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Abstract

Along with the high-speed development in the technology and commer-
cialization of virtual reality (VR) devices, spectating VR sports has become
popular. Compared with the traditional spectating style: spectating sports
matches in a stadium live, spectating VR sports has several advantages. For
instance, spectating VR sports only requires one VR device, allowing spec-
tators to enjoy the sports matches anywhere, anytime, and from any free
viewpoint with a more immersive experience. On the other hand, spectat-
ing VR sports still has several limitations. For example, high bandwidth re-
quirements, general VR sickness, misperceiving key moments, etc. This work
focuses on the problem of misperceiving key moments. The key moment in
sports is a short and critical moment in a sports action, including the infor-
mation that can influence or determine the action result. However, there is
easy to misperceive the key moment when spectating sports matches in VR
because of the temporal and spatial limitations caused by the rapid and oc-
cluded actions. This work proposes temporal and spatial vision augmentation
frameworks to improve the spectator’s ability to perceive the key moment in
spectating VR sports. This work includes two parts: 1) Time-control interac-
tive 3D visualization framework for rapid actions; 2) viewpoint optimization
based on individual preference for occluded actions.

Many sports, like boxing, basketball, and so on, involve rapid actions.
However, human eyes commonly do not have enough time to perceive and
process such rapid actions. This temporal limitation leads spectators to mis-
perceive the key moment in spectating VR sports. While much research got
exemplary achievements in visualizing a rapid scene, less work involved VR
rapid sports scenes. This work presents an interactive 3D vision augmentation
framework called MomentViz, which allows for both high frame rate recording
and interactive Time-control in 3D space. The system is designed to allow
users to freely spectate rapid 3D actions from different viewpoints and control
time from any free viewpoint. This work starts from 3D data collection and
3D reconstruction. Then the slow time frame and original time frame are set
in the same place, and the original time frame overlaid the slow time one.
Through a VR HMD, the users can select any area to control the frame time
by raycasting with a controller. As a result, the overlaid slow time frame can
emerge through the stencil technique in that user-selected sub-region. This
method allows the user to control the time in their desired area. A sim-
ple pilot experiment is conducted to verify the necessity and performance of
MomentViz. Eight participants are recruited to join the experiment. They
are asked to observe the rapid motion in VR with four conditions, includ-
ing 2D visualization, 2D Time-control visualization, 3D visualization, and
3D Time-control Visualization (MomentViz). By the analysis of results,
MomentViz outperforms other groups. From the participants’ feedback, it
is found that the low FPS recording limits the video quality and influences
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the performance of MomentViz. In order to overcome this limitation, a high-
speed RGB camera is implemented in improved MomentViz for high FPS
RGB data recording. A user study experiment is conducted to evaluate the
empirical performance of this improved MomentViz. Twelve participants join
the experiment and are asked to judge the rapid basketball videos. Three
groups are compared and evaluated, including 3D visualization (original time
videos), 3D Time-control MomentViz (not using the high-speed camera),
and H3D Time-control MomentViz (using the high-speed camera). Results
showed H3D Time-control MomentViz group outperforms the others in terms
of accuracy, required views, and subjective user experience.

In addition, in these sports, the players always keep moving, and their
poses are usually dynamic. It leads to the key moment of these actions that
will be occluded from some viewpoints. Moreover, finding an excellent view-
point to perceive the key moment from an occluded action in VR is challenging
to the spectators. Though some research has tried to solve this viewpoint op-
timization issue, all of them ignore the individual preference of spectators and
provide all the spectators with a monotonous viewpoint. This work intro-
duces a novel method to select an optimal viewpoint for watching punching
moments in VR. This method can handle different spectator preferences. In
this method, a visibility model is customized, which utilizes eight bounding
boxes to account for the visibility of upper body parts. Then a neural network
classification model is utilized to reproduce the optimal viewpoint selection
based on the features of body parts visibility, punch side, and punch offset.
An experiment collects the spectators’ preferred viewpoints from 24 partici-
pants under three controlled preference conditions: seeing the punch arm form
clearly (AF), seeing the facial expression clearly (FE), and no additional re-
striction (None). With a new analysis method for this viewpoint optimization
issue, the prediction accuracy of the trained model is evaluated as the scien-
tific performance. The accuracy results are 64.93% for None, 68.61% for AF,
and 76.48% for FE, respectively. A user study is conducted to evaluate the
empirical performance of this method. Twenty-one participants are recruited
to participate in the user study, and their task is to find their preferred view-
point depending on different preference conditions (AF and FE). Two groups
are divided to compare, including the SmartVP group and the Without
SmartVP group. The subjective and objective evaluation results show that
the SmartVP group outperforms the Without SmartVP group.

The results of this work show the promise and potential of VR sports
broadcasting applications. The author hopes this work can encourage the
development of portable MR devices for use in watching sporting events both
by broadcasting and live in the stadium.
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Chapter 1

Introduction

1.1 Background
Sports is an activity involving physical exertion and skill in which an individual
or a team competes against another or others for entertainment [Jarvie (2013)].
It has a long history and attracts millions of people around the world. To the
report, the global TV audience was 3.5 billion for the 2018 world cup in Russia,
which is predicted to increase to 5 billion for the 2022 Qatar world cup [Burns
(2022)]. Sports fans can spectate the sports match mainly through two types:
spectating the match in the stadium live or watching the broadcasting by TV
and Internet.

Compared with broadcasting, spectating live at a stadium is more attrac-
tive for most of the spectators. The reasons can be attributed to these as
follows: 1). Watching the game in an actual gym, stadium, or theater can
provide spectators with excitement and give personal experience at the venue.
2). Interaction such as cheering or rooting for the player in the stadium is
hard to replace since the spectators’ cheers directly reach the players. The
spectators and players can share the excitement directly in real-time through
body touching or eye contact. 3). Socializing with other supports in the
stadium is also attractive and an effective way to make new friends with the
same interest. On the contrary, spectating sports matches live in a stadium
has several limitations. For instance, spectating sports matches in a stadium
obviously requires the spectators to go to a certain place, a sports stadium.
Sometimes this stadium is so far that the spectators should take lots cost to
get there. In addition, spectating sports in a stadium also limits the specta-
tors’ time. The spectators are required to ensure a certain time available for
that match. Moreover, a seat is usually fixed when spectating sports in a sta-
dium. It leads to the spectators’ viewpoints being unfree, sometimes resulting
in the occluded view.

In recent years, the development of Virtual Reality (VR) devices and ser-
vices has been outstanding. This achievement provides other possible so-
lutions to enjoy and spectate sports matches without the abovementioned
limitations.

1.1.1 Development of Virtual Reality

Virtual Reality (VR) is an interactive and immersive (with the feeling of pres-
ence) experience in a simulated (autonomous) world [Zeltzer (1992)]. This
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(a) (b) (c)

Figure 1.1: Some VR devices: (a) Oculus Rift (Released in 2016 by Oculus).
(b) HTV Vive (Released in 2016 by HTV). (c) Lynx R1 (Released in 2021 by
Lynx).

idea can be traced back to the 1800s, almost the beginning of practical pho-
tography. In the 1960s, a head-mounted display (HMD) was designed by
Heilig, which can be regarded as the origin of VR devices. After a hard time
in the 1970s and early 1980s, the first commercial HMD called EyePhones
was introduced in the late 1980s. The term "virtual reality" was first used in
the mid-1980s by Jaron Lanier, the founder of VPL Research. VPL Research
concentrates on developing VR devices, including goggles and gloves [Burdea
and Coiffet (2003)]. Since then, VR has become a popular topic both in the
academic and industrial worlds. Many researchers and companies have pio-
neered low-cost, high-quality, more portable devices. In the 21st century, VR
technology has kept high-speed development and has become commercially
available. By 2016, more than 230 companies were developing VR-related
products. This year, Oculus released the VR HMD Oculus Rift, and HTC
shipped the first major commercial VR device with sensor-based tracking.
With the fruitful release of major commercial VR devices, VR technology
enters a new epoch. In recent years, as the new term: mixed reality (MR)
has come to the front, the commercial HMD tends to MR, which mixes Aug-
mented Reality and Virtual Reality. Lynx releases their first MR production,
Lynx-R1, which can easily switch the VR and AR environment with one HMD
device (Figure 1.1).

As a result of Virtual Reality development, VR has been applied to various
fields. It covers data and architectural visualization, modeling, and designing,
training and education, remote operating, cooperating working, and enter-
tainment [Mazuryk and Gervautz (1999)]. The new concept of Metaverse
frequently dominates the hot news and has become a quietly popular topic
worldwide. Metaverse is a universal, immersive virtual world that unites all
VR users in science fiction. This world is a platform that provides almost
the whole services mentioned above. Several major IT companies, such as
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Figure 1.2: Spectating VR sports case: Spectating an ice hockey matches in
VR through a VR device (screen shot from the video of FOX Sports1).

Facebook, Microsoft, and Google, show interest in this topic.

1.1.2 Spectating Virtual Reality Sports

As an important part of the entertainment service, spectating sports matches
in VR has flourished and provides a novel and fashional enjoyment style of
sports spectating. Spectating Virtual Reality sports uses a VR device to
spectate a real sports match broadcasting in a VR environment. Compared
with the traditional style of spectating sports matches in a stadium, this new
style just requires a VR device. The VR device allows spectators to enjoy
sports matches anywhere, even at home. With the VR sports data rebroadcast
or replay, the spectators enjoy the sports anytime and never worry about
the time missing again. Moreover, VR sports provide an immersive 3D VR
environment, and the spectators can spectate the sports matches from any
free viewpoint.

Some pioneer sites, such as FOX Sports 1 and Subvrsive 2, provide the
VR sports stream service. Since 2020, the NBA has had contracts with the
VR device company Oculus to provide VR spectating services. The Japanese
professional baseball team SoftBank Hawks also provides the VR live stream of
all the home matches. Enjoying a sports match via VR is not an out-of-reach
dream (Figure 1.2).

However, spectating VR sports still has several issues, such as high band-
width requirements, general VR sickness, key moment misperceiving, and so

1https://www.youtube.com/watch?v=T3Ip9s2WvCc
2https://subvrsive.com/blog/showtime-championship-boxing-preview-thurman-vs-

garcia
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(a) (b)

Figure 1.3: Two cases of key moment in sports actions: (a) The key moment
in boxing punch actions can determine whether this punch hits the target or
is dodged; (b) The key moment in basketball ball stealing actions can judge
whether this stealing is foul.

on.
In order to keep the portability, the current major VR devices use the

wireless network. When the coding mode of 4K video, the bandwidth demand
is at least 840Mbps, and if the spectators want to enjoy the 3D experience
of the VR video with 120 FPS, it is at least 4.2Gbp [Yang et al. (2019)].
This high bandwidth requirement is challenging the current wireless network
technology.

Another issue in spectating VR sports is VR sickness. Various factors
affect the user’s VR sickness, such as excessive motion mismatch [Kim et al.
(2018)], a wide FOV [Arthur (2000); Lin et al. (2002)], time lag [Geršak et al.
(2020)], etc. The excessive motion mismatch between the user’s view and
physical feeling leads to a high degree of sensory conflicts. In particular, there
are a lot of exceeded acceleration or rapid turning actions in sports. These
actions enlarge the motion mismatch, which will exacerbate VR sickness.

This work focuses on the problem of key moment misperceiving, which will
be described in the following subsection.

1.1.3 Key Moment Misperceiving in VR Sports

The Key Moment in sports is a short and critical moment in a sports action,
including the information that can influence or determine the action result.
For instance, in a boxing punch action, the key moment is the moment that
can determine whether this punch hits the target or is dodged. In a basketball
ball stealing action, the key moment is the moment that can judge whether
this stealing action is foul because of the hand hitting .

Though the key moment is very significant for sports spectating, the con-
ventional visualization technology in VR sports spectating will easily miss the
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key moment since the temporal and spatial limitations.

Temporal Limitation Many sports, like boxing, basketball, and so on,
involve rapid actions. Human vision is one of the most fundamental and sig-
nificant biological systems for processing information. However, this highly
evolved version system still has limited capabilities when perceiving and pro-
cessing rapid actions in such sports. For instance, the average punch speed of
a male amateur boxing player could be reached at 8 meters per second [Kimm
and Thiel (2015)]. The naked eye does not have enough time to follow such
rapid punch actions and perceive the key moment. In addition, because of
the persistence of vision [Hardy (1920)], human visual speed is limited to the
rough equivalent of a 25Hz sampling rate. It means there is approximately
a 0.3-meter moving offset between two visual samplings. This limited visual
sampling usually results in missing the key moment of these actions.

Spatial Limitation In many sports, such as boxing, the players always
keep moving and rotating, and their positions and poses are usually dynamic.
Hence, the key moment occlusion frequently occurs in such sports. Â How-
ever, VR sports spectating allows the spectators to spectate the actions from
any free viewpoint. Since there is quantitive information in a free VR en-
vironment, the spectators usually feel difficult and confused to find a good
viewpoint to perceive the key moment.

These limitations (Figure 1.4) prevent the spectators from perceiving the
key moment in VR sports actions and reduce the user experience of VR sports
spectating.

1.2 Philosophy
To address these limitations, this work designs and evaluates a temporal and
spatial vision augmentation framework for spectating sports matches in VR.
There are several challenges in this work, as follows:

• How to help the human vision to process the key moment in rapid ac-
tions?

• How to help the human vision to sample the key moment in rapid ac-
tions?

• How to guide human vision to find an optimal viewpoint to perceive the
key moment from an occluded view?

• How to handle the individual preference in viewpoint selection?

The philosophy of this work is that the VR sports spectating system can
improve the spectator’s ability to perceive the key moment in VR. This system
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(a) (b)

Figure 1.4: Issues when spectating the sports matches in a stadium by the
naked eye: (a) The limited naked eye does not have enough time to process
the rapid actions resulting in misperceiving. (b) Finding a good viewpoint is
required to perceive the key moment in occluded actions.

should be easy to process the key moment in rapid actions. It can allow the
spectators interactively Time-control the VR sports videos. In addition, it
also can provide a high frame rate recording to sample the key moment. On
the other hand, this system should also easily find the key moment in occluded
actions. This system can optimize individual preference-based viewpoints to
guide the spectators with a good viewpoint.

Like nowadays, when audiences go to watch 3D movies, the movie cinema
or theme park will provide 3D glasses. One possible future application case
of this work could be VR sports spectating glasses. When sports fans go to
the stadium to spectate a sports match live, they can borrow the MR device
from the organizers or use the device they own. The spectator can commonly
enjoy the live match’s atmosphere with the AR mode. In contrast, when
crucial actions occur, the spectators can switch the glasses to the VR mode to
observe the 3D sports actions replay immersively. This VR sports replay can
allow the spectators to control the time in any area and provide an optimal
viewpoint depending on the spectators’ preference. With this application, the
spectators can simultaneously enjoy the excitement of live sports matches and
breakthrough temporal and spatial limitations.

1.3 Contribution
This work focuses on resolving the key moment misperceiving that results from
the rapid or occluded sports actions and presents interaction methods that al-
low spectators to spectate the sports match by breaking through temporal and
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spatial limitations. It can play a role in sports that evolves multiple players,
rapid actions, and dynamic moving, for instance, boxing, soccer, basketball,
judo, etc.

Two interaction methods (MomentViz and SmartVP) for these two issues
are introduced in this work: 1) MomentViz provides a visualization framework
that allows the spectators to observe rapid 3D actions from free viewpoints
in VR and control the time in any given area. 2) SmartVP can select an
optimal viewpoint automatically for watching punching moments in VR that
can handle different spectator preferences.

MomentViz: Time-control in 3D for Spectating Rapid Action This
work introduces MomentViz, a novel method to control time in any area from
the free viewpoint in VR. This method provides a systematic framework in-
cluding 3D actions data collection, 3D fusion, and time-control interaction.
RGB camera and depth camera are utilized for the 3D data collection. After
the camera calibration, two types of information can be fused to reconstruct
the 3D model. With the stencil technology, time-control interaction is pro-
vided for the users. The contributions of this work can be summarized as
follows:

1. Design a systematical framework for interactively visualizing the rapid
actions in VR;

2. Propose a novel method with the stencil technology to control the time
in any area of 3D information;

3. Conduct a pilot to verify the performance of this method, and the re-
sults show MomentViz outperforms the other conventional visualization
groups.

4. Improve the FPS of data recording by utilizing a high-speed camera and
fusing the RGB and depth data.

5. Conduct a user study experiment to evaluate the performance of im-
proved version, and the results verify the new version gets better per-
formance.

SmartVP: Viewpoint Optimization for Individual Preference This
work chooses the boxing match as a case, and proposes a novel interactive
method that can provide the spectators with an optimal viewpoint to observe
the boxing punch actions by their preferences. In this method, a visibility
model is designed to account for the visibility of boxers’ upper body parts.
Then Utilizing the visibility, punch side, and punch offset as features, user-
selected preferred candidate viewpoint class as label, a neural network classi-
fication model is trained. In summary, the contributions of this work include
the following:
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1. Design and conduct a experiment to collect the user preferred view-
points, which considering two different spectator preferences in watching
boxing punch video

2. Propose to extract the visibility of body parts, punch side and punch
offset as the features;

3. Propose the method to label the continuous user optimal viewpoint se-
lections to discrete candidate viewpoint classes;

4. Design the training model for optimal viewpoint selection training and
propose an evaluation method to evaluate the training results for the
optimal viewpoint selection problem.

5. Conduct a user study experiment to evaluate the system’s performance,
and the results show SmartVP can provide optimal viewpoints corre-
sponding with the individual preference.

1.4 Dissertation Outline
This dissertation is structured into six chapters as follows:

Chapter 1 introduces the background of this work, discusses the issue that
the rapid or occluded actions will reduce the user experience in sports match
spectating, and summarizes the contributions of this work.

Chapter 2 provides a large-scale survey, which includes the visualization
of 3D human actions, perceiving the rapid actions, and viewpoint selection
for the occluded view. The limitations of existing work are discussed, and the
position of this work is defined among the conventional studies.

Chapter 3 introduces MomentViz, a novel visualization method to freely
control the time for a 3D rapid action in VR. The framework, technology, and
implementation are described in this chapter. A pilot experiment is conducted
to verify this visualization method’s performance, and the statistical analysis
results are discussed.

Chapter 4 introduces an improved version of MomentViz. From the feed-
back of the pilot experiment described in Chapter 3, the fact is discovered that
the low FPS video recording influenced the user experience of spectating the
rapid actions. To push this limitation, a high-speed RGB camera replaces the
common RGB camera in the improved version. The details of new technology
and implementation for this version is presented here. A user study experi-
ment is designed and conducted to evaluate the new version. A discussion of
statistical analysis results is presented in the final.

Chapter 5 introduces the SmartVP, a novel viewpoint optimization method
that can provide the optimal viewpoint depending on the individual preference
when spectating boxing punch actions in VR. This method trains a neural
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network classification model using the boxer body parts visibility, punch side,
and punch offset as the features and the user-selected preferred viewpoint from
an experiment as the label. A user study is conducted to evaluate the empirical
performance of this method. Both the scientific and empirical evaluation
results are discussed here.

Chapter 6 is the conclusion of this dissertation. In this chapter, the con-
tributions and findings of this work are summarized. This chapter also points
out the existing limitations and challenges in future work.

Figure (1.5) shows the overview of this dissertation.



Spectating VR sports

Mispercieve the key 
moment in rapid action

Mispreceive the key 
moment in occluded action

Time-control 
slower sub-region

MomentViz: 
interactive Time-control framework
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High frame rate 
RGB inforamtion 
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Arm Form (AF)
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Chapter 4

Chapter 5

Research Objective Proposed FrameworkIssuses

Figure 1.5: The overview of the dissertation: Chapter 3 and Chapter 4 intro-
duce the MomentViz, which resolves the temporal limitations, and Chapter 5
introduces SmartVP, which deals with the spatial limitation.



Chapter 2

Related Work

Recently, there has been much work on visualizations that assist with under-
standing human motion [Watanabe et al. (2009)]. In this chapter, we will
mainly discuss literature on methods for Time-control 2D visualization and
current 3D visualization, viewpoint selection for human actions and 360 degree
camera viewpoint adaption.

2.1 Time-control in 2D Visualization
In order to help understand rapid motion, some visualization methods have
tried to control the time dimension. Vollmer et al. [Vollmer and Möllmann
(2012a)] utilized a slow motion method for visualizing non-compressible liquids
and the oscillating droplets. In the same year, slow motion was also used
for visualizing gas thermodynamics by Vollmer et al. [Vollmer and Möllmann
(2012b)] (Figure 2.1). Another novel attempt of time-control in the real world
was proposed by Potthast et al. [Potthast (2013)], who developed a unique
helmet that allows the user to perceive the real world in slow motion. Slow
motion is also being applied to education nowadays, such as Vollmer et al.’s
[Vollmer and Möllmann (2018)] work in physics education.

Despite this recent work on controlling time for improving scene under-
standing, this kind of motion has yet to be successfully reconstructed into
3D models. As a result, users are not able to observe motion data from free
viewpoints.

2.2 Dynamic 3D Visualization
Compared with conventional 2D visualization, 3D visualization provides the
user with additional degrees of freedom for viewpoint selection so that the user
can gain more information from various angles. Since it can help a user trace
complex motions clearly and in a better spatial context, dynamic 3D visual-
ization is especially useful in many fields, like for the Hawk-Eye system used
by sports referees. Other significant work on real-time dynamic 3D visualiza-
tion has been presented in the last several years, such as that of Newcombe
et al. [Newcombe et al. (2015)] who succeeded in reconstructing and tracking
non-rigid scenes in real-time, using RGB-D scans captured from commodity
sensors. Their approach reconstructs the geometry of the scene while simul-
taneously estimating a volumetric 6D motion field that warps the estimated
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Figure 2.1: Ejection of a rubber stopper from a test tube due to vapour
pressure: Sequence of snapshots recorded with 4000 Hz/shutter 1/5000 s at
the following times: t = 0, + 2.5 ms, + 5.5 ms, + 10.5 ms, + 18.5 ms, + 20.5
ms [Vollmer and Möllmann (2012b)].

geometry into a live frame. The approach is applicable to a wide range of
moving objects and scenes. Another similar study called Fusion4D (Figure
2.2 (a)) was presented by Dou et al. [Dou et al. (2016)]. They proposed a new
pipeline for live and multi-view performance capture, generating temporally
coherent high-quality reconstructions in real-time. Yu et al. [Yu et al. (2018)]
achieved similar results that could reconstruct detailed geometry, non-rigid
motion and the inner human body shape in real time from one single depth
camera using a double layer representation (Figure 2.2 (b)). Other some sim-
ilar work [Guo et al. (2017); Innmann et al. (2016); Slavcheva et al. (2017);
Yu et al. (2017)] exists for dynamic 3D visualization.

Though these implementations help visualize motion in 3D by providing
the user with improved viewpoint selection, none of them explicitly involve
time-control to help visualize or improve the understanding of rapid motion.
These previous methods motivated us to address the gaps in time-control
research by incorporating the 3D information combined with an interactive
component.



(a)

(b)

Figure 2.2: Two research about 3D human reconstruction: (a) Real-time Per-
formance Capture of Challenging Scenes [Dou et al. (2016)]; (b) Real-time
Capture of Human Performances with Inner Body Shapes from a Single Depth
Sensor [Yu et al. (2018)].
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2.3 Viewpoint Selection for Human Actions
Since human action is complex and unpredictable [Assa et al. (2008); Goldman
(2015)], tracing human action from a good viewpoint is quite difficult for a
spectator. To help humans to observe humans actions more clearly and easily,
several attempts tried to solve this problem [Doubek (2005)]. Compare with
the traditional viewpoint selection research which targets general objects, the
one that targets human action started late. Nonetheless, some work flourished
in the current 10 years.

Dmitry Rudoy and Lihi Zelnik-Manor [Rudoy and Zelnik-Manor (2010)]
utilized a method that evaluated the three-dimensional shapes of human ac-
tion induced by their silhouettes in the space-time volume. The experiment
results presented their method provides intuitive results which match common
conventions. Chong Huang et al. [Huang et al. (2018)] also achieved viewpoint
selection research about an autonomous drone cinematography system for hu-
man action. In their research, their used 3D skeleton data to design a real-time
dynamical camera planning strategy (Figure (2.3)). Another similar work us-
ing the drone was published by Sena Kiciroglu et al. [Kiciroglu et al. (2020)].
They proposed an algorithm that the key idea is estimating the uncertainty of
the 3D body pose. One more new work was presented by Mojtaba Ahangar
Arzati and Siamak Arzanpour [Arzati and Arzanpour (2021)]. In their re-
search, they came up with an RL-based method. The camera viewpoint was
identified as the key parameter in the accuracy of monocular 3D human pose
estimation. The results improved the performance of 3D human pose es-
timation. In Wei Cheng’s work on human body 3D reconstruction [Cheng
et al. (2018)], they also determined the real-time next-best-view selection by
information gain calculation in Truncated Signed Distance Function(TSDF)
volume.

Though the previous work can help to adapt a viewpoint for human action
autonomously, their work is still limited to simple and slow human actions.
Moreover, all of them have not considered the spectator desire and preference
about viewpoint.

2.4 360 Degree Camera Viewpoint Adaption
The 360 degree camera has a field of view that covers approximately the
entire sphere or at least a full circle in the horizontal plane. Recently, it is
very popular among all generations, and in a lot of fields, especially in sports.
A lot of online video sharing sites like Youtube are already supporting the 360
degree camera videos.

The 360 degree camera video can provide more information including whole
the 360 degree field of view of a scene at one moment. But for so large
information of a scene, it’s difficult to find a good viewpoint to observe for the
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Figure 2.3: Viewpoint selection for human actions by using a drone [Huang
et al. (2018)].

user. Hou-Ning Hu et al. [Hu et al. (2017)] got a successful attempt on the
360 degree sports video piloting by utilizing a deep learning-based agent. The
experiment results reveal that their method is better than the conventional
method (Figure 2.4). But as their work just explored the viewpoint selection
in 360 degree camera video, no 3D reconstruction means some information
will be lost for a sports scene, which can not be caught by a single camera.

Another popular topic in 360 degree camera viewpoint adaption is view-
port prediction. The goal of this topic is to resolve the contradiction between
the limitation of Internet bandwidth and computational resources and the en-
tire high resolution 360 degree camera videos. Tile-based and user behavior
learning-based are the two most popular types of methods. Lan Xie et al.
[Xie et al. (2018)] proposed a Cross-user Learning based system to improve
the precision of viewport prediction. According to their research, the users
have similar region-of-interest when watching the same video, so they came
up with the idea of exploiting cross-users’ ROI behavior to predict viewport.
Their results showed the Cross-user Learning based system outperformed the
other tile-based methods. Another similar work was published by Yucheng
Zhu et al. [Zhu et al. (2021)]. They proposed a traditional method to adapt
2D saliency models and design a CNN-based model to better predict visual
saliency. Their experiment results also showed effective performance.
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Figure 2.4: An attempt of viewpoint selection for 360 degree sports videos
[Hu et al. (2017)].

One more work attributed by Yuanxing Zhang et al. [Zhang et al. (2019)]
presented a deep reinforcement learning based framework, which included any
possible feature, given any quality of experience (QoE) objective. They also
got a good result about providing high QoE and adapting many real-world
playback conditions. Yanan Bao et al. [Bao et al. (2016)] devoted to another
interesting work which is based on the prediction of the user head motion. The
simulation result that reduced the bandwidth consumption by 45% proved
good performance. In addition, a lot of other work [Corbillon et al. (2018);
Fu et al. (2020); Zhao et al. (2019)] contribute to this topic.

However, all the work introduced above showed satisfactory results. Be-
cause of the different goals, their work just explored the viewpoint adaption
in 360 degree camera video, no 3D reconstruction means some information
located at the back of the viewpoint will be lost for a boxing punch scene.

2.5 Chapter Summary
Several attempts have evolved the Time-control in 2D, and high-speed cameras
are utilized in work. However, their attempts ignore the 3D information, which
is very important in a sports match. In addition, some other pioneers tried
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several new methods to visualize the 3D information. Nevertheless, these
methods mainly focus on 3D visualization. No Time-control means these
methods are difficult to apply to rapid sports videos. Some previous work
tries to select the optimal viewpoint for human actions. Nevertheless, this
work focus on simple scenes and videos with a single person. It is impossible
to be utilized in a multiple sports match with complex human actions. It also
ignores to handle individual preferences of spectators. Moreover, viewpoint
adapting in 360 degree video also already gets some promising achievements.
However, 360 degree video only covers the information from one 360 degree
camera. No 3D reconstruction means this information can not cover the whole
sports match area.

This work covers the entire 3D information of sports matches by 3D recon-
struction, provides the Time-control to help perceive the rapid actions, and
suggests the optimal viewpoint depending on individual preference to prevent
the view occlusion.





Chapter 3

Interactive Visualization for
Rapid Actions

3.1 Introduction
Spectating sports in VR is fun and has a high potential to break through the
temporal and spatial limitations for the spectators. However, even with this
cutting-edge and fashionable technology, perceiving rapid sports action is a
challenging task with conventional visualization methods.

To address this issue, this work proposed a novel visualization framework
called MomentViz for spectating rapid sports actions in VR. This work utilizes
one RGBD camera to record the 3D human action data and uses commercial
software to visualize the 3D data in VR with point cloud style. A novel
method is proposed in this work to allow the users to control the sports action
video time in a user-selected sub-region area. The implementation details are
also introduced in is chapter. In order to evaluate the performance of this
method, a pilot study that observes rapid actions in VR is conducted. Eight
participants are recruited to take part in the pilot. Four groups, including 2D
original time videos, 2D time-control videos, 3D original time videos, and 3D
time-control videos (MomentViz), are tested by the participants. The pilot
study evaluates the system performance from accuracy, the number of views,
task completion time, and subjective questionnaires. The pilot study results
verify that MomentViz outperforms the conventional visualization methods
in spectating rapid actions in VR. The main contributions of this work can
be summarized as follows:

• Propose a novel framework for interactively visualizing rapid actions in
VR;

• Implement the system with the proposed framework, and conduct a pilot
study to test the performance of the framework,

• From the results, it is found that the proposed framework outperforms
other conventional visualizations.

The remainder of this chapter presents the framework details, the pilot design,
the evaluations, and the findings from the results.
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Figure 3.1: The framework of MomentViz.

3.2 Methodology
This work proposed a novel visualization method called MomentViz, which
allows the user to control time speed in any area from the free viewpoint in VR.
Figure 3.1 presents the system framework of MomentViz. This work mainly
focuses on the red dashed box, which includes the Time-control method and
interaction function.

3.2.1 Data Preparation

Since 3D reconstruction is not the topic of this work, some know-how tech-
nology is utilized directly in this work.

The first step of 3D visualization is 3D motion data recording. Various
types of methods can capture human motion credibly and effectively [Van der
Kruk and Reijne (2018)], which includes an optical system with markers [Kirk
et al. (2004); Lee and Yoo (2017); Meyer et al. (2014); Miyata et al. (2004)],
traditional RGB camera [Guerra-Filho (2005); Nakano et al. (2020); Hasler
et al. (2009a); Rosenhahn et al. (2006)], RGBD camera [Han et al. (2013);
Napoli et al. (2017)], mechanical motion capture [Brigante et al. (2011); Liu
et al. (2020); Tognetti et al. (2014)], magnetic systems [O’Brien et al. (1999);
Fourati et al. (2012)], and so on. In order to prevent the markers from influ-
encing the players’ actions and implement the system easily in the laboratory,
the method using a commercial RGB-D camera is chosen in this work. The
next step is 3D fusing the RGB-D data from the RGB-D camera. Though it
is a challenge to reconstruct the 3D human model, there are several studies
attempted in current years, some of them are already introduced in Chapter
2 [Dou et al. (2016); Newcombe et al. (2015); Bhatnagar et al. (2020)]. How-
ever, considering the time cost and main topic, commercial software for 3D
visualizing with point cloud is utilized in this work.

3.2.2 Time-control Visualization

Inder order to address the issue that the naked human eye is difficult to process
rapid actions, a novel method is proposed in this work with an interaction
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paradigm that allows the user to control a specific area of the 3D action
videos. This method of Time-control utilizes two parallel 3D action frames,
which include both the original time frames and the slow time frames. When
a user selects the area to be time-controlled, a circular stencil provides a
window into the time-controlled slow time frames, as outlined in Figure 3.2.
The detailed process of this method is presented as follows:

1. The first step: render the time-control slow time frames in the VR.
The rate of slow time can be set in advance by the users. In order to
distinguish the different time frames, the slow time frames are rendered
in red in the Figure (Figure 3.2(a));

2. The second step: render the original time frames at the same position
as the slow time frames. Since the rendering order, the slow time frames
will be overlaid by the original time frames and become to be invisible.
In the Figure, the original time is rendered in blue (Figure 3.2(b));

3. The third step: the users can choose the area by the input devices
where they want to focus. In this sub-region area the user-selected, the
stencil technology is utilized. With this technology, the rendering order
is reversed in this particular area, and the slow time frames appear from
the back. In the Figure, the person shows the same finger gesture from
0 to 5 in two hands simultaneously. In the original time frame, the left
hand shows three fingers up (the blue frame), but in the sub-region of
the slow time frame, the right hand still holds a fist (Figure 3.2(c)).

As the result of showing both the original speed stream and partial slow
speed stream simultaneously, this method allows a user to view the desired
event in slow motion and be aware of the surrounding environment in real
time. This solution avoids potential peripheral occlusion of ongoing events,
which will be especially important for use at outdoor sporting events in the
future. Moreover, a user can change the scale and rate of the Time-control to
adjust to any dynamic scene.



Time-control Frame

User View

Step 1:
Render the Time-control frame (red) in VR space.
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Figure 3.2: The process of the Time-control interaction method: (a) First
step, set the Time-control frame; (b) Second, set the original time frame on
the same position, then the Time-control frame will be overlaid by the original
time frame; (c) Final step, use the stencil technique to control the time in sub-
region interactively.
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Figure 3.3: The implementation of MomentViz: left is the data preparation
process, using a standard RGBD camera for 3D data recording (with 30 fps);
right is the MomentViz visualization process, using VR HMD for visualizing
the 3D data in VR environment, and using a controller for interactively se-
lecting Time-control sub-region area.

3.3 System Implementation
This section describes the implementation of the MomentViz visualization
system, including the system overall, hardware, and software utilized in the
implementation.

3.3.1 System Overview

According to the framework of MomentViz, described in the previous section,
this system can be divided into two parts, data preparation and MomentViz
visualization, which corresponds to the input and output (Figure 3.3).

In the data preparation part, a standard RGBD camera is utilized for
recording the 3D data. By using commercial software, the obtained 3D data
can be visualized in 3D point cloud style in VR via a VR device. In the
MomentViz visualization part, by using the proposed visualization method,
the users can choose the sub-region area for controlling the frame time by one
controller of the VR device.

3.3.2 Hardware

At this stage, as this work focuses on indoor sports like basketball, boxing,
and so on, an RGB-D is chosen for getting the 3D data because of the less
cost and lower computer specs requirement.

One Microsoft Kinect for Windows V2 is utilized for recording 3D data
in this work. This RGBD camera can run at 30 FPS, 1920× 1080 resolution
color, and 30 FPS, 512× 424 resolution depth. As the depth range of Kinect



24 Chapter 3. Interactive Visualization for Rapid Actions

Figure 3.4: Using software Brekel Pro PointClound v2 for recording and vi-
sualizing 3D data: one Kinect V2 is utilized for recording the 3D data, and
Brekel can save the 3D data as several file formats in real time.

V2 is from 0.5m to 8.0m, multiple cameras placed around an indoor sports
arena can cover the whole area (Table 3.1). For instance, four cameras can
almost cover an entire boxing ring (about 6×6m). Aligning multiple cameras
is not the focus of this work, and much research exists on camera alignment
[Córdova-Esparza et al. (2016); Kim et al. (2017); Yang et al. (2013)]. This
work utilizes one set consisting of an RGBD camera to catch the 3D data and
test the performance of this visualization framework. The system is developed
with Unity and the HTC Vive Plugin, and the computer specs are an Intel
Core i7-6700K 4.00GHz CPU, NVIDIA GeForce GTX 1080 GPU, 32G RAM,
and Windows 10 Enterprise Operation System (Table 3.2)

3.3.3 Software

This work utilizes Brekel Pro PointClound v2 (BPC) 1 to record and visu-
alize the depth information. Brekel provides an integrated motion capture
system that can record videos and save the 3D data in real time by using
SDK from Kinect SDK and OpenNI and NITE. This software can record the
3D dynamic scenes by using Kinect V2 and output the recorded information
with a variety of formats, including Alembic, OBJ sequence, PDB and PDC
for Maya, Brekel Real-time File (BRF) for Unity, etc. (Figure 3.4). In this
system, the recorded 3D data is output in the BRF format, which consists of

1https://brekel.com/pointcloud_v2/
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Play/ReplayTime-control
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Figure 3.5: The HTC Vive controller setting for interaction: the Touchpad is
set for pltheay or replay the videos; Menu button is set for casting a Raycasting
line; the Trigger is set for the time-control.

the point cloud information, start time, etc., of every frame. Brekel provides
the plugins for Unity. With these plugins, BPC can easily input the BRF
file, which includes the depth information, into Unity, and then render the 3D
dynamic scenes with Shader. Because of this reason, this work uses Unity as
the primary tool for VR development.

3.3.4 VR Setting

HTC VIVE 2 is chosen as the VR device in this work since it can be simply de-
veloped in Unity. A space with 320mm×250mm is set for the VR environment
area. The users can immerse themselves in the VR environment in this area
and utilize one HTC Vive controller to interact with the MomentViz visual-
ization system. The users can press the Touchpad button to start or restart
videos. When the videos start to play, the controller generates a raycasting
line immediately. The users can move the raycasting line to choose the area
they want to control the time. When they determine the expected area, they
can keep pressing the trigger button to start the time-control, while releasing
the trigger will stop it (Figure 3.5).

2https://www.vive.com/



Table 3.1: Specifications of Kinect for Windows V2

Item Detail

Name Kinect for Windows V2
Color Resolution 1920×1080

Color FPS 30 fps
Depth Resolution 1920×1080

Depth FPS 512×424
Range of Depth 0.5 8.0m

Range of Detection 0.5 4.5m
Depth Angle (Horizontal) 70◦

Depth Angle (Vertical) 60◦

Table 3.2: Specifications of computer in implementation

Item Detail

CPU Intel(R) Core(TM) i7-6700K 4.00GHz
GPU NVIDIA GeForce GTX 1080
RAM 32GB
OS Windows 10 Enterprise
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3.4 Pilot Study
In order to determine the necessity of Time-control and verify the performance
of Time-control in a 3D VR environment, a pilot study is conducted.

3.4.1 Experiment Setup

A total of 8 participants are recruited with an age range from 23 to 27. The
task is to watch a quick typing scene and answer the sequence of the letters
as quickly and correctly as possible (Fig.3.6). One Kinect V2 records all the
scenes, and the distance between the camera and the typist is about 0.5m.
All the character keys are stuck with the key name on white background for
easier recognition.

Every participant performs four visualization methods, including 2D, 3D,
Time-control 2D, and Time-control 3D. To reduce the influence of the exper-
iment order, the participants are divided into two groups, and every group
includes 4 participants. One group starts the experiment with 2D visual-
izations, while the other group tests the 2D visualizations following the 3D
visualizations.

The participants are asked to observe six videos for every method. In
every video, there is a letter sequence typing of 6 letters in random order.
Every video lasts for approximately 5 seconds. The participants are allowed
to replay the videos if they need. To control the experiment time, the number
of total views is limited to 5 per video. After watching each video, partici-
pants are then asked to answer the typing order orally. The answered letter
sequences, task completion time, and the number of total views are recorded.
The participants are asked to fill out a user experience questionnaire after
finishing all the videos.

In the 2D visualizations, participants are asked to finish the task on a
monitor. The keyboard and mouse are utilized for operating the experiment.
For the details, the key "R" is set to start or replay the scene. In the 2D Time-
control visualization, the mouse is set to move the time-control area. If the
mouse keeps still for more than 1 second, slower time-control will start auto-
matically, and when the mouse starts to move, the time-control will end. The
3D visualizations are implemented in VR by HTC Vive. In this VR environ-
ment, they can move and observe the 3D videos from any preferred viewpoint.
An HTC Vive controller is utilized for experimenting. The touchpad is set
for starting or replaying the videos. In the Time-control 3D visualization, the
menu button is set to cast a raycasting line, and the trigger is set for the
time-control. The rate of Time-control is five times slower in this experiment.
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Figure 3.6: A pilot study experiment of observing rapid typing using Time-
control 3D.

3.4.2 Experiment Results

The accuracy, the number of total views, and the completion time of all the
methods are analyzed for objective evaluation. After tasks, a subjective eval-
uation of the user experience questionnaire is also conducted. The experiment
results are shown as follows:

Accuracy As shown in Fig.3.7(a), Time-control 3D had the highest average
accuracy, with 4.854 correctly recognized letters (the maximum number is 6).
The analysis of variance (ANOVA) is utilized to compare the four methods
[Tabachnick and Fidell (2007)]. The Holm method [Holm (1979)] is chosen
for p-value adjustment to evaluate the results.

This analysis finds significant differences between the Time-control 3D and
3D with p < 0.001. It also finds significant differences between Time-control
3D and Time-control 2D with p < 0.01. Cohen’s d [Rice and Harris (2005)]
is calculated as effect size by using the means and standard deviations of the
two groups. Cohen’s d is 0.51 between the Time-control 2D and Time-control
3D. Moreover, between the 2D and Time-control 3D, Cohen’s d is 2.24, and
between the 3D and Time-control 3D, Cohen’s d is 3.08.

Number of Views In order to control the total experiment time, the maxi-
mum views are limited to a total of 5. Then the average number of total views
is calculated for every method. Similar to the accuracy analysis, ANOVA is
also used here to compare the four methods, and the Holm method is used for
p-value adjustment to evaluate the results. The results are shown in Figure
3.7(b).
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From the results, it can be known that in 2D and 3D visualizations without
time-control, every participant uses the maximum available views to observe
the quick typing in all videos. In the Time-control visualizations, the 3D has
a mean of 3.583 views, which is lower than the 2D view average of 4.146.
There is a significant difference between Time-control 3D and each of the
other methods. All the p-values are less than 0.001.

Completion Time The task completion time of every video is recorded.
This completion time is defined as the start of the first view of the video
to the time a participant answers the letter sequence. After calculating the
average value for each method, ANOVA is utilized to analyze the values. The
results are shown in Figure 3.7(c). As can be seen in this graph, there is a
significant difference between 2D and Time-control 3D with p < 0.001. At the
same time, a significant difference is also found between 3D and Time-control
H3D with p < 0.001. Another finding is that the average completion time
values of both Time-control methods are approximately twice as much as the
other methods. Since the Time-control rate is five times slower, the double
completion time is considered an expected result.

Questionnaire All participants are asked to complete a questionnaire after
the experiment. This questionnaire consists of 16 questions, including each
participant’s basic information, HMD experience, and subjective experience of
this framework. Most participants have experience using HMD. The result of
the question "Would you like to use the 3D Time-control visualization for this
task" shows in Figure 3.8 (a). From the results, 75% of the participants want
to use the 3D Time-control visualization, including 37.5% strongly agree and
37.5% agree. For the task "Rank the four visualizations by overall preference",
the results are shown in Figure 3.8 (b). More than half of the participants
(5 participants) consider the 3D Time-control visualization the best of the
four visualizations. Furthermore, 2 participants rank the 3D Time-control
visualization in second place, and no participant rank it in last place.
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Figure 3.8: The results of questionnaire in pilot experiment: (a) The results
of the question "Would you like to use the 3D Time-control visualization for
this task?"; (b) The results of task "Rank the four visualizations by overall
performance".
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3.4.3 Discussion

The experiment results found that in non-time-control visualizations, the ac-
curacy of 3D is lower than that of 2D. One potential reason for this is that for
a participant observing a rapid scene, it is difficult to find the best viewpoint
to observe a target from such a massive amount of information in the free VR
environment, which requires more time in the 3D environment.

Furthermore, it is found that the accuracy of Time-control 3D is higher
than 2D Time-control. It could be interpreted that in 3D Time-control, the
participant has enough time to find a better viewpoint to observe the target.
For this experiment task, the participant can view from the same point as the
camera viewpoint to observe the position of the pressed key clearly and use
the reverse direction viewpoint to understand the key label easily.

Finally, the feedback from the participants noted the difficulty in finding
a viewpoint in the 3D VR environment and unclear detail of motion due to
the low frame rate of the RGB-D sensor.

From the pilot study, it is realized that it is necessary to utilize Time-
control in the 3D environment of the difficulty of the best viewpoint finding.
However, it is also doubtful that having a Time-control of low FPS information
in the 3D environment is still insufficient.

3.5 Chapter Conclusion
In this work, propose a novel 3D Time-control visualization framework called
MomentViz is proposed. This framework can augment the vision for rapid
actions by an interactive time-control visualization method. This method
renders two different time frames at the same position, and the original time
frames overlay the slower time frames. With the technology of stencil, the
slower time frame can be revealed in the user-selected sub-region area. To
evaluate the performance of this framework, a pilot experiment of spectating
rapid typing actions is conducted. Eight participants are recruited to join
the pilot experiment. This framework is evaluated objectively and subjec-
tively by analyzing the accuracy, the number of views, the completion time,
and the feedback of the user questionnaire. The results show that this frame-
work outperforms the other conventional visualizations. The findings from the
feedback motivate the author to improve the 3D Time-control visualization
by using high frame rates data.



Chapter 4

Interactive Visualization with
High FPS for Rapid Motion

4.1 Introduction
Through the pilot experiment, the performance of MomentViz is verified. Us-
ing Time-control visualization, the users can get a better experience in spec-
tating rapid actions. It handles the issue that naked human eyes can not
process rapid actions. However, the limitations of the naked human eyes for
spectating rapid actions have not been resolved entirely. From the feedback
of the pilot questionnaire, a fact is revealed that the low frame rate standard
RGBD cameras also have a higher possibility to miss sampling the crucial
action moment. The previous framework of MomentViz can not solve the
problem that the naked eye will misperceive the crucial moment of rapid ac-
tion.

In order to address this remainder issue, an improved framework of Mo-
mentViz is proposed here. In the improved version, a high-speed camera is
utilized instead of the standard RGBD camera to record the high frame rate
RGB frame data. After camera calibration, coordinates unifying, and 3D fu-
sion, the 3D rapid action frames with high frame rate RGB and standard
depth data are reconstructed. The visualization, which allows the users to
control the frame time in a sub-region area, is also applied in this improved
framework of MomentViz. The implementation and a user study evaluation
experiment are conducted to evaluate the performance of this improved Mo-
mentViz. Twelve participants are recruited to join the experiment, and all
of them tested the three groups: the conventional 3D visualization (3D), the
previous framework of MomentViz (Time-control 3D), and this improved
MomentViz using a high-speed camera (Time-control H3D). The task of
this user study is to spectate a rapid action of stealing the basketball in de-
fense and judge whether this stealing is foul. The aspects of the D prime
value of judgments, the number of views, task completion time, and subjec-
tive questionnaire are analyzed to evaluate the performance. The results show
that the improved MomentViz performs best among the three groups. This
new framework of MomentViz using a high-speed camera can increase the user
experience from the previous framework. The main contributions of this part
can be summarized as follows:
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Depth Data 

High FPS RGB Data

Time-control 
Visualization

Interactive 
Sub-region Selection

Data Recording MomentViz3D Reconstruction

Coordinates Unifying

3D Fusion
(Texture Mapping)

(Frames Interpolation)

Figure 4.1: The framework of improved MomentViz: red box presents the
new changes from the original version.

• propose an improved framework of MomentViz by using a high-speed
camera;

• conduct a user study evaluation experiment to test the performance of
improved MomentViz;

• The results verify that the improved MomentViz could increase the user
experience from the previous framework of MomentViz.

The details of this improved framework, the user study design, the result
analysis, and the findings are presented in the remainder of this chapter.

4.2 Methodology
From the results of a pilot study, it is found that the low sampling rate of stan-
dard RGBD cameras has a high probability of missing recording the crucial
moment since the short moment. According to these findings, an improved
version of MomentViz is proposed in this work. The high-level overview of the
improved MomentViz system is shown in Figure 4.1. The red box shows the
improved parts from the previous version. In order to resolve the issue that
the crucial moment action frame may miss sampling in a low FPS recording,
instead of the standard FPS RGBD camera, this improved version of Mo-
mentViz utilized a high-speed RGB camera to catch the crucial frame. With
the calibration of two kinds of cameras, the RGB data from the high-speed
camera and the depth data from the standard RGBD camera can be aligned,
and the transform matrix can be calculated. After that, the different coordi-
nates data can be unified with the transform matrix. Finally, map the two
aligned data for 3D fusion.
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Depth Data Recording

High FPS RGB Data Recording

3D Fusion MomentViz

Figure 4.2: Images outlining the process of the improved MomentViz, includ-
ing the recording and import of depth (RGB-D) data, recording and calibra-
tion of high FPS camera frames, mapping and fusion of high FPS frames to
3D data, and interactive control of the user’s sub-region of interest.

4.2.1 Coordinates Unifying

Since two kinds of cameras (RGB-D camera and High-Speed camera) are
utilized in this work, every camera and the VR environment have different
coordinates. Calibrating the two cameras and unifying the coordinates is
required. Figure 4.3 shows the different coordinates of this framework. The
details of the coordinates unifying step can be presented as follows:

1. Using the standard RGB-D camera to record the rapid action depth
data. With commercial software, the recorded depth data can be saved
and exported to the point cloud format, including the x, y, and z coor-
dinates. Then map the point cloud coordinates to the virtual world in
the VR environment. So the transform matrix from depth camera coor-
dinates to the virtual world coordinates can be calculated and denoted
as MD→V .

2. Many studies on the topic of camera calibrations have existed [Zhang
(2000); Placht et al. (2014); Strauß et al. (2014); Wang et al. (2007)].
The standard RGBD camera and the high-speed camera can be cal-
ibrated using the checkerboard method. The transform matrix from
the depth coordinates to the high-speed camera coordinates also can be
calculated, which is donated as MD→H .

3. According to the two known transform matrices, the late unknown trans-
form matrix from the high-speed camera coordinated to the VR virtual
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Figure 4.3: The unifying method for different coordinates: (1). get transform
matrix MD→V by depth data; (2). get transform matrix MD→V by cameras
calibration; (3). calculate transform matrix MH→V using the known two trans-
form matrix.

world coordinates is also can be calculated easily by the equation:

MH→V = M−1
D→HMD→V (4.1)

4.2.2 3D Fusion

After unifying the coordinates of different cameras, it is possible to fuse these
two kinds of data to reconstruct the 3D videos. Compared with the previous
framework, this framework has a higher ability to prevent the misperceiving
of a crucial action frame. For instance, when the users control the time as
five times slower, in the previous framework, as the low recording rate, the
system only can extend one frame’s lasting time without providing more new
information. While in this improved framework, as the high-speed camera
is utilized, the new frame data can be played slower, which has a higher
possibility of containing a crucial action moment frame.

However, a troublesome problem arises in this improved framework. Since
the high-speed and standard cameras have different recording frame rates,
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Figure 4.4: The interpolation method for controlling the time slower: In the
case of controlling time to 5 times slower, use surplus RGB frames from the
high-speed camera for interpolating the slower time; duplicate the previous
depth frame for interpolating the slower time. There are slight gaps between
the added surplus RGB frames and the duplicated depth frames.

there is a gap between the fewer depth frames and the more high-speed RGB
frames. Several studies focus on interpolating this gap [Hasler et al. (2009b);
Xu et al. (2005); Lewis et al. (2000)].

As the high-speed camera has a very high frame rate, and the interval
between the data gap is very short, this work duplicates the previous frame
data for all the frames in the gap. Figure 4.4 explains this method. This
figure uses the same instance with five times slower Time-control. Here, the
red blocks represent depth data frames from the standard low recording frame
rate RGBD camera, and the green blocks are the high frame rate RGB frames
from the high-speed camera. When the frame time is controlled as five times
slower, as RGB data from the high-speed camera still has a surplus between
the original Frame 1 and Frame 2, the new frames with the same time interval
can be interpolated into this extended time, which is drawn as I1 to I4. On the
other hand, the low-depth data can not provide more frames between Frame 1
and Frame 2 for interpolation. This work makes a compromise by duplicating
the depth data of Frame 1 for the four new RGB data. This compromise can
not prevent the slight gap between the high FPS RGB data and the low FPS
depth. Considering the interval between these two frames is very short, the
slight gap has little influence on the user experience.
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Microsoft Kinect 
for Windows V2
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data with 30 fps

HTV Vive HMD
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Figure 4.5: The implementation of improved MomentViz: left is the data
preparation process, using a high speed RGB camera for high frame rate
RGB data recording (with 200 fps), and a standard RGBD camera for depth
data recording (with 30 fps); right is the improved MomentViz visualization
process, which is as same as the original MomentViz visualization.

4.3 System Implementation
The implemented system of this improved framework is shown in Figure (4.5)
In this improved framework, one high-speed camera called Detect HAS-U2 1

is utilized to record the RGB data. This camera can provide a maximum of
7500 FPS and a maximum of 2592×2048 resolution color information record-
ing. The detailed specification of Detect HAS-U2 is introduced in Table 4.1.
This implementation uses 200 FPS and 1280×768 resolution for recording the
dynamic scene. This high-speed camera is mounted on the standard RGBD
camera (Kinect) for easy and exact calibration. A board is mounted between
two cameras to prevent the occlusion caused by the two cameras’ lenses. The
setup is shown in Figure 4.6 (a).

At the same time, the software called HAS-U2Basic PC Memory attached
to the HAS-U2 high-speed camera is utilized to record the high frame rate
RGB data (Figure 4.6 (b)). This software provides a video in AVI format.
In the implementation of this work, the open source library Open-CV 2.4
is utilized for extracting the image sequences from the recorded high frame
rates video. The next step is transforming the RGB data coordinates to the
Unity virtual world coordinates using the transform matrix calculated in the
previous steps. Finally, import the high frame rates RGB and standard depth
data into Unity, and map them with the unified Unity virtual coordinates.

1https://www.ditect.co.jp/products/camera/hasu2.html



(a) (b)

Figure 4.6: The hardware and software of improved MomentViz: (a) A high-
speed camera (HAS-U2) mounted on a standard RGBD camera (Kinect V2),
a board is between the camera for preventing the lens overlaid. (b) The
software (HAS-U2Basic PC Memory) is utilized for high frame rates RGB
data recording.

Table 4.1: Specifications of Detect HAS-U2

Item Detail

Name Detect HAS-U2
Sensor 1 Inch CMOS

Resolution 320×20 2592×2048
FPS 100 7500 fps

Lens Mount C Mount
Shutter Speed Max:10Î¼s

Sensor Sensitivity (550nm) 7.7V/lux.s
Camera Power Input 5V
Power Consumption Below 4.5W

Weight About 210g
Size 44×44×81.5mm
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4.4 Evaluation Experiment
To evaluate the performance of MomentViz, a user study experiment is con-
ducted. In this experiment, the participants are asked to judge a simulated
basketball video to distinguish whether the player is fouling when stealing
the ball. All the scenes are recorded from one Kinect coupled with a high-
speed camera. The distance between the player and the cameras is about
5m. The main goal is to test the effectiveness of this improved framework of
MomentViz.

4.4.1 Experiment Setup

Twelve participants are recruited to participate in the user study experiment,
including nine males and three females aged 23 to 29. Participants are asked
to watch the enactments of a basketball player attempting to steal the ball
from the opponent (Figure 4.7). The task is to judge whether or not the steal
would result in a foul (whether the defender hit any part of the attacker’s hand
while stealing the ball). The crucial moment of stealing the ball continued for
approximately 0.03 seconds (6 frames), which was not long enough for the eye
to grasp fully.

Three groups with different visualizations are tested, including the 3D
visualization without time-control, Time-control 3D visualization, and Time-
control H3D visualization (using the high-speed camera). The experiment is a
repeated measures design, and eight scenes are tested for every visualization,
randomized to alleviate ordering effects. All trials are conducted within a
controlled VR environment. Participants wear an HTC Vive to watch the
enacted scenes, and they use one of the HTC Vive controllers to finish the
task.

All the scenes last approximately 3 seconds. The Time-control rate is
set as five times slower in this experiment. Similarly, the maximum number
of views is limited to 5 for every scene to control the total experiment time.
Participants can make a judgment with less than five views if they are already
confident enough to make a correct judgment.

4.4.2 Experiment Results

The results of the experiment are analyzed on both quantitative and subjective
measures. Quantitative measures included the d prime value of judgments,
the number of total views, and the task completion time, whereas subjective
results are from a questionnaire.

D Prime Value of Judgments As the judgments are binary values with
"yes" and "no", the d prime value (d’) [Stanislaw and Todorov (1999)] is
chosen in this analysis instead of accuracy, which is more suitable for analyzing
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Figure 4.7: mage taken from the experiment videos of a player enacting a
basketball foul with different visualization methods using Time-control H3D.

in this scenario. The d prime values of the three visualizations are calculated
for each participant. In order to avoid the hit rate being 1 or 0, the upper
limit and lower limit are adjusted slightly to 0.99 and 0.01. Then the mean
and the standard deviation are calculated. The ANOVA is utilized to analyze
the multiple-group results.

As shown in Figure 4.8(a), Time-control H3D has the highest d prime value
of judgments with an average of 3.302 in all eight scenes. Similar to the pilot
study, an analysis of variance (ANOVA) revealed a significant effect between
3 visualizations, which is confirmed with the Holm method for adjustment to
evaluate the average d prime value.

From this analysis, it is found that there is a significant difference between
3D and Time-control H3D with p < 0.05. Cohen’s d values are also calculated
as the effect size. The Cohen’s d is 1.27 between the 3D and Time-control
H3D. On the other hand, there is no significantly different between 3D and
Time-control 3D.

Number of Views In order to control the total experiment time, the max-
imum views are limited to a total of 5. The average number of views for every
visualization is calculated. After the ANOVA analysis for comparison of the
three visualizations and the Holm method for p-value adjustment, the results
for the number of views are shown in Figure 4.8(b).

It is found that Time-control H3D required the lowest number of views,
coming in at 2.552 times. In addition, significant differences between 3D and
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Time-control 3D are found in this case, with p < 0.001. Moreover, there are
significant differences between the 3D and Time-control H3D with p < 0.001.
Cohen’s d values are also calculated as effect size. It is 0.62 between 3D and
Time-control 3D. Furthermore, between 3D and Time-control H3D, Cohen’s
d is 0.83. However, no significant difference is found between Time-control
3D and Time-control H3D.

Completion Time The task completion time for every scene is also recorded.
It is defined as the start of the first view of the scene to the time a participant
makes a judgment. Each visualization’s average completion time is calculated,
and ANOVA is used to analyze the results. The detail of the results is shown
in Figure 4.8(c). There are significant differences between 3D and both Time-
control visualizations with p < 0.001. For the average completion time values,
3D is 15.15s, Time-control 3D is 32.79, and Time-control H3D was 32.21s.
These results can be regarded as favorable since both Time-control 3D and
Time-control H3D are only twice as long as 3D despite the videos being five
times slower.

Questionnaire Finally, the subjective questionnaire is checked, which the
participants filled out after all the trials. The questionnaire consisted of 15
questions, including demographics, experiment experience, subjective evalua-
tion, and comments. From the results, a quarter of all the participants have
no experience with an HMD, and 58.3 percent of participants do not feel tired
during the experiment. For the subjective questions, the answers are set in 5
levels as follows:

• Label 1: Strongly disagree;

• Label 2: Disagree;

• Label 3: Neutral;

• Label 4: Agree;

• Label 5: Strongly agree.

The result of the question "Can you see the foul moment definitely" is
shown in Figure 4.9(a). It can be found that the median values of both Time-
control 3D and Time-control H3D are 4. These results exceed the median
value of 3D visualization, which is 2. From the results of the Friedman test and
post-hoc Nemenyi test [Pohlert (2014)], it is found that there is a significant
difference (p = 0.012 < 0.05) between 3D and Time-control 3D. There is
also a significant difference (p = 0.001 < 0.01) between 3D visualization and
Time-control H3D.

The result of the question "Would you like to use this mode for this task?"
is depicted in Figure 4.9(b). Same as in the previous question, the median
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values of both Time-control 3D and Time-control H3D are 4. They are higher
than the 3D visualization, which is 2. By similarly utilizing the Friedman
and post-hoc Nemenyi test, the differences in multiple groups are tested. In
the results, there is a significant difference (p = 0.0217 < 0.05) between 3D
and Time-control 3D, and also a significant difference (p = 0.0044 < 0.01)
between 3D and Time-control H3D.

The result of the task "Rank the three visualizations by overall preference"
is shown in Figure 4.9(c). Labels 1, 2, and 3 mean the first, the second, and
the third place, respectively. In this figure, it can be known that Time-control
H3D achieved the best results, for which the median value is 1. On the
contrary, 3D has the worst results, for which the median value is 3. Time-
control 3D is in the middle.
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4.5 Discussion and Future Work
According to the experiment results, it can be found that Time-control H3D
outperformed conventional 3D visualization, which is good evidence that Time-
control visualizations can perform well with rapid motion. The reason is likely
due to the rapid speed of action. The users needed more time to find a better
viewpoint to observe the dynamic scenes in the 3D visualization. However, in
this Time-control experiment, the time dimension could be controlled more
efficiently to resolve this issue. Therefore, participants have enough time to
find a better viewpoint. As in the example presented in Figure ??, (a) and (b)
shows that in the viewpoint from below, it is easier to see that the defender’s
little finger touched the attacker’s hand, and these Time-control visualizations
can afford the users enough time to find this viewpoint.

Moreover, for the typing action in the pilot experiment, the action of a
finger moving or pressing already can reveal typing the key. Participants
need not judge whether the typist really pressed the key and just need to
observe the pressing position. However, for the basketball foul judgment scene,
participants should judge whether the player touched another player’s hand,
which is more complex than the typing scene. Hence, it can be inferred that
the low FPS Time-control 3D would not be enough for a complex sports
action. On the other hand, time-control H3D, which fuses high FPS frames
with 3D data, can provide participants with more detailed information and
still keep good performance. One typical example of the differences between
these two methods can also be observed in Figure ??. In this case, the camera
with the low sampling rate prevented the crucial frames from being recorded
during the foul. (c) Shows the blurry frames that likely caused some judgment
confusion. On the other hand, (d) shows that Time-control H3D provides a
higher probability that the crucial moment will be recorded. The d prime
value results also can verify the inference. In the evaluation experiment, there
is no significant difference between 3D and Time-control 3D, which means
the Time-control 3D is not enough for this complex action. However, Time-
control H3D has a significant difference with 3D, and it verifies well that
Time-control H3D has better performance in rapid motion, especially in some
complex sports scenarios.

Several remaining challenges still exist, which are expected to be improved
in future versions. First, although Time-control H3D provides sufficient time
to find an appropriate viewpoint to observe movements, it is still difficult for
users to quickly find the best viewpoint in the VR environment. An automatic
viewpoint optimization is desired in such a great amount of information in a
free VR environment. Secondly, participants mentioned that the deviation
between high FPS frame color information and low FPS frame depth infor-
mation caused some blur, which likely influenced the system’s performance.
In addition, the hue difference between the low FPS color frames and the
high FPS color frames also influenced the user experience. More appropriate
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frame interpolation and color enhancement methods are expected to be ex-
plored in the following work. Finally, this work chooses slow motion as the
case of Time-control. In the actual situation, rapid motion is also expected in
some cases. For example, much time is void in sports like boxing or baseball.
Keeping rapid motion in Time-control can allow the spectators to save time
to skim this low valuable information.
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4.6 Chapter Conclusion
In this work, the previous framework of MomentViz is improved by using a
high-speed camera to get the high frame rate data. This improved framework
not only provides time-control visualization but also provides higher frame
rate RGB information which has a higher possibility to record the crucial ac-
tion moment action frames. The camera calibration coordinates unify, and 3D
fusion is processed sequentially to reconstruct the 3D frames. A user study
experiment with 12 participants is conducted to evaluate the performance
of the improved framework. The task is to spectate the simulated basket-
ball videos and judge the rapid actions of stealing the ball. The d prime of
judgment, the number of views, and the completion time are analyzed as the
quantitative evaluation, while the user experience questionnaire is checked for
the subjective evaluation. The user study experiment results suggest that the
improved Time-control framework outperforms the previous framework and
can increase the user experience when spectating rapid sports videos.





Chapter 5

Viewpoint Optimization Based on
Individual Preference

5.1 Introduction
Along with the development of VR technology, watching sports matches in
VR already comes true. However, the issue that the crucial actions may be
occluded from some bad viewpoint angle when spectating the sports also exists
in VR. Moreover, from the finding of Chapter 3, it is more difficult for the
spectators to find a good viewpoint in the 3D space of the VR environment.
Optimizing the viewpoint for spectating sports videos in VR is an urgent need.

As noted in Chapter 2, conventional viewpoint selection methods ignore
the individual preference of spectators, select the viewpoints by the directors
or research rules, and provide the same view to all the spectators who may
have different preferences. In order to break through these limitations, this
work proposes a novel optimal viewpoint selection method for watching sports
actions that depend on individual preferences. This work chooses boxing as
a target case since, in boxing matches, the frequency of boxers moving and
rotating leads to more situations where the crucial action is occluded. This
work uses a neural network classification model for optimal viewpoint training.
In the training model, the visibility of the boxer’s upper body parts, the punch
side, and the punch offset are extracted as the features; the user-selected
preferred viewpoints are collected through an experiment as the training label.
To get the visibility of boxer upper body parts, a method that raycasting
the boundary box to check the visibility is proposed. With the rule of least
visibility difference (LVD), the user-selected viewpoints can be classified into
finite candidate viewpoint classes, which are set in advance.

The accuracy of training results is evaluated as the scientific evaluation.
In order to verify the empirical performance of this work, a user study is con-
ducted. Twenty-one participants are recruited to join the experiment. All the
participants test the system optimal viewpoint suggestion group (SmartVP)
and random common viewpoint group (No SmartVP) in this experiment. The
hypothesis is: 1). the SmartVP can reduce the moving steps for the user to
find a preferred viewpoint. 2). the viewpoints SmartVP suggested can get
higher user-satisfied scores. The user study results verify that the hypoth-
esis is accepted and gives strong evidence that this framework can optimize
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Figure 5.1: The high-level overview of framework, includes three steps with
data preparation, data training and evaluation.

the viewpoint for spectating sports occluded actions depending on individual
preference.

The main contributions of this work can be summarized as follows:

• Design and conduct an experiment to collect the user-preferred view-
points;

• Extract the features and propose a method to get visibility;

• Propose a method to label the continuous user-selected viewpoints;

• Design the training model for optimal viewpoint selection training;

• Conduct a user study experiment to evaluate the system’s performance.

The remainder of this chapter presents the framework details, the user study
design, the evaluations, and the findings from the results.

5.2 Methodology
This method utilizes complete 3D information and considers the personal
preference of the spectator for watching a boxing punch action. It has an
integral and systemic neural network framework, which includes three steps:
data preparation, data training, and result evaluation. Figure 5.1 shows a
high-level overview of the framework.
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a b c

Figure 5.2: Make the 3D video from the real boxing punch scene (a) record
the real boxing scene with a depth camera. (b) extract the skeleton data. (c)
use skeleton data to make the 3D boxing video.

5.2.1 Data Preparation

Preparing the training data is the first step in this work, including boxing
punch actions 3D information as the training features values and the optimal
viewpoints spectators selected as the training label values.

In order to get honest and reliable boxing punch actions 3D information,
two boxers are recruited to simulate the actual boxing punch scenes. The
marker-less method depth camera is utilized to avoid the markers affecting
the boxers’ performance. However, there are some research and technology
about 3D reconstruction for humans with depth data [Dou et al. (2016); New-
combe et al. (2015)]. As 3D reconstruction is not the main topic of this work,
moreover, for the goal of this work, the exact pose is more required than the
reality of the 3D model. Considering the reason above, instead of natural
human body 3D reconstruction, 3D avatar boxing punch scenes using exacted
skeleton data is a better choice (Figure 5.2).

To collect the optimal viewpoint data which the spectators selected when
they watched the boxing punch actions, we designed and conducted an ex-
periment in VR. We set some experiment limitations to simplify the problem
and control the experiment time. The distance and height of the user view-
point are constrained. The viewpoint height is fixed at 1.5 meters, which is
approximately the height of the boxers’ hands. The scene center is forced to
be set to the center of two boxers, taking it as the center of a circle and 1.5
meters as the radius. On this circle, which we call the View Ring, experiment
participants can freely select any angle as their optimal viewpoint. The values
are continuous in the scope from 0◦ ∼ 360◦ (Figure 5.3).

5.2.2 Features

Depending on the possibility of influencing the viewpoint selection for spectat-
ing boxing punch action videos, these features are extracted for data training
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Front View Top View

1.5m 1.5m

1.5m

View Ring

View Ring

Figure 5.3: The size of the view ring (the height is 1.5m, the radius is 1.5m, the
ring center is the center of two boxers, viewpoint focuses on the ring center).
Experiment participants can turn the viewpoint around the center of this ring
to choose their preferred viewpoints.

from the 3D punch action scenes:

Visibility (V) The visibility of boxers’ body parts should be the most im-
portant factor for viewpoint selection. Unlike the viewpoint selection method
for general human actions, different body parts should have different impor-
tant weights for watching boxing punch actions. The boxer’s upper body is
separated into eight parts: head, body, left hand, left arm, left forearm, right
hand, right arm, and right forearm. The main idea is that calculate the visi-
bility of every part from the viewpoint and then get a series of visibility data
composed of 16 body parts from 2 boxers.

The raycasting approach is utilized to reduce computation consumption
and increase precision instead of the traditional computer graphic image recog-
nition method. The first step is binding a box collider for every part, tagging
the collider with its part name, and then setting 12 checkpoints on the box
vertexes of each part (Figure 5.4). The next step is casting the rays from the
viewpoint to all checkpoints and getting the collision information. Then check
the collider tags of all the checkpoints which the raycasting returned. If the
returned collider tag is the same as the box tag, it means this checkpoint is
not occluded (Figure 5.5). The final step is summing the visible checkpoint
counts for every part. These visible checkpoint counts represent the visibility
of parts.

Punch Side (PS) The punch side indicates which hand casts this punch.
As the punch side has a possibility to influence the viewpoint from which side,
it is also essential for viewpoint selection. As a result, it is extracted for the
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Figure 5.4: A model for visibility calculation by using boundary box: divide
the boxerâs upper body into 8 parts, bind a box collider to each part, and set
12 checkpoints for every box vertex (pink points in right figure). Check the
number of visible checkpoints to present the visibility of each part.

model training. In order to combine the categorical data and numerical data,
one-hot is utilized for encoding. The left punch is encoded as 1, and the right
punch is encoded as -1. This feature is marked manually in advance (Figure
5.6).

Punch Offset (PO) A large offset reveals that the punch is dodged in
this scene, and the dodged punch usually brings less occlusion, so multiple
viewpoints have a chance to be selected by the spectators. For this reason, the
punch offset also is considered to influence the viewpoint selection results. The
method to extract this feature is simply getting the center position of the hand
tip checkpoints and the center of the head checkpoints, then automatically
calculating the distance of these two center positions. (Figure 5.6).

5.2.3 Label Design

From the user experiment mentioned in the previous section, it can get the
optimal viewpoint data of every check punch action frame. Since the partic-
ipants can select any viewpoint freely on the view ring, the collected data is
continuous. However, as one particular occluded bad viewpoint angle may be
in the middle of two good viewpoint angles, the viewpoint quality is not linear
and continuous on the view ring by its spatial position. Moreover, the contin-
uous label values need enormous data sets for training, which is challenging
to realize in this work.

In order to solve these difficulties, the continuous viewpoint data is ex-
pected to transform into the discrete viewpoint data in the scope of a finite
set. The idea for this issue is to separate the view ring into equal angles, set
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Figure 5.5: Raycasting approach for checking the visibility of two checkpoints
on the head. (a) The collider tag is "right hand", which is different from
the checkpoint position "head" and means occluded. (b) The collider tag is
"head", same as the tag of checkpoint position, and means visible.

the virtual candidate viewpoints on the divided angles, and finally classify all
the participants selected optimal viewpoint data into these candidate view-
points by the rule. More candidate viewpoints can get more precise viewpoint
classification, meanwhile needing more data sets to train the models. In prac-
tice, finite candidate viewpoints should be set by the data set size. After the
classification, all the participant-selected optimal viewpoints belong to several
classes, and these are used as label values for the training.

For the viewpoint classification rule, choosing the closest Euclidean Dis-
tance to label the optimal candidate viewpoints to the candidate viewpoint
classes is the most straightforward idea. Since the viewpoint quality is not
linear in the spatial position on the view ring, even the closest Euclidean dis-
tance can not ensure having a similar view if the closest candidate viewpoint
gets the occluded view by coincidence. So instead of the spatial position, the
rule that finds the least difference in visible checkpoint counts is proposed in
this work. This rule’s essence is focusing on the view contents themselves. It
is assumed that the least difference of all boxer body parts visibility can repre-
sent the most similar view of the boxing punch action scene. As the previous
section explained, the raycasting approach gets the visible checkpoint count
series of boxers’ body parts from the optimal viewpoint participants selected.
Using the same way, it also can get different visible checkpoint count series
from each candidate viewpoint. Then compare the optimal viewpoint visibil-
ity series and all candidate viewpoints visibility series, and calculate the sum
difference of every body part by absolute values for each candidate viewpoints.
Finally, pick up the one with the least difference, and set it as the label value.
The equation can be represented as:
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Punch Offset
(PO)

Punch Side
(PS)

Figure 5.6: The features of punch side and punch offset: punch side indicates
which side of hand casts the punch, punch offset presents the distance from
the punch to the head. This two features are marked manually in advance.

i∗ = argmin
i=(0,...,Cvp)

Dif(i) (5.1)

where

Dif(i) =
16∑
j=1

|V̄j − Vi_j| (5.2)

is the visibility difference function. i is the number of the candidate view-
point, j is the number of the body part (2 boxers, a total of 16 body parts),
Cvp is the count of all candidate viewpoints, V̄j is the visibility of j body part
in the optimal viewpoint participant selected, and Vi_j is the visibility of j
body part in the candidate viewpoint i.

For example, In Figure 5.7 (a case of 8 candidate viewpoints), the red
viewpoint is the optimal viewpoint participant selected from Euclidean dis-
tance, and candidate viewpoint 6 is the closest one, but if compared with
the visibility difference, candidate viewpoint 7 has the least difference. So, in
this case, viewpoint 7 is regarded as the label value. This rule also has its
limitation, as the body parts have different important weights for viewpoint
selection in our supposition, so classifying the viewpoint to one with less dif-
ference in total parts but more difference in some important parts will result
in the error. However, the limitation just exists in the few cases, which will
not seriously affect the training results.
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Figure 5.7: A case labeling the user-selected viewpoint to the candidate view-
point by visibility difference (candidate viewpoint 6 is closest to the spectator
selected viewpoint, but candidate viewpoint 7 has the least visibility differ-
ence)

5.3 Implementation
The approach is realized by using a neural network model. This section de-
scribes the implementation of data preparation and training.

5.3.1 Punch Data Collection

One Azure Kinect was utilized in the implementation to capture the actual
boxing punch motion, which has an RGB camera with a maximum of 3840×
2160 resolution in 30FPS and a depth camera with a maximum of 1024×1024
resolution in 30FPS. With the help of a boxing gym, two boxers were hired
to simulate the real boxing punch videos. The helpers, a former professional
boxer and another an amateur boxer, are experienced and familiar with any
boxing punch. The recording was conducted in the ring of a boxing gym.
The camera was set at the corner of the boxing ring, and the height was
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Figure 5.8: The Azure Kinect depth camera setting for boxing punch scene
recording: one Azure Kinect depth camera is set in the corner of the boxing
ring.

approximately the same as the boxer’s hands (Figure 5.8). Sixteen boxing
videos were recorded successfully, including job, cross, hook, and uppercut,
four different boxing base punch types. The punch target was limited to the
head; some punches were designed to hit the target, and others were dodged.
Azure Kinect can trace 32 human body joints’ depth data (both position and
quaternion) directly 1. The pose temporal data was obtained using the simple
middle interpolation method of occluded joint data with neighbor frames.

5.3.2 Labelling Experiment

The labeling experiment is implemented in the VR environment by HTC Vive.
Twenty-four participants (16 males and 8 females, ages 19 to 25) are recruited
to participate in our experiment. Considering the experiment time, we chose
16 boxing punch videos covering all four punch types and randomly divided
them into two groups. Every group has eight videos, and 24 participants would
be divided into these two groups equally. Every punch video extracts three
punch-hitting moment frames for the user to choose the preferred viewpoint.
Finally, three different preferences are set in the experiment as follows:

• No Preference (None): This task is to see the punch clearly, and dis-
tinguish whether this punch was hit or dodged.

• Preference Arm Form (AF): The participants are asked to see the punch-
hitting moment clearly, and the punch arm form as clearly as possible.

• Preference Facial Expression (FE): The participants are asked to see the
punch clearly, meanwhile could see the punched boxer’s facial expression
as clearly as possible.

1https://docs.microsoft.com/en-us/azure/kinect-dk/body-joints
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Play/Replay

Viewpoint Save Viewpoint Rotation

Figure 5.9: Using one HTC Vive controller for viewpoint selection in experi-
ment: Menu button is set for playing and replaying the videos; Touchpad is
set for rotating the viewpoint on the view ring; Trigger is set for saving the
selected preferred viewpoint.

Group None is the control group. AF and FE are two cases of spectator
preferences. The participants are asked to watch the punch action videos and
check several given frames to select the optimal viewpoint according to the
above tasks. The participants sit in the Vive space during the experiment,
and the default viewpoint is set to face the center of the view ring. The
participants use a Vive controller to control viewpoint rotation and select the
viewpoint (Figure 5.9). Every participant should finish all three preference
groups. Moreover, to reduce randomness in participant selections, every video
was asked to finish three times in random order. The total experiment time
of every participant is 120 minutes, including several breaks (Figure 5.10).

5.3.3 Neural Network Model Design

Since the viewpoint selection problem is complex and nonlinear, and the data
set has a scale of thousands, the neural network classification model is chosen
for data training. The goal is that by using the proposed features, the trained
model can predict the optimal viewpoint of any boxing punch action scene
for the spectators based on their preferences. In this model, the main idea is
that input the scene punch features (punch side and punch offset) and every
body part visibility from all the candidate viewpoints; the output value is
the optimal viewpoint class. For the label of training data, considering the
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Figure 5.10: A labeling experiment for collecting the user preferred viewpoint
in different preference condition: left top is scene view of the experiment
program, left bottom is the view in VR device which the user can see, right
shows that a participant takes part in the experiment who is sitting on a chair
and using a controller to select preferred viewpoint.

experiment time and cost, eight candidate viewpoints are set in advance as
the case in this work, which 45◦ between two candidate viewpoints. The
candidate viewpoints are fixed at the position on the view ring and named
from viewpoint 0 ∼ 7 in order (Figure 5.11).

Figure 5.12 shows the training data format details. OVP refers to the op-
timal viewpoint class, which transforms from the participant-selected optimal
viewpoint, and the value is in scope from candidate viewpoint 0 to candidate
viewpoint 7. V represents the visibility of every body part from a particular
candidate viewpoint, as we set 8 candidate viewpoints. This type of data has
eight groups, and every group has 16 numbers, which include two boxers with
eight body parts (head, body, left hand, left arm, left forearm, right hand,
right arm, right forearm) for each boxer. This information involves the view
features of every candidate’s viewpoint. The last two numbers PS and PO de-
note the scene’s punch side and offset, which covers the frame features. With
the scene punch features, this model is expected to learn the important weight
of every body part visibility, understand the interrelation between the body
parts visibility of every candidate viewpoint, and the result of the optimal
viewpoint class.

The advantage of this model is that it is straightforward to use and does
not need any other additional post-processing in the output values. On the
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Figure 5.11: The candidate viewpoints setting in this implementation: 8 can-
didate viewpoints are set on the view ring evenly, and 45 degrees between the
two candidate viewpoints.

OVP V0_1 V0_2 … V0_15 V0_16 … V7_1 V7_2 … V7_15 V7_16 PS PO

Output Input

Candidate Viewpoint 0 Candidate Viewpoint 7…

One Set of Training Data (131 numbers)

Figure 5.12: The format of one set of training data in the classification model:
OVP is the optimal viewpoint class, V is body part visibility including 2 boxers
total 16 parts, PS is punch side, PO is punch offset.

other hand, the training result is strongly influenced by the training data set.
If some particular candidate viewpoint classes have little or a loss of training
data, these classes will have a high possibility to result of insufficient training.

5.3.4 Data Training

The python scikit-learning library is utilized for implementation and training.
In this model, every selection by the participants is regarded as one set of
training data. 24 participants are separated into two groups. Every group
checks 16 videos, and every scene has three frames for checking. Every frame
is checked three times by each participant, so there are a total of 1,728 sets of
training data for every experiment task. After multiple trials, the following
parameter setting yields the best training results (Table 5.1). The solver is
set as "adam" because of the large amount of data set, over 1000. Since the
internal relations between input and output are multilevel and indirect and
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the input dimension is large, four levels of hidden layers are set, and (200,
100, 50, 50) neural nodes for every hidden layer, respectively. For the acti-
vation function, "logistic sigmoid" is chosen because of its good performance
in classification problems. Max iteration times are set to be 10,000. K-fold
cross-validation is utilized to separate the training and test data, and the k
is set as 8 in this implementation. The average training time is less than one
minute.

5.4 Evaluation and Discussion
In order to evaluate the performance of SmartVP, the scientific evaluation of
the machine learning training result and the empirical evaluation of a user
study result are analyzed.

5.4.1 Scientific Evaluation

According to the different additional preferences in the data collection exper-
iment, three groups with None, AF, and FE are trained. After the training,
the model can predict the optimal viewpoint from candidate viewpoint classes
for any boxing punch scene. Since the viewpoint selection problem does not
have any ground truth, all the label values depend on the objective selection
of participants, and no scene can get a uniform selection from all the par-
ticipants. Simply comparing the predicted optimal viewpoint and the most
selected viewpoint can not evaluate this problem precisely.

A method called Ratio Highest Accuracy (RHA) is proposed to evaluate
the results more precisely. This method first picks up the highest selection
count in each frame, then calculates the RHA for every candidate viewpoint
by calculating the ratio to the highest score. For instance, the case 1 in Table
5.2, the RHA of viewpoints 0, 2, 3, and 7 are 0%, and the RHA of viewpoint
1 is 66.7%, which is calculated by 8/12. Similarly, the RHA of viewpoint 6
is 33.3%. Viewpoints 4 and 5 can get 100% accuracy. In case 2, viewpoint 2
gets the RHA as 91.7%, which can keep its real value well. The final results of
this model with different preferences are obtained through this method (Table
5.3).



Table 5.1: Parameter setting of data training

Solver adam
Activation function logistic
Hidden layer levels 4
Neutral nodes (200,100,50,50)
Max iteration 10000
K-fold 8

Table 5.2: Two cases of the experiment participants’ optimal viewpoint selec-
tions.

VP0 VP1 VP2 VP3 VP4 VP5 VP6 VP7
case 1 0 8 0 0 12 12 4 0
case 2 0 5 11 2 0 4 12 2

Table 5.3: The results of data training

None Arm Form (AF) Facial Expression (FE)
64.93% 68.61% 75.31%
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5.4.2 User Study

In order to evaluate the practical performance of SmartVP, a user study by
implementing a recommendation viewpoint system for boxing punch video was
designed and conducted. This user study utilized eight punch videos that had
not been used for training. Four videos were used for Preference AF, and the
other four were for Preference FE. The punch moment frame was extracted for
prediction, and the predicted value was regarded as the optimal viewpoint for
this punch video. Twenty-one university students aged 18 to 25 were recruited
to participate in the user study, including 10 males and 11 females. All the
participants were asked to finish the tasks of two groups, one was applying
SmartVP, and the other was the control group without SmartVP. Each video
was tested in two groups. The experiment process has two phases.

• Spectating Phase: Phase 1 is the Spectating Phase. In this phase, the
participants were asked to observe the punch video from each candidate’s
viewpoint and find the best viewpoint depending on different preferences
(Figure 5.13 (a)).

• Selecting Phase: Phase 2 is the Selecting Phase. In this phase, firstly,
the system will choose an initial viewpoint. The SmartVP group chose
the predicted optimal viewpoint as the initial, while the control group
chose a random one from the other seven common candidate viewpoints
(not the optimal viewpoint). Then the participants were asked to move
the viewpoint from the initial viewpoint to the best viewpoint they se-
lected in phase 1 (Figure 5.13 (b)).
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Figure 5.13: Two phases of user study: (a) Spectating Phase: in this phase,
two groups will be the same cooperating, and the system will rotate the view-
point from candidate viewpoint 0 to 7. From each candidate viewpoint, the
punch video will replay once. The users are asked to spectate the videos from
all the candidate viewpoints and try to compare all of them.; (b) Selecting
Phase: in this phase, the system will automatically rotate the viewpoint to
the initial viewpoint first. In the SmartVP group, this initial viewpoint is the
optimal viewpoint, while in the No SmartVP group, this initial viewpoint is a
random common viewpoint. Then the users are asked to rotate the viewpoint
from the initial viewpoint to the viewpoint they prefer.
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Figure 5.14: The rule of moving step count: Moving to the neighbour candi-
date viewpoint counts one moving step, and the maximum moving step is 4.

Moving the viewpoint to the nearby candidate viewpoint counts as one
moving step, so the maximum moving step for every video is 4 (in this case, two
viewpoints have an angle of 180 degrees) (Figure 5.14). The participants could
replay the video from any candidate’s viewpoint in this phase. Twenty-one
participants were divided into three groups, and in every group, 7 participants
got a different one from the 7 common candidate viewpoints as their control
group’s initial viewpoint. When one group’s tasks finished, the participants
were asked to score the performance of initial viewpoints from 1 to 7. A higher
score means better performance of viewpoint. An ethical review was reviewed
by the university IRB (Institutional Review Board) in advance, and all the
participants were asked to fill out a questionnaire after the experiment.

Hypothesis From the scientific results of the training model evaluated in
section 5.4.1, this method is excepted to have the potential to optimize the
viewpoints in the practical application. So the hypothesis of the user study
can be set as follows:

H1 Both Preference AF and FE, the participants in SmartVP group needs
fewer moving steps to reach the best viewpoint.

H2 Both Preference AF and FE, the initial viewpoints of the SmartVP
group are more satisfied by the participants.

5.4.3 Empirical Evaluation

The user study results are shown in Figure 5.16. For the moving step ( Figure
5.16 (a) ), in Preference AF, the average moving step of SmartVP and No
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* * * * * * * * * * *
* * : p<0.01

* * * : p<0.001

(a) (b)

AFAF FE FE

Figure 5.15: The user study results: (a) the moving steps from the initial
viewpoint to the user-selected best viewpoint. (b) the user-graded score of the
initial viewpoints. (The initial viewpoints in the SmartVP group are system-
recommended optimal viewpoints, and in the No SmartVP group, they are
the random common viewpoints.

SmartVP are 1.512 and 2.083, respectively, and the p-value is 0.0033 by the
Wilcox test. In Preference FE, the average moving step of SmartVP and No
SmartVP are 0.917 and 1.964, and the p-value is smaller than 0.001. For the
initial viewpoint participants graded ( Figure 5.16 (b) ), in Preference AF,
the average scores of SmartVP and No SmartVP are 5.333 and 3.81, while in
Preference FE, the scores of these two groups become 5.619 and 4.19. The
p-values are lower than 0.001 in both preferences.

5.4.4 Discussion

From the questionnaire, although 17 participants were first-time using VR
HMD, just 10 participants felt a little uncomfortable, and 1 participant felt
uncomfortable in the user study experiment. It can contribute to the rea-
sons that instead of switching viewpoints suddenly, we showed the viewpoint
moving process and stopped the video replay when the viewpoint was moving.

From the data training results, it can be found that the Preference AF
and FE get higher accuracy among the three tasks than the control group
None. The reason can be attributed to the fact that there are usually multiple
viewpoints for clearly watching a punch action. Without specific preference,
the spectators are confused about selecting an optimal viewpoint, leading to
various selections and the lowest accuracy (Figure 5.16.(a)). The AF task
gets the middle accuracy. For the reason of Preference AF, by observation,
usually more than two directions that the spectator could watch the arms
form clearly (Figure 5.16.(b)) was majority to be selected, it results in lower
accuracy than FE. On the other hand, for the FE task, since the spectators
prefer enjoying the expression of the punched boxer, they will keep their view
on the more limited angles. Just these limited angles can ensure watching the
punch actions clearly and observing the expression at the same time(Figure
5.16.(c)).
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From the results of the user study, hypotheses H1 and H2 are verified.
The lower average moving steps in the SmartVP group in both preferences
means the users require less time to find their preferred viewpoint when they
are using the system to watch a boxing punch video. The higher score of
the initial viewpoint in the SmartVP group in both preferences can conclude
that the optimal viewpoints that the SmartVP system recommended are more
satisfying to the users than those without SmartVP.
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Figure 5.16: The typical cases of different preferences in user study: (a) Pref-
erence None usually has multiple directions of optimal viewpoints to see the
punch hitting clear; (b) Preference AF normally has two directions of optimal
viewpoints to see the punch hitting and arm form clear; (c) Preference FE
commonly has just only one direction of optimal viewpoint to see the punch
hitting and face expression clear.
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5.5 Chapter Conclusion
This work proposes a novel method to optimize the viewpoint for watching
sports actions according to the different spectator preferences. For an imple-
mented case of the boxing match in this work, a visibility model that utilizes
eight collision bounding boxes is designed to calculate the visibility of upper
body parts. An experiment is conducted to collect the spectator’ optimal
viewpoints from 24 experiment participants under three controlled preference
conditions: seeing the punch Arm Form (AF), seeing the Facial Expression
clearly (FE), and having no restriction (None). With the features of body
parts visibility, punch side, punch offset, and the label of the participant-
selected optimal viewpoints, a neural network classification model is trained.
A method is introduced to evaluate this training model. The results show that
this method has promising performance and can reproduce the optimal view-
point with user preference (68.61% of accuracy for AF and 76.48% for FE).
A user study is conducted to evaluate the empirical performance of SmartVP.
The user study results also support that this method has promising perfor-
mance in a practical application system.

5.6 Future Work
Considering the experiment time and other practical conditions, several limi-
tations are set in this implementation, such as a 2D view ring and a specific
angle of viewpoint. In the future, it is worth extending the view ring to 3D
space and testing the influence of different viewpoint heights. In addition, ex-
ploring the influence of the time factor between frames in viewpoint selection
also will be the main work in the next step.

Finally, the author hopes this research encourages future preference-based
viewpoint selection techniques and the development of portable MR devices for
use in watching sporting events both by broadcasting and live in the stadium.





Chapter 6

Conclusion

This dissertation presents an interactive visualization theory for watching
rapid and occluded sports actions in VR. This theory is a primary visual-
ization study for the case in future VR sports spectating applications. It aims
to improve the user experience in spectating VR sports without temporal and
spatial limitations. Two interactive visualization frameworks are proposed to
solve the issues of spectating the rapid and occluded actions, respectively.
They are: 1) an interactive visualization framework for rapid actions, which
allows the user to control the time of VR sports video; 2) a viewpoint opti-
mization framework depending on the individual preference for the occluded
actions.

6.1 Summary
This section summarizes the contributions and findings of this work. The
details are shown as follows:

Interactive Visualization Framework for Rapid Actions This work
proposes a novel interactive visualization framework called MomentViz, which
allows the user to freely control the time in any area of VR sports videos. Two
levels of implementation are applied in this work. In the first level, a standard
RGBD camera with 30FPS is utilized for the 3D data recording. Two different
play speed frames of the same video are set in the same position. With the
stencil technology, users can control the time in any area they like. A pilot
experiment with Eight participants is conducted to verify the performance of
this framework. Depending on the feedback of the pilot, the second level of
MomentViz is implemented. In this implementation, a standard RGB camera
and a high-speed camera are used to record the RGB and depth data. After
the camera calibration, two data types can be fused to reconstruct the 3D
videos. The user also can control the time with the same stencil technol-
ogy. Twelve participants are recruited to join a user study evaluation. The
results provide evidence that the second-level implementation with a high-
speed camera improves the performance of this framework. In summary, the
contributions of this work are as follows:

• This work designs a systematical framework for interactively visualizing
the rapid actions in VR.
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• Propose a novel method with the stencil technology to control the time
in any area of VR sports videos.

• Implement two levels of this framework, including no high-speed camera
and using a high-speed camera.

• A pilot is conducted to verify the performance of this method, and
the results show that MomentViz outperforms the other conventional
visualizations.

• A user study experiment is conducted to evaluate the implementation
with a high-speed camera, and the results verify that it can improve the
performance of MomentViz.

Viewpoint Optimization for Occluded Actions This work proposes
a novel method called SmartVP for spectating the occluded actions in VR
sports videos. This method can handle the individual preference of every
spectator. A neural network classification model is designed for training the
optimal viewpoint with different preferences in this method. In this model,
the visibility of the boxer’s upper body parts, punch side, and punch offset
is extracted as features, while the spectator-selected preferred viewpoints are
regarded as the label value. A boundary box visibility model is designed to
account for the visibility of boxers’ upper body parts. A VR experiment col-
lects the spectators’ preferred viewpoints from 24 participants under three
controlled preference conditions, including seeing the punch arm form clearly
(AF), seeing the facial expression clearly (FE), and no additional restriction
(None). The least visibility difference (LVD) is utilized for converting the
continuous values of user-selected preferred viewpoints to the discrete candi-
date viewpoint classes. A user study is conducted to evaluate the performance
of this method, and the results show that this method can provide the opti-
mal viewpoint with spectator preference and improve the user experience. In
summary, the contributions of this work include the following:

• Design a model for training optimal viewpoints and propose an evalua-
tion method to evaluate the training results.

• Extract the visibility of body parts, punch side and punch offset as the
features, and propose a method to calculate the visibility.

• Experiment to collect the user-preferred viewpoints, including two dif-
ferent preferences.

• Propose the method to label the continuous user optimal viewpoint se-
lections to discrete candidate viewpoint classes.
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• Conduct a user study experiment to evaluate the performance, and the
results show SmartVP can provide optimal viewpoints corresponding
with individual preferences and improve the user experience.

Overall Though watching sports matches in VR provides the spectator with
more immersive, the issues of rapid and occluded still exist with conventional
visualization. From the pilot results discussed in chapter 3, since the sickness
caused by the low FPS frames, and the difficulty of finding a viewpoint in
3D, these issues even become more severe in VR. This work which includes
two parts augments the human vision for spectating the rapid and occluded
sports actions in VR. The results show it has promising potential to improve
the user experience of spectating sports matches in VR. It provides a new way
to spectate a sports match without temporal and spatial limitations.

While several limitations of current VR devices limit the popularization
speed of VR sports spectating, this work provides a fundamental and prospec-
tive study of interactive visualization for rapid and occluded actions in VR.
The author hopes the findings can contribute to future VR sports spectating
applications.

6.2 Future Outlook
This work focuses on the field of spectating sports in VR and provides a
fundamental study of vision augmented for spectating rapid and occluded
sports videos. However, this topic need not be limited to sports spectating.
The author believes it also has promising potential in other fields, such as VR
sports training. Compared with VR sports spectating, in VR sports training,
getting and responding to users’ (students) feedback is highly important. With
pose estimation technology, it is possible to get the users’ poses in real-time.

In the case of sports form learning, because of the different levels of stu-
dents, even for one student, a beginner student who is not familiar with that
form may have a different speed in the process of the entire form. It is difficult
and inconvenient for the students to change the time speed of demonstration
forms in learning manually. Therefore, the applications are desired to control
and adjust the time speed automatically depending on individual needs. It
is expected to get the users’ poses and actions in real time and change the
demonstration forms on time. At the same time speed between demonstration
forms and users’ forms can help the users understand the correct form and
find their problems faster. Viewpoint Optimization is also highly required in
sports form learning. Sometimes, students need help seeing the back direc-
tions of the form. This issue causes that, for that case, a teacher is necessary
to observe the students’ forms, which also limits the students’ time and place.
VR technology gives a possibility to address this problem. Similarly, with
pose estimation technology, the VR system can find the users’ pose error in
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real-time and visualize it from a good viewpoint to the students immediately.
This method lets the students find the pose error faster out of sight.
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