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内容梗概

計算機資源の発展やデジタルトランスフォーメーションの進展に伴い，多種多様
なデータが蓄積されその利活用が進んでいる．これまで管理されなかった事象まで
扱うことができるようになり，データの量だけでなく構造の複雑さも増している．
それらデータを利活用するトレンドと同時に，一個人からすると知られたくないよ
うなデータ，つまりパーソナルデータ [8]が含まれることも増えていることから，
プライバシ保護への配慮や流出・濫用を防ぐための規則の遵守も求められている．
これらの背景から，本研究では複雑なスキーマを持つ大規模データの効率的な処理
とプライバシ保護に焦点を当てる．
まず複雑なスキーマを持つ大規模データの処理に対応するという観点では，高速
化が必要となる．これには大きく分けて 2つのアプローチが考えられ，いずれかま
たは両方利用できることが望ましい．1つは既存のデータ処理技術を高速化するア
プローチである．ユーザから見ると変更を加えることなく高速になり，より大きな
データを扱えるようになるという点で有益である．もう 1つは処理結果の厳密性を
捨てる代わりに前者以上の高速化をするアプローチである．近似的な処理結果にな
るものの，厳密性が不要なユースケースであればより一層の高速化を期待できる．
次にパーソナルデータの処理という観点では，処理結果から個人の特定につながる
情報が得られないようにする必要がある．巧妙な攻撃手段が増え，攻撃者がどのよ
うに処理結果を悪用するのかや外部知識を利用する可能性などを事前に想定するこ
とは難しいため，特定の設定によらないプライバシ保護が望ましい．
本研究ではこれらの背景を踏まえ，複雑なスキーマを持つ大規模データ処理の高
速化とプライバシ保護を実現するための 3つの要素技術を提案する．まず複雑なス
キーマを持つ大規模データの高速な処理に繋がるカーディナリティ推定と呼ばれ
る技術に注目し，(1) 高速で精度の高いカーディナリティ推定手法，(2) 複雑なス
キーマを持つ大規模データに対応するカーディナリティ推定手法に取り組む．ま
た，プライバシ保護として，厳密な指標である差分プライバシに注目し，(3) (1)
や (2) に適用可能な差分プライベート学習手法に取り組む．
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(1) では，データの分布を捉える深層学習技術に着目し，高速で精度の高いカー
ディナリティ推定手法を提案する．カーディナリティ推定とはデータベース内に
指定された条件を満たすデータが何件存在するかを推定するというタスクである．
カーディナリティ推定手法の改善により，既存のデータベースシステムはインター
フェースを変えることなくより高速な処理手段を選択できるようになる．また，
カーディナリティ推定は条件に一致する件数を近似的に求める処理と等価であり近
似的な処理のプリミティブとなることから，様々な近似的な処理の改善にもつなが
る．従来のカーディナリティ推定手法は実世界データにそぐわない仮定を置いてい
るため精度が低いことが知られている．これを解決するため深層学習を利用した手
法も提案されているが，人手によるパラメータ設定に依存している部分が大きく性
能が安定していない．提案手法では既存の深層学習を利用したカーディナリティ推
定手法とは異なり，クエリに応じた推論を行うことで安定した推論を実現する．実
験では提案手法が安定して性能が高く高速に動作することを確認した．

(2) では，データベースシステムでカーディナリティ推定を利用する際に特に処
理性能への影響が大きいと知られている，条件に結合を含むカーディナリティの推
定を改善する提案を行う．従来のカーディナリティ推定手法では，スキーマに存在
する全てのテーブルに跨るデータの分布を，1つの推定器で捉えるか，テーブル間
の相関に基づいた分割ごとの推定器で捉えることで結合を扱っている．しかしなが
ら，いずれのアプローチもスキーマの規模に対してスケールせず，推定精度の大幅
な低下やそもそも推定が困難になるといった問題がある．これに対し提案手法では
スキーマに定義された外部キー制約に基づいた分割ごとの推定器を用いることで，
大規模かつ複雑なスキーマを持つデータに対応するカーディナリティ推定を実現す
る．実験では既存手法が動作しないような大規模なスキーマを持つベンチマークで
動作し，更に推定性能が高いことを確認した．また，データベースシステムへの応
用を想定したときに性能向上への寄与があることも確認した．

(3) では，(1) (2) で用いるような深層学習手法に対して，手法の有用性低下が少
なく差分プライバシを満たすことができる手法を提案する．差分プライバシとは，
k-匿名化のように事前に攻撃パターンを想定するのではなく，識別困難性から，任
意の背景知識を持つ攻撃者の任意の処理に対して安全性を担保する指標である．従
来の手法では差分プライバシを満たすことにより安全性を担保する一方で，深層学
習手法自体の有用性，例えば分類器であれば分類性能が大きく低下してしまうとい
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う問題がある．提案手法ではニューラルネットワーク内の大域的な冗長性と局所的
な冗長性の両方を活用することで，安全性を下げることなく有用性の高い学習を実
現する．実験では，様々な深層学習モデル・タスクで差分プライバシを満たした有
用性の高い学習となることを確認した．また，(1) (2) のようなカーディナリティ
推定手法に対しても有効であることを確認した．
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第 1章 序論

1.1 研究の背景と目的

様々な物事・事象が電子的なデータとして記録されるようになっている．例えば
紙の台帳で記録されていた売上情報が電子的に保存されたり，一人一台持ち歩くこ
とが当たり前になったスマートフォンでは 24時間位置情報をトラッキングできる．
これらのデータは量が増加しているだけでなく，売上情報であれば顧客情報や商品
情報と，スマートフォンの位置情報であれば訪問した店舗や出会った人というよう
に，関連付けられるデータも多様になっている．複数の関連付けられたデータは有
益な情報を含むことがあり，その有効活用も進んでいる [9, 10,11]．
しかしながら，データが大規模で関係性が複雑な場合やスマートフォンの位置情
報のような個人にまつわる開示が望ましくないデータ，いわゆるパーソナルデータ
を含む場合などは様々な考慮が必要である [12]．大規模で関係性が複雑なデータは
処理コストが高く，従来のデータベースシステムでは捌ききれないことや扱えたと
しても実用に耐え難い処理速度となってしまうことがある．この際より多くの計算
機資源を投入して解決することが考えられるが，当然コストがかかるため，データ
処理自体を改善することが望まれる．また，パーソナルデータを含む場合は相応の
プライバシ保護が必要となる．様々な箇所に個人にまつわる情報が表れるように
なったこともあり，管理者はプライバシを厳格に守るように要求されている．法令
として整備されている事例だけでも，日本における個人情報保護法1），EUにおけ
る GDPR2），米国における HIPAA3）や GLBA4）など，国や対象の情報の種類によっ
て様々である．

1） https://elaws.e-gov.go.jp/document?lawid=415AC0000000057
2） https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
3） https://www.govinfo.gov/link/plaw/104/public/191?link-type=pdf&.pdf
4） https://www.govinfo.gov/content/pkg/PLAW-106publ102/pdf/PLAW-106publ102.pdf

1
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これらの背景を踏まえ，本研究では大規模かつ複雑なスキーマを持つデータの効
率的な処理とプライバシ保護に取り組む．なお，本研究では特に SQLを通して行
われるデータ処理に焦点を当てる．

1.2 研究目的に対するアプローチ

本研究でデータ処理を改善するために取り組む要素は 2つに大別できる．1つは
高速化，もう 1つはプライバシ保護である．本節ではそれぞれのアプローチについ
て述べる．

1.2.1 高速化
データ処理の高速化には，既存の処理を高速化するアプローチと解の厳密性を捨
てて高速化するアプローチがある．
前者の場合，既存のデータベースシステム（データ処理システム）のコンポーネ
ント単位で改善することで，ユーザの入出力を変えることなく高速化が可能であ
る．実際の方法としては，例えばハードウェアを高性能なものに置き換える，処理
を並列・分散環境で行うようにする，といったことが考えられる．その中でも多く
のデータベースシステムに共通するものとして，クエリオプティマイザを改善する
ことが挙げられる．クエリオプティマイザとは，与えられた論理的なクエリをどの
ように処理するか，いわゆる実行プランを決定するコンポーネントであり，この実
行プランの良し悪しによって実行性能は大きく上下する．そしてクエリオプティマ
イザの改善はカーディナリティ推定と呼ばれるモジュールの改善が効果的であるこ
とが知られている [13]．ここでカーディナリティ推定とは，指定された条件を満た
すデータがデータベース内に何件存在するかを推定するというタスクである．クエ
リオプティマイザではこの推定を元に実行コストの低いと推測される実行プランを
選択する．
一方後者の場合，解の厳密性と処理速度のバランスの中で高速化を図ることとな
る．ここで近似的な処理のうち，条件を満たす件数を取得する処理（近似カウント
クエリ処理）を考えると，これはカーディナリティ推定と等価であることがわか
る．またこの近似カウントクエリ処理は，様々な近似的な処理のプリミティブとし
て利用できる．つまり，近似的な処理を改善するためにはカーディナリティ推定の
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改善を行えば良いということがわかる．
どちらのアプローチでもカーディナリティ推定の改善が重要であることから，本
研究ではカーディナリティ推定の改善を通して上記 2つのアプローチの高速化を
図る．

1.2.2 プライバシ保護
プライバシ保護を行う場合，どの程度安全性を保証する必要があるのかは自明で
はない [14]．そもそも安全性の指標は一意ではなく，状況に応じて使い分けられて
いる．広く知られている一例として k-匿名性があげられる．k-匿名性とは，単独も
しくは組み合わせることで個人の特定につながる属性の要素が共通しているレコー
ドをグループ化したときに，すべてのグループが少なくとも k件以上になっている
という性質である [15]．これにより，レコード集合全体から個人を特定しようとし
ても k件未満に絞り込まれることがない．k-匿名性を満たすようにデータを加工す
る処理を k-匿名化という．確かにある個人を k人から特定することはできないが，
背景知識や複数の問い合わせ結果を組み合わせることでプライバシが開示されてし
まうことがある [16]．攻撃者がどのように処理結果を悪用するのかや外部知識を利
用する可能性などを事前に想定することは難しいため，特定の設定によらないプラ
イバシ保護が望ましい．そのような性質を持つ安全性の指標として差分プライバ
シ [17]が知られており，GDPRへの活用も検討されている [18]．差分プライバシと
は，一定程度の識別困難性を保証することによって安全性を担保する指標である．
データベース D があるとし，そこに含まれているある 1つのレコード t だけ取り
除いたデータベース D′ を仮定する．D′ にはレコード t が含まれていないため，t

に関するプライバシの開示は起き得ない．このときこの 2つのデータベース D, D′

に対する問い合わせ結果が識別困難であれば，t に関するプライバシが保護され安
全といえるという仕組みである．本研究で扱う近似カウントクエリ処理では様々な
問い合わせを受け付ける可能性があるため，任意の攻撃に対して安全性を保証でき
る差分プライバシに焦点を当てる．
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1.3 解決すべき課題

前節で見たように，本研究では高速化とプライバシ保護という 2つの観点があ
り，推定性能と速度を両立したカーディナリティ推定手法とそこに併用可能な差分
プライバシを満たす技術の提案を目指している．本節ではそれぞれの観点における
既存手法の問題点について述べる．

1.3.1 カーディナリティ推定における推定性能と速度の両立
ここでは従来から利用されているカーディナリティ推定手法の課題と近年提案さ
れている機械学習を利用したカーディナリティ推定手法の課題を説明する．従来の
データベースシステムでは，属性ごとに独立したヒストグラムを利用してカーディ
ナリティ推定を行うことが一般的である [19]．実世界データであれば複数の属性間
に相関があるため，複数の属性に跨るヒストグラムでないと正確な推定はできな
い．そのため，属性ごとに独立したヒストグラムによる推定はしばしば不正確なも
のとなる [13]．複数の属性を組み合わせたヒストグラムを保持することも考えられ
るが，全ての組み合わせを保持するは容量や更新コストの高さから困難である．
この問題を解決するため，様々なカーディナリティ推定手法が提案されてい
る [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]．近年，この中でも機械学習を利用した手法
が高い推定性能を報告している．しかしながら，例えばMSCN [28, 29]は学習のた
めのラベル取得コストが高い，Naru [23]は基礎性能は高いが性能がデータセット
製作者に依存する，NeuroCard [24]は問い合わせ対象のテーブルが少ないと性能が
低い，DeepDB [25]は事前計算コストとメモリ消費量が大きいといったような課題
が残る．Naru，NeuroCardは推定性能が高いことがあるものの，経験則に依存して
いる箇所があり性能が不安定である．MSCN，NeuroCard，DeepDBはスキーマサ
イズに対して何らかのスケールしない問題を抱えている．そのため，大規模スキー
マでの利用を考慮した場合，安定した推定性能と速度を両立しつつ，スキーマサイ
ズに対してスケールするカーディナリティ推定手法が必要とされている．
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1.3.2 差分プライバシ
ここでは前述の深層学習技術を対象とした場合に差分プライバシを満たすための
手法の課題を説明する．深層学習で差分プライバシを満たすための手法としては，
DPSGD [31]が広く知られている．DPSGDはニューラルネットワークを確率的勾
配降下法で学習時する際に，勾配を一定のノルムにクリッピングした上で必要なプ
ライバシ強度に応じたノイズを勾配に加算する．これにより，学習結果として得ら
れるモデルは，その構造に依らず任意の推論結果が差分プライバシを満たす．差分
プライバシによる安全性が保証される一方で勾配に変更を加えるため，モデル本来
の有用性，例えば分類モデルであれば分類性能が低下するというトレードオフが存
在する．この有用性の低下はしばしば実用上の問題となることから，安全性を下げ
ることなく有用性を改善する提案が行われている [32, 33]．いずれの手法もニュー
ラルネットワークの冗長性に基づき更新対象のパラメータ数を減らすことで，勾配
のクリッピングとノイズ加算の影響を緩和し有用性の向上を図っている．しかしな
がら，対象の処理が限定的であったりパラメータ数削減に利用するニューラルネッ
トワークの冗長性が部分的であることから，有用性の低下は未だに大きい．

1.4 提案技術の概要

以上のような課題を解決するため，本研究では大規模かつ複雑なスキーマを持つ
データ処理の高速化とプライバシ保護を実現するための 3つの要素技術を提案す
る．第 2章，第 3章にて高速化の鍵となるカーディナリティ推定手法を，第 4章に
て第 2章，第 3章の手法に適用可能な差分プライベート学習手法を提案する．以下
に各提案の概要を示す．

1.4.1 高速で安定したカーディナリティ推定手法（第 2章）
第 2章では，データの分布を捉える深層学習技術に着目し，高速で精度の高い
カーディナリティ推定手法を提案することでデータ処理の高速化を図る．
データベースシステムにおいて，カーディナリティ推定はクエリ応答性能に大き
な影響力を持つ重要な要素技術である．既存のデータベースシステムでは属性間の
依存関係を考慮しないため，カーディナリティ推定の性能を悪化させる原因となっ

5



ている [13]．近年，機械学習による属性間の依存関係を考慮したカーディナリティ
推定技術が提案されているが，学習時の属性順序に依存して推定性能が大きく左右
され推論速度も遅いという問題がある [23, 24]．
そこで第 2章では，深層学習技術の 1つである Denoising Autoencoder [34, 35]で
属性間の依存関係を捉えて密度推定器として学習し，推論時に与えられたクエリに
応じたカーディナリティ推定を行う手法を提案する．既存技術と異なり属性順序に
依存しないため，少ない推論ステップ数で安定したカーディナリティ推定が可能で
ある．
実世界データを用いた複数のベンチマークにおいて，既存手法のピーク性能と
同程度の性能を安定して達成した上で 2～3倍の高速化に成功した．特に一般的に
データベースシステムが運用されていることを想定した，GPUのようなアクセラ
レータを利用しない環境にて，高速化できることが確認された．また，クエリオプ
ティマイザへの応用を想定した実験を行ったところ，想定されるコストの大きいク
エリを中心に既存のデータベースシステムと比較して改善が確認された．

1.4.2 スケーラブルな結合カーディナリティ推定手法（第 3章）
第 3章では，スキーマに基づいた複数の密度推定器を利用した，少なくとも 1つ
の結合操作を含むクエリのカーディナリティ推定手法（結合カーディナリティ推定
手法）を提案する．推定精度と速度を両立することにより，クエリオプティマイザ
の改善を通したデータ処理の高速化と複雑な近似カウントクエリ処理の性能向上を
図る．
データベースシステムのクエリオプティマイザにおいて，結合順序最適化は特に
重要であることが知られている．実世界データには大きな偏りが含まれるため，適
切な結合順序を選択できないと巨大な中間テーブルが発生しパフォーマンス低下を
引き起こす．この結合順序最適化は結合カーディナリティ推定の性能に強く依存す
る．しかしながら，ヒストグラムを利用した従来手法は結合時のテーブル間の相関
関係を捉えられないため性能が低く，近年提案されている機械学習を利用した手法
は結合の数が増えると推論性能が大きく低下する，計算コストやメモリ消費量が大
きいといった理由でうまく機能しない．
そこで第 3章では，既存手法が機能しないような大規模なスキーマを持つ環境で
も利用できる結合カーディナリティ推定手法を提案する．提案手法は外部キー制約

6



に基づき複数のスキーマとして密度推定器を利用することで，スキーマが複雑な環
境でも推定精度と速度を両立する．一般的に，複数の密度推定器を利用すると推定
器ごとに推論が独立して性能が低下してしまうが，各密度推定器の推論結果を別の
推論器の条件として利用することで高い推定精度を実現する．
実世界データセットを用いた複数のベンチマークにて，既存手法が機能しないも
しくは性能が低下するような設定においても，構築コストと推定性能の両立に成功
した．また，クエリオプティマイザへの応用を想定した実験を行ったところ，既存
のデータベースシステムと比較してクエリ処理を高速化できることが確認された．

1.4.3 カーディナリティ推定と差分プライバシ（第 4章）
第 4章では，第 2章や第 3章で用いるような深層学習手法に対して，有用性と差
分プライバシによる安全性を両立した学習手法を提案する．
既存の DPSGDを改善する手法は，対象の処理が限定的であったり，更新対象パ
ラメータ数の削減も部分的なものだった．そこで第 4章では，ニューラルネット
ワークパラメータの 2つの冗長性に注目し，差分プライバシによる安全性と高い有
用性を両立した学習手法を提案する．パラメータを行列として扱い，大域的冗長性
を捉えるために低ランク近似を，局所的冗長性を捉えるためにスパース化を行う．
既存手法とは異なり，ニューラルネットワークの構造と性質を利用することで低ラ
ンク近似とスパース化の併用を実現している．これらにより更新対象パラメーラ数
が削減され，安全性を落とすことなく勾配クリッピングやノイズ加算の影響を軽減
して有用性の高い学習が可能となる．
第 2章と第 3章で提案したカーディナリティ推定に適用した評価を行ったとこ
ろ，差分プライバシを満たした上で有用なカーディナリティ推定ができることを確
認した．その他にも，タスクとして自然言語処理や画像処理，モデル構造として畳
み込み層や Attention層を持つなど，様々な環境を想定した評価を行ったところ，
多くのケースで提案手法が安全性を落とすことなく有用性を改善することを確認
した．
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1.5 本論文の構成

本章以降の内容は以下の通りである．大規模スキーマでの高速なカーディナリ
ティ推定を実現するための提案手法として，第 2章でコアとなる高速で精度の高い
カーディナリティ推定手法について，第 3章で結合カーディナリティ推定をスキー
マが大規模な環境で効率的に行う手法について詳説する．更に第 2章，第 3章で提
案した手法をパーソナルデータを扱う環境で利用できるようにするための提案手法
として，第 4章で有用性の高い差分プライベート深層学習手法について詳説する．
最後に第 5章では本研究の成果をまとめるとともに，今後の研究課題について述
べる．
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第 2章 高速で安定したカーディナリ
ティ推定

2.1 はじめに

第 1章で述べた通り，データの利活用が広まるに連れてデータベースシステムに
おける問い合わせ処理の高速化がより求められている．そのため，クエリオプティ
マイザや近似クエリ処理に利用されるカーディナリティ推定技術は重要である．
データベース内にレコードが確率的に分布しているという仮定のも
と，カーディナリティ推定は様々なアプローチで長年研究されている
が [20, 21, 22, 23, 24, 25, 26, 28, 29, 36, 37]，実用されている手法では真の値から 104 か
ら 108 倍 といったオーダーで推論エラーが発生することがある．一例として，そ
のエラーを含むカーディナリティを利用したクエリオプティマイザによって選択さ
れた実行プランは，正確なカーディナリティを利用した場合と比較してクエリ応答
性能で 100倍以上性能低下することもあると知られている [13]．これは誤ったカー
ディナリティによりクエリオプティマイザが結合順序やインデックス選択の最適化
に失敗してしまうことに起因する．従来の手法では各属性ごとに独立したヒストグ
ラムを統計情報として管理しており，単一属性に対する選択演算のカーディナリ
ティ推定は正確度が高いことが知られている．しかしながら，複数の属性に跨る選
択演算や結合演算に関しては，各属性が独立であるという仮定が実際のデータと乖
離しており，大きな推論のエラーとして表面化する．例えば OLAPのようなコス
トの高い分析的クエリが対象となるクエリオプティマイザへの応用の場合，推定性
能のクエリ処理全体性能への影響は大きいため，事前処理にコストをかけてもカー
ディナリティ推定性能を向上させることが求められている．
近年では属性間の相関関係を捉えられず推定エラーが発生してしまうという
課題を解決すべく，機械学習を用いたカーディナリティ推定手法が提案されてい
る [21, 22, 23, 24, 25, 26, 28, 29, 37]．これらは 2つのアプローチに大別される．1つは
ワークロードを学習することでカーディナリティ推定を行う手法である [28,29,37]．
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ワークロードが既知である場合や未知の場合でもランダムに生成されたワークロー
ドを利用することで従来の手法と比較して高い性能を達成している．しかしなが
ら，性能がワークロードに強く依存するため，未知のクエリに弱い・生成したワー
クロードのラベル取得コストが高く学習に時間がかかる・データベースが更新に
よって変化すると再学習が必要となるといった課題がある．もう 1つのアプローチ
としてデータを学習するものが挙げられる [23, 24, 25, 26]．自己回帰モデル [38, 39]
や Sum-Product Networks [26, 40]を用い，学習時にデータの分布を捉え推論時に述
語を適用することで従来の手法と比較して高い性能を達成している．また，データ
のみを学習に利用することから，事前にワークロードを必要としないという長所も
挙げられる．しかしながら，推論コストが高い，経験則に基づくパラメータに性能
が左右されてしまうといった課題がある．例えば自己回帰モデルを利用した手法で
あれば，学習時に固定されてしまう推論可能な属性の順序によって真の値から 102

から 103倍の推論エラーが発生する程度に性能が不安定であることが報告されてい
る [23]．事前に属性間の相互情報量を算出し推論性能の高い順序を決定することが
検討されているが，データセットに定義された順序（正順）に及ばないと報告され
ている．正順にはキーとなるような属性を先にしやすいというバイアスにより推論
性能が高くなる傾向にあるという推察が行われている [23]．しかしながらこの順序
は人手に依るものであり，全てのデータセットで成立するものではないという問題
がある．またこのモデルは推論時に多数のサンプルが必要とするため，一般的な
データベースシステム環境にはない GPUのようなアクセラレータが必要となる．
その他の選択肢として，多数の順序を同時に扱う自己回帰モデル [38, 41, 42]の利用
も考えられるが，いずれの手法も学習・推論コストの高さや扱える順序に制限があ
ることから，多数の属性を扱うカーディナリティ推定への応用は行われていない．
本章では高速で安定したカーディナリティ推定手法の提案を行う．特にコストの
高い分析的クエリを対象としたクエリオプティマイザや近似クエリ処理への応用を
目的とする．Denoising Autoencoder (DAE) の密度推定としての性質を用いてデー
タを学習することで，属性ごとの分布だけでなく全テーブルの全属性間の相関関係
を捉えたカーディナリティ推定を行う．学習時に推論できる属性の順序が固定され
てしまう自己回帰モデルとは異なり，DAEは全属性を並列に扱うため任意の順序
で推論できる．これにより，自己回帰モデルで課題だった推論する属性の順序によ
る不安定性のないカーディナリティ推定が実現される．また，推論を DAEの特徴
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を活用した動的な順序にすることで，サンプルサイズが小さい場合でも正確度の高
い推定を可能とする．これにより，GPUなしの環境でも推論時の応答速度がクエ
リ処理時間全体と比較して十分に高速となる．
本章の主な貢献点は以下の通りである．

•クエリオプティマイザや近似クエリ処理に応用できる，高速で安定したカー
ディナリティ推定手法を提案する．Denoising Autoencoderを利用することで，
自己回帰モデルで課題とされていた順序による不安定性がなく，安定した推定
性能を示す．

•クエリに含まれる情報を利用した動的な順序（推論時ドメイン考慮順）での推
論を提案する．これにより，高い推定性能を保ったままサンプルサイズを小さ
く，つまり高速な推論を可能とする．特に PostgreSQLのようなデータベース
システムで一般的に利用されている（GPUのようなアクセラレータのない）
CPU環境ではサンプルサイズ削減による高速化への寄与が大きく，カーディ
ナリティ推定を複数回呼び出す必要があるクエリオプティマイザやカーディナ
リティ推定の速度が直に処理性能となる近似カウントクエリ処理への応用が効
果的なものとなる．

•複数の実世界データを用いて，複数の最新のカーディナリティ推定手法との比
較を交えた評価を報告する（2.4.1項，2.4.3項）．また，カーディナリティ推定
の応用先の 1つであるクエリオプティマイザを利用した，実践的な評価も報告
する（2.4.2項）．

2.2節でカーディナリティ推定の定式化と DAEについて説明を行い 2.3節で提案
手法を詳説する．2.4節で提案手法の評価を行い 2.5節で既存研究との関連につい
て述べ，2.6節で本章をまとめる．

2.2 事前準備

本章以降で利用する主なシンボルの定義を表 2.1に示す．
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表 2.1: 本章以降で利用する主なシンボル

シンボル 定義・概要
A 属性．
V v ∈ V．頂点集合．スキーマグラフでは v は

テーブルを表し，T とも表記する．
E (u, v, c) ∈ E, c := (cu, cv)．頂点 u と v を結ぶラ

ベル c 付き有向辺集合．スキーマグラフでは
テーブル uと vが u.cu = v.cv という等号条件で
一対多のリレーションシップにあるという外部
キー制約を表す．

G G := (V, E)．頂点集合 V と辺集合 E から構成
される辺ラベル付き有向非巡回多重グラフ．
データベースのスキーマを表す．簡単のため，
ループで表される自己結合はないものとする．

GGLB GGLB := (VGLB, EGLB)．特にデータベース全体
のスキーマを表す辺ラベル付き有向非巡回多重
グラフ．

GQ クエリ Qが対象とするテーブルとリレーショ
ンシップを表す有向非巡回グラフ．無向グラ
フとして見たときに連結である．また，データ
ベース全体のスキーマグラフの部分グラフ，つ
まり GQ ⊆ GGLB である．本章では補足がない
限り有向木である．
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シンボル 定義・概要
RQ 述語の条件．RQ(A) は，属性 A のドメインの

うちクエリ Q の述語の条件を満たす範囲を
表す．RQ(A) ⊆ dom(A) である．述語が指定
されていない場合は元のドメインと等しく，
RQ(A) = dom(A)となる．Qの全ての述語の条
件を満たす範囲は ∏

A RQ(A)と表記でき，超直
方体である．Qが明らかな場合は R と表記す
る．

Q Q := (GQ, RQ)．クエリであり，クエリグラフ
GQと述語の条件 RQ(A)から構成される．

dom(A) 属性 Aのドメイン．
Je 頂点集合 eに対応するテーブルを完全外部結合

したテーブル．
NT 属性のうち，特にテーブル T のマーカーを示す

もの．テーブルマーカーについては 2.2.2項で
説明する．

F 属性のうち，特に Fanout を示すもの．Fanout
については 2.2.2項で説明する．

MT テーブル T の密度推定器．
PT (a1 ∈ R(A1), . . . , an ∈ R(An)) テーブル T で属性 A1, . . . , Anの条件を満たす同

時確率．対象が明らかな場合には T を省略し
て P (a1 ∈ R(A1), . . . , an ∈ R(An))と表記する．

C(Q) クエリ Qに基づくカーディナリティ．
S(Q) クエリ Qに基づくセレクティビティ．
·̂ 機械学習モデルや統計情報などから得られた推

定値．
1c 条件 cを満たす場合は 1，満たさない場合は 0

となる指示関数．
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2.2.1 単一テーブルに対するカーディナリティ推定の定式化
カーディナリティ推定はコストベースオプティマイザで実行プランを決定するた
めのコスト見積もりに利用される技術である．与えられた述語の条件を満たすレ
コード群のカーディナリティの推定を行う．ここで，カーディナリティが総行数に
対する述語の条件を満たす期待値として表せることから，述語の条件を満たす同時
確率に注目する．属性集合を A = {A1, . . . , An} ，タプル集合で表されるテーブル
を T = {t1, . . . , tm} とし，条件となるクエリを Qとする1）．クエリ Qを満たすセレ
クティビティ S(Q) は条件を満たすタプルの割合として以下のように表される．

S(Q) = |{t ∈ T | ∧A∈A t.A ∈ R(A)}|
|T |

タプル t は属性 {A1, . . . , An} の要素 {a1 ∈ A1, . . . , an ∈ An} の組み合わせで構成さ
れることから，その同時確率を P (a1, . . . , an) とすると，

S(Q) =
∑

a1∈A1

· · ·
∑

an∈An


∏

A∈A

1a∈R(A)

PT (A1 = a1, . . . , An = an)


とも表せる．ただし式から分かるように，この組み合わせは非常に多くな
るため直接扱うことは難しい．そのため，各属性が独立であるという仮定
PT (A1, . . . , An) ≈ ∏

n PT (Ai) をおくことで，属性ごとのヒストグラムからカーディ
ナリティを推定する手法が広く利用されている．しかしながら，各属性が独立であ
るという仮定は現実世界データには不適切であり，エラーの主たる原因となってい
る [13]．
本研究ではそのような実世界データにそぐわない仮定を用いずに厳密な変換のみ
を扱う．同時確率は乗法定理により，

P (A1, . . . , An) = P (A1)P (A2 | A1)

· · ·P (An | An−1, . . . , A1)

と展開できる．このとき条件付き確率は任意の属性の順序で等しくなる．ここから

1） ここでは単一テーブルのみを扱っているため，クエリグラフ GQ は無視する．
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セレクティビティは以下の形としても導ける．

S(Q) =
∑

a1∈A1

· · ·
∑

an∈An

∏
A∈A

1a∈R(A)

PT (A1 = a1, . . . , An = an) (2.1)

=

∑
a1∈A1

(((
1a1∈R(A1) × PT (A1 = a1)

) ∑
a2∈A2

(
1a2∈R(A2) × PT (A2 = a2 | A1 = a1)

))

· · ·
∑

an∈An

(
1an∈R(An) × PT (An = an | An−1 = an−1, · · · , A1 = a1)

))

(2.2)

こ こ で X の i 番 目 の 要 素 に 先 行 す る 要 素 を X<i と し た と き，∑
ai∈Ai

P (Ai = ai | A<i = a<i)は明らかに 1であり，∑ai∈Ai
1ai∈R(Ai)P (ai | A<i = a<i)

は [0, 1] の範囲を取るスカラー値となり R(Ai)で表される条件を満たす確率を示し
ている．これらからカーディナリティ Cは，

C(Q) = |T | · S(Q)

= |T |
∑

a1∈A1

· · ·
∑

an∈An

∏
A∈A

1a∈R(A)

PT (A1 = a1, . . . , An = an)

=
|T |

∑
a1∈A1

(((
1a1∈R(A1) × PT (A1 = a1)

) ∑
a2∈A2

(
1a2∈R(A2) × PT (A2 = a2 | A1 = a1)

))

· · ·
∑

an∈An

(
1an∈R(An) × PT (An = an | An−1 = an−1, · · · , A1 = a1)

))

と表せる．

2.2.2 複数テーブルへの拡張
データベース内に複数のテーブルが存在することはごく一般的であり，複数の
テーブルを対象としたカーディナリティ推定も必要とされる．しかしながら，テー
ブルが複数存在する場合は 2.2.1項で述べた定式化を適用できない．そこで，予め
データベース内のテーブルを外部キー制約に基づいて完全外部結合を取ったものを
仮想的な単一テーブル，つまりユニバーサルリレーションと見なすことで，テーブ
ルが複数存在する場合におけるカーディナリティ推定を実現する．ただし，ユニ
バーサルリレーションを利用したカーディナリティ推定を行うには追加で 2つ考慮
しなければならない点がある．1つはクエリに含まれないテーブルの影響を受けて
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しまうため直接カーディナリティの推論に利用できない点，もう 1つはユニバーサ
ルリレーションの実体化は避けなければならないという点である．

Yangらは，Hilprechtらの完全外部結合から内部結合を復元する手法 [25]と Zhao
らの Exact Weight Join Sampling [43]を組み合わせることによって，前述の 2つの
課題を解決したカーディナリティ推定手法を提案している [24]．学習はユニバーサ
ルリレーションでサンプリングされたタプルを利用する．推論はクエリに含まれる
テーブルのみに絞り込む条件を加え，更に，クエリに含まれないテーブルとの結合
による影響を打ち消す操作を行う．これらにより，ユニバーサルリレーションでの
適切なカーディナリティ推定を実現している．
具体的には，事前処理として，どのテーブル同士の結合を行うかをスキーマグラ
フとして定義する2）．そして仮想的な属性としてテーブルマーカー（NT）と Fanout
（FT）を追加する（式 2.3）．このとき n′ = |A′|とする．テーブルマーカーとは，当
該テーブルが各完全外部結合されたタプルに含まれているかを示す真偽値である．
もう 1つの Fanoutとは，あるテーブルのタプルをスキーマグラフに従って結合さ
せたときに対応する結合先テーブルのタプル数である．外部結合であるため，たと
え結合先テーブル内に対応するタプルが存在していない場合でも NULL が結合対
象となり必ず 1 以上の整数値となる．これらを利用してスキーマグラフのルート3）

から結合サンプリングを行う．このとき，結合後の分布に従ったサンプルとするた
め，Fanoutを重みとして結合対象のタプル選択を行う．これを復元ありサンプリ
ングとして必要な回数行い，得られたテーブルマーカーと Fanoutが付与されたユ
ニバーサルリレーションのタプル集合を学習に利用する．
推論時にはクエリに含まれないテーブルの影響を打ち消す 2つの操作を行う．ま
ず，クエリに含まれるテーブルと含まれないテーブルを判別する（式 2.4，式 2.5）．
クエリに含まれる結合に応じてテーブルのマーカーが真であることをクエリの条件
として追加する（式 2.6）．内部結合であれば両テーブルのマーカーが，外部結合で
あれば起点となるテーブルのマーカーが対象となる．これにより，クエリに含ま
れるテーブルが存在するタプルに絞り込まれる．加えて同時確率を推定する際に，
クエリに含まれないテーブルの Fanoutでダウンスケーリングを行い（式 2.7），式
2.1- 式 2.2と同じ展開を行う（式 2.8）．これにより，クエリに含まれないテーブル

2） 同じテーブルに対して異なる属性での結合を複数定義することも可能である．
3） ルートは任意の頂点で良い．
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との外部結合で増えたタプル数の影響が打ち消され，得られる確率分布がクエリに
含まれるテーブルのみに基づくものとなる．なお，式 2.7や式 2.8では，分子を条
件とした FT が必要である．

A′ =
∪

T ∈T

T.A ∪NT ∪ FT ) (2.3)

Tused = {T ∈ T | T ∈ VQ} (2.4)

Tnotused = {T ∈ T | T /∈ VQ} (2.5)

RQ
′ = RQ ∧

∧
T ∈Tused

NT is True (2.6)

Q′ = (RQ
′, GQ)

S(Q′) =
∑

a1∈A1 · · ·
∑

an′ ∈An′

(∏
A∈A′ 1a∈R(A)

)
PT (A1 = a1, . . . , An′ = an′)∏

T ∈Tnotused

FT

(2.7)

=

∑
a1∈A1

(((
1a1∈R(A1) × PT (A1 = a1)

)
∑

a2∈A2

(
1a2∈R(A2) × PT (A2 = a2 | A1 = a1)

))
· · ·∑an′ ∈An′

(
1an′ ∈R(An′ ) × PT (An′ = an′ | An′−1 = an′−1, · · · , A1 = a1)

))
∏

T ∈Tnotused

FT

(2.8)

2.2.3 DAE: Denoising Autoencoder

DAE [34, 35]とは，Autoencoderを拡張する形で提案されたモデルであり，入力
に何かしらのノイズを加えて学習を行う．特徴の 1つとして，生成モデルとしての
性質も持つことがあげられる．この特徴を活かした応用として，ノイズにマスクを
用いた自然言語処理の文章生成手法 [44, 45, 46]がある．これらの手法は，DAEと
は別に自然言語処理のために研究されていた自己回帰モデル [38,39]に DAEの発想
を取り入れたものである．自己回帰モデルでは推論時間が扱うシーケンス長に比例
する一方で，DAEを取り入れたモデル4）では推論が同時並列的に可能なため，文章
4） この場合，自己回帰モデルの対比として非自己回帰モデルとも呼ばれる．
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生成を高速に行えるという長所を持つ．具体的には，一部をマスクした単語シーケ
ンスを入力し，生成したい単語シーケンスを復元するように学習を行う．結果とし
て，単語シーケンスの一部を条件として入力することで残りの任意の単語を並列に
推論を可能なモデルとなる図 2.1．提案手法では，この単語シーケンスをタプルと
置き換えることでテーブル形式データ上のカーディナリティ推定を行う．より一般
的な視点では次のような違いを生む．自己回帰モデルの場合は学習時に順序が固定
されるため，例えば A1, . . . , An という順序で学習すると，推論可能な条件付き確率
分布は P (A1), P̂ (A2 | A1), . . . , P (An | An−1, . . . , A1) に限られるが，DAEの場合は任
意の条件付き確率分布を得られる．これにより，カーディナリティ推定では，任意
の順序で述語サブセットの推論を行いつつ結果を再利用した述語全体の推論も可能
となっている．

������ ������

(a) DAE（条件なしの推論）

������ ������

(b) DAE（A3 を条件とした推論）
������

(c) 自己回帰モデル

図 2.1: DAE（非自己回帰モデル）と自己回帰モデル．NULLはマスクあるいは入力
の初期値を表す．

主な実装として，自己回帰モデルの 1つである Transformer [39]をベースとした
モデルが挙げられる [46]．Self-Attention時のマスクを外すことによって DAEとし
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ての性質が実現される．

2.3 提案手法

提案手法では動的な順序での推論を行うため DAEを密度推定器として利用し，
述語の条件を満たす確率を推論することで，2.2節の式からカーディナリティ推定
を実現する．なお，非自己回帰的性質を持つ任意のモデルを利用可能であるが，本
章では構造が平易で速度面を重視した多層パーセプトロン (MLP) によるモデル
（図 2.2a）と Attentionによる高度な推論が可能な Transformer [39]をベースとした
モデル（図 2.2b）の 2つを取り扱う．提案手法はデータの分布のみが学習の対象で
ワークロードを事前に必要としないため，単一の学習済みモデルで任意クエリの
カーディナリティ推定が可能である．対象データベースに複数のテーブルが含まれ
る場合は， 2.2.2項で述べたように，全てのテーブルを完全外部結合したユニバー
サルリレーションとして見なすことで，結合を含むカーディナリティ推定も可能で
ある．
以降では，学習フェーズ，推論フェーズそれぞれについて説明する．

2.3.1 学習フェーズ
カーディナリティ推定に利用可能な DAEによる密度推定の学習について述べ
る．学習はデータセット全体またはデータセットからランダムサンプリングしたタ
プル単位で行われる．
具体的には，まず属性集合 Aからマスクする属性 Ã ∈ Ãとマスクしない属性

Ă ∈ Ăを選択する（ÃC = Ă）．その後，図 2.3 のようにテーブルからタプルを取り
出し，マスクしたタプルを入力，マスクしていないタプルをターゲットとする．そ
してマスクした属性として出力された確率分布 P̂ (Ã | Ă)とターゲット P (Ã | Ă)と
の交差エントロピーを算出し，その総和をマスク数 |Ã|でスケーリングしたものを
ロス Lとして学習に利用する（式 2.9）．タプルごとにマスクをランダムな数，ラ
ンダムな属性に選択することで，自己回帰モデルとは異なり，任意の属性を条件
とした任意の属性の確率分布を推論可能なモデルとなる．なおドメインが属性ご

5） Decoder部分のみを利用する．
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(a) MLPによる DAE
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(b) Transformerによる DAE5）

図 2.2: 提案手法で利用する DAE

とに異なることから，埋め込みは属性ごとに One-hotエンコーディングや Entity
Embeddings [47]を利用して行う．

L= − 1
|Ã|

∑
Ã∈Ã

∑
ã∈Ã

P (Ã = ã | Ă) log P̂ (Ã = ã | Ă) (2.9)

2.3.2 推論フェーズ
前節の学習で得られたモデルを利用してカーディナリティを推定する手法につい
て述べる．2.2.1項で述べたように，カーディナリティは述語を考慮した同時確率
と総タプル数の積と等価であることから，提案手法では条件付き確率からカーディ
ナリティを推定する．ここで ∑

ai∈Ai
P (Ai = ai | A<i = a<i) が常に 1であることに

注意すると，述語の対象となっていない属性の確率分布は求める必要がないことが
分かる．つまり，例えば A = {A1, . . . , An} , R(A1) ⊂ dom(A1)，R(A2) = dom(A2)，
R(A3) ⊂ dom(A3) であれば以下のように A1 と A3 に関する確率分布から同時確率
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図 2.3: カーディナリティ推定のための DAEの学習

が推定できる．

C(Q) = |T | · S(Q)

= |T |
∑

a1∈A1

∑
a2∈A2

∑
a3∈A3

∏
A∈A

1a∈R(A)

PT (A1 = a1, A2 = a2, A3 = a3)

=

|T |
∑

a1∈A1

(((
1a1∈R(A1) × PT (A1 = a1)

)
∑

a2∈A2

(
1a2∈R(A2) × PT (A2 = a2 | A1 = a1)

))
∑

a3∈A3

(
1a3∈R(A3) × PT (A3 = a3 | A2 = a2, A1 = a1)

))

=
|T |

∑
a1∈A1

(((
1a1∈R(A1) × PT (A1 = a1)

)
∑

a3∈A3

(
1a3∈R(A3) × PT (A3 = a3 | A1 = a1)

))

どのようにモデルを利用して確率を推論しカーディナリティを推定するかについ
て詳説する．提案手法では，自己回帰モデルを利用する先行研究である Naru [23]
で提案された Progressive Samplingを DAEに拡張する．この Progressive Sampling
はモンテカルロ法によるサンプリングを介した推定を行うことで，等号条件だけで
なく範囲条件を含むクエリのカーディナリティ推定を容易に可能とする．自己回帰
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モデルを利用した範囲条件の推論では，適合する全ての組み合わせ（範囲条件の直
積集合）を推論する必要があり，ドメインが広がると現実的ではなくなる．そこで
Progressive Samplingでは全ての組み合わせを推論するのではなく，適合する組み
合わせからランダムサンプルに基づいて推論を行いその平均を近似解として扱う．
このとき，条件を満たす範囲から一様にサンプルを選択するのではなく先行する推
論結果の分布に基づく選択を行うことで，より少ないサンプルサイズで真の値に近
づきやすくなる．

図 2.4: Progressive Samplingで A1, A2, A3 の順に推論を行う 1試行の例．薄い青色
がクエリによる範囲を，濃い青色が先行する属性でサンプルされた要素に基づく範

囲を示す．実際には推定された確率分布を重みとした範囲となる．

具体的には図 2.4のように，A2 のサンプリングでは先行する A1 = 7 というサ
ンプルを条件として推論した結果の分布を利用する．A1 = 7 ∧ 10.0 < A2 < 33.3 と
なるデータが存在しないデータセットと仮定した場合，クエリで指定された範囲
（A2 > 10.0）と比較してより狭い範囲（A2 > 33.3）を中心としたサンプリングとな
り，後続の A3 の推論が A1, A2 の分布に則したものとなる．なお，サンプルサイズ
は大数の法則に基づき大きくすれば真の値に近づくが推論コストが増えるハイパー
パラメータとなる．カーディナリティ推定の応答時間は推論コストと比例関係であ
るため，サンプルサイズは現実的な値にする必要がある．ここで，乗法定理による
同時確率の式展開に注目する．この式展開自体は厳密なものであるが，Progressive
Samplingでは順序によって性能が変化する．Progressive Samplingは先行する推論
結果をサンプリングし後続の推論に利用することから，式展開の順に依存した推論
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となっている．特に，正確度が低い属性の推論の先行は後続の推論のエラー原因と
なるため，対象となるクエリに応じてより性能が高くなる属性順を見つける必要が
ある．自己回帰モデルでは属性順が学習の段階で固定されるため事前に決定する必
要があるが，属性順候補は順列なので |A|! 通りと非常に多く，属性順毎に 1から
学習して適切な属性順を見つけることは困難である．
一方 DAEを利用する提案手法では任意の属性順で推論できる．この特徴を活か
して性能の高い推論を実現するため，狭いドメインのほうが推論が容易で精度が高
くなりやすいというヒューリスティックに基づき，与えられた述語を適用したとき
のドメインが狭い属性順（推論時ドメイン考慮順）で推論を行う（このヒューリス
ティックによる影響は 2.4.3項に示す）．Algorithm1に推論時のドメインサイズを
考慮したカーディナリティ推定アルゴリズムを示す．

表 2.2: Algorithm1で利用する関数の定義

関数名 定義
DrawSample(distA) 属性 Aの分布 distA から，分布を重みとしたサンプリン

グを行う．
Encode(a) 属性 Aの要素 aを埋め込む．One-hotベクトルや Entity

Embeddings [47]などが利用できる．
SortBy(A, key func) 属性集合Aを key funcに基づいて昇順に並べ替える．
Mean(a) 数値集合 aの平均値を計算する．
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Algorithm 1 DAEを利用したカーディナリティ推定アルゴリズム（推論時ドメイ
ン考慮順）
Input: Density Estimator M, Predicate ranges of query Q RQ, Attributes A, Universal relation

size |Juniv|
Output: Estimated cardinality ˆC(Q)

1: procedure Estimate N ▷ Sample size is N

2: procedure Estimate(M, RQ, AQ, Afanout)
3: Initialize inputs with nulls
4: ˆprob← 1.0
5: for A ∈ AQ do ▷ Estimate probabilities of predicates
6: ˆdistA ←M(inputs) ▷ Forward
7: ˆdist′

A ← { ˆdista ∗ (a ∈ RQ(A)) | a ∈ A} ▷ Filter distribution by RQ

8: ˆprob← ˆprob ∗
∑

a∈A
ˆdist′

a

9: â← DrawSample( ˆdist′
A)

10: inputs[A]← Encode(â)
11: end for
12: for A ∈ Afanout do ▷ Estimate fanouts
13: ˆdistA ←M(inputs) ▷ Forward
14: â← DrawSample( ˆdistA)
15: ˆfanout[A]← â

16: inputs[A]← Encode(â)
17: end for
18: return ˆprob, ˆfanout

19: end procedure
20:
21: AQ ← {A ∈ A | |RQ(A)| < dom(A)} CommentFilter attributes by predicates
22: AQ ← SortBy(AQ, key : A→ |RQ(A)|) ▷ Sort attributes by domain size
23: for i ∈ {1, . . . , N} do ▷ Batched in practice
24: probs[i], fanouts[i],← Estimate(M, RQ, AQ, F )
25: end for
26: ˆS(Q)← mean(Ŝ/

∏
fanout∈fanouts fanout)

27: ˆC(Q)← |Juniv| × ˆS(Q)
28: return ˆC(Q)
29: end procedure

この Progressive Samplingを拡張したアルゴリズムは DAEモデル M，クエリの
条件を満たす範囲 RQ，テーブル内の属性集合 A，ユニバーサルリレーション内の
総タプル数 |Juniv| を受け取る．まず先に述べたように，述語の対象となっていな
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い属性の確率分布は求める必要がないため述語の対象となっている属性を取り出
し（21 行），続けてドメインサイズ昇順に並べ替える（22 行）．次に乗法定理に基
づく確率分布の推論と同時確率の計算をモンテカルロ法によるサンプリングで行
うため，そのサンプルサイズである N 回だけ Estimate を実行する（23-25 行）．
Estimate は DAEモデル M，クエリの条件を満たす範囲 RQ，ソート済み属性集
合 A を受け取る．初めにモデルへの入力と同時確率を初期化する（3-4 行）．そ
の後与えられた属性順に Mで順伝播による推論 (Forward) を行う（6 行）．推論
された確率分布 ˆdistA に述語を適用し，その総和で ˆprob を更新する（8 行）更に
確率分布を重みとしたサンプリング (DrawSample) を行い属性 A の要素 a を得
る（9 行）．この要素をエンコード (Encode) し次の入力とする（10 行）．同様に
Fanoutの推論を行う（12 - 17 行）．得られた N 個の推論された確率と Fanoutの商
の平均がクエリ Qのセレクティビティの推論値 ˆS(Q)となる．最後に，セレクティ
ビティと総タプル数 |Juniv| の積をカーディナリティの推論値 ˆC(Q)として返却す
る（26-28行）．なお実際には，23-25行のループは行列計算としてバッチ化される．

2.4 評価実験

提案手法の評価実験と結果に基づく考察を行う．まず 2.4.1項で総合的な評価を
報告した上で，2.4.2項でクエリオプティマイザへの応用を想定した評価を報告す
る．最後に 2.4.3項で推論時のハイパパラメータである属性順やサンプルサイズが
性能に与える影響について評価を報告し議論を行う．
データセットとベンチマーク：評価には 2つのベンチマークを利用した．1つ
は DMVベンチマークである．ニューヨークの乗り物に関するデータセットであ
る DMV [48]を対象に動作する人工的に生成された 2000個のクエリから成る．こ
れらのクエリには 4～10個の等号条件と範囲条件が含まれる．DMVデータセッ
トは単一テーブルであるため結合はない．もう 1つは Join Order Benchmark [13]
(JOB-light [28]) である．俳優，映像エンターテイメントやビデオゲーム等に関す
るデータセットである IMDb [49]を対象に動作する 70個のクエリから成る．複数
の等号条件と範囲条件があり，多数テーブルの自然結合も含む．ワークロードが事
前に固定されている環境を想定して，IMDbデータセットのうち，JOB-lightに必
要なテーブル・属性のみに絞り込んだデータセット（IMDb-JOB-light）も利用す
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る．各データセットの統計的な概要は表 2.3に示す通りである．なお，IMDbデー
タセットと IMDb-JOB-lightデータセットは結合を扱うため，2.2.2項で述べた通り
Exact Weight Join Sampling [43]により表記のタプル数（サンプルサイズ）だけ取
得した結合サンプルを利用する．

表 2.3: データセット概要

データセット テーブル数 行数 属性数 タプル数
DMV [48] 1 11.6M 11 11.6M
IMDb [49] 16 4～36M 2～17 10M
IMDb-JOB-light [28, 49] 6 4～36M 2～4 10M

評価指標：推定性能の評価指標には，真のカーディナリティを C，推定された
カーディナリティを Ĉとして式 2.10で表される Q-Error [13]を用いる．これは推
定されたカーディナリティが真の値から何倍離れているかを表す無次元の値であ
り，常に 1 以上で小さい方が優れていることを示す．

Q-Error := max( Ĉ, C)
min( Ĉ, C)

(2.10)

もう 1つの推定性能の評価指標として，PostgreSQLのクエリオプティマイザが
特定のカーディナリティ推定値を利用して作成するプランの実行コストの推定値
（PostgreSQLPlanCost）を用いる．カーディナリティ推定値はクエリオプティマイ
ザ内での結合順最適化やインデックス選択で利用されることでプラン作成に影響を
持つ．クエリオプティマイザにおけるコストモデルの影響がカーディナリティ推定
と比較して十分小さいこと [13]と結合順は共通して動的計画法による探索が行わ
れることを考慮すると，PostgreSQLPlanCostは利用されたカーディナリティ推定
手法の性能に基づくクエリオプティマイザへの貢献を表す値と見なせる．値が小さ
いほど作成されたプランの実行時間が短いことを期待することができ，優れている
ことを示す．
推論速度の評価指標には，推論モジュールに各クエリが入力されてからカーディ
ナリティ推定値を返却するまでの時間の平均（平均応答時間）を用いる．学習速度
の評価指標には，データロードのような共通化される処理を除いた，各手法の学習
処理のみの時間を用いる．
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手法：提案手法として，（1）DAEに多層パーセプトロン (MLP) を利用するも
の (Ours (MLP)) と (2) Transformer [39]5）(Trm) を利用するもの (Ours (Trm)) の 2
つの実装を利用する．比較手法には，実際のデータベースシステムである（3）
PostgreSQL（バージョン 11.8）と（4）自己回帰モデルを用いることでカーディナ
リティ推定タスクで最高性能が報告されている Naru [23, 50]/NeuroCard [24, 51]6）を
用いる．Naru/NeuroCardの自己回帰モデルの実装にはマスクを用いたMLPである
MADEを利用する．加えて，Naruには Transformerを用いた実装も比較対象として
用いる．Naru/NeuroCardに共通するハイパパラメータである属性順には，[23,24]に
従い各データセットに定義された順序（正順）を利用する．また，属性順による影
響を見るため，正順を反転させた順序（逆順）も利用する．加えて，Sum-Product
Networkを拡張することで Naru/NeuroCardと同等程度の性能を報告している（5）
DeepDB [25, 52]と（6）FLAT [26, 53]も比較対象として利用する．
既存研究のハイパパラメータはそれぞれの論文または公開されているソースコー
ド [23, 24, 25, 26, 50, 51, 52, 53]で報告されている値を利用する．同規模・同系統の既
存手法との推論性能・学習時間・応答時間の比較を公平に行うため，提案手法のハ
イパパラメータは可能な範囲で同系統の既存研究のモデルと同じものを利用する．
DMVデータセットを利用する実験では Ours (MLP)と Naru (MADE)，Ours (Trm)と
Naru (Trm) が，IMDb データセットを利用する実験では Ours (MLP) と NeuroCard
(MADE)が対応する．後者の Ours (Trm)は [51]を参考にする．
実行環境：すべての手法で同じ 16CPUs（最大 2.5GHz）・メモリ 64GB・Nvidia

Tesla T4 GPUを備えた実行環境にて評価を行う．評価対象の手法のうち，提案手
法，Naruと NeuroCardは GPUによる高速化が可能である．なお，GPUを利用しな
い CPUのみの評価を行う場合はプログラムから GPUを利用できないように設定
した上で同じ環境を利用する．

2.4.1 総合的な評価
評価の指針とモチベーション：各手法の Q-Error（Median・90パーセンタイル・

95パーセンタイル・99パーセンタイル・最大値）と平均応答時間から総合的な性
能を評価し，提案手法の有用性を確認する．Progressive Samplingでモンテカルロ

6） NeuroCardは Naruを複数テーブルに拡張した手法である．
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法によるサンプリングが必要な手法は推定性能と応答速度のバランスを考え， [23]
の報告にも利用されているサンプルサイズ 1000に固定して比較を行う．
結果と考察：単一テーブルデータセットを対象とする DMVベンチマークでの結
果を表 2.4に，複数テーブルデータセットを対象とする JOB-lightベンチマークで
の結果を表 2.5に示す．なお，属性順の正順は各データセット内で定義された順序
を，逆順は正順の逆を，推論順は推論時に与えられた述語を適用した際のドメイン
の小さい順（推論時ドメイン考慮順）を表す．
表 2.4から Q-Errorを指標として見ると，提案手法は多くの項目で高い性能を示
し，例えば PostgreSQLと比較すると，95パーセンタイルでは 1/40程度であった．
また，自己回帰モデルを利用する NaruはMADEを用いた実装で正順の場合はほと
んどの項目で最も高い性能が確認されたものの，逆順の場合，性能が 101 から 105

倍以上悪化するケースが見受けられた．Naruはデータ製作者に依存したヒューリ
スティックに基づいて正順を選択しており，データセットによっては DMVでの逆
順のような性能が低い順序が選択される可能性があることに注意されたい．一方提
案手法にはこのような性能のばらつきがない中で，Naruのピーク性能となってい
るMADEを利用した実装で正順で推論を行うケースに近い性能を達成しているこ
とから，安定性と推論性能を兼ね備えた手法と言える．
多数の自然結合を含みより複雑な条件を持つ JOB-lightベンチマークの結果を表

2.5に示す．学習は複数のデータセットで行い，共通のワークロードで評価する．
学習データセットの差異は想定環境の差異であるため，性能比較は各学習データ
セットごとに行う．IMDbデータセット，つまりワークロードが参照する属性数が
全属性数と比較して少ないデータセットを学習した場合に注目すると，MLPを利
用した提案手法が多くのケースで最も高い性能を示すことが確認された．一方で
Transformerを利用した場合は性能が低下するケースが見受けられる．前者をクエ
リレベルで調査したところ，一部の頻度が非常に低い要素の影響でカーディナリ
ティを極端に低く推定してしまい，結果として Q-Errorが大きくなるクエリがある
ことが確認された．同一の結合サンプルを学習している NeuroCardではこの事象は
見受けられなかった．このような差異が生まれた原因として，提案手法で利用し
た Transformerモデルがサンプルに過学習していることが考えられる．ドロップア
ウトのような汎用的な正則化の導入が今後の課題である．IMDb-JOB-lightデータ
セットを学習した場合は提案手法よりも NeuroCard（MADE・正順）が高い性能を
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示した．NeuroCardに注目すると，表 2.4の Naruの結果と同じく，順序によって性
能が不安定であることが確認された．つまり，データセットによっては NeuroCard
（MADE・正順）のような高い性能にならない可能性を意味する．なお，DeepDBは
データセットを絞り込まないと学習に 100GBを超えるメモリが必要となり実行で
きなかった．これはたとえワークロードが簡単なものでもデータセットが大規模化
すると応用が困難になることを表す．
次に平均応答時間を指標とした結果をまとめる．自己回帰モデルを用いた既存手
法と比較して推論回数を削減できたことにより，同規模・同系統のモデルを利用し
た既存手法と比較して最大で 3倍程度の高速化に成功した．特に表 2.5の IMDbの
ような，モデルが扱う全属性数と比較してワークロードが利用する属性数が少ない
場合，推論回数削減効果が大きくなる傾向が確認された．クエリオプティマイザへ
の応用であれば複数回呼びされるため最適化処理全体で見ると差が大きくなるこ
と，近似カウントクエリ処理への応用であればカーディナリティ推定の高速化がそ
のまま近似クエリ処理の高速化になることを考えると，この推論の高速化は重要
である．一方で，ヒストグラムに基づく PostgreSQLや Factorize-Sum-Split-Product
Networkを利用した FLATは，推定性能は比較的低い傾向があるものの，応答時間
で 2倍以上高速なケースが確認された．提案手法では独立な推論処理をサンプルサ
イズだけ行うことから，2.4.3項の結果で述べるようにサンプルサイズの削減によ
る速度向上や低レイテンシかつ並列度の高い実行環境の導入によりこれらの手法よ
り大きな速度向上が期待できる．
最後に学習時間を指標とした結果をまとめる．機械学習を用いた手法の中では，

Sum-Product Networkをベースとした DeepDBや FLATが特に高速であった．以降
Ours (MLP)，MADEを利用した手法，Transformerを利用した手法という順となっ
た．同規模である Ours (MLP) と Naru (MADE)，Ours (Trm) と Naru (Trm) や Ours
(MLP)と NeuroCard (MADE)を比較すると提案手法が常に高速であった．

7） EXPLAIN文を介した応答時間を報告するため，参考値である．カーディナリティ推定のみの所要
時間は掲載している時間より短くなる．

8） 推論性能はワークロードに依存するため IMDbの結果のみ報告する．
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表 2.4: 各手法の DMVデータセットでの学習時間と
DMVベンチマークでの Q-Errorと平均応答時間

手法（モデル・属性順） 50%th 90%th 95%th 99%th Max 応答時間 (ms) 学習時間 (min)

PostgreSQL7） 1.27 2.22 57.9 1.4 · 103 7.6 · 104 2.93 —
Naru (MADE・正順) 1.04 1.19 1.32 2.00 8.00 10.3 29.3
Naru (MADE・逆順) 60.8 505 751 2.0 · 103 4.2 · 105 10.4 28.6
Naru (Trm・正順) 1.09 2.63 5.34 9.7 · 105 9.9 · 105 99.5 153
Naru (Trm・逆順) 1.18 10.8 204 1.0 · 103 2.1 · 104 103 155
DeepDB 1.07 2.00 4.76 30.0 288 10.5 2.00
FLAT 1.07 1.80 3.95 35.1 1.3 · 105 2.32 1.80
Ours (MLP・提案順) 1.03 1.24 1.45 2.42 49.0 6.98 24.1
Ours (Trm・提案順) 1.03 1.20 1.36 2.23 12.3 52.2 89.0

表 2.5: 各手法の IMDb・IMDb-JOB-lightデータセットでの学習時間と
JOB-lightベンチマークでの Q-Errorと平均応答時間

手法（モデル・属性順） 50%th 90%th 95%th 99%th Max 応答時間 (ms) 学習時間 (min)

IM
D

b

PostgreSQL7）8） 7.44 163 1.1 · 103 2.8 · 103 3.5 · 103 3.44 —
NeuroCard (MADE・正順) 1.79 9.00 19.5 36.5 43.2 160 391
NeuroCard (MADE・逆順) 6.04 72.3 118 298 400 158 327
DeepDB —Out of memory to train (100GB+)—
Ours (MLP・提案順) 1.68 5.66 22.1 33.6 34.8 50.4 128
Ours (Trm・提案順) 2.41 11.8 16.8 4.1 · 103 1.3 · 104 1.9 · 103 513

IM
Db

-J
O

B-
lig

ht NeuroCard (MADE・正順) 1.52 3.90 4.78 9.69 12.6 10.3 120
NeuroCard (MADE・逆順) 1.71 5.22 14.7 33.2 33.7 10.9 346
DeepDB 1.69 4.06 4.55 87.9 240 15.4 13.2
Ours (MLP・提案順) 1.88 11.3 16.9 159 441 9.23 22.0
Ours (Trm・提案順) 1.51 5.31 11.4 33.9 36.0 175 94.1

2.4.2 クエリオプティマイザに与える影響の評価
評価の指針とモチベーション：カーディナリティ推定の応用の 1つとして，ク
エリオプティマイザへの応用を想定した評価を行う．事前に対象のクエリを結合
ごとのサブセットに分割してカーディナリティ推定を行い，その推定値集合を
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CEB [54]と pg hint plan [55]を介して PostgreSQLのオプティマイザに与えること
で PostgreSQLPlanCostを取得し評価指標として用いる．これにより，カーディナ
リティ推定が結合順序最適化やインデックス選択を介してクエリオプティマイザ
に与える影響を評価する．PostgreSQLに加えて，真のカーディナリティ値 (True)
による PostgreSQLPlanCost（Median・90パーセンタイル・95パーセンタイル・99
パーセンタイル・最大値）の比較を行う．Trueはオラクルであり，カーディナリ
ティ推定によるクエリオプティマイザに対する性能向上の上限を表す．なお，利用
するモデルは 2.4.1項と共通であり，IMDbデータセットを学習したものを用いる．
結果と考察：JOB-lightベンチマークでの結果を表 2.6に示す．～90パーセンタ
イルでは PostgreSQLと提案手法で大きな差は見られなかった一方で，テールに近
づくと提案手法による性能向上が確認された．このときの推定値が Trueによる値
に近いことから，提案手法は特に実行コストが高いと思われるクエリのプラン作成
に貢献していることが分かる．一方比較的実行コストが低いと思われるクエリでは
Trueとの差が大きく，改善の余地があることも示唆されている．クエリオプティマ
イザへの応用を想定する場合，2.4.1項のような対象クエリに対するカーディナリ
ティ推定ではなく，対象クエリの結合ごとのサブセットとなるクエリ集合に対する
カーディナリティ推定がより重要となる．これらのことを踏まえると，提案手法で
は今後，より単純なクエリに対するカーディナリティ推定性能の底上げを行うこと
でクエリオプティマイザに特化させるという最適化が考えられる．

表 2.6: 各手法の JOB-lightベンチマークでの PostgreSQLPlanCost

手法（モデル・属性順） Median 90%th 95%th 99%th Max

True 574444 1934955 2690204 12520363 28614678
PostgreSQL 635222 2324869 3490236 12847582 29351539
Ours (MLP・推論時ドメイン考慮順) 661491 2397843 2836455 12550896 28649355

2.4.3 推論時のパラメータの性能への影響の評価
評価の指針とモチベーション：提案手法を含むモンテカルロ法によるサンプリン
グを用いるカーディナリティ推定手法で，サンプルサイズと属性順による影響につ
いて評価を行う．2.4.1項の総合的な評価において Naruのピーク性能となっていた

31



正順で推論を行う実装を比較対象とする（自己回帰モデルの場合，属性順を変化さ
せたときにピーク性能となるモデルを容易に選択することはできない点に注意され
たい）．カーディナリティ推定をクエリオプティマイザに応用すると 1クエリでも
複数回実行されることや応答性能が求められる近似カウントクエリ処理への応用を
考えると，カーディナリティ推定の応答速度は重要である．ここでは提案手法がサ
ンプルサイズを削減するというアプローチから推論性能を落とすことなく高速化で
きること示す．評価指標には Q-Error（Median・90パーセンタイル・95パーセンタ
イル・99パーセンタイル・最大値）と平均応答時間を用いる．平均応答時間には
GPUを利用した環境に加えて，一般的なデータベースシステムが稼働する環境を
想定した CPUのみの環境での結果を報告する．なお，利用するモデルは 2.4.1項と
共通である．提案手法は単一のモデルで任意の順序を扱えるため，推論時の順序に
依らず同じモデルを利用して評価を行う．
結果と考察：DMVでサンプルサイズを変化させたときの結果を表 2.7に示す．
いずれの手法でもサンプルサイズの変化により Q-Errorと応答時間でトレードオフ
の関係が確認された．ただし応答時間は単純なトレードオフではなく，CPU環境
と GPU環境で異なる傾向を示した．まず CPU環境では，サンプルサイズと応答
時間に明確な関連性が見られた．提案手法はサンプルサイズに対する応答時間の増
加が少ないため，同程度の応答時間で比較するとサンプルサイズを大きくでき，結
果として推論性能を向上させやすいことが分かる．一方 GPU環境では，サンプル
サイズが 100以下では応答時間が横ばいになる現象が見受けられた．これはサンプ
ルサイズが十分に小さいと GPUが一度に並列処理可能な範囲に収まり，サンプル
サイズに比例しない定数コストがマジョリティとなるためと考えられる．GPUが
一度に並列処理可能な範囲で最大のサンプルサイズを選ぶことで性能と速度を高め
やすい一方，一般的なデータベースシステムでは用いられることが少ない GPUの
導入が前提ということに注意されたい．Q-Errorに注目すると，提案手法は Naruと
比較してサンプルサイズが小さい場合でも Q-Errorを抑えられることが確認され
た．特に 99パーセンタイルや最大値においてその差は 101 から 102 倍程度と顕著
である．CPU環境を想定すると，提案手法は小さいサンプルサイズで推定を行う
ことで，性能と速度の両立が可能と分かる．
ここでサンプルサイズを 10 にしたときの Q-Error のテール（95 パーセンタイ
ル・99パーセンタイル・最大値）にあたる結果を表 2.8に示す．順序による影響を
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比較するため，表 2.7で用いた手法に加えて提案手法の属性順を正順としたものを
報告する．表 2.8から，提案手法でも正順に固定して推論を行うと Naruと同様に
Q-Errorが悪化することが確認された．述語を適用した際のドメインが大きくなる
順序（推論時ドメイン考慮順）で推論を行うことで，モデルに依らず正順での推論
と比較して，より小さいサンプルサイズでも適切なカーディナリティ推定が可能と
分かる．なお 2.3.2項でも述べたように，推論時ドメイン考慮順は推論時に動的に
決まるものであり，学習時に順序が固定される自己回帰モデルを利用した Naruの
ような手法では実現できないアプローチである．

表 2.7: DMVでサンプルサイズを変化させたときの Q-Errorと平均応答時間 (ms)

手法（モデル・属性順・サンプルサイズ） 50%th 90%th 95%th 99%th Max 応答時間 (GPU) 応答時間 (CPU)

Naru (MADE・正順・10) 1.06 1.32 1.70 23.1 1.3 · 105 7.32 7.80
Naru (MADE・正順・100) 1.04 1.22 1.45 2.42 361 6.72 24.1
Naru (MADE・正順・1000) 1.04 1.19 1.32 2.00 8.00 10.3 131
Naru (MADE・正順・10000) 1.03 1.18 1.29 2.00 8.00 122 1.4 · 103

Ours (MLP・提案順・10) 1.05 1.26 1.51 3.04 235 7.04 7.90
Ours (MLP・提案順・100) 1.05 1.24 1.44 2.50 194 7.34 17.4
Ours (MLP・提案順・1000) 1.05 1.24 1.43 2.50 49.0 7.08 62.1
Ours (MLP・提案順・10000) 1.04 1.24 1.43 2.50 49.0 43.0 428
Ours (Trm・提案順・10) 1.04 1.22 1.45 2.50 447 18.7 31.8
Ours (Trm・提案順・100) 1.04 1.20 1.36 2.27 9.80 18.8 69.1
Ours (Trm・提案順・1000) 1.03 1.20 1.36 2.23 12.3 52.2 354
Ours (Trm・提案順・10000) 1.03 1.20 1.36 2.23 12.3 532 4.8 · 103

表 2.8: DMVでサンプルサイズが 10のときの各手法の 95%th，99%thとMax
Q-Error

手法（モデル・属性順） 95%th 99%th Max

Naru (MADE・正順) 1.70 23.1 1.3 · 105

Ours (MLP・正順) 1.82 47.6 5.8 · 103

Ours (Trm・正順) 1.74 17.4 1.1 · 104

Ours (MLP・提案順) 1.51 3.04 235
Ours (Trm・提案順) 1.45 2.50 447
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2.5 関連研究

2.5.1 機械学習を用いたカーディナリティ推定
機械学習を用いたカーディナリティ推定技術は，提案手法と同じデータを学習す
るアプローチの他にワークロードを学習するアプローチが提案されている．本項で
はそれぞれのアプローチの代表的な手法について述べる．
データを学習するアプローチの手法：提案手法を含むデータを学習するアプロー
チの手法では，データの分布を教師なしに学習したモデルでカーディナリティ推定
を行う．Yangらは MADE [38]や Transformer [39]といった自己回帰モデルでデー
タの密度推定を行い，自己回帰の要領で得られる各属性の条件付き確率からカー
ディナリティ推定を行う手法を提案している [23, 24]．自己回帰する際にサンプリ
ングを行うことで範囲条件を含むクエリのカーディナリティ推定に対応している．
Yangらの報告と同時期に Hasanらも自己回帰モデルとしてMADEを利用したデー
タの密度推定を行い，自己回帰の要領で得られる各属性の条件付き確率からカー
ディナリティ推定を行う手法を提案している [27]．Yangらの手法と同程度の性能
であることが報告されている．これらの自己回帰モデルを利用する手法は学習・推
論に利用する属性順によって性能が大きく変化することが併せて報告されている
が [23]，その順序はデータセット作成者に依存するものとなっており，データセッ
トによっては性能が不安定になってしまう．この問題を解決するために多数の順序
を扱う自己回帰モデルの利用が今後の検討事項として挙げられているが，学習コス
トの面で実用化には課題が残る．具体的な多数の順序を扱う自己回帰モデルについ
ては後述する．

Hilprecht らは Sum-Product Network [40] をデータベース向けに拡張した
Relational Sum-Product Network によるカーディナリティ推定手法を提案してい
る [25]．データの分布を行方向と列方向に分解してモデル化することで，推論時
には行方向に分割されていたものは和を，列方向に分割されていたものは積を取
ることでカーディナリティを算出する．Zhuらは Sum-Product Networkを拡張し
た Factorize-Sum-Split-Product Networkによるカーディナリティ推定手法を提案し
ている [26]．全てを単変量分布に分解する Sum-Product Networkと比較して，依存
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関係が強い属性を適応的に多変量分布として扱うことで，依存関係に偏りのある
データをコンパクトにモデル化できると報告されている．自己回帰モデルや DAE
による提案手法と比較して，部分的に独立を仮定することで効率的な学習を実現
している．一方でこの仮定により 99パーセンタイルやワーストケースで性能が悪
化する傾向がある．別の問題点として，Sum-Product Networkは関数従属性を適切
に捉えることができないという問題が報告されている [25]．これを回避するには，
DeepDBでは手動で関数従属性の情報を与える必要がある．一方で自己回帰モデル
や DAEによる提案手法であれば自然に捉えることができる．また，多量のメモリ
を利用した属性間依存関係の計算が必要となるため，大規模データセットでの実行
が難しいことが表 2.5の結果からも確認されている．
ワークロードを学習するアプローチの手法：ワークロードを学習するアプロー
チの手法では，クエリを何らかの方法で特徴量化したもの入力とし，カーディナ
リティをラベルとして学習したモデルでカーディナリティ推定を行う．Kipfらは
ワークロードをテーブル・結合・述語の 3要素の組み合わせとして扱い，Multi-Set
Convolutional Network [56]でカーディナリティをラベルとして学習することでカー
ディナリティ推定を行う手法を提案している [28, 29]．Woltmannらはいくつかの属
性ごとにカーディナリティをラベルとしてMLPモデルを学習することで，ワーク
ロードで必要とされている部分にフォーカスしたカーディナリティ推定を行う手法
を提案している [37]．各ワークロードに特化した小さなモデルにより，高い推論性
能と応答速度を達成すると報告されている．Duttらはワークロードの述語に含ま
れる下限値や上限値を特徴量とし，セレクティビティをラベルとしてMLPモデル
を学習することで，数値データの範囲条件を含むワークロードを得意とするセレク
ティビティ推定手法を提案している [30]．ワークロード由来の特徴量に加えて，属
性間の独立を仮定するような従来のカーディナリティ推定手法から得られる値も特
徴量とすることで安定性を高めている．これらの手法に共通する長所として，ワー
クロードが既知でクエリログが利用できる場合には効率的に学習・推論が行えるこ
とが挙げられる．しかしながら，提案手法のようなデータを学習するアプローチと
比較して，学習のためのワークロードが未知あるいは学習に不十分な数の場合の性
能低下が大きく，また，クエリログが利用できない場合はラベルとなるカーディナ
リティ値の取得に実際のクエリ処理が必要となり学習コストが高くなるという課題
がある [28, 57]．
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2.5.2 多数の順序を扱う自己回帰モデル
自己回帰モデルの順序による性能の不安定性を解決するために多数の順序を扱う
自己回帰モデルが提案されている．カーディナリティ推定にも一般的な自己回帰モ
デルや DAEの代わりに用いることが考えられるため，それらとの相違点を中心に
述べる．

Uria らは自己回帰モデルの 1 つである Neural Autoregressive Distribution
Estimator (NADE) [58] を拡張して多数の順序を扱うことのできる Ensembles of
NADEs (EoNADE) [41]を提案している．EoNADEは乱択アルゴリズムにより共通
のパラメータ上で複数の順序を扱えるように NADEをベースとした学習を行う．
これにより NADEより性能を向上させることに成功しているが，推論時のコスト
が順序の数に比例して増加する．また，ベクトル化できない演算を含むため処理コ
ストが高いことが報告されており [38]，応答速度が求められるカーディナリティ推
定には不向きと考えられる．Germainらは MADE [38]の提案の中で乱択アルゴリ
ズムにより複数の順序を扱えるように学習を行う提案も行っている．この手法では
任意の順序を扱うと過小適合を起こしてしまうため，予め少数の順序集合のみに限
定9）して取り扱う．そのため，DAEのようにカーディナリティ推論時にクエリを
利用した順序選択するといったことはできない．Yangらは自然言語処理において
ファインチューニングを前提とした言語モデルとして XLNet [42]を提案している．
本来の順序を位置エンコーディングで保持しつつ単語列を並び替えながら学習する
ことで，自己回帰モデルの欠点であった推論対象より後の単語情報を利用できない
という課題を解決している．XLNetは言語モデルであるが，埋め込み層をテーブ
ル形式データに対応させることで多数の順序を扱う自己回帰モデルとしてカーディ
ナリティ推定への応用が考えられる．しかしながら 3.4億パラメータという巨大な
モデルを前提とした手法であるため，推論性能向上による全体の性能向上以上に学
習・推論コストが大きくなることが考えられる．

9） 一例として，500次元の隠れ層を持つ単一レイヤモデルで 784次元のデータセットを学習させる
と，8順序（≪ 784!）をピークに過小適合する傾向が報告されている．
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2.6 おわりに

本章では複雑なスキーマを持つデータの高速な処理のための要素技術の 1つとし
て，DAEを利用した高速で安定したカーディナリティ推定手法を提案した．DAE
の密度推定としての性質でデータの分布を学習し，推論時に述語の条件を適用する
ことでカーディナリティ推定を実現した．推論を DAEの特徴を活用した動的な順
序で行うことで，サンプルサイズが小さい場合でも安定した推定手法となってい
る．複数のベンチマークで Q-Errorを指標として評価したところ，既存の自己回帰
モデルを用いる手法と比較してそのピーク性能と同程度の性能を安定して達成した
上で 2～3倍の高速化が確認された．また，自己回帰モデル以外の機械学習による
既存手法と比較しても Q-Errorを抑えられることが確認された．より実践的な評価
として，クエリオプティマイザへの応用を想定した実験を行ったところ，想定され
るコストの大きいクエリを中心に PostgreSQLと比較して改善が確認された．ただ
し，一部のクエリでは学習したサンプルによって推定性能が低下するケースも確認
された．原因の 1つとしてサンプルに過学習していることが考えられる．正則化の
導入やオプティマイザの調整などによりこの問題を解消することが今後の課題で
ある．
本章では NeuroCard [24]と同じくユニバーサルリレーションを用いることで複数
テーブルの結合に対応した．しかしながら，ユニバーサルリレーションによる結合
対応は，スキーマが複雑になると性能が悪化することが示唆されている [59]．第 3
章では本章で提案したモデルをベースにこの問題を解決し，複雑なスキーマを持つ
データの高速な処理に繋げる．
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第 3章 スケーラブルな結合カーディナ
リティ推定

3.1 はじめに

第 2章では密度推定器と推論方法を工夫することで主に単一テーブルでのカー
ディナリティ推定を提案した．本章ではカーディナリティ推定のうち，特に結合を
条件に含むカーディナリティ推定，すなわち結合カーディナリティ推定に焦点を当
てる．既存手法では困難な，推論性能と複雑なリレーションシップを持つデータへ
の適用の両立を図る．
データベースシステムのクエリ処理性能において，クエリオプティマイザは最も
重要な要素のうちの 1つである．クエリオプティマイザはクエリ処理結果が変わら
ない範囲で，与えられたクエリをどのように処理すると効率的かを推定するタスク
を行う．ここで，クエリオプティマイザの結果である「どのように処理するか」を
まとめたものを実行プランという．実行コストの低い実行プランを見つけるため
に，クエリオプティマイザは内部的な処理の順番や方法を最適化する．処理の順
番（結合順）の最適化では，後続の処理コストを下げるために結合処理の中間結果
（中間テーブル）が小さくなるように行われる．この結合順序最適化の過程で，中
間テーブルのサイズ推定として結合カーディナリティ推定が利用される．そのた
め，結合カーディナリティ推定が大きく外れると，必要以上に大きな中間テーブル
を発生させてしまう実行プランが選択され，結果としてクエリ処理のパフォーマン
ス低下につながる．近年ではデータベースシステムに様々なデータが蓄積され，処
理が行われることから，特に次の 3つの観点に対応することが重要と言える．1つ
目は実世界データには偏りが存在するという点である．偏りの大きなデータの場
合，結合順によって中間テーブルのサイズが上下しやすくなる．そのため結合順序
最適化を成功させるには，結合カーディナリティ推定の性能が重要となる [13]．2
つ目はデータの量が増加しているという点である．一度に全データは扱えないとい
うことを前提としなければならない [11]．3つ目は複雑なリレーションシップを持
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つデータが増加しているという点である．スキーマに含まれるテーブル数，つまり
スキーマサイズが大きい環境の考慮が必要となる [9, 10]．スキーマサイズが大きく
なると結合順の候補が増え問題も複雑化するため，結合カーディナリティ推定では
速度と性能の両方がより重要となる．
既存のデータベースシステムでは，結合カーディナリティ推定にはヒストグラム
を中心とした統計情報が用いられている [19, 60]．ヒストグラムは属性ごとに作ら
れ，推定時にはクエリ条件に含まれる属性のヒストグラムを利用して推定を行う．
ただし，一般的にデータには偏りがあり属性間に相関があるにもかかわらず，属性
ごとのヒストグラムを利用すると相関が無視され推定性能が低下する．この問題を
解決するため，近年では機械学習を利用した手法が提案されている．機械学習を利
用した結合カーディナリティ推定には大きく 2つのアプローチがある．1つはクエ
リを入力，カーディナリティを出力とする回帰問題として扱うアプローチ [28, 30]
である．統計情報を用いる手法と比較して同程度以上の推定性能が報告されている
が，データサイズやスキーマサイズが大きい環境では学習時のラベル取得コストが
高く実用が困難である [59, 61]．もう 1つは密度推定器を使うアプローチ [24, 25, 26]
である．複数の属性に跨る形でデータの分布を学習し，クエリ条件に基づいた密度
推定により結合カーディナリティを算出する．相関関係を捉えているため推定性能
が高く，適切なサンプリングを行うことでデータサイズの増加にも対応できる．し
かしながら大規模スキーマ環境の場合，1つの密度推定器でデータベース全体を学
習する手法の場合は推定性能が低下し，事前計算で複数に分割したサブスキーマご
とに密度推定器を学習する手法の場合は事前計算のコストやメモリ消費量が多く，
いずれもスキーマサイズに対してスケールしない [59]．以上のように，大規模ス
キーマに適した結合カーディナリティ推定手法は存在しない．
そこで本章では，データサイズとスキーマサイズに対してスケールする結合カー
ディナリティ推定手法を提案する．提案手法では，スキーマサイズが大きくなる
と，一般的に，総テーブル数に対してクエリの対象となるテーブルの割合が小さく
なるという点に注目する．特にクエリオプティマイザで利用する場合，クエリの対
象テーブルのサブセットごとに結合カーディナリティ推定を行うため，この傾向は
より顕著となる．この傾向は，見方を変えるとスキーマ全体を一度に捉える必要性
が低いということであるため，提案手法ではスキーマを分割して扱う．提案する分
割方法はデータを参照せずスキーマのみを利用することで大規模データでも高速に
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動作する．また，既存手法では分割したサブスキーマを独立として扱うため，複数
のサブスキーマを横断するクエリに対する性能低下があるが，提案手法では分割に
オーバーラップを持たせることでこの問題を緩和する．
本章の主な貢献は以下の通りである．

•複数の密度推定器を利用した効率的な結合カーディナリティ推定手法を提案す
る．提案手法の主な特徴は以下の 3つである．

–スキーマサイズに対してスケールする：構造に基づいてスキーマを高速に
分割し，分割されたスキーマごとに密度推定器を学習する．密度推定器ご
との対象テーブル数が少ないため，モデルのサイズを小さくしやすい．ま
た，各密度推定器は独立しているため，全て並列に学習可能である．

–データサイズに対してスケールする：密度推定器の学習に利用するデータ
には適切なサンプリングを行うことで小規模から大規模データまで柔軟に
対応する．

–高い推定性能：分割されたスキーマごとの密度推定器を持つため，クエリ
が対象とするテーブル集合にフィットしやすく推論性能が高くなる．特に
クエリオプティマイザで利用する際に効果的な性質である．推論時には，
分割間で結果の共有を行うことで，分割を横断した推定を行う場合でも推
論性能を保つ．

•実世界デーセットに対してアクセス対象の傾向が異なるワークロードを利用
して評価を行い，提案手法が効率的に結合カーディナリティを推定できるこ
と，クエリオプティマイザを介したクエリ処理の高速化に貢献することを確認
した．

本章の構成は以下の通りである．3.2節で本章に必要な定義を導入し，3.3節で関
連研究の紹介とその課題について述べる．3.4節で提案手法を詳説し，3.5節でその
評価を行う．最後に 3.6節で本章の内容をまとめる．

3.2 事前準備

本節では 2.2節を振り返りながら結合カーディナリティ推定に必要となる諸定義
の導入と問題の定式化を行う．
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3.2.1 諸定義
表 2.1に加えて本章で利用する主なシンボルの定義を表 3.1に示した上で，デー
タベーススキーマ，密度推定器とクエリをグラフ構造に変換する方法についても述
べる．

表 3.1: 本章で利用する主なシンボル

シンボル 定義・概要
G[S] 頂点集合 S によってグラフ Gから誘導される部分

グラフ．
N−

G [v], N+
G [v], N−

G (v), N+
G (v) グラフ G上の頂点 vの近傍の頂点集合．N−は入近

傍，N+ は出近傍，[v]は閉近傍，(v)は開近傍を表
す．

H H := (V, E)．頂点集合 V とハイパーエッジ集合 E

から構成される多重ハイパーグラフ．本章ではス
キーマグラフ上の部分スキーマの範囲を表す．

E
t∼T

[·] 分布 T から取り出されるサンプル tに基づく期待
値．

結合カーディナリティ推定にまつわるグラフ：図 3.1 に本章で利用する
データベースのスキーマグラフ（グローバルスキーマグラフ）とクエリグラ
フの例を示す．スキーマグラフ GGLB は図 3.1a では，VGLB = {S, T, U, V, W}，
EGLB = {(T, S, (id, t id)), (T, U, (id, t id)), (T, W, (id, t id)), (V, U, (id, v id))} を用いて
GGLB := (VGLB, EGLB)と表す．図 3.1bと図 3.1dはグローバルスキーマグラフに対
する密度推定器の対応と推論時の利用例である．別の観点として，スキーマグラフ
と密度推定器の対応は，各密度推定器がカバーしている頂点集合をハイパーエッジ
E= {(S, T ), (T, U, V ), (T, W )}としたハイパーグラフ H := (VGLB, E)とみなすこと
もできる（図 3.1b）．なお，具体的な手法によって各密度推定器が対応する範囲や
推論時の密度推定器の利用方法は異なる．クエリグラフ GQ は図 3.1cを例とする
と，VQ = {S, T, U}，EQ = {(t, s, (id, t id)), (t, u, (id, t id))}を用いて GQ := (VQ, EQ)
と表せる．
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(a) スキーマグラフ GGLB．頂点が
テーブル，エッジがリレーションシッ
プ（外部キー制約），エッジラベルが

結合制約の内容を表す．
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W

S:t_id=T.id

U:
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:t_id=
T.id

ℳ𝑺⋈𝑼
⋈𝑽

ℳ
𝑺⋈
𝑻

ℳ𝑻⋈𝑾

(b) スキーマグラフ GGLB と密度推定
器Mの対応例．ハイパーエッジごと
に密度推定器が構築される．Mのサブ
スクリプトが対象のテーブルを表すa．
図は提案手法の例であり，手法によっ
てハイパーグラフの形は異なる．

a ここでの結合 ⋊⋉ は完全外部結合を示
す．
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(c) スキーマグラフ GGLB 上のクエリ
グラフ GQ．オレンジ色のグラフがク

エリグラフである．
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(d) クエリグラフ GQと密度推定器M

の対応例．図は提案手法の例であり，
手法によって密度推定器の対象は異な
る．クエリと無関係，もしくは冗長な
密度推定器（MT⋊⋉W）は選択されな

い．

図 3.1: 本章で利用するスキーマやクエリを表すグラフ構造の例
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3.2.2 問題定義
ここでは結合カーディナリティの定式化を行う．はじめに単一テーブルのカー
ディナリティを再確認してから複数テーブルの結合カーディナリティについて
扱う．
単一テーブルのカーディナリティ：単一テーブルの場合，クエリ Q に基づく
カーディナリティ C(Q)は，テーブル T のすべての属性 Aの条件を満たす同時確
率（セレクティビティ S(Q)とも呼ばれる）とテーブルのサイズ |T |の積で表すこ
とができる（式 3.1）．ここで，同時確率は確率の乗法定理により条件付き確率の積
として表すこともできる．多くの密度推定器は全属性の同時確率ではなく属性ごと
の条件付き確率を扱うことから，カーディナリティ推定では後者が用いられる．

C(Q) = |T | · PT (A1 ∈ RQ(A1), . . . , An ∈ RQ(An))

=
|T | · PT (A1 ∈ RQ(A1))

· · ·PT (An ∈ RQ(An) | An−1 ∈ RQ(An−1), . . . , A1 ∈ RQ(A1)))

(3.1)

複数テーブルの結合カーディナリティ：Juniv をスキーマに含まれる全てのテー
ブルを完全外部結合したテーブルとする．また，GQ = GGLB，つまりクエリ Qが
すべてのテーブルを対象とし結合を行うとする（GQ ⊂ GGLB の場合については，
3.3.2 項で説明する）．この場合，クエリ Q に基づく結合カーディナリティ C(Q)
は，テーブル Juniv のすべての属性Aの条件を満たす同時確率（セレクティビティ
S(Q)とも呼ばれる）とテーブルのサイズ |Juniv|の積で表すことができる（式 3.2）．
また，単一テーブルの場合と同様に，確率の乗法定理により条件付き確率の積とし
て表すこともできる．

C(Q) = |Juniv| · PJuniv
(A1 ∈ RQ(A1), . . . , An ∈ RQ(An))

=
|Juniv| · PJuniv

(A1 ∈ RQ(A1), . . . , An ∈ RQ(An))

· · ·PJuniv
(An ∈ RQ(An) | An−1 ∈ RQ(An−1), . . . , A1 ∈ RQ(A1))

(3.2)

なお，提案手法は事前に定義された任意のリレーションシップを扱うことができ
るが，簡単のため，外部キー制約による一対多のリレーションシップに基づいた結
合のみを取り扱う．また，結合カーディナリティ推定には内部結合と外部結合の区

44



別があるが，こちらも簡単のため，内部結合を前提とした説明のみを行う1）．

3.3 関連研究

本節では既存の結合カーディナリティ推定手法について述べる．既存の結合カー
ディナリティ推定手法には，大きく分けてヒストグラムやサンプリングといった統
計情報やデータを直接利用する手法と機械学習を使う手法がある．以降ではアプ
ローチ別に細分化した上で，それぞれの手法の概要と課題についてまとめる．

3.3.1 統計情報に基づく手法
PostgreSQLを始めとした既存のデータベースシステムの多くでは結合カーディ
ナリティ推定に統計情報が用いられる [19, 60]．これらではデータの統計情報とし
てヒストグラム2）を作成する（図 3.2）．属性の組み合わせ数は非常に多く組み合わ
せた場合はドメインの積を取る必要も発生してしまうため，現実的にはヒストグラ
ムは属性ごとに構築される．推論時にはクエリ条件を包含するビンの割合を計算す
ることでヒストグラムを密度推定器としてを利用した推定を行う3）．このとき，ヒ
ストグラムが属性ごとに独立しているため，クエリ条件が複数属性に跨ると属性間
の相関が無視された推定となる．
単一テーブルを対象とする場合，式 3.3と表せる4）．後続手法の定式化のため密
度推定器ごとの期待値 Et∼MAi

を利用して表記しているが，式 3.1のように確率を
用いた表記では式 3.4となる．また複数テーブルを対象とする場合，テーブルを跨
いだ情報も持たないため，結合はキーとなる属性の値が一様分布であるという仮
定が利用される．このことは式 3.5と表せる．式 3.2のように確率を用いた表記で
は式 3.6となる．
ここまで属性間の相関を無視することによる問題について述べたが，他にもビン
内の分布の仮定も性能に影響がある．ビン内の分布は一様と仮定とするため，クエ
リ条件の範囲とビンが完全に一致しない限りは推定に線形近似が用いられる．提案

1） 提案手法の場合，推論時の条件変えることによって内部結合と外部結合の両方に対応できる
2） 実際には，頻出値リストなどの統計情報や経験に基づくマジックナンバーなどが併用されることが
ある．

3） このため属性ごとに独立なスキーマを仮定した密度推定に基づく手法ともいえる．
4） 簡単のため，ビン幅が十分小さく，ビン内一様分布の仮定の影響がないものとする．
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手法では内部的に第 2章で提案した深層学習による Denoising Autoencoderを利用
することで，ヒストグラムに基づく手法のような属性間独立や一様分布の仮定によ
る近似を行わず，高い推定性能を実現する．
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(a) 統計情報に基づく手法のスキーマグラ
フと密度推定器の対応例．ここでの密度推
定器はヒストグラムである．テーブルごと
ではなく属性ごとに構築されることに注意

されたい．
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(b) クエリグラフと密度推定器の対応例．
クエリグラフに含まれるテーブルのうち，
クエリの条件で指定されている属性の密度

推定器のみが利用される．

図 3.2: 統計情報に基づく手法

C(Q) ≈ |T | ·
∏

Ai∈A

E
a∼MAi

[
1a∈RQ(Ai)

]
(3.3)

C(Q) ≈ |T | ·
∏

Ai∈A

P (Ai ∈ RQ(Ai)) (3.4)

C(Q) ≈
∏

T ∈VQ

|T | ·
∏

Ai∈A

E
a∼MAi

[
1a∈RQ(Ai)

]
·

∏
(T1,T2,(A1,A2))∈EQ

1
dom(T1.A1)

(3.5)

C(Q) ≈
∏

T ∈VQ

|T | ·
∏

Ai∈A

P (Ai ∈ RQ(Ai)) ·
∏

(T1,T2,(A1,A2))∈EQ

1
dom(T1.A1)

(3.6)

3.3.2 グローバルスキーマでの密度推定に基づく手法
NeuroCard [24]や第 2章で提案した手法では，グローバルスキーマに対応する 1
つの大きな密度推定器を利用して結合カーディナリティ推定を行う．定義されて
いるリレーションシップに従って，グローバルスキーマ内に含まれる全てのテー
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ブルを完全外部結合したテーブル（ユニバーサルリレーション）を仮定する．こ
こで，推論時に対象とするテーブル集合がグローバルスキーマに含まれるテーブ
ル集合の真部分集合となるクエリに対応するため，2つの仮想的な属性を追加す
る．1つは結合タプルに該当テーブルが含まれているかどうかの真偽値（テーブル
マーカー），もう 1つは各リレーションシップにおける基数（Fanout）である．こ
れらの仮想的な属性を含めた形でユニバーサルリレーションの密度を推定できるよ
うに学習する．例えば NeuroCardであれば自己回帰モデル，第 2章では Denoising
Autoencoder が使われる．データサイズが大きい場合は，すべての完全結合され
たタプルの代わりに，独立同分布で一様となる結合サンプルを作成して学習デー
タに用いることができる．実際には，例えば IBJS [62]はいずれの性質も持たず，
Wander Join [63]は一様ではないため，Exact Weight Algorithm [43]などが用いられ
る．推論時は与えられたクエリ条件に基づいて，各属性の条件付き確率を推論す
る．加えて，テーブルマーカーと Fanoutに関する推論を行う．1つはクエリグラフ
に含まれるテーブルがタプルに存在という制約を反映するため，テーブルマーカー
が真であるという条件を追加する．もう 1つはクエリグラフに含まれないテーブル
による影響を打ち消すため，クエリグラフに含まれないテーブルに関する Fanout
を推定しダウンスケールに利用する．
以上の推論手法をまとめると，式 3.7を利用して式 3.8と表せる．単一テーブル
でのカーディナリティ推定と同様に全体のサイズ（ユニバーサルリレーションのサ
イズ）|Juniv|とその同時確率 E

t∼MJuniv

[∏
A∈A 1t.A∈RQ(A)

]
の積に加えて，クエリグラ

フに含まれるテーブルが存在する確率 ∏
T ∈VQ

t.NT とクエリグラフに含まれていな
い結合 joinに対応する Fanoutによるダウンスケーリング ∏

join/∈EQ
t.Fjoin が同時に

考慮されたものとなっている．これは属性間独立の仮定などの近似がない厳密なも
のとなっている．
このアプローチの課題として，スキーマサイズに応じて密度推定器が扱う範囲が

巨大化してしまい，捉えるべきデータ分布の複雑化による推定性能低下や多量の計
算機資源要求といったことがあげられる．また，ユニバーサルリレーションを基
準に不要なテーブルの影響を減らしながら推定するという減法的な性質から，ス
キーマグラフとクエリグラフの差が大きいほど性能が低下することが知られてい
る [59]．特にクエリオプティマイザで結合カーディナリティ推定を利用する場合，
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結合順最適化のためにクエリグラフのサブグラフごとに推定を行うため，この傾向
が顕著となる．提案手法では並列に学習可能な小さい密度推定器を複数利用するこ
とで学習コストを低くし，さらにクエリオプティマイザなどの実応用上で高い性能
を発揮可能とする．
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(a) スキーマグラフとユニバーサルリ
レーションの密度推定器との対応例．
ユニバーサルリレーションはグローバ
ルスキーマに含まれる全テーブルを完
全外部結合したものである．
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(b) クエリグラフと密度推定器の対応
例．常に単一の密度推定器が利用さ
れ，クエリグラフに含まれないテーブ
ルのダウンスケールが必要である．

図 3.3: グローバルスキーマでの密度推定に基づく手法

I(A, Q, t) =
∏

A∈A

1t.A∈RQ(A) ·
∏

T ∈VQ

t.NT (3.7)

C(Q) = |Juniv| · E
t∼MJuniv

[
I(A, Q, t)∏

join/∈EQ
t.Fjoin

]
(3.8)

3.3.3 相関ベース部分スキーマごとの密度推定に基づく手法
DeepDB [25]ではテーブル間の相関ベースで分割されたスキーマごとに密度推定
器を構築して結合カーディナリティ推定を行う．この手法では，はじめに，スキー
マグラフに定義された辺（リレーションシップ）に基づいてテーブル間（属性間）
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の相関を計算する．DeepDBでは Randomized Dependence Coefficients (RDCs) [64]
が利用される．算出した RDCと予め人手で設定した閾値を比較し，閾値を超過し
たら相関がある，そうでなければ相関がない独立したものとして扱う．相関があ
ると判断したテーブル集合はすべて完全外部結合をとったテーブル（相関ベース
部分結合テーブル）として扱う．なお，閾値を限りなく低くすると，やがて相関
ベース部分結合テーブルは 3.3.2項で説明したユニバーサルリレーションに，逆
に限りなく高くすると，やがてすべて独立したテーブルになる．そのため，相関
ベースの分割の優位性を引き出すには，適度に分割される閾値を設定する必要があ
る．そして，相関ベース部分結合テーブルに対応するように密度推定器を学習す
る．DeepDBでは密度推定器として Sum-Product Network [40]が用いられる．この
とき，3.3.2項と同様にテーブルマーカーと Fanoutも学習する．推論フェーズでは
与えられたクエリ条件に基づいて，密度推定器を辿るようにして推論を行う．クエ
リ条件に基づく確率以外にも，3.3.2項と同じようにクエリグラフに含まれるテー
ブルのマーカー条件やクエリグラフに含まれないテーブルの Fanoutも推定する．
密度推定器を跨ぐ際には，先行するテーブルの条件を元に，後続のテーブルとの結
合によるカーディナリティ増加を Fanout推定によるアップスケーリングでエミュ
レートする．ただし，後続の密度推定器の推定は独立したものとなる．このとき，
ユニバーサルリレーションを利用した手法の減法的な性質と比較して，加法的な性
質を示す．小さいクエリグラフは少数の密度推定器で推定するため分割の悪影響を
余り受けないが，逆にクエリグラフが大きくなるとより多くの密度推定器が推論に
必要となり，アップスケーリングや独立を仮定する箇所が増えて性能が低下しやす
いことが知られている [59]．
このアプローチにおけるスキーマの分割は，分割間に重複はなくかつすべての
テーブルをカバーしている（((J1, J2)∀ ∈ J2∧(VJ1∩VJ2) = ∅)∧(∪J∈J VJ = VGLB)）．ク
エリQに必要となる相関ベース部分結合テーブル集合をJQ = {J ∈ J | VJ∩VQ ̸= ∅}
とし，JQ から最初に取り出される任意のテーブルを J0とすると，結合カーディナ
リティ推定は式 3.7を利用して式 3.9と表せる．|J0|をカーディナリティの初期値
とし，相関ベース部分結合テーブル J ごとにクエリの述語の条件 ∏

A∈A 1t.A∈RQ(A)

とテーブルがクエリグラフに含まれている条件 ∏
T ∈VQ

t.NT と後続のテーブルを結
合するによるアップスケーリング ∏

(T1,T2,(A1,A2))∈EQ∧T1∈VJ ∧T2 /∈VJ
t.F(T1,T2,(A1,A2)) と未

使用テーブルの影響を打ち消すダウンスケーリング ∏
join/∈EQ

t.Fjoinの期待値となっ
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ている．相関ベース部分結合テーブル J ごとに期待値 Et∼MJ
が分かれていること

は密度推定の独立を意味する．
課題として，RDCは n行 r列のテーブルを想定すると，時間計算量が o(rn)，空
間計算量が o(rn2) と非常に大きい点があげられる．相関がないと判断されると独
立として扱われてエラーの原因となるため，簡略化も難しい．
提案手法は DeepDBと同じようにスキーマを分割するというアプローチで巨大
なユニバーサルリレーションを回避する．DeepDBと異なる点として，スキーマ分
割のためにデータではなくスキーマグラフの構造のみを参照する，人手による閾値
を使わないといった点があげられる．これにより，スキーマ分割が非常に低コスト
かつ人手による調整が不要となり，スキーマサイズに対してスケールしやすい．さ
らに推論時に密度推定器間で推論結果を共有できるようにサブスキーマにオーバー
ラップを持たせる．密度推定器間を独立として扱う場合と比較して，密度推定器間
を横断した相関を考慮することで性能向上を図る．
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(a) スキーマグラフと相関ベース部分
結合テーブルごとの密度推定器との対
応例．事前計算で T と U に相関がな
いと判定されたと仮定したケースのも
のである．相関ベース部分結合テーブ
ルは相関ベース部分スキーマに含まれ
る全テーブルを完全外部結合したもの

である．

ℳ
𝑼
⋈
𝑽

id=t_id

id=t_id

id=
t_id

id=
v_id

S

T

U

V

W

J_1(S
T

W
)

J_2(U
V)

ℳ
𝑺⋈
𝑻⋈
𝑾

(b) クエリグラフと密度推定器の対応
例．クエリグラフに含まれ，かつ冗長
でない相関ベース部分結合テーブルの
密度推定器が用いられる．密度推定器
を跨いだ推定となる場合，独立した推

定となる．

図 3.4: 相関ベース部分スキーマごとの密度推定に基づく手法
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C(Q) ≈ |J0| ·
∏

J∈JQ

E
t∼MJ


I(A, Q, t)
·∏(T1,T2,(A1,A2))∈EQ∧T1∈VJ ∧T2 /∈VJ

t.F(T1,T2,(A1,A2))∏
join/∈EQ∧join∈EJ

t.Fjoin

 (3.9)

3.3.4 回帰問題として扱う手法
MSCN [28, 29]に代表される手法では，結合カーディナリティ推定を回帰問題と
して扱う．クエリを入力とし，カーディナリティを出力とするようにモデル化が行
われる．クエリを入力する際の埋め込みを工夫することにより，結合も扱うことが
できる．ただし，学習データのラベルとして，実際にクエリ処理をしてカーディナ
リティを取得しなければならないというジレンマが存在する．このため，モデル
の推定性能を上げるために学習データを増やすことが困難という実用上の課題が
残る．

3.3.5 関連研究と提案手法の位置づけ
最後に各手法の位置づけを表 3.3に示す．推定性能，学習コスト，推定コストは
主に中規模程度の環境（～10テーブル，～1Mレコード）を想定した簡易的な比較
である．スケーラビリティとは，データサイズやスキーマサイズを大きくしたとき
の，学習コスト，推定コストや推定性能の悪化しにくさや機能不全への陥りにくさ
を表す．また，近似等は実行コストなどを下げるために元データの分布と比較して
近似を行っている箇所を示す．
ここからは各手法についてまとめる．まず 3.3.1項で示した統計情報に基づく手
法は，属性間が独立であるという仮定が置かれており，中規模程度の設定の時点で
も性能が低下しやすい．ただし，ここで必要となる統計情報の収集コストは機械学
習を利用する手法と比較して非常に低く，学習コストに相当するコストは低い．ま
た，構造が簡単なため推論コストも低い．機械学習による密度推定を利用した手法
のうち，3.3.2項で示したグローバルスキーマに密度推定器を対応付ける手法は，
独立などの仮定を置く必要がないため性能が高い．しかしながらスキーマサイズが
大きくなると，1つの密度推定器で正確な分布を捉える難易度の上昇，必要な計算
機資源の増加といった問題の他に，グローバルスキーマグラフと比較してクエリグ
ラフが小さいときに性能が低下するという課題がある．一方 3.3.1項で示した相関
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ベーススキーマごとの密度推定器を利用する手法では，各密度推定器がこれらの問
題は発生しづらい．しかしながら，相関ベーススキーマの決定は計算コスト高くメ
モリ消費量も多いため，複雑なデータセットには適用が難しい．機械学習を用いた
別のアプローチとして，回帰問題として扱う手法では，クエリを適切に埋め込むこ
とで複雑なデータセットでも比較的高い推定性能を達成している．しかしながら，
実際にクエリ処理をしてラベルを取得する必要があるため学習コストが高く，これ
はスキーマサイズが大きく，対応するクエリが複雑になるほど顕著になる．
これらの既存手法と比較して提案手法では，軽量なスキーマ分割と並列に学習可
能な小さな密度推定器により学習完了までのコストを抑える．さらに推論時は，必
要最低限の密度推定器を組み合わせた推定により，スキーマサイズが大きな環境で
も高い推定性能を実現する．

表 3.2: 表 3.3の比較結果を示す記号の凡例．相対的なものであり，減点方式である
（例として統計情報に基づく手法の推定性能は，単一属性に対する条件のみであれ
ば高いことが期待されるが，複数属性に跨ると他の手法と比較して低下するため ×
として扱っている）．括弧付きのものは，本来該当しない項目だが相当する概念で

評価したものである．

記号 意味
⊚ 高い性能で動作
⃝ 比較的高い性能で動作
△ 動作するが制約が存在
× 低い性能で動作または動作せず
- 非該当
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表 3.3: 結合カーディナリティ手法の比較．記号の意味は表 3.2に示す．

アプローチ
手法，実装例 推定性能 学習コスト 推定コスト スケーラビリティ 近似等

閉入近傍スキーマごとの密度推定
提案手法 ⊚ ⃝ ⃝ ⊚ スキーマ間近似

統計情報（ヒストグラム）
PostgreSQL [19]，MariaDB [60]

× (⊚) ⊚ × 属性間独立，ビン内一様

グローバルスキーマでの密度推定
NeuroCard [24]，第 2章 ⊚ △ △ × ⊚（仮定なし）

相関ベーススキーマごとの密度推定
DeepDB [25]

⊚ △ ⊚ × スキーマ間独立

回帰問題
MSCN [28]

⃝ × ⊚ △ -

3.4 提案手法

本章では，スキーマグラフの構造に基づいた分割ごとの密度推定器を利用した
カーディナリティ推定手法を提案する．まず提案手法による解決アプローチの概要
を紹介し，3.4.1項以降で提案手法の詳細を述べる．

3.3.5項でまとめたように，結合カーディナリティ推定では，スキーマサイズを
大きくしたときの効率的な実行や高い推論性能を出すことができていない．そこで
提案手法では，図 3.5のように，複数の小さい密度推定器を利用するというアプ
ローチでこれらの課題の解決を図る．1つ 1つの密度推定器がカバーする範囲を小
さくすることで，パラメータ数の少ないコンパクトなモデルでよくなり，省リソー
スで高速な動作が可能となる．また各密度推定器を独立したものとすることで，並
列な学習も可能にする．さらにクエリオプティマイザなど実用上要求されやすい小
さなクエリのクエリグラフに密度推定器の範囲がフィットしやすく，推定性能の向
上が期待できる．スキーマ分割の際は，スキーマグラフの構造のみを利用すること
で，DeepDBで発生していたような分割のための追加コストを回避する．推論時は
密度推定器間に共通するテーブルを介することで，密度推定器間の相関を考慮した
推論を実現する．
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提案手法の主な流れは前処理フェーズ，学習フェーズ，推論フェーズでそれぞれ
以下の通りである．

1. 前処理
(a) スキーマグラフの構造に基づいてスキーマを分割する．

2. 学習
(a) スキーマごとに完全外部結合テーブルを作成する．
(b) 完全外部結合テーブルごとにサンプルを利用して密度推定器を学習する．

3. 推論
(a) クエリに必要なスキーマの密度推定器を選択する．
(b) 始点となる結合テーブルのサイズを推定カーディナリティの初期値とし，
密度推定器で述語を満たす確率を推論しカーディナリティを更新する．

(c) 密度推定器を跨ぐ際には，結合した際のアップスケーリングとして Fanout
を推論してカーディナリティを更新する．さらに共通するテーブルのサン
プルを後続の推論条件に利用する．

(d) クエリに必要なスキーマをすべて辿ると，クエリに基づくカーディナリ
ティ推定値が得られる．
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(a) スキーマグラフと閉入近傍結合テーブル
ごとの密度推定器との対応例．閉入近傍結合
テーブルは，各頂点の閉入近傍となるテーブ
ルを完全外部結合したものである．
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(b) クエリグラフと密度推定器の対応例．ク
エリグラフに含まれかつ冗長でない閉入近傍
結合テーブルの密度推定器が用いられる．す
べての密度推定器はオーバーラップを持つ．

図 3.5: 閉近傍スキーマごとの密度推定に基づく手法
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3.4.1 閉入近傍スキーマへの分割
ここでは提案手法で利用する各密度推定器の推定対象となるスキーマを決定する
手順について述べる．まずは多重辺を含まない，つまりグローバルスキーマグラフ
G が有向単純グラフである場合で説明する．提案手法では，スキーマグラフの各頂
点の閉入近傍ごとにスキーマの分割を行う．例として図 3.1aのスキーマグラフを
対象にすると，図 3.5a で示す分割になる．各頂点を見たとき，入次数が 1以上の
頂点は S, U, W の 3つであるため，S, U, W を中心とした 3つの閉入近傍スキーマに
分割されている．
得られる各閉入近傍スキーマの性質について述べる．3.2.1項で記したように，
スキーマグラフの有向辺は一対多のリレーションシップを表している．そのため，
閉入近傍となる頂点集合 N−

G [v] から誘導される部分グラフ G[N−
G [v]] は，すべて

テーブル vを中心とした多対一の関係のみをもつスキーマとなっている．これによ
り，閉入近傍で完全外部結合したテーブルは，常に中心のテーブルはスケールされ
ず，近傍のテーブルのみがスケールされたものとなる．結果として，推論時にダウ
ンスケールが不要になり，推論性能向上に繋がる（ダウンスケールに関する詳細は
3.4.3項で述べる）．次に閉入近傍スキーマがデータベースに表れる様々なリレー
ションシップに対応できることについて述べる．リレーションシップの種類は一対
一，一対多，多対多の 3種類に大別される．3種のうち一対一は単に 1つのテーブ
ルを垂直分割したものと捉えれば，逆に垂直に結合すればスケーリングの必要もな
く 1つのテーブルとして扱えるため，特別の考慮は不要である次に一対多は，例え
ば出版社と書籍をモデリングした際に表れる（出版社は複数の書籍を発行しうる
が，1つの書籍が複数の出版社から発行されることはないものと考える）．この場
合，書籍の数だけスケーリングが発生するため，これを捉える必要があるが，一対
多のリレーションシップ（有向辺）は必ずいずれかの閉入近傍スキーマに含まれる
ため，対応する密度推定器で適切に分布を捉えられる．最後に多対多は，例えば
著者と書籍をモデリングした際に表れる（著者は複数の書籍を執筆することがあ
り，書籍は複数の著者に執筆されることがある）．この場合，著者，書籍両方の数
によってスケーリングが発生するため，これを捉える必要がある．ここで正規化を
考えると，著者と執筆を一対多，執筆と書籍を多対一とすることで情報を損なうこ
となく 2つの一対多で表すことができるとわかる．閉入近傍スキーマは中心テーブ

55



ルから多対一のリレーションシップをすべて含むため，結果として正規化した多対
多のリレーションシップを 1つの密度推定器で扱えることとなる．この性質は一般
的なものではなく，例えば閉出近傍スキーマを利用すると複数のスキーマに跨って
しまう．これらから，閉入近傍スキーマを用いることで 2テーブル間のいずれのリ
レーションシップも近似することなく扱えるといえる．
ここからは手法を一般化し，グローバルスキーマグラフ G が有向多重グラフで
ある場合について述べる．多重辺を含む場合は，辺（結合制約）によってテーブル
結合を行った際のスケーリング結果が異なるため，個別に取り扱う．具体的には，
多重辺の組み合わせごとに閉入近傍スキーマを構築する．手順を Algorithm2に示
す．まず vへの流入辺を近傍の頂点ごとに集める（4 - 6 行）．辺集合の集合となっ
た edges listを元に，直積集合を取得する（9 行）．最後に直積集合ごとにスキーマ
を構築する（11 行）．実際に多重辺を多数含むグローバルスキーマのデータセット
に対して適用した例を図 3.6に示す．例えば postlinksテーブルに注目すると posts
テーブルからの多重辺が存在している（図 3.6a）．多重辺の組み合わせごとに閉入
近傍スキーマが構築され，postlinksテーブルと postsテーブル間では結合制約の組
み合わせが異なる 2つのスキーマとなっている5）．
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(a) 多重辺を持つスキーマグラフの例．
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(b) 多重辺を含持つスキーマグラフ上に閉入
近傍スキーマを構築する例．

図 3.6: 多重辺を持つスキーマグラフに対する閉入近傍スキーマの構築例．

5） 複数の近傍に対して多重辺がある場合は組み合わせの個数だけスキーマが構築される．
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Algorithm 2 多重辺を考慮した閉入近傍ごとのスキーマ分割．多重辺を含む場合
はその直積集合の元である辺の組ごとにスキーマが構築される．
Input: Global schema graph GGLB := (VGLB, EGLB)
Output: Set of closed in-neighborhood schema graphs GCIN

1: GCIN ← {}
2: for v ∈ VGLB do
3: edges list← {}
4: for u ∈ N−

GGLB
(v) do

5: edges list.append({(x, y, c) ∈ EGLB | x = v ∧ y = u})
6: end for
7: N ← |edges list|
8: VCINv ← N−

GGLB
[v]

9: for ECINv ∈ {(e1, . . . , eN) | e1 ∈ edges list[1] ∧ · · · ∧ eN ∈ edges list[N ]} do
10: ▷ Cartesian product
11: GCINv := (VCINv , ECINv)
12: GCIN .append(GCINv)
13: end for
14: end for
15: return GCIN

3.4.2 閉入近傍スキーマごとの結合テーブル（閉入近傍結合テーブ
ル）密度推定器の学習

ここからは得られた閉入近傍スキーマ群に基づいた密度推定器の学習について説
明する．提案手法では，ユニバーサルリレーションによる手法（3.3.2項）や相関
ベース結合テーブルによる手法（3.3.3項）と同様に，スキーマ内に含まれる部分的
なテーブル集合に対する問い合わせへの対応や内部結合・外部結合を共通の推定器
で扱うため，スキーマに含まれるすべてのテーブルを完全外部結合して扱う．な
お，仮想的な追加の属性（テーブルマーカー・Fanout）も同様に扱うこととなる
が，閉入近傍スキーマ内のテーブル間の Fanoutではなく，スキーマ外の隣接する
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テーブルへの Fanoutが必要となる．6）

密度推定器には，共通するテーブルに基づいた連携ができるものを利用する．連
携できない場合，クエリグラフが複数の閉近傍スキーマを跨ぐようなケースでは，
スキーマごとに独立した密度推定となり推定性能が低下する．例えば DeepDBで
用いられている Sum-Product Network [40]は密度推定器の一種であるが，密度推定
対象が閉じているため，提案手法には不適である．ここでは，第 2章で安定して高
い性能が確認されている Denoising Autoencoderを密度推定器として利用する．学
習は 2.3.1項で述べたように，全属性からランダムに選択した属性に対してノイズ
としてマスクをしたものを入力とし，マスクされた属性の出力に対して交差エント
ロピーロスを計算して行う．これにより任意の属性を条件とした任意の属性の分布
を推定可能な密度推定器となる．
学習データには閉入近傍スキーマで完全外部結合したテーブルを利用する．単純
に結合テーブルに含まれる全てのタプルを用いることも考えられるが，データ件数
が非常に多いケースは学習に時間がかかりすぎ，逆にデータ件数が非常に少ない場
合は学習が進まないという問題がある．そこでデータ件数の影響を緩和するため，
結合サンプリングを用いる．結合サンプルの分布を学習することになるため，結合
サンプルは密度推定器の性能に直結する．本来の結合テーブルのデータから独立
同分布かつ均一なサンプルを取得するため，NeuroCardでも利用されている Exact
Weight Algorithm [43]を用いる．7）

3.4.3 複数の閉近傍結合テーブル密度推定器を利用した問い合わせ
複数の閉近傍結合テーブル密度推定器を利用した結合カーディナリティ推定方法
について説明する．提案手法では複数の密度推定器を跨いだ推論を行うため，閉入
近傍スキーマ集合をハイパーグラフ見なしたうえで，クエリグラフに基づいてハイ
パーエッジを辿りながら推論を行う．直感的には，始点となるテーブルを準備し，
そこに対して述語による絞り込みと後続テーブルとの結合の繰り返しをエミュレー
トするイメージである．

6） より正確にいうと，入次数が 0のテーブル単体のカーディナリティを推定する場合に限りスキーマ
内の Fanoutが必要となるが，本章では結合カーディナリティ推定を扱うため省略する．

7） データサイズに対して十分スケールすることができ，提案手法のスケーラビリティを損なうことは
ない．

58



まず閉入近傍スキーマ集合からのハイパーグラフ構築について述べる．
Algorithm3で示すように，各閉入近傍の頂点集合をハイパーエッジ e ∈ Eとし，グ
ローバルスキーマグラフに含まれる頂点集合 V = VGLB と合わせてハイパーグラフ
H := (VGLB, E)を構築する．このとき，以下の系 1が成り立つ．
系 1. Gが連結であれば，G[N−

G [v]].V をハイパーエッジとしたハイパーグラフ H

も連結である．

Algorithm 3 閉入近傍スキーマに含まれる頂点集合をハイパーエッジとしたハイ
パーグラフの構築
Input: Global schema graph GGLB := (VGLB, EGLB), Set of closed in-neighborhood

schema graphs GCIN

Output: Hypergraph of closed in-neighborhood schemas H := (V, E)
1: V ← VGLB

2: E← {}
3: for G ∈ GCIN do
4: E.append(G.V )
5: end for
6: H := (V, E)
7: return H

次に，構築した閉入近傍のハイパーグラフとクエリグラフに基づいた推論方法に
ついて述べる．推論の手順を Algorithm4に示す．まずはじめに，クエリがすべて
のテーブルにアクセスするとは限らないため，クエリグラフ GQに基づいて必要な
閉入近傍スキーマへの絞り込み，つまり対応するサブハイパーグラフ HQの構築を
行う（1 - 3 行）．得られたサブハイパーグラフ HQ のハイパーエッジ EQ を辿るた
めの木を作成し（7 行），幅優先探索順でハイパーエッジを辿る（9 行）．ランダム
にハイパーエッジ EQ から始点 e0 を選択し，その閉入近傍結合テーブルのサイズ
|Je0 |をカーディナリティの初期値とする（4 行）．各ハイパーエッジでは，まず述
語による絞り込み以外に推定が必要となる属性を並べる（10 - 13 行）．具体的に
は，後続のハイパーエッジ fと共通する頂点（テーブル）の属性Acommonと後続の
ハイパーエッジとの結合を考えたときに必要となる Fanout F である．これらと述
語に基づく確率をハイパーエッジ eに対応する閉入近傍結合テーブル Jeの密度推
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定器MJeで推論する（14 行）．このとき先行するハイパーエッジがある場合は，共
通するテーブルの属性のサンプル common samplesを入力に利用する．推論は 1に
入力サンプル common samplesの利用・共通テーブル属性Acommonの追加の推論・
Fanoutの指定 F を加えた Algorithm5で行う．結果として得られる Je内の述語に
基づく確率 PJe(RQ)と Fanoutfanoutsをカーディナリティにかける（15 - 16 行）．
この操作をすべてのハイパーエッジで行うことで，クエリ Qのカーディナリティ
推定値 ˆC(Q)が得られる（19 行）．

表 3.4: Algorithm4で利用する関数の定義

関数名 定義
Random(x) xからランダムに 1要素を選択する．
ToTree(H, G) 有向グラフ G を覆うようにハイパーグラ

フ H のエッジ集合 H.Eから木を構築す
る．系 1から，連結である木が得られる．

BFS(T, s) sを始点とし，幅優先探索順で木 T の辺を
頂点とその次に来る頂点集合のタプルの形
で列挙する．

AttributesIn(v) 頂点（テーブル）集合 v の属性集合を平坦
化した属性集合を取得する．

EdgeToFanoutAttribute(u, v, c) テーブル u から v へ制約条件 c の Fanout
属性を取得する．

図 3.5を例とし始点 e0を S ⋊⋉ T とすると，カーディナリティの初期値は |S ⋊⋉ T |
である．MS⋊⋉T で S ⋊⋉ T でのクエリ条件 Qを満たす確率と S ⋊⋉ T に U を結合した
ときの Fanout FT.id=U.tid を推論した後，MS⋊⋉T から得られた T の属性のサンプルを
入力としてMT⋊⋉U⋊⋉V で T ⋊⋉ U ⋊⋉ V でのクエリ条件 Qを満たす確率を推論すること
となる．
この推定手法は既存手法と比較すると以下の 2点が特徴的である．1つ目はハイ
パーエッジ間で共通する頂点（テーブル）の属性のサンプルを引き継いで入力とす
ることで，共通するテーブルに限られるが先行する属性の条件に即した推論を行っ
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Algorithm 4 複数の閉入近傍結合テーブル密度推定器を利用した結合カーディナ
リティ推定
Input: Global schema graph GGLB := (VGLB, VGLB), Hypergraph of closed in-neighborhood

schemas H := (V, E), Acyclic query Q := (RQ, GQ), GQ ⊆ GG, GQ is simple tree
Output: Estimated cardinality of Q ˆC(Q)

1: EQ ← {e ∈ E | e.V \GQ.V ̸= ∅}
2: VQ ← {v ∈ V | v ∈ GQ.V }
3: HQ := (VQ, EQ)
4: e0 ← Random(EQ)
5: common samples← {}
6: Ĉ← |Je0 | ▷ Number of rows of root table as initial cardinality
7: TEQ

← ToTree(HQ, GQ) ▷ Restructure hyperedges to tree w.r.t. tree GQ

8: successor list← BFS(TEQ
, e0) ▷ Arrange hyperedges in BFS order

9: for e,f∈ successor list do ▷ e and f are current hyperedge and successors, respectively
10: A← AttributesIn(e.V )
11: Acommon ←

∪
f∈f(A ∩AttributesIn(f.V ))

12: fanout edges←
∪

f∈f({(u, v, c) ∈ GQ[f.V ].E | u ∈ (e.V ∩f.V )})
13: F ← EdgeToFanoutAttribute(fanout edges)
14: P̂Je(RQ), ˆfanouts, ˆsamples← Estimate N(MJe, RQ, A, F , Acommon, common samples)

15: Ĉ← Ĉ× P̂Je(RQ)
16: Ĉ← Ĉ×

∏
ˆfanout∈ ˆfanouts

ˆfanout

17: common samples.add( ˆsamples)
18: end for
19: return Ĉ as ˆC(Q)

ている点である．これは密度推定器として利用している Denoising Autoencoderが
任意の条件で推論できるという性質持つことと系 1から連結の定義より，常に可能
である．これにより複数の密度推定器を跨いでも完全な独立を仮定することなく推
論が可能となり，全体としての推論性能向上が期待できる．2つ目はサブハイパー
グラフのハイパーエッジ e ∈ EQ にクエリで必要のない頂点（テーブル）が含まれ
ていても（v∃ ∈ e∧ v /∈ VQ）ダウンスケーリングが不要という点である．これは e

が閉入近傍 N−
G [v]に基づいており，不要になるテーブル（vが不要になることはな

く u ∈ N−
G (v)のいずれかである8））が必ず vから見て多対一になっているからであ

る．こちらも全体としての推論性能向上に寄与する．

8） ∵ |VQ|が 1のときを除き，vが不要になる場合は e自体が冗長で不要となるため
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表 3.5: Algorithm5で利用する関数の定義

関数名 定義
DrawSample(distA) 属性 Aの分布 distA から，分布を重みとしたサンプリン

グを行う．
Encode(a) 属性 Aの要素 aを埋め込む．One-hotベクトルや Entity

Embeddings [47]などが利用できる．
SortBy(A, key func) 属性集合Aを key funcに基づいて昇順に並べ替える．
Mean(a) 数値集合 aの平均値を計算する．

最後に，提案手法による結合カーディナリティ推定手法の定式化を行う．クエリ
Qの結合カーディナリティ推定に必要十分な閉入近傍結合テーブル集合を JQ と
し，最初に取り出す要素を J0 とすると，式 3.7を利用して式 3.10で表せる．ここ
で Etj∼MJj

|Jj .A=t<j .Aで表される期待値は，Jj に先行する J<j のサンプル t<j のうち，
共通するテーブル T ∈ (VJj

∩ VJ<j
)の属性集合Aを推論の条件として利用している

ことを示す．ユニバーサルリレーションを利用した手法（式 3.8）と比較すると期
待値ごとに近似が存在し厳密性で劣るものの，相関ベース結合テーブルを利用した
手法（式 3.9）と比較すると期待値ごとの独立がなくなっている点で近似の精度が
高くなりやすい傾向にある．また，式 3.8，式 3.9いずれとも異なり，Fanoutによ
るダウンスケーリングが不要となっており，これも性能向上に寄与があると考えら
れる．

C(Q) ≈ |J0| ·
∏

Jj∈JQ

E
tj∼MJj

|Jj .A=t<j .A


I(A, Q, tj) ·

∏
(T1,T2,(A1,A2))∈EQ∧T1∈VJj

∧T2 /∈VJj

tj.F(T1,T2,(A1,A2))

(3.10)
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Algorithm 5 密度推定器を利用したセレクティビティと Fanoutの推論とサンプル
の取得
Input: Density Estimator M, Predicate ranges RQ, Whole attributes A, Fanout attributes F ,

Attributes to be additionally sampled Asample, Samples samples

Output: Estimated selectivity Ŝ, Fanouts ˆfanouts, Samples w/ some updates ˆsamples

1: procedure Estimate N ▷ Sample size is N

2: procedure Estimate(M, RQ, AQ, F , Asample, sample)
3: Initialize inputs with sample

4: ˆprob← 1.0
5: for A ∈ AQ do ▷ Estimate probabilities of predicates
6: ˆdistA ←M(inputs) ▷ Forward
7: ˆdist′

A ← { ˆdista ∗ (a ∈ RQ(A)) | a ∈ A} ▷ Filter distribution by RQ

8: ˆprob← ˆprob ∗
∑

a∈A
ˆdist′

a

9: â← DrawSample( ˆdist′
A)

10: inputs[A]← Encode(â)
11: end for
12: for A ∈ F do ▷ Estimate fanouts
13: ˆdistA ←M(inputs)
14: â← DrawSample( ˆdistA)
15: ˆfanout[A]← â

16: ˆsample[A]← â

17: inputs[A]← Encode(â)
18: end for
19: for A ∈ Asample do ▷ Draw samples for subsequent estimation
20: ˆdistA ←M(inputs)
21: â← DrawSample( ˆdistA)
22: ˆsample[A]← â

23: inputs[A]← Encode(â)
24: end for
25: return ˆprob, ˆfanout, ˆsample

26: end procedure
27:
28: AQ ← {A ∈ A | |RQ(A)| < dom(A)} ▷ Filter attributes by predicates
29: AQ ← SortBy(AQ, key : A→ |RQ(A)|) ▷ Sort attributes by domain size
30: for i ∈ {1, . . . , N} do ▷ Batched in practice
31: ˆprobs[i], ˆfanouts[i], ˆsamples[i]← Estimate(M, RQ, AQ, F , Asample, ˆsamples)
32: end for
33: Ŝ← mean( ˆprobs)
34: return Ŝ, ˆfanouts, ˆsamples

35: end procedure
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3.5 評価実験

本節では結合カーディナリティ推定の評価を行う．まず 3.5.1項で実験設定を一
通り説明した後，3.5.2項でカーディナリティ推定単独での評価を，3.5.3項でカー
ディナリティ推定をクエリオプティマイザに利用した際の評価を行う．

3.5.1 実験設定

3.5.1.1 ベンチマーク
評価実験に用いるベンチマーク（データセット+ワークロード）について述べる．
JOBベンチマーク：JOBベンチマーク [13]は俳優，映像エンターテイメントや
ビデオゲーム等に関する実世界データセットである IMDb9）データセットを利用す
る．最大 36M行，最大 17属性の 16テーブルから構成される．ワークロードとし
ては JOB-light [28]と JOB-m [24]の 2つを利用する．JOB-lightは複数の等号条件
と範囲条件を持ち，最大 5テーブルの内部結合を行う 70クエリから構成される．
JOB-mは複数の等号条件，範囲条件に加えて IN句や LIKE演算子を持ち，最大 11
テーブルの内部結合を行う 113クエリから構成される．

3.5.1.2 評価指標
推定性能の評価指標には，真のカーディナリティを C，推定されたカーディナリ
ティを Ĉとして式 3.11で表される Q-Error [13]を用いる．これは推定されたカー
ディナリティが真の値から何倍離れているかを表す無次元の値であり，常に 1 以
上で小さい方が優れていることを示す．

Q-Error := max( Ĉ, C)
min( Ĉ, C)

(3.11)

さらにクエリ実行時間に相当する指標として P-Error [61]を用いる．この指標で
は，まず PostgreSQLのクエリオプティマイザを利用して，真のカーディナリティ
Cと推定されたカーディナリティ Ĉそれぞれを利用した実行プランを作成する．

9） https://www.imdb.com
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このとき，実行プラン作成が目的であるため，対象クエリ全体ではなく対象クエ
リの一部分に対するカーディナリティ推定が複数回利用されることとなる．その
ため，カーディナリティ推定としては，複雑で大きなクエリよりもそのサブセッ
トとなる小さなクエリの推定性能が影響力を持つ．次に，再度 PostgreSQLのクエ
リオプティマイザを利用して，作成した 2つの実行プランの実行コストを推定す
る．最後に，得られた推定実行コストの比を P-Errorとする．多くの場合 1 以上で
あり，小さい方が優れていることを示す．カーディナリティ Cを利用したクエ
リオプティマイザによる実行プランを P (C)，実行プラン P の実行コスト推定を
PCEst(P )とすると，P-Errorは式 3.12と表せる．

P-Error := PCEst(P ( Ĉ))
PCEst(P (C))

(3.12)

なお，実行プラン作成以外のカーディナリティ推定には真のカーディナリティが利
用される．この指標は，時間のかかる実際のクエリ実行を行うことなくクエリ実行
時間の比較に相当する比較ができる点が特徴的である．クエリオプティマイザに
よっては，真のカーディナリティを利用した実行プランの推定コストが推定された
カーディナリティを利用したものを上回る（P-Error < 1）可能性がある．しかしな
がら，PCEst(P (C))は比較手法間で一貫したものであるため，比較する際の指標
としては問題がないとされている．
実際には，事前に対象のクエリを結合ごとのサブセットに分割してカーディ
ナリティ推定を行い，その推定値集合を CEB [54] と pg hint plan [55] を介して
PostgreSQLのオプティマイザに与えることで実行プラン P ( Ĉ)を取得する．そし
て取得した P ( Ĉ)の実行コスト PCEst(P ( Ĉ))を PostgreSQLのオプティマイザで推
定する．同様に真のカーディナリティを利用したときの実行コスト PCEst(P (C))
も推定し，最後に P-Errorを求める．

3.5.1.3 提案手法とベースライン
提案手法には，密度推定器として第 2章で提案した Denoising Autoencoderベー
スのモデルを利用する．Denoising Autoencoderの実装には Multi-Layer Perceptron
を用いる．
比較手法には，統計情報を利用する（1）PostgreSQL（バージョン 11.8），グロー
バルスキーマでの密度推定を利用する（2）第 2章提案と（3）NeuroCard [24, 51]，
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相関ベーススキーマでの密度推定を利用する（4）DeepDB [25, 52] を用いる．既
存手法のハイパパラメータはそれぞれの論文または公開されているソースコー
ド [24, 25,51,52]で報告されている値を利用する．

3.5.1.4 実験環境
すべての手法で同じ 16CPUs（最大 2.5GHz）・メモリ 64GB・Nvidia Tesla T4 GPU
を備えた実行環境にて評価を行う．評価対象の手法のうち，提案手法と NeuroCard
は GPUによる高速化が可能である．

3.5.2 カーディナリティ推定としての評価
評価の指針とモチベーション：結合カーディナリティ推定単体での性能評価を行
う．各手法の Q-Error（Median・90パーセンタイル・95パーセンタイル・99パーセ
ンタイル・最大値），平均応答時間と学習時間から評価し，提案手法の有用性を確
認する．
結果：JOB-light，JOB-mの Q-Errorによる評価結果をそれぞれ表 3.6，表 3.7に示
す．JOB-lightでは，常に本章の提案手法が最も良い推定性能を示した．JOB-light
は 16テーブル中最大 5テーブルにしかアクセスしないことから，閉入近傍スキー
マごとに密度推定器を構築したことが有効に働いたと思われる．平均応答時間に関
しても同様に，密度推定器が分割されたスキーマごとであるため相対的にパラメー
タ数を削減でき，高速な推論に寄与していると考えられる．一方で第 2章の提案手
法や既存手法の NeuroCardは，ユニバーサルリレーションに対応する大きな密度推
定器の利用や推論時に多数のダウンスケールが必要なこともあり，推定性能と応答
性能はいずれも低かった．DeepDBはスキーマ分割のための相関計算にて 100GB
以上のメモリが必要となり動作しなかった．今回の実験で用いた IMDbデータセッ
トと同等以上の規模のデータでは同様のことが予想されるため，スケーラビリティ
に難があるといえる．応答時間だけで見るとヒストグラムを利用する PostgreSQL
が最も高速だったが，推定性能とのトレードオフとなっていることがわかる．

JOB-mでは，提案手法は PostgreSQLよりは性能が向上したものの，NeuroCard
と比較すると劣る結果となった．JOB-light と異なり JOB-m は最大 11 テーブル
にアクセスするため，ユニバーサルリレーションが有利になったと考えられる．
JOB-lightの場合と比較して，提案手法と NeuroCardの応答時間が大幅に増加した
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が，これは JOB-mのクエリに含まれる IN句や LIKE演算子に関連する実装レベル
の問題であると思われる．提案手法と NeuroCardはいずれも，ドメイン全体に対し
てそれらの条件判定を行う処理に多くの時間を要している．インデックスを作成
し，効率的に条件判定することで改善が考えられる．
ここで，2つのベンチマークで共通となっている密度推定器の学習時間に注目し
てみると，本章の提案手法が最も短いことがわかる．並列に学習可能であること，
各密度推定器のパラメータ数が少ないことが有効に働いている．ユニバーサルリ
レーションを利用した手法で特にアクセスするテーブル数が多い場合と比較する
と，推定性能では JOB-mの結果のように密度推定器を横断する近似を行う分劣る
ことがある．しかしながらより大規模なスキーマになると，学習時間を含めて考え
たとき提案手法のほうが実用に向いたものになるといえるだろう．また，密度推定
器が独立していることは並列に学習が可能という点以外のメリットもある．今後，
データに変更がある環境を想定する際に，データ変更に追従するために密度推定器
を更新することが考えられるが，全体ではなく更新があったテーブルが含まれる密
度推定器のみを更新すれば良いという効果が期待できる．

表 3.6: JOB-lightベンチマークでの Q-Error，平均応答時間 (ms) と学習時間
(min)10）

Method Median 90%th 95%th 99%th Max 応答時間 (ms) 学習時間 (min)

第 3章提案 1.60 4.19 6.87 19.7 33.0 22.8 66.312）

第 2章提案 1.68 5.66 22.1 33.6 34.8 50.4 128
NeuroCard 1.79 9.00 19.5 36.5 43.2 160 391
DeepDB —Out of memory to train (100GB+)—
PostgreSQL11） 7.44 163 1.1 · 103 2.8 · 103 3.5 · 103 3.44 —

10） 同じデータセットを学習した同じモデルで評価するため，学習時間は等しい．
11） EXPLAIN文を介した応答時間を報告するため，参考値である．カーディナリティ推定のみの所
要時間は掲載している時間より短くなる．

12） 並列に利用可能な十分な計算機資源があると仮定している．
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表 3.7: JOB-mベンチマークでの Q-Error，平均応答時間 (ms) と学習時間 (min)10）

Method Median 90%th 95%th 99%th Max 応答時間 (ms) 学習時間 (min)

第 3章提案 3.72 378 1.4× 103 1.6× 104 8.7× 104 1.7× 103 66.3
NeuroCard 2.74 160 559 4.8 · 103 1.7 · 104 846 391
DeepDB —Out of memory to train (100GB+)—
PostgreSQL11） 160 5.8 · 103 1.3 · 104 8.7 · 104 1.0 · 105 6.95 —

3.5.3 クエリオプティマイザに与える影響の評価
評価の指針とモチベーション：結合カーディナリティ推定の応用の 1つとして，
クエリオプティマイザへの応用を想定した評価を行う．各手法の P-Error（Median・
90パーセンタイル・95パーセンタイル・99パーセンタイル・最大値）から評価し，
提案手法が良い実行プランの作成に寄与することを確認する．
結果：JOB-light，JOB-mの P-Errorによる評価結果をそれぞれ表 3.8，表 3.9に示
す．まず JOB-lightでは，本章の提案手法が最もエラーを抑えることができた．こ
れによりクエリオプティマイザを介したクエリ処理の高速化が期待できるといえ
る．一方で JOB-mでは，既存手法と大きな差がないかやや劣るケースが確認され
た．原因として表 3.7の Q-Errorでも見られるように，分割したスキーマを横断し
た推論が数多く必要になると，オーバーラップしているテーブル以外の密度推定器
間でやり取りできない相関の影響が増え，性能低下につながっていると思われる．
ただしこの推定性能の低下は 3.5.2項でも示したように個別の推論にかかる時間や
学習時間とのトレードオフとなっている．そもそも動作しないということは避けな
ければならないため，特にスキーマサイズが大きい環境では提案手法のようなス
ケーラビリティが重要となる．今後，より大規模なスキーマを持つベンチマークで
評価することが考えられる．

3.6 おわりに

本章では複雑なスキーマを持つデータの高速な処理のための要素技術の 1つとし
て，第 2章で提案した推定器を複数組み合わせることにより効率的な結合カーディ
ナリティ推定を行う手法を提案した．提案手法の主な特徴は 3点にまとめられる．
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表 3.8: JOB-lightベンチマークでの P-Error

Method Median 90%th 95%th 99%th Max

第 3章提案 1.00 1.17 1.32 1.97 2.26
第 2章提案 1.00 1.40 1.80 2.34 2.41
NeuroCard 1.01 1.56 2.27 2.53 4.11
DeepDB —Out of memory to train (100GB+)—
PostgreSQL 1.00 1.24 1.34 2.01 2.63

表 3.9: JOB-mベンチマークでの P-Error

Method Median 90%th 95%th 99%th Max

第 3章提案 1.00 3.12 7.53 37.8 50.4
NeuroCard 1.02 2.33 2.94 15.7 50.4
DeepDB —Out of memory to train (100GB+)—
PostgreSQL 1.03 3.15 6.27 36.9 50.3

1つ目の特徴はスキーマサイズに対するスケーラビリティである．データベースス
キーマに対してグラフ構造に基づくシンプルな分割を行い，分割されたスキーマご
とに密度推定器の学習を行う．各密度推定器はコンパクトになるため訓練が容易
で，並列学習も可能となる．2つ目の特徴はデータサイズに対するスケーラビリ
ティである．学習データを適切にサンプリングして利用することで，小規模から大
規模データまで柔軟に対応できる．3つ目の特徴は高い推定性能である．密度推定
器の対象範囲がクエリにフィットしやすく，推論性能が高くなる．特にクエリオプ
ティマイザから利用する際に効果的である．複数のベンチマークと複数の指標で評
価し，大規模スキーマ環境やクエリオプティマイザへの応用で提案手法が有用であ
ることを確認した．
一方で，本章の提案手法は第 2章で提案した手法ほど既存手法と比較したときの
高速化が見られないケースが確認されている．この一因として，密度推定器間での
サンプル受け渡しによるオーバーヘッドが考えられる．各密度推定器はそれぞれの
埋め込み層を持っているため，共通属性のサンプルであっても先行する密度推定器
デコードしてから後続の密度推定器でエンコードする必要がある．提案手法の特徴
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を損なうことなくこのオーバーヘッドを解消することが今後の課題である．
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第 4章 カーディナリティ推定と差分プ
ライバシ

4.1 はじめに

第 1章で述べたように，個人に関するデータ，つまりパーソナルデータの利活用
が進んでいる．パーソナルデータの利用はサービスに有用であることが多いが，一
方で個々人の特定やプライバシの開示を防ぐためプライバシの保護が必要となる．
よく知られたプライバシ保護の方法としてデータの k-匿名化があげられる．しか
しながら，リンケージ攻撃以外の攻撃や複数の問合せによるモザイク効果などに
よってプライバシが開示されてしまうこと知られており [14]，プライバシ保護とし
て常に厳密とは言えない．このような背景から，攻撃手法や背景知識に依存しない
プライバシ指標として差分プライバシ [17, 65, 66] が提案されている．差分プライバ
シは一定の識別困難性に基づき任意の攻撃に対してプライバシ保護を行う．例えば
ある計算機構が差分プライバシを満たしている場合，いかなる攻撃手段や背景知
識を利用してもプライバシ強度パラメータで指定される以上に特定レコードを識
別することが不可能と保証される．差分プライバシの有用性は既に認知され始め
ており，例えば Apple社はユーザデータを差分プライバシで保護して扱っている
ことを公表している [67]．その他の応用例として，データベースに対する SQLの
問い合わせを差分プライベートにすることを目的とした Differentially Private SQL
(DPSQL) [68, 69, 70, 71] があげられる．既存のデータ処理から SQLという広く用い
られているインターフェースを変えることなく，パーソナルデータを対象としたカ
ウントクエリ（カーディナリティ推定）・結合演算・集約演算などが扱えるように
なるという点で有用である．
データを元に予測や推定を行う機械学習でもパーソナルデータが含まれる場合は
プライバシ保護が必要となる．実際にパーソナルデータを学習した深層学習モデ
ルに対する攻撃手法 [72]や開示が望ましくないデータを記録する傾向 [73]が報告
されている．差分プライバシはこれらの問題を解決する選択肢の 1つであり，学
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習時に差分プライバシを満たす，差分プライベート学習手法が提案されている．
ニューラルネットワークでは，一般的に，確率的勾配降下法（SGD）によってパラ
メータの更新を行うため，パラメータにパーソナルデータの情報が埋め込まれるこ
ととなる．Abadiら [31] はこの点に注目し，SGDによるパラメータ更新の際に勾
配クリッピングとノイズ付与を行うことで差分プライバシを満たす Differentially
Private Stochastic Gradient Descent (DPSGD) を提案している．DPSGDを利用して
学習を行うことで，学習済みモデルから学習データを推論する攻撃 [72, 74]や再構
築する攻撃に対応できることが報告されている [75]．DPSGDは安全性を向上させ
る一方で，SGDと比較して，勾配クリッピングとノイズ付与の影響によりモデル
の有用性が低下するというトレードオフがある．そのため，タスクや安全性の度
合いによっては有用なモデルが得られないことがある．差分プライバシを満たす
ニューラルネットワークモデルの実用上の意義は大きく，DPSGDの有用性が低下
するという問題を改善する手法も提案されている [32, 33, 76]．いずれの手法も更新
するパラメータを減らすことでクリッピングやノイズの影響を抑えるというアプ
ローチをとる．具体的には更新対象パラメータ数削減のために，重み行列や勾配行
列を低ランク近似する手法 [32, 76]やスパース化して扱う手法 [33]が提案されてい
る．ここで利用されている重み行列や勾配行列の低ランク性とスパース性という 2
つの性質はそれぞれ大域的な偏りと局所的な偏りに基づくものとみなすことができ
る（4.3.1項で詳説する）．そこで対象の異なるこの 2つの性質を同時に利用するこ
とでより効率的な更新対象パラメータ数削減が考えられるが，併用を単純に実現す
ることはできない．先に低ランク近似した後にスパース化するケースでは，元の行
列の各要素に独立した情報は低ランク近似された行列上では失われているため，ス
パース化が困難となる．一方先にスパース化をした後に低ランク近似するケースで
は，最終的な更新対象パラメータ数は低ランク近似のみを行ったケースと同等であ
り，スパース化による恩恵が受けられない．
本章では，ニューラルネットワークパラメータの低ランク性とスパース性とい
う 2つの冗長性に注目し，その両方を考慮した更新対象パラメータ数削減により
DPSGDから来る悪影響を軽減することを目指す．
本章の主な貢献点は以下の通りである．

•ニューラルネットワークパラメータの低ランク性とスパース性の両方を利用
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し，更新対象パラメータを大きく削減することで差分プライバシを満たし
ながら有用性の高いモデルとして学習する手法 LSG (Low-rank and Sparse
properties of neural networks’ Gradient) を提案する．LSGでは，先に大域的な
偏りによる冗長性に基づく低ランク近似を行う．さらに，ニューラルネット
ワークの構造として全結合層のユニットとユニットの接続関係を工夫して利用
することで，近似した行列に対して局所的な偏りによる冗長性に基づくスパー
ス化を行う．いずれもニューラルネットワークパラメータに経験的に知られて
いる冗長性に基づいた処理であるため，モデルの持つ重要な情報が失われにく
く，結果として有用性の高いモデルの学習が可能である．

•LSGを全結合層に基づく構造だけでなく，Attention層や畳み込み層に適用で
きるような拡張を提案する．ここでは低ランク近似に加えて，畳み込み層内の
チャネルレベルの偏りを利用したスパース化を行うことで実現する．

•タスク，モデル構造や学習パターンを変えた様々なシーンで LSG が有効
であることを実験的に確認した．スクラッチからの学習として，Denoising
Autoencoderによる近似カウントクエリ処理（第 3章）では，エラーの中央値
から最大値まで全体的に改善することが，畳み込み層を含むモデルで画像処理
タスクで評価した場合では正解率が最大 7%向上することが確認された．また
ファインチューニングの場合，学習済み大規模言語モデル RoBERTa [77]を利
用して自然言語処理タスクで評価したところ，次点の性能を示した手法と比較
して正解率が最大 4%向上することが確認された．

本章の以降の節は以下の通りである．4.2節で差分プライバシとニューラルネッ
トワークに関する事前知識を導入し，4.3節で提案手法 LSGを詳説する．4.4節で
LSGの評価を行い，4.5節で本章をまとめる．

4.2 事前準備

この章では提案手法の基礎となる概念や既存技術について説明する．
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4.2.1 (ϵ, δ)-差分プライバシ
差分プライバシ [17] とは，データベースに含まれるパーソナルデータの保護を
目的とした指標である．差分プライバシを満たした計算機構の場合，いかなるレ
コード集合が対象となる問合せを組み合わせても特定のレコードが含まれているか
どうかの識別が困難となる．これを以て特定のレコード，つまりパーソナルデータ
のプライバシが開示されないことを保証している．識別困難性に基づいているた
め，攻撃手法や背景知識に依らない安全性の指標となっている点が特徴的である．
以下では差分プライバシの定義について述べる．
定義 1 ((ϵ, δ)-差分プライバシ [17] ). レコード xi の集合をデータベース D = {xi}n

i=1

とし，取り得るデータベースの集合を Dとする．D から情報を取り出す処理を Q

とし，その出力が取り得る集合のサブセットを R とする．任意の隣接1）したデー
タベースの組 (D1, D2) ∈ Dと任意の取りうる出力 Rに対して以下が成立するとき，
Q は (ϵ, δ)-差分プライバシを満たしていると言う．

Pr(Q(D1) ∈ R) ≤ eϵ · P (Q(D2) ∈ R) + δ

任意の隣接したデータベース D1, D2 に対する問い合わせ結果 Q(D1) と Q(D2)
のどの要素の確率を見てもパラメータ ϵ, δ で指定された程度に類似している2），つ
まり特定のレコードがデータベースに含まれているかどうかの推定が困難であるこ
とを表している．なお，妥当なプライバシパラメータの決定はユースケースや要
件に依存する．この問題を解決するため，Epsilon Registry [78]が提案されている．
これは具体的なパラメータを提案するのではなく，差分プライバシを利用するユー
ザがプライバシパラメータを公開することで，相対的な安全性の確認や妥当なパラ
メータ決定の補助が可能になるというスキームの提案である．
実際に差分プライバシを満たすための手法として，ガウシアンノイズを利用した
ガウシアンメカニズムが知られている．
定義 2 (ガウシアンメカニズム [17] ). f : X → Rを入力X を取りセンシティビティ
が Sf の関数とする．このとき，ガウシアンメカニズムMσ は ϵ・δ・データの参照
回数から求まる σ を利用して以下のように f の出力に対してノイズ加算を行うこ

1） ここでの隣接とは，1レコードのみが異なることを表す．
2） 分布が類似しているともいえる．
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とで (ϵ, δ)-差分プライバシを保証する．

Mσ(x) = f(x) + N(0, Sf
2σ2I)

差分プライバシの特徴として，既に差分プライバシを満たした出力は再利用して
も追加のプライバシコストがかからない．
定理 1 (Post-processing定理 [17] ). M : D→ R を (ϵ, δ)-差分プライバシを満たす
関数，Rを別の出力集合 R′ に写す f : R → R′ を任意の関数とする．このとき
f ◦M : D→ R′ は (ϵ, δ)-差分プライバシを満たす．

4.2.2 DPSGD: Differentially Private Stochastic Gradient Descent

DPSGD [31, 79, 80] とは，差分プライバシを満たす確率的勾配降下法である．モ
デルの構造に依らず，パラメータ更新に利用することで差分プライバシを満た
すモデルとなる．具体的には，勾配クリッピングとノイズ付与を追加で行う．
サンプル xi ごとに計算された勾配 gxi

の L2 ノルムを閾値 C でクリッピング
（gxi

/max(||gxi
||2, C)）することで，サンプルごとの影響度合い（センシティビティ

S = C）に上界を定める．加えて，ガウシアンメカニズム（定義 2）を用いて勾配
にノイズを加算することで，(ϵ, δ)-差分プライバシの満足を保証する．

Mσ(x) = f(x) + N(0, C2σ2I)

パラメータ更新に利用する勾配に変更を加えるため，差分プライバシを考慮し
ない場合と比較して得られるモデルの有用性は低下する．この度合いはパラメー
タ ϵ， δ に依存しており，安全性を向上させると有用性が低下するトレードオフと
なっている．

4.2.3 DPSGDを拡張した既存手法
DPSGDでは差分プライバシによる安全性が担保された一方で，有用性の低下
が大きく，実用に問題が出てしまうことが実験的に示されている [32]．そこで，
DPSGDと同等の安全性を担保したまま，有用性を向上させる提案が行われてい
る [32, 33, 76]．いずれの手法も DPSGDによるクリッピングとノイズの影響を緩和
することでモデルの有用性向上を図っている．主に不必要なパラメータの更新を削
減することで，元の勾配が持つ情報量以上にノイズの影響を受けてしまうことを避
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けるアプローチが取られている．このアプローチの実現方法は，ニューラルネット
ワークに表れる重み行列と勾配行列の低ランク性を利用したものとスパース性を利
用したものの 2つに大別される．

4.2.3.1 低ランク性に基づく手法
低ランク性とその利用について紹介する．行列のランクが低いということは，行
列分解を行い要素数の少ない行列として扱っても元の行列の情報を保てることを意
味する．ニューラルネットワークの重み行列と勾配行列の低ランク性は経験的に知
られており [32, 76, 81, 82, 83, 84]，DPSGDの拡張以外に圧縮や高速化のためにも利
用され，その有効性が示されている．

Reparametrized Gradient Perturbation (RGP)： RGP [32] とは，低ランク
近似を利用する差分プライバシを満たすニューラルネットワークのパラメータ更新
手法である．重み行列 W ∈ Rm×n を，Power method（Algorithm6）によりランク
r で低ランク近似した行列 L ∈ Rm×r, R ∈ Rr×n と順伝播のみに利用する残差行列
W̃ ∈ Rm×n を用いて以下のように再定義する．

L, R = PowerMethod(W , r)

W̃ = W −LR

W
reparametrize→ LR + W̃ .stop gradients()

stop gradients() はパラメータ更新を行わないことを示す．入力を x，出力 y とし
たとき，順伝播は以下のように表される．

y = LRx + W̃ x (4.1)

ここから，L, R の勾配はそれぞれ以下のように表される．

∂L = (∂W )RT , ∂R = LT (∂W ) (4.2)

L の列と R の行が正規直交基底を成している場合，W は以下の値で更新できる．

(∂L)R + L(∂R)−LLT (∂L)R (4.3)

このとき，DPSGDと同様に勾配クリッピングとノイズ付与を ∂L, ∂R に行うこと
で差分プライバシを満たす．r < min(m, n) となる r を選べば，∂W と比較して
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∂L, ∂R の合計パラメータ数が少なくなり (r(m + n) < mn)，DPSGDを直接利用し
た場合と比較してモデルの有用性が高くなることが報告されている．しかしなが
ら，安全性を考慮しない通常の学習と比較すると，ニューラルネットワークパラ
メータの局所的な傾向を捉えられておらず，依然として有用性の低下は大きい．

4.3節で提案する手法は局所的な傾向も捉えることで有用性の向上を図る．

Algorithm 6 Power methodによる行列分解
Input: Weight matrix W ∈ Rm×n, rank r

Output: Gradient matrices L ∈ Rm×r, R ∈ Rr×n

1: Initialize R from standard Gaussian distribution N(0, 1).
2: L←W RT

3: Orthonormalize the columns of L.
4: R← LT W

5: Orthonormalize the rows of R.
6: return L, R

4.2.3.2 スパース性に基づく手法
スパース性とその利用について紹介する．行列がスパースであるということは，

0（ごく小さい値が無視できる文脈ではそれも含む 3））である要素が多く，効率的
な格納方式や計算方式を採用できることに繋がる．多くのニューラルネットワーク
の重み行列や勾配行列にスパース性は表れており，圧縮や高速化を目的とした枝刈
り技術を中心に広く活用されている [85, 86,87]．

Sparse Network Finetuning with DPSGD (SNF-DPSGD)： SNF-
DPSGD [33] とは，スパース性に基づくニューラルネットワークモデルの効率的な
差分プライベートファインチューニング手法である．スパース性を仮定した枝刈り
技術 [87, 88]に倣い，重みの絶対値が小さいパラメータを重要でないパラメータと
して扱い，そのパラメータを DPSGDによる更新対象から除外する．このときパブ
リックデータで事前学習した重みを参照することで，定理 1により追加のプライバ

3） Wi′j′ < θ, θ ≈ 0 はアクティベーションへの貢献がごく小さい (
∑i̸=i′∧j ̸=j′

Wijxij ≈
∑

Wijxij) た
め Wi′j′ = 0 として扱うことができる
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シコストは必要としない．一方で事前学習した重みは不変であるため，更新される
パラメータはファインチューニングの中で常に一定である．また，ドメイン適応の
先行研究 [89]に基づき，スパース性の仮定は畳み込み層のパラメータのみを対象と
している．DPSGDでファインチューニングした場合と比較してモデルの有用性が
高くなることが報告されているが，これは個別の要素のみを利用しており大域的な
ニューラルネットワークパラメータの傾向を利用できていないこと，パブリック
データで事前学習されたモデルのファインチューニングのみに利用できることに注
意されたい．

4.3節で提案する手法は大域的な傾向を併用することで有用性を向上させ，さら
に事前学習モデルに依存しないスパース化を実現することでより多くのケースで利
用可能なものとする．

4.2.4 ニューラルネットワークプルーニング
ニューラルネットワークの圧縮や高速化を目的として多数のプルーニング手
法 [85, 86, 87, 90, 91]が提案されている．典型的なものとしては絶対値が小さい重み
を除外するというアプローチがあり，この操作は破壊的であるものの，経験的にあ
る程度の割合であればモデルの有用性に大きな悪影響はないことが知られている．
具体的なアプローチは様々あり，ニューラルネットワークの構造に基づいた，例え
ば全結合層のユニット単位 [86]や畳み込み層のカーネルやチャネル単位 [90, 91]で
のプルーニングが提案されている．いずれの手法も，経験的に，ニューラルネット
ワークの構造に基づいた重みのグループごとに重要度の偏りがあるということに基
づいてプルーニング対象を決定している．プルーニングに似たような操作として，
過学習を抑えるための Dropout [92]が知られている．プルーニングと比較して一部
の重みを除外するのではなく更新をスキップするだけという違いはあるものの，更
新対象パラメータ数を減らしているにも関わらず学習に良い影響を与えている．こ
れらから，パラメータには冗長性やむしろ一時的に学習しないほうが良いという
ケースがあることがわかる．前述した SNF-DPSGD [33]はこれらの背景に基づい
て，DPSGDをベースとした差分プライベートなファインチューニング時に重要
でない重みの更新をスキップするという手法を提案している．しかしながら，4.3
節や 4.4節の実験結果で示すように，スパース化だけを用いた更新対象パラメータ
数削減は局所的な偏りしか捉えられず不十分である．提案手法では，特にニューラ
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ルネットワークの構造に基づいた重みのグループごとに重要度の偏りがあるという
点を活用し，低ランク近似と両立させることでより効率的な差分プライベート学習
の実現を図る．

4.3 提案手法

得られるモデルの有用性が高い差分プライベート学習手法を提案する．既存の
DPSGDを拡張した手法では，ニューラルネットワークパラメータの低ランク性と
スパース性のいずれかを利用して更新対象パラメータを削減することで，DPSGD
処理の影響の軽減から有用性の改善を図っている．低ランク性とスパース性は独立
したものであるが，行列分解された行列の成分は元の行列の複数の成分に影響を持
つため，その組み合わせを単純に扱うことは出来ない．そのため，低ランク近似と
スパース化を両立した更新対象パラメータ数削減手法は存在していない．
提案手法では，ニューラルネットワーク内のユニットの接続関係とその重要度の
偏りに注目する．プルーニング技術 [86, 90, 91]に倣い，重み行列から各ユニットの
重要度を集約することで入力ユニットと出力ユニットの重要度を定義する．低ラン
ク近似した行列にも入力ユニットや出力ユニットとの対応関係があるため，定義し
た重要度を利用することで低ランク近似された勾配行列のスパース化が可能とな
る．これにより，低ランク性とスパース性のいずれかだけを利用した場合と比較し
て，両方の性質から捉えられる多くの更新対象パラメータを削減し，結果として差
分プライバシのための勾配クリッピングやノイズの影響が軽減され，得られるモデ
ルの有用性が向上する．実際に，低ランク性のみの場合と提案手法による低ランク
性とスパース性を併用した場合をクリッピングの観点で比較すると，リスト 1のよ
うになる．各要素が学習データに対応しており，数値が 1であることは勾配行列の
ノルムがクリッピング閾値を下回りクリップされないことを，数値が 1未満である
場合は値が小さいほど勾配の値が大きくクリップされることを意味する．スパース
化すると勾配行列のノルムは単調に小さくなり，多くの要素でクリッピングの影響
がなくなるか軽減されていることがわかる．提案手法の主な流れは以下の通りで
ある．

1. 重み行列から入力側ユニットと出力側ユニットの重要度を算出
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// 低ランク性のみ
0.9727, 0.9805, 1.0000, 1.0000, 0.9678, 1.0000, 1.0000,

0.9023, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

0.6670, 1.0000, 0.9531, 1.0000, 1.0000, 1.0000, 0.9473

// 低ランク性 + スパース性 (p = 0.3)

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,

0.7300, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

Listing 1: スパース化によるクリッピングへの影響例．
クリッピング前後のノルム比であり，値が小さい要素ほど勾配が大きくクリップさ
れる．

2. 低ランク近似された勾配行列の取得
3. 勾配行列に DPSGDによる差分プライバシ処理を適用
4. 入力側ユニットと出力側ユニットの重要度に基づき低ランク近似された勾配行
列をスパース化

5. 勾配行列を利用して重みを更新

4.3.1 項で更新対象パラメータ数の削減に利用する性質を個別に導入した後，
4.3.2項でそれらの性質の併用と具体的な手順について詳説する．最後に 4.3.3項で
より広い深層学習モデルアーキテクチャに対応できるように拡張を行う．

4.3.1 更新対象パラメータ数の削減
ここでは提案手法で利用する更新対象パラメータ数削減のアプローチについて述
べる．提案手法では重み行列と勾配行列の低ランク性とスパース性の両方に注目す
る．例えば学習済み言語モデルである RoBERTa [77]の重み行列は図 4.1aのように
なっており，多くのパラメータが ≈ 0 でスパース ）3）であることがわかる．各軸が
入力側ユニットと出力側ユニットに対応していることを踏まえると，ユニット単位
に重要度の偏りがあることも確認できる．また，各軸方向に似た傾向を持つベクト
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ルが多数見られることから，低ランク性も示唆されている．学習フェーズに見られ
る勾配行列も同様の傾向であることが図 4.1bからわかる．ここからは提案手法で
利用する低ランク近似とスパース化それぞれ個別に導入を行う．

(a) 重み行列 (b) 勾配行列

図 4.1: 学習済み RoBERTaモデルのパラメータ例．明るい要素ほど値が大きいこと
を示す．

まずニューラルネットワークパラメータの低ランク性の利用について述べる．こ
の性質は経験的に知られているものであり [81, 82, 83, 84]，例えばニューラルネッ
トワークの圧縮手法として利用されている [82, 83, 84]．これは行列を大域的に見
たときに重要な部分（主成分）に絞り込んでいると解釈することができる．行列
W ∈ Rm×n に対してランク r での近似を考えるとパラメータ数は r(m + n) とな
る．r ≪ min(m, n) である場合 r(m + n)≪ mn となり，大幅にパラメータ数を削減
できることがわかる（図 4.2a/図 4.2b）．ニューラルネットワークのパラメータ更新
のための低ランク近似された勾配行列を得る手法には様々なものが考えられるが，
提案手法は汎用的なインターフェースであるため具体的な手法の種類は問わない．
4.4節の評価実験では RGP [32]を用いているが，その他の手法でも容易に適用可能
である．低ランク近似した行列を扱う際の一般的な課題として，ランク r を小さく
するとパラメータ数をより削減できるが，一方で，主成分として捉えられなかった
情報が失われるため精度が低下するというトレードオフがある．提案手法では後述
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図 4.2: 低ランク近似とスパース化

するスパース性と組み合わせることで削減するパラメータ数と精度の両立を行う．
詳しくは 4.3.2項で述べる．
次にニューラルネットワークパラメータのスパース性の利用について述べ
る．このスパース性も低ランク性と同じく経験的に知られており，様々な手法の
前提となっている．代表的な応用としては圧縮や高速化を目的とした枝刈り手
法 [85, 86, 87]が挙げられる．例えば p% のスパース性を仮定した枝刈りを行うと単
純に p% のパラメータ数削減となる（図 4.2a/図 4.2d）．また，特に大規模モデルに
おけるスパース性は宝くじ仮説 [88]を通して再確認されている．これは，ニューラ
ルネットワークモデルで性能への寄与が大きいのは構造と初期値の組み合わせとし
て確率的に存在するスパースな部分ネットワーク（当たりくじ）であり，大規模モ
デルであることはこの当たりくじが含まれる可能性が高くなるからである，という
仮説である．つまりパラメータ数が過剰な場合，ニューラルネットワークモデルの
本質はスパースな部分モデルに集中しているとも言える．このことはモデルをスク
ラッチから学習した場合だけでなく，学習済みモデルに対するファインチューニン
グでも同様に成り立つと報告されている [93, 94]．提案手法では重みの絶対値を重
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要度としたスパース性を利用する．絶対値を利用するというアプローチは，重みは
正負に依らず貢献があり，絶対値が小さい重みはアクティベーションに対する貢献
が少ないということに基づいている．この方法は単純ながら多数の枝刈り手法で有
効性が示されている [85, 86, 87]．加えて，一部の枝刈り手法でも利用されているユ
ニット単位の重要度 [86]を導入する．入力側ユニットと出力側ユニットのそれぞ
れで，接続されているシナプスの重要度の総和をユニットごとに計算し，それを各
ユニットの重要度とする．i 番目の入力側ユニットの重要度 Ii と j 番目の出力側
ユニットの重要度 Oj は以下のように算出する．

Ii =
n∑

j=1
|Wij| (4.4)

Oj =
m∑

i=1
|Wij| (4.5)

4.3.2 LSG: Low-rank and Sparse Gradients

ここからは 4.3.1項で導入した低ランク性とスパース性を併用して更新対象パラ
メータ数削減を行う手法について述べる．本研究は指定した安全性の差分プライバ
シを満たすことを目的としているため，プライベートな学習データを追加で参照す
ると追加コストとしてノイズを大きくするか安全性を下げる必要が出てしまう．そ
のため，追加コストが必要とならない範囲で更新対象パラメータを削減すること
で，安全性を下げることなくモデルの有用性の向上を図る．4.3.1項で述べた通り，
低ランク性とスパース性のどちらかだけでは削減できる更新対象パラメータ数は限
られているため，提案手法ではその両立を行う．提案手法の概念図を図 4.3に示す．
スパース性のみを利用した既存研究 [33] で用いられているシナプスの重要度

abs(W ) ∈ Rm×n は行列分解された勾配行列 ∂L ∈ Rm×r, ∂R ∈ Rr×n と対応が取れ
ず，利用することができない．そこで，∂L の行は入力側ユニットと，∂R の列は
出力側ユニットに対応があることに注目する．式 4.4と式 4.5で定義したユニット
の重要度を利用し，重要度の低い p% の重みに対応する勾配を 0 にすることでス
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図 4.3: LSGによる全結合層の低ランク近似とスパース化の併用例．前ステップ
t− 1 の重み行列 Wt−1 を利用して，低ランク近似された勾配行列 ∂Lt と ∂Rt をス
パース化する．青色の要素はスパース化対象を意味し，現在のステップ t での更新

対象から除外される．

パース化する．この処理は以下の式で表される．

∀j ∈ [r], ∂L =


∂Lij if Ii in top-(100− p)%(I)

0 otherwise
(4.6)

∀i ∈ [r], ∂R =


∂Rij if Oj in top-(100− p)%(O)

0 otherwise
(4.7)

これにより，更新対象パラメータ数は k(m + n)100−p
100 < k(m + n)≪ mn (where k ≪

min(m, n) ∧ 0 < p < 100) に削減できる．
なお，初期の重みW0 をスクラッチから学習する場合は乱数による重みを，ファ
インチューニングを行う場合は事前学習した重みを利用することで，ステップ 1
での重み更新に追加のプライバシコストを必要としない．さらに，ステップ t で参
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照する Wt−1 は差分プライバシを満たしているため，定理 1により追加のプライバ
シコストを必要としない．まとめると，提案手法は，追加のプライバシコストを支
払うことなくステップに応じた最新の情報に基づいたスパース性を利用している．
これは，ステップ数に対して不変なパブリックデータで事前学習した重みに基づく
スパース性を利用している既存研究 [33]と異なる点である．ファイチューニング
が進むにつれて重要になる部分ネットワークは変化することが知られており [93]，
提案手法の有用性向上に寄与していると考えられる．
最後に，低ランク近似に RGPを利用した場合の詳細な手順を Algorithm8に示
す．あるステップ t におけるパラメータ更新をランク r，スパース性 p ∈ {0, 1} で
選択的に行うことを考える．入力側出力側それぞれでユニットの重要度を算出し
（3 - 8行），重要でないユニットを選択する（9 - 10行）．RGP（もしくはその他の勾
配の低ランク近似手法）から行列分解された勾配行列を得た後（11 行），ユニット
レベルの重要度 Ĩ，Õを利用してスパース化する（15 - 26 行）．その後差分プライ
バシのためのクリッピングとノイズ加算を行う（28 - 29 行）．このとき全てのレイ
ヤにおいて ∂L, ∂Rがスパース化されているため，サンブルごとの勾配の L2ノル
ムは小さくなり，クリッピングの影響が軽減される．同様にノイズを付与する対象
の要素数も Ĩ，Õのマスクを使ったスパース化により削減されている（Algorithm7
3 行）．最後に得られた勾配を利用して重みの更新を行う（30 - 32 行）．

Algorithm 7 勾配行列に対するスパース性を考慮した差分プライバシ処理
Input: per-sample low-rank gradient matrices ∂L(xq) ∈ Rm×r or ∂R(xq) ∈ Rr×n with

respect to a minibatch of data {xq}, unimportant input or output units Ĩ or Õ,
noise multiplier σ2, clipping size C

Output: DP sanitized gradient matrices ∂̃L ∈ Rm×r, ∂̃R ∈ Rr×n

1: Clip per-sample gradients with L2 norm threshold C

2: Sum per-sample gradients to obtain ∂L or ∂R

3: Perturb with noise z sampled from N(0, σ2C2) masked with Ĩ or Õ:

∂̃L← ∂L + z or ∂̃R← ∂R + z;

4: return ∂̃L or ∂̃R
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Algorithm 8 LSG．低ランク性とスパース性を利用した選択的パラメータ更新に
よる差分プライベート学習（低ランク近似には RGPを利用）．
Input: current step t, weight matrix at previous step Wt−1 ∈ Rm×n for layers l ∈ H

(omitting l for readability), noise multiplier σ2, clipping threshold C, rank r, sparsity
p, dataset S, sampling probability q, external low-rank mechanism Decompose, DP
mechanism DP (Algorithm7), update mechanism Update

Output: weight matrix at step t Wt ∈ Rm×n

1: for l ∈ H do
2: // Wt−1 is randomly initialized or pre-trained with public datasets or trained with

private datasets by DPSGD
3: for i ∈ [m] do
4: Ii ←

∑n
j=1 |Wt−1,(i,j)|

5: end for
6: for j ∈ [n] do
7: Oj ←

∑m
i=1 |Wt−1,(i,j)|

8: end for
9: Unimportant input units Ĩ ← top-(100− p)%(I)

10: Unimportant output units Õ ← top-(100− p)%(O)
11: Lt, Rt ← Decompose(Wt, r) ▷ Use low-rankness (Alg. 6)
12: end for
13: Sample a minibatch Sq = {xq}xq∈S with probability q

14: Calculate per-sample gradients with Eq. 4.2
15: for l ∈ H do ▷ Sparsify low-rank gradients for each layer
16: for i ∈ Ĩ do
17: for j ∈ [r] do
18: ∂Lt,(i,j) ← 0 ▷ Use sparsity (Eq. 4.6)
19: end for
20: end for
21: for j ∈ Õ do
22: for i ∈ [r] do
23: ∂Rt,(i,j) ← 0 ▷ Use sparsity (Eq. 4.7)
24: end for
25: end for
26: end for
27: for l ∈ H do
28: ∂̃Lt ← DP ({∂Lt(xq)}q∈Sq , Ĩ, σ2, C) ▷ Clip and Add noise (Alg. 7)
29: ∂̃Rt ← DP ({∂Rt(xq)}q∈Sq , Õ, σ2, C) ▷ Clip and Add noise (Alg. 7)
30: Wt ← Update(Wt−1, ∂̃Lt, ∂̃Rt) ▷ Use off-the-shelf optimizer and Eq. 4.3
31: end for
32: return Wt
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4.3.3 LSGの拡張
LSGを様々な深層学習モデルアーキテクチャに対応できるように拡張を行う．
ここまでは重み行列を W ∈ Rm×n で表すことができる，つまり全結合層のみを取
り扱っていた．近年は全結合層だけでなく様々な層を持つ深層学習モデルアーキテ
クチャが利用されているため，それらへの対応として特に利用されることの多い
Attention層と畳み込み層への拡張について述べる．

Attention 層：Attention 層は Transformer [39] を中心に利用される層構造であ
る．dmodel は単語の埋め込みサイズ，dk はK のサイズ，dv は V のサイズとし，内
部で利用される重み行列をW Q ∈ Rdmodel×dk , W K ∈ Rdmodel×dk , W V ∈ Rdmodel×dv と
する．ここで入力を x1, x2 とすると，Attention層は以下のように定式化される．

Q = W Qx1

K = W Kx2

V = W V x2

Attention(Q, K, V ) = softmax(QKT

√
dk

)V

Q, K, V はそれぞれ Query，Key，Valueと呼ばれるベクトルであり，x1 に基づく
情報の取り出し方を，x2 に基づく情報の取り出し方を，x2 の潜在的な情報を意味
したベクトルである．Attention層はこれら 3つのベクトルを利用し，QとK の内
積を Queryと Keyの関連度（重み）として V の値を取り出す操作となっている．
ここで使わているパラメータに注目すると，W Q, W K , W V という 3つの単純な行
列とわかる．そのため，全結合層と同じ操作をそれぞれの行列に対して行うことで
自然に LSGによる差分プライバシを実現できる．
畳み込み層：畳み込み層は画像処理を中心に広く利用されている基本的な層であ
る．ここでは 2次元の畳み込み層を例に扱う．LSGによる畳み込み層での低ラン
ク性とスパース性を利用した差分プライベート学習の概要を図 4.4に示す．
まずはじめに [32]を元に畳み込み層の低ランク近似について考える．畳み込み
層のカーネルが入力 x ∈ Rm×w×h を出力 y ∈ Rn×w′×h′ に変換するものと考えると，
W ∈ Rn×m×k×k と表せる．ここで，y の 2つ目と 3つ目の次元を固定すると（す
なわち y:,i,j, i ∈ [0, w′] ∧ j ∈ [0, h′]），その値は x(i,j) ∈ Rm×k×k と W̄ ∈ Rn×mk2 から
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y:,i,j = W̄ x(i,j)と表せる．なお W̄ はW の出力チャネル数とカーネルサイズに関す
る次元を平坦化したものである．これにより式 4.1と同様に，ランク rで低ランク
近似した行列 L, Rを利用して再定義したときの順伝播は以下のように表される．

y:,i,j = LRx(i,j) + W̄ x(i,j)

次にチャネルプルーニング [91]で用いられているような，チャネルごとの重要度
に注目する．ここでは全結合層と同じようにアクティベーションへの貢献を元に重
みの絶対値を重要度の指標として利用する．関連する重みから，以下のように入力
チャネルの重要度 I と出力チャネルの重要度 O を定義する．

Ii =
n∑

j=1

k∑
ki=1

k∑
kj=1
|Wijkikj

|

Oj =
m∑

i=1

k∑
ki=1

k∑
kj=1
|Wijkikj

|

最後は全結合層と同様に，重要度を低ランク近似された勾配行列 ∂L, ∂R のス
パース化に利用することで大域的な冗長性と局所的な冗長性を排除した差分プライ
ベート学習を実現する．

4.4 評価実験

まず 4.4.1項ですべての実験の設定を説明した上で，4.4.2項で近似クエリ処理の
評価を，4.4.3項で画像処理タスクを利用したスクラッチからの学習の評価を，4.4.4
項で自然言語処理タスクを利用したファインチューニングの評価を報告する．最後
に 4.4.5項でマイクロベンチマークとして低ランク性とスパース性の兼ね合いにつ
いて評価を報告し議論を行う．

4.4.1 実験設定
4.4.1.1 近似クエリ処理タスク
ベンチマーク：近似クエリ処理ベンチマークとして，映画や出演俳優といった情
報から構成される IMDbデータセット4）とそれに対するカウントクエリワークロー

4） https://www.imdb.com
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図 4.4: LSGによる畳み込み層の低ランク近似とスパース化の併用例．前ステップ
t− 1 の重み行列 Wt−1 を利用して低ランク近似された勾配行列 ∂Lt と ∂Rt をス
パース化する．青色の要素はスパース化対象を意味し，現在のステップ t での更新

対象から除外される．
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ド（カーディナリティ推定タスク）である JOB-light [13]を利用する．評価指標に
は推定した件数 Ĉが真の件数 Cから何倍離れているかを表す Q-Error [13]を利用
する．Q-Errorは以下のように定義される．

Q-Error := max( Ĉ, C)
min( Ĉ, C)

提案手法とベースライン：提案手法として，低ランク近似手法に RGPを利用
した (1) LSG を利用する．差分プライベート学習のベースラインとしては，(2)
DPSGD [31]，(3) RGP [32]，(4) Sparse DPSGDの 3つを利用する．DPSGDは差分プ
ライバシを満たす最も単純な手法，RGPは低ランク性を利用して DPSGDの有用性
を改善した手法，Sparse DPSGDはスパース性を利用して DPSGDの有用性を改善
した手法である．Sparse DPSGDは SNF-DPSGD [33]と同じスパース性を利用する
が，SNF-DPSGDとは異なり，畳み込み層以外もスパース化の対象としている．ま
た，差分プライバシを考慮しないベースラインとして，(5) N.P.を参考のため利用
する．N.P.はオリジナルタスクの結果であり，差分プライベート学習の有用性上限
の目安という位置付けである．
なお，DPSQL [68, 69, 70, 71]として提案されている手法は通常の SQL処理もし
くはサンプリングを前提としたものであり，通常の処理時間に加えて差分プライ
バシの処理時間が必要となる．例として，JOB-lightのクエリはを 16CPUs（最大
2.5GHz），メモリ 64GB環境上の PostgreSQLで実行すると平均で 8秒かかるが，第
3章で提案した近似クエリ処理手法では 11ミリ秒と大きく傾向が異なる．本研究
では近似クエリ処理の高速な処理速度を前提としているため，(1)から (5)の 5手
法のみの比較とし，DPSQLとの比較は行わない．
モデル：近似カウントクエリ処理タスクを扱うため，第 3 章で提案した

Multi-Layer Perceptron (MLP) をベースとした Denoising Autoencoderを利用する．
ハイパパラメータ：モデルで利用するハイパパラメータは基本的に第 3
章に従う．エポック数は 20，クリッピングサイズは C = 1 とした．プライバ
シ設定は ϵ = 8.0, δ = 10−5 で評価を行う 5）．ランク r ∈ {2, 4, 8} とスパース性
p ∈ {0, 0.1, 0.3, 0.5}はチューニングを行う．

5） 4.2.1項でも述べたようにプライバシ設定はビジネス的な要件に依存するため，一意の妥当なもの
に定めることはできない．本評価実験では関連研究 [31, 32,33]の評価に用いられている設定を参考に
する．
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4.4.1.2 画像処理タスク
ベンチマーク：画像処理ベンチマークとして，CIFAR10データセットでの 10ク
ラス分類 [95]と SVHNデータセットでの 10クラス分類を利用する．いずれも正解
率をモデルの有用性として評価する．
手法：近似クエリ処理タスクと同様に，(1) LSG，(2) DPSGD [31]，(3) RGP [32]，

(4) Sparse DPSGD，(5) N.P.を利用する．
モデル：画像処理タスクで一般的な畳み込みニューラルネットワークの代表とし
てWide ResNet [96] (WRN) を用いる．スケールファクターをレイヤ数 16，幅係数
4としたWRN16-4を利用する．
ハイパパラメータ：モデルで利用するハイパパラメータは基本的に [32]に従う．
ただしDPSGDでは，オプティマイザ，Group Normalization，Weight Standardization
といった要素のうち有用なものに関しては，類似タスクで高い性能を報告して
いる [97] や [98] に基づいて利用する．エポック数は 200，クリッピングサイズ
は C = 1 とした．プライバシ設定は ϵ ∈ {0.8, 1.7, 3.3, 6.8}, δ = 10−5 で評価を行う
5）．ランク r ∈ {2, 4, 8, 16, 32}，スパース性 p ∈ {0, 0.1, 0.3, 0.5, 0.7}，バッチサイズ
bs ∈ {1024, 4096}，学習率 lr ∈ {0.5, 1, 2, 3, 4} は各ベンチマーク各プライバシ設定ご
とにチューニングを行う．

4.4.1.3 自然言語処理タスク
ベンチマーク：自然言語理解ベンチマークであるGeneral Language Understanding

Evaluation (GLUE) [99]を用いる．GLUEに複数設定されているタスクのうち，感
情判定タスクである SST-2，質問文対判定タスクである QNLI，質問同値性判定タ
スクである QQP，含意関係判定タスクであるMNLI6）の 4つを対象とする．いずれ
も 2値判定のタスクであるため，その正解率をモデルの有用性として評価する．な
お，全ての実験で乱数シードのみを変更した 5回分の結果の正答率の平均と分散を
報告する．
手法：近似クエリ処理タスク等と同様に，(1) LSG，(2) DPSGD [31]，(3) RGP [32]，

(4) Sparse DPSGD，(5) N.P.を利用する．
モデル：自然言語処理タスクを扱うため，学習済み言語モデル RoBERTa [77]を

6） 2つあるデータセットの平均を結果として報告する
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用いる．事前学習データをパブリックなもの，追加学習データをプライベートなも
のとして扱った上でファインチューニングして評価を行う．RoBERTaとして提供
されているいくつかの学習済みモデルのうち，Attention層と全結合層を中心に構
成され約 125万パラメータから成る RoBERTa-baseを利用する．
ハイパパラメータ：モデルに関するハイパパラメータは基本的に [32]に従う．
バッチサイズは2000，エポック数は20，学習率は10−3，クリッピングサイズはC = 10
とした．プライバシ設定は，SST-2/QNLI には ϵ ∈ {1.2, 1.6, 3.3, 6.5}, δ = 10−5，
QQP/MNLIには ϵ ∈ {0.9, 1.7, 3.4, 6.7}, δ = 10−6で評価を行う 5）．ランク r ∈ {2, 4, 8}
とスパース性 p ∈ {0, 0.1, 0.3, 0.5} は各ベンチマーク各プライバシ設定ごとにチュー
ニングを行う．

4.4.2 近似クエリ処理タスクによる差分プライベート学習の評価
評価の指針とモチベーション：Q-Error（Median・90パーセンタイル・95パーセ
ンタイル・99パーセンタイル・最大値）を有用性の指標とし，全結合層を利用した
モデルのスクラッチからの学習での総合的な性能を比較する．
結果：JOB-lightベンチマークでの近似クエリ処理評価の結果を表 4.1に示す．
まず最も基本的なベースラインとなる DPSGDと比較すると，中央値から最大値
まで，全ての位置で上回ることを確認した．また，～95パーセンタイルまでは低
ランク近似のみを用いた RGPに，99パーセンタイル～最大値はスパース化のみを
用いた Sparse DPSGDを 2～10倍程度上回った．一方で～95パーセンタイルまでは
Sparse DPSGDに，99パーセンタイル～最大値は RGPにやや劣る結果となったが，
これらの手法は残りのケースでの性能低下が大きく，総合すると LSGのほうが高
い有用性を示しているといえる．
差分プライバシを利用する手法と N.P.を比較すると，特に最大値に近い位置で
有用性に差が大きい傾向が確認された．クエリごとに詳しく見ると，エラーが大き
いものは各差分プライバシを利用する手法や N.P.で共通することが多く，差分プ
ライバシによって安全性の代償として有用性が全体的に下げられている傾向であ
り，例えば偏ったスパース化により特定の推論パターンだけ性能が低下するといっ
た問題は確認されなかった．
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表 4.1: JOB-lightベンチマーク近似クエリ処理の Q-Error (ϵ = 8.0)

Method Median 90%th 95%th 99%th Max

LSG 3.59 16.3 77.1 464 1240
RGP 6.99 54.3 143 426 862
Sparse DPSGD 3.47 12.4 14.3 1973 6332
DPSGD 7.86 41.7 203 6963 1.6× 104

N.P. 1.50 5.31 11.4 33.9 36.0

4.4.3 画像処理タスクによる差分プライベート学習の評価
評価の指針とモチベーション：プライバシ強度を変化させた際の正解率を有用性
の指標とし，畳み込み層を利用したモデルのスクラッチからの学習での総合的な性
能を比較する．
結果：各データセットでの実験結果を表 4.2に示す．すべてのデータセット，プ
ライバシパラメータにおいて，スパース化のみを利用する Sparse DPSGDや低ラン
ク近似のみを利用する RGPと比較して LSGが最も高い性能を示すことが確認され
た．ベースラインで最も良い性能を示した RGPと比較しても，最大で 7%程度の性
能向上が見られた．4.4.4項から繰り返しになるが，低ランク近似とスパース化ど
ちらかだけではなく，両立することが差分プライベート学習に有効であることがわ
かる．
新たな知見として，LSGが RGPをベースにスパース化して性能改善している一
方で，スパース化のみを利用すると最も単純な DPSGDより性能が悪化するという
傾向が見受けられた．これは特に畳み込み層のパラメータには局所的な冗長性が少
なく，Sparse DPSGDによるスパース化が有効に働かない一方で，LSGにおけるス
パース化は行列分解の際の近似精度を高く（ランク r を大きく）したときのパラ
メータ数削減として有効に働いているからと考えられる．この傾向からも，大域的
冗長性と局所的冗長性の両方を捉えるキャパシティーが重要と言える．
図 4.5は CIFAR10データセットでの学習曲線を示す．指標は正解率 (%) であり，
プライバシパラメータを ϵ = 6.8, δ = 10−5 に固定した上でランク rとスパース性 p

ごとにプロットしている．各ランクごとに見ると，学習初期段階ではスパース化の
効果があまり見られない一方で，学習が進むに連れてスパース化を入れたほうが性
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能が向上していることがわかる．これは，スクラッチからの学習の特徴として重み
をランダムな値で初期化しているため，ある程度学習が進むまで重みの絶対値を重
要度として利用するスパース化に有用な情報が得られないことが原因と考えられ
る．学習が進むに連れて重要なパラメータと重要でないパラメータが区別されるよ
うになり，結果として終盤はスパース化で重要でないパラメータの更新を省くこと
で性能が向上していると考えられる．この知見から，学習初期段階はスパース化を
行わないことで学習を安定させ，ある時点からスパース化を有効にする，もしくは
徐々にスパース性を上げていくことで最終的な性能を改善することが考えられる
が，これは今後の課題とする．

表 4.2: WRN16-4での各データセットの画像分類タスクの差分プライベート学習の
評価．プライバシパラメータ ϵ を変化させたときの各手法の正解率 (%) を示し，
太字のものは各プライバシ強度で最もスコアが高いことを表す．括弧内の値は分散

を示す．N.P.の値は [32]の報告に基づく．
(a) CIFAR10データセットでの 10クラス分類タスクの正解率

Method ϵ = 0.8 ϵ = 1.7 ϵ = 3.3 ϵ = 6.8

LSG 47.4 (0.3) 53.6 (0.1) 60.5 (0.0) 66.7 (0.4)
RGP 45.4 (0.8) 53.6 (0.3) 59.8 (0.7) 65.8 (0.5)
Sparse DPSGD 37.4 (0.2) 41.8 (0.6) 47.8 (0.2) 57.3 (0.0)
DPSGD 38.4 (0.1) 43.1 (0.3) 48.6 (0.2) 57.9 (0.3)
N.P. 93.3

(b) SVHNデータセットでの 10クラス分類タスクの正解率

Method ϵ = 0.8 ϵ = 1.7 ϵ = 3.3 ϵ = 6.8

LSG 81.0 (1.6) 86.3 (0.1) 89.7 (0.1) 91.9 (0.1)
RGP 78.7 (1.6) 85.6 (0.1) 83.3 (1.7) 91.2 (0.1)
Sparse DPSGD 55.3 (6.2) 73.0 (11) 82.4 (1.1) 88.3 (0.1)
DPSGD 56.4 (17) 74.7 (1.3) 82.4 (0.1) 88.4 (0.0)
N.P. 97.2
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図 4.5: WRN16-4で CIFAR10データセットを 200エポック差分プライベート学習
したときの正解率 (%) の推移をランク rとスパース性 pごとに比較する．同じ色
は同じランクを，同じ線のスタイルは同じスパース性を示す．細かいほどスパース
性は低い．p = 0が RGPを，p > 0が LSGを表す．プライバシパラメータはすべて

ϵ = 6.8, δ = 10−5である．

4.4.4 自然言語処理タスクによる差分プライベートファインチュー
ニングの評価

評価の指針とモチベーション：プライバシ強度を変化させた際の各タスクの正解
率を有用性の指標とし，Attention層を利用したモデルのファインチューニングで
の総合的な性能を比較する．
結果：各タスクでの実験結果を図 4.6に示す．LSGは最も性能の高いベースライ
ンである RGPと比較して，最大 4%の性能向上が確認された．加えて，RGPだけで
なく SNF-DPSGD [33]に倣いスパース性のみを利用した Sparse DPSGDと比較して
も性能が向上していることから，低ランク近似とスパース化どちらかだけではな
く，両立することが差分プライベート学習に有効であることがわかる．また，これ
らの結果から，ニューラルネットワークパラメータが本質的に低ランク性とスパー
ス性を持ち，これらを活用することで DPSGDのクリッピングとノイズ加算の影響
を減らしたと考えられる．
タスクごとのより細かい結果として，SST-2タスクや QNLIタスクのプライバシ
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強度が高いケースで RGPと比較して同等，もしくは性能が低下するケースが確認
された．クリッピングサイズ C や学習データの参照回数は固定されているため，
プライバシ強度が高いケースではノイズの分散が大きくなっている．これを踏まえ
ると，低ランク近似に加えてスパース化による更新対象パラメータ削減を行うこと
により，更新されるパラメータとされないパラメータの乖離が大きくなり，ノイズ
の影響以上にモデルの表現力が落ちてしまったことが原因と考えられる．

4.4.5 低ランク性とスパース性の併用に関する評価
評価の指針とモチベーション：プライバシパラメータを固定し，提案手法のハイ
パパラメータであるランク rとスパース性 pを変化させた際の自然言語処理タスク
の正解率から，これらのパラメータの兼ね合いを確認する．
なお，表記のパラメータ以外は 4.4.4項と同じ設定である．
結果：ϵを固定し，ランク rとスパース性 pを変化させたときの各タスクの差分
プライベートファインチューニングの結果を表 4.3に示す．より小さいランク rと
より大きいスパース性 pはより更新対象パラメータを削減することを意味する．ま
た，ランク r = fullは行列分解を利用しない場合の結果を示す．既に 4.4.4項の結
果でも述べたように，低ランク近似とスパース化の両立により性能が向上すること
が確認された．一方で極端に更新対象パラメータ数を削減するような場合（小さい
ランク rと大きいスパース性 pを同時に選択するような場合），逆に性能が低下す
る傾向が確認された．これは，更新対象パラメータ数の削減がクリッピングやノイ
ズの影響を減らして性能向上に寄与する一方で，学習に必要なパラメータが不足し
だすと性能低下を引き起こすというトレードオフによるものと考えられる．このト
レードオフは，適切なランクとスパース性を選択したときに最も良い性能を示して
いることからも推察される．別の観点として，最も良いパラメータを選択したい場
合，ランク rまたはスパース性 pのいずれかを固定して探索しても他方のパラメー
タと組み合わせたときに最良の結果を得られるとは限らないことがわかる（例え
ば表 4.3aで，r = fullを固定して最も良い pを探索すると p = 0となるが，実際に
は p = 0.5(r = 8)が最適解となる）．このことは，ランクとスパース性の積で表現さ
れる削減パラメータ数だけでは性能の傾向は決まらず，適用先に合わせて適切なラ
ンクとスパース性を仮定する必要があることが示唆される．適切なランクとスパー
ス性の効率的な探索は今後の課題とする．
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図 4.6: GLUEベンチマークによる RoBERTaモデルの差分プライベートファイン
チューニングの評価．プライバシパラメータ ϵ を変化させたときの各手法の正解
率 (%) を示す．なお，N.P.の値は [77]の報告に基づく．いくつかの図では見やす

さのため N.P.を省略している．
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表 4.3: GLUEベンチマークによる RoBERTaモデルの差分プライベートファイン
チューニングの評価．プライバシパラメータ ϵ を固定し，ランク rとスパース性 p

を変化させたときの各手法の正解率 (%) を示し，太字のものは各タスクで最もス
コアが高いことを表す．括弧内の値は分散を示す．p > 0 ∧ r ≤ 8が LSGを，

p = 0 ∧ r ≤ 8 が RGPを，full が Sparse DPSGDを表す．
(a) SST-2, ϵ = 3.3

Rank r

2 4 8 full

Sp
ar

sit
y

p

0 85.4 (1.7) 87.9 (0.1) 88.3 (0.5) 81.0 (0.1)
0.1 87.3 (0.2) 88.6 (0.3) 89.0 (0.6) 80.9 (0.3)
0.3 88.3 (0.5) 89.6 (0.1) 89.9 (0.2) 80.5 (0.0)
0.5 89.4 (0.1) 89.8 (0.1) 90.4 (0.2) 80.3 (0.1)

(b) QQP, ϵ = 3.4

Rank r

2 4 8 full

Sp
ar

sit
y

p

0 82.8 (0.1) 82.8 (0.1) 83.1 (0.2) 71.1 (0.6)
0.1 83.3 (0.0) 83.3 (0.1) 83.3 (0.2) 71.2 (0.1)
0.3 83.9 (0.0) 83.7 (0.0) 83.8 (0.0) 71.7 (0.1)
0.5 83.8 (0.0) 83.6 (0.2) 83.6 (0.0) 71.5 (0.2)

4.5 おわりに

本章では，ニューラルネットワークパラメータの低ランク性とスパース性に基づ
き更新対象パラメータを適切に選択することで，差分プライバシを満たし有用性の
高いモデルを獲得する学習手法を提案した．第 2章と第 3章で提案した深層学習を
用いたカーディナリティ推定技術と併用でき，データ処理の高速化に加えてプライ
バシの保護を実現する．ユニットレベル，チャネルレベルといったニューラルネッ
トワークの入出力の構造に基づいた重要度を定義することで，これまで排他的で
あった低ランク性とスパース性の併用を実現した．実装を行い，様々なモデル構
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造，タスクや学習パターンで評価したところ，低ランク性とスパース性のどちらか
だけを利用した手法と比較して性能向上が確認された．提案手法は具体的な低ラン
ク近似手法に依らないため，今後差分プライベート学習のための新たな低ランク近
似手法が提案された際には，更なる性能向上への貢献が期待できる．
一方で 4.4節の各実験結果から，提案手法の性能を最大限発揮するためにはラン
クとスパース性の調整が必要であることも確認された．データやタスクによって適
切なパラメータが異なることから，その効率的な探索が今後の課題である．また，
適切なスパース性は学習段階によって異なる可能性も確認されたため，スパース性
は適応的に変化させることも考えられる．
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第 5章 結論

5.1 本研究のまとめ

本研究では，複雑なスキーマを持つ大規模データ処理の高速化とプライバシ保護
の実現を目指した．データ処理の高速化という観点では，既存のデータ処理と近似
処理，いずれのアプローチにも大きく寄与することが知られるカーディナリティ推
定と呼ばれる技術に注目し，（第 2章）高速かつ精度を向上させること，（第 3章）
複雑なスキーマを持つ大規模データに対応すること，という 2段階でカーディナリ
ティ推定手法の改良に取り組んだ．またプライバシ保護という観点では，厳密な指
標である差分プライバシという技術に注目し，第 4章（第 2章）や（第 3章）に適
用可能な差分プライベート学習手法に取り組んだ．
第 2章では，大規模データ処理の高速化のため，高速で安定したカーディナリ
ティ推定手法を提案した．カーディナリティ推定とは指定された条件を満たすデー
タがデータベース内に何件存在するかを推定するタスクである．カーディナリティ
推定を改善することで，大きく分けて 2つのアプローチでデータ処理高速化に貢献
する．1つはデータベースシステムのクエリオプティマイザでの利用である．カー
ディナリティ推定の性能を向上させることで，クエリオプティマイザがより適切な
実行プランを選択できるようになり，結果として既存のクエリ処理を高速化でき
る．もう 1つは近似クエリ処理での利用である．カーディナリティ推定の定義は条
件に一致する件数を近似的に求める処理と等価であり，その他の近似的なクエリ処
理のプリミティブとしても用いられる．そのため，カーディナリティ推定の性能を
向上させることで，結果に厳密性が必要ない処理で高速化と高精度化が可能であ
る．既存のカーディナリティ推定手法はいずれも実世界データにそぐわない仮定を
おくため推定性能が低い [13]，チューニングが困難なパラメータに依存している部
分が大きく推定性能が安定しない [23]といった問題がある．提案手法ではデータ
の分布を捉えるために深層学習技術の 1つである Denoising Autoencoderに注目し

101



た．Denoising Autoencoderをベースに，任意の属性を条件に任意の属性の分布を
推定できるように構築，学習する．これにより動的な順での推論が可能となり，結
果として安定性の高いカーディナリティ推定を実現した．
第 3章では，複雑なスキーマを持つデータ処理のため，第 2章で提案した密度推
定器を複数利用することでスケーラブルな結合カーディナリティ推定手法を提案し
た．結合カーディナリティ推定とは結合を条件に含むカーディナリティ推定であ
る．クエリオプティマイザの機能の中でも特に重要とされる結合順最適化で利用さ
れる．結合順最適化は結合の個数が多いほど利用されるため，特にスキーマサイズ
が大きいデータで顕著になる．そのため，カーディナリティ推定によるクエリオプ
ティマイザの改善（データ処理高速化）という点では，特に大規模スキーマでの結
合カーディナリティ推定が重要となる．結合カーディナリティ推定は重要なタスク
であるものの，既存のカーディナリティ推定手法は推定性能や大規模スキーマへの
対応に課題が残る．提案手法では，スキーマの構造に基づく軽量な分割を行い，分
割されたスキーマごとに密度推定器を学習する．各密度推定器の扱うテーブル数は
入次数+1であるため，スキーマサイズが増えても小規模な密度推定器で十分な推
定性能を発揮できる．学習時の密度推定器間は独立であるためすべて並列に学習が
可能である一方で，推論時は密度推定器間で推論結果を再利用することで密度推定
器間に跨る相関を考慮した推定を実現する．クエリオプティマイザで求められるよ
うな小規模なクエリに対する推定性能が高いという特徴もあり，実験的にクエリオ
プティマイザを通したクエリ処理性能の向上を確認した．
第 4章では，第 2章，第 3章で提案したカーディナリティ推定手法に適用可能
な差分プライベート学習手法を提案した．近似クエリ処理時のプライバシ保護と
して，識別困難性に基づく安全性の指標である差分プライバシに注目した．深層
学習で差分プライバシを実現する手法としては DPSGD [31]が広く知られている．
DPSGDは，学習時に勾配の制限とノイズ加算を行うことで，結果として得られる
モデルはどのような使い方をしても差分プライバシによる安全性が担保される．一
方で DPSGDで学習したモデルは，勾配の制限とノイズの影響でモデル本来の有用
性（例えば画像分類モデルであればその分類精度）が大きく低下することが知られ
ている．この問題を改善するため，更新対象パラメータ数を削減することで，安全
性を落とすことなく有用性を改善する既存手法がある [32, 33]．しかしながら，既
存手法で利用できている冗長性は大域的なものや局所的なもののいずれかと限定的
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で，有用性の改善も小さい．提案手法では，ニューラルネットワークパラメータの
2つの冗長性に注目し，差分プライバシによる安全性と有用性の両立を図った．パ
ラメータを行列として扱い，大域的冗長性を捉えるために低ランク近似を，局所的
冗長性を捉えるためにスパース化を行う．これらにより，安全性を落とすことなく
勾配クリッピングやノイズの影響を軽減して有用性を向上させた．実際に第 3章や
一般的な機械学習タスク，様々な学習方法で有用性の改善を確認した．

5.2 今後の展望

本研究では基本的かつ汎用的な要素技術を提案した．今後は提案した要素技術の
統合や実用化に必要となる課題に取り組むことが考えられる．特に実用化に向けて
残っている重要な課題は以下の 4点である．

1つ目はデータベース更新への対応である．データに更新が行われると，当然
データの分布も変化する．一度学習したモデルだけでは，いずれ学習したデータ
の分布とデータベース内のデータの分布に乖離が生まれ，推定性能が低下する．
そのため，テータの更新に追従するためのインクリメンタルな学習方法，もしく
はモデルの入れ替え方法を検討する必要がある．注意すべき点として，データの
更新には削除があるということがあげられる．深層学習での追加データの学習
(Continual Learning) [100, 101, 102, 103]は比較的研究が進んでいるが，一度学習し
たデータを削除，つまり多数のパラメータで保持している情報から忘却させる方法
(Unlearning) [104, 105, 106, 107] は発展途上で制約が多い．通常のデータベースシス
テムではごく当たり前に行われる削除をどのように再現するかは非常に重要な課題
と考えられる．

2つ目は第 3章の提案の特徴を利用した結合順序最適化アルゴリズムの開発であ
る．提案手法には，結合カーディナリティ推定を途中で止めると，その時点での部
分的な結合カーディナリティが推定できるという特徴があった．結合順最適化は分
割統治的に行われるため，中間データを再利用したカーディナリティ推定が有用で
あると考えられる．これによりカーディナリティ推定コストを抑制でき，結果とし
てクエリ処理時間の短縮が期待できる．

3つ目はカウントクエリ以外の近似クエリ処理への応用である．本研究中では近
似クエリ処理はカウントクエリのみを扱っていた．しかしながら，実用上では平均
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値クエリ，総和クエリ，グループ化クエリなど様々な集約演算との併用などが要求
される．データ分布の獲得までは第 3章で達成できているため，今後はこのデータ
分布から様々なクエリに対応できるような推論手法を検討する必要がある．

4 つ目はカーディナリティ推定に特化した差分プライベート学習である．
第 4 章にてカーティナリティ推定に適用できる差分プライベート学習手法を
提案したが，多くの深層学習モデルに対応した汎用的なものである．第 2 章，
第 3 章で提案したモデルは入力データの一部にマスクをしてデータの分布
を学習するものだった．ここで利用しているのは入力データの部分的な情報
P (A1, . . . , Ai | Ai+1, . . . , An)(̸= P (A1, . . . , An))であるため，1入力データから得られ
る情報を過大評価し，クリッピングやノイズ加算が過剰になっていることが考えら
れる．このようなモデル学習時の特徴を考慮することで，パラメータ数削減以外の
アプローチで差分プライベートなカーディナリティ推定を改善することが考えら
れる．
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[11] Zoi Kaoudi and Jorge-Arnulfo Quiané-Ruiz. Unified Data Analytics: State-of-

107



the-art and Open Problems. VLDB (tutorial), 2022.
[12] IBM. Data-driven healthcare organizations use big data analytics for big gains.

White paper, 2017.
[13] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,

and Thomas Neumann. How good are query optimizers, really? Proceedings
of the International Conference on Very Large Data Bases, Vol. 9, No. 3, pp.
204–215, 2015.

[14] 寺田雅之. 差分プライバシーとは何か. システム／制御／情報, Vol. 63, No. 2,
pp. 58–63, 2019.

[15] Latanya Sweeney. K-Anonymity: A Model for Protecting Privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 10, No. 5,
p. 557–570, 2002.

[16] Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing, Eric Schulte Nordholt,
Keith Spicer, Peter-Paul de Wolf, and Anco Hundepool. Statistical Disclosure
Control. Wiley Series in Survey Methodology, 2012.

[17] Cynthia Dwork. Differential Privacy. Proceedings of the EATCS International
Colloquium on Automata, Languages and Programming, pp. 1–12, 2006.

[18] Rachel Cummings and Deven Desai. The Role of Differential Privacy in GDPR
Compliance. Proceedings of the FATREC Workshop, 2018.

[19] The PostgreSQL Global Development Group. PostgreSQL: Documentation.
https://www.postgresql.org/docs/, 2022.

[20] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita.
Improved Histograms for Selectivity Estimation of Range Predicates. Proceedings
of the IEEE International Conference on Data Engineering, 1996.

[21] Max Heimel, Martin Kiefer, and Volker Markl. Self-tuning, gpu-accelerated
kernel density models for multidimensional selectivity estimation. In Proceedings
of the International Conference on Management of Data, pp. 1477–1492, 2015.

[22] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. Estimating join
selectivities using bandwidth-optimized kernel density models. Proceedings of
the International Conference on Very Large Data Bases, Vol. 10, No. 13, pp.
2085–2096, 2017.

108

https://www.postgresql.org/docs/


[23] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan,
Xi Chen, Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Sto-
ica. Deep Unsupervised Cardinality Estimation. Proceedings of the International
Conference on Very Large Data Bases, Vol. 13, No. 3, pp. 279–292, 2019.

[24] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. NeuroCard: One Cardinality Estimator for All Tables. Proceed-
ings of the International Conference on Very Large Data Bases, Vol. 14, No. 1,
pp. 61–73, 2020.

[25] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. DeepDB: Learn from Data, not from Queries!
Proceedings of the International Conference on Very Large Data Bases, Vol. 13,
No. 7, pp. 992–1005, 2019.

[26] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. FLAT: Fast, Lightweight and Accurate Method for
Cardinality Estimation. Proceedings of the International Conference on Very
Large Data Bases, Vol. 14, No. 9, pp. 1489–1502, 2021.

[27] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. Deep learning models for selectivity estimation of multi-
attribute queries. Proceedings of the International Conference on Management
of Data, pp. 1035–1050, 2020.

[28] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. Proceedings of the Conference on Innovative Data Systems Research,
2019.

[29] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke,
Viktor Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper. Estimating
Cardinalities with Deep Sketches. Proceedings of the IEEE International Con-
ference on Data Engineering, pp. 1937–1940, 2019.

[30] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. Selectivity estimation for range predicates using
lightweight models. Proceedings of the International Conference on Very Large

109



Data Bases, Vol. 12, No. 9, pp. 1044–1057, 2019.
[31] Edgar Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew Myers, Shai

Halevi, Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep Learning with Differential Privacy.
Proceedings of the Conference on Computer and Communications Security, pp.
308–318, 2016.

[32] Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Large Scale Pri-
vate Learning via Low-rank Reparametrization. Proceedings of the International
Conference on Machine Learning, 2021.

[33] Zelun Luo, Daniel J. Wu, Ehsan Adeli, and Li Fei-Fei. Scalable Differential
Privacy with Sparse Network Finetuning. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5057–5066, 2021.

[34] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and Composing Robust Features with Denoising Autoencoders. Pro-
ceedings of the International Conference on Machine Learning, 2008.

[35] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized De-
noising Auto-Encoders as Generative Models. Proceedings of the Conference on
Neural Information Processing Systems, 2013.

[36] C. Chow and C. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, Vol. 14, No. 3,
pp. 462–467, 1968.

[37] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang
Lehner. Cardinality estimation with local deep learning models. Proceedings of
the Workshop in Exploiting AI Techniques for Data Management, pp. 1–8, 2019.

[38] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:
Masked Autoencoder for Distribution Estimation. Proceedings of the Interna-
tional Conference on Machine Learning, 2015.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. Proceedings of the Conference on Neural Information Processing Systems,
2017.

110



[40] Hoifung Poon and Pedro Domingos. Sum-Product Networks: A New Deep Ar-
chitecture. Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[41] Benigno Uria, Iain Murray, and Hugo Larochelle. A Deep and Tractable Density
Estimator. In Proceedings of the International Conference on Machine Learning,
p. 467––475, 2014.

[42] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. Proceedings of the Conference on Neural Information Processing
Systems, 2019.

[43] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. Random
Sampling over Joins Revisited. Proceedings of the International Conference on
Management of Data, pp. 1525–1539, 2018.

[44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019.

[45] Jiatao Gu, James Bradbury, Caiming Xiong, Victor O K Li, and Richard Socher.
Non-Autoregressive Neural Machine Translation. Proceedings of the Interna-
tional Conference on Learning Representations, 2018.

[46] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-
Predict: Parallel Decoding of Conditional Masked Language Models. Proceedings
of the Conference on Empirical Methods in Natural Language Processing, 2019.

[47] Cheng Guo and Felix Berkhahn. Entity Embeddings of Categorical Variables.
arXiv preprint arXiv:1604.06737, 2016.

[48] State of New York. Vehicle, Snowmobile, and Boat
Registrations. https : / / catalog . data . gov / dataset /

vehicle-snowmobile-and-boat-registrations, 2019.
[49] IMDb. Internet Movie Data Base. https://www.imdb.com, 1990.
[50] naru-project. naru. https://github.com/naru-project/naru, 2020.
[51] neurocard. neurocard. https://github.com/neurocard/neurocard, 2020.
[52] DataManagementLab. deepdb-public. https : / / github . com /

DataManagementLab/deepdb-public, 2020.

111

https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations
https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations
https://www.imdb.com
https://github.com/naru-project/naru
https://github.com/neurocard/neurocard
https://github.com/DataManagementLab/deepdb-public
https://github.com/DataManagementLab/deepdb-public


[53] wuziniu. FSPN. https://github.com/wuziniu/FSPN, 2021.
[54] learnedsystems. Cardinality Estimation Benchmark. https://github.com/

learnedsystems/CEB, 2021.
[55] parimarjan. pg hint plan. https://github.com/parimarjan/pg_hint_plan,

2020.
[56] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan

Salakhutdinov, and Alexander Smola. Deep Sets. Proceedings of the Conference
on Neural Information Processing Systems, 2017.

[57] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. Learned
cardinality estimation: A design space exploration and a comparative evaluation.
Proceedings of the International Conference on Very Large Data Bases, Vol. 15,
No. 1, p. 85–97, 2021.

[58] Hugo Larochelle and Iain Murray. The Neural Autoregressive Distribution Es-
timator. Proceedings of the International Conference on Artificial Intelligence
and Statistics, 2011.

[59] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and Jae-
hyok Chong. Learned Cardinality Estimation: An In-depth Study. Proceedings
of the International Conference on Management of Data, pp. 1214–1227, 2022.

[60] MariaDB. MariaDB Knowledge Base. https://mariadb.com/kb/, 2022.
[61] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai

Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Zhou,
Jiangneng Li, and Bin Cui. Cardinality Estimation in DBMS: A Comprehensive
Benchmark Evaluation. Proceedings of the International Conference on Very
Large Data Bases, 2022.

[62] Viktor Radke, Bernhard Leis, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. Cardinality Estimation Done Right: Index-Based Join Sampling.
Proceedings of the Conference on Innovative Data Systems Research, 2017.

[63] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander Join: Online Aggregation
via Random Walks. Proceedings of the International Conference on Management
of Data, pp. 615–629, 2016.

[64] David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. The Randomized

112

https://github.com/wuziniu/FSPN
https://github.com/learnedsystems/CEB
https://github.com/learnedsystems/CEB
https://github.com/parimarjan/pg_hint_plan
https://mariadb.com/kb/


Dependence Coefficient. Proceedings of the Conference on Neural Information
Processing Systems, 2013.

[65] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science, Vol. 9, No.
3-4, pp. 211–407, 2014.

[66] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of the Theory of
Cryptography Conference, pp. 265–284. Springer, 2006.

[67] Apple. Differential Privacy Overview. https://www.apple.com/privacy/

docs/Differential_Privacy_Overview.pdf, 2016.
[68] Frank D McSherry. Privacy integrated queries. Proceedings of the International

Conference on Management of Data, pp. 19–30, 2009.
[69] Davide Proserpio, Sharon Goldberg, and Frank McSherry. Calibrating Data to

Sensitivity in Private Data Analysis. Proceedings of the International Conference
on Very Large Data Bases, 2012.

[70] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines,
Daniel Simmons-Marengo, and Bryant Gipson. Differentially Private SQL with
Bounded User Contribution. Proceedings of the International Symposium on
Privacy Enhancing Technologies, 2019.

[71] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. SAQE:
Practical Privacy-Preserving Approximate Query Processing for Data Federa-
tions. Proceedings of the International Conference on Very Large Data Bases,
Vol. 13, No. 12, pp. 2691–2705, 2020.

[72] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-
bership inference attacks against machine learning models. In Proceedings of the
IEEE Symposium on Security and Privacy, pp. 3–18. IEEE, 2017.
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