverage the page-object pattern, which improves the main-
tainability of test scripts. To generate page objects, our approach extracts operations as
methods useful for test automation from the test logs. Our approach also generates test
cases that cover the features of an application by analyzing its page transitions. This en-
ables the generation of test scripts that are close to the actual use cases that were difficult
to generate using existing techniques.

We evaluated whether our approach could generate complete test scripts from test
logs obtained from four testers. Our experimental results indicate that our approach can
generate a greater number of complete methods in page objects than a current page-object
generation approach. We also conducted an empirical evaluation of whether our approach
can reduce the cost of implementing test scripts for real systems. The result showed that
our approach reduces the time required to implement test scripts by about 48% compared

to manual implementation.

1.5.3 Web element identification using NLP and heuristic search

It can be challenging to determine and maintain the locators needed by test scripts to
identify web elements on web pages. This is because locators depend on the metadata of
web elements and the structure of each web page. A potential solution to this problem is
to allow natural language test cases to be executed without the need for test scripts.

In this study, we propose a technique for identifying web elements that should be op-
erated on a web page by interpreting natural language-like test cases. The test cases are
written in a domain-specific language that is independent of the metadata and structural
information of web elements and web pages. We use natural language processing tech-
niques to understand the semantics of web elements and create heuristic search algorithms
to explore web pages and identify promising test procedures.

To evaluate the effectiveness of our technique, we applied it to test cases for two open-
source web applications. The results show that our technique was able to successfully
identify approximately 94% of the web elements to be operated in the test cases. Further-
more, our approach was able to identify all the web elements that were operated in 68%

of the test cases.

1.6 Chapter Organization

Chapter 2 describes locator recommendations for test script maintenance, Chapter 3 ad-
dresses maintainable test script generation via manual testing, Chapter 4 provides web
element identification using NLP and heuristic search, and in Chapter 5, we summarize

the findings of this dissertation and discuss future challenges.

Chapter 2

Locator Recommendation Using
Various Clues for Test Script

Maintenance

2.1 Introduction

Developers need to develop software quickly and release it in accordance with changes in
market conditions. Before releasing it, they perform testing to confirm that the software
works properly. This includes not only ensuring that new features work properly, but
also confirming that existing features continue to work as expected. This type of test for
existing features is called regression testing, which can account for a significant portion
of software maintenance costs [36,37]. Therefore, reducing the costs of regression testing
and shortening the release cycle are major challenges in software development. In web
application development, test automation tools such as Selenium [2] are commonly used
to automate end-to-end tests and make regression testing more efficient.

However, maintaining these test scripts can be time-consuming, as developers often
need to modify existing test scripts in response to software updates. Several methods
have been proposed to maintain end-to-end test scripts on various platforms [4,8,38-40].
For example, Leotta et al. [4] developed test scripts for six open-source web applications to
evaluate the costs of automated web testing approaches. As part of their evaluation, they
examined the costs of test script maintenance on the new release version of the software.
They developed a total of 196 Selenium IDE test scripts on the old version of the software
and then had to repair 180 of those scripts on the new version of the software. In other
words, about 92% of the test scripts broke between the two releases. Christophe et al. [7]
investigated eight OSS repositories that included Selenium test scripts and found that 75%
of Selenium test scripts were modified at most three times before the corresponding file
was deleted.

The main reason for the fragility of test scripts is known to be the use of locators.
Selenium uses locators to find and match the web elements on a page that need to interact
with each other. Hammoudi et al. [8] examined the breakages of Selenium IDE test scripts
across 453 versions of eight web applications and classified the causes of test breakages.
Their experimental results revealed that 73.62% of the breakages were caused by locators.
Therefore, in this study, we focus on problems related to broken locators.

Most web testing tools (e.g., Selenium) use attribute-based locators (e.g., id, name,
etc.) or structure-based locators (e.g., XPath). A problem with these locators is that
they may be changed even by a trivial software update, such as changing a page layout
or attributes of web elements. There have been studies that aim to support the main-
tenance of test scripts for web applications [41-43]. Some of these studies attempted to
automatically repair broken test scripts by using structural clues. The core concept of
these studies is that web elements located close to each other across two releases are more
likely to be the same. However, this concept does not always work well because page

layouts can change frequently in some recent web applications. Some testing tools (e.g.,

10

Sikuli [5]) use images to find and match web elements. The advantage of image-based
testing is that it can be applied to any kind of application and does not require recording
anything about the internal representation. Stocco et al. [21] proposed a technique to mi-
grate DOM (document object model)-based testing to image-based testing. Image-based
testing is more robust than DOM-based testing in some situations, but it is vulnerable to
changes in screen appearance [44].

In this study, we propose a novel approach called COLOR (correct locator recom-
mender) to support the automatic repair of broken locators in accordance with software
updates. COLOR uses various properties as clues obtained from screens (i.e., attributes,
texts, images, and positions) to overcome the weaknesses of structure-based and image-
based approaches. COLOR can recommend correct locators even if page layouts change
drastically.

First, we clarify which properties are prone to change between two releases and are
reliable for recommending locators. Second, to evaluate the accuracy of the recommenda-
tions, we applied COLOR to four open-source web applications that include page layout
changes. The experimental results show that COLOR can present the correct locator in
the first place with 77% - 93% accuracy and above third place with 82% - 95% accuracy.
Furthermore, we prove that COLOR is more robust against page layout changes than
existing structure-based approaches by comparing it with a prior method.

The main contributions of this study are as follows:

e We propose a novel approach called COLOR that uses multiple properties obtained
from a screen as clues. COLOR is more robust than structure-based approaches

against complex changes, including page layout changes.

e We clarify which properties are reliable for recommending locators by examining 699

locators across two release versions of applications.

e We applied COLOR to broken locators to demonstrate its effectiveness and superior-

ity over structure-based approaches. We also analyzed its results and characteristics.

2.2 Motivating Example

2.2.1 Sample application and test script

We use Joomla!l, an open-source content management system, as an example. We assume
that a user logs in as an administrator in Joomla! version 1.5. To do this, the user first

clicks on the “Administrator” link on the top page, which takes them to the login page. The

"https://www. joomla.org/

11

Table 2.1: Test script for Joomla! version 1.5

Action Locator Value
open /joomla
click css=1i.iteml7>a>span
type id=modlgn_username user(1
type id=modlgn_passwd pass01
click link=Login
assertTitle Main

Table 2.2: Test script for Joomla! version 2.5

Action Locator Value
open /joomla
click link=Site Administrator
type id=mod_login_username user(01
type id=mod_login_password passOl
click link=Log in

assertTitle Main

12

Username

Password
Language Default IZ|
. A
Login),

<label for="modlgn username">Username</label>

<input name="username" id="modlgn username" class=...>
<label for="modlgn passwd">Password</label>

<input name="passwd" id="modlgn passwd" class=...>

(a) Version 1.5

User Name
Password

Language Default EJ

Log in o
<label for="mod_login_username">User name</label>
<input name="username" id="mod_ login_username" class=...>
<label for="mod login password">Password<label>
<input name="password" id="mod login_ password" class=...>

(b) Version 2.5

Figure 2.1: Login form of Joomla!

user then enters their “Username” and “Password” on the login page and clicks the “Login”
button, as shown in Figure 2.1(a). Table 2.1 shows the implementation of these operations
as a Selenium IDE script. Each line in the test script represents one operation and consists
of three components: action, locator, and value. The action specifies the type of operation,
for example, “type” means input from the keyboard. The locator is an identifier that
specifies the web element for the operation. Id, name, XPath, CSS selector, and so on can
be used as a locator in Selenium IDE. For example, css=1i.item17>a>span in the second
line is a CSS selector and refers to the “Administrator” link. id=modlgn username in the
third line refers to the “Username” input form, whose id is modlgn username in HTML.
The wvalue is the input value given by the user or the expected result, and “user01” in the

third line is the input given to the “Username” input form. In addition, the postcondition

13

of transition to the main page is given in the last line. “assertTitle” validates that the
page title is the same as the value “Main”. If we execute the script in Table 2.1, the
operations are executed sequentially from the first line. We can consider the test to have

passed if the test execution completes.

2.2.2 Test script repair

We will introduce an example in which a test script requires modification. For the login
form in Joomla! version 2.5, as shown in Figure 2.1(b), we cannot execute the test script
developed for version 1.5, as shown in Table 2.1. This is because the page layouts and
attributes of web elements differ between versions 1.5 and 2.5, and some web elements
referred to by the locators in Table 2.1 do not exist in version 2.5. For example, the test
script in Table 2.1 can be modified as shown in Table 2.2 for use in version 2.5.

When developers modify a test script manually, they need to first understand its
behavior by referring to the locator, comment, and test case specifications. However, test
scripts are often unreadable, and documents of test case specifications are often lacking.
In such cases, understanding the behavior of test scripts is difficult. For example, the
locator in the second line of Table 2.1 is described using a CSS selector, and we cannot
understand what operation will be performed just by reading the test script. Test script
modification should be automated because such tasks are time-consuming and can lower

motivation for test automation.

2.2.3 Causes of test breakages

Existing test scripts are often modified in accordance with software updates, as described
in Section 2.2.2. Hammoudi et al. [8] examined the causes of test breakages across 453
versions of eight web applications and roughly classified them into five types: locators,
values/actions, page reloading, user session, and JavaScript popup boxes. Locator break-
age occurs when the locator does not refer to the web element that the test is supposed
to operate on. It is often caused by modifying the layout of pages or the attributes of web
elements. To repair the broken test script, developers need to set the correct locator that
refers to the web element to be operated on in the test. Hammoudi et al. revealed that
locator breakage accounts for 73.62% of all test breakages, so locator repair appears to be

important to support. Therefore, we focus on locator breakage in this study.

2.3 Approach

In this study, we propose COLOR, which uses various properties as clues obtained from

the screen to gain more robustness against software updates. Existing locator repair ap-

14

1st execution Existing test script &execution

- + +
O0— & —'O— ‘E
p——— v p——— —
Old version Properties New version Candidates for
application application correct element

Figure 2.2: Overview of COLOR

proaches mainly focus on structure-based locators. COLOR is more robust than structure-
based approaches because it uses more various clues. Therefore, COLOR can handle
complex changes, including attribute changes, layout changes, and link text changes.
COLOR uses various properties (i.e., attributes, texts, images, and positions) as mul-
tifaceted clues to determine whether two web elements are the same or not. Figure 2.2
shows an overview of COLOR. COLOR requires two successive versions of an application.
Now, we postulate that there are executable test scripts for the old version of the software
Vi and that the test scripts are not executable for the new version of the software Vi
due to broken locators. First, COLOR executes existing test scripts for Vi and collects
19 kinds of properties from each web element in Vj. These properties are used for rec-
ommending locators in the later procedure. Table 2.3 shows the properties as the clues
used in this study. The properties are classified into four categories: attribute, position,
text, and image. Target web elements are <input>, <button>, <a>, , and <select>
tags in this research, and we adopt their major attributes as properties in the attribute
category. Second, COLOR executes existing test scripts on the new version of the soft-
ware Vi41. The recommendation procedure is triggered by a locator error, and COLOR

presents candidates for a correct web element.

2.3.1 Recommendation algorithm

The locator [, needs to correctly identify the web element to be operated on in the test
for Vi11. We define . as a locator that refers to the web element e being operated on.
If [, does not uniquely identify a web element in the test execution, the operation cannot
be performed. Let E be the set of web elements on the page of Vi 1. If there is a web
element ¢/ € F with the same role as e in V}, it is considered to be the web element that
should be operated on in Vjy1. We can repair the locator by specifying e’ and modifying
le to los. The locator is considered repaired if the same operation can be performed on the

web elements in the test execution on both Vi, and Vi11. In this study, COLOR calculates

15

Table 2.3: Properties used in this study

Category Property Description

Attribute id unique id of web elements
class class of web elements
name name of web elements
value initial value of input forms

type type of input forms
tag name name of HTML tags

alt alternative text for tags
src source URI of images

href destination of link anchors
size size of input strings

onclick event handler of click events
height height of web elements
width width of web elements

Position XPath absolute XPath of web elements
X-axis X-axix on the screen

Y-axis Y-axis on the screen

Text link text link text of <a> tags
label label linked with input forms

Image image image of web elements encoded to Base64

the similarity between e and each web element in Vi1 using various clues and finds a web
element ¢’ € F with the same role as e. The higher the similarity, the more likely it is to
be a correct locator.

Figure 2.3 shows the outline of the recommendation procedure, and Algorithm 1 shows
the details of the recommendation algorithm. First, COLOR calculates the similarities
for each property and then combines them into a single similarity. Let P be the set of
properties that e and €’ have in common, and let e[p] be the value of property p € P in
e. Properties can have various types of values, such as numeric values, character strings,
and specific values. Therefore, the method for calculating the similarity for each property
needs to be adjusted accordingly. We use the Euclidean distance for numerical values
and the Levenshtein distance for character strings as measures of similarity. For specific
values, the similarity is set to 1 if the values match and to 0 if they do not. The similarity

s(e[pl, €'[p]) (0 < s(e[p],€'[p]) < 1) between e[p] and €’[p] is calculated as follows:

16

L] e
pr—y _E Attribute id, name, class, etc.

Element —
Vk x-axis, y-axis, XPath
+ link text, label
Vit1 Candidates Properties

Compare old element
with each candidates

Properties id class | et image

Element e user user | =eees XXXX

Element e’; usr usr | eeees yyyy

Similarity S1 R S19

Integrate by taking weighted average
and sort candidates by similarity

Rank
1

Figure 2.3: Outline of recommendation algorithm

When p is height, width, X-axis, or Y-axis:

Otherwise (p takes a character string):

s(elpl, €[p]) = 1 Levenshtein(e[p], €' [p])

- MaxLength(e[p], ¢/[p])

17

(2.1)

(2.2)

Algorithm 1: Recommendation algorithm

input : An web element e in Vj

output: Candidates F in Vi1 sorted by the similarities

1 for p+ P do

2 L e[p] < the value of p in e

3 for ¢/ + F do

4 for p +— P do

5 L €'[p] + the value of p in €’

6 s(e[pl, €'[p]) + calculating similarity between e[p] and €’[p]
7 S(e,e’) + taking weighted average from each similarities

8 sort E by S(e,¢€)

Joomla! Ver. 1.5 Joomla! Ver. 2.5
id="modlgn_username" Similarity id="mod-login-username"
£ . 0.89 \E
Username I | | UsenNamem candidate1
0.62 -
Password Password candidate2
Language Default B Language Default -]
Login ‘i_f‘ Log in o
Action Locator Value Action Locator Value
type id=modign_username user01 modify type id=mod-login-username user01
type id=modign_passwd pass01 |—>| type id=modign_passwd pass01
click link=Login click link=Login

Figure 2.4: Application example

where Max(p) is the maximum value that |e; — e}| can take (e.g., Max(X-axis) is the width
of the screen), Levenshtein(e[p], ¢’[p]) is the Levenshtein distance between e[p] and €'[p],
and MaxLength(e[p], €/[p]) is the length of the longer of e[p] and €'[p)].

s(e[p], €'[p]) equals 1 when e[p] and €’[p] are the same and approaches 0 as the difference
between e[p] and €’[p] becomes larger. Next, COLOR integrates the calculated similarity
s(e[p], €'[p]) for each property, taking into account that different properties may have
different contributions to the overall similarity. For example, the contribution of the class
property may be considered smaller than that of the id property. This is because different
web elements may have the same class but never have the same id. If the ids of two
web elements are the same before and after the software update, it is likely that the

web elements are the same, but if only their classes are the same, it is not necessarily

18

Table 2.4: Similarity calculation in Figure 2.4

Property id name type Y-axis label Integrated

“Username” modlgn_
) username text 186 Username -
input form username

_login-
Candidatel mod-login username text 216 User Name -
username
Similarity 0.78 1.00 1.00 0.94 0.78 0.89
) mod-login-
Candidate2 passwd password = 257 Password -
password
Similarity 0.33 0.00 0.00 0.86 0.00 0.62

the case. Therefore, after calculating s(e[p], ¢/[p]) for each property, COLOR calculates
the integrated similarity S(e,e’) (0 < S(e,e’) < 1) by taking a weighted average using
the weight w, for each property. In this study, COLOR determines w, based on the
contribution of each property. We will explain how to set the weight w,, in Section 2.4.2.

The similarity S(e, e’) is calculated as follows:

2 _pep selpl; ¢'Ip)wy

ZpEP Wp

S(e,e') = (2.4)

2.3.2 Application example

Figure 2.4 shows how COLOR can be applied to the example in Section 2.2. In this
case, the id of the “Username” input form has been modified between the two releases,
so the test script for version 1.5 of the software cannot be executed on version 2.5 of the
software. As an example, we will show the procedure for recommending the locator for
the “Username” input form in the first line of the test script.

First, we calculate the similarity between the “Username” input form in version 1.5
and each web element in version 2.5. We will focus on the two candidates shown in Figure
2.4 in version 2.5. Part of the calculated similarities is shown in Table 2.4. We have
included five properties in Table 2.4: id, name, type, Y-axis, and label. The integrated
similarity is actually calculated using a total of 19 properties, as shown in Table 2.3.

From the calculation results, we can see that the similarity between candidatel and
the “Username” input form is the highest. Therefore, we can infer that candidatel is the
web element most likely to be the “Username” input form in version 2.5. Based on this, we
can conclude that the broken locator on the first line of the test script should be modified

to id=mod-login-username in version 2.5.

19

GG 08 GTIT'T LOT'T SWIOOT FUI}PIUI FULOO(10] WIYSAG SdUIN
0¥ 04¢ 0cT 8T'T wa)sAs Funper) Sng Lgstuen
LV 9Z7¢ 002 1°0°9 WOISAS JUoWRFRURW JUIIUO)) uotsn-Jad
76 evT 0ce 0S1 WOISAS JUOWRFRURW JUIIUO)) je[uwoor
SI0YBO0[USNOI(# SIOJeI0[[[@ # 9Seo[Y PUf OSea[dYy IST uor}dI10so(J e N

Juowrtadxe 1o 10§ suoredriddy :G'g o[qe],

20

2.4 Evaluation

To evaluate the effectiveness of COLOR, we implemented the recommendation algorithm
and formulated the following research questions:
RQ1: What are the reliable properties for recommending locators?

COLOR uses various properties as clues obtained from screens, but the properties have
different contributions to the recommendation accuracy. Therefore, we will investigate
which properties have the greatest impact and propose a method for determining the
weight of each property.

RQ2: Is COLOR more robust against page layout changes than structure-based approaches?

Structure-based approaches are known to be fragile in the face of page layout changes.
We will confirm that structure-based approaches do not always perform well and that
using clues other than structural ones can help recommend correct locators. We will
use the similarity calculation algorithm from WATER [23] as a structure-based approach
for comparison. We have chosen WATER for this comparison because it is similar to
COLOR in terms of calculating the similarities between two web elements. Although
WATERFALL is a state-of-the-art technique, the core idea of WATERFALL does not
conflict with COLOR. This is because WATERFALL applies WATER iteratively across
a sequence of fine-grained versions of a web application, and we can apply WATERFALL
even if we substitute WATER with COLOR.

RQ3: Can COLOR accurately recommend correct locators?

If COLOR recommends many incorrect web elements, it will be difficult to use in
practice. We will evaluate COLOR’s ability to accurately recommend correct locators.
The idea of applying locator repair iteratively across a sequence of fine-grained versions

can be incorporated into other techniques, including COLOR.

2.4.1 Experimental setup

Table 2.5 shows the applications used in our experiment. These are open-source web
applications implemented in PHP. Table 2.5 includes the names of the open source software
(OSS), descriptions, release versions, numbers of all locators surveyed, and numbers of
broken locators. These applications have all been used in previous studies [22,23]. We
used two release versions for each application in our experiment. We selected applications
and versions that include complex changes such as attribute changes, layout changes, link
text changes, and so on.

We will assume that there are test scripts developed for the first release version that
cannot be executed on the second release version due to broken locators. The procedure
for the experiment is as follows:

(1) We collected the properties shown in Table 2.3 from a total of 699 operable web

21

elements (i.e., buttons, input forms, and links) on the pages of the main features in each
release version.

(2) We manually examined the pairs of web elements that have the same role across two
release versions. We define these pairs as the correct set C, and let (e;, e;) € C be each pair
of web elements. To reduce bias in the results, we eliminated multiple similar or identical
web elements (e.g., buttons in a tabular form, web elements in the header or footer, etc.)
from C' except for one.

(3) We specified broken locators between two release versions. We used four types of
locators (id, link text, name, and absolute XPath) in our experiment because these are
commonly used by developers. Although relative XPath and CSS selector are also com-
mon, we did not use them because they have multiple expressions and the robustness of
such locators depends on their expressions. We prioritized the types of locators in the
order of (I) id, (II) link text, (III) name, and (IV) absolute XPath, which is the default
order in selenium IDE. A type of locator with a higher priority is used preferentially. For
example, if e; has an id, it is used as a locator for e;, and if e; does not have an id but
has link text, the link text is used as a locator. If the locator changes between two release
versions, we consider it to be broken.

(4) We applied COLOR to broken locators. COLOR shows candidates for the correct web
element in order of similarity, and candidates are typically checked to start from the top
rank. Therefore, presenting the correct locator at a higher rank is beneficial.

To evaluate the accuracy of the recommendation algorithms, we use mean reciprocal
rank (MRR). MRR is a statistical measure commonly used to evaluate the ranking of
correct answers in recommendation and search systems. A higher MRR means that the
correct answer is more likely to appear at a higher rank. MRR is calculated as the average

of the reciprocal ranks of the results for a sample of queries Q:

L ey
MRR = —) (2.5)
i=1

@ rank;

where rank; is the rank of the correct answer for the i-th query. In our experiment, the
query is e; and the correct answer is e;. If a locator recommendation system raises €} to

a higher rank, the MRR will be higher, indicating that the system is superior.

2.4.2 Weights of properties

The weights of properties are determined based on their contribution to the accuracy
of recommendation. We set weights of properties in three ways: wunweighted, heuristic
weights, and automatically calculated weights. Unweighted means that we consider all

properties as making the same contribution to the recommendation, namely, w, = 1.

22

Table 2.6: Heuristic weights

Property Joomla! PHPFusion MantisBT MRBS

id
class

name

S = =N

value
type -
tag name
alt
src

href

size

| O =

| = O Rk = =
|

|

N O O
[
[
[

onclick
height
width
xpath

—
[S)
|
|
|

X—axis
Y-—axis
link text
label

image

O O = B O =

The heuristic weights are the weights resulting from the search to maximize the MRR
for each OSS in the experiment. The search was conducted by starting from the top of
Table 2.3, introducing properties one by one, and increasing the weights by 1 until the
MRR reached its maximum.

In Table 2.6, “~” means that the property is not included in the target web elements
in the application or its impact is very small and therefore does not affect the result. A
weight of 0, on the other hand, can adversely affect the results if the property actually
has a positive weight. Table 2.6 shows that the way to set the weight depends on the
target, but some tendencies can be observed. To answer RQ1, class, name, type, onclick,
and width would generally be effective because they contribute to improving MMR for
multiple targets.

The heuristic weights are determined by calculating the MRR for each application,
but this method is not practical when actually applying our technique because the correct
web elements are not known in advance. Therefore, it is desirable to have weights that

can be commonly used for multiple applications.

23

Table 2.7: Stability, uniqueness, and automatically calculated weights

Property Stability Uniqueness Weight

id 0.86 1.00 0.86
class 0.90 0.40 0.35
name 0.87 0.91 0.80
value 0.70 0.84 0.61
type 0.93 0.47 0.44

tag name 0.96 0.21 0.21

alt 0.57 1.00 0.57

src 0.62 1.00 0.62
href 0.81 0.86 0.62
size 0.83 0.32 0.26

onclick 0.75 0.88 0.66
height 1.00 0.33 0.33
width 0.99 0.66 0.66
XPath 0.72 1.00 0.72
X-axis 0.95 0.64 0.60
Y-axis 0.91 0.71 0.65
link text 0.83 0.91 0.76
label 0.44 0.74 0.31
image 0.12 0.88 0.12

Therefore, we propose an automatic weighting method based on the assumption that
properties with more stable and unique values contribute more to identifying similar web
elements. If a property is stable and has a unique value, the roles of two web elements
with the same value of the property are likely to be the same across two release versions.
We define stability(p) as the stability and uniqueness(p) as the uniqueness of a prop-
erty. Therefore, properties with high stability are less likely to change between releases,
and properties with high uniqueness are less likely to have the same value on a page.

stability(p), uniqueness(p), and w, are calculated as follows?:

Z(ei,e yec S(ei[p]7 e;[p])

stability (p) = i (2.6)
C|
. the number of unique web elements in terms of p
uniqueness(p) =] (2.7)
wy, = stability(p) x uniqueness(p) (2.8)

2The number of unique web elements in terms of p is summed up from each page.

24

1.0

0.8 A
0.7 A
0.6 A
0.5 A
0.4 4
0.3 A
0.2 o
0.1 +
0.0 -

Joomla! PHPFusion MantisBT MRBS

WATER unweighted automatic W heuristic

Figure 2.5: MRR calculated by each algorithm

Table 2.7 shows the values of stability(p), uniqueness(p), and w,, for each property. In
Table 2.7, the values of weight are not simply the product of stability and uniqueness but
are the mean values of w), calculated by (2.8) for each application. The results are fairly
intuitive. For example, id values are completely unique because different web elements
cannot have the same id values, whereas class values are not as unique as id because
different web elements can have the same class. Therefore, the weight of class values is
smaller than that of id.

The weights of id, name, and link text are higher than those of other properties because
they have both high stability and uniqueness. These properties are commonly used as
locators in test scripts. Value, src, href, and onclick are not typically used as locators, but
they also have a high weight. X-axis and Y-axis are not unique in the category of position,
but they have higher stability than XPath and are therefore fairly reliable. The image
property makes the lowest contribution of all properties. This is because its stability is

very low due to page layout changes in the applications.

2.4.3 Results

Figure 2.5 shows the MRR for each application. We calculated the MRR in WATER and
three patterns of COLOR: unweighted, heuristic weights, and automatically calculated
weights. The results show that COLOR yields higher MRR than WATER, indicating that
COLOR recommends correct locators more accurately when there are significant page
layout changes. COLOR with automatically calculated weight yields slightly better MRR.
than COLOR with no weights in the cases of Joomla! and PHP-Fusion but does not
improve the MRR in the cases of MantisBT and MRBS. COLOR with heuristic weights

25

51 i 31
o id
name
26
“ + text
x xpath
P 21
31
-
~ 5 16
c x o
& 21 X
X n +
oRX
11 6
+ +
+ ++
1 e 1 b X OGO XN IR RN KK KRR KN
1 1 21 31 7 51 61 71 81 91 1 1 21 31 41
N-th broken locator N-th broken locator
(a) Joomla! (b) PHP-Fusion
y
17
51
13 41
< 3
~ 9 g
C
& 21
5
1
.
T XXKXXKXKXKRK K XK XK XK XK KKK XK XK KK XX XXX X 1 bt XXX XX XX
1 6 11 16 21 26 31 36 41 1 6 11 16 21
N-th broken locator N-th broken locator
(¢) MantisBT (d) MRBS

Figure 2.6: Rank for each broken locator

improves MRR by 1% — 14% compared with COLOR with automatically calculated weight
and by 16% — 167% compared with WATER. To answer RQ2, these results show that
COLOR is more robust against page layout changes than structure-based approaches.

Figure 2.6 shows a list of broken locators sorted by rank yielded by COLOR using
manually weighted properties. Figure 2.6 contains four types of markers (id, name, text,
and XPath) that indicate the types of broken locators. COLOR tends to not present the
correct locator at a high rank when the XPath locator is broken in Joomla! or when the
text locator is broken in other applications.

As a result, COLOR presents the correct web elements for a broken locator in first
place with 77% — 93% accuracy and above third place with 82% — 95% accuracy. To

answer RQ3, we consider this accuracy to be sufficient for practical use.

26

2.5 Discussion

2.5.1 How should we determine the weights?

Heuristic weights rely on a history of locator modifications in the target application, mak-
ing them more difficult to apply compared to automatic weights. If there is no significant
difference in accuracy between heuristic and automatic weights, it is preferable to use
automatic weights. However, Figure 2.5 shows that automatic weighting was not very ef-
fective in this study. Therefore, it is recommended to use heuristic weights when accuracy
is a priority and automatic weights when there is no history of locator modifications in
the early stages of development.

The problem with automatically calculated weights is that they use all properties,
including harmful properties. We believe that the key idea behind automatic weighting is
not bad, as properties that have low weights in Table 2.7 (e.g., tag name, size, image) tend
to harm the accuracy of recommendation. However, the calculation method (2.8) can be
improved. This result indicates that generalization on an application-by-application basis
is inadequate, and determining weights on a per-page basis may be necessary.

As can be seen from Table 2.6, the optimal weight varies depending on the target appli-
cation. This is because the characteristics of the changes made in the target applications
are different and difficult to generalize. If the appearance and layout of the application are
drastically changed, the image and axis properties may adversely affect accuracy. On the
other hand, if they are not changed but the attributes of web elements are changed, the
image and axis properties may positively affect accuracy. Therefore, we need to under-
stand the characteristics of changes from past versions and tune the weights accordingly.
For example, removing harmful properties from automatic weighting depending on the

characteristics of an application may improve the accuracy of recommendation.

2.5.2 Characteristics of COLOR

Figure 2.5 indicates that COLOR is more robust against screen layout changes than WA-
TER. The reason for this improvement is that WATER mainly uses XPath to calculate
similarity among web elements, which is not effective when dealing with significant page
layout changes. For example, the site design of Joomla! was renewed with the version up-
grade from 1 to 2. Figure 2.7 shows the change in the top page menu. The link text to the
login page is changed from “Administrator” to “Site Administrator”, and the structure of
the top page is changed drastically. In this case, the similarity of XPath is not effective in
recognizing that the two link texts are the same because the DOM trees of the screens are
likely to have changed. In contrast, information related to the semantics of web elements

(i.e. id, name, text, etc.) is less variable than the structure of a screen. In this example,

27

This Site

Home
« Joomla! Home
« Joomla! Forums Site Map
« Joomla! Documentation Login
« Joomla! Community
« Joomla! Magazine Sample Sites

+« OSM Home
« Administrator

Site Administrator

Example Pages

(a) Version 1.5
(b) Version 2.5

Figure 2.7: Top page menu of Joomla!

the strings “Administrator” and “Site Administrator” are similar, so COLOR seems to be
more effective than WATER.

In Figure 2.6, some web elements are presented at low ranks despite using optimal
weights. This is because the weighting cannot improve the MRR due to the characteristics
and the theoretical limit of COLOR. We identified two cases where COLOR. did not work

well:

1. Many similar web elements on a web page.

2. Changes to a different HTML tag.

The first case occurs when there are many similar web elements on a page (e.g. web
elements in a table, radio buttons with many options, etc.). In such cases, there are many
web elements that have similar values for their properties, making it difficult for COLOR
to differentiate between them. Such web elements often do not have a descriptive name
or id, so XPath is often chosen as a locator. This is why COLOR tends not to present
correct web elements for XPath locators of Joomla! in Figure 2.6.

The latter case occurs when one HTML tag is changed to another. For example, in
MRBS, the “delete” link was changed to a “delete” button between two release versions,
as shown in Figure 2.8. COLOR calculates similarities by using properties that two web
elements have in common. However, the “delete” link and the “delete” button have no
attributes in common, which means that COLOR may present incorrect web elements
at higher ranks because there are few factors to distinguish between the two without

structural clues, and it cannot handle page layout changes.

28

« Building 1 (Edit)|(Delete)

Delete ‘

|

Apartment: Building 1 B 7

<input class="button" name="delete"
src="images/delete.png" title="delete"
alt="delete" type="image">

Figure 2.8: Example of changes to different HTML tag

To solve these problems, we need to analyze the semantic equivalence between two web
elements. One possible solution is to collect clues from web elements outside of the focus.
For instance, we could obtain a character string that explains a web element. COLOR, cur-
rently refers to <label> elements that have a for attribute linked with <input> elements.
However, <label> elements often do not have a for attribute in actual applications. We
believe that most of these problems can be solved if COLOR can obtain a character string
that explains a web element by using structural clues (e.g., labels are often on the left side
of the input form).

Another solution is to extract semantics from the HTML expression of the web element.
Although the “delete” link and the “delete” button in the previous example both include
the string “delete” in their HTML, COLOR cannot use it as a clue because of the different
properties. We can solve this problem by using natural language processing techniques to
extract semantics from web elements.

A limitation of COLOR comes from the selection of target web elements. In this
research, we chose <input>, <button>, <a>, , and <select> tags as operable web
elements. However, some applications use the <div> tag as a button, which means that
COLOR cannot recognize them as operable web elements. We excluded these from the
target web elements in this study, so it would be too costly to regard all <div> tags as
operable web elements. We think we can handle this problem by analyzing the event

linked to the web element.

2.5.3 Execution time

The execution time of the COLOR algorithm depends on the number of target web el-
ements on the page. If the page has many input forms, links, buttons, and so on, the

execution time will become longer because the number of candidates increases. The ap-

29

plication of COLOR takes approximately 40 ms per operable web element on a web page.
Most pages only contain several dozen web elements, so we consider COLOR to have no
practical problems in terms of execution time.

In some cases, it may be difficult to apply COLOR to pages with a large number of
web elements, such as portal sites. In such cases, we can compare web elements that have

the same tag in order to reduce the execution time.

2.6 Threats to Validity

This study has some threats to external validity. First, the number of applications in
our experiment is small, which may bias the results. We chose applications that include
page layout changes to show that COLOR can handle them. In the future, we want to
confirm whether the results will change when we use different applications. The same is
true for the release versions we chose, because the experimental results may be different
if different types of changes are made between the first and second releases. We plan to
obtain more general results by conducting experiments using three or more versions for
each application. However, there are sometimes drastic changes even between successive
versions of software, and we want to show that COLOR is effective in such cases.

We also need to discuss the selection of properties. We chose attributes that appear
frequently in the target applications. Other applications may include attributes that
COLOR does not use, and these attributes may be important for recommendations. In
the four target applications, we were not able to find any examples to show that these
properties are inadequate. We need to apply COLOR to more applications to confirm the
adequacy of the target properties.

Furthermore, the weights of the properties were determined based on the four applica-
tions in our study. When we apply COLOR to other applications, the results may change.
However, there were no applications that resulted in low MRR due to weighting in our
experiment. Therefore, these weights seem to be versatile to some extent. In the future,
we want to consider ways to calculate optimal weights for each application and increase

the number of target applications to obtain more general results.

2.7 Conclusion

We propose a novel approach called COLOR to support repairing broken locators by using
various clues obtained from a screen, in order to reduce the costs of regression testing.
COLOR uses various properties (e.g., attributes, positions, texts, and images) as clues and
is more robust than structure-based approaches against complex changes including page

layout changes. We first identified which properties are reliable for recommending locators

30

by examining 699 locators across two release versions of applications, and found that the
class, name, type, onclick, and width properties are effective for multiple targets, and
several properties are effective for some targets but harmful for others. We applied COLOR
to broken locators and showed that (1) COLOR can present the correct locator in first
place with 77% - 93% accuracy, and (2) COLOR is more effective against complex changes
including page layout changes than WATER, a conventional structure-based approach.

We plan to improve COLOR to enable it to recommend locators that were not recom-
mended in our experiment. Additionally, we want to increase the number of applications
for experiments and confirm that COLOR is generally applicable. We also aim to assess
the extent to which our proposed technique can actually reduce the amount of human ef-
fort required. The potential reduction in effort may vary depending on how the proposed
technique is utilized (e.g., automatically fixing broken test scripts and having the user
review them later, or running tests and interactively fixing each failed step as it occurs,
etc.).

31

Chapter 3

Maintainable Test Script

Generation via Manual Testing

32

3.1 Introduction

Software testing is a critical process for evaluating and improving the quality of software,
and developers often spend significant time and effort on it [45,46]. Many researchers
are working to make software testing more efficient and effective at detecting bugs [47].
Automated testing can greatly improve the efficiency of software testing, especially for
tests that are repeated frequently, such as regression testing. With the increasing need
to shorten software release cycles in order to respond quickly to market changes, test
automation has become essential for software development.

When testing software with graphical user interfaces (GUIs), such as web applications,
it is also important to test the GUI from the user’s perspective. This type of testing
is called end-to-end testing, which is the focus of this study. To automate end-to-end
testing, tools that automate web-browser operation, such as Selenium [2], are often used.
Automating end-to-end testing requires implementing test scripts, and these scripts may
need to be modified as the application under test is modified. Christophe et al. [48] studied
the change history of the source code including Selenium test scripts, for eight open-source
web applications, and how modifications to the applications affected these scripts. They
found that 75% of Selenium test scripts were changed at least once every nine commits
(once every 2.05 days). This shows that Selenium test scripts are updated frequently as
the application evolves, so the maintainability of these scripts is important.

Record & replay and programming are two main approaches to automating end-to-
end testing. Leotta et al. [3] conducted a comparative study of these two approaches and
found that the programming approach took 32-112% longer to implement test scripts, but
required 16-51% less time to modify them. Overall, the programming approach was found
to be less costly in most cases when more than three modifications were needed.

In their experiment, the participants who used the programming approach imple-
mented their test scripts using the page-object pattern. The page-object pattern is a
design pattern for end-to-end test automation that improves the maintainability of test
scripts by separating test cases from page-specific code [49,50]. The results of the study
suggest that the programming approach with the page-object pattern is well-suited for
software that is released frequently in short periods of time. However, using the program-
ming approach to create highly maintainable test scripts requires skilled developers. This
difficulty in implementing test scripts can make it challenging to introduce automated end-
to-end testing into software development. To address this issue, Stocco et al. [51] proposed
an approach for automatically generating page objects. This approach involves crawling
an application to generate page objects, but it can be difficult to apply to large-scale
applications and generate complete page objects.

We propose an approach for automatically generating test scripts using the page-object

33

pattern from manual testing logs. The key advantage of our approach is that it allows
test scripts to be generated simply by performing manual tests, without the need for users
to be aware of test automation. While automated testing is becoming more common in
industry, not all testing can be automated, due to the high implementation cost and the
difficulty of automating certain types of tests, such as user-interface testing and usability
testing.

Manual testing approaches can be broadly classified as scripted testing or exploratory
testing [52-54]. Scripted testing involves designing tests in advance and then execut-
ing them according to the test design. Developers often document the test design and
may create test-procedure manuals with detailed instructions for each test. In contrast,
exploratory testing involves conducting test execution, test design, and learning simulta-
neously, without pre-planning the tests. Exploratory testing cannot currently be replaced
by automated testing because it relies on the expertise of the tester.

Our proposed approach allows test scripts to be generated with minimal preparation
by recording manual testing, which is an essential part of software development. Our
approach addresses the problems of manually implementing test scripts and the limitations
of other approaches for generating page objects. In our approach, the actions of the tester
are treated as the use of a feature on a web page, and these actions are converted into
methods of the page object. This makes it possible to automatically generate test scripts
from manual testing logs.

The test scripts generated by our approach not only include page objects, but also
test cases that cover the features of an application by analyzing the page transitions of
that application. In general, a test case is a specification of a test and includes a set
of operations that are executed on an application to determine if it meets the software
requirements. Although test code may be written in natural language, for the purposes of
this study, test code is defined as implemented in source code. Our approach lowers the
barrier to introducing automated end-to-end testing to software development.

To evaluate the effectiveness of our approach, we asked four testers to conduct manual
testing on an open-source web application and evaluated whether our approach could
generate useful test scripts. A test script in this context refers to a set of page objects
and test cases. The results of the experiment showed that our approach was able to
generate a greater number of complete methods in page objects than a current approach
for page-object generation. We also conducted an empirical evaluation of whether our
approach could reduce the cost of implementing test scripts for real systems. The results
showed that our approach reduced the time required to implement test scripts by about
48% compared to manual implementation.

The contributions of this study are as follows:

e We propose a technique for generating automated test scripts with page objects from

34

manual testing activities, which is an essential part of software testing.

e We evaluated the completeness of the generated test scripts and showed that our
approach can generate a greater number of complete page objects than an existing

page-object generation technique.

e Our empirical evaluation showed that our approach can significantly reduce the costs
of test script implementation compared to other practical approaches used in real-

world software development.

3.2 Page Object

A page object is an object-oriented representation of a web page, with each web page
represented as an object. In this study, we define a page object as a class that contains
accessors and methods. An accessor is used to obtain a reference to a web element using
a locator. The body of a method is a sequence of operations, such as clicking on web
elements, entering values into input fields, or selecting items from drop-down lists. The
method returns the page object of the destination page. Web elements that are operated
on in the methods are specified using an accessor.

Figure 3.1 shows an example of the owner add page in the PetClinic open-source web
application [55] and its corresponding page object. The owner add page consists of five
input fields, four links, and one button. It also has a feature that allows it to transition to
another page or add an owner. The page object in Figure 3.1 is implemented in JavaScript
using WebdriverIO [56], a test-automation framework for web or mobile applications that
makes the test code more concise than plain Selenium WebDriver.

The _firstName accessor indicates an input field for the first name. $(‘#firstName’)
captures the web element with the id of “firstName” in the HTML of the web page. The
information used to uniquely identify a web element on a web page, such as #firstName,
is called a locator. Users can use id, name, text, XPath, etc. as a locator. The defined
accessors are only called from methods within the page objects.

The addOwner () method in Figure 3.1 takes the values to be entered in each input field
as arguments. This method inputs the values in each input field and then clicks the add
owner button. When writing test cases to carry out an operation on the owner addition
page, we use the methods defined in the page object. The return value of the method is
generally the page object of the destination page after the page transition. This allows us
to write test cases using a method chain.

The page-object pattern allows test cases and page-specific code to be separated by
modularizing operations and locators. This means that changes to test cases can be

minimized by only modifying accessors or methods in the page object when web pages

35

or features under test are modified. This makes it easier to maintain test cases as the

application evolves.

36

Owner add page of Petclinic

A HOME Q FIND OWNERS iEVETERINARIANS A ERROR

Owner

First Name
Last Name v
Address v
City

Telephone v

Add Owner

Elements
Input Link Feature

HOME
FIND OWNERS

First Name
Go to top page

Last Name
Use Go to the owner search page

Address

VETERINARIANS
ERROR

<€—— | Go to the veterinarians list page

City
Telephone

Go to the error page

Button Add owner

Add Owner

2

Page object of the page

class newOwnerPage {
// Input
get _firstName() { return $('#firstName'); }
get _lastName() { return $('#flastName'); }

}}.Link
get _home() { return $('span*=HOME'); }

/).Button
get _addOwner() { return $('button*=Add Owner'); }

// Feature

goHome() {
this.home.click();
return new HomePage();

}

addOwner ({
firstName,
lastName,
address,
city,
telephone
A
this._firstName.setValue(firstName);
this._lastName.setValue(lastName);

this._addOwner.click();
return new OwnerPage();

Figure 3.1: Owner add page of PetClinic and its page object

37

3.3 Related Work

Stocco et al. [51] proposed a technique called APOGEN for automatically generating page
objects. APOGEN generates page objects by crawling web applications under test and
automatically extracting web elements from the pages. It then clusters the web pages
based on their similarity and integrates the pages belonging to the same cluster into a
single page object. This is because having multiple similar page objects can reduce the
modularity of the test script, which can undermine the strength of the page object.

Although APOGEN can help reduce the cost of implementing page objects, it has two
problems with regard to page-object generation. The first problem is that it requires some
preparation to use. When an application requires specific input values for page transitions,
it is necessary to teach the crawler the locators of input fields and the input values in
advance. In addition, if APOGEN does not propose the correct cluster, users need to fix
the cluster manually. In contrast, our approach requires almost no preparation because it
uses logs of manual testing, which are essential for software development. Chen et al. [57]
improved the accuracy of page clustering for page-object generation by considering CSS
styles and the attributes of web elements, but the problems caused by crawling have not
been resolved.

The second problem with APOGEN is the completeness of the page objects it gen-
erates. If the crawling cannot cover certain web pages, APOGEN will not be able to
generate page objects for those pages. APOGEN generates methods that operate web
elements enclosed in <form> tags as a feature of the web page, but this technique may
not be applicable on some web pages. This is because using features of web pages is not
always the same as operating web elements enclosed in <form> tags. In addition, because
APOGEN converts all possible page transitions into methods, it may generate too many
methods that are not used in actual tests if the application has many links or buttons.
In contrast, our approach can accurately extract features from pages regardless of their
structure by using tester operations, so it is likely to generate useful methods for auto-
mated testing. Furthermore, APOGEN only generates page objects, but our approach can

also generate test cases that use these page objects.

3.4 Approach

Figure 3.2 shows an overview of our approach, which takes manual testing logs as input
and outputs test cases and page objects. The generated test cases use the page objects and
call methods declared in them. In order to record manual testing activity, we developed a
tool [58] that collects test logs that consist of operation data, such as information about

tags and attributes of operated web elements, types of operations (e.g. click or input),

38

D S

—

Application

]

Test cases

— .ﬁaﬁ gUse

Test log Proposed approach D D

Page Objects

" Record manual testing

<.

Test script

Figure 3.2: Overview of proposed approach

and page titles/URLs where the operations are performed. Testers can record this data
without being aware of the tool’s existence during the test. Figure 3.3 shows an example
of an operation data when a pet’s birthday is entered on the pet add page of PetClinic.
Our approach consists of two phases: page-object generation and test-case generation.
In the page-object-generation phase, our approach generates page objects using data of
operated web elements and operation procedures. In the test-case-generation phase, our
approach selects test cases that cover all page transitions by analyzing page transitions

obtained from test logs and constructs test cases that leverage the generated page objects.

3.4.1 Page-object generation

The proposed approach generates page objects for all web pages visited during a test.
However, some web applications (e.g., single-page applications) may not have obvious
page transitions, so we clarify the definition of a page. In this study, testers have the
option to choose either a title match or URL match as the definition of page equality.
They can also use regular expressions to define pages with matching titles or URLs as the
same.

The generated page objects contain accessors that access web elements that have been
operated at least once during the test. These accessors return web elements specified by
locators using a function of WebdriverlO. To improve the robustness against application
modifications, we use locators in the following order of priority: (i) id, (ii) name, (iii)
text, and (iv) absolute XPath. This is because XPath locators are known to change more
frequently than other locators. Text locators are only used for web elements that can

contain text (e.g., <a> and <button>). They identify web elements by whether the link

39

"pageInfo":{
"title":"PetClinic :: a Spring Framework
demonstration”,
"url":"http://localhost:8080/owners/1/pet
s/new"
})
"operation":{
"type":"input",
"input":"2020/3/3",
"elementInfo":{
"tagname":"INPUT",
"text":"",
"xpath":"/HTML/../DIV/INPUT",
"attributes":{
"class":"",
"id":"",
"name" :"birthdate",

Figure 3.3: Datum of operation in test log

text and inner text match the given string.
In the page-object pattern, a method contains a sequence of operations performed on
a web page and represents a feature provided by the page. An operation o is defined as

follows:
o= (ti,e,p)

where t is the type of operation (e.g. input or click), 4 is the input value, e is the operated
web element, and p is the web page where the operation is performed. We consider a
sequence of operations performed from the time a tester arrives on a certain page until
the time they leave as the use of a certain feature of that page. We call such operations
an operation sequence.

Algorithm 2 describes the detailed algorithm for generating methods for page objects.
We first need to obtain the set of pages that testers visited by analyzing the test log
(lines 1-4). Suppose we have pages pi,..., p,. We then extract the operation sequences
performed on each page as the candidates for the methods (lines 5-16). Let S,, be the op-
eration sequences for p;. By scanning the test log, we can retrieve the operation sequences
performed on p;.

If we converted all operation sequences into methods, many duplicate methods would
be generated. Therefore, we prevent the generation of duplicate methods by rejecting
operation sequences that are included in other operation sequences (lines 17-27). This
process aims to generate only versatile methods. For example, we can replace the absence
of an operation on an input field with the operation of entering an empty string into the
input field.

Let us define operation sequence s; and E,, as the set of web elements operated in

40

Algorithm 2: Method generation for page objects

Input: a test log

Output: methods for each page object
1 page set P < ();
2 foreach operation in the test log do

3 L add the page where the operation is executed on P;

/* Now we have pages pi1,p2,...,Pn x/
4 foreach page p; in P do
5 L let S, is the operation sequences for p;;

6 Sp: < 0;

7 operation sequence s < ();

8 foreach operation in the test log do

9 add the operation to s;

10 if there is a page transition, and the previous operation is executed on p; then
11 add s to S), for the page;

12 L s+ 0;

13 foreach page p; in P do

14 let the sequences adopted as methods for the page object of p; be M,,;
15 | My, < 0;

16 sort .S, in descending order by length;

17 foreach operation sequence s in S,, do

18 if s is not included in any other s € M, then
19 L add s to M),;

20 convert M, to methods;

s1, and define sp and FE,, in the same manner. We assume that “operation sequence sy

" means that the destination of s; and s are the same, and Ej, includes Ej;, .

includes s’
For example, suppose a web page has web elements ey, ..., e4, and we set Ey, = {e1,e2,e4}
and F, = {e1, ea,e3,e4}, where Fg, includes Ey,. Also, suppose that the destinations of
s1 and so are the same. In this case, s; is not adopted as a method because so includes
s1. We only take into account the operated web elements, regardless of the input value, to
determine the inclusion. Let M, be the operation sequences adopted as methods in the
page object for p;.

Finally, the algorithm converts each operation sequence in M, into JavaScript code
that uses the APIs of WebdriverIO. Since the algorithm converts operation sequences into

methods in this manner, the roles of the generated methods are unlikely to overlap.

41

Path, D1, P2, P4, Ps, P2
Pathz P1, P2, P3,Ps

Figure 3.4: Example of path selection for test-case generation

We now present how to determine the identifiers of classes, accessors, and methods
in the page objects. Class names are determined by the title or URL used to define the
page. When we use regular expressions to define web pages, each web page can have a
user-defined alias. Accessor names are determined by the id, name, or text of the web
element. Method names are “go<class name of the destination>” when the method clicks
a link at the end of it; otherwise, it is “do<accessor name called lastly>". If the generated
identifier name conflicts with other identifiers, the algorithm adds a serial number to the

end of the identifier name.

3.4.2 Test-case generation

In addition to page objects, the proposed approach also generates test cases using the
page objects. Our approach first determines the paths of page transitions to be checked in
each test case (a path is represented as a sequence of pages). A test case is constructed by
combining methods defined in the page objects and is executed along one of the determined
paths. We note that our test case generation algorithm does not take into account the
states of the target application, so the generated tests may not always be executable. This
limitation is discussed in Section 3.4.3.

The following presents the algorithm for determining the paths of page transitions.

Our approach selects paths that satisfy the following rules:
1. The path covers all page transitions checked during manual testing.
2. If the same pages are visited twice in one path, subsequent pages will not be visited.
3. Page transitions executed in other paths are not executed as often.

Figure 3.4 shows an example of path selection. The web pages pi,...,p5 and page

42

Algorithm 3: Test-case generation

Input: A test log and page objects
Output: Test cases

[uny

path_list < (;

2 path, < 0;

3 add the start page to pathg;

4 Construct page transition diagram from the test log;

5 Function breadthFirstSearch():

6 queue (of path) « (;

7 Enqueue path. to queue;

8 while queue is not empty do

9 path. < Dequeue from queue;

10 if all destinations from the last page of path are included in path. then
11 Cut off the redundant page transitions at the end of path,;
12 if path. includes undiscovered page transitions then

13 | Add path, to path_list;
14 foreach p, < adjacent page of the last page of path. do

15 if p, is not included in path. then

16 path’ < path,. with p, appended;

17 L Enqueue path’ to queue;

18 breadthFirstSearch();
1

©

foreach path in the path_list do

20 L Convert path to a test case that consists of chained methods;

transitions among them are shown. In this case, the rules determine the two paths:

Pathy = [p1,p2, p4, 5, p2|, Pathy = [p1,p2, 3, p5).

Here, Path; and Pathy obviously satisfy the first rule. Next, ps is the last page of Pathy,
and subsequent pages are not visited. We can see that Path; follows the second rule. ps
is the last page of Paths, and the page transition from ps to po is not executed. Since
Path; has already passed through the page transition from ps to ps, the third rule rejects
the page transition.

On the other hand, both Path; and Paths pass through the page transition from p; to
p2. The page transition is not rejected by the third rule because it is necessary to cover

all page transitions with two paths.

43

S[Te2 91 JeT[) SPOYIOW PUR 9SBD }$9) PIjeIduasd Jo odwrexs] :G ¢ oInsIg

9Sed 1s9|
{ ‘{
¢()abeduaump mau uuaniad HE
S()%2112°19dppe - S1y} Bop, :adAy
f(adAy ¢ ,an1ea,)a31nqraiiyAginanas adAy-siyy a B ! .>. :
£(238PY3J19)aN1BAIDS *93BPYUIIIG" S1UT 110-60-020¢, :/epuling
¢ (aWeu)an1ep1as aweu s1yy Addnd, :aweu
} ({ 2dAy ‘@1epyling ‘sweu })1a4ppyop })32dppyop” n
abedin 9406
(Jebednpappyaad :// £()96ed31p3ppPYIad MAU UJN}ad
. £()%2112° 39dMaNpPpPe “S1Y}
{ oelq, :aweulsey } ()abedi1pappyiadob
¢()abedJaumg Mau uiniad \\;wcsouciou.
£()32112° J2UMOPUL S *S1YD . ()abedydaeasiaumpob :
{(Qweulsey)an)ep3}as ‘aweulse) *s1yy ()abegqdo] ma 1
} ({ sueu3sey })Jsumppurdop . F<=0) {()abedyd4easiaumg MaU udn}ad
_obed 311pa/ppe 319d <- abed usumg <- £()%9112 " SIUMOPUL S S1U}
abed youess usumg <- abed doy)11 } ()abedy>1easiaumgob

yied pa1ds|as pue d1ul|DId Jo weibelp uonisues-abed

a8ed eyep st ppy a6ed upa/ppe 13d

a8ed pa/ppe Jaump

HSIA PPY DANI__

1A PPV SPNO___32d 33epdn HPH> 39d PPY uﬁh& %_m EENE) 39d MON PPV D210 J2UMO 33epdn HND__ISUMO PPY HRNO__1aUMO 3P3 HN3

afed JaumQ

13UMQ PPY 1D

J2UMO putd IR

IWOH DI E afed Js1) uepRULIRIIA

IWOH P12 4O¥Y3 PR JWOH PP SNYIRIVNIYILIA PN J3UMQ Puld P SHINMO ANIJ PhD

AWOH u_u.:u‘ Y aseddo) [

afed yoieas Jaumo

44

Algorithm 3 describes the algorithm for test case generation. First, our approach
analyzes the test logs to generate a page-transition diagram of visited pages in the test
(line 4). Next, we obtain a list of paths satisfying the above three rules by carrying out a
breadth-first search on the page-transition diagram (lines 5-21). Depth-first search is also
a well-known graph-traversal algorithm, but in this case, a breadth-first search is superior.
This is because a breadth-first search determines the shorter paths first, contributing to
generating concise test cases. Let the start page of all paths be the start page of the
manual testing. When no more page transitions are possible due to the second rule, we
cut off the redundant page transitions at the end of the path because of the third rule. A
test case consists of chained methods defined in the page objects and executes the page
transitions following the path (lines 16-18).

For example, suppose there are three pages pi1,p2, and ps. When a path [p1, p2, p3] is
converted to a test case, the test case first calls a method defined in the page object of
p1 to go to pa. The return value of the first method is the page object of pa, so the test
case then calls a method defined in the page object of pa to go to ps. In this manner, our
approach generates test cases that satisfy the rules by converting each path into a test
case.

Note that if multiple methods execute the same page transition in one page object, the
first generated method is used in the test case. Our approach can also generate arguments
and input values for the method because the test logs contain input values when each page
transition is carried out by testers.

Figure 3.5 shows an example of a generated test case and the methods called from
the test case. The page-transition diagram and test case is a part of the output in our
experiment using PetClinic described in Section 3.5.

Suppose we obtain a path that transitions in the following order: the top page, owner
search page, owner page, and pet add/edit page. In this case, our approach generates a test
case that consists of four methods executing the page transitions. Each method is declared
in a different page object. The test cases start from the page object of the top page, and the
page object has the goOwnerSearchPage () method. Next, goOwnerSearchPage () returns
the page object of the owner search page, and the page object calls the doFindOwner ()
method. By repeating the same steps, the test case is built. If methods require argu-
ments, the proposed approach extracts a set of input values that caused the required page

transition from the test log.

3.4.3 Limitation

Our approach in this study may generate test cases that require the application to be
in a certain state in order to be executed. To execute such test cases, we would need

to insert a process to initialize the database or modify the input values in the generated

45

test scripts. This state dependency issue is a common problem in many crawling-based
test generation techniques and record & replay tools, but it is outside the scope of this
study. There are existing studies [59,60] on dependency-aware test generation that could
potentially be used to address this problem. If these techniques are not adopted, users
will have to manually modify the generated test scripts to solve the state dependency
issue. However, using page objects in our test scripts makes them easier to modify, which
partially mitigates this problem. One of the goals of this research is to generate test scripts
that are easy to modify, as it is often difficult to create perfect test scripts for users.

Our approach has some limitations in terms of the types of applications and situations
it can be applied to. Currently, our approach does not generate any assertions, so users
will need to insert their own assertions to verify that the test scripts are being executed
correctly. However, it is technically possible to verify that the currently opened web page
matches the expected one, as we record the titles and URLs of the web pages where
operations are performed. Additionally, the generated test scripts use the page-object
pattern, which makes them highly maintainable and easy to add more detailed assertions
to.

Our recording tool is currently only able to record click and input operations, so it is
not possible to perform other types of operations (such as drag, mouse hover, etc.) in the
generated test scripts. Furthermore, our approach cannot generate methods that include
operations that were not performed during manual testing. However, we believe that by
keeping logs of not only planned manual testing but also some behavior verification and

smoke testing, we can compensate for the lack of test logs.

3.5 Evaluation

We conducted experiments to evaluate the effectiveness of our approach in generating test

scripts. Specifically, we sought to answer the following research questions:

RQ1. Can our approach generate a greater number of complete methods in page objects
than the current APOGEN approach?

RQ2. Can the test cases generated with our approach be used without modification and

cover the features of the application?

RQ3. Does our approach reduce the initial cost of test script implementation compared
to practical approaches used in industry?

3.5.1 Experimental setup

Four testers conducted manual testing on Spring PetClinic version 2.2.0, which is an open-

source web application. Spring PetClinic is a sample application of the Spring Framework

46

Table 3.1: Web pages and features of PetClinic

Web page Feature
Top page Nothing
Owner search page Search owners by a last name

Owner search result page Show the list of owners hit by a search
Owner add/edit page Input owner data and add or update the owner
Add or edit pet data of the owner and

Owner page o
add visit data for the pet

Pet add/edit page Enter pet data and add or update the pet
Visit data add page Enter visit data for the pet and add them
Veterinarians list page Nothing
Error page Nothing

and has more than 6k lines of Java code. Table 3.1 lists all the web pages and features of
PetClinic. We used the database prepared by PetClinic as the initial state.

All the web pages in PetClinic have a header with links to go to the top page, owner
search page, veterinarians list page, and error page. We consider the owner add page and
the owner edit page to be the same page because these two pages are generated from the
same template file in the Spring Framework and have a similar structure. We also consider
the pet add/edit page to be a single page for the same reason. Additionally, each owner
has a separate owner page in PetClinic, but we also treat these pages as a single page.
Since these page objects would need to be modified in the same way frequently when the
template is modified, we believe it would be more practical to separate these page objects
for experimentation.

In this experiment, we used two different manual testing approaches to evaluate whether
our approach does not depend on the specific manner of manual testing. Two testers per-
formed scripted testing, while the other two performed exploratory testing. All four testers
had more than three years of testing experience, and the two conducting exploratory test-
ing had experience with this type of testing.

Before conducting the experiment, we had the testers familiarize themselves with the
specifications of PetClinic by operating it. We also assumed that PetClinic had been
adequately unit tested on both the server-side and client-side. Next, we instructed the
testers on how to conduct end-to-end testing on PetClinic to check its functionality and
usability. Even though PetClinic is a stable application, we asked the testers to test it
with the aim of finding bugs.

The two testers who performed scripted testing designed and documented the content

of the tests in advance as test scenarios. A test scenario is a sequence of steps to test a

47

Table 3.2: Summary of tests by testers

Tester Approach # of test scenario # of operations
A Scripted testing 9 135
B Scripted testing 20 258
C Exploratory testing - 378
D Exploratory testing - 505

specific use case of the target application. The other two testers performed exploratory
testing for up to 30 minutes to find bugs using their knowledge and experience.

All the operations performed during the tests were recorded using our tool, which is
described in Section 3.4. Let the test logs obtained from testers A—D be test logs A-—
D, respectively. Table 3.2 summarizes the tests conducted by the testers. The cases of
exploratory testing did not have documented test scenarios because the two testers did
not design the tests in advance. The number of operations is equal to the number of click
events and change events that occurred when the testers interacted with web elements.

We applied our approach to the test logs and generated four sets of test scripts. We
also merged the four test logs to create a single large test log that was equivalent to four
tests conducted consecutively. We applied our approach to the merged test log in the same

way. The generated test scripts from our approach and APOGEN are publicly available!.

3.5.2 Page-object generation

We compared our approach with APOGEN to evaluate whether the page-object-generation
phase of our approach was able to generate complete methods. We first examined the page
objects generated with our approach and APOGEN. PetClinic has nine pages, as shown in
Table 3.1. Note that we define owner pages, owner add/edit page, and pet add/edit page
each as one page using regular expressions on the URLs. This is because these pages are
generated from the same template, as explained in Section 3.5.1. Therefore, our approach
generated nine page objects from each test log.

Next, we applied APOGEN to PetClinic to generate page objects. We provided infor-
mation to APOGEN’s crawler to reach as many pages as possible and manually classified
the reached web pages into the pages shown in Table 3.1. However, we were unable to
generate page objects for the error page and owner search page due to limitations of
APOGEN. This result is the same as in the evaluation of an existing paper [51]. As a
result, we obtained seven page objects with APOGEN, excluding the two pages that could

not be reached.

https://zenodo.org/record/5655786

48

Table 3.3: Classification of methods in page objects generated with our approach and
APOGEN

Source Complete Redundant To modify Unnecessary Header Total

APOGEN 5 0 6 0 18 31
Test log A 6 (9) 0 3 0 6(7) 13 (17)
Test log B 8 (12) 0 7 1 8(12) 24 (32)
Test log C 6 (10) 0 4 6 12 (16) 28 (36)
Test log D 9 (13) 1 6 3 10 (13) 29 (36)
Merged log 12 (16) 0 3 11 18 (23) 44 (53)

We then classified the methods in the page objects according to the following criteria:

Complete The methods have no parts that need to be modified in terms of arguments,

operations, and return values.

Redundant The methods function correctly but contain unnecessary operations that do

not affect their functionality.

To modify The methods require modification of arguments, operations, or return values

in order to use them.

Unnecessary The second or subsequent methods of multiple methods that check the

same page transitions.
Header The methods click links on the header to go to another page.

Although methods classified as header are all complete methods, we decided to distinguish
header from the others. This is because they are unlikely to be used in actual test cases
despite their large number.

Table 3.3 shows the results of the classification. The table shows both the case where
we counted only the methods in the seven page objects generated by APOGEN, and the
case where the two page objects that APOGEN could not generate were included. The
values in parentheses are counted by including the number of methods in the page objects
that could not be generated by APOGEN.

Our approach generated a greater number of complete methods than APOGEN, even
when we excluded the page objects of the web pages that APOGEN could not reach. It
also generated one redundant method goOwnerSearchPage() for test log D. This is because
tester D performed the operation sequence to click a link to go to the owner search page

after filling an input field on the owner add/edit page. The operation sequence was

49

converted to a method, but the operation of filling an input field was not necessary to go
to the owner search page.

The to modify methods were generated by both APOGEN and our approach, but our
approach tended to generate fewer of them. There were no correct page objects as return
values in four to modify methods generated by APOGEN, probably because APOGEN
does not take into account the case where different page transitions are performed depend-
ing on the input values when using the same feature. The other two to modify methods by
APOGEN lack operations to enter values when updating pet or owner information. On
the other hand, our approach was able to generate these methods that APOGEN could
not generate correctly. APOGEN converts operations on web elements enclosed in <form>
tags into a method, but PetClinic did not have such sets of web elements. Hence, there
was no sequence of operations that our approach could recognize but APOGEN could not.

Most of the to modify methods generated by our approach have an insufficient number
of arguments and cannot enter values into some input fields. This is because the testers
did not fill in all input fields on some pages during the tests. If the testers had conducted
a test that attempted to register an owner with a blank name, the generated method
would not have included the operation to fill in the name input field due to the method-
generation algorithm of our approach. However, there are other possible inputs that could
cause registration to fail, such as not giving an address and inputting incorrect characters.
The methods should always have arguments for all inputs to register an owner because
missing arguments reduce versatility. If there are no missing arguments and users want to
register an owner with a blank name, they can achieve this by providing an empty string
as an argument.

Our approach generated unnecessary methods that separately click different owners on
the owner search result page in most cases. Since these methods have the same destina-
tion, the second and subsequent methods are classified as unnecessary. The unnecessary
methods were only generated by our approach. However, if APOGEN reached the owner
search result page, it would generate many methods to click each owner and generate more
unnecessary methods than our approach.

Our approach generated fewer header methods, even though it generated more page
objects. Most of the methods classified as header are not important and would not be
used because developers usually just need to make sure the links are valid.

Our approach to generating page objects from the merged log results in the most com-
plete methods and the fewest methods to modify. This is because each log fills in missing
operations, and our approach converts operation sequences that include other small oper-
ation sequences into methods. As a result, even if a log does not include operations on all
input fields, our approach can generate a complete method if all input fields are operated

on in the other logs.

50

Table 3.4: Classification and average length of generated test cases

Source Complete Data-dependent To modify Total Avg. length

Test log A 7 0 1 8 4.25
Test log B 11 0 1 12 4.00
Test log C 10 4 0 14 4.58
Test log D 11 0 2 13 4.50
Merged log 19 0 1 20 4.46

However, generating page objects from the merged log can also lead to the generation
of many unnecessary and header methods. This is because the merged log includes many
operations for clicking various elements on the owner search result page and clicking links
in the header on each page. This problem may not occur in other applications, as it is
largely due to the specific design of PetClinic.

To summarize the evaluation of page-object generation and answer RQ1, our approach
to page-object generation is more likely to generate a greater number of complete methods
compared to APOGEN, regardless of the manual testing approach or testers. However,
generating page objects from a merged log can compensate for the incompleteness of each

log, but it also increases the number of extra methods that may not be used.

3.5.3 Test-case generation

We next evaluated the ability of our approach to generate complete test cases during the
test-case-generation phase. The choice of which test cases to automate depends on the
project, but in this experiment, we evaluated whether our approach could generate test
cases that check the normal scenarios for each feature without requiring modifications.
This is because such test cases are versatile and can be useful in any project. Addition-
ally, it is easy to implement test cases for exceptional scenarios (e.g., cases where owner
registration fails) by reusing the generated test cases and page objects. We classified the

test cases generated from test logs A—D according to the following criteria:

Complete A test case can be executed without modifying the order of method calls,

argument values, and the database state.

Data-dependent A test case can be executed by changing the database state from the

initial state or changing the value given by the method argument.

To modify A test case can be executed by replacing some called methods with other

methods that have the same transition destination as before.

o1

Table 3.4 shows the results of the classification of generated test cases and the average
length of the test cases. The length of a test case refers to the length of paths of page
transitions checked in a test case. It also equals the number of called methods in a test
case, as a method call invokes a page transition.

The reason why four test cases of test log C were classified as data-dependent is that
tester C added a pet to an owner registered during manual testing. Since our approach
does not take into account the state of the application, as explained in Section 3.4.3, it
generated test cases that add a pet to an owner who does not exist in the initial state
of the database. The testers other than C only tested the edit feature for users and pets
registered by default, so this problem did not occur when using logs other than C. We
found that whether or not our technique generates data-dependent test scripts depends
on the way of testing. These data-dependent test cases can be turned into complete test
cases by replacing the method call in the test case with the method to click an initially
existing owner, or by changing the initial state of the database.

Some test cases were classified as to modify because some web pages with different
features were defined as one page. For example, adding and editing pets are different
operations, but we define the pet add/edit page as a single page because the templates
of the pages are the same. The method for clicking the “Add Pet” button after filling in
input fields and the method for clicking the “Update Pet” button after that are declared
as different methods in the page object. However, our approach did not distinguish these
methods when constructing test cases because both methods go to the owner page from
the pet add/edit page. As a result, our approach may generate test cases that call the
method to update a pet when the method to add a pet should be called. In this case, the
test case becomes complete if we replace the method call to update a pet with the call to
add a pet.

Table 3.5 shows which features were checked by the test cases generated from test logs
A-D and the merged log (labeled “M”). The features of PetClinic were extracted from
the test-case specifications written by testers A and B. In the table, a “v"” indicates that
the generated test cases checked the feature, “x”
did not check the feature even though the manual test did, and “~’ indicates that the

generated test cases could not check the feature because the manual test did not check it.

indicates that the generated test cases

Due to the limitation of our approach, it is not able to generate test cases for features that
were not checked by the manual tests. We assume that one test case can confirm multiple
features. For example, we have a test case that adds a pet to an owner found in the owner
search after moving from the top page to the owner search page. In this case, we determine
that the test case confirms features (1, 6, 12) in Table 3.5. Note that Table 3.5 shows
the results when the data-dependent and to modify test cases were correctly modified and

became complete.

52

~

-98ed 10110 10 ‘08ed

9SI[SUeLIRULIDIOA ‘9Fed YoIeos Joumo ‘oFed doj oy) 0} 0x)

I9peoy

>SS

>SS

~

>SS

>SS

'spey Jndut ut Suiy £q vyep sIa ppy

o8ed ppe ejep sIA

N X

N X

~

N X

N X

'sprey ndur ur Surqy £q jod © y1py
'spey ndur ut Sur[y Aq 1od e ppy

oded y1pa/ppe 194

‘spey ndur ur Sul[[y Aq IoUMo ue JIpH
‘sprey ndur ur Suly Aq Isumo ue ppy

o8ed 11pa/ppe 1oum()

SOX N S Sy X

‘oged ppe rjep JISIA 0) OK)
o3ed }1po IOUMO O} 0} OY)
o8ed j1pe jod o1y 03 0X)
oged ppe jod oy} 03 05

o8ed 1ouM()

OUWRU JOUMO UR SUINDID Aq 98ed IoUMO O} 0} dAON

0 [© b~ 0 O

o8ed ymsor1 yoreos oum()

SES S XS NS S X

>

SUS S XN NS X

>

SIS S XN NS X

~

SS S XS NS S X

‘oGed ppe Joumo oy} 0} oY)

‘oGed 9Insad YDIBdS IOUMO o) UO palerdsip

9([IM SIQUMO [[€ ‘YOILdS ISUMO 9} Ul PAISJUe ST SUIYOU I
ogred JInsol YDIeds IoUMO 9} U0 paledsip oq

I A7) ‘YoIess IoUMO 9} Ul OPeW oIk SH 9IOW 10 OM) JT
‘poferdsip oq

[im oGed I0UMO 91} ‘YDIRAS ISUMO O} Ul dpeU ST JI7 9UO J]

<t

o8ed ypIees ouUM()

oI YR

oged qopn

SOSeO 1599 .@@p@m@gww WO} PattlIguoo saanjesq :G'¢ a[qe],

53

Some features were not checked by the generated test cases even though the manual
tests checked them. In most cases, this was because our approach generates test cases based
on the coverage of page transitions. For example, in a certain test case, if a transition
from the owner page to the pet add/edit page was performed by clicking the “Add New
Pet” button, the page transition was checked. However, when the “Edit Pet” button was
clicked from the owner page, the transition to the pet add/edit page was also performed.
Since this page transition had already been checked, our approach did not generate a test
case to check the feature for editing pets. As a result, for the pairs of features (2, 3), (6,
7), (10, 11) and (12, 13) in Table 3.5, only one feature of each pair was checked. However,
we believe that we can easily create test cases to check the other feature of each pair by
slightly modifying the generated test cases.

Finally, we discuss the smallness and simplicity of the generated test cases. Table 3.5
shows that the average length of the test cases was at most 4.58. This indicates that each
test case is concise and that users can easily understand them. An interesting point is
that test log D had about twice as many operations as test log B, and testers B and D
adopted different manual testing approaches, yet the numbers of test cases were almost
the same. Since the generated test cases depend on the page-transition diagram obtained
from the manual tests, our approach has the advantage of generating similar test cases no
matter how the manual tests were conducted, as long as the page-transition diagrams are
similar.

In this experiment, although the test cases generated from test log A were the smallest,
they covered most of the features checked in the other test cases. Therefore, we can say that
there is redundancy in the test cases generated from the other test logs. This is because
the more links on the header are clicked, the more complex the page-transition diagram
becomes. Our approach uses the page-transition diagram to make the test cases cover the
page transitions executed in the tests. However, every page of PetClick has a header, and
if testers go to another page by clicking the links on the header, the page transitions are
regarded as different. Hence, we found that our approach may generate a redundant set
of test cases if applications have mesh-like page transitions that are interconnected.

To answer RQ2, our approach generated complete test cases in most situations. The
generated test cases covered most of the features of the application. However, our ap-
proach may generate incomplete or redundant test cases when multiple pages with differ-
ent features are treated as the same one, or when the application has interconnected page

transitions.

3.5.4 Empirical evaluation

We evaluated whether our approach is efficient for implementing test scripts using page

objects at a lower cost than existing approaches. For comparison, we chose to implement

54

Table 3.6: Summary of the test scenarios for empirical evaluation

of test # of involved o
System Description
procedures pages

Scenario 1 A 3 4 Check data query feature
Scenario 2 A 2 14 Check data update feature
Scenario 3 A 2 14 Check data lifecycle
Scenario 4 B 2 6 Check standard operation procedures

Table 3.7: The time to implement test scripts (minute)

Our approach SeleniumIDE Manual

Rec! PO? TC? Total Rec PO TC Total Rec PO TC Total
Scenario 1 1 7 1 9 1 16 1 18 0 21 1 22
Scenario 2 3 26 2 31 3 41 2 46 0 66 2 68
Scenario 3 3 60 2 65 3 55 2 60 0 94 2 96
Scenario 4 1 5 1 7 1 20 1 22 0 28 1 29
Total 8 098 6 112 8 132 6 146 0 209 6 215

I Time to record manual tests
2 Time to create or modify page objects

3 Time to create or modify test cases

test scripts manually and with SeleniumIDE, which are commonly used in real-world
software development. The target systems are an internet banking system (System A)
and a campaign information management system (System B), which were developed in a
real project of a partner company. We prepared three test scenarios for System A and
one test scenario for System B. Table 3.6 shows a summary of each scenario. Each test
scenario has multiple predetermined test procedures.

We asked one developer from the partner company to carry out the tasks of imple-
menting test scripts to automate the predetermined test procedures. The developer was
familiar with our approach, SeleniumIDE, and how to implement test scripts with page
objects. They also had a detailed understanding of the target systems. The condition
for task completion was that the developer implemented test scripts and confirmed that
they could automate the predetermined test procedures. The test procedures were also
complied with when recording the tests with SeleniumIDE and our recording tool. The

test script implementation tasks were carried out in the following order:

55

(i) Manual implementation: The developer implemented test scripts with page objects

written in JavaScript.

(ii) SeleniumIDE: The developer recorded tests, exported them as test scripts written

in JavaScript, and then rewrote them into test scripts with page objects.

(iii) Our approach: The developer recorded tests, generated test scripts using our ap-

proach, and modified them to automate the predetermined test procedures.

The developer was not allowed to use test scripts implemented in the previous tasks in
the later tasks. Carrying out the previous tasks was likely to make the later tasks easier,
which may not result in a fair outcome. We will discuss this issue in Section 3.6.

Table 3.7 shows how many minutes it took to finish each task. The results show that the
proposed approach reduced the time for implementing the test scripts by 48% compared
to manual implementation and by 23% compared to using SeleniumIDE. Most of the task
time was spent on creating or modifying page objects. The time spent on recording the
operations and creating or modifying the test cases was relatively small. The reason why
it took less time to create or modify the test cases is that they can be written easily as
a combination of methods in page objects, and the number of test cases is small. When
using our approach, the largest amount of time (42.3%) was spent on modifying the source
code to fix the methods in the page objects. The time spent on correcting locator errors
(34.7%) followed this. Other modifications included adding commands to wait for web
pages to load and removing unnecessary test steps.

The reason why the page objects generated by our approach required modifications was
due to the complexity of System A. Depending on its internal state, the page transitions
may change even if the same operation is carried out. In addition, System A has web
pages that change drastically and dynamically using JavaScript. Our approach currently
cannot handle such internal states of applications and drastic screen changes. If page
objects are not correctly associated with each page, the generated page objects require
significant modifications. However, despite the need for modifications to the generated
test scripts, the results show that using our approach is more efficient than implementing
from scratch. Our approach could potentially solve such problems by making it possible
to define screens more flexibly, for example, by defining pages using strings rendered on
web pages. Alternatively, using more advanced screen recognition techniques proposed in
research such as [61,62] could potentially improve the performance of our approach.

The main reason why the developer needed to fix the locators was that the locators
generated by our approach did not uniquely identify the web elements in a web page
in some cases. Since our approach does not collect any information other than the web
elements operated during the manual testing, the generated locators may not be unique.

This problem can be solved by considering all web elements in a web page to generate

56

locators during manual testing. We believe that these improvements will further reduce
the time required to implement test scripts using our approach.

To answer RQ3, our approach has the potential to reduce the cost of test script im-
plementation in real-world software development. Additionally, improving the algorithm

of our approach could potentially reduce costs even further.

3.6 Threats to Validity

The external validity of our study refers to the generalizability of our findings. First, we
only used PetClinic as the target to evaluate the proposed technique. Different results
from those in this study may be obtained if we apply the proposed approach to other
applications. In this study, we chose PetClinic since it was used in an existing paper [51]
to compare our approach with APOGEN. Next, the results of our experiment depended
on the content of the testers’ manual testing approach. Our experiments showed that our
approach can generate a greater number of complete methods and test cases for a variety
of testing approaches. However, when other testers conduct manual tests, we may not
obtain similar results. In addition, the proposed technique may not work well if manual
testing is not performed sufficiently. If the proposed technique is applied to an application
more complex than PetClinic, testers may miss features to be tested. Even if the manual
testing is sufficient, the generated test scripts may not be able to be executed due to the
state-dependency problem when some operations in the manual testing depend on past
ones.

In the empirical evaluation, only one developer carried out the test script implementa-
tion tasks. We may obtain different results from this evaluation if we have more developers
carry out the same tasks. In addition, doing the previous tasks may make the later tasks
easier, so it is possible that the time to carry out tasks using our approach is shorter than
it should be. However, we believe that the effect of the previous tasks on the evaluation
is small because the tasks assigned to the developer are simple compared to usual test
script implementation. In usual test script implementation, developers often implement
test scripts through trial and error. In our experiment, on the other hand, the test proce-
dures were predetermined and the developer understood the details of the systems under
test. Moreover, the developer did not spend time on properly naming identifiers and refac-
toring, other than converting predetermined test cases into test scripts. This would have
made it clearer how to implement test scripts in many parts.

A threat to the internal validity of our study is that we defined the web pages and
features of PetClinic ourselves and classified the generated page objects and test cases.
The definition of the features was based on the test specifications written by testers A and

B, so we believe that the definition is objective to some extent. To address this threat,

o7

We will make the output of our approach publicly available so that other researchers can

verify the results.

3.7 Conclusion

In this study, we proposed a novel approach to generate test scripts using the page-object
pattern from manual testing logs. Through experiments, we showed that our approach
is able to solve the problems with existing approaches and generate a greater number of
complete methods in page objects. Our approach also generates test cases that leverage
the generated page objects and cover most of the features of the application under test.
The generated test cases and page objects are reusable, and users can easily add new test
cases to them.

In addition, our empirical evaluation demonstrated the potential for reducing the cost
of test script implementation in real-world software development. Our results showed that
our approach can reduce the time required for implementing test scripts by up to 48%
compared to manual implementation and by up to 23% compared to using SeleniumIDE.
This indicates that our approach is effective at reducing the cost of implementing and
maintaining test scripts by generating useful test scripts through the conducting of only
manual testing, which is essential in software development.

For future work, we aim to generate more complete page objects and test cases by
converting operation sequences into methods more precisely using the testers’ knowledge
contained in the test logs effectively. We also plan to make our recording tool publicly
available so that everyone can record their testing activities. By making the test logs
publicly available, researchers will be able to mine the data and use it for a variety of

purposes beyond test automation.

58

Chapter 4

Web Element Identification using
NLP and Heuristic Search

99

4.1 Introduction

In recent years, the timely updating of software has become increasingly important in order
to respond to rapid changes in market conditions. Developers need to verify that their
software works properly before release. The cost of regression testing can be overwhelming
in software maintenance [36,37]. Test automation is therefore an important technique for
reducing this cost.

In web application development, developers commonly use tools that automate end-to-
end testing, and they need to implement and maintain test scripts. A test script enables
the automation of the operations and verifications performed on web pages that are being
tested. The implementation of test scripts is known to be costly, as shown in a study by
Dobslaw et al. [6]. The authors investigated the return on investment (ROI) of end-to-
end test automation frameworks and found that, compared to manual testing, the initial
implementation time accounted for nearly 90% of the total cost until reaching the ROI.
The study also claimed that the dominant cost is the initial time required to implement
test scripts. One of the reasons for the high cost of implementing test scripts is that most
end-to-end test automation tools rely on the metadata of web elements and the structure
of web pages.

For example, Selenium [2], a de facto standard end-to-end test automation tool, re-
quires locators to identify web elements. Some locators depend on metadata such as id or
name attributes described in HTML documents, while other locators use XPath. XPath is
a query language for selecting a web element from an XML/HTML document. Developers
often have to understand the detailed implementation of a web page in order to determine
the appropriate locators. In this way, the implementation of test scripts can be obstructed
by the reliance on metadata and the structure of each web page.

The dependence on metadata and the structure of web pages is also an obstacle to
maintaining test scripts. Test scripts that use locators are known to be fragile, as shown
by previous research [7,8]. From these studies, it is clear that using locators can increase
the cost of maintaining test scripts and hinder efficient regression testing.

Another major challenge with end-to-end testing is the cost of creating and maintaining
test cases. Note that this study defines a test case as a specification of test procedures and
expected results, and a test script as an automated program to verify the specification.
Writing test cases is important because not all tests can be automated, and not everyone
involved in testing may understand test scripts written in a programming language. Test
cases also require maintenance, and if both test cases and test scripts exist, developers
need to keep them consistent. As a result, it can be costly to create and maintain test
cases, especially for fast-evolving applications.

One efficient way to address the challenges discussed above is to make test cases ex-

60

ecutable without the need for test scripts. This would relieve developers from the prob-
lems of implementing test scripts and maintaining consistency between test cases and test
scripts. Our goal is to make it possible to execute test cases written in natural languages
without the need for conventional test script implementation using locators. To achieve
this goal, it is first necessary to be able to identify web elements from test case descriptions
without relying on the implementation of the application. In this study, we propose a tech-
nique for identifying web elements to be operated on web pages by interpreting test cases.
The test cases we focus on are written in a domain-specific language (DSL) without relying
on metadata of web elements or the structural information of web pages. We use natural
language processing (NLP) techniques to understand the semantics of web elements and
test cases and create heuristic search algorithms to find promising test procedures from
the possible ones. To evaluate our proposed technique, we applied it to test cases for two
open-source web applications. The experimental results show that our technique was able
to successfully identify approximately 94% of the web elements to be operated in the test
cases. We also succeeded in identifying all the web elements that were operated in 68%
of the test cases. Our experimental source code, the test cases, and the outputted test
procedures are publicly available!.

The contributions of this study are as follows:

e We propose a novel technique for identifying web elements by interpreting test cases

that are written in a domain-specific language that is close to natural language.

e We propose an algorithm that combines natural language processing (NLP) and

heuristic search to find promising test procedures.

e Our experiments demonstrate the potential for semantic-based identification of web

elements and reuse of test cases across multiple contexts and applications.

4.2 Motivating Example

In this section, we provide some examples of the problems that can arise when imple-
menting test scripts using locators, as discussed in Section 4.1. Figure 4.1 shows the three
different description input fields of Joomla!? and MantisBT? and Python snippets with
Selenium to enter the value “test description”. Even though these fields serve similar
purposes, it is necessary to use different locators when scripting them because they are

implemented differently. These differences in test script implementation can make it diffi-

"https://github. com/knukio/saner2022-experiment
*https://www.joomla.org/
3https://www.mantisbt.org/

61

Create project page of MantisBT

Inherit Global Categories v

View Status h " "
public v <textarea class="form-control

id="project-description"
name="description" cols="70"
rows="5"></textarea>

Description

- driver.find_element_by id(“project-description®)
.send_keys('test description')

Report issue page of MantisBT

Assign To o

<textarea class="form-control”
tabindex="11" id="description"
name="description” cols="80"

rows="10"
required=

*Summary

*Description

></textarea>

= driver.find_element_by_id(“description®)
.send_keys('test description')

Add menu page of Joomla!

Menu Details Permissions . " n
‘ <input type="text

name="jform[description]”

Menu Type * id="jform_menudescription"
value="" size="30"
Description maxlength="255">

driver.find_element_by id(“jform_menudescription®)
= .send_keys('test description')

Figure 4.1: Description input fields and Python snippets to enter the value “test descrip-

tion”

cult to reuse parts of test scripts across different contexts. If all these web elements could
be represented by the word “description”, it would enable the reuse of parts of test scripts.

Figure 4.2 shows a drop-down list in the log-in module page of Joomla! and a Python
snippet using Selenium to select the value “Icons”. Despite the drop-down list being
labeled as “Display Label”, the id and name attributes of the web element do not seem to
be related to it. This can make it difficult for developers to understand what the snippet
means when they read it. If a web element does not have an id or name attribute, the same
problem can arise because XPath or CSS selectors would have to be used as a locator. In

this case, we suggest using the string “display labels” to identify this drop-down list.

62

Dropdown list in log-in module page

Display Labels Icons -

<select id="jform_params_usetext" name="jform[params][usetext]">
<option value="0" selected="selected">Icons</option>
<option value="1">Text</option>

</select>

» Select(driver.find_element_by id('jform_params_usetext'))
.select by visible text('Icons')
Figure 4.2: A drop-down list in the log-in module page of Joomla! and a Python snippet

to select the value “Icons”

4.3 Approach

The proposed technique interprets test cases written in a DSL that is close to natural
language and determines a promising test procedure. A test case written in the DSL is a
sequence of test steps. In this case, a test step is the smallest operational unit, as shown

in the following example:
enter "admin" in "username"

Our technique interprets this test step as an operation that identifies a web element
that might be represented by “username” and enters “admin” into it.

Figure 4.3 shows an overview of our approach. The proposed technique interprets a
test case and determines a test procedure by exploring the page transitions of the system
under test. Our approach vectorizes web elements and strings specifying the target of the
operation in order to understand their semantics. We also use a heuristic search algorithm
to consider multiple test procedures and find the most promising one.

Table 4.1 shows the specification of our DSL. Our DSL can currently handle only simple
operations such as clicking, inputting, and selecting. open command opens a specified URL
in a browser and is generally called at the beginning of the test case. click, enter, and select
commands operate a certain web element. These operations contain a target to specify the
web element to be operated. Let us call this string that specifies the web element target
string. The target string can be any user-specified string, regardless of the implementation
of a web page. enter and select commands also include a value to be entered into the

input field or selected from a drop-down list.

4.3.1 Vectorization

In order to determine the appropriate test procedure, we need to identify the web element
that corresponds to the target string specified in the test case. To do this, we measure the

similarity between the web elements and target strings.

63

" e . enter "admin”in 2
enter "admin” in "username

enter "admin" in "password" enter "admin” in

a e
click “log in" X
click “new article” . S
. click |Z NewArticle

click "save and close"

|
Sy

Test case Proposed technique Test procedure

click | ¢ | Save&Close

)

Web elements

System under test

1. Vectorize web elements and strings specifying
the target of the operation in the test case

“username” = [0.24,0.38, ..., 0.91]

“password” = [0.34,0.98,...,0.21]
e = [0.71,0.24, ..., 0.28]
e, = [0.55,0.30, ..., 0.43]

2. Determine procedures by using heuristic search
to determine a promising test procedure

Figure 4.3: An overview of our approach

One approach we use is to vectorize both web elements and target strings in order to
represent their semantics. Word embedding techniques, such as Word2Vec, fastText, and
GloVe, are often used to represent the semantics of a word or sentence as a vector.

However, web elements often contain information that is irrelevant to their semantics,
so we devise a specific approach to represent the semantics of web elements. First, we
separately extract the values of attributes and visible texts from a web element. Visible
texts include the inner text of the element, as well as any labels associated with the element
through the use of the for attribute. The for attribute specifies which web element a
label is bound to, allowing us to identify the label that represents the element.

We separate attributes and visible texts because we believe that visible texts more

directly represent the semantics of the web element, and are therefore more important

64

Table 4.1: The specification of our DSL

Operation Description

open url Open a specified wurl

click target Click a button, link, etc., specified with target
enter value in target Enter value in an input field specified with target

select value from target Select value from a drop-down list specified with target
--- (page separator) A separator between pages for the heuristic search algorithm

explained in Section 4.3.2

than attribute values. In this process, we ignore some attributes that are primarily used
for visual layouts, such as the class and style attributes.

The following describes the procedure for preprocessing the obtained values.
1. Split the values into words based on white space or symbols.

2. Convert the words into lowercase.

3. Remove stop words such as prepositions and articles.

Figure 4.4 shows an example of vectorizing a web element and a target string in Joomla!.
In this example, we have a web element, a button labeled “Save & Close”. The text “Save
& Close” that is rendered on the button is extracted as text words. Only the value of the
onclick attribute is extracted as attribute words.

The value of the onclick attribute is often important information because it is often
the name of a JavaScript function and represents the feature of the web element. The other

attributes (e.g., class, area-hidden) are ignored. Thus, we obtain the text words:
[save, close]
and the attribute words:
[joomla, submitbutton, user, save]

Next, we convert these words into vectors representing their semantics. Among the
available word-embedding algorithms, we selected fastText [63] because of its ability to
handle unknown words using subword embedding. The fastText model has one million
word vectors trained on Wikipedia 2017, UMBC WebBase corpus, and statmt.org news
dataset?. Since web elements often contain abbreviations and proper nouns, we believe

that a technique using subwords is suitable for this task.

‘https://fasttext.cc/docs/en/english-vectors.html

65

v | Save & Close

<button onclick="Joomla.submitbutton('user.save');"
class="btn btn-small button-save">

Target string
Save & Close
click “save and end” </button>
Test step Web Element

l Extract words

[save, and, end] [save, close] [joomla,submitbutton,user,save]

Target words Text words Attribute words

‘ Vectorize with fastText

[0.42, 0.18, ..] [0.34, 0.13, ..] [0.93, 0.34, ..]
Target vector (Viarget) Text vector (Viey;) — Attribute vector (vV,4)
-

Calculate similarity between target string and each web element

Figure 4.4: An example of web element vectorization

The proposed technique vectorizes each word and takes their mean to obtain a text
vector from the text words and an attribute vector from the attribute words. The text
vector represents the semantics of the text words, and the attribute vector represents those
of the attribute words.

In addition, we introduce tf-idf to weight each word. Intuitively, if the same word
appears in a web element frequently, the word could be considered to uniquely represent
the web element. However, if the same word appears across multiple web elements, the
word would not be considered to represent the elements.

Therefore, although tf-idf is usually used to weight words among documents, we apply

tf-idf to weight words among elements in this study. The weighting scheme is as follows:

N
tfidf (w, e,) = fy,e x log—
n

w

where w is a word, E is a set of web elements, e (¢ E) is a web element, f, . is the
frequency of word w in web element e, N is the total number of web elements, and n,, is
the number of web elements in which w appears.

Let M be the number of text words, and w; be the i-th unique word. Vector v; is the
resulting vector after applying fastText to w;. The text vector viext of a web element e is

calculated by the weighted mean of v; with tf-idf as the weight:
S M (thdf (w;, e, E) x v;)
S M tAdf (wi, e, E)

The attribute vector v, is also calculated in the same way.

Vtext =

66

The method for vectorizing target strings is almost the same as that for vectorizing
web elements. We extract target words from a target string and preprocess the target
words in the same way as for web elements. We vectorize each word by using fastText
and calculate the mean of vectors of the words without tf-idf. Thus, we obtain the target
vector Vtarget from a target string.

Then, we can calculate the similarity between a target string and a web element by
USING Vtargets Vtext, and Vattr. The similarity between a target string ¢ and a web element

e is calculated as a weighted mean of the two cosine similarities:

a X Slm(vtargeh Utext) + Slm('vtargem Uattr)
a+1

similarity (¢, e) = (4.1)

where o (> 1) is a constant to add weight to the text words, and sim is the cosine similarity

of two vectors.

4.3.2 Heuristic search algorithm

A web element that is most similar to the target string is considered to be operated in
the test step. However, we do not determine a test procedure in order from the beginning
by using only word-vector-based similarities calculated in Eq. (4.1). This is because it
is uncertain whether the vector representation of the web element correctly represents its
semantics.

The uncertainty of using only the NLP-based approach leads to the following problems.
The first is that multiple target strings may be determined to be closest to the same web
element. For example, suppose that there is a password field and a confirm password
field on the web page. Two test steps have “password” and “confirm password” as target
strings, respectively, in a test case. Suppose also that both strings are determined to
be the most similar to the password input field. In this case, the two target strings are
considered to specify the same web element. However, in general, different target strings
should specify different web elements.

The second problem is that, if a web element identification fails at an early step of the
test case, the subsequent test procedure cannot be determined correctly. Our technique
requires a browser to render web pages in order to obtain web elements. However, because
web pages may include static or dynamic page transitions, our technique needs to execute
each test step each time to properly execute the expected page transitions. If a test step
executes an incorrect page transition, the subsequent test steps will not be able to reach
the expected web page and will therefore be ineffective.

To address this uncertainty associated with the word-vector-based similarity, we have
developed two heuristic search algorithms: page-level search and transition-level search.
We use page-level search to address the first problem and transition-level search to address

the second problem.

67

Page-level search

The page-level search algorithm helps to accurately determine a test procedure that is
relevant to a single web page. To clarify which test steps are relevant to a single web page,
we introduce the page separator "---" in our DSL. The page separator ensures that all
web elements that are operated in the test steps between two separators are rendered on
the web page when the page is loaded. This is useful because it allows us to confirm that
the web elements specified by the target strings exist on the same page.

The page-level search algorithm finds plausible permutations of web elements that
correspond to the target strings in test steps relevant to a web page. First, the algorithm
calculates the similarities between all possible pairs of a target string and a web element
on a particular web page. Next, it calculates scores for permutations of web elements that
correspond to the target strings. We call this score a page-wise score. More promising
permutations have a higher page-wise score.

When N test steps are executed on a web page, the page-wise score s, is calculated as

the mean of the sum of similarities between a target string and a web element:

N
Sp = % Z similarity (¢, e;)

i=1
where t; is the i-th target string, and e; is a web element corresponding to t;. Page-wise
scores are calculated for all possible permutations. We note that the possible permutations
are determined by the type of element (input field, button, or drop-down list) and the type
of operation (enter, click, or select). For example, if an operation is enter, the candidate
web elements that can be operated in the test step are limited to input fields. When a
permutation is selected, the operation procedure for the web page is determined. We call
this a page-wise procedure.

Figure 4.5 shows an example of page-level search. In this example, the web page has a
password field e; and a confirm password field es. Two test steps are given for operating
on the input fields. The similarities between the target strings and the web elements
can be calculated using the algorithm described in Section 4.3.1. There are two possible
permutations in this example: “password” refers to e; and “confirm password” refers to
e2, or vice versa. In this example, the page-wise score of the former is 0.8, and that of the
latter is 0.7, so the former is more plausible. When the former is selected, the page-wise
procedure executes the operations in the order of e; and es.

Without page-level search, both of the target strings would be considered to represent
e1. The page-level search algorithm helps to correctly determine the test procedure that

is relevant to a web page.

68

Elements on a web page

Password 31

Confirm Password e

Test steps for this page

enter “root” in “password”
enter "root” in “confirm password”

Similarity
similarity(“password”, 1) = 0.9
similarity("password”, €;) = 0.6

similarity(“confirm password”, ;) = 0.8
similarity("confirm password”, €;) = 0.7

4

Page-wise procedure and page-wise score

enter “root” in “password” —— > €
enter “root” in “confirm password" ——> e,

0.9+0.7

= 0.8

Score:

enter “root” in "password” —— > €
enter “root” in “confirm password” ——> ¢4

Score: 0.6--0.8 =07

Figure 4.5: An example of page-level search

Transition-level search

We obtained multiple page-wise procedures with page-wise scores by applying the page-
level search algorithm. However, it is not enough to only perform the page-level search
because the page-wise procedure with the highest page-wise score is not always correct.
The transition-level search algorithm explores multiple possible sequences of page-wise
procedures. It helps to determine a promising test procedure throughout the entire test
case.

Figure 4.6 shows an example of transition-level search. In this example, we assume
that a test case has five test steps, excluding the page separator. The first three test steps
are executed on page X, and then the last two are executed on one of the pages following
page X. In this case, there are two page-wise procedures, pp;1 and pp,2, on page X, and

they are the most promising procedures on page X. pp,1 makes a page transition from X

69

Test case

enter “root” in “password”
enter “root” in “confirm password”
click “login”

enter “test user” in "name”
click “search”

\ ¢

Test steps in a web page Test steps in the next page

enter “root” in “password”
enter “root” in “confirm password”
click “login”

enter “test user” in "name”
click “search”

Page Y

Page-wise procedure:

PPy1: score 0.3

Page X Transition
PDy2: score 0.1

Page-wise procedure:

PPx1: Score 0.9

DPPy2: score 0.7 Page Z

Page-wise procedure:
pPp,1: score 0.7

PP42: score 0.5

4

Transition-wise score:

[PPx1, PPy1]: 0.940.3 = 1.2
[PPx1, PPy1]: 0.9+0.1 = 1.0
[pDx2, PP1]: 0.74+0.7 = 1.4
[PPx2, PPx2]: 0.740.5 = 1.2

Figure 4.6: An example of transition-level search

to Y, and pp,o makes a page transition from X to Z.

We also assume that the two most promising page-wise procedures are obtained on
page Y or Z after pp,1 or pp.2 is executed. It should be noted that pp,; is likely to be
incorrect even though it has the highest page-wise score on page X. This is because both
ppy1 and pp,o have low page-wise scores, which means that page Y is not likely to have
the web elements specified by the target strings “name” and “search”.

On the other hand, page Z seems to have the web elements specified by the target
strings because of its high page-wise score. Therefore, even though it does not have the

highest page-wise score on page X, it is more promising to execute pp,2 on page X than

PPzx1-

70

€qv Ly Te107,
1¢l ¢l SIOY10)
76 9 JUSWIoSBUBW I9S() Iooer) sng 1v¢e Lgstue
08 8 JIOWDSRURI ONSST
79), JIOUOSBURTL NUSIA
A% i% JUOTWOWISRURUIL JOS() WIDISAS JUSUWIOSRURUI JUSIUO)) 6°¢ je[uoo
06 01 JUOUWIOFRURUL S[II)IY

sdogs 1899 109 JO # SOS®D)S9) JO F# A10899e0 2Inyes uonduoss(uoisiep uoryeorddy

sosed 1893 pue suorjedrjdde je81e) o) Jo Arewrwuns y :g'§ o[qe],

71

Table 4.3: How test steps are converted into Python code

Operation Python code
open url driver.get (url)
enter value in target driver.find_element_by_type (locator) . send _keys (value)

Select(driver.find element_by_type(locator)
select value from target
.select_by_visible_text (value)

--- (page separator) (This is not reflected in test scripts.)

We determine the most promising procedure throughout the test case by consider-
ing the transition-wise scores. The transition-wise score is calculated as the sum of the
page-wise scores up to the current web page. Because there are many possible page-wise
procedures and page transitions, it would take too much time to explore all the possible
sequences within the page-wise procedures. Therefore, we use the beam search algorithm,
which explores a graph by expanding the most promising node in a limited set.

The beam search has two parameters: a search width and a beam width. When the
search width is Wy, the beam search considers the top W, page-wise procedures at each
step. Therefore, if the beam search considers IV states at the current step, the number of
states at the next step will be Wy x N. When the beam width is W}, the beam search
prunes the states, leaving the W}, states with the highest transition-wise scores.

Let M be the number of page-wise procedures executed up until the current state.

The transition-wise score s; is:
M

St = E :sz‘

i=1

where s, is the page-wise score of the i-th page-wise procedure. It is important to note
that the transition-level search is performed while dynamically exploring the application
that is being tested. Because the state changes of the application during the exploration
can affect the result of the transition-level search algorithm, it is desirable to initialize the
state of the application each time a new page transition is attempted.

To summarize this section, the transition-level search algorithm determines the pro-
cedure with the highest transition-wise score throughout the test case. The sequence of
page-wise procedures with the highest transition-wise score is considered to be the most

promising for the test case.

4.4 FEvaluation

We applied the proposed technique to test cases written in our DSL to evaluate the

accuracy of our technique. The target applications in our experiment were Joomla! and

72

MantisBT, which are non-trivial and popular open-source web applications. We chose
these applications because they have rich features, dynamic user interfaces, and are widely
used in practice.

We first prepared test cases manually for the two applications as inputs for our tech-
nique. To investigate the effectiveness of our technique, we addressed the following research

questions:

RQ1. How accurately can our approach identify web elements and determine test proce-

dures?

RQ2. Did the vectorization and the heuristic search contribute to determining test pro-

cedures?

RQ3. Can we apply our approach to testing in actual development?

73

(%g28) Lo (%2'88) 20F (%1'1¢) ¥o (%0°98) ¥6& (%0'99) 1€ (%9°€6) ¥eb (%1'89) & (%0¥6) 95 [elo,
(%269) 8T (%1¥6) 0¥ (%L°LS) ST (%9°06) 162 (%E'69) 8T (%1°96) ¢¥e (%T'€L) 6T (%6°96) L¥C Lstuey
(%6°27) 6 (%818) 29T (%6ch) 6 (%eT8) €91 (%6'19) €1 (%F06) 621 (%6'19) €1 (%F06) 641 je[uoop
958D 1897, dogs 9897, 9sBd 1897, dojs 9597, 9SBD 9897, doys 9897, 9s®d 9897, dojs 1897,
ON Sox Sox SOx 9INqLIR /1X%0) YSIM3unsI(q
¢="M="M I=%="°M e=M="M ¢=M="M [IPIA wredd /YIeag

SUOT}ROYIHUSPT [NJSSA0ONS JO Ioquinu oY [, F'§ 9[qR],

74

4.4.1 Experimental setup

There are a large number of features in Joomla! and MantisBT, so we did not prepare
test cases that cover all of them. We therefore chose the key use cases of the applications
by referring to their user manuals and then wrote test cases to cover them. As a result,
we chose 21 use cases of Joomla! and 26 use cases of MantisBT.

The use cases of Joomla! belong to the following three categories, as described in the
user manual for administrators [64]: article management, user management, and menu
management. Because the user manual of MantisBT does not have an organized catego-
rization like Joomla!, we assumed that there are three main features in MantisBT: issue
management, user management, and others (management of projects, tags, custom fields,
and global profiles). We then chose the use cases to cover these features. We note that we
excluded some use cases that require operations that our technique does not support.

Table 4.2 shows a summary of the applications and the test cases used in our experi-
ment. We wrote 47 test cases to verify the chosen use cases. However, the way of writing
test cases can vary depending on the person. In particular, the accuracy of our technique
depends heavily on the target strings used. Therefore, we set the following rules for writing

test cases:

1. If the manual describes a specific procedure for the use case, we follow the manual
as closely as possible. If a use case has multiple ways it can be achieved, we choose

one of them randomly.

2. It is not necessary to fill in all input fields in the test cases. In addition to the
required input fields, we fill in one or more optional input fields. When we operate
on the same web pages in multiple test cases, we try to fill in different optional input

fields from the input fields operated in the other test cases.
3. We limit the text used as target strings to one or a combination of the following:
e The text of nearby labels that are obviously related to the target element (e.g.,
a label right next to an input field)
e The text displayed in tooltips of the target element
e For buttons, the text displayed on the button
e For input fields, the default text specified by placeholder attributes

e For checkboxes and radio buttons, the text “checkbox” and “radio button”

The idea behind these rules is to reduce bias when creating test cases.
We applied the proposed technique with three different sets of parameters. In this

experiment, we set the same values for the search widths Wy and beam widths W} and

75

tried three different values: Wy = Wy, = 1, 3, or 5. W, = W, = 1 means that the
transition-level search was not performed, and the page-wise procedure with the highest
page-wise score was adopted on each web page.

In this study, we attempted to treat text vectors and attribute vectors separately for
better web-element embeddings. To confirm whether this approach worked well, we also
examined the case where elements are represented by a single vector without distinguishing
between text vectors and attribute vectors at the vectorization step. This means that all
words in a web element are treated equally. In this case, we set Wy and W}, to 5, whether
the vectors are distinguished or not. When distinguishing between the vectors, we set
a = 3 as the weight of the text vector in Eq. (4.1).

To confirm the accuracy of the test procedure determined by the proposed technique,
we output the test procedure as a test script written in Python. We can determine the
locators for the test script according to the sequence of the page-wise procedures. This is
because, if a web element operated at a certain test step is determined, we can obtain a
locator from the implementation of the web element.

Table 4.3 shows how each test step is converted into Python code. As shown in the
table, a single test step is converted into a single line of Python code. The type in the
Python code is id, name, or xpath, depending on the locator type, and locator is a locator
string obtained from the web element. open operations are directly converted into Python
code because these operations do not include a target string.

We do not ensure that the generated test scripts are always executable. This is because
we do not consider an appropriate waiting time for rendering pages and the states of the
system under test. We are focusing on whether the proposed technique can accurately

identify web elements and determine a test procedure in this evaluation.

4.4.2 Results

We manually checked the test scripts to determine the accuracy of the proposed technique
in identifying web elements. Table 4.4 shows the number of successful identifications.
The test step in the table refers to the number of test steps that correctly identified web
elements. Some test steps were duplicated because the test cases often included the same
test steps. For example, the log-in steps were included at the beginning of all of the test
cases. However, we counted the duplicate steps as being distinct, even if the test steps
looked the same. This is because the XPaths of web elements may change depending on
the state of the web pages, even if the web elements themselves may look the same.
Furthermore, because of the uncertainty of our approach, the same test steps may be
interpreted as different test procedures depending on the context. The test case in the
table refers to the number of test cases in which all test steps in the test case identified

web elements correctly. In other words, even if one of the test steps failed to identify the

76

Table 4.5: Average machine time (in seconds) required per test case.

Ws=Wp=5 Wy=Wp=3 Wy=Wp=1

Joomla! 107 66 25
MantisBT 94 56 21
Average 101 61 23

correct web element, it was counted as a failure.

RQ1: How accurately can our approach identify web elements and deter-
mine test procedures?

First, we explain the results when text vectors and attribute vectors were distinguished.
Table 4.4 shows that when W, = W, = 5, approximately 94% of test steps were successful
in identifying web elements. Our approach also succeeded in identifying all web elements
in 68% of the test cases. No improvements in accuracy were observed for more search
width or beam widths. To answer RQ1, therefore, our technique can correctly identify
web elements in up to approximately 94% of the test steps and identify all web elements
in 68% of the test cases.

RQ2: Did the vectorization and the heuristic search contribute to deter-
mining test procedures?

When Wy = W;, = 3, the accuracy was slightly lower than in the case where Wy = W;, = 5.
We can see that when W, = W, = 1 (without transition-level search), the accuracy was
much lower compared to the other cases. This result indicates that the correct page-wise
procedure is suggested in the top three by the page-level search in most cases. Therefore,
we can say that page-level search worked well in our approach. Comparing the cases
Ws = Wy, = 1 and 3, we can see that the transition-level search significantly contributes
to the accuracy of our technique. Thus, the heuristic search algorithms compensate for
the uncertainty of the NLP-based approach.

Next, we explain the results when text vectors and attribute vectors were not dis-
tinguished. Furthermore, by comparing the case in which the text vector and attribute
vector are distinguished and the case where they are not, we can see that distinguishing
the vectors is effective for our approach. The result also suggests that text words represent
the semantics of elements more directly than attribute words. Therefore, the approach
weighting text vectors contributes to the accuracy of the proposed technique. To answer
RQ2, the vectorization approach and the heuristic search algorithms both contribute to

determining correct test procedures.

77

RQ3: Can we apply our approach to testing in actual development?

Table 4.5 shows the average execution time (in seconds) of our technique per test case. We
can see that the time is approximately proportional to the search width and beam width.
The loading time of the fastText model, approximately 200 seconds, is not included here.
We consider this time to be negligible when the number of test cases to be processed at
a time is large because our technique can process multiple test cases simultaneously after
the model is loaded. Most of the execution time of our technique is due to the dynamic
exploration of the application by the transition-level search. However, we can make the
exploration executed in parallel, in which case the execution time is not proportional to
the number of test cases. Therefore, we assume that the time required to handle a large
number of test cases is reasonable.

We obtained some results that illustrate the strengths of the NLP-based approach in
real-world development. First, our technique was able to identify different web elements
by the same test step depending on the context. In our experiments, the test step “enter

n»

"test description" in "description"” was able to correctly identify all three web
elements in the situation shown in Figure 4.1. This shows the possibility of reusing the
same test steps in different test cases and applications.

Our technique was also able to identify web elements that did not seem to be directly
related to the target strings. The web element in Figure 4.2 did not include the words
display and labels in the HTML document of the web element. However, our technique
was able to correctly identify this web element with the test step “select "Icon" from

nm»

"display labels"”, even though this web page contained 48 drop-down lists as candi-
dates for the operation. This result indicates that the NLP-based approach is effective in
capturing the abstract semantics of web elements.

Figure 4.7 shows the relationship between the number of test steps in each test case and
the number of executable test scripts generated from the rule described in Table 4.3. The
result is for the case when Wy = W;, = 5. There were between six and thirteen test steps in
all of the test cases. In the figure, All represents the total number of test cases. Plausible
represents the number of test cases in which all web elements were correctly identified.
Ezecutable represents the number of generated test scripts that were executable from
start to finish. This result shows that 56% of the plausible test cases were converted to
executable test scripts.

The main reason for unexecutable test scripts is that some web elements, especially
in Joomla!, could not be operated by Selenium despite the locator being correct. These
failures depend on the implementation of the web page, not on locator errors. To operate
these web elements in the test executions, it may be necessary to include a command
to wait for a page load or to execute JavaScript directly through Selenium. Since it is

uncertain whether our technique can execute the correct test procedure, we need to find a

78

Executable
12 1 m Plausible
mAll

8 -
6
4 -
Lo |
L
6 7 8 9 10 11 12 13

of test steps

of test cases

Figure 4.7: The relationship between the number of test steps and that of plausible or

executable test scripts

way to deal with this uncertainty, such as combining our approach with existing locator-
based techniques. In addition, our current DSL does not consider assertions, which are
essential for automated testing.

To answer RQ3, we believe that the execution time is not a practical issue. By ana-
lyzing individual cases, we demonstrated the potential of reusing the same test step for
various test cases and applications. Additionally, users without programming knowledge
may be able to write test cases since our technique does not require knowledge of the
detailed implementation of the system under test. However, it is necessary to improve the

expressiveness of test cases in order to use them for real-world development.

4.5 Discussion

4.5.1 What are the cases where our approach does not work?

In this study, we did not find a relationship between the number of test steps and the
success rate of determining correct test procedures. Intuitively, as the number of test
steps increases, the probability of correct test procedures would be expected to decrease,
but this was not the case in this experiment. This is likely because whether the web
element is difficult to identify is a more significant factor than the number of steps. We,
therefore, need to focus on individual failures for more detailed analyses. For example, if
identifying web elements fails at an early step of the test case and an unexpected page
transition is executed, the identification of subsequent web elements will also fail. However,

the result in Table 4.4 shows that the accuracy of web element identifications is high, and

79

the accuracy of identifying all web elements in a test case is low. This indicates that web
element identifications often fail in the latter part of each test case. In this experiment,
we found that web element identifications often failed, especially on the last web pages
checked in the test case. This is because our technique does not benefit from the transition-
level search on the last page. On the last page, the transition-level search cannot use the
information of the next pages to choose the page-wise procedures. Therefore, our approach
is prone to failing identifications of web elements at the end of the test case. This is a
weakness of our heuristic search algorithms.

We found two patterns of web pages where the NLP-based approach did not work
well. The first was when there were multiple elements with the exact same label on the
page. In particular, in our experiments, if the web elements have the same label, our
technique cannot distinguish them by the rules for describing test cases. For example,
the user management page of Joomla! has two “Users” links on a web page. Within the
test case description rules, there is no way to write other than “click "Users"” when we
want to click on these elements. If there are meaningful words in the attribute text of the
web elements, our technique may be able to distinguish them by adding the words to the
target string. Alternatively, by extending our approach to allow for positional information
to be added to target strings, our technique may be able to handle the problem of the
same label.

The second pattern where the proposed technique does not work well is in the pres-
ence of an excessive number of elements on a web page. Our technique selects a web
element to be operated from the web elements rendered on the browser. A large number
of elements increases the likelihood of failing to identify a web element because there are
more candidates for the operation. Note that there may be many invisible elements in the
HTML document despite only some of the web elements being visible on the screen. For
example, some pages in Joomla! have such invisible elements. The web page to add menu
items in Joomla! has five tab menus, but their contents are embedded in a single HTML
document when the page is loaded. In addition, when the “Select” button is clicked on
the page, a pop-up menu appears, which is also embedded in the HTML document. This
means that the actual number of web elements on the page is much larger than the num-
ber of visible elements. One solution for this problem is to incorporate heuristics into our
technique, e.g., elements operated consecutively tend to be close to each other in terms of

their position on the screen.

4.5.2 Limitations

Our approach has limitations in the target applications and possible operations. Since
the proposed technique uses Selenium internally, it can only operate web elements that

Selenium can identify. For example, contents created using the canvas feature or Flash

80

cannot be operated. Currently, our DSL also cannot handle operations other than click,
enter, and select (e.g., drag and mouse hover). These operations can be addressed by
extending the proposed technique.

Furthermore, it is difficult to apply our approach to applications with ambiguous page
transitions such as single-page applications. Our approach assumes that page separators
are included in the test case properly. Therefore, users need to know when web elements
will appear on the web page in order to write appropriate test cases for such applications.
Eliminating the page separator from the DSL and not performing the page-level search

can solve this difficulty, but it will reduce the accuracy of our technique.

4.5.3 Threats to validity

The following presents two factors that undermine the external validity of our study. The
first is the scale of the experiment. We only experimented with two applications, Joomla!
and MantisBT, and the number of test cases is limited. Experiments on applications in
other domains may yield different results from our experiment. More accurate results
could be obtained by applying the proposed technique to a larger number of test cases.
We tried to make the results more reliable by referring to the official manuals and selecting
use cases from multiple functional categories to create test cases.

The second is the way of writing the test case. The accuracy of the NLP-based approach
depends heavily on the way target strings are written. In this study, we attempted to set
rules for writing test cases. These rules are based on the assumption that test cases are
written while observing the web page of the application under test. We wrote the test
cases ourselves, so some bias was inevitable, but we tried to reduce it by following the
rules. In addition, the created test cases are publicly available, so it is possible to verify

the validity of these test cases.

4.6 Conclusion and Future Work

In this study, we proposed an approach to identify web elements from test cases written in
a form similar to natural language and determine a test procedure. Our approach uses an
algorithm that combines NLP and heuristic search to obtain promising test procedures. To
evaluate the proposed technique, we took test cases written in our DSL as input and applied
our technique to two open-source web applications. The experimental results showed
that our NLP-based approach and heuristic search contribute to determining correct test
procedures.

As future work, we aim to increase the expressiveness of test case descriptions for
practical use. Additionally, we want to evaluate our approach on a larger number of

applications and test cases in order to demonstrate its effectiveness more generally.

81

Chapter 5

Conclusion

5.1 Summary

In this dissertation, we conducted three studies to improve the efficiency of implementing
and maintaining end-to-end test scripts for Web applications.

The first study proposes COLOR, an approach for repairing broken locators in response
to software updates. It uses clues from web pages to evaluate their reliability, and our
experimental results show that it has high accuracy and is robust against page layout
changes. This study contributes to reducing the cost of test script maintenance.

The second study proposes an approach for generating modularized test scripts to
improve their maintainability. It extracts useful operations from test logs and generates
test cases that cover the features of an application by analyzing page transitions. The
approach was evaluated using test logs from four testers, showing that it can generate
more complete methods than an existing approach. Our empirical evaluation also showed
that it can reduce the time required to implement test scripts by 48% compared to manual
implementation. This study contributes to reducing implementation and maintenance
efforts.

The third study proposes a technique for identifying web elements to be operated on
a web page by interpreting natural-language-like test cases. The test cases are written in
a domain-specific language that is independent of the metadata of web elements and the
structural information of web pages. Natural language processing techniques are used to
understand the semantics of web elements, and heuristic search algorithms are used to
explore web pages and find promising test procedures. The technique was applied to test
cases for two open-source web applications, with the results showing that it was able to
successfully identify 94% of web elements to be operated and all the web elements in 68%
of the test cases. This study contributes to the easy implementation and maintenance of

test scripts for various users.

82

5.2 Future Work

These studies have provided valuable results and knowledge that will serve as the founda-
tion for future work and help identify potential issues and areas for improvement.

The technique proposed in Chapter 4 involved converting natural language-like test
cases into locator-based test scripts. Ideally, however, the process should be carried out
entirely in natural language, without the need for test scripts. In order to achieve script-
free testing, the following two techniques must be developed.

The first technique necessary for end-to-end testing using natural language is the abil-
ity to interpret natural language and execute it directly as a test, without the need to
convert it into a test script. While it is currently difficult to achieve end-to-end testing
using natural language due to the limitations of natural language processing and machine
learning technologies, we believe it is feasible if test cases can be interpreted based on an
understanding of the structure of the web page and the domain of the web application.

The second technique is the ability to record operations and output them as test cases
written in natural languages, similar to conventional record & replay techniques. Even if
it is possible to interpret natural language and execute tests, writing test cases can still
be labor-intensive. However, this problem can be solved if test cases can be automatically

generated by interpreting the content of the operations.

83

Acknowledgements

First and foremost, I have to thank my research supervisor, Professor Shinji Kusumoto,
for his assistance and dedicated involvement in every step of my research activity. I am
grateful to him for attending our research discussions and providing valuable insights.

I would also like to express my sincere gratitude to Professor Yoshiki Higo for his
guidance in my research while I was in graduate school and for his willingness to accept
me into the doctoral program. Even though I was conducting my research remotely, he
always took care of me and was always there to support me.

I would also like to express my sincere gratitude to Assistant Professor Shinsuke Mat-
sumoto for his precise advice on my research and papers. He provided insightful comments
during our discussions, and his detailed feedback on the content of my papers was invalu-
able.

I would like to thank Professor Kozo Okano at Shinshu University, Professor Hiroshi
Igaki at Osaka Institute of Technology, and Keisuke Hotta at Fujitsu Ltd. for their helpful
advice while I was a graduate student at Osaka University.

I would also like to thank the office workers in our laboratory, Tomoko Kamiya, Kaori
Fujino, and Misako Hashimoto for their encouragement and support in various situations.

I would like to express my sincere gratitude to Yui Sasaki from The Japan Research
Institute, Ltd., who was also a working professional pursuing a doctoral degree like myself.
She provided valuable guidance on a variety of topics, including research scheduling and
paper writing.

I would like to express my deepest gratitude to Hoshino Takashi, Katsuyuki Natsukawa,
Kazuo Morimura, Tatsuya Muramoto, Haruto Tanno, and my colleagues at NTT Software
Innovation Center for encouraging and supporting me to enter the doctoral program.

Finally, I would like to thank my family and all of the staff in the Department of

Computer Science at Osaka University for their constant support and encouragement.

84

References

1]

Emelie Engstréom and Per Runeson. A qualitative survey of regression testing prac-
tices. In Proceedings of the 11th International Conference on Product-Focused Soft-

ware Process Improvement, PROFES’10, pages 3—16. Springer-Verlag, 2010.
Selenium. http://www.seleniumhq.org/.

M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. programmable
web testing: An empirical assessment during test case evolution. In 20th Working

Conference on Reverse Engineering, pages 272-281, October 2013.

M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Capture-replay vs. programmable web
testing: An empirical assessment during test case evolution. In 2013 20th Working

Conference on Reverse Engineering, pages 272—281, 2013.

T. Yeh, T. Chang, and R. C. Miller. Sikuli: Using GUI screenshots for search and
automation. In Proceedings of the 22Nd Annual ACM Symposium on User Interface
Software and Technology, pages 183-192. ACM, 2009.

F. Dobslaw, R. Feldt, D. Michaelsson, P. Haar, F. de Oliveira Neto, and R. Torkar.
Estimating return on investment for gui test automation frameworks. In IEFE 30th

International Symposium on Software Reliability Engineering, pages 271-282, 2019.

L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter. Prevalence and mainte-
nance of automated functional tests for web applications. In 2014 IEEFE International

Conference on Software Maintenance and Fvolution, pages 141-150, 2014.

M. Hammoudi, G. Rothermel, and P. Tonella. Why do record/replay tests of web
applications break? In 2016 IEEE International Conference on Software Testing,
Verification and Validation, pages 180-190, 2016.

M. Iyama, H. Kirinuki, H. Tanno, and T. Kurabayashi. Automatically Generating
Test Scripts for GUI Testing. In IEEFE International Conference on Software Testing,
Verification and Validation Workshops, pages 146—150, April 2018.

85

[10]

[11]

[12]

[14]

[16]

[17]

A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests in auto-
mated test generation for web applications. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, pages 67—78, Septem-
ber 2014.

V. Dallmeier, B. Pohl, M. Burger, M. Mirold, and A. Zeller. WebMate: Web Appli-
cation Test Generation in the Real World. In IEEFE Seventh International Conference
on Software Testing, Verification and Validation Workshops, pages 413-418, March
2014.

A Memon. Gui ripping: Reverse engineering of graphical user interfaces for testing.
In In Proceedings of The 10th Working Conference on Reverse Engineering, pages
260-269, 2003.

D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon. Us-
ing GUI ripping for automated testing of Android applications. In 2012 Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering,
pages 258-261, September 2012.

S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra. Guided
test generation for web applications. In 35th International Conference on Software

Engineering, pages 162-171, 2013.

M. Biagiola, A. Stocco, F. Ricca, and P. Tonella. Diversity-based web test generation.
In Proceedings of the 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 142—
153, 2019.

A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests in auto-
mated test generation for web applications. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering, pages 67-78, 2014.

Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. Au-
tomatic Web Testing Using Curiosity-Driven Reinforcement Learning, page 423435.
2021.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Reducing web test cases aging by
means of robust xpath locators. In 2014 IEEE International Symposium on Software
Reliability Engineering Workshops, pages 449-454, 2014.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella. ROBULA+: An algorithm for
generating robust XPath locators for web testing. Journal of Software: FEwvolution
and Process, 28(3):177-204, 2016.

86

[20]

[21]

[22]

23]

[24]

[29]

[30]

R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra. Robust test automa-
tion using contextual clues. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pages 304-314. ACM, 2014.

A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Pesto: A tool for migrating dom-
based to visual web tests. In 201/ IEEE 14th International Working Conference on
Source Code Analysis and Manipulation, pages 65-70, 2014.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using multi-locators to increase the
robustness of web test cases. In 2015 IEEFE 8th International Conference on Software
Testing, Verification and Validation, pages 1-10, 2015.

S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web application test
repair. In Proceedings of the First International Workshop on End-to-End Test Script
Engineering, pages 24—29. ACM, 2011.

M. Hammoudi, G. Rothermel, and A. Stocco. Waterfall: An incremental approach
for repairing record-replay tests of web applications. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 751-762. ACM, 2016.

M. Monperrus. Automatic software repair: A bibliography. ACM Computing Surveys,
51(1):17:1-17:24, 2018.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for
automatic software repair. IEEE Transactions on Software Engineering, 38(1):54-72,
2012.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix: Program repair
via semantic analysis. In 2018 35th International Conference on Software Engineering,

pages 772-781, 2013.

S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program patch
synthesis via symbolic analysis. In Proceedings of the 38th International Conference
on Software Engineering, pages 691-701. ACM, 2016.

F. Long and M. Rinard. Staged program repair with condition synthesis. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages
166-178. ACM, 2015.

R. Yandrapally, G. Sridhara, and S. Sinha. Automated Modularization of GUI Test
Cases. In Proceedings of the 37th International Conference on Software Engineering,
pages 44-54, 2015.

87

31]

33]

[35]

[40]

[41]

Suresh Thummalapenta, Saurabh Sinha, Nimit Singhania, and Satish Chandra. Au-
tomating test automation. In Proceedings of the 34th International Conference on
Software Engineering, pages 881-891. IEEE Press, 2012.

Anurag Dwarakanath, Dipin Era, Aditya Priyadarshi, Neville Dubash, and San-
jay Podder. Accelerating test automation through a domain specific language. In
2017 IEEE International Conference on Software Testing, Verification and Valida-
tion (ICST), pages 460-467, 2017.

J. Lin, F. Wang, and P. Chu. Using semantic similarity in crawling-based web appli-
cation testing. In IEEFE International Conference on Software Testing, Verification
and Validation, pages 138-148, 2017.

P. Pasupat, T. Jiang, E. Liu, K. Guu, and P. Liang. Mapping natural language
commands to web elements. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 49704976, 2018.

Mohammad Bajammal and Ali Mesbah. Semantic Web Accessibility Testing via
Hierarchical Visual Analysis. In Proceedings of the 438rd International Conference on
Software Engineering, pages 1610-1621, 2021.

G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology, 6(2):173-210, 1997.

H. K. N. Leung and L. White. Insights into regression testing (software testing). In
Proceedings. Conference on Software Maintenance, pages 60—69, 1989.

X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li. Atom: Automatic
maintenance of GUI test scripts for evolving mobile applications. In 2017 IEEE
International Conference on Software Testing, Verification and Validation, pages 161—

171, 2017.

S. Huang, M. B. Cohen, and A. M. Memon. Repairing GUI test suites using a genetic
algorithm. In Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation, pages 245-254. IEEE Computer Society, 2010.

M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-directed test scripts.
In 2009 IEEFE 31st International Conference on Software Engineering, pages 408-418,
20009.

A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Why creating web page objects
manually if it can be done automatically? In Proceedings of the 10th International
Workshop on Automation of Software Test, pages 70-74. IEEE Press, 2015.

88

[42]

[43]

[44]

[45]

[51]

A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Apogen: automatic page object
generator for web testing. Software Quality Journal, 25(3):1007-1039, 2017.

R. Yandrapally, G. Sridhara, and S. Sinha. Automated modularization of GUI test
cases. In Proceedings of the 37th International Conference on Software Engineering,
pages 44-54. IEEE Press, 2015.

M. Leotta, D. Clerissi, F. Ricca, and P. Tonella. Visual vs. DOM-Based Web Locators:
An Empirical Study, pages 322-340. Springer International Publishing, 2014.

B. Yang, H. Hu, and L. Jia. A Study of Uncertainty in Software Cost and Its Impact
on Optimal Software Release Time. IEEE Transactions on Software Engineering,

34(6):813-825, November 2008.

A. Bertolino. Software Testing Research: Achievements, Challenges, Dreams. In

Future of Software Engineering, pages 85-103, May 2007.

A. Orso and G. Rothermel. Software Testing: A Research Travelogue (2000-2014).
In Proceedings of the on Future of Software Engineering, pages 117-132, 2014.

L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter. Prevalence and Mainte-
nance of Automated Functional Tests for Web Applications. In IEEE International
Conference on Software Maintenance and Evolution, pages 141-150, September 2014.

M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro. Improving Test Suites Maintain-
ability with the Page Object Pattern: An Industrial Case Study. In IEEE Sixth In-
ternational Conference on Software Testing, Verification and Validation Workshops,
pages 108-113, March 2013.

F Ricca and A Stocco. Web test automation: Insights from the grey literature. In
Conference: 47th International Conference on Current Trends in Theory and Practice
of Computer Science, 10 2020.

A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Clustering-Aided Page Object Gen-
eration for Web Testing. In Web Engineering, pages 132-151. Springer, Cham, June
2016.

A. N. Ghazi, K. Petersen, E. Bjarnason, and P. Runeson. Levels of exploration in
exploratory testing: From freestyle to fully scripted. IEFEE Access, 6:26416—26423,
2018.

S. M. A. Shah, U. S. Alvi, C. Gencel, and K. Petersen. Comparing a Hybrid Testing
Process with Scripted and Exploratory Testing: An Experimental Study with Practi-
tioners, page 187202. 2014.

89

[54]

[55]

[56]

[57]

[58]

[60]

[61]

[62]

[63]

[64]

J. Itkonen, M. V. Mantyla, and C. Lassenius. Defect detection efficiency: Test case
based vs. exploratory testing. In First International Symposium on Empirical Soft-

ware Engineering and Measurement, pages 61-70, 2007.

PetClinic. https://github.com/spring-projects/spring-petclinic, Accessed
on Aug 2, 2021.

WebdriverlO. https://webdriver.io/, Accessed on Aug 2, 2021.

Y. Chen, Z. Li, R. Zhao, and J. Guo. Research on page object generation approach
for web application testing. In The 31st International Conference on Software Engi-

neering and Knowledge Engineering, pages 43—48, 07 2019.

H. Kirinuki, T. Kurabayashi, H. Tanno, and I. Kumagawa. Poster: SONAR Testing
Novel Testing Approach Based on Operation Recording and Visualization. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST), pages 410-413, October 2020.

M. Biagiola, A. Stocco, F. Ricca, and P. Tonella. Dependency-Aware Web Test Gen-
eration. In 2020 IEEE 13th International Conference on Software Testing, Validation
and Verification (ICST), pages 175-185, October 2020.

M Biagiola, A Stocco, A Mesbah, F Ricca, and P Tonella. Web test dependency
detection. In Proceedings of the 2019 277th ACM Joint Meeting on Furopean Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2019, pages 154-164. Association for Computing Machinery, August 2019.

D. Roest, A. Mesbah, and A. v Deursen. Regression Testing Ajax Applications:
Coping with Dynamism. In Verification and Validation 2010 Third International
Conference on Software Testing, pages 127-136, April 2010.

R Yandrapally, A Stocco, and A Mesbah. Near-duplicate detection in web app model
inference. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE 20, pages 186-197. Association for Computing Machinery,
June 2020.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics,
5:135-146, 2017.

Joomla! Administrator’s Manual. https://docs.joomla.org/Portal:
Administrators, 2020.

90

