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Summary

Towards a sustainable future, renewable energy, especially solar and wind power, in-
creasingly emerge as a clean energy source without emitting carbon dioxide. In some
countries, renewable generation has already reached grid parity, where their generation
costs are the same or less than that of conventional power plants. From the perspec-
tives of cost and cleanliness, the penetration rate of renewable generation is expected
to grow further. However, renewable energy depends on environmental conditions such
as weather and wind speed and is often intermittent and uncontrollable. The variable
renewable generation risks destabilizing the energy system. In particular, the demand-
supply mismatch caused by the massive solar integration is called the duck curve prob-
lem, and it brings severe cost increases to supply-side management, such as the more
active operation of power plants. To smoothly integrate renewable energy more and
more, promoting the acquisition and utilization of demand-side flexibility (DSF) is re-
quired, which refers to the portion of the demand load that can be shifted, curtailed, or
adjusted from their normal consumption patterns.

With the development of information and communication technology (ICT), local
energy systems on the demand side are becoming more intelligent. Consumers turn into
prosumers with a controllable distributed energy resource (DER) such as renewable
generation, a battery system, and controllable demand. Accordingly, the prosumers can
bidirectionally exchange information and electrical energy with the supply side. The
most promising application for the demand side energy system is an energy manage-
ment system (EMS) that enables the monitoring, planning, and controlling of various
DERs. For instance, the EMS schedules battery systems and electric vehicles (EVs) as
an energy buffer to effectively use renewable generation. In addition, such controllable
demands as appliances and heating, ventilation, and air conditioning (HVAC) systems
can be shifted or reduced following price signals and user preferences. In this way, the
demand side can manage DERs to reduce their system and electricity costs while maxi-
mizing user convenience. However, thermal comfort sensation and the DER’s character-
istics, such as battery degradation effects and uncertainties of demand-supply patterns,
often lead to higher costs and dissatisfaction. Therefore, the EMS must consider such
system dynamics when optimizing operational planning and real-time operation.

On the other hand, the supply side desires to utilize the part of demand-side DERs
as DSF to meet the purpose of the global energy system. A demand response (DR)
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program is one of the promising solutions to exploit DSF, organized by the supply side
or aggregators. The DR program uses various signals/requests, including time-varying
electricity prices or incentives for demand change. These signals could encourage the
demand-side end users to reduce, shift, or increase their load patterns. Depending on
the types of signals, there are mainly two types of DR programs: price-based DR and
incentive-based DR. Each program has both good points and shortcomings, and an ap-
propriate DR program should be designed to treat a specific supply-side problem such as
the duck cure. Furthermore, the optimized interaction between the supply and demand
sides through the DR and EMS development will unlock the potential of DSF.

This dissertation presents a system-level energy management methodology for smart
energy systems with DERs, concerning the planning and real-time operation in the
demand-side EMS and developing a DR program to exploit DSF. As for operational
planning, a battery degradation-aware operational planning methodology for a smart
energy system is proposed to estimate the system performance and minimize the sys-
tem costs. In particular, the state-of-health (SOH) model is introduced to represent the
capacity-fading effect of the battery system caused by the charging/discharging cycle
and the battery state-of-charge (SOC) level. This model enables quantitatively observ-
ing the battery degradation factors and evaluating the system performance of the oper-
ational planning in terms of the battery system cost. The proposed method formulates
the mixed-integer programming (MIP)-based two-stage optimization problem; the first
stage minimizes energy purchase while the second stage minimizes the battery degra-
dation factor with the constraint of the amount of the energy purchase. The simulation
result shows that the proposed method can reduce the annual battery degradation costs
by 14.1% without increasing the energy purchase compared to the baseline method that
does not consider battery degradation. As a result, a better trade-off between battery
degradation and the amount of energy purchased can be obtained.

To realize the real-time operation of DERs to compensate for the renewable fluctu-
ation and reduce electricity costs, this dissertation proposes a multi-time scale energy
management framework for scheduling a battery system and shiftable appliances with
variable renewable generation. The proposed framework especially integrates the photo-
voltaic (PV) forecasting model and the accurate-parameterized equivalent circuit model
of the battery system, which enables incorporating the real-time change of the system
state. Moreover, a multi-time scale structure is proposed to reduce computational com-
plexity without sacrificing the solution quality by considering a mix of fast and slow
system dynamics. The simulation result shows that the proposed framework can reduce
electricity costs by up to 47.5% compared to the five baseline methods. In addition,
the proposed framework takes only 20 seconds of computational time at a maximum,
satisfying the computational requirement (< 15 min).

For the real-time operation of DERs, thermal comfort, as well as electricity costs,
should be considered through the heating/cooling system management. This disserta-
tion also proposes a comfort-aware electrical and thermal energy management frame-
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work for the energy system with a controllable HVAC system. The proposed framework
is extended based on the above framework to schedule HVAC systems for optimal tem-
perature set points. In the proposed framework, the thermal comfort estimation model
based on linear regression techniques predicts the comfortable temperature that maxi-
mizes occupancy thermal comfort. The multi-objective optimization problem is formu-
lated to minimize electricity costs and maximize thermal comfort simultaneously. The
simulation result shows that the proposed framework can improve the trade-off rela-
tionship between electricity costs and thermal comfort. In the case study, the proposed
method can reduce the electricity costs by up to 14.0% within the same comfort level
compared to the baseline.

To meet the grid purposes through exploiting DSF, the optimal design of the DR
program is required. As for the DR program, this dissertation proposes an optimal ag-
gregator’s strategy on the price-based DR and battery scheduling for improving the duck
curve. The hierarchical energy market model is modeled as a Markov decision process
(MDP), which represents the interaction between prosumers, an aggregator, a wholesale
electricity market, and an independent system operator. In this work, the aggregator
learns an optimal strategy using a model-free deep reinforcement learning (DRL) ap-
proach with the MDP model. The obtained strategy can calculate the retail prices to
prosumers as a DR program and the schedule of the aggregator’s battery power station
to maximize social welfare, including the aggregator’s profit, the prosumer’s cost, and
the improvement of the duck curve. Moreover, owing to the model-free DRL approach,
the proposed method can capture the complex prosumer responses to the prices without
the detailed privacy information of the prosumers, such as the system configuration and
the prosumer preferences. The simulation result shows that the proposed method with
the carefully designed reward function can reduce the duck curve index, i.e., the stan-
dard variation and the peak-to-average ratio of the net load are reduced by up to 57.1%
and 20.8% compared to the baselines.
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Chapter 1

Introduction

1.1 Background

Nowadays, the penetration rate of renewable energy is growing more and more for a
sustainable future [1, 2]. As illustrated in Fig. 1.1, the global installed capacity of re-
newable energy has continuously increased in the past decades [3, 4]. In particular,
wind and solar energy, which have expanded by 807 GW and 854 GW between 2000
and 2021, are promising energy resources because of their low operating cost and easy
installation. Such renewable energy is also attractive in terms of sustainability since it is
clean energy without CO2 emissions and is not dependent on finite fossil fuels required
to mine or import.

Despite its cleanliness, however, renewable energy has significant challenges from
the perspective of the network capacity and the stable operation of the power grid [5].
Renewable generation is often intermittent and variable depending on environmental
conditions, e.g., wind speed, solar irradiation, and cloud movement. In addition, they
have uncontrollable characteristics, whereas such traditional power plants as coal-fired
power generation can quickly ramp up/down and turn on/off. The variable renewable
generation would cause severe grid stability issues such as frequency disturbance, over-
loading on the grid lines, and supply and demand mismatch [6]. In particular, the Cal-
ifornia independent system operator (CAISO) has reported that increased solar genera-
tion leads to the duck curve problem, which shows a steep net load graph representing
total power consumption minus renewable generation [7]. Consequently, the power grid
suffers from the rapid integration of renewable energy. To address the renewable vari-
ability, the supply-side utilities are responsible for keeping the supply-demand balance
using their power generation system [8]. Also, they reserve their capability of power
ramping up/down by building more new power plants and retrofitting the old power
plants in advance. However, the profitability of having large-capacity power plants that
are generally not used is particularly low. Not only supply-side management but also
the use of demand-side energy resources is more critical.
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Figure 1.1: Installed global renewable energy capacity by technology.

On the other hand, with the development of information and communication tech-
nology (ICT), renovation of the conventional energy system towards the next-generation
energy system is also being promoted [9]. In particular, the transition of local energy
systems has been remarkable. To enhance energy security and resilience, the local en-
ergy system integrates a controllable and flexible energy resource, generally called dis-
tributed energy resources (DERs). The representative DERs include a battery system,
heating, ventilation, and air conditioning (HVAC) systems, electric vehicles (EVs), con-
trollable appliances, and so on. A consumer with smart metering technology and DERs
shifts into a prosumer that can produce energy and can communicate with others. Fur-
thermore, an energy management system (EMS) provides various vital applications,
including monitoring energy and system states and controlling DERs. The EMS can
make local energy systems more flexible in their energy use and reduce power and sys-
tem costs.

The relationship between the supply and demand side has also been changing.
Fig. 1.2 shows the diagram of the energy system renovation. As shown in Fig. 1.2a, the
conventional energy system has only unidirectional (one-way) power and information
flow from power plants to consumers. The generated power by central power plants
is delivered to consumers through a power company. Although the power company
is responsible for balancing electricity demand and supply, the recent diversification
of energy demand has made management more difficult. Meanwhile, as for the next-
generation energy system shown in Fig. 1.2b, wholesale and flexibility markets play an
important role in ensuring reliable electricity trading at an efficient cost through market
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mechanisms. An aggregator coordinates the market entry of end users and provides fi-
nancial and systematic benefits to both the demand and supply side as an intermediate
entity [10]. The local energy system composed of prosumers is still connected to the
conventional power grid, and energy shortages and surplus generation could be traded
in the market. The renovation makes both power and information flow bidirectional
between the global power grid and the local energy system. Owing to the bidirectional
flow and the market entry of the demand side, the demand side can engage in the man-
agement of the grid stability issues.

Demand-side flexibility (DSF) is one of the promising solutions to mitigate the mis-
match of demand and supply. DSF refers to the portion of demand-side load patterns
that can be adjusted, shifted, curtailed, or increased than a normal shape of their de-
mand load [11]. The supply side aims to achieve the desired load pattern through DSF
collection and utilization., e.g., peak cut and reduction of power change rate (ramp rate)
through the acquisition and utilization of DSF. Exploiting DSF could be motivated by
price signals or non-price signals with incentives. For instance, time-varying electricity
prices encourage prosumers to control the end user’s behavior indirectly. In addition,
incentives or compensation are sometimes paid to prosumers who respond to the re-
quests for grid purposes [12]. Such a mechanism is normally called a demand response
(DR) program, and the DR program serves as a means of leveraging DSF. To improve
grid stability, designing appropriate DR programs considering the characteristics of end
users and faced issues are necessary.

According to the reports, the installed capacity of DERs has been increasing day by
day [13–15]. The sales of heat pumps in 2021 increased by more than 13% globally,
and its market is expected to continue to grow [13]. Also, the total number of EVs in the
world increased from 5.5 million to 16.5 million between 2018 and 2021 [14]. Accord-
ing to the Stated Policies Scenario (STEPS) discussed in [15], the International Energy
Agency (IEA) estimates that DSF will provide roughly a quarter of power system flexi-
bility in 2050. Hence, the capacity of the DSF will become even more significant in the
future. The optimized interaction between the supply and demand side through the DR
and EMS development will unlock the potential of DSF.

1.2 Smart Energy Systems and Applications

This section describes the background of smart energy systems and their applications.
First, types of DERs on the demand side are introduced. As energy system applications,
the functions and effectiveness of the EMS and DR are explained. Then, an aggrega-
tion process of demand-side energy resources for maximizing the potential of DSF is
described.
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1.2.1 Types of Energy Resources on Demand Side

In addition to renewable generation such as solar and wind power, the representatives of
DERs on the demand side are battery systems, controllable appliances, HVAC systems,
and EVs.

Battery System

Energy storage technology such as battery systems is a crucial technology as the central
pillar in the energy system. The rechargeable property of the battery system provides
a role as an energy buffer to change the demand load pattern. The battery system can
stabilize the sudden power change and the voltage fluctuations due to renewable gener-
ations by charging/discharging electrical energy. In addition, it can reduce the demand
load during peak hours by shifting the energy to off-peak hours. There are various types
of battery systems according to the materials from which the battery system is made,
e.g., lead-acid, nickel-metal hydride, and Li-ion batteries. Among them, the Li-ion
battery is the most commonly used for EVs and energy system operation thanks to its
superior power and energy density.

However, most batteries suffer from the degradation effects that cause capacity fad-
ing, making running costs expensive. Generally, battery degradation is defined by state-
of-health (SOH), which is the ratio of the current battery capacity to the initial battery
capacity. Many works have reported that the factors of battery degradation are depth-
of-discharge (DoD) and a high state-of-charge (SOC) level, which is the ratio of the
remaining energy to the battery capacity, as well as operating temperature [16]. Al-
though the usage restriction of battery systems will reduce battery degradation effects,
electricity costs and the DSF potential will worsen conversely. The dynamics of bat-
tery degradation are relatively long effects over the years, and it should be addressed
in a long-term schedule plan. Hence, a battery planning methodology that improves
the trade-off relationship between battery degradation and electricity costs is important.
The real-time operation of the battery system is also vital to manage actual demand load
and renewable fluctuation.

Controllable Appliance

Many electrical appliances are on the demand side to make user life more convenient
and comfortable. From the viewpoint of energy management, appliances can be clas-
sified into non-controllable and controllable. Non-controllable appliances, which in-
clude lights, televisions, and refrigerators, are demand loads that continuously operate
or cannot shift an operation time. Meanwhile, controllable appliances can be reduced
or shifted their operation time to other time slots, including washing machines, tumble
dryers, and dishwashers. Well-developed ICT enables demand-side users to schedule
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their controllable appliances automatically based on price signals and demand load pro-
files [17].

Fig. 1.3 shows a conceptual view of the scheduling of controllable appliances. The
appliance scheduling is expected to mitigate power peak by spreading demand with re-
spect to a time horizon. To do so, demand-side users are motivated by time-varying
electricity prices or other mechanisms. They can shift their appliances from peak price
hours to off-peak price hours to minimize electricity costs. When scheduling the appli-
ances, the main concern of users is whether the operation of appliances is completed
by the time they set. It is required to optimize appliance schedules to keep such user
preferences while minimizing electricity costs.

HVAC System

Heating and cooling systems, such as heating, ventilation, and air conditioning (HVAC)
systems, are necessary to improve the living environment and occupancy comfort. Gen-
erally, HVAC systems account for 30-40% of the total energy consumption in the build-
ing sector. Hence, managing HVAC systems has significant potential as flexibility while
controlling the indoor climate, especially in summer and winter. Recently, HVAC sys-
tems can easily obtain environmental information from sensors and the internet and
calculate effective schedules, owing to the ICT. For instance, if a power peak is likely
to occur, the operation of HVAC systems can be reduced immediately. Also, to reduce
electricity costs, a pre-cooling/pre-heating scheme is an effective solution where the
HVAC operates during a low price period in advance. In this way, the demand load of
HVAC systems can be managed for multiple purposes.

Despite the development of HVAC management, thermal comfort is the most impor-
tant objective to preserve occupancy health and productivity [18]. As for indoor climate
control, a comfortable temperature range is often set as a hard constraint that must not
be violated. Thermal comfort is defined by various comfort indices such as the pre-



1.2. SMART ENERGY SYSTEMS AND APPLICATIONS 7

dicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) [19]. As they
have indicated, thermal comfort is a complex phenomenon and is affected by many fac-
tors such as indoor temperature, humidity, wind speed, metabolic rate, etc. Therefore,
it is necessary to control HVAC systems taking into account not only maximizing DSF
potentials and minimizing electricity costs but also the most comfortable conditions.

Electric Vehicle

Electric vehicles (EVs) are vehicles fully powered by electrical power, which is one of
the promising DERs to address large-scale supply-side issues. All EVs have a battery
system as a power source and are electrically connected via EV chargers to the energy
system. The charging sources of EVs are the electricity purchased from the grid and
generated by renewable sources. Since the capacity of the installed battery system is
larger than commercial household batteries to maximize the driving range, the charging
demand of EVs has a significant effect on the power grid.

On the other hand, vehicle-to-grid (V2G) is a key technology to manage EVs as DSF,
which enables EVs to discharge the energy to the energy system or grid [20]. With the
implementation of the V2G, EVs can be used as battery systems when connecting to the
energy system as well as vehicles. The charge/discharge coordination of EVs can realize
power grid stabilization by mitigating high ramp rates and power peaks. Meanwhile,
range anxiety is known as the main issue of EV management [21]. Range anxiety is the
concern of EV drivers that the remaining energy in the battery is insufficient to reach
their destination. Besides, the arrival time and the charging requirements are different
for each EV driver. Hence, an EV management methodology, which considers driver
satisfaction and these uncertainties, is required.

1.2.2 Energy Management System
To enhance the operational planning and decision for DERs, an energy management
system (EMS) has the most critical role on the demand side [22]. With the development
of ICT and the integration with a smart meter, the EMS usually provides four main
functions as follows.

• Real-time monitoring of user’s energy usage and system behavior.
• Operational Planning of the energy resources considering their long-term charac-

teristics.
• Real-time operation compensating for fluctuation of renewable generation and

load and reflecting the actual system state.
• Providing useful applications, e.g., visualization, communication with outside,

and automation of energy usage.
In particular, the EMS is expected to automatically and comprehensively optimize vari-
ous DERs such as renewable generation, battery systems, appliances, and heating/cool-
ing systems while satisfying user preferences.
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Despite the high functionality of the EMS, the uncertainties that will be in the energy
system make the operation of EMS a difficult task. For instance, the unpredictability and
short-term variability of renewable generation may cause energy loss and mismatches.
The EMS currently relies on energy storage in battery systems to deal with the uncer-
tainty of renewable sources. Hence, the improvements of the battery control in the EMS
are desirable, as this leads to better overall energy efficiency.

The system scales targeted by the EMS range from a single house to a medium-scale
system, i.e., local energy systems. For a single house and building, the EMS is required
to reduce electricity costs by scheduling their energy resources such as a battery system.
Besides, demand control, which includes the scheduling of appliances, HVAC systems,
EVs, and so on, is an efficient way to achieve low electricity costs by changing their
demand shape according to electricity prices. In addition, other goals of prosumers
than electricity costs can be achieved through energy-efficient and user-friendly EMS,
including the serious system costs such as battery degradation and investment cost and
user preferences such as thermal comfort, appliance usage-timing preference, and EV
charging requirement. In local energy systems, multiple prosumers are electrically con-
nected, and the EMS aims to reduce demand peak, mitigate the mismatch of energy
balance, and minimize investment costs. In particular, improving the reliability of the
energy system is one of the main goals for independence from the conventional power
grid. The excess and shortage of energy will be compensated by exchanging it with
each other and trading it in the wholesale electricity market. Also, a hundred or thou-
sand DERs in the local energy system should be coordinated towards these goals.

The time scale of the control sequence of the EMS is also a non-negligible factor in
the performance of EMS. For a long time scale covering several months, the EMS ap-
plication should consider a seasonal change of renewable generation and demand load
and long-term effects of system components such as degradation. On the contrary, for
a short time scale with a time resolution of a second, the energy imbalance between re-
newable generation and demand can cause energy loss directly. Also, ramp rates (power
change rate) on the local energy system are important issues that should be met for sys-
tem stability. Therefore, precise control for compensating for real-time changes in the
energy balance is required. As described above, the system and time scale managed
by the EMS varies widely, and their purpose of them also differs. Therefore an EMS
design suitable for each purpose and each time scale is required for the improvements
of the EMS performance.

1.2.3 Demand Response Program

The demand response (DR) program is a measure that exploits DSF in response to power
grid constraints and purposes, e.g., peak-shaving, valley filling, and load shifting [23].
To achieve that, the DR programs encourage the demand side to change the electrical
demand load into the desired shape by sending price or non-price signals.
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There are mainly two types of schemes: incentive-based and price-based. The
incentive-based DR aims to induce demand load modifications by non-price signals,
and the involved users receive compensation when responding to the signals. A rep-
resentative example of the incentive-based DR is the direct load control (DLC) [24],
which directly controls the demand-side resources such as on/off switching of appli-
ances and air conditioning and force charging/discharging of the battery and EVs. Also,
emergency demand response (EDR) is a contract that requires immediate demand load
changes instead of providing compensation to the demand side in emergency events in-
cluding frequency disturbance and power outages [25]. Since the incentive-based DR
usually makes a contract with prosumers, the amount of available DSF is reliable and
controllable. However, it requires well-developed infrastructure including EMS and
tailored communication lines, and the implementation cost is relatively high.

On the other hand, the price-based DR aims to control the demand load using price
signals indirectly and has been employed in residential and commercial sectors because
of its scalability and efficiency. In the price-based DR, time-varying price signals are
announced to the demand side, and the indirect control of the demand load is anticipated.
Generally, setting a high price during peak hours is a widely-used approach to reduce
power peak. Depending on the degree of dynamic pricing, the price-based DR programs
are mainly categorized into critical peak pricing (CPP), time of use (TOU), and real-time
pricing (RTP) [26]. In particular, the RTP has significant potential for changing end-user
behavior, as demonstrated in the literature [27]. In addition, the price-based DR can be
easily implemented without any specialized infrastructure. However, the effect of the
price-based DR is unreliable since the participation of prosumers is voluntary. These
existing (incentive- and price-based) programs have both pros and cons, and the design
of the DR program is required according to the issues to be solved.

1.2.4 Demand-Side Flexibility

This section introduces demand-side flexibility (DSF) and system-level processes for
exploiting DSF, which are the main focus of this dissertation. In general, DSF means
the ability of demand-side users to change their load patterns from current and normal
patterns. Responding to the signals of DR programs, the willing demand-side users in-
cluding residential, commercial, and industrial sectors can curtail, adjust, or shift their
demands and DERs. If DSF can be effectively utilized, it will help to realize the high
penetration of renewable generation and ensure energy system stability [11]. To ac-
quire and utilize the DSF, the aggregator and the supply side organize DR programs to
motivate the demand-side prosumers to change their electricity load.

Fig. 1.4 shows a schematic view of system-level processes for exploiting demand-
side flexibility. There are three entities regarding DSF exploitation; the supply side
(the power grid and the market), the aggregator, and the prosumers. The system-level
processes are as follows. First, the supply side sends the price signals in wholesale
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Figure 1.4: Schematic view of system-level processes for exploiting demand-side flexi-
bility.

electricity markets and requests to meet the grid purposes, such as peak power shav-
ing and ramp rate reduction. Then, the aggregator decides and announces DR signals
to the prosumers, e.g., time-varying retail price signals, incentive payment, and other
compensation, based on the obtained and observable information from the supply and
demand side. According to the DR signals, prosumers may change their load patterns
using the EMS. Depending on their willingness to participate in the DR programs, there
are typically two types of prosumers: reactive and proactive prosumers. The reactive
prosumers aim to optimize their energy balances by scheduling their energy resources
without looking at the DR signals and global grid concerns. Meanwhile, proactive pro-
sumers make a plan and operate DERs to maximize their preferences that include elec-
tricity and system cost minimization and comfort maximization. Finally, the aggregator
coordinates the optimized load of the prosumers and provides DSF to the supply side.

Through these processes, the social welfare of energy systems can be maximized.
For the supply side, the utilization of DSF reinforces the stability of the energy system
by contributing to resolving the supply-side issues in the global power grid, e.g., power
peak, frequency regulation, and high ramp rates. The DSF can be an alternative to
expensive additional power plants for ramping up/down the network electricity load.
As for the demand side prosumers, they can reduce electricity costs when participating
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in the DR programs, i.e., scheduling their DERs to the lower price period or getting
compensation for DER control. Besides, the aggregator is strongly motivated to perform
these processes. This is because the aggregator can profit from intermediating energy
trades in the market and flexibility transactions between the supply and demand side.
Thus, unlocking the potential of DSF is a win-win for all entities.

1.3 Research Questions and Issues

This section describes the remaining research questions to maximize the potential of
DSF in system-level energy management for smart energy systems. Fig. 1.5 shows the
study scope of this dissertation. This dissertation addresses three questions regarding
the planning and real-time operation of energy demand on the demand side and the DR
program offered by the aggregator for changing prosumer behavior to meet the grid
goal.

Question 1: How could prosumers make a plan for their DERs to reduce system
costs?

As for the prosumer on the demand side, making an operational plan for DERs such as
battery systems is essential to evaluate the system performance and estimate the elec-
tricity costs/profits over the long term for more than months. However, there is an
important issue when making the operational plan; the energy loss due to DER charac-
teristics, especially battery degradation. Many works have reported that the degradation
rate of battery systems varies greatly depending on their usage history [28]. The initial
costs of a battery system, are too expensive to neglect the degradation effects. In addi-
tion, the power output of renewable generation, especially PV generation, significantly
varies in different seasons due to the temperature and solar irradiation variation. This
seasonal variation will make optimal operational plans differ depending on the season.
To address these issues, a long-term operational planning decision method is required
to minimize the total costs that involve the system and electricity costs by considering
the seasonal variation of renewable generation and the critical energy loss including
battery degradation. Along with the planning of energy resource operations, the sizing
of systems such as renewable energy generation and battery systems and cost-optimal
working points that consider longer system characteristics can be explored. On the other
hand, in the context of DSF, such operational planning also enables the prosumers to es-
timate the potential of their flexibility under various scenarios. It helps to choose an
appropriate DR program among multiple program options provided by aggregators and
supply-side entities.
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Figure 1.5: Study scope of this dissertation.

Question 2: How could prosumers operate their DERs in real-time to maximize
their preferences?

Since electricity demand and renewable energy fluctuate in real time, it is necessary to
mitigate the demand and supply mismatch even on the demand side to avoid energy
losses. To address this issue, in addition to operational planning, real-time operation
of energy systems is a very important application in EMS. However, the complex char-
acteristics of DERs make energy management more dynamic [29]. Controllable appli-
ances and heating/cooling systems need to be scheduled on a daily scale to follow the
price signals considering user preferences. In addition, battery systems must consider
not only a day-scale load variation due to periodic user behavior and solar cycle but also
a real-time scale that covers renewable energy fluctuations and transient responses of
the battery system. To solve such complex problems, a real-time operation method is
required, which guarantees solution quality while reducing computational costs.

On the other hand, more objectives than minimizing electricity and system costs
must be considered. The objectives also include user preferences such as thermal com-
fort realized by HVAC systems, the timing preferences of controllable appliances, and
the charging requirement of EVs [30]. These objectives often conflict with each other
and have a trade-off relationship that should be improved through smarter energy man-
agement. Furthermore, the characteristics of the energy resources corresponding to
these preferences are completely different and have a significant impact on the EMS
performance. Therefore, it is essential to develop a decision-making tool that simulta-
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neously meets these multiple objectives while considering the different characteristics
of the energy resources explicitly.

Question 3: How could an aggregator encourage prosumers to change their load
into the desired shape?

From the aggregator’s perspective, the question remains as to what DR strategies will
achieve the maximum utilization of DSF for improving the supply-side issue. One such
supply-side issue is the duck curve due to the high penetration of PV generation. The
duck curve is a graph of demand load, which shows a sharp change in the ramp rate in
the morning and evening and an imbalance between demand and PV generation [31].
To address such issues, aggregators typically implement DR programs to encourage
prosumers to change their behavior and demand load patterns. The implicit price-based
DR, namely dynamic pricing, is particularly promising since it can be applied regardless
of prosumer type or capacity. Time-varying electricity prices indirectly control the load
shape, e.g., shaving power peak with a higher price while filling load valley with a
lower price. However, it is unclear what price patterns will resolve the duck curve,
and modeling how prosumers respond to the prices is challenging. Privacy concerns
also make it difficult to access detailed information on prosumers or directly control
their energy resources. Therefore, a model-free dynamic pricing strategy is required to
improve the duck curve from minimal information on the prosumers.

1.4 Objective and Organization
This section summarizes the objectives of the following chapters and outlines how to
address the questions described in Chapter 1.3. The objective of this dissertation is
to develop a system-level energy management methodology for DSF in smart energy
systems to maximize social welfare that includes system cost minimization, thermal
comfort maximization, and grid stabilization. To this end, this dissertation addresses
three questions, as shown in Fig. 1.5.

Battery degradation aware operational planning method for battery system on
EMS to address Question 1

For operational planning, the battery degradation issue that causes serious cost increases
should be addressed. This dissertation proposes a battery degradation-aware operational
planning methodology for the planning stage of the energy management system. The
battery state-of-health (SOH) model, which can calculate an amount of battery capacity
fade based on battery operation profiles, is integrated to treat battery degradation in the
optimization problem and evaluate system costs quantitatively. The two-stage optimiza-
tion problem is formulated as a mixed-integer programming (MIP) and incorporates
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the novel objective function and constraints to reduce battery degradation. The sim-
ulation results show that the proposed method can reduce battery degradation without
increasing the electricity purchase. Note that the proposed method in this chapter is lim-
ited to minimizing battery degradation under static load with hourly changes; dynamic
workload-based improvement of battery lifetime is out-of-scope of this dissertation and
will be addressed in future work.

Online and real-time operation methods for battery system, appliances, and HVAC
systems on EMS to address Question 2

This dissertation investigates two methods to achieve real-time operation of DERs by
EMS for maximizing user preferences. For the first method, an online optimization
framework is proposed for scheduling a battery system and controllable appliances to
minimize electricity costs. To address the fluctuation of renewable generation and real-
time energy loss, this work incorporates a forecasting model of PV generation and an
accurate battery model. Moreover, the time scale is divided into two time scales: coarse
and fine-grained time scales. Compared to the state-of-the-art single-time scale struc-
ture that ignores fast system dynamics, the proposed multi-time scale structure enables
considering both fast and slow system dynamics with reasonable computational com-
plexity. The simulation results show that the proposed method can reduce electricity
costs in real-time and has scalability for a number of shiftable appliances and a length
of the planning period.

As for the second method, to consider other objectives, such as thermal comfort than
electricity costs, the scheduling of HVAC systems is integrated into the framework. In
general, HVAC systems, which significantly affect the thermal comfort of occupants,
account for 40% of residential and commercial buildings. This work aims to improve
the trade-off relationship between minimizing electricity costs and maximizing thermal
comfort. Thermal comfort is modeled as a predicted mean vote (PMV) and predicted
percentage of dissatisfaction (PPD) indices, widely used as comfort criteria. Moreover,
a multi-objective optimization problem is formulated to adjust the balance between elec-
tricity costs and thermal comfort. The simulation experiments show that the proposed
method can improve the trade-off relationship between electricity costs and thermal
comfort. Finally, this work provides a complete energy management framework for
typical buildings. Note that integrating more energy resources, such as wind power
and electric vehicles, into the framework is not addressed in this dissertation and is of
interest in future work.

Price-based DR strategy of aggregators for duck curve improvement to address
Question 3

This dissertation proposes a price-based DR strategy to improve the supply-side duck
curve problem through DSF exploitation. The duck curve is a graph of the steep curve
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in a net load of demand-side (users) due to high penetration rates of PV generation.
Massive PV generation reduces the net load at noon, while it causes a ramp rate in the
morning and evening by increasing/decreasing the energy production of PV panels. This
work tries to improve the duck curve by battery scheduling and dynamic pricing, which
is a kind of price-based DR program that indirectly controls DSF by changing retail
prices. This chapter formulates the hierarchical energy market model, which consists
of electricity markets, a resource aggregator (RA), and prosumers. Then, a duck-curve
improving strategy of RA for dynamic pricing and battery scheduling based on deep
reinforcement learning (DRL) is proposed. Thanks to DRL, the proposed method can
learn optimal retail prices and schedule of RA’s battery to improve the duck curve using
only data and to preserve prosumer privacy. The simulation results show that the pro-
posed method can reduce the standard deviation and the peak-to-average ratio of net load
compared to baseline methods. Note that this chapter mainly focuses on price-based DR
programs; incentive-based DR will be investigated and integrated in the future.

Dissertation Text Organization

The rest of this dissertation is organized as follows. Chapter 2 proposes the battery
degradation-aware operational planning method for the demand-side energy sources,
which solves the two-stage optimization problems based on the battery degradation
model. The proposed method reduces the battery degradation costs without increas-
ing the electricity purchase, and the obtained solution is helpful for battery planning as
reference working points.

Chapter 3 investigates the online multi-time scale energy management framework
to realize the real-time operation of the demand-side energy sources, which integrates
PV forecasting and accurate parameterized battery models. The results show that the
proposed multi-time scale structure reduces both electricity costs and computational
complexity.

Chapter 4 presents the electrical and thermal energy management framework based
on the framework developed in Chapter 3 and introduces the thermal comfort estimator
that predicts comfortable temperature set points. The proposed framework improves the
trade-off relationships between electricity costs and thermal comfort.

Chapter 5 proposes the DRL-based aggregator’s strategy for dynamic pricing and
battery scheduling to improve the duck curve issue. The results show that the proposed
strategy improves the duck curve through the price-based DR interaction between the
aggregator and prosumers. Finally, Chapter 6 summarizes this dissertation and refers to
the extensions for future work.
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Chapter 2

SOH-Aware Optimal Two-Stage
Planning for Battery System

In smart energy systems, battery degradation is a serious issue due to its high initial
costs. Battery degradation is a relatively long-term effect, and this issue should be ad-
dressed in the planning stage of energy management. This chapter proposes a state-of-
health (SOH)-aware two-stage operational planning methodology to minimize battery
degradation1. First, a battery SOH model is introduced, which can express battery ca-
pacity fade based on battery operation profiles. Second, a two-stage optimization prob-
lem is formulated as a mixed-integer programming (MIP) by integrating a new objective
function and constraints extracted from the SOH model. The case study is performed
for the local energy community using the measured data in Japan for one year. The
results show that the proposed method leads to improvements in the trade-off between
battery degradation and electricity purchase and that the battery aging cost is reduced
by 14% at the same electricity purchase amounts.

2.1 Motivation and Objective
Lithium-ion batteries are one of the core components in demand-side flexibility (DSF)
of smart energy systems to provide flexible energy applications such as energy arbitrage
and ancillary services. Although advanced manufacturing processes have made lithium-
ion battery systems cheaper, the introduction cost and the lifetime of the batteries remain
issues for wide introduction to the real world [33]. In particular, battery degradation is
a phenomenon that the battery capacity reduces with daily use and leads to serious cost
increases for smart energy systems.

Battery degradation is generally expressed in two terms: calendar aging and cycle
aging [34]. Calendar aging is a degradation process that occurs with elapsed time,

1This chapter is a refined and reproduced version of the paper to be published in IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences [32] copyrighted by IEICE.
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Figure 2.1: Battery SOC patterns.

regardless of charge/discharge cycles [35]. On the other hand, cycle aging occurs during
the charging and discharging of a battery, and the main factors are operation states, e.g.,
operation temperature, depth of discharge, charge/discharge rate, and state-of-charge
(SOC) levels [36–38]. Therefore, even though the mechanism of battery degradation is
chemical and physical changes within battery cells, the battery lifetime can be improved
through system-level battery management, i.e., scheduling of battery charge/discharge.

To indicate a degraded state of a battery, a state-of-health (SOH) index is used,
which is usually defined as the ratio of the current capacity to the capacity when the
battery is new. Millner developed an SOH model of a battery to calculate the amount of
SOH reduction caused by calendar and cycle life [39]. Fig. 2.1 shows four battery SOC
patterns as an example of typical battery usage. According to this work, the high average
level of SOC usually has a greater effect on battery degradation than the low average
SOC, as shown in Fig. 2.1a. Likewise, as illustrated in Fig. 2.1b, the large swing of
SOC levels generally has a negative influence on battery lifetime. To extend the battery
lifetime, both the average SOC level and the SOC swing should be maintained low.

This chapter proposes an SOH-aware operational planning methodology for the
smart PV system. Battery degradation and the amount of electricity purchased are in
a trade-off relationship. Therefore, the objectives of the proposed method are to reduce
battery degradation and to minimize the electricity purchase from the power company.
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To evaluate and control the battery aging accurately, the battery SOH model proposed
in the literature [39] is introduced to the energy management problem. Since such a bat-
tery degradation model is generally nonlinear, integrating it into optimization problems
is especially challenging. This chapter addresses this issue by deriving new objectives
and constraints based on the analysis of the SOH model. The optimization problem
with them is formulated to minimize the average SOC level and SOC swing, which are
the aging factors of the battery. The proposed method is a two-stage MIP optimization
problem; (1) the first stage calculates the minimum purchased energy and (2) the sec-
ond stage recalculates the battery schedule to minimize a battery aging function with
a constraint of the minimum purchased energy. Finally, the proposed method explores
effective battery schedules to obtain a better trade-off between battery degradation and
the amount of electricity purchased.

The main contributions of this work are as follows:
• Battery degradation model [39] is introduced to consider battery degradation phe-

nomena and evaluate system performance quantitatively.
• Two-stage MIP-based optimization problem is formulated to minimize battery

degradation without increasing energy purchase.
• Simulation experiments are conducted to show the proposed method outperforms

the conventional method that only considers energy purchase minimization in
terms of battery degradation costs.

The remainder of this chapter is organized as follows. Section 2.2 introduces re-
lated works of battery management systems and energy management systems. Section
2.3 describes the battery aging factor and introduces the battery SOH model. Next,
Section 2.4 explains system models of a local energy community. Section 2.5 derives
the proposed SOH-aware two-stage operational planning methodology. Then, Section
2.6 evaluates the proposed method through simulation experiments using real measured
data in Japan. Finally, Section 2.7 concludes this chapter and states the outlook.

2.2 Related Works
Many battery management methods have been proposed to reduce electricity costs.
Zhang et al. [40] proposed a day-ahead distributed battery scheduling algorithm on the
smart grid. Kanchev et al. [41] studied a scheduling method of battery charge/discharge
based on a heuristic approach. Silvente et al. [42] formulated a mixed-integer program-
ming (MIP)-based optimization problem to schedule electricity demand and a battery
system to reduce electricity costs. Harsha et al. [43] presented an optimal battery man-
agement method to integrate renewable energy under a dynamic pricing policy. They
also investigated the optimal sizing of a battery through sensitive analysis. The main
objective of these papers is to minimize the total system operation cost. However, they
have not considered battery degradation, and the degradation issue should be tackled to
reduce high battery running costs.
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As for battery degradation-aware battery management, Michelusi et al. [44] pro-
posed a stochastic Markov chain framework to capture a degradation process of a bat-
tery in wireless sensor devices and also presented a heuristic policy to improve battery
lifetime. Vatanparvar et al. [45] investigated an optimized charge and drive management
methodology for an electric vehicle (EV), which decides an optimal route, a departure
time, and an EV charging schedule while improving battery lifetime. Park et al. [46]
formulated an optimization-based method of battery assignment and battery scheduling
for a drone delivery business. They introduced a battery SOH model and demonstrated
that their proposed method reduces electricity costs and battery purchasing costs. To
improve battery lifetime effectively, a specific SOH model should be considered in the
management problem. The studies above tried to solve the battery degradation issue;
however, there are a few studies that focus on the EMS with considering renewable
generation and a stationary battery system in households and buildings.

On the other hand, Kato et al. [47] mathematically formulated an energy manage-
ment problem as MIP with the battery charge/discharge cycle limitation. The number
of charge/discharge cycles is also a degradation factor, and they achieved the quarter
numbers of the battery charge/discharge cycles. The results show that their method can
potentially inhibit battery degradation qualitatively. However, the average SOC level
and the SOC swing are also important factors in battery degradation that should be con-
sidered in system-level management. Besides, they did not consider any specific battery
degradation models, and the theoretical background of mathematical formulation and
quantitative evaluation of battery degradation is lacking.

To overcome the challenges mentioned above, in this chapter, a battery degradation-
aware optimization method is investigated by introducing the SOH model of the battery.
Compared to the conventional approach, the proposed method reduces battery degrada-
tion in a quantitative manner that uses the battery aging models. Moreover, introducing
the battery SOH model enables an evaluation of the proposed method in terms of battery
degradation. This integration enables evaluating the system performance quantitatively
in terms of battery degradation.

2.3 Battery Aging Factor
This section introduces battery degradation as SOH and a battery SOH model, which
expresses the relationship between the battery aging factor and battery capacity degra-
dation. After that, a preliminary simulation of the SOH model is performed to identify
the most influential factor on battery degradation.

2.3.1 Battery Degradation Model
In general, battery degradation is represented by SOH, which is a key quality indicator
of a battery. The SOH is defined as the ratio of the current battery capacity to its initial
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capacity, and is given by the following equation:

SOHm =
X f ull

m

X f ull
init

, (2.1)

where SOHm and X f ull
m are the SOH and the actual capacity after m charge/discharge

cycles, respectively. X f ull
init is the initial nominal capacity of the battery. The SOH of the

new battery is 1.0 (100%), and the SOH degradation refers to the loss of capacity as the
battery ages. According to the literature [39], when the SOH reaches 80%, the battery
is generally considered useless for energy management applications due to significant
capacity fading and an increase in the battery’s internal resistance.

Estimating the SOH can be a challenging task because the complex physical and
chemical reactions inside battery cells cause the capacity to degrade.

SOH estimation is a difficult task because complex physical and chemical reactions
inside battery cells cause SOH degradation. Some electrochemical-based SOH models
proposed in [48, 49] accurately model the changes in the cathode, anode, electrolyte,
and solid electrolyte layers. Additionally, data-driven approaches proposed in [50, 51]
derive a black-box model from historical and empirical data, which can be fairly accu-
rate without a full understanding of the aging mechanism. However, these models are
unsuitable for optimization problems since these models consist of complex nonlinear
equations and are too computationally complex to solve.

Then, this work introduces Millner’s SOH model [39] to capture the battery degrada-
tion effect. The Millner’s model calculates the SOH degradation during the charge/dis-
charge cycle based on the battery’s SOC trace [39]. While this model consists of non-
linear equations, it is not too complicated and can be applied to MIP formulation using
a linear-approximation technique. In addition, this model shows good agreement with
experimental data, making it suitable for optimization problems.

The following explains the SOH model proposed by Millner. First, the SOC repre-
sents the amount of remaining energy in the battery and is defined as follows:

SOC =
X

X f ull
m

, (2.2)

where X is the current stored energy in the battery. The variable SOCavg denotes the
average SOC over a charge/discharge cycle, and SOCswing denotes the range between
the maximum and minimum SOC levels in the cycle. The SOH degradation in the m-th
charge/discharge cycle, represented by Lcycle,m, is calculated as follows:

L1 = KCO · exp
[
(SOCswing −1) ·

Tre f +273
KEX · (TB +273)

]
+0.2 · τ

τli f e
, (2.3)

L2 = L1 · exp [4KSOC · (SOCavg −0.5)] ·SOHm, (2.4)

Lcycle,m = L2 · exp
[

KT ·
(
TB −Tre f

)
·

Tre f +273
TB +273

]
, (2.5)
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where L1 and L2 represent the degradation effects due to the SOC swing and the aver-
age SOC level and calendar life, respectively. After calculating L1 and L2, Lcycle,m is
determined by taking temperature effects into consideration. It is important to note that
the value of Lcycle,m represents the percentage of capacity degraded, i.e., the drop rate
of the SOH. The constants KCO, KEX , KSOC, and KT are the coefficients of the battery
degradation model. The symbol τ represents the duration of the m-th charging/discharg-
ing cycle, and τli f e represents the total expected calendar life, or the amount of time the
battery can be stored until end-of-life. TB and Tre f represent the battery temperature and
the reference operation temperature, respectively. The values of these coefficients can
be found in the literature [39].

Finally, the SOH level after M charging/discharging cycles, denoted by SOHm, can
be defined by:

SOHm = 1−
M

∑
m=1

Lcycle,m. (2.6)

In this way, Millner’s model estimates the current value of the battery SOH based on
historical operation profiles.

2.3.2 Preliminary Experiment

In this section, the preliminary simulation of the SOH model described in the previous
section is performed in order to identify the most influential factor for battery degrada-
tion. Battery life cycles, which mean the number of the charge/discharge cycles from the
initial state to the end-of-life, are calculated while repeating charging/discharging with
fixed values of SOCswing and SOCavg. The value of SOCswing and SOCavg increments
from 0.3 to 0.6 (30%− 60%). The end-of-life of the battery is assumed until the SOH
reduces to 80%. Other parameters are set to the value that appeared in the literature.

Fig. 2.2 shows the battery life cycles until the end-of-life. In Fig. 2.2a, the x-axis
is the value of the SOC swing, and the y-axis is the number of life cycles until the
end-of-life of the battery. As the SOC swing value is increasing, the life cycles are
slowly decreasing. In Fig. 2.2b, the x-axis is the value of the average SOC, and the
y-axis is also the life cycle. As the average SOC value is increasing, the life cycles are
rapidly decreasing. The average SOC seems to have a greater impact on the battery life
cycles than the SOC swing. As a result, the larger SOCswing and SOCavg, the less the
life cycles until the end-of-life; i.e., the higher average SOC and the higher SOC swing
accelerate the SOH degradation. Moreover, compared to the effect of SOCswing and that
of SOCavg on the battery degradation, SOCavg has a greater impact on the battery aging
than SOCswing. Following these results, it is shown that the proposed method needs to
reduce both SOC factors and especially minimize the average SOC in order to suppress
battery degradation.
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Figure 2.2: Battery life cycles until end-of-life.

Such results are not limited to Millner’s results, and many studies have reported
that these SOC factors have a significant impact on battery aging [52–54]. Thus, the
energy management problem that reduces both the average SOC and the SOC swing is
formulated for minimizing battery degradation.
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Figure 2.3: Smart PV system model.

2.4 System Model
This section describes the overview of a targeted system and the mathematical formula-
tion.

2.4.1 Overview

This section presents a model for a smart PV system, as shown in Fig. 2.3. The system
consists of N clusters [9, 55, 56], which represent households in the real world and are
connected to each other through a local energy network. To effectively utilize renewable
energy, inter-cluster energy transmission is enabled through the local energy network
lines. In case of excess or deficiency of electricity, clusters can exchange electric energy
with each other.

The details of power flow within each cluster are shown in Fig. 2.4. Each cluster con-
sists of a photovoltaic (PV) panel, a battery, electric equipment that consumes energy,
and a router that monitors and controls power flow in the system. The router, which is a
common component in such smart energy systems and includes several AC/DC convert-
ers and power metering units [57,58], connects all devices in the cluster and all clusters
to each other via the local energy network. The router controls the power flow between
devices and clusters based on control commands received from a control center.

As for energy sources, a cluster primarily uses the power generated by its PV panels
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Figure 2.4: Power flow in each cluster.

or purchases electricity from the power grid. This smart PV system does not allow for
selling surplus PV generation to the power grid. Any surplus PV generation is either
stored in the battery, transmitted to other clusters, or wasted in the cluster. The concept
of wasted energy is introduced to consume excess energy within the cluster and prevent
reverse power flow to the power grid. The main focus of this system is deciding how
much energy to send to which batteries or clusters, known as the energy management
problem. The general objective of this system is to effectively utilize uncontrollable
renewable energy and minimize the amount of energy purchased from the power com-
pany. Minimizing purchased energy can help optimize the performance of the smart
PV system. However, battery degradation is a significant issue due to the high cost of
batteries. Therefore, it is desirable to include battery degradation control in the energy
management problem.

2.4.2 Mathematical Model

This section outlines the fundamental mathematical formulation of the energy man-
agement problem. The variables i, t, and u represent cluster number, day, and time,
respectively. Their ranges are 1 ≤ i ≤ N, 1 ≤ t ≤ T , and 1 ≤ u ≤ U . The variable j is
used to represent the cluster number in the formulation of inter-cluster energy exchange,
with a range of 1 ≤ j ≤ N, i , j. Inputs, decision variables, and parameters used in the
proposed formulation are listed in Table 2.1. The units of value not mentioned in the
table are kWh. All inputs are assumed to be perfectly predicted and the measured values
are used. While this assumption is not practical for real-time control, it allows for the
evaluation of the system performance and the potential for reducing battery degradation.

Battery behavior is not ideal, and some electrical energy is lost during charging.
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Table 2.1: Mathematical symbols used in formulated optimization problem.

Inputs Description

Di,t,u Electricity demand of cluster i at day t, time u
Gi,t,u Energy generated from PV panel of cluster i at day t, time u

Variables Description

Si,t,u Energy purchased from utility grid by cluster i at day t, time u
Yi,t,u Wasted energy of cluster i at day t, time u
Xi,t,u Stored energy in battery of cluster i at day t, time u
Bini, t,u Energy charged to battery of cluster i at day t, time u
Bout i, t,u Energy discharged from battery of cluster i at day t, time u
Zi, j,t,u Energy transmitted from cluster i to cluster j at day t, time u
SOCi,t,u SOC level of battery in cluster i at day t, time u [%]
ZT i, t,u Energy transmitted from cluster i to other clusters at day t, time u
ZRi, t,u Energy received by cluster i from other clusters at day t, time u

Parameters Description

X0i Initial stored energy in battery of cluster i
Xi Lower bound for stored energy in battery of cluster i
Xi Upper bound for stored energy in battery of cluster i
XCi Charge/discharge speed for battery in cluster i
αi Charging efficiency of battery in cluster i [%]
βi, j Loss rate of energy exchange between cluster i and cluster j [%]
γi, j Capacity for energy exchange between cluster i and cluster j

The stored energy at the next time u+1 and the SOC level at time u of the battery are
calculated using equations (2.7) and (2.8), respectively. As described in the previous
section, the SOC level represents the ratio of the stored energy to the battery capacity.

Xi,t,u+1 = Xi,t,u +αi ·Bin
i,t,u −Bout

i,t,u, ∀i, t,1 < u ≤U (2.7)

SOCi,t,u =
Xi,t,u

Xi
. ∀i, t,u (2.8)

To avoid over-charge/discharge, the battery capacity and the maximum charge/discharge
rate, which are given by a manufacturer, should be kept.

Xi ≤ Xi,t,u ≤ Xi, ∀i, t,u (2.9)

0 ≤ Bin
i,t,u ≤ XCi, ∀i, t,u (2.10)

0 ≤ Bout
i,t,u ≤ XCi. ∀i, t,u (2.11)

The formula (2.9) ensures that the stored energy in the battery remains within the mini-
mum and maximum limits. The formulas (2.10) and (2.11) are constraints on the charge
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and discharge rate for each time u.
In addition, the following equations must also be satisfied for the battery:

Xi,1,1 = X0
i , ∀i (2.12)

Xi,T,U+1 = X0
i , ∀i (2.13)

Xi,t+1,1 = Xi,t,U+1. ∀i, 0 ≤ t < T (2.14)

The equation (2.12) sets the initial stored energy of the battery at the beginning of the
day. The equation (2.13) defines that the end value of the stored energy is the same as
the initial stored energy X0

i . The equation (2.14) takes over the stored energy to the next
day t +1 at the end of each day.

The inter-cluster energy exchange is facilitated by the local energy network, which
is composed of private electric cables. Such a local energy network typically has a max-
imum limit for transmitted energy. The energy loss occurs during the energy exchange
due to cable resistance as follows:

0 ≤ Zi, j,t,u ≤ γi, j, ∀i, j, t,u, i , j (2.15)

ZT
i,t,u =

N

∑
j=1, j,i

Zi, j,t,u, ∀i, t,u (2.16)

ZR
i,t,u =

N

∑
j=1, j,i

β j,iZ j,i,t,u. ∀i, t,u (2.17)

The formula (2.15) is the constraint of the transmission capacity between the cluster
i and j. The formula (2.16) calculates the transmitted energy from the cluster i. The
formula (2.17) calculates the received energy from the other clusters to the cluster i
with the energy exchange loss.

As for the energy management by the router, the following equations must be satis-
fied.

Si,t,u ≥ 0, ∀i, t,u (2.18)
Yi,t,u ≥ 0, ∀i, t,u (2.19)

Si,t,u +Gi,t,u +Bout
i,t,u +ZR

i,t,u = Yi,t,u +Di,t,u +Bin
i,t,u +ZT

i,t,u. ∀i, t,u (2.20)

The formula (2.18) shows that the cluster can only purchase electricity from the power
company. The formula (2.19) indicates that the wasted energy must be a positive value.
The equation (2.20) is the router equation, which states that the sum of incoming energy
equals the sum of outgoing energy on the router.
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2.5 Mathematical Formulation of SOH-Aware Two-
Stage Optimization

This section presents the SOH-aware two-stage planning method as a MIP formulation.
To reduce SOH degradation, the most effective approach is to directly incorporate the
SOH degradation model into the optimization problem. However, this non-linear opti-
mization problem is difficult to solve in a reasonable amount of time as the problem is
quite complex even using a commercial solver. Therefore, the proposed method aims to
reduce SOH degradation indirectly by controlling battery aging factors.

As previously mentioned in Section 2.3, higher SOH degradation is caused by both
higher SOC swing and higher average SOC level. Moreover, reducing battery degrada-
tion actively would lead to suppressing battery usage, which in turn leads to an increase
in electricity costs. These are in a trade-off relationship. To find the optimal trade-off,
the proposed method mainly focuses on controlling the SOC swing, which affects both
purchased energy and battery degradation. For example, a larger SOC swing reduces
purchased energy but also increases battery deterioration. On the other hand, a smaller
SOC swing reduces battery degradation but also increases purchased energy. Thus, the
optimal solution for this trade-off can be found by introducing a constraint on the SOC
swing to keep it below a certain upper bound. This approach allows us to easily explore
the trade-off by adjusting the upper bound of the SOC swing.

The proposed method also considers the average SOC, which has a relatively small
impact on purchased energy. To minimize the degradation effect of the average SOC,
the proposed method uses a penalty function based on the SOH model proposed by
Millner [39]. In summary, the proposed approach consists of (1) a constraint for SOC
swing control and (2) a penalty function for the average SOC, which are described in
Section 2.5.1 and Section 2.5.2, respectively. The detailed formulation of the proposed
optimization problem is presented in Section 2.5.3.

2.5.1 Constraint for SOC Swing Control

This section describes the constraints for SOC swing control. Firstly, the SOC swing,
denoted by SOCswing

i,t , is given as follows.

SOCswing
i,t = max

1≤u≤U
SOCi,t,u − min

1≤u≤U
SOCi,t,u. ∀i, t (2.21)

For simplification, SOCswing
i,t is defined as the ranges between the maximum and the min-

imum SOC level of cluster i at the day t. Note that the formulation internally contains
several binary variables in order to express the equation (2.21); hence, the proposed
optimization problem is MIP.
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To limit SOCswing
i,t and control the battery usage, the following constraint is intro-

duced:
0 ≤ SOCswing

i,t ≤ SWINGmax, ∀i, t (2.22)

where SWINGmax is the upper bound of SOC swing for a day, which can range from
0 to 1. If the value of SWINGmax is low, the SOC swing is heavily restricted, and a
value of 0 means that the battery is unable to be used due to the constraint. The balance
between battery degradation and purchased energy can be easily examined by adjusting
the single parameter of SWINGmax.

2.5.2 Penalty Function of Average SOC
The average SOC is a significant factor contributing to battery degradation. Because
the average SOC has a relatively small impact on the purchased energy, the proposed
method minimizes the damage caused by the average SOC in order to reduce battery
degradation. As shown in the equation (2.4) of the SOH model, the battery degradation
effect is regarded as an exponential function of the average SOC. Assuming that mini-
mizing the equation (2.4) is more effective in reducing battery degradation than simply
minimizing the sum of the average SOC. Therefore, a penalty function based on the
equation (2.4) is set as the objective function. Initially, the average SOC, denoted by
SOCavg

i,t , is defined as follows:

SOCavg
i,t =

U

∑
u=1

SOCi,t,u

U
. ∀i, t (2.23)

The average SOC originally refers to the average SOC level for each charge/discharge
cycle. For simplicity, the average SOC is treated as a daily average in this formulation.

The penalty function of the average SOC is defined based on the equation (2.4) of
the SOH model as follows:

P(x) = exp [4KSOC · (x−0.5)] , (2.24)

where x represents the average SOC, which ranges from 0 to 1.0, and this function repre-
sents the battery damage caused by the average SOC level. Since P(x) is an exponential
function, it cannot be directly introduced into the MIP formulation. Thus, to linearize
this non-linear function, the functuion is approximated by a set of linear lines using a
piecewise-linear approximation technique.

Let N be a number of sampling coordinates x1, . . . ,xN . Here, x0 and xN correspond
to the average SOC of 0 and 1.0, respectively. Then, the function is approximated by
a set of linear functions for each interval [(xn,P(xn)),(xn+1,P(xn+1))] (k = 0, . . .N −
1). These sets of linear functions are defined as the approximated penalty function
P̃(x). To minimize the battery damage caused by the average SOC level, the sum of
P̃
(

SOCavg
i,t

)
is set to an objective function in the optimization problem. Note that it is
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required to introduce several binary variables internally in the formulation to express
the equation P̃(SOCavgi, t). The final formulation is MIP due to the equation (2.21) and
the piecewise-linear function.

2.5.3 Proposed Two-Stage Optimization Problem

This section presents the proposed SOH-aware two-stage operational planning formula-
tion based on the energy management problem. There are two objectives for this prob-
lem: 1) minimizing the purchased energy from the power company and 2) reducing the
SOH degradation. To achieve a balance between these two objectives, the optimization
problem is divided into two stages:

• Stage 1: Minimizing the purchased energy from the power company.
• Stage 2: Reducing the battery aging factors.

In Stage 1, the minimum amount of purchased energy needed to operate the system is
calculated. In Stage 2, the schedule of the battery is determined to reduce the aging fac-
tors, subject to the constraint of the minimum purchased energy obtained in Stage 1. The
constraint on the SOC swing (2.22) is introduced in both stages to explore the trade-off,
and the penalty function of the average SOC P̃

(
SOCavg

i,t

)
is set as the objective func-

tion in Stage 2 to reduce battery degradation. In this way, the proposed method obtains
the minimum purchased energy and minimum battery degradation, which represent the
trade-off relationship.

This two-stage structure is reasonable from time scales and system dynamics per-
spectives. The purchased energy should not rapidly change in this context where PV
generation does not fluctuate greatly, and electricity prices are fixed. In contrast, the
battery degradation is actively controlled, and the time constant of the stage 2 is smaller
than that of the stage 1. The faster problem of battery aging factor reduction should be
solved for a given working point of the slower problem of purchased energy minimiza-
tion.

Alternatively, a one-stage optimization approach could be used where the objective
function is a weighted sum of the purchased energy and the penalty function for bat-
tery degradation. However, finding the optimal weight parameters for each term is a
challenging task, as the scales of the purchased energy and the penalty functions are
significantly different (i.e., the former is a cost and the latter is an aging factor). The
two-stage structure avoids the need for searching for optimal weights and allows for
easy exploration of the trade-off. Therefore, the two-stage structure is more suitable
for this purpose. The details of the proposed formulation are described in the following
sections.
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Stage 1: Purchased Energy Minimization

In Stage 1, the minimum purchased energy is obtained by solving the following opti-
mization problem:

minimize Stotal =
N

∑
i=1

T

∑
t=1

U

∑
u=1

Si,t,u, (2.25)

subject to (2.7)− (2.20),(2.21),(2.22),
input

{Gi,t,u,Di,t,u}, ∀i, t,u
decision variables

{Si,t,u,Yi,t,u,Xi,t,u,Bin
i,t,u,B

out
i,t,u,Zi, j,t,u}. ∀i, j, t,u, i , j,

This problem includes the constraints for SOC swing with the upper bound SWINGmax
as a parameter. The objective function (2.25) seeks to minimize the total purchased
energy of all clusters over the planning period. The proposed method uses the obtained
minimum purchased energy, denoted by S∗total , as a reference point to keep the purchased
energy at a minimum.

Depending on the value of SWINGmax, the minimum purchased energy S∗total may
vary. In Stage 1, the schedules for system operation for each cluster at each time slot
are calculated. However, these schedules are then recalculated in Stage 2 to minimize
battery aging.

Stage 2: Battery Aging Factor Reducing

In Stage 2, the following optimization problem is solved to minimize the battery aging
factor under the minimum purchased energy:

minimize Damage =
N

∑
i=1

T

∑
t=1

P̃
(

SOCavg
i,t

)
, (2.26)

subject to (2.7)− (2.20),(2.21)− (2.23), (2.25),
Stotal ≤ S∗total, (2.27)

input
{Gi,t,u,Di,t,u}, ∀i, t,u

decision variables

{Si,t,u,Yi,t,u,Xi,t,u,Bin
i,t,u,B

out
i,t,u,Zi, j,t,u}. ∀i, j, t,u, i , j

The objective (2.26) is to minimize the piecewise linear penalty function outlined in
Section 2.5.2 The equation (2.27) constrains the amount of purchased energy and en-
sures that only the minimum necessary amount of purchased energy, S∗total , is used. This
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helps to keep the total purchased energy at a minimum in Stage 2. The resulting solution
consists of optimal schedules for energy purchase, battery usage, energy transmission,
and wasted energy. The proposed method aims to minimize purchased energy while
simultaneously reducing the battery aging factor.

2.6 Simulation Experiments
In this section, the simulation experiments are performed with realistic assumptions to
demonstrate the effectiveness of the proposed method.

2.6.1 Simulation Setup
To evaluate the effectiveness of the proposed method, two criteria are introduced: 1) bat-
tery aging cost and 2) total system cost. The battery aging cost, denoted by COSTaging,
is defined as the product of the initial purchase cost of the battery and the decrease in
battery capacity (expressed as a percentage of SOH decreases). This cost is based on
the assumption that if the battery becomes degraded to the point of being useless, it
will need to be replaced. Therefore, the initial cost is allocated based on the amount of
battery degradation according to the following equation:

COSTaging =
N

∑
i=1

1−SOHi

1−SOHlim
·COSTbat , (2.28)

where SOHi is the SOH of the cluster i’s battery after one year of operation, SOHlim
is the SOH threshold indicating the end-of-life of the battery, and COSTbat is the cost
to replace the battery when it reaches its end-of-life. According to literature [39], the
lifetime threshold SOHlim is typically set to 0.8. The battery cost COSTbat is set to 200
kJPY/kWh in this case.

On the other hand, to evaluate not only battery degradation but also electricity costs,
the total system cost, denoted by COSTyear, is defined as the sum of the electricity costs
and the battery degradation costs according to the following equation:

COSTyear =COSTaging +S∗total ·COSTgrid, (2.29)

where COSTgrid is the price of electricity per unit of energy in the power grid. Assum-
ing that the electricity price is constant regardless of time and purchase peak power,
COSTgrid is set to 21 JPY/kWh.

The system model in the experiment consists of five clusters (N = 5) that are com-
pletely connected by the local energy network. The planning horizon is one month
(T = 31), and hourly energy management is determined through optimization (U = 24).
The optimization problem is solved monthly, and simulation experiments are conducted
over the course of a year by applying the solution each month. The input data includes
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Table 2.2: Parameter settings of smart PV system.

Parameter Value

Upper bound of stored energy in battery Xi = 3 ∀i
Lower bound of stored energy in battery Xi = 0.3 ∀i
Initial stored energy in battery X0

i = 0.3 ∀i
Charge/discharge speed of battery XCi = 3 ∀i
Charging efficiency of battery αi = 0.9 ∀i
Loss rate of energy exchange βi, j = 0.95 ∀i, j; i , j
Capacity of energy exchange γi, j = 100 ∀i, j; i , j

real PV generation and demand profiles from five distinct houses in Shiga, Japan, which
differ between the clusters. A commercial solver, IBM ILOG CPLEX v12, is used
to solve the proposed MIP-based optimization problem. The parameters of the SOH
model are set to the values drawn from the literature [39]. The other parameters in the
simulation experiments are shown in Table 2.2.

The proposed method (labeled Proposed) is compared to a baseline approach (la-
beled Baseline). The baseline method only utilizes stage 1 optimization, which mini-
mizes purchased energy while imposing the SOC swing constraint. To assess annual
effects, the following steps are taken in the experiment:

1. Following optimization is performed monthly, resulting in a year-long battery
charge/discharge trace.

(a) Stage 1: Minimize purchased energy subject to the SOCswing
i,t constraint

(2.22), with the upper bound SWINGmax ranging from 0.1 to 0.9.
(b) Stage 2: Minimize the penalty function (2.26) subject to the SOCswing

i,t con-
straint (2.22) and the corresponding minimum purchased energy constraint
(2.27).

2. Using the SOH model, the battery SOH degradation factor is calculated based
on the obtained charge/discharge profiles.

3. The battery aging cost and total system cost are calculated using equations (2.28)
and (2.29), respectively.

2.6.2 Results
To investigate the effect of the SOC swing constraint (2.22) on the minimum purchased
energy, simulation experiments are carried out by changing the upper bound SWINGmax
from 0.1 to 0.9. The results of the purchased energy are shown in Fig. 2.5. The min-
imum purchased energy S∗total increases with decreasing the value of SWINGmax. This
is because the limitation of battery usage causes a mismatch between renewable energy
and demand. Besides, for each SWINGmax setting, the purchased energy of the proposed
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Figure 2.5: Trade-off relationship between upper bound of SOC swing and purchased
energy.

method is the same as that of the baseline, i.e., the purchased energy is kept minimum,
owing to the constraint (2.27).

Fig. 2.6 shows the optimized battery state-of-charge (SOC) profiles for four typical
days when SWINGmax is set to 0.4 or 0.9. The x-axis represents time, while the y-
axis represents the SOC level of the battery. By comparing the case with SWINGmax =
0.9 to the case with SWINGmax = 0.4, it can be seen that the proposed method limits
and controls the range of SOC more effectively. Additionally, the proposed method
consistently achieves lower SOC profiles than the baseline method. This result means
that minimizing the penalty function (2.26) leads to a reduction in the average SOC
level.

Fig. 2.7 shows the trade-off between the sum of the purchased energy and the SOH
decrease for the given year simulation. The dotted line and solid line correspond to the
proposed method and the baseline method, respectively. The x-axis shows the obtained
minimum purchased energy S∗total , and the y-axis represents the SOH decrease for the
given year. By changing the limitations of the SOC swing SWINGmax from 0.1 to 0.9
with a 0.1 interval, the different solution points in the figure can be obtained. From
the left point in the line plot, it corresponds to the case where SWINGmax is set to
a low value (0.1: 10%), i.e., the strict limitation for the battery system is given. As
seen in the figure, the proposed method can reduce the amount of the decrease in SOH
by minimizing the battery aging factor. The proposed method can improve the battery
lifetime.
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Figure 2.6: Cluster 1’s battery SOC profiles of baseline and proposed methods with
different SWINGmax for five days in autumn.

Next, the impact of the battery aging factors on the battery aging cost COSTaging is
demonstrated. Fig. 2.8 compares the sum of purchased energy and the battery aging
cost between the proposed method (dotted line) and the baseline method (solid line).
The x-axis displays the minimum energy obtained (S∗total), and the y-axis represents
the battery aging cost (COST aging). As in Fig. 2.7, each point in the line plot was
determined by incrementally changing SWINGmax from 0.1 to 0.9 in steps of 0.1. The
figure shows that the proposed method produces a more favorable trade-off than the
baseline method, and can reduce the battery aging cost by up to 14.1% at the same level
of purchased energy.

Finally, the total system cost for the one-year operation is calculated. Fig. 2.9 shows
the total system cost for one year of operation using the proposed method. As shown
in the figure, when SWINGmax is set to 0.6, the total system cost is minimized. This is
because the increase in electricity cost exceeds the decrease in battery aging cost near
SWINGmax = 0.6. In this case study, the optimal setting for the upper bound SWINGmax
is determined to be 0.6 based on the total system cost. It is worth noting that the pro-
posed method can determine the optimal operating points for the battery to minimize
degradation in the planning stage.
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2.7 Summary
This chapter has proposed a state-of-health (SOH) aware two-stage operational planning
methodology for smart photovoltaic (PV) systems with a battery system. The proposed
method aims to achieve a better system-level solution for battery scheduling that ex-
tends battery lifetime. To this end, an energy management problem is formulated as a
mixed-integer programming (MIP) optimization problem to minimize purchased energy
from the power grid and battery aging factors. Besides, the battery SOH model is incor-
porated into the problem, and average state-of-charge (SOC) level and SOC swing are
considered as battery aging factors. The proposed method consists of two optimization
stages: (1) purchased energy minimization with SOC swing constraints, and (2) explor-
ing solutions to minimize battery aging caused by average SOC level under the same
purchased energy. Simulation results showed that the proposed method can reduce the
battery aging cost by 14.1% compared to the baseline method, which aims to minimize
only purchased energy. The proposed method can provide a better trade-off between
battery degradation and purchased energy.

Additional research is to develop a real-time management method for EMS. The
proposed method in this chapter stands on the unrealistic assumption that the amount of
variable renewable generation is perfectly predicted. This assumption makes the pro-
posed method unsuitable for real-time operation purposes. As a starting point, Chapters
3 and 4 present a real-time optimization framework that incorporates specific forecast-
ing methods of system input and conditions

As for future work on operational planning, stochastic variations on energy profiles
will be considered. Many factors, such as occupant behavior and weather conditions,
can lead to uncertainties in demand and renewable generation. To avoid unexpected
cost increases and grid instability, it is required to make a plan with taking uncertain-
ties into account. Hence, an uncertainty-aware operational planning method should be
developed.



Chapter 3

Multi-Time Scale Online Energy
Management Framework Mixing Fast
and Slow Dynamics

In real-time energy management, the fluctuation of renewable generation such as pho-
tovoltaic (PV) systems causes severe energy loss and imbalances. Meanwhile, in slower
time scales, scheduling distributed energy resources (DERs) such as a battery system
and shiftable appliances is important to shift energy demand from peak to off-peak
hours and reduce electricity costs. To fill the gap between fast and slow time scales in
energy management, this chapter presents an online multi-time scale energy manage-
ment framework for smart PV systems1. The proposed framework consists of coarse
and fine-grained time scales and repeatedly solves three consecutive optimization prob-
lems at certain time intervals. This multi-time scale structure reduces computational
complexity while maintaining solution quality. In addition, a short-term PV forecasting
model and an equivalent-circuit battery model are introduced for precise energy man-
agement. The proposed framework can improve both modeling capability and computa-
tional complexity in real-time EMS. The results show that the proposed framework can
reduce electricity costs by up to 48.1% compared to baseline methods with reasonable
computational time.

3.1 Motivation and Objective
With the recent growth of environmental awareness, a large amount of renewable en-
ergy such as solar and wind power have been introduced to demand-side consumers to
reduce CO2 emissions and electricity costs [60]. However, renewable energy is inter-
mittent and uncontrollable, and its generation fluctuates in the short term due to various

1This chapter is a refined and reproduced version of the paper to be published in Applied Energy [59]
copyrighted by Elsevier.
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environmental factors, e.g., cloud moving and wind speed. This fluctuation nature may
cause supply-demand mismatches [61]. To address this issue, a smart energy system,
which integrates renewable energy, battery system, and demand control, can make such
systems energy-efficient, more resilient, and eco-friendly [62].

One of the key technology of smart energy systems is an energy management system
(EMS) to manage the balance of energy in real-time among appliances, battery systems,
renewable generation, and electricity purchases [63]. The EMS aims to improve several
criteria, including minimizing electricity costs, reducing demand peaks, and maximiz-
ing the self-sufficiency rate of renewable sources [64]. However, the unpredictable and
short-term fluctuations of renewable sources can negatively impact the performance of
the EMS [65]. To mitigate these fluctuations, the EMS currently relies on battery sys-
tems on a fast time scale [66]. Therefore, it is desirable to improve battery modeling
and properly incorporate workload-dependent storage in the EMS [67, 68].

Model predictive control (MPC) is a widely used control methodology in EMS due
to its ability to handle the fluctuations of renewable energy and control dynamic sys-
tems. One of the main benefits of using MPC is the ability to constantly adjust control
inputs based on the latest information, through iterating the prediction and optimiza-
tion of future system behavior for a predetermined time period. MPC is often used in
the scheduling of battery systems, in combination with forecasting techniques for re-
newable energy generation, to address the uncertainties of renewable energy in smart
energy systems [69].

On the other hand, demand load control is recognized as a promising application of
EMS [70]. One type of demand load control is appliance scheduling, which helps to
match load patterns with renewable generation and electricity price signals [71, 72]. In
appliance scheduling, shiftable appliances that can be moved to other time slots, such as
washing machines and tumble dryers, are scheduled between configuration and dead-
line. This enables minimizing electricity costs and maximizing PV sufficiency rates.
Such a demand control approach is performed on a slower time scale, completely dif-
ferent from the short-term PV fluctuation. The existence of multiple problems with
different time scales makes energy management complex and intractable.

One important factor that affects EMS efficiency is the difference in time scale.
Mixing fast and slow system dynamics in smart energy systems puts excessive strain on
computational complexity where control performance should be preserved. EMS should
take into account hourly and daily fluctuations in electrical demand and renewable gen-
eration over a longer period of time, potentially up to a week [73]. Also, appliance
scheduling should be performed either daily or hourly, effectively aligning supply with
demand [74]. On the other hand, at a faster time scale with a second-level resolution,
the energy imbalance in real-time due to renewable fluctuation should be managed to
reduce energy loss. As mentioned above, the time scales and their objectives are differ-
ent from each other. Thus, combining them into one problem increases computational
complexity significantly. This work addresses this issue in this chapter by implementing
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a multi-time scale energy management framework.
This chapter presents a multi-time scale energy management framework for a smart

PV system that takes into account both fast and slow system dynamics. The targeted
system is a local energy system comprising several homes and buildings equipped with
PV panels, batteries, and controllable appliances. To implement real-time control, the
proposed framework employs the MPC approach using data provided by PV forecasting
techniques based on deep neural networks and thermal simulation [75]. An equivalent
circuit model of a battery [76] is also introduced. It enables capturing the changes
in the state-of-charge (SOC) and I-V characteristics of the battery system to reduce
energy loss. The proposed multi-time scale structure effectively handles different time-
scale problems in energy management as an integrated loop of optimization. The time
scale is divided into two: coarse- and fine-grained. This approach enhances both the
computational efficiency and modeling capability.

The main contributions of this work are shown below:
• The framework introduces two-time scales: coarse-grained and fine-grained. This

approach allows for the incorporation of fast and slow dynamics, such as short-
term fluctuation of PV generation and demand, battery transient responses, and
appliance scheduling.

• The proposed comprehensive approach includes the integration of three detailed
component models: a time-shiftable appliance model, a physics-based PV fore-
casting model with 1 s resolution, and an equivalent circuit-based battery model.

• The proposed framework uses an MPC approach to handle PV forecasting errors
and the battery’s internal state change. The control processes including prediction
and optimization are effectively iterated.

• Experimental result shows that the proposed framework can reduce electricity
costs by 48.1% compared to single-time scale methods. It also has low compu-
tational complexity, enabling real-time control of the system. The effects of PV
forecasting error and battery capacity are also explored in the simulation experi-
ments.

The remainder of this chapter is as follows. Section 3.2 presents related works of
energy management methodology for a smart PV system. Section 3.3 describes an
overview of the proposed multi-time scale framework and system models. Then, Sec-
tion 3.4 shows a mathematical formulation of the energy management problem in the
proposed framework. Finally, the effectiveness of the proposed method by simulations
with measured data is demonstrated in Section 3.5 and summarize this chapter in Sec-
tion 3.6.

3.2 Related Works
EMS often uses optimization-based scheduling to manage energy for appliances and
battery systems. The combination of battery and appliance scheduling has been shown
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to be effective, as reported in the literature. For example, Lokeshgupta et al. [77] pro-
posed a home energy management system (HEMS) controller based on a multi-objective
mixed integer programming (MIP) problem to minimize electricity costs and power
peaks. They also conducted an economic analysis of using battery investment with
appliance scheduling in residential settings. Dorahaki et al. [78] presented an EMS us-
ing mixed-integer non-linear programming (MINLP) that considers both electrical and
thermal demand control and day-ahead energy storage scheduling. A sensitivity analy-
sis in their study showed that the best combination of controllable devices is to schedule
both electrical demand and battery use. However, these previous studies only solve the
scheduling problem once per day and do not take into account forecast errors in PV
generation or the latest state of the battery system during the day.

Many control methods based on the MPC approach have been proposed for EMS
applications. Godina et al. [79] proposed an MPC-based home energy management for
an air conditioning (AC) system under dynamic pricing schemes. They demonstrated
that the MPC approach outperforms conventional controllers, which are ON/OFF and
proportional-integral-derivative (PID), in terms of both electricity costs and control ca-
pability. The MPC framework in EMS is also studied by Parisio et al. [80], and they
investigated the MPC-based energy management for multiple buildings by considering
weather forecasts, demand forecasts, and end-user preferences. Carli et al. [81] demon-
strated that the MPC-based approach can be easily implemented in real-world buildings
with achieving high performance. With the recent increase in computing resources,
the scope of problems that can be addressed using an MPC approach has expanded.
Gan et al. [82] investigated the integration of forecasting methods for renewable gen-
eration and demand load, as well as a MIP-based MPC problem to schedule a battery
system. The performance of MPC depends on the accuracy of the prediction model.
To ensure both prediction accuracy and solution quality, the planning horizon for MPC
typically includes a few days with a coarse-grained resolution, such as 15 min or one
hour. Although there is much literature on scheduling in smart energy systems, it mainly
addresses slow dynamics.

For a shorter time scale, real-time control approaches are generally based on a rule-
based controller [83] and a fuzzy logic controller [84], rather than prediction-based
approaches due to computational time constraints. Since such controllers only consider
simplified system models and current information, the solution optimality is not guar-
anteed at all.

Abreu et al. [85] introduced a hierarchical MPC method for managing various de-
mand loads, with an upper layer that calculates the maximum power limit and a lower
layer that individually optimizes schedules for demand. However, this approach does
not take into account renewable generation or a battery system. Lefort et al. [86] also
investigated a hierarchical EMS centered on a building, battery system, and PV gen-
eration, which included a scheduling upper layer with a 7 h horizon and a pilot lower
layer with a 5 min horizon. Jin et al. [87] proposed a hierarchical EMS consisting of
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day-ahead schedules and intra-hour MPC adjustment to optimize EV with PV genera-
tion. However, none of these studies consider appliance scheduling, and their demand
flexibility is also limited. Furthermore, the PV forecasting models used in these works
are relatively simple and do not adequately account for short-term PV fluctuations. On
the other hand, Elkazaz et al. [88] developed a hierarchical two-layer home EMS with
the aim of lowering daily electricity expenses and boosting PV self-consumption. Their
approach involves a top layer that calculates the scheduling of the battery system and
appliances for the following 24 h, using the previous day’s PV generation profiles as PV
forecast data. The lower layer is a rule-based real-time controller that adjusts for PV
fluctuations, but it is a relatively straightforward algorithm that does not consider future
PV fluctuations. Accurate PV forecasting is crucial for effective energy management, as
demonstrated by Ferrarini et al. [89] and Klingler et al. [90]. These authors have noted
that errors in PV forecasting can significantly impact the performance of energy man-
agement systems. Furthermore, the previous studies mentioned in this text have used
linear battery models, despite the fact that battery behaviors are nonlinear. Additionally,
these studies have not provided a detailed view of PV forecasting and battery states on
the fast time scale, which can lead to real-time energy imbalances and energy loss if
fast dynamics such as short-term PV fluctuations and battery transient responses are not
accounted for.

In comparison to the previously mentioned studies, the proposed framework incor-
porates the fast time scale through the integration of a short-term PV forecasting model
and an electrical circuit-based battery model. The multi-time scale structure of the pro-
posed framework effectively combines fast and slow system dynamics to accurately
manage the balance between supply and demand. This allows for real-time scheduling
to reduce electricity costs while considering a range of fast and slow dynamics, such as
PV and energy demand fluctuations and battery transient responses.

3.3 Proposed Framework for Multi-Time Scale Energy
Management

This section presents an overview of the proposed multi-time scale energy management
framework and discusses the key concepts behind the multi-time scale structure in this
section.

3.3.1 Introduction to Proposed Framework

The overview of the proposed framework is shown in Fig. 3.1. It includes a battery
model, a PV forecasting model, and a mathematical formulation of a smart PV system.
The control objective is to minimize electricity costs. The inputs of the framework are
forecasting data of PV generation and electrical demand profiles. The obtained solution
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Figure 3.1: Overview of multi-time scale energy management framework.

consists of purchased power/energy, battery charge/discharge, and appliance operation
timing.

The main control processes are as follows. First, the PV forecasting model provides
fine-grained PV profiles upcoming half an hour or a few days. The mathematical prob-
lem to optimize the system operation is formulated, and optimal schedules are obtained
by solving it with a mathematical solver. Then, the solver calculates an optimal schedule
for the system to minimize electricity costs from the utility grid. Finally, the obtained
schedule is employed as a system operation. These processes are iterated every time
step following the MPC approach, which is introduced in the following section. This
allows for real-time control that adjusts the energy balance.

3.3.2 Concept of Model Predictive Control

The proposed framework for real-time energy management uses the MPC approach to
control dynamic systems. MPC is an effective method for controlling dynamic systems
[91] and has been applied successfully to energy management problems in recent studies
[92]. The MPC approach involves computing an optimal solution that minimizes a
given objective over a finite planning period while considering future periods as well.
The key idea of MPC is to improve system performance by repeating prediction and
optimization steps, as illustrated in Fig. 3.2. At each sample time step, the system’s
predicted behavior is inputted into an optimization problem for a given period. Only the
first solution is applied to the system, while the rest are discarded. At the next sample
time step, the process is repeated with updated predicted inputs and a receded time
period. It’s worth noting that the feedback structure of MPC can potentially compensate
for uncertain variables, such as load demand and PV generation [93], which is one of
its main advantages.
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Figure 3.2: Basic concept of MPC approach.

3.3.3 Organization of Multi-Time Scale Approach

The main concept of the proposed multi-time scale structure is solving an integrated
optimization loop that combines two independent time scales. The proposed structure
has a coarse-grained and fine-grained time scale, as depicted in Fig. 3.3. The symbol t
represents an index of time steps for the entire control procedure. At every control point,
multi-time scale optimization is dispatched using the MPC approach with the input of
forecast information and system states.

This structure incorporates variations in demand load and PV generation, appli-
ance scheduling, and battery scheduling. The coarse-grained time scale, which involves
coarse changes in demand and PV generation, is initially taken into consideration for
scheduling appliances and batteries over a period of a few days, denoted as TL. Long-
term PV forecasting models, such as artificial intelligence [94], tend to be less accurate
when the time resolution is less than minutes. Therefore, the time resolution ∆tL for the
coarse-grained loops should be relatively coarse, e.g., 15 min.

The fine-grained time scale focuses on real-time control of a battery system to bal-
ance energy in the short term between PV output fluctuation and battery behavior’s
characteristics. In this time scale, the proposed framework uses the demand sched-
ules obtained by the coarse-grained loop and calculates a precise battery schedule for a
shorter period, TS. To compensate for short-term PV fluctuations with battery schedul-
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Figure 3.3: Proposed MPC approach combined with multi-time scale structure.

ing, the fine-grained loop’s time resolution ∆tS should be a few seconds or less. This
is because PV panels and batteries generally have electrical time constants of a few
seconds or more. PV production is influenced by both solar irradiance and PV cell
temperature, which can be affected by fast-changing weather conditions such as mov-
ing clouds, wind speed, etc. Their fastest time constants are usually a few seconds or
higher [95, 96].

Different problems on different time scales, such as appliance scheduling, PV fluc-
tuations, and battery operation, can be addressed by the proposed framework. However,
instead of addressing these problems independently, the proposed framework can com-
bine them into a single integrated optimization loop to obtain a high-quality solution.

3.3.4 System Model for Smart PV System

This section describes a detailed explanation of a smart PV system and mathematical
formulation.
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Figure 3.4: Schematic diagram of smart PV system with mathematical symbols.

Overview of Smart PV System

In this work, a PV-driven energy community made up of multiple buildings and house-
holds is called a smart PV system. The targeted smart PV system model is depicted in
Fig. 3.4. The main components of a smart PV system are PV panels and a Li-ion battery
system. When PV generation is insufficient or the EMS decides to supply the required
demand from the battery instead of purchasing from the utility grid, the battery system
supplies electrical energy. There are two categories of appliances in this system: non-
shiftable and shiftable appliances. Non-shiftable appliances include refrigerators and
lights whose operation and start time cannot be interrupted or deferred. Shiftable appli-
ances, such as washing machines and dishwashers, can have their start time shifted to
another time slot. During power shortages, the smart PV system buys electrical energy
from the utility grid. To prevent grid instability due to reverse power flow, the system is
prohibited to sell surplus energy to the grid. The surplus energy is utilized by the battery
system and appliances as much as possible; otherwise, it will be wasted by additional
components such as resisters, indicated by Wasted in Fig. 3.4. This type of system al-
lows online data collection and control for all devices using EMS. It also connects to
a network for exchanging information with other parts of the system and for obtaining
external information, such as meteorological data and system states. Specifically, both
shiftable appliances and a battery system can be controlled to balance PV generation
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and demand load by solving optimization problems subject to user preferences.
The smart PV system is formulated as follows. First, the energy balance within the

system must be maintained at all times t, which is expressed as:

St +Gt +Et = Dbase
t +Dsh f t

t +Yt , ∀t (3.1)

where St , Gt , and Et represent the purchased energy from the utility grid, the PV energy
production, and the charging/discharging energy of the battery system, respectively.
Dbase

t , Dsh f t
t , and Yt denote the energy consumption of the non-shiftable appliances,

that of the smart appliances, and the energy wasted inside the system, respectively.
Charging/discharging energy Et is positive in the case of charging and negative in the
case of discharging. The purchased energy St and the wasted energy Yt are only positive,
as shown by:

0 ≤ StL , ∀t (3.2)
0 ≤ YtL . ∀t (3.3)

It should be mentioned that the system model does not explicitly manage other com-
ponents such as wind turbines, electric vehicles, and air conditioning systems since this
chapter focuses on the impact of PV forecasting and accurate battery models on EMS
performance. These components can be easily considered by mathematically formu-
lating their behaviors. The framework can also be extended to include management of
indoor climate for air conditioning systems, as presented in Chapter 4.

Detailed Physics and Neural Network Based PV Forecasting Model

Due to meteorological random events, PV generation can fluctuate significantly. To
smooth out these fluctuations and balance demand PV generation with demand and bat-
tery scheduling, real-time and precise PV forecasting data are necessary. This work uses
a PV nowcasting model proposed in [75], which can predict precise and fine-grained
PV generation using an all-sky camera, detailed physics-based models of PV thermal
part [97], and deep neural network models. The forecasting model has the advantage
of providing high temporal resolution data and making forecasts with a 1 s resolution
up to a 15 min horizon. The minimum update interval is one minute, allowing for a
fine-grained battery scheduling loop to be run within a reasonable time interval.

Making long-term plans for the system up to a few days requires PV forecasting for
the coarse-grained time scale. It is typically obtained from a meteorological station.

Shiftable Appliance Model

Shiftable appliances are characterized by four parameters [98]: (1) operating time, (2)
configuration time (T con f ) when the appliance is available for use, (3) deadline (T dead)
when the appliance must finish its operation, and (4) energy profiles for its operation.
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Configuration and deadline time are considered user preferences, meaning that shiftable
appliances must be scheduled between their configuration and deadline times. Finally,
shiftable appliances will start based on the solution obtained automatically.

A mathematical formulation for shiftable appliances is described below. The oper-
ating cycle of each appliance is modeled rather than using a single value for appliance
power consumption. To do so, the operation cycles of shiftable appliances are divided
into P stages according to their operation content. The symbols m and p represent a
shiftable appliance index and an operating phase index. Binary variables qm,p,t means
the shiftable appliance’s phase; if an appliance m is in operation phase p at time t,
qm,p,t = 1, otherwise it is 0. Moreover, binary variables rm,p,t are introduced as a finish
flag; if operation phase p of appliance m is finished at time t, rm,p,t = 1, otherwise it is
0. The shiftable appliance scheduling is then formulated as follows:

Dsh f t
t =

M

∑
m=1

P

∑
p=1

qm,p,t ·Dapp
m,p , ∀t (3.4)

qm,p,t + rm,p,t ≤ 1, ∀m, p, t (3.5)
qm,p,t−1 −qm,p,t ≤ rm,p,t , ∀m, p, 2 ≤ t ≤ T (3.6)
rm,p,t−1 ≤ rm,p,t , ∀m, p, 2 ≤ t ≤ T (3.7)
qm,p,t ≤ rm,p−1,t , ∀m, t, 2 ≤ p ≤ P (3.8)
rm,p−1,t − rm,p,t = qm,p,t , ∀m, t, 2 ≤ p ≤ P (3.9)

T

∑
t=1

qm,p,t = 1, ∀m, p (3.10)

qm,p,t = 0, ∀m, p, 1 ≤ t ≤ T con f
m , T dead

m ≤ t ≤ T (3.11)

where Dapp
m,p is the consumed energy of appliance m in phase p. The equation (3.4)

calculates the scheduled energy of the shiftable demand at. The formulas (3.5) - (3.8)
and the equations (3.9) and (3.10) show the logic of shiftable appliance scheduling. The
equation (3.11) denotes the user preference for the timing of the appliance usage. The
coarse-grained time scale manages this appliance scheduling problem.

Equivalent Circuit Based Accurate Battery Model

Battery modeling is an important tool for implementing scheduling and simulation logic
in EMS. This chapter’s main contribution is to build a battery module based on a model
of battery cell [76] for tracking SOC profiles and considering energy loss accurately. As
mentioned in Section 3.2, many previous studies have utilized a basic model that only
reflects the linear relationship between energy loss and the amount of charging/discharg-
ing, despite the actual relationship being nonlinear.

The battery module’s configuration is illustrated in Fig. 3.5 and consists of identi-
cal cells that are connected in series and parallel. The number of series- and parallel-
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Figure 3.5: Battery module configuration composed of Ns series cells and Np parallel
cells.

connected cells is represented by Ns and Np, respectively. The proposed framework
integrates the equivalent circuit model as a battery model, showing fine agreement with
the measured data regarding non-linear I-V characteristics and running time [76].

An equivalent circuit model employed in this chapter is depicted in Fig. 3.6. The
battery’s state of charge (SOC) change is represented by the left part of the model. The
stored energy level of the battery, SOC, is indicated by the voltage source VSOC, and its
range is 0.0 - 1.0 (0%− 100%). The variable Ibatt denotes the terminal current, which
is positive when discharging and negative when charging. The nominal battery capacity
is represented by Cnom, calculated based on the cell capacity, Ccell , and the number of
parallel-connected cells, Np:

Cnom = Np ·Ccell. (3.12)

Here, the SOC change is formulated as follows:

SOCt+1 = SOCt −
∫ t+1

t

Ibatt

Cnom
dt. ∀t (3.13)

The equivalent circuit’s right part shows the transient response of the battery. The
battery’s terminal voltage is denoted by the voltage source Vbatt . The left and right
parallel RC branches handle the shorter and longer I-V characteristics, respectively.
Each cell is modeled with open circuit voltage VOC, resistances (RS, RT S, RT L), and
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Figure 3.6: Electrical diagram of equivalent circuit-based battery model composed of
Ns ×Np cells.

capacitances (CT S, CT L). These parameters depend on the SOC level and are given by:

VOC = a1 · exp(a2 ·SOC)+a3

+a4 ·SOC+a5 ·SOC2 +a6 ·SOC3, (3.14)
RS = a7 · exp(a8 ·SOC)+a9, (3.15)
RT S = a10 · exp(a11 ·SOC)+a12, (3.16)
RT L = a16 · exp(a17 ·SOC)+a18, (3.17)
CT S = a13 · exp(a14 ·SOC)+a15, (3.18)
CT L = a19 · exp(a20 ·SOC)+a21, (3.19)

where {an,∀n = 1...21} is the set of the battery cell coefficients, which are provided
in the literature [76]. The terminal voltage Vbatt and charging/discharging energy E are
given by:

Vbatt = Ns ·VOC − Ibatt ·
Ns ·RS

Np
−UT S −UT L, (3.20)

E = Ibatt ·Vbatt/1000, (3.21)

where UT S and UT L represent the voltage sources of the left parallel RC branch and the
right one, respectively. These values are calculated as follows:

dUT S

dt
=− UT S

RT S ·CT S
+ Ibatt ·

Ns

Np ·CT S
, (3.22)

dUT L

dt
=− UT L

RT L ·CT L
+ Ibatt ·

Ns

Np ·CT L
. (3.23)
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In this work, the full model of the equivalent circuit is used to accurately estimate
battery states through system simulation. However, in the proposed optimization prob-
lem, the modified version of the model is employed to reduce computation time while
achieving efficient battery operation. A detailed explanation of the modification is de-
scribed in the following sections.

3.4 Formulation of Proposed Optimization Flow

This section shows the formulation of a multi-time scale optimization problem. First, an
optimization flow and a detailed mathematical formulation of the proposed framework
are described.

3.4.1 Overview of Control Flow

The proposed framework aims to reduce electricity costs by finding the most efficient
schedules for a smart PV system. The solution includes schedules of shiftable appli-
ances, a battery system, and purchased energy from the grid. As previously noted in
Section 3.3.3, the framework consists of a multi-time scale structure that follows an
MPC approach.

The block diagram in Fig. 3.7 illustrates the control flow in the proposed multi-
time scale framework. Multiple optimization problems are solved at every interval of
∆t. First, the coarse-grained time scale treats two optimization problems with respect
to shiftable appliances and a battery system. These are the appliance scheduling (AS)
stage and the coarse-grained energy management (CGEM) stage. The AS problem de-
termines the schedule for shiftable appliances that can be moved to a different time.
The CGEM problem calculates the reference points of the battery system using the ob-
tained appliance schedule as input. The equivalent circuit battery model is integrated
into CGEM to reduce battery energy loss. The planning period of AS and CGEM should
still be long to incorporate daily variations in energy profiles and appliance periodic.

Second, the fine-grained time scale treats the rapid PV fluctuation and the transient
responses in the battery system. The fine-grained energy management (FGEM) problem
is run using the solution from the coarse-grained optimization and the short-term PV
forecasting described in Section 3.3.4. The obtained schedules, including precise battery
charge/discharge, are applied to the system directly. Also, the system performance is
evaluated by simulating the system behavior using the obtained solution and the battery
model. The detailed formulations of AS, CGEM, and FGEM are given in the following
sections.
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Figure 3.7: Block diagram of control flow in proposed multi-time scale framework.

3.4.2 Appliance Scheduling

Since the AS problem focuses on the coarse-grained time scale, the planning period
is TL with the resolution ∆tL. The AS is a MIP-based optimization problem due to
some binary variables for appliance scheduling. The following is the mathematical
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formulation of the AS:

minimize
TL

∑
tL=1

ξtL ·StL , (3.24)

subject to (3.1)− (3.13),(3.21),
input

{GtL ,D
base
tL ,ξtL}, ∀tL

decision variables
{StL ,YtL , Ibatt,tL ,qm,p,tL ,rm,p,tL}, ∀m, p, tL

where ξtL represents the electricity price from the power company. It should be noted
that the non-linear part of the equivalent circuit model is omitted to avoid mixing integer
variables and non-linear equations and reduce computational complexity. Specifically,
the variable for the terminal voltage Vbatt is fixed to the constant nominal value, and the
equations (3.14)-(3.19), (3.22), and (3.23) are removed. This means that the transient
response and complex I-V characteristics are omitted in the AS. However, the following
CGEM recalculates the battery schedule incorporating the non-linear part of the equiva-
lent circuit model. The objective function is minimizing electricity costs. The obtained
solution of the AS contains the schedules for the shiftable appliances, the purchased
energy, the battery system, and the wasted energy. Only the solution of the shiftable ap-
pliances, Dsh f ttL and qm, p, tL, is applied to the system. The rest solutions are discarded,
and the following problems recalculate them.

3.4.3 Coarse-Grained Energy Management

The CGEM refers to the outer loop for the battery scheduling using the same time
scale as the AS. The non-linear part of the battery model is integrated into the CGEM
problem. Still, the capacitances CT S and CT L are removed since their time constants are
very fast: 20 s to 4 min, and it is useless to consider them in the longer time scale. The
values of resistances are aggregated as the total resistance Rtotal , as given by:

Rtotal = RS +RT S +RT L, (3.25)

Vbatt = Ns ·VOC − Ibatt ·
Ns ·Rtotal

Np
. (3.26)

The CGEM is a non-linear programming (NLP) problem because it includes the
non-linear equations (3.14) - (3.17). The CGEM’s formulation is finally described as
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follows:

minimize
TL

∑
tL=1

ξtL ·StL , (3.27)

subject to (3.1)− (3.3),(3.12)− (3.17),(3.21),(3.25),(3.26),
input

{GtL ,D
base
tL ,Dsh f t

tL ,ξtL}, ∀tL
decision variables

{StL ,YtL , Ibatt,tL}, ∀tL

where the objective is the same as that of the AS, i.e., electricity cost minimization.
The solution of the CGEM includes the schedules for the battery system, the purchased
energy, and the wasted energy. It is worth noting that the battery schedule obtained
by the CGEM is more practical than that of the AS, as the CGEM incorporates the
non-linear effect of the battery system, which is omitted in the AS problem.

To further refine the battery schedule in FGEM, the reference values for battery
energy Ere f are set based on the obtained solution, as given by:

Ere f =
1

1000
· Ibatt

1 ·V batt
1 · ∆tS

3600
. (3.28)

Using Ere f as reference working points, the following FGEM calculates the fine-grained
battery schedule preventing a greedy solution, e.g., anyway discharging or charging the
battery system based on current renewable generation.

3.4.4 Fine-Grained Energy Management
The FGEM refers to the inner loop for the battery system to compensate for high fluc-
tuations in PV generation. The planning period should be short such as 15 min, denoted
by TS. To be consistent with the coarse-grained time scale, the period TS should be the
same as the resolution of the coarse-grained time scale ∆tL

In FGEM, the appliance schedule obtained from AS is used as input Dsh f t
tS . Apart

from the AS and CGEM, the FGEM introduces the full equations of the equivalent
circuit to consider fast battery dynamics. Besides, the trajectory of the battery output
should keep a similar curve to the solution of the coarse-grained time scale to capture
the daily change in demand and PV generation. Therefore, using the reference value
Ere f , the outputs of the battery charge/discharge are constrained by:

EtS −Ere f ≤ ε · |Ere f |, ∀tS (3.29)

where ε represents the acceptable error from Ere f , and its typical value is 5%.
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The FGEM is an NLP problem since it includes the non-linear parts of the battery
model. Finally, the mathematical formulation of the FGEM is given by:

minimize
TS

∑
tS=1

ξtS ·StS , (3.30)

subject to (3.1)− (3.3),(3.12)− (3.23),(3.29),
input

{GtS ,D
base
tS ,Dsh f t

tS ,ξtS ,E
re f }, ∀tS

decision variables
{StS ,YtS , Ibatt,tS}. ∀tS

The objective function is minimizing electricity costs, the same as other problems.
The solution to the FGEM involves determining the optimal schedule for the battery, as
well as calculating the purchased energy and the wasted energy.

The proposed framework applies the optimal solutions to the targeted system. It
uses a complete equivalent circuit model to simulate the actual behavior of the battery
for the system simulation. It is worth mentioning that simulating the battery system
is a crucial step in the actual implementation, as the internal state of the battery is not
directly measurable. The simulation step helps to understand the battery’s SOC and
transient responses.

3.5 Simulation Experiments
This section conducts key simulation experiments with practical assumptions to demon-
strate the efficacy of the proposed framework. The experimental setup is first outlined,
and the parameter effect of the proposed method is explored. Additionally, the effect
of the battery size and PV forecasting error on performance is investigated. Finally,
the performance comparison regarding electricity costs with other baseline methods is
performed.

3.5.1 Simulation Setup
For all simulation experiments, the simulation period is set to ten days starting at mid-
night. The parameters of the proposed method are outlined below. The coarse-grained
time scale encompasses a 24 h planning period (TL = 96 [900s]) with a 15 min resolution
(∆tL = 900 [s]). Besides, the fine-grained time scale covers a 15 min planning period
(TS = 900 [s]) with a 1 s resolution (∆tS = 1 [s]). The commercial solver CPLEX v20.1
is used to solve the AS which is the MIP optimization problem. Also, the open-source
NLP solver IPOPT v3.14 [99] is employed to solve the CGEM and FGEM which are
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Table 3.1: Parameters settings of battery system.

Description Symbol Value

Initial SOC SOCinit 0.5 (50%)
Terminal SOC SOCterm 0.5 (50%)
Min. SOC SOC 0.2 (20%)
Max. SOC SOC 1 (100%)
Min. current Ibatt −0.5 ·Cnom (50% of capacity)
Max. current Ibatt 0.5 ·Cnom (50% of capacity)
Number of series cells Ns 25
Number of parallel cells Np 191
Nominal voltage Vcell 4.1 [V]
Nominal capacity Ccell 0.85 [Ah]
Battery capacity - 15 [kWh]
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Figure 3.8: PV generation used in simulation, measured at University of Oldenburg
from June 18 to July 27.

NLP problems. The computing platform is a modern laptop with 16 GB of DDR3 RAM
and a two-core Intel Core-i7 6600U CPU, 2.60 GHz.

The parameters of the battery system are listed in Table 3.1. The coefficients
{an,∀n = 1...21} are sourced from the literature [76]. The acceptable error of the bat-
tery output between the CGEM and FGEM, ε , is set to 5%. A time-of-use (TOU) price
commonly used in Japan is used as input: 21.66 ¥/kWh (7 a.m. - 11 p.m.) and 10.7
¥/kWh (11 p.m. - 7 a.m.) [100].

The PV generation was measured and collected with a resolution of 1 s from June
to July 2015 at the University of Oldenburg [75]. From these periods, June 18 to 27,
i.e., ten days, are chosen as input for the simulation, as shown in Fig. 3.8. Moreover, to
simulate a 15 kWp PV system, the PV generation profiles are amplified by a constant
value. It is worth noting that the weather during the simulated days was mostly cloudy.
On cloudy days, PV generation tends to fluctuate significantly, making PV forecasting
especially challenging. Therefore, high forecasting errors can be expected in this sim-
ulation, which represents a worst-case scenario and shows the worst-case performance
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Table 3.2: Parameters for smart appliances, washing machine, tumble dryer, and dish-
washer.

Appliance Total energy Operating time Configuration time Shiftable time

Washing machine 0.22 kWh 45 min 8 a.m. - 10 a.m. 7 h
Tumble dryer 1.86 kWh 75 min 8 a.m. - 10 a.m. 7 h
Dishwasher 1.88 kWh 75 min 12 p.m. - 15 p.m. 8 h

Figure 3.9: Power profiles of washing machine (- 3000 s) and tumble dryer (3000 - 7500
s).

of the proposed method. As for PV forecasting, the PV nowcasting model [75] is used
to get the fine-grained PV generation forecasts, which exhibit an average forecasting
error of 12% even under cloudy conditions. Since this work does not include a specific
forecasting model for the coarse-grained time scale, the coarse-grained PV forecast is
manually produced by adding Gaussian-distributed errors to the measured profiles, with
an average error of 20%.

The demand profiles of non-shiftable appliances are derived from the Dutch Resi-
dential Energy Dataset (DRED) [101], which was collected at a 1 s resolution from July
to December 2015. For the purposes of simulation, demand profiles over ten days are
extracted from the DRED ranging from July 5 to 14. Also, these are scaled up by a
constant value, with the mean daily consumption of non-shiftable appliances set to 50.1
kWh. The parameters of the shiftable appliance are detailed in Table 3.2, with three
types of shiftable appliances (dishwashers, washing machines, and tumble dryers) each
operated once daily. There are four appliances of each type, totaling twelve shiftable
appliances. The configuration time is randomly generated within the range specified in
Table 3.2. The deadlines are determined by the shiftable time plus the configuration
time. The dataset [102] provides the power profiles of the shiftable appliances with 1
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Figure 3.10: Power profiles of dishwasher.

s resolution, with representative examples of the washing machine, tumble dryer, and
dishwasher shown in Fig. 3.9 and Fig. 3.10, respectively.

3.5.2 Results
Comparison with Baseline Scheduling Methods

In order to evaluate the efficacy of appliance and battery scheduling, this section com-
pares the proposed framework to several baseline methods, described as follows:

1) Using Shiftable Appliances As Soon As Possible (ASAP): Shiftable appliances
are not scheduled through optimization. When their configuration time arrives,
the appliances are immediately turned on. The schedules of the battery system
are optimized by the CGEM and FGEM.

2) No Battery Scheduling (NBS): The CGEM and FGEM are excluded from the
proposed method. Only AS stage is employed, and the battery system follows
the fixed schedule, charging at a constant C-rate of 10% from 11 p.m. - 7 a.m.
and discharging at a constant C-rate of 5% from 7 a.m. - 11 p.m.

3) ASAP-NBS: This method combines ASAP and NBS, and therefore no optimiza-
tion problem is solved.

Table 3.3 presents the results of electricity costs for ten days and the improvement
rates of the proposed framework compared to the other methods. The proposed frame-
work achieved the lowest electricity cost of all methods, with a maximum improvement
rate of 48.1%. Appliance scheduling can help to fill the energy gap between generation
and demand, leading to reduced electricity costs. Battery scheduling is also a significant
factor in reducing electricity costs. When the battery system is charged and discharged
at a constant current like in the NBS method, the battery system is unable to maintain
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Table 3.3: Electricity cost and its improving rates of proposed method within ten days
compared to three methods, ASAP, NBS, and ASAP-NBS.

Method Proposed ASAP NBS ASAP-NBS

Electricity cost within ten days [¥] 3004 3319 4408 5784
Improving rate of electricity cost of proposed - 9.5% 31.9% 48.1%

Table 3.4: Electricity cost and computational time for different lengths of planning
period.

Planning
period [h] Electricity costs [¥] Computational time [s]

TL AS CGEM FGEM

6 3194 0.95 0.19 3.11
12 3106 1.63 0.27 3.03
24 3004 4.32 0.43 3.51
36 3044 8.65 0.63 3.12
48 3055 17.59 0.94 3.24

the balance between renewable generation and demand, resulting in increased power
purchase to meet energy demand.

Effect of Planning Period on Coarse-Grained Time Scale

In this section, the effect of the planning period on the coarse-grained time scale was
investigated. For the proposed method, the planning period TL is changed from 6 to 48
h.

Table 3.4 shows the electricity costs within ten days and the average computational
time for each optimization problem. As can be seen in the table, electricity costs de-
crease for the first 24 h of the planning period but increase when the planning period
exceeds 24 h. This is due to changes in the solution of the battery schedule for the 36
and 48 h planning periods. The end state of the battery’s SOC after a ten-day simulation
is 53.1% when using a 24 h period. However, it is 65.1% and 65.8% when using 36
and 48 h planning periods, respectively. That means that when using a longer input, the
remaining energy in the battery also increases. When the 36 and 48 h period is cho-
sen, some shiftable appliances of the last day are shifted outside the evaluation period.
Whereas, employing 24 h periods allows these appliances to be scheduled within the
same day.

Moreover, the computational time increases as the planning period become longer.
In the case of the 48 h planning period, the computational time for the AS problem
significantly increases due to the need to schedule more smart appliances. However,
the sum of computational times is much less than the length of the time resolution
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Table 3.5: Average AS’s computational time for different numbers of smart appliances.

Shiftable appliances per day Computational times of AS [s]

6 2.13
12 4.32
18 6.67
24 8.79
30 10.39

∆tL = 900 [s], making the proposed framework applicable for all simulated planning
periods. The planning period of 24 h is the most efficient in this case study, achieving
good performance in terms of both computational complexity and solution quality.

Effect of Number of Smart Appliances

Next, the impact of the number of smart appliances on computational time was exam-
ined. The number of each type of smart appliance was increased from 2 to 10, resulting
in a total of 6 to 30 appliances.

Table 3.5 shows the average computational time for each optimization problem,
which increases with adding more appliances. However, the computational time re-
mains appropriately short, as it consistently meets the requirements of ∆tL = 900 [s].
Thus, the proposed framework can be applied to a smart PV system comprising multi-
ple buildings and up to 30 or more smart appliances.

Effect of PV Forecasting Error and Battery Size

In this section, the system performance under different battery sizes and PV forecast-
ing errors was analyzed. Various coarse-grained forecasts of PV generation were em-
ployed, with an average forecasting error of 20%, 30%, or 40%. As for the fine-grained
time scale, two different schemes were compared, including energy forecasting [75] and
power forecasting, also presented in [75]. The average forecasting error for the 15 min
periods of energy and power forecasting was 12% and 20%, respectively. In addition,
assuming that the PV forecast method works ideally, the method with a forecasting error
of 0% is employed as the perfect forecasting. The battery capacity was also changed
from 3 to 18 kWh to investigate the sizing effect.

Fig. 3.11 shows the electricity costs within ten days with different PV forecasting
errors and battery capacities. The values of the electricity costs are given in Table 3.6.
The black line in Fig. 3.11 represents the electricity costs in the case of perfect fore-
casting. The blue and red lines indicate the results of power and energy forecasting,
respectively. As shown by these results, the electricity costs are not significantly im-
proved, when the battery capacity is larger than 12 kWh. This is because the errors in
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Figure 3.11: Electricity costs within ten days for different scenarios of PV forecasting
errors and different battery capacities.

misinterpreting future PV generation profiles impact the performance greatly as the bat-
tery size increases. In other words, the wrong battery operation due to PV forecasting
error outweighs the effect of reduced electricity costs by large battery capacity. From
the perspective of expensive initial costs, it is not advisable to choose a larger battery
size.

The forecasting error for the coarse-grained time scale has a significant impact on
electricity costs. Specifically, the smaller the forecasting error, the lower the electricity
costs. The coarse-grained forecasting error has little effect on the electricity costs when
the battery capacity is 3 or 6 kWh. However, when the battery capacity is larger than 9
kWh, the gap in electricity costs between different errors widens. Besides, the effect of
fine-grained PV forecasting errors on electricity costs is greater than the coarse-grained
ones. A 10% improvement in the fine-grained forecast errors can lead to a 30 - 50%
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Table 3.6: Electricity cost values in ¥with different PV forecasting errors and battery
capacities.

Battery
capacity
[kWh]

Perfect
forecasting

Forecasting scheme for coarse-grained
Energy forecasting (error <12%) Power forecasting (error <20%)

Forecast error for fine-grained Forecast error for fine-grained
20% 30% 40% 20% 30% 40%

3 3450 3558 3529 3579 3610 3570 3612
6 3146 3309 3292 3360 3437 3404 3477
9 3025 3181 3227 3272 3334 3381 3420

12 2821 3037 3118 3171 3202 3289 3353
15 2739 3004 3094 3185 3182 3271 3379
18 2719 3027 3092 3205 3193 3281 3384

reduction in battery size to achieve the same amount of the electricity costs. Thus, the
accuracy of the forecasting scheme for the fine-grained time scale is a crucial factor in
the system performance of EMS.

Effect of Multi-Time Scale Structure

To determine the necessity of the multi-time scale structure, the proposed framework
was compared to two single-time scale methods:

1) Only Coarse-grained Optimization (OC): AS and CGEM in the coarse-
grained time scale are only executed. The solution is directly applied to the
system without solving FGEM. OC has 24 h planning period with 15 min reso-
lution.

2) Only Fine-grained Optimization (OF): FGEM in the fine-grained time scale is
only executed. The smart appliances are operated as soon as possible similar to
the ASAP method, and CGEM is removed. OF has 15 min planning period with
1 s resolution.

Note that the parameters of OC and OF, i.e., the planning period and the time resolution,
are determined based on the characteristics of the available PV forecasting methods. As
mentioned in Section 3.3.3, the accuracy of long-term PV forecasting is worse when
time resolution is less than minutes (e.g., 5 min) [94]. On the other hand, short-term
PV forecasting based on a sky image and physics-based model can provide accurate
profiles with 1 s resolution; however, when the forecasting period is over 15 min, the
forecasting accuracy is rapidly degrading [75]. To align the target time scales for each
PV forecasting approach and perform the comparative experiment under the realistic
assumption, the parameters of OC and OF are set as above.

Table 3.7 presents the results of the electricity costs for ten days and the improve-
ment rate of the proposed method compared to OC and OF. The proposed framework
achieved the best performance, with a maximum improvement rate of 47.5% in elec-
tricity costs. This demonstrates the effectiveness of the multi-time scale structure in
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Table 3.7: Comparison of electricity cost and its improving rate for proposed method,
OC, and OF.

Method Proposed OC OF

Electricity cost for ten days [¥] 3004 3183 5717
Improving rate of electricity costs

of Proposed - 5.6% 47.5%
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Figure 3.12: SOC profiles of June 18 for three methods, Proposed, OC, and OF, with 15
kWh battery system.

reducing electricity costs.
Figs. 3.12 and 3.13 show the results of the SOC profiles and the battery power pro-

files for the same day. OF clearly demonstrates myopic optimization, meaning that
the battery system is discharged to reduce electricity costs as long as there is still en-
ergy remaining inside the battery. Since OF only knows about the upcoming 15 min
(TS) without the coarse-grained time scale, its solution is not optimized for long-term
changes in PV generation and demand load. In comparison to the proposed method and
OC, the proposed method reaches a higher SOC level. Although OC provides a solution
that accounts for long-term changes in energy profiles, accumulated errors in PV fluc-
tuation at the fine-grained time scale result in fewer opportunities to charge the battery
with PV generation. Furthermore, the battery solution of the proposed framework not
only considers the long-term changes by following the reference values of the coarse-
grained time scale but also compensates for the fast PV fluctuations by solving FGEM
with fine-grained PV forecasting data. Overall, the multi-time scale structure leads to
better performance in energy management.

The proposed framework primarily focuses on the fast and slow dynamics of PV
generation and a battery system. Though energy demand is also highly volatile, its time
scales are of many minutes and distinct from the time scales of PV generation and a
battery system. Consequently, fluctuations in energy demand can be absorbed in the
coarse-grained optimization loop of the multi-time step approach. As simulation results
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Discharging

Charging

Figure 3.13: Battery power profiles of June 18 for three methods, Proposed, OC, and OF,
with 15 kWh battery system; Positive value represents discharging, otherwise charging.

indicate, the quick response of battery charging and discharging enables the system to
effectively manage energy demand fluctuations.

3.6 Summary
This chapter has presented a multi-time scale energy management framework for a smart
photovoltaic (PV) system. A model predictive control (MPC) strategy with PV genera-
tion forecasting as input is adopted to address highly fluctuating PV generation. Further-
more, the proposed framework employs a multi-time scale structure comprising coarse-
grained and fine-grained time scales. As for the coarse-grained time scale, the schedules
of smart appliances are optimized to move their operating time, and the battery outputs
are also optimized to handle daily changes in the energy balance. For the fine-grained
time scale, the schedule of the battery system is fine-tuned by incorporating an accurate
battery model and fine-grained PV forecasting model. Finally, the proposed framework
solves three optimization problems internally connected, which take into account fast
and slow system dynamics. Simulation results show that the proposed framework can
reduce electricity costs under various scenarios by up to 47.5% compared to baselines.
Additionally, the impact of PV forecasting error and battery capacity on the performance
of the proposed framework is also analyzed. If an accurate PV forecasting model were
integrated, electricity costs could be significantly reduced, even with a small battery
system. In summary, the proposed framework affords EMS with real-time control capa-
bilities, resulting in a solution that is highly accurate and enables a reduction in the size
of an expensive battery system.

Further work related to this chapter involves extending the proposed framework to
incorporate heat ventilation and air conditioning (HVAC) systems. A multi-objective
optimization will be investigated to minimize system cost and maximize user comfort.
The first step of this expansion is proposed and discussed in Chapter 4.

In future work, more types of demand and renewable energy should be explicitly
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considered in the framework. For instance, electric vehicles (EVs) are critical energy
components that need to be optimized since they have high capacity and potentially
great flexibility. Meanwhile, wind power is promising renewable energy as well as
solar power. To minimize system costs and enhance decarbonization, the characteristics
of these additional resources should be considered in the optimization. On the other
hand, this work does not consider the workload-dependent battery dynamics such as
degradation and complex SOC changes. The time constant of such battery dynamics
is generally minute-level, which is longer than the 1 s resolution that the fine-grained
time scale employs. Integrating battery dynamics into the short-term time scale will not
be effective because of the high complexity and the need for a longer planning period
more than 15 min. It is also not suitable to integrate it into the long-term time scale
due to inconsistency with the time constants of the demand load scheduling. The latter
requires a much longer planning period (8 - 24 h), and its time constant is even larger
than that of the battery dynamics. Hence, developing a mid-term (semi-fine-grained)
time scale, which covers more than one hour period with a minute resolution, would
efficiently improve the solution quality of the battery scheduling without computational
complexity increase.



Chapter 4

Comfort-Aware Electrical and
Thermal Energy Management
Framework

In the building sector, heating, ventilation, and air-conditioning (HVAC) systems oc-
cupy a significant portion of end-use energy consumption. The reduction of HVAC
operations will reduce electricity costs greatly; however, it suffers the thermal comfort
of occupants in the building. The consideration of both electricity costs and thermal
comfort is required in EMS. This chapter presents an electrical and thermal energy
management framework for smart buildings1. The objective of the proposed framework
is to improve the trade-off relationship between electricity costs and thermal comfort.
This chapter extends the online energy management framework proposed in Chapter
3 to consider HVAC scheduling and thermal comfort. The equivalent circuit model to
represent the building thermal part and HVAC coefficient of performance (COP) model
is introduced. In addition, to estimate optimal temperature set points for maximizing
thermal comfort, the proposed framework integrates a low-complexity thermal comfort
estimator. The simulation results show that the proposed framework can find a solution
that improves both electricity costs and thermal comfort compared to baseline methods.

4.1 Motivation and Objective

Heating, ventilation, and air-conditioning (HVAC) systems account for a significant pro-
portion (> 40%) of a building’s energy consumption [104]. To reduce the electricity
costs of buildings, smarter management and scheduling of HVAC systems are required.
However, the HVAC systems also affect the thermal comfort of the occupants due to

1This chapter is a refined and reproduced version of the paper to be published in IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences [103] copyrighted by IEICE.
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indoor climate change, which influences their productivity and health. Therefore, the
main concern of HVAC management is how to reduce electricity costs and maximize
thermal comfort simultaneously.

In contrast, an energy management system (EMS) that optimizes photovoltaic (PV)
generation, a battery system, and appliances is promising for realizing efficient energy
utilization [63]. The EMS coordinately manages these components and provides essen-
tial functions for the cost-effective utilization of renewable generation. Easy access to
weather forecasts, demand load, and PV generation through the internet of things (IoT)
enables the EMS to serve as the main core of the energy infrastructure that satisfies oc-
cupants’ preferences in real-time. Moreover, thermal comfort can be managed by the
EMS that schedules HVAC systems.

Combining the HVAC scheduling and the EMS can reduce electricity costs while
maximizing thermal comfort. For example, if occupants are not in the building, the
HVAC system can be stopped to reduce electricity costs. Besides, PV generation can
meet HVAC demand during sunny daytime. Once a battery system is charged, the flexi-
bility of HVAC control is greatly enhanced by discharging the battery without increasing
energy consumption. In this way, co-scheduling all energy subsystems, including PV
panels, battery storage systems, and HVAC systems, is a promising solution.

This chapter develops a comfort-aware electrical and thermal energy management
framework for a smart building by extending the framework proposed in Chapter 3. The
framework proposed in Chapter 3 employs a multi-time scale model predictive control
(MPC) to schedule a battery system and shiftable appliances with PV generation fore-
casts. However, this work only focuses on the electrical part, and its objective is only
to minimize electricity costs. In the real system, thermal comfort should be consid-
ered for occupant satisfaction. To address this issue, the proposed framework optimizes
the HVAC schedule and other energy sources. The building’s thermal dynamics and
HVAC system are mathematically formulated as the optimization problem. In addition,
a thermal-comfort estimation model proposed in [105] is introduced to predict optimal
temperature set points. The objective of the proposed method is to minimize electricity
costs and maximize thermal comfort simultaneously. The simulation results show the
effectiveness of the proposed framework in terms of improving the trade-off relationship
between electricity costs and thermal comfort.

The main contributions of this work are shown below:

• The thermal dynamics of a building are modeled by an equivalent circuit model,
and an interaction between the electrical and thermal parts is formulated.

• Thermal-comfort estimation model is introduced to predict optimal indoor tem-
perature set points for thermal-comfort maximization.

• A multi-objective function is defined to minimize electricity costs and maximize
thermal comfort simultaneously.

• Simulation results show that the trade-off between electricity costs and thermal
comfort obtained by the proposed framework is superior to that of the baseline
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method.
The remainder of this chapter is structured as follows. Section 4.2 reviews relevant

literature on HVAC management. Section 4.3 explains the proposed framework with the
extension for building thermal and HVAC management. Section 4.4 presents a mathe-
matical formulation of the multi-time scale optimization problem. Section 4.5 presents
simulation results demonstrating the effectiveness of the proposed method, and finally,
Section 4.6 summarizes this chapter and outlines future directions.

4.2 Related Works
There have been numerous studies on the scheduling of energy components in buildings.
Qayyum et al. [106] proposed an optimal scheduling method based on mixed-integer
linear programming (MIP) for time-deferrable appliances such as dishwashers and tum-
ble dryers with PV generation profiles. Telouw et al. [70] developed a multi-objective
MIP problem to optimize operating costs and CO2 emissions through the scheduling of
both electrical and thermal energy storage. Duman et al. [107] also formulated a MIP-
based home EMS to optimize the schedule of PV generation, electric vehicles, batteries,
HVAC systems. Their approach can minimize system costs and maximize thermal com-
fort in the day ahead manner. However, these day-ahead approaches can result in un-
expected cost increases due to uncertainties such as load demand and renewable energy
in real-time. In addition, thermal conditions, such as indoor temperature and humidity,
can also change due to external disturbances that are difficult to predict before the day.
Real-time optimization is, therefore, necessary to manage HVAC systems.

Much research has been investigated on model predictive control (MPC), one of
the promising schemes for HVAC management in EMS. The MPC approach iteratively
computes optimal control input based on system prediction models and forecasting in-
formation at every time step. Ostadijafari et al. [108] investigated a nonlinear economic
MPC for a smart building that includes HVAC systems, PV generation, flexible appli-
ances, and a battery system. Their works goal is to minimize electricity costs under
time-dependent price signals while tracking comfort temperature ranges based on oc-
cupancy information. However, they assumed that the exact value of PV generation
and comfort temperature is perfectly known beforehand, even though such informa-
tion should be unknown in advance. Cui et al. [109] focused on a MIP-based receding
horizon approach to optimize battery and HVAC operations. They only minimized sys-
tem costs composed of electricity expenses and battery degradation costs and did not
consider thermal comfort. Perez et al. [110] proposed an integrated MPC scheme to
minimize the peak demand by scheduling HVAC and time-shiftable appliances. Their
main concern was to shave the power peak and did not take comfortable indoor temper-
ature tracking into account. Killian et al. [111] proposed a comprehensive home EMS
that includes many variables and constraints for thermal and electrical energy storage
as well as appliances and PV generation. The mixed-integer quadratic programming
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(MIQP)-based MPC is solved to obtain an optimal schedule with a resolution of 15
min to improve human comfort and reduce operating costs. However, these works still
assume impossible situations where the amount of renewable generation is completely
known in advance. In addition, they regarded the HVAC scheduling as just an energy-
reduction problem without addressing thermal comfort issues: Only room temperature
constraints were considered; getting to a comfortable temperature was not intended.
Therefore, a comprehensive approach that incorporates predictive information for re-
newable generation and thermal comfort is required.

Compared to the studies mentioned earlier, the proposed framework performs both
day-ahead and real-time scheduling to deal with unpredictable uncertainties and reflect
the latest information of the system. Moreover, integrating the thermal comfort model,
which estimates optimal temperature set points, allows the HVAC scheduling to manage
thermal comfort appropriately.

4.3 Comfort-Aware Energy Management Framework

This section describes an overview of the proposed framework, detailed system models,
and thermal comfort estimation model.

4.3.1 Overview of Proposed Framework

Fig. 4.1 overviews the proposed framework whose key idea is to employ an MPC ap-
proach considering a multi-time scale structure. The main development of the MPC
and multi-time scale structure has been completed in Chapter 3. The overview of the
framework is as follows. The proposed framework follows the MPC approach, which
iterates prediction and optimization for the targeted system. In addition, two different
time scales, coarse-grained and fine-grained time scales, are considered to capture fast
and slow system dynamics. First, the framework obtains PV generation forecasting pro-
files and thermal-comfort estimation for the next day. Then, the energy subsystems,
which include appliances, an HVAC system, and a battery system, are scheduled on a
coarse-grained time scale for a longer period such as 24 h of a planning period with
15 min resolution. After that, a short-term scheduling loop for a battery system in-
corporates the solution at a fine-grained resolution for a shorter period such as 15 min
of a planning period with 1 s resolution. These optimization problems are mathemati-
cally formulated and solved by an optimization solver. Finally, the obtained schedules
are applied to the target system. Although Chapter 3 also proposed the online energy
management framework [59], this chapter extends it to control an HVAC system with
thermal-comfort estimation to minimize electricity costs and maximize thermal comfort
at the same time.
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Figure 4.1: Overview of proposed online energy management framework.

4.3.2 Model Development

Smart Building Model

The targeted smart building model is illustrated in Fig. 4.1. It consists of PV panels, var-
ious appliances (both shiftable and non-shiftable), a battery system, and a HVAC sys-
tem. An inverter-based control system, referred to as a power router [57, 58], manages
the flow of electrical energy within the building. This model only purchases electricity
from the power grid during shortages and stores excess photovoltaic generation in the
battery system. If the battery is already fully charged, the excess energy is not sold to
the grid but rather goes to waste. This is because allowing a reverse power flow can
destabilize the grid.

PV generation forecasting

The generation of electricity from PV panels can be highly variable due to meteoro-
logical factors. Therefore, it is necessary to have a PV generation forecast in order
to match energy production with demand. As previously mentioned in Section3.3.4, a
PV-nowcasting model [75] has been introduced that can predict short-term generation
based on sky images, neural network models, and a physics-based thermal model [97].
This model can predict power output at a resolution of one second every minute for
15 min periods, which helps to compensate for the high variability of PV generation.
Additionally, a day-ahead PV forecast covering a 24 h period is also used to schedule
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Figure 4.2: Equivalent circuit model for thermal dynamics of buildings.

battery and demand loads efficiently. These forecasts are available from meteorological
information providers. Together, these two PV forecasts provide sufficient planning for
online energy management.

Battery System

Similar to Chapter 3, a lithium-ion battery system with an equivalent circuit model [76]
is incorporated in order to accurately predict the battery’s state of charge (SOC) and
nonlinear current-voltage characteristics. This model is used in both optimization and
simulation to improve the accuracy of battery dynamics and reduce energy loss during
charging and discharging. It also allows for a more accurate estimation of the battery’s
internal state.

Appliances

Two categories of appliances are considered: non-shiftable and shiftable. Shiftable ap-
pliances can be rescheduled to different times in order to minimize electricity costs.
Each shiftable appliance can be characterized by four parameters [98]: (1) operating
time, (2) configuration time, (3) deadline (the time by which its operation must be com-
pleted), and (4) power profiles. Shiftable appliances must be scheduled from their con-
figuration times until their deadlines while taking into account the preferences of the
occupants.

Thermal Dynamics of Building and HVAC System

In the proposed framework, the thermal dynamics of a building are modeled using a
thermal equivalent circuit model [112], as shown in Figure 4.2. This model treats the
thermal behavior of a building as an analogy for its electrical behavior. The charac-
teristics of the building are represented by thermal resistance R and thermal capacity
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C, which are determined based on building data sheets. The time constant τ , which
represents the thermal response speed, is calculated as:

τ = R ·C, (4.1)

Let t be a time index. Using these parameters, the indoor temperature for the next time
step, denoted by T int +1, can be calculated as:

T in
t+1 =

(
1− ∆t

τ

)
·T in

t +
∆t
τ
·
{

T out
t −1000 ·R ·

(
QAC

t +Qgain
t

)}
, ∀t (4.2)

where ∆t is the length of the time resolution. T out
t is the outdoor temperature, QAC

t is the
thermal gain due to an HVAC system, and Qgain

t represents external sources of thermal
gain such as internal heat and solar radiation. The relationship between the thermal
power of the HVAC system and its electrical power is expressed as:

QAC
t =−PAC ·COP ·ut , ∀t (4.3)

where PAC is the rated power and COP is the coefficient of performance (COP) of the
HVAC system. It is assumed that the HVAC system has an inverter that allows for
continuous control of its power output from 0% to 100%. The manipulated variable ut
is introduced and scheduled in a range from 0 (0%) to 1 (100%) to control the power
output of the HVAC system. The power consumption of the HVAC, Dhvac

t , at time t is
calculated as:

Dhvac
t = PAC ·ut . ∀t (4.4)

4.3.3 Thermal-Comfort Estimation
PMV and PPD Indices

To evaluate the thermal comfort of the building, Fanger’s model [19] is utilized, which
includes the predicted mean vote (PMV) and the predicted percentage of dissatisfied
(PPD), both of which are commonly used in real-world applications. The PMV is an in-
dex that reflects the occupants’ thermal sensations on a scale ranging from -3 (too cold)
to +3 (too warm). A PMV of 0 indicates the most comfortable thermal environment
for the occupants. The PMV is calculated using a nonlinear complex function based
on environmental and occupant parameters such as indoor temperature, humidity, wind
speed, radiant temperature, metabolic rate, and clothing insulation. Once the PMV is
determined, the PPD, which is the percentage of people feeling thermal discomfort in
the thermal environment, is derived using the following empirical equation [19]:

PPD = 100−95(−0.03353·PMV 4−0.2179·PMV 2). (4.5)

When the PMV is 0.0, the PPD is minimized (5%), meaning that only 5% of people
feel discomfort. Since the proposed framework controls the indoor temperature through
HVAC scheduling, approximating Fanger’s model (PMV) as a function of the indoor
temperature is sufficient for real-time operation purposes.
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Thermal-Comfort Estimator

To estimate the comfortable indoor temperature, a low-complexity thermal-comfort es-
timation technique is introduced, which has been proposed in [105]. To reduce compu-
tational time and storage requirements, their work integrated a simple linear regression
(LR) model and an efficient data management method. In this work, the LR model
is used to represent the relationship between PMV and indoor temperature. Since the
comfortable temperature will be different for each time step, the LR model is built for
each time step, as defined by:

PMVt = θ
0
t +θ

1
t ·T in

t , ∀t (4.6)

where θ 0
t and θ 1

t are the coefficients of the LR model, and these weights are refined at
every time step. Moreover, to increase the accuracy and reduce the data used to train
this model, the data management method was also developed in [105]. The idea is to
construct two-time scale windows, a coarse-grained and fine-grained window, for model
fitting and refinement. The coarse-grained window first chooses the profiles of the last
x days as a training dataset, and then, for the target time step t, the fine-grained window
extracts near-term data (from t − y to t + y steps) from the coarse-grained dataset. The
reason why the coarse-grained and fine-grained time windows are used is as follows:
Fanger’s factors for human conditions (e.g., metabolic rate and clothing) are almost
constant for the last few days, while such environmental factors as humidity and air
velocity are generally similar for a given time slot between consecutive days. Thus, the
extracted data by these time windows should have a high correlation with each other,
which will help to fit the LR model effectively.

Set Points Derivation

This section explains how to drive set points of indoor temperature using the LR model
of PMV. An example of the fitted LR model is shown in Fig. 4.3. The PMV is fitted
as the LR model (the red line) based on the historical data points shown as the black
points in the figure. To control the HVAC model for thermal-comfort maximization, the
optimal temperature set point and its upper/lower bounds are calculated based on the
fitted LR model. When the PMV is 0, that temperature can be the most comfortable.
On the other hand, according to the ASHRAE’s 55 standards [113], PPD’s acceptable
limit is less than 10%, corresponding to a PMV of ±0.5. Based on the model (4.6), the
optimal temperature set points T set

est,t and the upper/lower bounds, denoted by T upper
est,t /

T lower
est,t , are obtained as follows:

T set
est,t = −θ

0
t /θ

1
t , ∀t (4.7)

T upper
est,t =

(
−θ

0
t +0.5

)
/θ

1
t , ∀t (4.8)

T lower
est,t =

(
−θ

0
t −0.5

)
/θ

1
t . ∀t (4.9)



4.4. MATHEMATICAL FORMULATION OF COMFORT-AWARE ELECTRICAL
AND THERMAL ENERGY OPTIMIZATION 75

Optimal set-point

Fitted
Historical data

P
M

V

Indoor temperature [℃]

Figure 4.3: Example of linear regression between PMV index and indoor temperature.

These values are used in the objective function and in the constraints of the optimization
problem.

4.4 Mathematical Formulation of Comfort-Aware Elec-
trical and Thermal Energy Optimization

This section mathematically formulates an optimization problem for energy manage-
ment that includes a thermal part of the building. Note that this framework is an
extended version of the multi-time scale energy management framework proposed in
Chapter 3 for thermal and comfort optimization. Hence, please refer to Section 3.4 for a
detailed explanation of the multi-time scale structure and the mathematical formulation.

4.4.1 Overview of Control Flow

Fig. 4.4 shows the proposed framework’s comfort-aware multi-time scale optimization
flow. It consists of multiple optimization stages for each purpose, considering two dif-
ferent time scales: coarse-grained and fine-grained. This allows simultaneous consid-
eration of long- and short-term system dynamics, reducing computational complexity
while maintaining high solution quality. This framework also employs an MPC ap-
proach, as mentioned in Section 4.3, to consider the latest system states and handle
forecast errors. Its feedback structure has the potential to compensate for uncertainty in
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Figure 4.4: Block diagram of comfort-aware multi-time scale optimization flow.

the variation of load demand, PV forecasting errors, and thermal dynamics.
The mathematical formulation of the multi-time scale optimization flow is as fol-

lows: Let TL and TS be the planning periods for the coarse-grained and fine-grained
time scales. ∆tL and ∆tS represent the time resolutions of the coarse- and fine-grained
time scales. The proposed framework iteratively performs the following process every
internal period ∆tL based on the MPC approach. First, the PV forecasting and thermal-
comfort estimation models are used to obtain PV generation profiles and temperature
set points. Then, the appliance scheduling (AS) stage decides the shiftable-appliance
schedule. Next, the thermal and battery scheduling (TBS) stage calculates the battery
and HVAC schedules. These schedules are obtained for a planning period of TL (e.g.,
24 h) with a coarse-grained resolution of ∆tL (e.g., 15 min). After that, the fine-grained
energy scheduling (FES) stage provides precise control for a planning period of ∆tS
(e.g., 15 min) with a resolution of ∆tS (e.g., 1 s). Based on these processes, the pro-
posed method can deal with the scheduling of appliances, HVAC, and a battery system
in real-time.

The main extension in this chapter is the inclusion of the thermal part of energy
management in the TBS. The AS and FES are identical to the optimization problems
described in Sections 3.4.2 and 3.4.4; refer to them for the detailed formulation of the
AS and FES. This chapter primarily discusses the extended part of the framework in the
following sections.
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4.4.2 Appliance Scheduling

In the AS, the ON-OFF schedules of shiftable appliances are optimized by solving the
MIP problem. As described in Section 3.4.2, the optimization problem that is based on
mixed-integer linear programming (MIP) is formulated by:

minimize
TL

∑
tL=1

ξtL ·StL , (4.10)

subject to (3.1)− (3.13),(3.21),
input

{GtL ,D
base
tL ,ξtL}, ∀tL

decision variables
{StL ,YtL , Ibatt,tL ,qm,p,tL ,rm,p,tL}, ∀m, p, tL

where m and p are the shiftable appliance index and the operation phase of the shiftable
appliance. In addition, GtL is the PV generation, Dbase

tL is the base demand, ξtL is the
electricity price, StL is the energy purchased, YtL is the wasted energy, Ibatt,tL is the cur-
rent of the battery system, qm,p,tL is the operation flag of the shiftable appliances, and
rm,p,tL is the finish flag of the shiftable appliance. To capture such long-term system
dynamics as PV generation and electricity prices, TL and ∆tL are typically set for 24 h
and 15 min. The objective function of appliance scheduling is to minimize electricity
costs, and the AS solution contains optimal schedules for shiftable appliances and a bat-
tery schedule. However, the obtained battery schedule is discarded, and only appliance
schedules are employed. The HVAC and battery scheduling are solved in the next TBS
with these equivalent circuit models, and this decomposition significantly reduces the
time complexity.

4.4.3 Thermal and Battery Scheduling

The TBS aims to find optimal HVAC and battery schedules for the same time scale
as the AS. It takes as input the shiftable-appliance schedules obtained by the AS, de-
noted by Dsh f t

tL , and optimal temperature set-points T set
est,tL , with upper/lower bounds

T upper
est,tL /T lower

est,tL , discussed in Section 4.3.3. The TBS is mathematically formulated as
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follows:

minimize ω · Jcost +(1−ω) · Jcom f ort +Pe

TL

∑
tL=1

stL , (4.11)

subject to
(3.2)− (3.3),(3.12)− (3.17),(3.21),(3.25),(3.26),(4.1)− (4.4),

Jcost =
∑

TL
tL=1 ξtL ·StL

Billmax
, (4.12)

Jcom f ort =
∑

TL
tL=1 OtL · (T in

tL −T set
est,tL)

2

|T error
max |

, (4.13)

T lower
est,tL − stL ≤ T in

tL ≤ T upper
est,tL + stL , ∀tL (4.14)

0 ≤ stL , ∀tL (4.15)

StL +GtL +BtL = Dbase
tL +Dsh f t

tL +Dhvac
tL +YtL , ∀tL (4.16)

input

{GtL ,D
base
tL ,Dsh f t

tL ,ξtL ,T
set

est,tL ,T
upper

est,tL ,T lower
est,tL ,OtL ,Q

gain
tL ,T out

tL }, ∀tL
decision variables

{StL ,YtL , Ibatt,tL ,utL ,stL ,}, ∀tL

where BtL is the battery power and OtL is a binary variable that is 1 if the room is oc-
cupied, and 0 otherwise. The slack variable stL is introduced to avoid violating the
comfort temperature range. In the objective function (4.11), the first term Jcost , defined
by (4.12), represents electricity costs. The second term Jcom f ort , defined by (4.13), rep-
resents the error between the indoor temperature and the optimal set points. ω is a
weighting parameter that controls the trade-off between Jcost and Jcom f ort . These func-
tions are normalized by their maximum possible values, Billmax and T errormax, in order
to treat them equally in the weighted sum [114]. The third term in the objective func-
tion is a penalty term that prevents the room temperature from violating the temperature
bounds T lower

est,tL /T upper
est,tL . The constant Pe is a large penalty value (e.g., set to 1000). The

variable stL is a non-negative slack variable that represents the excess value when T in
tL

exceeds the limits T upper
est,tL or T lower

est,tL , and these constraints are defined by the formulas
(4.14) and (4.15). The equation (4.16) states that the energy balance within the system
must be maintained at all times, taking into account HVAC power consumption. Over-
all, the objective of this problem is to minimize electricity costs and maximize thermal
comfort.

The TBS formulates a co-scheduling problem for the HVAC and battery systems.
Including the battery in this optimization allows for greater flexibility in balancing elec-
tricity costs and thermal comfort. As the battery model includes nonlinear equations,
the TBS problem is solved using a nonlinear programming (NLP) solver. The resulting
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HVAC schedule is applied to the system and serves as input for the FES (denoted by
Dhvac

tS ), and the battery power trajectory Ere f is used as reference values in the FES,
which is defined as follows:

Ere f =
1

1000
· Ibatt

1 ·V batt
1 · ∆tS

3600
. (4.17)

4.4.4 Fine-Grained Energy Scheduling
The FES realizes short-term battery scheduling to interpolate the coarse-grained sched-
ules. Similar to Section 3.4.4, the optimization problem is formulated based on NLP
with the goal of minimizing the mismatch between demand and PV generation, as
shown in the following:

minimize
TS

∑
tS=1

ξtS ·StS , (4.18)

subject to (3.2)− (3.3),(3.12)− (3.23),(3.29),(4.16),
input

{GtS ,D
base
tS ,Dsh f t

tS ,Dhvac
tS ,ξtS ,E

re f }, ∀tS
decision variables

{StS ,YtS , Ibatt,tS}. ∀tS

The objective of the FES is to minimize electricity costs, which helps to minimize the
energy mismatch between the demand load and PV generation. The FES typically uses
15 min periods for TS, as the accuracy of PV forecasts tends to degrade significantly
when the prediction period exceeds 15 min [75]. Since the dynamics of the battery
typically has a time constant of a few seconds, the time resolution ∆tS is set to 1 sec.
The proposed framework applies a precise battery power schedule, optimized by the
FES, to the targeted system.

4.5 Simulation Experiments
In this section, the proposed framework is validated based on several case studies with
real measured data of summer days. First, an experimental setup is described, and
then, the results show the effectiveness of the proposed framework in terms of thermal
comfort and electricity costs.

4.5.1 Simulation Setup
To evaluate the performance of the HVAC scheduling and thermal comfort estimation,
a simulation experiment was conducted over a period of five days (August 1 to August
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5), assuming hot summer conditions. It is worth noting that the system performance
of other components, such as the multi-time scale structure, battery modeling, and PV
forecasting, has already been validated in Chapter 3. The target system is a smart build-
ing, as described in Section 4.3.2, that has a contract for real-time electricity pricing
with ComEd in the US [115]. The size of the PV panel is set to 4 kWp, with a mean
absolute error of 25% for long-term PV forecasts and 12% for short-term forecasts [75].
The battery system has a capacity of 4 kWh, and the parameters of the circuit model
were chosen from the literature [76]. The daily demand for non-shiftable and shiftable
appliances is approximately 18 kWh, excluding HVAC. The DRED dataset was used
as the demand profile for non-shiftable appliances [101]. In addition, the dishwasher,
clothes washer, and tumble dryer were treated as shiftable appliances and scheduled to
run once per day using their power profiles [102].

For the thermal modeling, the thermal resistance R is set to 5.20× 10−3 K/W, and
the thermal capacitance is set to 4.03×106 J/K. This results in a time constant of 20925
s for the building. The rated power and COP of the HVAC system are set to 2 kW and
2.5, respectively. The simulation assumed the hottest sunny days of a Japanese summer,
with an average outdoor temperature of 28◦C. The thermal comfort data used in the
simulation is taken from a public survey dataset [116], which includes PMV values for
24 office occupants over the course of a year. The target residential building is assumed
to be occupied from 8 am to 12 pm and 1 pm to 6 pm on all days.

The proposed framework has parameters that are set to 24 h for Tc, 15 min for ∆tc
and Tf , and 1 s for ∆. The optimization flow in Fig. 4.4 is executed every 15 min. To
control the trade-off between electricity costs and thermal comfort, the weight coeffi-
cient ω is changed within a range of 0 to 1. For the time window of thermal-comfort
estimation, x and y are set to 15 and 3, following the literature [105]. IPOPT v3.14 and
CPLEX v20.1 are used to solve NLP and MIP problems. It should be noted that the
total solution time for the three optimization problems (AS, TBS, and FGEM) averages
less than 10 s on a modern laptop PC with an Intel Core-i7 6600U CPU and 16 GB
of DDR3 RAM. Therefore, the solution can be obtained in real-time, even though the
mathematical solvers are not fully optimized for runtimes.

4.5.2 Results
Performance Comparison on Trade-off between Electricity Costs and Thermal
Comfort

First, the proposed framework was compared with a method that employs a fixed set-
point assuming a typical thermostat controller [109, 117], while the proposed frame-
work adaptively decides the temperature set points based on thermal-comfort estima-
tion. Generally, the thermostat controller follows a pre-determined indoor temperature
as much as possible to enforce occupants’ orders. To reproduce this, the fixed set-point
scheme employs the modified version of the proposed framework, of which T set

est,t is set
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Figure 4.5: Trade-off relationship between average PPD and electricity costs for pro-
posed and fixed set-point method.

to the pre-fixed set point and the weight ω is always set to 0.9.
Table 4.1 shows the results of the total electricity costs and average PPD as a com-

fort criterion over five days. Note that the best value of PPD is 5%, which means the
percentage of occupants dissatisfied with the thermal environment. The results of the
proposed method show that the weight coefficient ω controlled the importance of the
electricity costs and the average PPD. The larger the weight ω , the lower the electricity
costs, and the worsen the PPD. Meanwhile, for the fixed set-point method, the higher the
temperature set points the lower the electricity costs since this scheme simply reduces
the HVAC operation without thermal-comfort consideration, and vice versa. Fig. 4.5
plots the result of Table 4.1 and shows the relationship between the electricity costs
and the average PPD for the different methods. As shown in Fig. 4.5, the line of the
proposed method is always superior to the line of the fixed set-point method. This is
because the thermal-comfort estimation model provides suitable temperature set points
and because the proposed method effectively schedules the HVAC system. From these
results, the proposed framework can realize a better trade-off relationship between the
electricity costs and the thermal comfort than the baseline. Compared to the baseline,
the proposed method reduces the electricity costs by up to 14.0% while achieving the
same thermal comfort.

Detailed Profiles

Figure 4.6 shows the performance of the proposed framework in terms of indoor tem-
perature, electricity costs, HVAC power consumption, and battery power, with different
values of the weight coefficient ω . Three operating modes were obtained: Eco, Bal-
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Figure 4.7: Battery size impact on total system cost and average PPD over five days
simulation.

anced, and Comfort, corresponding to ω = 0.1,0.5, and 0.9, respectively. The indoor
temperature set point T set

est,t , upper bound T upper
est , and lower bound T lower

est were adap-
tively estimated over time. In the Comfort mode, the temperature was kept close to the
set point T set

est,t to improve thermal comfort, while in the Eco mode, the temperature was
kept close to the upper bound T upper

est to minimize electricity costs. As shown in the
bottom three figures, electricity was mainly purchased around 3 am and 12 pm, when
electricity prices (black dotted line) were low. The HVAC system was also scheduled
more frequently during these low-price periods and before the arrival of occupants. The
battery system was charged during low-price periods (3 am and 10 am) and discharged
during high-price periods (1 pm to 7 pm). Importantly, for different modes, the electric-
ity cost was almost the same from 2 pm to 5 pm, although the HVAC power consumption
is different. The optimization of the battery discharge helped minimize electricity costs
during the high-price period and ensure the proper operation of the HVAC system while
meeting thermal constraints. The co-scheduling of the HVAC and battery systems al-
lowed for the reduction of electricity costs while maintaining thermal comfort. It can be
seen that the electricity usage and indoor temperature were successfully controlled ac-
cording to the chosen mode, and the relationship between electricity costs and thermal
comfort was effectively managed.

Effect of Battery Size

This section conducted a size analysis of the battery storage system. The total sys-
tem cost is defined by adding the battery cost to the electricity costs. The battery cost
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is assumed to be a daily depreciation cost, calculated based on a battery initial cost
(132$/kWh [118]), the battery capacity, and its lifetime (18 years with one daily bat-
tery cycle [54]). Fig. 4.7 shows the trade-off between the system cost and the average
PPD with different battery capacities. Each point of the curves corresponds to different
weights: ω = 0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99 from the left. As shown
in Fig. 4.7, battery introduction greatly impacts the trade-off. In this system configura-
tion, the optimal battery size is 2 kWh in terms of the trade-off improvement. Compar-
ing battery sizes of 0 and 2 kWh, the trade-off is improved. However, when the battery
is larger than 2 kWh, the trade-off is worse than in the no-battery case. This is because
the increase in the battery cost exceeds the reduction of electricity costs from a larger
battery size due to the high initial cost of the battery. Since the battery’s initial cost is
decreasing every year [118], this phenomenon will eventually be reversed. Finally, the
battery size should be carefully chosen, considering both electricity and battery costs.

4.6 Summary
This chapter has presented a comfort-aware electrical and thermal energy management
framework with a thermal comfort estimator. The proposed framework aims to improve
a trade-off relationship between electricity costs and thermal comfort in smart buildings.
The framework extended the online energy management system described in Chapter
3 to include heating, ventilation, and air conditioning (HVAC) management. Thermal
comfort is modeled following Fanger’s index, predicted mean vote (PMV) and predicted
percentage of dissatisfaction (PPD). A thermal model based on equivalent circuits is in-
troduced to capture thermal dynamics, and a thermal comfort estimator is employed to
predict optimal temperature set points for the HVAC system using historical data. As
described in Chapter 3, the proposed framework considers the multi-time scale structure
composed of the coarse-grained and fine-grained time scales. The coarse-grained time
scale is used for HVAC management, as buildings’ typical thermal time constants are
longer than an hour. In addition, a multi-objective function was developed to simultane-
ously reduce electricity costs and improve thermal comfort. The results indicate that the
proposed method can achieve a maximum reduction in electricity costs of 14.0% while
maintaining the same levels of thermal comfort. Therefore, the proposed method effec-
tively balances the trade-off between electricity costs and thermal comfort, resulting in
improvements compared to baseline methods that do not include HVAC management.

One of the challenges in implementing the proposed framework in existing systems
is the need for various functions, such as data processing, data transmission, and fast
decision-making. The proposed framework can play a central role in energy manage-
ment systems by providing practical solutions for managing the operation of the entire
system. As the first step in this direction, Zhao et al. [119] implemented the HVAC
management developed in this research in a campus building.

This work used adaptive temperature set points based on Fanger’s model. However,
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there is often a discrepancy between Fanger’s model and actual comfort in practical
situations. Therefore, one area for future work is to incorporate the preferences of oc-
cupants based on their choices and sensor information. On the other hand, it is also
important to consider an accurate HVAC model, assuming that the HVAC system is
ideal, for example, with a constant COP. This should be a key direction for achieving an
energy-efficient framework in the future.



Chapter 5

Duck Curve Improving Strategy for
Resource Aggregator Based on
Dynamic Pricing

With the rapid increase in solar power adoption and the rise of prosumers, the power sys-
tem confronts complex challenges. In particular, the duck curve is a worldwide problem
on the energy supply-side, which shows the imbalance between photovoltaic (PV) gen-
eration and electricity demand. To address this issue, a resource aggregator (RA) has
emerged to provide flexible solutions by acquiring and utilizing demand-side flexibility
(DSF) through demand response (DR) programs such as dynamic pricing. This chapter
presents a duck curve improving strategy for the RA that dispatches dynamic pricing
to the prosumers and leverages a battery power station owned by the RA1. The pro-
posed strategy is based on a model-free deep reinforcement learning (DRL) algorithm
to optimize each prosumer’s retail prices and schedule usage of the RA’s battery power
station. The reward function of the proposed strategy is designed to maximize overall
social welfare, considering the RA’s profit, the prosumer’s cost, and the improvement of
the duck curve. The simulation experiments are conducted to demonstrate the system
performance of the proposed DRL-based strategy using actual wholesale price, demand,
and PV generation data. The results show that the proposed strategy can improve the
standard deviation and peak-to-average ratio of net load by up to 57.1% and 20.8%,
respectively.

5.1 Motivation and Objective
The high market penetration of installed solar renewable generation has turned many
consumers into prosumers. Although the increase in prosumers who install PV gener-

1This chapter is a refined and reproduced version of the paper presented in part at the Proceedings of
ACM BuildSys [120].
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ation systems does accelerate the decarbonization of the power grid, it can also cause
a severe problem, namely, the duck curve [121] as shown in Fig. 5.1. This graph illus-
trates an example profile of a net load, which is defined as the total power consumption
minus PV generation, of an entire grid on a given day in a scenario with high PV pen-
etration. The timing imbalance between demand peak and solar production causes a
steep curve of net load and demand peak valley. The duck curve problem is also becom-
ing severe in Japan [122] and other regions with high levels of PV penetration [123],
even given reduced demand in the COVID-19 pandemic period [124]. To cope with the
duck curve, an independent system operator (ISO) has to augment delivered power with
conventional supply sources like gas or coal power plants. However, the sudden start-up
of traditional sources increases carbon emissions and makes the power grid inefficient
and expensive.

The conventional solution to the duck curve is the development of supply-side flex-
ibility that includes retrofitting fossil fuel power plants [125], adjusting PV module
orientation in solar plants [126], and improving the efficiency of the unit commitment
schedule in electric power production [127]. However, these supply-side approaches
have limitations in solving the duck curve due to the continuous growth of PV penetra-
tion levels in most countries [3]. PV generation is intermittent and non-dispatchable, and
its production quantity often changes on an hourly, daily, and seasonal basis. This vari-
ability leads to a significant cost paid to develop the capability of grid flexibility [128].
Besides, a day-ahead market usually treats the duck curve problem [129], but the duck
curve is also becoming a critical issue in real time. The forecasting of PV generation is
generally a difficult task, especially day-ahead forecasting [130]. Therefore, in a power
system with a high penetration of PV, the risk of the mismatch with the day-ahead fore-
casting (over-estimation and under-estimation) is not small and cannot be ignored in
real-time. Recently, demand-side flexibility has become attractive because recent pro-
sumers have control over many types of flexible loads such as schedulable appliances,
batteries, and electric vehicles (EVs), to manage intermittent renewable energy [59].

As for the demand-side flexibility, battery systems are promising to reshape the load
curve locally [131]. The demand-side installation of PV panels accounts for a large
share of whole PV capacity, e.g., 30% in the U.S. [132], i.e., the demand-side PV such as
a rooftop and behind-the-meter PV panels is a major factor of the duck curve as well as
utility-scale PV. Although the supply side has no access to demand-side PV information,
the demand side can locally monitor PV generation and effectively schedule its own
battery. In order to solve the duck curve effectively, the use of demand-side batteries is
also important.

One of the efficient solutions to induce demand-side flexibility is the implementa-
tion of a demand response (DR) program as described in Chapter 1. To implement DR
programs, a resource aggregator (RA) plays a critical role in efficiently coordinating the
end-user response [133]. The RA is one of the market participants and is responsible
for many roles, such as market participation, controlling own energy resources, and DR
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Figure 5.1: Example of typical duck curve graph.

implementation to prosumers, as an integrator between the market and prosumers [134].
The RA usually aggregates the energy resources such as energy storage facilities [135]
and prosumer demand controlled by DR programs and provides ancillary services to
the grid. The business model of the RA is to earn revenue through electricity retailing
to prosumers and to receive remuneration from the ISO by providing ancillary services
such as duck curve improvement. The power aggregation of many prosumers is suitable
for efficient DR programs and achieving demand-side flexibility. As introduced in the
following section, there has been much research on the mechanism design of DR pro-
grams as an RA strategy. However, few studies have aimed to improve the duck curve
with real-time RA strategies.

This chapter proposes a model-free DRL-based strategy for RAs to improve the
duck curve aimed at tackling computer complexity, environmental uncertainty, and pri-
vacy concerns for prosumers. The RA’s action includes dynamic pricing for end-users
(prosumers) and the power-use scheduling of a battery power station owned by RA. The
target system is a hierarchical energy market composed of ISO, RA, and prosumers.
The RA should be aware of not only maximizing its own profits but also minimizing
the prosumer’s cost because a bad end-user experience can lead to contract cancella-
tion. Consequently, the objective of the proposed method is to maximize social wel-
fare, including the RA’s profit, the prosumer’s cost savings, and the improvement of the
duck curve. The proposed strategy is based on a model-free deep reinforcement learn-
ing (DRL) approach aimed at tackling computer complexity, environmental uncertainty,
and privacy concerns for prosumers, as discussed in the following section. The perfor-
mance of the proposed method is demonstrated by comparing it with specific baselines.
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The impact of different scenarios and parameters on its performance is also investigated.
This is the first study aiming to improve the duck curve with real-time RA strategies.

The main contributions of this work are as follows.
• A model-free DRL-based algorithm is proposed to make the RA learn the optimal

strategy for solving the duck curve. The trained strategy can calculate dynamic
pricing and battery scheduling (DP-BS) in real-time without complete knowledge
of the prosumers.

• A hierarchical energy market model [136] is extended to include prosumers with
a PV panel and a battery system.

• The response of prosumers to retail electricity prices is modeled as two price-
responsive devices: elastic load and battery use. This modeling helps to mimic a
real-world system as a proof-of-concept for the proposed method.

• The design of the reward function is carefully explored to improve the duck curve.
• Simulation experiments are conducted to demonstrate the performance of the pro-

posed strategy from multiple aspects, such as a mitigation of the duck curve, bal-
ancing of prosumer cost and RA profit, and the RA’s battery size.

This chapter is a refined and extended version of the paper [120] by developing
the demand load model of prosumers to represent realistic responses to retail prices.
Moreover, the effectiveness of the proposed method is investigated by comparing it
with several baselines and including an optimization-based approach and a rule-based
one. In addition, as a significant expansion of the experimental results, a whole-year
simulation and a sensitivity analysis for the battery size and weight parameters of the
objective are conducted to discuss the effectiveness of the proposed method.

The remainder of this chapter is as follows. Section 5.2 describes the related works
of strategies for the RA such as the demand response. Section 5.3 presents the problem
setting and system models, and Section 5.4 provides the proposed RA’s strategy for
improving the duck curve. In Section 5.5, a simulation is conducted to obtain results
for verifying the performance of the proposed method. Finally, Section 5.6 summarizes
this chapter and shows future works.

5.2 Related Works
Many studies have been conducted on the implementation effect of DR. Jiang et al. [137]
proposed an RTP model based on the matrix of electricity price elasticity that expresses
the relationship between retail prices and customer response. Wang et al. [138] devel-
oped a fairness-aware RTP mechanism based on an optimization approach and estab-
lished a residential user evaluation system with indicators for user characteristics. Yang
et al. [139] proposed the energy optimization method based on an integrated DR pro-
gram by a multi-energy provider to achieve a win-win strategy for a utility provider
and its customers. Taherian et al. [140] integrated load forecasting and a meta-heuristic-
based RTP model to maximize the profit of utility providers and minimize the electricity
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costs of both proactive and reactive customers. The aforementioned studies have inves-
tigated the pricing mechanism and implementation scheme, but they mainly focused on
the demand-side profitability for the RA and customers and lack the pricing scheme to
improve the supply-side problem, especially for the duck curve.

Many researchers have focused on improving the duck curve through energy man-
agement and demand response coordinated by aggregators. First, related works that as-
sume cooperative scenarios are introduced, i.e., the demand-side load is managed by a
central optimizer. Jovanovic et al. [141] investigated the potential of demand-side flexi-
bility exploited from large fleets of EVs to minimize ramp-up requirements. Howlader et
al. [142] proposed an optimal thermal unit commitment considering RTP and demand-
side load based on mixed-integer linear programming (MILP) to fill peak and off-peak
gaps in the duck curve. Calero et al. [143] demonstrated the feasibility and potential
of pre-cooling strategies in residential households for mitigating the duck curve. Yoon
et al. [144] formulated a dynamic pricing DR strategy for building heating, ventilating,
and air conditioning (HVAC) systems to reduce peak load as a single-level optimiza-
tion model. It is doubtful that these cooperative scenarios are feasible in reality, since
the end-users may feel discomfort by the privacy issue and having their own devices
controlled by someone else. There is also the privacy issue raised by giving detailed
information on end-user systems to the central optimizer. The proposed strategy does
not control the prosumer’s devices directly and aims to flatten the prosumer’s demand
through a dynamic pricing DR program and scheduling of the RA’s battery usage.

Next, related works that assume non-cooperative scenarios are described, i.e., ag-
gregators indirectly controlling end-users through DR programs. Ferdous et al. [145]
proposed a nonlinear programming (NLP)-based optimization problem to perform opti-
mal dynamic pricing by electricity retailers. Zhang et al. [146] formulated the vehicle-
to-grid (V2G) concept under dynamic pricing as a Stackelberg game to mitigate the
ramp event in the duck curve. The leader is a distribution system operator (DSO) that
conducts charging price DR programs, and the followers are EVs that calculate the op-
timal charging schedule individually. Sheha et al. [129] also proposed a Stackelberg
game framework to solve the duck curve by iterating dynamic pricing and demand-side
scheduling. They assumed that households optimize both battery systems and HVAC
systems to minimize electricity costs under dynamic pricing. All of these works pro-
posed model-based approaches based on mathematical optimization. However, these
approaches made the impractical assumption of having complete knowledge of the end-
user systems, and the computational cost is expensive. Moreover, they require forecast
profiles of solar generation and power consumption over the planning period. Since
the model-based approach is deterministic, uncertainties such as forecasting errors may
cause a failure to improve the duck curve.

There are several approaches to address various uncertainties in a model-based op-
timization approach. Stochastic optimization accounts for the uncertainties by con-
sidering a large number of scenarios [147] or reduced scenario [148]. However, the
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computational complexity of stochastic models is generally expensive, and the accurate
probability distribution of uncertain variables is necessary, which is a time-consuming
process. Robust optimization obtains the solution within certain sets of uncertain vari-
ables in the worst-case scenario [149] and upper/lower bounds [150]. However, the
obtained solution tends to be conservative, and the accurate range of uncertain variables
needs to be known in advance, which is an unpractical setting. Both stochastic and
robust optimization are model-based approaches, and customer response to dynamic
pricing, which is generally a nonlinear and complex phenomenon, is difficult to model.
Meanwhile, model-free approaches, such as reinforcement learning, can learn from data
not only uncertainties but also nonlinear relationships.

This chapter addresses the above research challenges, focusing on model-free re-
inforcement learning (RL) and deep reinforcement learning (DRL). RL is an area of
machine learning attempting to learn which actions are the best in environments from
the data without expert knowledge of the system [151]. In particular, DRL, which com-
bines RL and deep neural networks, is known to perform well in decision-making for
high-dimensional problems such as power systems [152]. Several studies have proposed
an aggregator strategy using RL and DRL. Qiu et al. [153] proposed a DRL approach
to determine EV charging prices in the EV aggregator. Still, their strategy is tailored
to DR programs for EV charging, and they do not consider prosumer households. Lu
et al. [136] proposed a model-free price-based DR strategy for the electricity retailer
based on Q-learning, a typical RL algorithm. Kuang et al. [154] proposed an optimal
incentive-based DR strategy based on DRL for a virtual power plant (VPP) while con-
sidering the customer’s risk attributes. However, these studies did not consider the duck
curve problem or prosumers who use renewable generation, and they did not support
selling back surplus energy to the aggregator. Therefore, it is concluded that there is
no significant study on the duck-curve-improvement RA’s strategy, using the RL/DRL
algorithm and considering prosumers.

5.3 Problem Description
This section presents a detailed problem setting and system model. As shown in Fig. 5.2,
the target system is a hierarchical energy market composed of supply-side and demand-
side sectors [136]. The recent development of ICT (information and communication
technology) enables bi-directional communication of information between these entities
in real-time. On the supply side, the wholesale electricity market (WEM) is where
electricity is traded, sending agreed wholesale electricity prices to the entire system on
a real-time basis. The ISO is responsible for monitoring the grid state and resolving
issues such as the duck curve by offering supply-side and grid-side flexibility. The
demand side consists of RA, a battery power station, and prosumers. It is assumed
that the RA owns a controllable battery power station as an energy storage system and
joins the WEM. The RA aggregates the net load by the prosumers and the battery power



5.3. PROBLEM DESCRIPTION 93

Wholesale electricity market & Independent system operator

Wholesale 
electricity price Trading Return Improve duck curve

Resource aggregator

Prosumers
Dynamic pricing Aggregate

Battery
power
station

control

#2 #𝑛

…Inelastic load

PV panel

Net load
Controller

BatteryElastic load

Prosumer #1
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station and then trades it with the WEM and the ISO. The prosumers individually control
energy demand based on their own systems states and retail prices.

This work focuses on the real-time strategy of the RA, including the dynamic pricing
to the prosumers and the battery power station scheduling. In this chapter, this problem
is denoted by Dynamic Pricing and Battery Scheduling (DP-BS). As mentioned in Sec-
tion 5.1, this chapter addresses the DP-BS problem by employing a model-free DRL
approach. All the proposed strategy is implemented in the RA with a DRL-based algo-
rithm and neural networks. In a practical case, dynamic pricing and battery scheduling
by the RA are executed as the following procedures. At each time step, the WEM and
the ISO provide a profile of wholesale electricity prices and the requirement for flatten-
ing the duck curve to the RA. Then, the RA will collect information about the net load
and the battery SOC from each prosumer. The proposed strategy trained by the DRL
algorithm computes the retail prices and the schedule of the RA’s battery power station.
The battery power station of the RA will operate based on the obtained schedule, and the
prosumers decide on schedules of their demand and a battery based on the retail price
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set by the RA. After that, the RA aggregates the total net load calculated by summing
up the power output of the RA’s battery power station and the net load of each prosumer
and trades it with the WEM and the ISO. Finally, the RA settles the cost of prosumers,
the profit of the RA, and the remuneration obtained by flattening the duck curve. All
the information that the RA collected is stored in a database of the RA, and the RA
trains the neural network based on the DRL algorithm every specific time interval, e.g.,
1 week.

The goal of the RA’s strategy is to maximize the following social welfare in the
hierarchical energy market: (1) maximizing revenue from electricity retailing to the
prosumers, (2) minimizing the electricity bill of the prosumers, and (3) maximizing the
remuneration for the duck curve improvement given by the ISO. It is worth mentioning
that maximizing the social welfare and the profitability of the RA are not in conflict; in
fact, they point in the same direction. For example, if a prosumer’s cost minimization
is not considered, the prosumers feel discomfort and may terminate their contract with
RA. On the other hand, the RA can get remuneration by tackling supply-side concerns
such as the duck curve, and it will benefit the RA. Thus, RA has the motivation to
improve the social welfare, which includes supply-side and prosumers benefits, rather
than maximizing only its profits.

Participation in such programs is also valuable to the prosumers. In dynamic pricing
programs, electricity retail prices go up and down, depending on the situation such as the
emergence of the duck curve. Prosumers can reduce their electricity costs by scheduling
demand and batteries according to changes in retail prices. Since the RA considers the
cost minimization of the prosumers in the objectives, it is guaranteed that the retail price
will not always be too high. Besides, in the assumption, the RA agents get remuneration
from the ISO based on how much net load is flattened. Generally, part of the obtained
remuneration will be distributed to the prosumers, and this also helps to reduce the
prosumer costs. Finally, this system model to solve the duck curve benefits both the
supply and demand sides. In the following section, the system model is mathematically
described.

5.3.1 Prosumer Model
The operation of the elastic load and the battery is expected to be automatically or
manually controlled in response to the surrounding state and the retail price announced
by the RA.

Load Model

The prosumers have the inelastic load and the elastic load. The inelastic load refers to
base power demand that does not change with respect to retail prices, such as lights,
refrigerators, and elevators. The elastic load is a price-responsive load, which is mainly
a shiftable load, such as HVAC, clothes washers, and dishwashers: the scheduled energy
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is curtailed according to the retail price, a part of the curtailed elastic load will be shifted
to a later time slot [98].

Let t ∈ T be a time index for a day, and let n ∈ N be a prosumer index. The total load
demand edm

t,n of the prosumer n at time t is defined by the elastic load eelas
t,n , the curtailed

load ecurt
t,n and the shifted load esh f t

t,n , given by:

edm
t,n = einelas

t,n + eelas
t,n − ecurt

t,n + esh f t
t,n , ∀t,n (5.1)

where the inelastic load einelas
t,n is the base load and can be inferred from a historical load

pattern, and eelas
t,n is originally scheduled energy of the elastic load. The curtailed load

ecurt
t,n and the shifted load esh f t

t,n are variables that depend on the retail price determined
by the RA.

The load curtailment is modeled by using price elasticity originating from economic
theory [155]. The price elasticity shows the prosumer’s sensitivity to the price, which
means the percentage change of electricity demand when the price increases by 1%.
The curtailment of the elastic load is represented by the price elasticity ξt,n of prosumer
n at time t as follows:

ecurt
t,n = eelas

t,n ·ξt,n ·
−(λt,n −µt)

µt
, ∀t,n (5.2)

where λt,n and µt are the retailed electricity price for each prosumer n and wholesale
electricity price, respectively. The price elasticity ξt,n is usually negative, and a high
absolute value means that the end-user reacts strongly to the price [156].

It is assumed that the part of the curtailed energy ecurt
t,n is shifted later with a cer-

tain probability based on the current retail price and an elapsed period. This assump-
tion comes from the following analysis of prosumer behavior. The prosumer gener-
ally schedules its demand load to the lower retail price period to minimize electricity
costs [157]. The load shifting is characterized by a deadline time at which the load shift
must be completed [98]. To model the shifted load, an auxiliary variable ut,k,n ∈ 0,1
is introduced: when ut,k,n is 1, the curtailed energy ecurt

k,n of prosumer n at time k is

scheduled again at time t. Then, the shifted load eshi f ted
t,n is modeled as follows:

esh f t
t,n =

t−1

∑
k=1

ut,k,n · ecurt
k,n . ∀t,n (5.3)

Thus, eshi f ted
t,n means the sum of the scheduled energy that is curtailed at time k (1 ≤ k ≤

t −1). The upper and lower bounds of the retailed electricity price are denoted by λ ub

and λ lb and define a patience period of prosumer n as Sn. Here, the auxiliary variable
ut,k,n is set by the following probability:

P(ut,k,n = 1) =
λ ub −λt,n

λ ub −λ lb +
t − k
Sn

, ∀t,k,n (5.4)
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where P(ut,k,n = 1) ∈ {0,1} is the probability that ut,k,n becomes 1, i.e., the probability
that the curtailed energy at time k is shifted at time t as a part of eshi f ted

t,n . If the retail price
is lower than the assumed maximum price, there is a higher probability that the curtailed
load is shifted to the current time slot. At the same time, the longer time elapses from
the load curtailment, the higher the probability. Note that the probability P(ut,k,n = 1) is
clipped so that it ranges from 0 (0%) to 1 (100%).

Dissatisfaction Model

The dissatisfaction level of each prosumer is different according to their preferences,
and it is generally modeled by a utility function that is an important concept in microe-
conomic [158]. There are several types of utility functions; due to their tractability,
this work uses a quadratic function of the amount of curtailed load caused by the retail
prices [159]. The dissatisfaction function Ut,n of prosumer n at time t is defined by:

Ut,n = αn · (ecurt
t,n )2 +βn · ecurt

t,n , ∀t,n (5.5)

where αn ≤ 0 and βn ≥ 0 are predetermined parameters that vary for each prosumer. The
greater the amount of energy curtailed, the greater the prosumer’s dissatisfaction. Note
that the larger energy curtailment (the higher dissatisfaction) leads to lower electricity
bills, and thus there is generally a trade-off between electricity costs and dissatisfaction.

Battery Model

The charge/discharge dynamics of the battery of each prosumer are defined by:

SOCbat
t+1,n =


SOCbat

t,n +
ηbat

ch,n · e
bat
t,n

Cbat
n

, if ebat
t ≥ 0

SOCbat
t,n +

ebat
t,n

ηbat
disch,n ·Cbat

n
, otherwise

(5.6)

where SOCbat
t,n is the state-of-charge (SOC) of the prosumer n’s battery at time t, ebat

t,n is
the charge/discharge energy taking a positive value when charging and a negative value
when discharging, and Cbat

n is the capacity of the prosumer n’s battery. ηbat
ch,n and ηbat

disch,n
are the charging and discharging efficiencies of the battery, respectively. The range of
the charge/discharge energy is constrained by:

elb,bat
n ≤ ebat

t ≤ eub,bat
n , ∀t,n (5.7)

elb,bat
n =Crate,bat

disch,n ·Cbat
n ·∆t, ∀n (5.8)

eub,bat
n =Crate,bat

ch,n ·Cbat
n ·∆t, ∀t,n (5.9)
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where Cbat,rate
ch /Cbat,rate

disch indicates a maximum charging/discharging power rate and ∆t
is the length of the time step. Here, elb,bat

n and eub,bat
n mean the upper/lower bounds of

the charge/discharge energy defined in the equations (5.8) and (5.9).
The battery controller of the prosumers also tends to be price-responsive in the typ-

ical management problem [160]. This work assumes that the prosumers control the
battery operation based on a rule-based controller that responds to the retail price. To
judge whether the retail price is high or not, each prosumer sets a price threshold λ th

n
calculated by:

λ
th
n = λ

lb +(λ ub −λ
lb) ·hn, ∀n (5.10)

where hn is a predetermined coefficient for each prosumer n. The rule-based controller
has four operation modes depending on the current price and PV generation. If the
retail price is lower than the threshold, then the system switches to the charge mode,
and the prosumer charges the battery with electricity purchased from the RA (mode 1).
Otherwise, it switches to the discharge mode, and the prosumer discharges the battery to
meet the load demand (mode 2). Other rules include stopping the charging/discharging
when the battery capacity is full/empty (mode 3) and charging the surplus PV generation
to the battery as much as possible regardless of the electricity price (mode 4).

To sum up, the charge/discharge energy for each mode is given as follows:

ebat
t,n =



eub,bat
n ·

λ th
n −λt,n

λ th
t,n −λ lb

, (mode 1)

elb,bat
n ·

λt,n −λ th
n

λ ub −λ th
n
, (mode 2)

0, (mode 3)

epv
t,n − edm

t,n , (mode 4)

(5.11)

where epv
t,n is the PV generation of prosumer n at time t. Note that this work assumes an

obviously simplistic model for the battery controller, as defined by the equations (5.10)
and (5.11), which is only an imitation of prosumer behavior. However, this model is
used as a proof of concept for the proposed DRL method. The DRL algorithm can be
applied and is also considered effective for the practical battery controller due to the
model-free nature of DRL, which can learn the prosumer behavior based on observa-
tions without specific models.

Objective

The objective of the prosumer is to minimize their electricity bill and their dissatisfac-
tion. First, the net load enet

t,n of prosumer n at time t is calculated by:

enet
t,n = edm

t,n − epv
t,n + ebat

t,n . ∀t,n (5.12)
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Here, the positive net load is denoted by enet,+, t,n, and the negative net load is de-
noted by enet,−

t,n to distinguish between buying and selling. Finally, the objective of each
prosumer is to minimize the total cost Cpro

t,n , defined by:

minimize
T

∑
t=1

Cpro
t,n , (5.13)

Cpro
t,n = λt,n · enet,+

t,n −κt · enet,−
t,n +Ut,n, ∀t,n (5.14)

where κt is the electricity price for selling the surplus energy. The first term means the
electricity cost, the second term is the revenue from selling the surplus energy, and the
third term is the dissatisfaction of the prosumer.

5.3.2 Resource Aggregator Model
Pricing Model

This work assumes that the RA sells electricity to each prosumer at a time-varying retail
price λt,n and buys the surplus electricity from the prosumers at a purchase price κt . The
retail prices λt,n also vary for each prosumer, and the purchase price κt is generally equal
to the wholesale electricity price µt . Then, the RA trades the aggregated electricity at
a wholesale electricity price µt notified every time step by the WEM. Constraints for
retail prices are introduced to avoid unfair pricing to the prosumers, given by:

λ
lb ≤ λt,n ≤ λ

ub, ∀t,n (5.15)

λ
lb = ν ·µmin, (5.16)

λ
ub = ν ·µmax, (5.17)

where ν is a coefficient for the price limit, and µmin/µmax is the minimum/maximum
wholesale electricity prices for the day, defined by the equations (5.16) and (5.17), re-
spectively. The retailed electricity price λt,n for prosumer n at time t is decided by the
proposed strategy.

Battery Power Station Model

The RA controls the charge/discharge amount of the battery power station to provide
flexibility to the total net load. The dynamics of the battery power station are specified
by the following equation as well as the prosumer’s battery:

SOCra
t+1 =


SOCra

t +
ηra

ch ·E
ra
t

Cra , if Era
t ≥ 0

SOCra
t +

Era
t

ηra
disch ·Cra , otherwise

(5.18)

Crate,ra
disch ·Cra ·∆t ≤ Era

t ≤Crate,ra
ch ·Cra ·∆t, ∀t (5.19)



5.3. PROBLEM DESCRIPTION 99

where SOCra
t is the SOC of the RA’s battery power station and Era

t is the charge/dis-
charge energy taking a positive value when charging and a negative value when dis-
charging. ηra

ch and ηra
disch are the charging and discharging efficiencies of the battery

power station, respectively. Cra is the battery capacity, and Crate,ra
ch /Crate,ra

disch indicates the
maximum charging/discharging power rate. The charge/discharge energy Era

t is also
controlled by the proposed strategy.

Objective

The objective of the RA is to maximize social welfare, which includes the RA’s profit
maximizing, the prosumer’s cost-minimizing, and the improvement of the duck curve.
The RA profits from the electricity trade and the total net load Enet

t is defined by:

Enet
t =

N

∑
n=1

enet
t,n +Era

t . ∀t (5.20)

Finally, the objective function of the RA is defined by

maximize
T

∑
t=1

ω1 ·Pra
t −ω2 ·

T

∑
t=1

N

∑
n=1

Cpro
t,n +(1−ω1 −ω2) ·

T

∑
t=1

Rduck
t , (5.21)

Pra
t =

N

∑
n=1

(
λt,n · enet,+

t,n −κt · enet,−
t,n

)
−µt ·Enet

t , ∀t (5.22)

where ω1 and ω2 are weight parameters used to adjust the importance for each term,
and these range from 0 to 1. Pra

t is revenue through the electricity retail, and Rduck
t is

remuneration for the duck curve improvement. To improve the duck curve, the design
of Rduck

t is very important. The detailed formulation of Rduck
t is described in Sec. 5.4.

5.3.3 Dynamic Pricing and Battery Scheduling Problem
The central (cooperative) DP-BS problem in the RA can be formulated as a nonlinear
programming (NLP) problem as follows:

maximize
v

(5.21),

subject to (5.1)− (5.11),(5.12),(5.14),
(5.15)− (5.20),(5.22),

where v is a set of decision variables that includes {∀t,n : ebat
t,n ,e

shi f ted
t,n ,λt,n,Era

t }.
It is challenging to solve the problem due to the following reasons. First, uncertain

future information such as wholesale electricity prices and net load is necessary to solve
this optimization problem. This information is essentially unknown in advance, and
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related prediction errors result in large costs. Second, the RA has no access to detailed
models of prosumers due to privacy concerns. Without the prosumers response model,
the solution to the problem will be unreliable. Third, the computational complexity of
NLP is generally quite high. Thus, solving this NLP-based problem is not realistic in
practice. This work addresses this issue by employing a model-free DRL approach.

5.4 Deep Reinforcement Learning-Based Strategy

5.4.1 Overview

To solve the DP-BS problem, a model-free DRL algorithm is employed. The reasons for
using DRL to solve the DP-BS problem are twofold: its adaptive capability and model-
free nature. First, in a DRL paradigm, learning policy proceeds adaptively in response to
changes in the dynamic environment, taking into account uncertainties, e.g., wholesale
prices and net load change. Second, DRL methods can learn an optimal policy to make
a decision through observable interactions without detailed system models. This model-
free nature requires no knowledge of the detailed system models of each prosumer, i.e.,
privacy concerns can be resolved. Moreover, once trained, decision-making by DRL
takes negligible computation time, typically less than one second, without the need to
solve complex problems like NLP.

In a DRL problem, a decision-maker is called an agent, while a surrounding follower
interacting with the agent is called an environment. The agent-environment interactions
must be modeled as a Markov Decision Process (MDP) to apply DRL methods. The
MDP consists of a set of a state, an action, a transition probability, and a reward function
[161]. Following the transition probability, the environment’s state s moves to a new
state s′ under an action of the agent a. The reward is a numerical score that evaluates
whether the action taken is good or not. To choose appropriate actions, the agent learns
a policy πθ parameterized by θ , which is a way of decision-making that maximizes the
reward function. The typical procedure of the RL framework at time t is for the agent
to take action at in the environment based on the policy and then feed back the reward
rt and new state st+1 to the agent. The DRL algorithm updates the policy based on the
transition information (st ,at ,rt ,st+1).

5.4.2 Formulation of Markov Decision Process

The DP-BS problem is reformulated as the MDP to handle the problem by the DRL
algorithm. Fig. 5.3 shows the proposed DRL framework for the DP-BS problem. The
agent is the RA, and the environment is the ISO with the WEM, the battery power
station, and the prosumers. Unlike the central NLP problem defined in Section 5.3.3,
the proposed strategy only optimizes the retail prices and the usage of the RA’s battery
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Figure 5.3: Illustration of DRL framework for DP-BS problem.

power station. Note that the formulation does not require a model of the transition
probabilities since the proposed method is a model-free method that learns from data.

State

The state observations consist of seven kinds of information for the ISO, the prosumers,
and the battery power station: time slot index t ′ = t mod T , the wholesale electricity
price µt , the net load for each prosumer enet

t,n , the sum of the remaining curtailed energy
Σ

t−1
k=1ecurt

k,n , SOC of the prosumer’s battery / the battery power station SOCbat
t,n /SOCra

t , and
the deviation Edev

t between the total net load and daily average net load calculated by
the following equations.

Edev
t =

N

∑
n=1

enet
t,n −Eavg

day, ∀t (5.23)

Eavg
day =

T

∑
t=1

N

∑
n=1

enet
t,n

N
, (5.24)

where Eavg
day is the daily average of the net load. The deviation will provide an important

basis for improving the duck curve. Note that this work assumes the value of the daily
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average of the net load Eavg
day is known in advance. Although the specific forecasting

method for Eavg
day is out-of-scope of this work, it can be forecasted directly using short-

term forecasting that has already been developed in the literature [162], which has high
accuracy. Accordingly, the state st at time t is set as

st = (t ′,µt ,enet
t,1 , . . . ,e

net
t,N ,Σ

t−1
k=1ecurt

k,n , . . . ,Σt−1
k=1ecurt

k,n ,

SOCbat
t,1 , . . . ,SOCbat

t,N ,SOCra
t ,Edev

t ). (5.25)

Action

The RA decides the retail price for each prosumer λt,n and the operation of the battery
power station Era

t , aiming to maximize social welfare. This work assumes that the action
space is continuous, and its range is constrained by the upper/lower bound as given in
the formulas (5.15) and (5.19). Thus, the actions of the RA at at time t are given by

at = (λt,1, . . . ,λt,N , Era
t ). (5.26)

Reward Function

The objective of the RA agent is to improve social welfare. Hence, the following reward
rt at time t is used:

rt = ω1 ·Pra
t −ω2 ·

N

∑
n=1

Cpro
t,n − (1−ω1 −ω2) ·Rduck

t . ∀t (5.27)

Note that the value of the weights ω1 and ω2 should be carefully chosen based on each
entity’s preferences. The adjustment method of the weights is out-of-scope of this work;
however, the effect of the weight value choices is verified in Section 5.5.

The design of an appropriate reward function is critical to training and deploying
the DRL agent efficiently. Here, four different reward terms are defined as Rduck

t to
improve the duck curve (Table 5.1). The content of the duck curve is a large peak valley
deviation of the net load and a steep change of net load for consecutive time slots. The
power generation cost of power plants for flexibility is typically defined as a quadratic
function of the net load [163]. Thus, The proposed reward term is a quadratic penalty
function for deviation from a daily average, the net load difference for consecutive time
slots, and the total net load. In addition, no reward term for the duck curve improvement
Rno

t is defined to compare the effect of Rduck
t . The effectiveness of the proposed terms is

validated in Section 5.5.

5.4.3 Algorithm Design
The agent is trained to solve the DP-BS problem using Proximal Policy Optimization
(PPO) [164], which is one of the state-of-the-art DRL algorithms. This is because the
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Table 5.1: Proposed reward terms for improving duck curve.

Reward Description

Ravg
t = (Enet

t −Eavg
day)

2 Quadratic penalty of deviation between current net load
and daily average net load

Rdi f f
t = (Enet

t −Enet
t−1)

2 Quadratic penalty of net load difference for consecutive
time slots

Rquad
t = (Enet

t )2 Quadratic penalty of total net load
Rno

t = 0 No reward for duck curve improvement

performance of the PPO algorithm is compatible with or better than other state-of-the-
art DRL algorithms in the DRL benchmark for tasks with a continuous action space.

PPO is an actor-critic policy gradient method parameterized by neural networks and
improves the stabilization of learning by preventing a large policy update. To do this, the
ratio of the old to the new policy is clipped, and a lower update bound, i.e., a pessimistic
bound, is chosen. At the k-th iteration, the parameter θ of a policy πθ is updated by

maximize
θ

Ê[LC(θ)], (5.28)

LC(θ) = min


πθ (a|s)
πθk(a|s)

Aπθk (s,a),

clip
(

πθ (a|s)
πθk(a|s)

,1− ε,1+ ε

)
·Aπθk (s,a)

, (5.29)

where Ê denotes the empirical expectation over time steps and LC is a surrogate objec-
tive. Where Aπθk is the estimated advantage at the k-th iteration and ε is a hyperparam-
eter that denotes the clipping range. The function clip() clips the policy update ratio
within [1− ε,1+ ε].

PPO is generally implemented with a neural network architecture that shares param-
eters between the policy and value functions. Here, the value function Vθk(s) parameter-
ized by θk in the critic network is updated with respect to a mean-squared error of value
function LV F :

minimize
θ

Ê[LV F(θ)], (5.30)

LV F(θ) =
(
Vθ (s)−V targ(s)

)2
, (5.31)

where V targs is a target value from an old value function. Finally, the loss function of
PPO LPPO to be maximized is the sum of LC, LV F , and an entropy bonus S:

LPPO(θ) = Ê[LC(θ)− c1 ·LV F(θ)+ c2 ·S[πθ (s)], (5.32)
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Algorithm 1: Training and deployment process of proposed DP-BS strategy
based on PPO algorithm.

Initialize policy parameters θ ;
Initialize training memory M ;
/* Training process */
for episode = 1, max_episode do

Initialize the state of the hierarchical energy market; for t = 1, T do
Receive initial state st ;
Sample action at according to πθk ;
Calculate reward rt and observe new state st+1;
Store transition (st ,at ,rt ,st+1) in training memory M ;

Get a mini-batch from training memory M ;
Estimate advantages Aπθk using any advantage estimation algorithm;
Optimize loss function LPPO given by the equation (5.32);
Update θ with any gradient optimizer;

/* Deployment process */
Deploy the trained policy πθ for the RA;
Perform the DP-BS in the actual system based on πθ ;

where c1 and c2 are coefficients.
The pseudocode of the proposed strategy is presented in Algorithm 1. The RA

agents in the PPO algorithm are first trained repeatedly, and then the trained agents are
deployed in the RA and operate the DP-BS in real time.

5.5 Simulation Experiments

This section presents several simulation experiments to evaluate the proposed DP-BS
strategy. The experimental setup and implementation details are first described, and
then the performance of the proposed strategy is compared with other baselines in terms
of the duck curve improvement and computational complexity. In addition, different
scenarios are performed to access the system performance of the proposed strategy.

5.5.1 Simulation Setup

The targeted hierarchical energy market consists of an ISO, an RA, and ten prosumers
(N = 10). The intervals of dynamic pricing and battery scheduling by the RA were
set to 30 min, and an episode length was set to a day, i.e., T = 48. The wholesale
electricity prices were obtained for the entire year of 2017 from a California ISO [165].
The parameters of the RA are given in Table 5.2. The purchase price κt is assumed to
be the same value as the wholesale electricity price µt at that time. Both weights of ω1
and ω2 in the reward function (5.27) were set to 0.2 so that the duck curve improvement
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Table 5.2: Parameter setting for RA and prosumers.

Parameter Symbol Value

Coefficient for price limit ν 1.5
Battery capacity [kWh] Cra 300
Charging efficiency ηra

ch 0.9
Discharging efficiency ηra

disch 0.9
Maximum charging power rate Cra,rate

ch 0.3
Maximum discharging power rate Cra,rate

disch 0.3

Patience period [30 min] Sn 6, 12, or 18

Coefficient for utility function
αn Rand. value within 1∼4
βn 1

Battery capacity [kWh] Cbat
n 10, 15, or 20

PV panel size [kW] - 10, 15, or 20
Charging efficiency ηbat

ch 0.9
Discharging efficiency ηbat

disch 0.9
Maximum charging power rate Cbat,rate

ch 0.3
Maximum discharging power rate Cbat,rate

disch 0.3
Coefficient for price threshold hn 0.5
Average total net load [kW] - 50
Average ratio of inelastic load
to total demand [%] - 60

Average ratio of elastic load
to total demand [%] - 40

would be considered more important than other terms. However, the effect of weight is
also explored in the simulation experiments.

On the other hand, the prosumers are simulated using the building’s energy con-
sumption profiles collected by the Building Data Genome Project 2 [166] and PV gen-
eration profiles provided by the California Distributed Generation Statistics [167]. The
period under study for both profiles covers the entire year of 2017. Note that these
datasets were resampled to 30 min intervals and were normalized according to the build-
ing site area. The other parameters of the prosumers are also given in Table 5.2. The
profile of price elasticity ξt,n ranges from -0.2 to -0.8 based on the literature [156], and
it was manually generated.

The evaluation metrics for improving the duck curve are the average of the standard
deviation of the net load, denoted by std, and peak-to-average ratio (PAR) of the total
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Table 5.3: Parameters for PPO algorithm.

Parameter Value

Number of environments in parallel 16
Number of episodes max_episode 20,000
Batch size 128
Training memory size M 2048
Number of epochs 5
Clip range ε 0.1
Discount factor 0.995
Learning rate 0.002
Value function coefficient for loss function c1 0.5
Entropy bonus coefficient for loss function c2 3.6e-8
Number of hidden layers 2
Number of neurons [256,256]
Activation function ReLu

net load Enet
t for each day, as given by

std =

√
∑

T
t=1 |Enet

t −∑
T
t=1 Enet

t /T |2
T −1

, (5.33)

PAR =
max(Enet

t )

∑
T
t=1 Enet

t /T
, (5.34)

where max(Enet
t ) is a function that finds a maximum value for the total net load.

5.5.2 Implementation and Training Process
The simulator and PPO algorithm are implemented in python. The simulator was built
on the OpenAI Gym framework [168], which allows us to easily observe the agent-
environment interaction. Furthermore, the proposed DP-BS strategy was implemented
using the python library stable-baselines3 [169], which is an open-source DRL
framework. The parameters of the PPO were fine-tuned using Optuna [170], and the
obtained parameters are shown in Table 5.3. In this simulation setting, the neural net-
work is shared for both policy and value functions in actor-critic.

It is worth mentioning that some implementation techniques were made for the DRL
framework to stabilize the training and shorten the training time. The value of state ob-
servation and actions are normalized within [-1, +1] using min-max normalization. This
state-action normalization is required to ensure that the neural network is not too depen-
dent on the scale of the features [171]. The scale of the reward terms in the reward func-
tion (5.27) is aligned based on the standard score, which is calculated by the difference
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Figure 5.4: Typical training curve of proposed method.

between the value and the mean divided by the standard deviation. This standardiza-
tion of rewards ensures that the RL agents can be tuned with similar hyperparameters.
Firstly, hyperparameter tuning is carefully performed using the previous year’s data for
representative parameters that include the number of neurons, the number of parallel
environments, learning rate, and discounted factor as important hyperparameters [172],
and the same parameters are applied for all experiments with the aforementioned nor-
malization and standardization technique.

The configurations of the test-bed machine include Intel(R) Core(TM) i7-10700
CPU @ 2.90 GHz, Nvidia GeForce RTX 2080 Ti GPU, and 16 GB DDR4 RAM. The
average execution time of training the neural network is 29.4 min for 2M steps, and the
typical training curve is shown in Fig. 5.4. After repeated training with the simulator
using a one-month dataset, the trained agent is deployed and makes a decision for the
DP-BS in real time.

5.5.3 Results
Comparison with Baseline Methods

First, the proposed strategy is compared with representative baseline methods to evalu-
ate the performance of the duck curve improvement. In all, seven methods were com-
pared:

• Optimal: NLP problem defined in Section 5.3.3 with Ravg
t over 24 h with 30 min

resolution is solved every day. Note that the solution is obtained by the approaches
proposed in the literature [173]. Assuming the ideal case of DP-BS, the agent
already knows all future input and system configuration and directly controls the
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Figure 5.5: Results of average standard deviation and average PAR of total net load
for one week’s simulation from August 1 to August 7 compared to baselines and DRL-
based method with different reward functions.

prosumer’s devices, which include the demand and the battery, as well as the RA’s
operation. This method provides the ideal solution and the potential of DP-BS.

• DRL-avg: Proposed DRL strategy trained with Ravg
t .

• DRL-diff: Proposed DRL strategy trained with Rdi f f
t .

• DRL-quad: Proposed DRL strategy trained with Rquad
t .

• DRL-no: Proposed DRL strategy trained with Rno
t .

• Random: Randomly determines the retail price and the battery operation.
• Schedule: Following the schedule; retail prices are set to 75% of the price range

in peak hours (4 p.m.-9 p.m.), otherwise set to 25% of that. The battery station
discharges at a constant rate of 0.2 C during the same peak hours and charges at
0.1 C during another period.

Fig. 5.5a and Fig. 5.5b show the results of standard deviation and PAR of total net
load for one week from August 1 to August 7 in 2017. DRL methods were well-trained
with the simulator and input profiles for the previous month from July 1 to July 31.
From both figures, it can be seen that DRL-avg achieved the best standard deviation and
PAR in all methods except for Optimal. In Fig. 5.5a, DRL-avg improved the standard
deviation of the total net load by at least 36.2% over DRL-quad and up to 57.1% over
Random. In Fig. 5.5b, DRL-avg improved the PAR of total net load by at least 4.5%



5.5. SIMULATION EXPERIMENTS 109

over DRL-diff and up to 20.8% over Random. Note that Optimal is an ideal baseline
that has complete future knowledge and system models.Even though DRL-avg observes
only the current state of the system, this method improved the duck curve in terms of
both metrics, and its values were closest to Optimal.

Fig. 5.6 shows the detailed profiles on August 5 using DRL-avg. The upper figure
shows the aggregated energy profiles of the RA and the prosumers, where the pre-net
load, which is the net load scheduled originally, is calculated by enet,org

t,n = einelas
t,n +

eelas
t,n −epv

t,n. The pre-demand, which is the demand scheduled originally, is calculated by
edm,org

t,n = einelas
t,n +eelas

t,n . In the upper figure, there are two bars next to each other every 30
min. The left bars are the energy profiles scheduled originally, and the right bars are the
energy profiles after the DP-BS. The positive value means the energy demand including
the total demand and battery charging, and the negative energy means the energy supply
by PV generation and battery discharging. From the upper figure, comparing the pre-net
load ∑n enet,org

t,n to the actual net load Enet
t , the actual net load becomes larger than the

pre-net load around the noon (11 a.m. - 3 p.m.) and smaller in the morning and the
evening (7 a.m. and 4 p.m. - 8 p.m.). This shows that the duck curve that appeared in
the pre-net load is smoothed out. The improvement of the duck curve resulted from the
following two factors. First, the prosumer contributed to flattening the net load. The
actual load demand ∑n edm

t,n is larger than the pre-net load ∑n edm,org
t,n around the noon (11

a.m. - 3 p.m.), comparing the two adjacent blue bars in the figure. This means that the
prosumer shifted their demand to noon. At the same time, the prosumer charged the
battery in the daytime and discharged it in the evening (4 p.m. - 7 p.m.), as represented
by the red bars in the figure. Second, the RA’s battery power station, which is shown
by the green bars in the figure, was scheduled to charge around noon and discharge in
the morning and evening. Moreover, the middle figure represents the results of dynamic
pricing, and the average prices for all prosumers are plotted. The shaded area means
the price deviation among prosumers, and the results show that the trend of the retail
prices is similar for each prosumer. The retail prices were set relatively low from noon
to 3 p.m. As a result, the prosumers are encouraged to shift their demand and charge the
battery in the period 12 p.m. - 3 p.m. Finally, the lower figure shows the SOC profiles
of the RA’s battery. The DRL-avg method learned to charge when the pre-net load is
relatively low (11 a.m.-2 p.m.) and discharge when the pre-net load is relatively high (4
p.m.-8 p.m.).

Fig. 5.7 shows the detailed profiles of prosumer #8 for August 6 to demonstrate how
the demand and battery respond to the retail price. Similar to Fig. 5.6, in the upper
figure, the left bars are the demand profiles scheduled originally, and the right bars are
the actual demand and battery profiles after the retail price announcement; the lower
figure shows the retail price of prosumer #8 given by the RA. Firstly, the RA raised the
retail price from midnight to morning, decreased it until 3 p.m., and then raised the retail
price again. According to the price change, the prosumer #8 shifted their demand from
morning (especially around 8 a.m.) to daytime where PV generation is large. As for the
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Figure 5.7: Detail profile of prosumer #8 for August 6 using DRL-avg; (upper) demand
change and battery energy, (lower) retail price and wholesale price.

battery, the prosumer charged the battery during the lower retail price period (9 a.m. -
1 p.m.) and discharged it during the higher period (4 p.m. - 6 p.m.). Finally, the RA
decided on the retail price that made the prosumer increase their net load around noon
and reduce it during peak hours for improving the duck curve.

Fig. 5.8 shows the profiles of the net load and the RA’s battery power station on
another day (August 2). The results show that the DRL agent operated the RA’s battery
to discharge during peak period (9 a.m. and 6 p.m. - 9 p.m.) while charging to fill the
net load valley until the battery capacity was full (11 a.m. 3 p.m.). From these results,
the proposed strategy can make an effective decision on the retail prices and the RA’s
battery schedule in real-time for improving the duck curve.

Whole-Year Simulation

To evaluate the annual performance of the proposed DRL strategy, a whole-year sim-
ulation was conducted using five methods: Optimal, DRL-avg, DRL-no, Random, and
Schedule. In DRL methods, the training of the agent was iterated every week using data
from the previous month corresponding to that week. This iteration allows the agent to
consider seasonal changes in the target system, such as wholesale electricity prices and
net load change.

Fig. 5.9a and Fig. 5.9b are box plots that show the daily standard deviation and the
daily PAR of the total net load for all of 2017. Consequently, the results show the same
trend as in Fig. 5.5, and thus DRL-avg achieves reductions in both the standard deviation
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Figure 5.8: Result profile of RA for August 2 using DRL-avg; (upper) total net load
change and energy of RA’s battery power station, (lower) SOC of RA’s battery power
station.

and the PAR compared to other baselines. In the best case of DRL-avg, the standard
deviation was 10.23, and the PAR was 1.1, which is 73.1% and 21.2% improvement
over Random on the same day. Finally, the DRL-avg has the potential to improve the
duck curve throughout the year.

Effect of Weight Coefficient

This section discusses the effect of a weight coefficient in the reward function (5.27) on
system performance. The simulation period is one week from August 1 to 7 using the
DRL-avg method. Both weight coefficients of the RA’s profit ω1 and the prosumer’s
cost ω2 changed from 0.0 to 1.0 subject to ω1 +ω2 ≤ 1, and the weight of the duck
curve improvement was calculated by (1−ω1 −ω2). The large weights mean that the
corresponding term is considered important.

Fig. 5.10 shows the heat maps of the system performance with different weights over
one week: the standard deviation of the net load std, PAR of net load, total RA profit,
and total prosumer cost. The lower left on the heat map, the greater the importance of
duck curve improvement (1−ω1 −ω2). The light (yellow) squares mean better values,
and the dark (navy) squares mean worse values. As can be seen from the std and PAR
results, the performance trends of the standard deviation and PAR with respect to the
weights are similar. A greater weight of RA’s profit increases the standard deviation and
PAR of the net load. In terms of the duck curve improvement, the best weight pair is
(ω1,ω2,1−ω1 −ω2) = (0.2,0.3,0.5). Furthermore, the relationship between the RA’s
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Figure 5.9: Results of average standard deviation and average PAR for the 2017 whole-
year simulation compared to baselines.

profit and the prosumer’s cost is clearly a trade-off that can be controlled by adjusting
the weight coefficients. Because both of them tend to be extreme values, the weights of
RA’s profit and the prosumer’s cost should be chosen to be as equal as possible. As a
result, the preferred operating point can be chosen by referring to these heat maps and
adjusting the weight coefficient.

Effect of Battery Power Station Size

In this section, the effect of the battery power station’s size on performance for the duck
curve improvement is demonstrated. The simulation period is one week from August 1
to August 7 using the DRL-avg method. The battery power station’s size was increased
from 0 kWh to 1500 kWh.

Fig. 5.11a shows the standard deviation of the total net load for each battery power
station size. As can be seen from the results up to 900 kWh, the larger the size of the
battery, the more the standard deviation is reduced. However, the standard deviation did
not decrease much at sizes larger than 900 kWh and increased in the cases of 1100 kWh
and 1500 kWh. Fig. 5.11b is the PAR of the total net load for each battery power station
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Figure 5.10: Results of system performance with different weights ω1,ω2 from Aug. 1
to 7 / Weight of duck curve improvement, standard deviation of net load, PAR of net
load, total RA’s profit, and total prosumer’s cost are shown.

size. These results also show that further improvement with batteries larger than 900
kWh cannot be expected, and in fact, it was worse at 1500 kWh.

This is because the influence of charging and discharging the RA’s battery power
station on the overall system has increased. The maximum charging/discharging rate is
30% as shown in Table 5.1, i.e., a 1500 kWh battery can manipulate 300 kW for each
time slot. This power rate is greater than the average net load of prosumers (also shown
in Table 5.1). Besides, the RA’s battery size is large enough to flatten the duck curve,
and the agents tended to learn to charge and discharge at a large rate. Therefore, when
the DRL agent fails to capture the prosumer’s response with large errors and decides
the battery operation with large charging/discharging, the value of the total net load is
greatly affected.
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Figure 5.11: Results of average standard deviation and average PAR for one-week sim-
ulation from Aug. 1 to 7 with different battery sizes.

Finally, increasing the size of the battery is effective in improving the duck curve, but
its effectiveness is limited. No matter how large the battery capacity, charge/discharge
timing losses will occur depending on the current net load and wholesale electricity
prices. In addition, the larger charge/discharge capacity of the battery also causes an
increase in performance errors when the agent incorrectly estimates the response of
the environment. Considering that the initial cost of batteries is negligibly expensive
relative to the RA’s profit, it is also necessary to determine the appropriate size of the
battery system.

Time Scalability

This section compares the computational time using the baseline optimization method
and the proposed DRL strategy with the different numbers of prosumers. Table 5.4
summarizes the average CPU time at execution (online), i.e., calculating the solution,



116
CHAPTER 5. DUCK CURVE IMPROVING STRATEGY FOR RESOURCE

AGGREGATOR BASED ON DYNAMIC PRICING

Table 5.4: Computational time for training and execution with different numbers of
prosumers.

# of
prosumers

Optimal (NLP) Proposed (DRL)

Average CPU time
at execution
(online) [h]

Training time
to converge
(offline) [h]

Average CPU time
at execution
(online) [s]

10 0.28 0.16 2.28e-4
20 1.44 0.33 2.31e-4
30 2.94 0.56 2.34e-4
40 4.89 0.77 2.37e-4
50 7.57 0.96 2.39e-4

and the training time to converge the policy (offline). As for the online execution time,
the optimization-based method increases the computational time exponentially with the
number of prosumers, which is not practical due to the online time limitation (∆t =
30min). Meanwhile, the proposed DRL strategy takes only a few milliseconds, and it
does not scale to the number of prosumers. The offline training time of the proposed
DRL strategy remains in the practical range.

5.6 Summary

This chapter has investigated the strategy of the resource aggregator (RA) to improve
the duck curve. The dynamic pricing and battery scheduling (DP-BS) problem is solved
to maximize social welfare, including the RA’s profit, the prosumer’s cost, and the im-
provement of the duck curve. First, the DP-BS problem is formulated as a Markov
decision process (MDP) for a hierarchical energy market model. Then, a model-free
deep reinforcement learning (DRL) algorithm was proposed to learn the optimal strat-
egy, determining the retail price for prosumers and battery power station charging/dis-
charging. No prior knowledge of the prosumer’s details and wholesale electricity prices
is required to learn the strategy using the proposed method. Therefore, the proposed
method not only addresses the uncertainty of the system but also protects the privacy
of the prosumers. The simulation results show that the proposed method with the best
reward function can reduce the standard deviation and the peak-to-average ratio (PAR)
of the net load by up to 57.1% and 20.8%, respectively, compared to the baselines.

In future work, an optimal energy management method for prosumers should be in-
tegrated into the DP-BS problem. Then, a cooperative multi-agent system is considered
to improve the duck curve more and more. Moreover, it is important to develop an al-
gorithm for choosing an appropriate weight in the reward function based on the entity’s
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preferences interactively. Also, the integration with day-ahead scheduling and the de-
tailed modeling of power systems to consider network constraints are one of the future
directions for the practical implementation of the proposed approaches.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the rapid increase of variable and uncontrollable renewable energy, the energy
system requires more flexibility to mitigate grid challenges, such as demand and supply
mismatch and high ramp rates. In particular, demand-side flexibility (DSF) is one of
the promising solutions to address this issue, which refers to a capacity to change the
demand load of end users from their current load patterns. The demand-side distributed
energy resources (DER) such as a battery system and controllable demand could be ad-
justed through a demand response (DR) program that requests the engagement of end
users by price signals or incentives. This interaction maximizes the acquisition and uti-
lization of DSF. Therefore, this dissertation presents a system-level energy management
methodology for DSF concerning the planning and real-time operation in the demand-
side energy management system (EMS) and a DR strategy that exploits DSF for solving
supply-side issues. To unlock the potential of DSF, this dissertation has addressed three
research questions defined in Chapter 1.

Answer to Question 1: How could prosumers make a plan for their DERs to reduce
system costs?

To estimate the annual system performance and achieve low system costs by consid-
ering relatively long-term effects such as battery degradation, an operational planning
methodology is required for weekly and monthly periods. Chapter 2 mainly focuses
on the battery degradation effects and has proposed a battery degradation-aware oper-
ational planning method for smart energy systems [32, 174]. The proposed method in
this chapter aims to minimize battery degradation without increasing energy purchases.
The simulation experiments are conducted for a whole year to evaluate the annual costs
composed of the battery aging cost and the electricity costs. The simulation results show
that the proposed method can reduce the battery aging costs by up to 14.1% compared
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to the baseline. In addition, the proposed method can maintain the same amount of the
purchased energy as the baseline. This means that the trade-off relationship between the
battery aging cost and the energy purchase is completely improved. It is found that the
trade-off improvement was caused by gradually charging the battery system and lim-
iting the maximum battery charging level. Finally, The proposed method can find the
optimal operating points of the battery system in terms of the annual costs. Compared to
the state-of-the-art that implicitly reduces battery aging effects without specific battery
degradation models, the proposed method can calculate the battery aging costs quan-
titatively and optimizes the battery operational plan considering both the battery aging
costs and the electricity costs by introducing the detailed battery degradation model.

Answer to Question 2: How could prosumers operate their DERs in real-time to
maximize their preferences?

The real-time operation of DERs by the EMS is required to compensate for the renew-
able fluctuation and reduce electricity costs. Chapter 3 has proposed a multi-time scale
energy management framework for scheduling a battery system and shiftable appliances
with variable PV generation [59, 175]. The simulation results show that the proposed
framework can reduce electricity costs by up to 47.5% compared to baseline meth-
ods. Moreover, under the simulation settings and the computer platform, the proposed
framework takes only 20 seconds of computational time at maximum, and it meets the
computational requirement greatly. The sensitivity analysis of the proposed framework
is also performed. The proposed framework is scalable to both the length of the plan-
ning period and the number of shiftable appliances, and the computational capability
is sufficiently low for operating the local energy system. Moreover, the impact of PV
forecasting error and battery capacity on the performance of the proposed framework
is explored. The results show that the integration of accurate PV forecasting can re-
duce electricity costs significantly, and its effect is equivalent to a 30%-50% reduction
in the size of the battery system. The state-of-the-art methods for real-time operation
only consider either slow (hours-day) or fast (seconds-minutes) system dynamics and
use measured data, a persistence model, or unoptimized models for PV forecasting, and
it causes great energy loss. The proposed multi-time scale structure combined with a
physics-based well-optimized PV forecasting can capture a mix of fast and slow system
dynamics and enables managing both solution quality and computational complexity.

For the operation of the EMS, other objectives such as user preferences and com-
fort should be considered as well as electricity and system costs. Chapter 4 mainly
focuses on thermal comfort maintained by the heating, ventilation, and air conditioning
(HVAC) systems and has proposed a comfort-aware electrical and thermal energy man-
agement framework [103,176]. The proposed framework in this chapter is the extended
version of the framework proposed in Chapter 3 to schedule HVAC systems while es-
timating optimal temperature set points. The simulation results show that the proposed
framework can solve the comprehensive optimization problem including a battery sys-
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tem, shiftable appliances, and HVAC systems with little increase in computational time
where the worst case is only one minute for each control loop. Also, compared to the im-
plicit baseline method that does not optimize the HVAC schedule, the proposed method
can find a better trade-off relationship between thermal comfort and electricity costs by
changing the importance of each objective term. In the best case, the proposed method
can achieve a 14.0% reduction in the electricity costs with the same thermal comfort lev-
els as the baseline. Moreover, by conducting the simulation experiments with different
battery sizes, the best size for the battery system can be chosen based on the obtained
trade-offs. Note that many existing methods in the literature are limited to optimizing
individual energy systems such as battery systems, appliances, and so on. Meanwhile,
the proposed framework in Chapter 3 and 4 provides comprehensive solutions for gen-
eral DERs that include PV generation, battery systems, and controllable demands. It
has scalability for expansion to other demands and generations, such as wind turbines
and EVs.

Answer to Question 3: How could an aggregator encourage prosumers to change
their load into the desired shape?

To meet the grid purposes by exploiting DSF, the optimal design of the DR strategy is re-
quired. In Chapter 5, an optimal price-based DR strategy on dynamic pricing and battery
scheduling has been proposed to improve the specific supply-side issue, the duck curve
caused by massive PV introduction [120]. The proposed strategy is developed for an
aggregator based on a model-free deep reinforcement learning (DRL) approach to max-
imize social welfare that includes improvements of the duck curve, profit maximization
of the aggregator, and cost minimization of prosumers. The simulation experiments for
a whole year are conducted to incorporate the seasonal effects on the PV generation.
The results show that the proposed strategy with the carefully designed reward func-
tion can reduce the duck curve index: the standard deviation and peak-to-average ratio
(PAR) of the net load are reduced by up to 57.1% and 20.8% compared to all baselines.
In addition, the performance of the proposed method is close to the ideal method where
all information and future input are known in advance. The detailed analysis shows that
the proposed strategy often puts low prices and battery charging at noon while choosing
high prices and battery discharging in the morning and evening. In this way, the pro-
posed strategy mitigates the duck curve. On the other hand, the proposed method can
control the importance of each objective term, and the trade-off relationship between
them can be obtained. Finally, the proposed method can be applied to the real world
to deal with the challenging issue, the duck curve, and it helps to introduce more so-
lar energy in the energy system. The state-of-the-art strategies from the literature often
need a detailed model of prosumers such as the system configuration and the prosumer
preferences, and the prosumers would suffer from privacy leakage. It should be stressed
that the proposed method can capture the complex prosumer responses to the prices
without the detailed privacy information of the prosumers owing to the model-free DRL
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approach.

6.2 Future Work
The works presented in this dissertation will be able to extend in several directions.

Uncertainty-aware techniques for operational planning

In Chapter 2, a battery degradation-aware operational planning method for DERs on the
demand side has been proposed. The proposed method is solved with the deterministic
scenario; however, demand and renewable generation are often affected by stochastic
phenomena like abnormal weather conditions. To accurately estimate and design the
system performance, it is quite important to deal with this uncertainty even in the plan-
ning stage. Therefore, one direction for future work is to develop an uncertainty-aware
operational planning method incorporating the uncertainty consideration using stochas-
tic and robust optimization paradigm [177].

Dynamic workload-based reliability improvement of battery system

In Chapter 2, the hourly load profiles were assumed, which are relatively static in
change. Thus, the battery degradation addressed in this work is based on the slow
and static case. However, battery reliability with respect to degradation and module
temperature change is also affected by a more dynamic workload that rapidly changes
in minute levels. Hence, another future work is to achieve a reliability improvement of
battery systems in the face of dynamic workloads even in the planning phase.

Development of semi-fine-grained time scale for battery scheduling improvement

The two-time scale framework proposed in Chapter 3 does not adequately consider the
impact of workload-dependent battery dynamics, including battery degradation and the
complex SOC changes [178,179]. Moreover, the current two-time scales do not fit to in-
corporate them because of the unmatched planning period and time resolution with that
battery dynamics. To address this issue, the fine-grained time scale will be divided into
two scales: (1) a fine-grained (short-term) time scale with a 15-30 minute period and
1-second resolution to maintain photovoltaic (PV) forecasting accuracy and compensate
for PV fluctuations, which is the same as the current one, and (2) a semi-fine-grained
(mid-term) time scale with a detailed battery model to improve solution quality in the
battery-related part. This mid-term time scale will have a 1-3 hour period and one or
a few minutes of time resolution. Finally, the framework will have three-time scales:
coarse-grained, semi-fine-grained, and fine-grained time scales, enabling reducing com-
putational complexity while improving solution quality. On the other hand, splitting the
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problem may raise another challenge: The mid-term optimization problem requires mid-
term PV and demand forecasting techniques that this dissertation has not investigated.
The further development of the multi-time scale structure and new forecasting approach
is an important future direction.

Many-objective optimization for real-time operation

In Chapter 3 and 4, the real-time operation method for the EMS has been proposed
to minimize electricity costs and maximize thermal comfort. In the real world, many
different requirements exist, which include reducing carbon footprints, maximizing the
self-consumption ratio of renewable generation, and maximizing service quality of EV
transportation and appliance operation, etc. These objectives sometimes conflict with
each other, and users may compromise with others to improve some metric. Generally,
optimization problems with more than three or four objectives are called many-objective
optimization, which is a kind of multi-objective optimization [180]. In the context of
multi-objective optimization, the Pareto front that shows a set of effective solutions
should be explored and constructed so that the users can choose their preferable solution.
Thus, another future direction is to develop many-objective optimization that involves
more than three objective terms. The construction method for the Pareto front in the
real-time operation phase should be investigated.

Introduction of other types of DERs

Another important future work for Chapter 3 and 4 is introducing other DERs. Cur-
rently, the proposed framework in these chapters considers PV generation and directly
optimizes battery systems, shiftable appliance schedules, and HVAC systems. However,
other DERs such as wind generation, electric vehicles (EVs), and so on, are implicitly
introduced to the framework as a part of energy profiles. To further enhance energy flex-
ibility on demand sides, introducing more DERs should be explicitly considered with
their different characteristics in the optimization.

Improvement of thermal modeling

In Chapter 4, adaptive temperature set points were estimated based on a linear regression
model for Fanger’s comfort indices. However, in practical cases, there is a gap between
Fanger’s indices and actual thermal comfort, i.e., comfortable indoor temperature es-
timated by Fanger’s model is often far from optimal indoor temperature. Therefore,
one future work will reflect the preferences of occupants based on collected informa-
tion such as occupancy votes and sensing information in actual buildings. On the other
hand, this work made a simple assumption on the HVAC system, e.g., the cost of perfor-
mance (COP) is set to constant, while it is nonlinear. To capture the realistic behavior of
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HVAC systems and optimize their operation effectively, an accurate HVAC model such
as physics-based and data-driven models should be integrated into the framework.

Distributed energy management for multiple buildings

Chapter 4 has investigated the electrical and thermal energy management framework.
The proposed method is limited to single HVAC scheduling mathematically as an ap-
proximation of the whole building’s HVAC management. However, the actual building
has multiple HVAC systems corresponding to multiple rooms with different thermal pa-
rameters and occupancy profiles. Ignoring these heterogeneities in HVAC scheduling
is nonsense. Hence, distributed optimization approach for multiple HVAC systems and
buildings considering their heterogeneous conditions should be developed in the future.

Fairness consideration in dynamic pricing

Chapter 5 has proposed the dynamic pricing and battery scheduling strategy for the
aggregator, and the proposed strategy decides the retail electricity prices for each pro-
sumer. In some cases, the proposed strategy may offer higher prices to one prosumer
than others. However, if the prosumer does not accept the pricing, such unfair pric-
ing may cause contract cancellation of the prosumer. Thus, one of the future works is
to investigate a dynamic pricing scheme that takes fairness to prosumers into account.
Moreover, the scenario where multiple aggregators and prosumers can choose prefer-
able contracts should be investigated.

Incentive-based DR strategy

Chapter 5 has focused on a price-based DR program. Meanwhile, an incentive-based
DR is also a promising way to encourage the demand side to change its load patterns.
For such incentive-based DR programs, an aggregator contracts with the demand-side
prosumer. The main advantage of the incentive-based DR program is to be able to easily
estimate the amount of flexibility since the DSF exploitation is based on the contract
and the request signals. In future work, a new strategy that integrates price-based and
incentive-based DR programs should be investigated to maximize the exploitation of
DSF.

Integration of different approaches for three questions towards holistic approach

Three research questions posed in Section 1.3 are closely related to each other. How-
ever, all approaches for these questions, shown in this dissertation, are independent.
The important future work is to integrate them towards the holistic approach cover-
ing operational planning, real-time operation, and DR programs. To do so, the main
challenge in the integration is how to deal with the trade-off relationship between their
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performance. For example, the proposed method in the planning phase can obtain the
long-term battery schedule to reduce battery degradation. This schedule can be used
as reference-working points in the real-time operation stage. However, active battery
degradation control leads to strict battery charge/discharge limitations and will degrade
electricity costs in the real-time operation stage. On the other hand, for example, de-
mand response (DR) programs and demand-side controls (planning and real-time op-
eration) interact with each other. Once the behavior and solution of the demand-side
energy management change, the optimal DR program will also be different. In addition,
the DR programs affect all entity’s criteria, i.e., the electricity costs and preferences for
the demand side, the profitability of the aggregator, and the grid stabilization for the
supply side. These criteria generally have a trade-off relationship, and finding a reason-
able compromise among all entities is difficult. Hence, a methodology to integrate the
results shown in this dissertation while balancing their trade-off relationship should be
investigated in the future.
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