
Title

Towards Practical Node Classification for
Attributed Graphs: Improving
Effectiveness/Scalability and Benchmarking Graph
Neural Network-based Methods

Author(s) 前川, 政司

Citation 大阪大学, 2023, 博士論文

Version Type VoR

URL https://doi.org/10.18910/91996

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Towards Practical Node Classification

for Attributed Graphs: Improving

Effectiveness/Scalability and Benchmarking

Graph Neural Network-based Methods

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2023

Seiji MAEKAWA

List of Publications

Journals (Peer-reviewed)

1. [Under review of Information Systems, Minor revision] Seiji Maekawa,
Yuya Sasaki, George Fletcher, Makoto Onizuka. GenCAT: Generat-
ing Attributed Graphs with Controlled Relationships between Classes,
Attributes, and Topology, 40 pages.

2. Seiji Maekawa, Koh Takeuchi, Makoto Onizuka. New Attributed Graph
Clustering by Bridging Attribute and Topology Spaces. Information
Processing Society of Japan, Vol.28, pp.427-435, August 2020.

International Conferences (Peer-reviewed)

1. Seiji Maekawa, Dan Zhang, Hannah Kim, Sajjadur Rahman and Es-
tevam Hruschka. Low-resource Interactive Active Labeling for Fine-
tuning Language Models, Findings of Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 13 pages, December
2022.

2. Seiji Maekawa, Koki Noda, Yuya Sasaki, Makoto Onizuka. Beyond
Real-world Benchmark Datasets: An Empirical Study of Node Classi-
fication with GNNs, in Proceedings of NeurIPS Datasets and Bench-
marks Track, 12 pages, November 2022.

3. Seiji Maekawa, Yuya Sasaki, George Fletcher, Makoto Onizuka. GNN
Transformation Framework for Improving Efficiency and Scalability.
in Proceedings of The European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECMLP-
KDD), 16 pages, September 2022.

i

ii

4. Seiji Maekawa, Yuya Sasaki, George Fletcher, Makoto Onizuka. Bench-
marking GNNs with GenCAT Workbench. in Proceedings of The Eu-
ropean Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECMLPKDD) Demo track, 4
pages, September 2022.

5. Seiji Maekawa, Santi Saeyor, Takeshi Sakaki, Makoto Onizuka, Effec-
tive Candidate Selection and Interpretable Interest Extraction for Fol-
lower Prediction on Social Media. in Proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence (WI-IAT), pp.120-127,
December 2021.

6. Yuya Ogawa, Seiji Maekawa, Yuya Sasaki, Yasuhiro Fujiwara, Makoto
Onizuka. Adaptive Node Embedding Propagation for Semi-Supervised
Classification. in Proceedings of The European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD), pp. 417-433, September 2021.

7. Hiroto Yamaguchi, Yuya Ogawa, Seiji Maekawa, Yuya Sasaki, Makoto
Onizuka. Controlling Internal Structure of Communities on Graph
Generator. in Proceedings of 2020 IEEE/ACM ASONAM Demos and
Exhibitions Track, Vol.1, pp.937-940, December 2020.

8. Seiji Maekawa, Jianpeng Zhang, George Fletcher, Makoto Onizuka.
General Generator for Attributed Graphs with Community Structure.
in The European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECMLPKDD) Graph
Embedding and Mining Workshop, September 2019.

Domestic Conference paper (not Peer-reviewed)

1. 前川 政司, 佐々木 勇和, George Fletcher, 鬼塚 真. コミュニティ構造を
制御可能な属性付きグラフ生成, 情報処理学会第 83回全国大会（IPSJ
2021）, 2 pages, March 2021.

2. 小川 裕也, 前川 政司, 佐々木 勇和, 藤原 靖宏, 鬼塚 真. 適応的なノー
ド埋め込みの伝搬による半教師ありノード分類モデル. 情報処理学会
第 83回全国大会（IPSJ 2021）, 2 pages, March 2021.

iii

3. 山口 寛人, 前川 政司, 佐々木 勇和, 鬼塚 真. 時系列グラフにおける着
目ノードに特化したリンク予測. 情報処理学会第 83回全国大会（IPSJ
2021）, 2 pages, March 2021.

4. 前川 政司, 佐々木 勇和, George Fletcher, 鬼塚 真. コミュニティ構造を
制御する属性付きグラフ生成, 第 13回データ工学と情報マネジメント
に関するフォーラム（DEIM Forum 2021）, 8 pages, March 2021.

5. 小川 裕也, 前川 政司, 佐々木 勇和, 藤原 靖宏, 鬼塚 真. 半教師あり
ノード分類のための適応的ノード埋め込み伝搬ニューラルネットワー
ク. 第 13回データ工学と情報マネジメントに関するフォーラム（DEIM
Forum 2021）, 8 pages, March 2021.

6. 山口 寛人, 前川 政司, 佐々木 勇和, 鬼塚 真. 時系列グラフを活用する
着目ノードに特化したリンク予測. 第 13回データ工学と情報マネジメ
ントに関するフォーラム（DEIM Forum 2021）, 6 pages, March 2021.

7. 前川 政司, George Fletcher, 鬼塚 真, コミュニティ構造を考慮した属性
付きグラフ汎用生成機構, 第 11回データ工学と情報マネジメントに関
するフォーラム（DEIM Forum 2019）, 8 pages, March 2019. [学生プ
レゼンテーション賞]

8. 小川 裕也, 前川 政司, 竹内 孝, 佐々木 勇和, 鬼塚 真. 隣接性と構造類
似性を考慮したグラフクラスタリング. 第 11回データ工学と情報マネ
ジメントに関するフォーラム（DEIM Forum 2019）, 7 pages, March
2019.

9. 前川政司, 竹内孝, 佐々木勇和, 鬼塚真. 属性付きグラフのための非線
形関数を用いた接合加重非負値行列分解, 第 10回データ工学と情報マ
ネジメントに関するフォーラム（DEIM Forum 2018）, 7 pages, March
2018.

Abstract

Graphs appear everywhere in many application domains such as web page
links, social networks, computer vision, and gene expressions. Graph pro-
cessing attracts broad attention and node classification is one of the hottest
topics in the graph machine learning field. Machine Learning (ML) meth-
ods including Graph Neural Networks (GNNs) are powerful tools for node
classification. However, to apply such ML methods to practical applications,
several issues remain: hardly leveraging class structure, limited scalability, no
comprehensive evaluation, limited data types, limited support for time-series
of graphs, and no general-purpose pre-trained models.

The first three limitations regarding effectiveness, scalability, and evalua-
tion are fundamental to all the limitations since basic techniques and frame-
works which address the three limitations can be extended to more com-
plicated and practical settings, i.e., graphs with multiple node/edge types
and/or time-series information. As for general-purpose pre-trained models,
effectiveness, scalability, and evaluation are essential to ensure the model ca-
pability, adequate learning within a reasonable time, and the generalizability
of the model, respectively. In this sense, overcoming the effectiveness, scal-
ability, and evaluation limitations will be beneficial in overcoming the other
limitations. Hence, we addressed these three limitations in this thesis.

This thesis consists of five chapters. First, we describe the research back-
ground and discuss prior research works and their limitations in Chapter 1.
In Chapter 2, we consider the clustering problem of attributed graphs in
which we need to leverage the class structure, i.e., the relationship between
the classes, attributes, and topology, in order to achieve high-quality perfor-
mance. Note that graph clustering can be regarded as unsupervised node
classification by assuming that nodes with the same label form a community.
Our challenge is how we design an effective clustering method that cap-
tures the complicated relationship between the topology and the attributes

v

vi

in real-world graphs. We propose NAGC, a new attributed graph cluster-
ing method that bridges the attribute space and the topology space. The
feature of NAGC is two-fold; 1) NAGC learns a projection function between
the topology space and the attribute space so as to capture their complicated
relationship, and 2) NAGC leverages the positive unlabeled learning to take
the effect of partially observed positive edges into the cluster assignment. We
conducted experiments extensively to validate that NAGC performs higher
than or comparable to prior arts regarding the clustering quality.

In Chapter 3, we propose a framework that automatically transforms
non-scalable GNNs into precomputation-based GNNs which are efficient and
scalable for large-scale graphs. The advantages of our framework are two-
fold; 1) it transforms various non-scalable GNNs to scalable ones so that the
transformed ones scale well to large-scale graphs by separating local feature
aggregation from weight learning in their graph convolution, 2) it efficiently
executes precomputation on GPU for large-scale graphs by decomposing their
edges into small disjoint and balanced sets. Through extensive experiments
with large-scale graphs, we demonstrate that the transformed GNNs run
faster in training time than the original GNNs while achieving competitive
accuracy to the state-of-the-art GNNs. Consequently, our transformation
framework provides simple and efficient baselines for future research on scal-
able GNNs.

In Chapter 4, we propose an evaluation framework using synthetic graphs
for graph machine learning methods. First, we propose GenCAT, an at-
tributed graph generator for controlling those relationships, which has the
following advantages; 1) GenCAT generates graphs with user-specified node
degrees and flexibly controls the relationship between nodes and labels by
incorporating the connection proportion for each node to classes. 2) Gener-
ated attribute values follow user-specified distributions, and users can flexibly
control the correlation between the attributes and labels. 3) Graph genera-
tion scales linearly to the number of edges. GenCAT is the first generator
to support all three of these practical features. Through extensive experi-
ments, we demonstrate that GenCAT can efficiently generate high-quality
complex attributed graphs with user-controlled relationships between labels,
attributes, and topology. Second, we conduct extensive experiments with a
synthetic graph generator that can generate graphs having controlled charac-
teristics for fine-grained analysis. Our empirical studies clarify the strengths
and weaknesses of GNNs from four major characteristics of real-world graphs
with the class labels of nodes, i.e., 1) class size distributions (balanced vs.

vii

imbalanced), 2) edge connection proportions between classes (homophilic vs.
heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes
(small vs. large). In addition, to foster future research on GNNs, we pub-
licly release our codebase that allows users to evaluate various GNNs with
various graphs. We hope this work offers interesting insights for future re-
search.

Finally, Chapter 5 summarizes this thesis and discusses our future work.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Limitations of Existing Works 3

1.2.1 Hardly Leveraging Class Structure 4
1.2.2 Limited Scalability . 4
1.2.3 No Comprehensive Evaluation 4

1.3 Contributions and Organization of Thesis 5
1.3.1 Class Structure-aware Graph Clustering Method 5
1.3.2 Improving the Scalability of GNNs with Transforma-

tions and Graph Decomposition 6
1.3.3 Comprehensive Evaluation of GNNs with Flexible Syn-

thetic Graph Generator 6

2 Class Structure-aware Graph Clustering 9
2.1 Introduction . 9
2.2 Preliminaries . 11

2.2.1 Non-negative Matrix Factorization 11
2.2.2 Symmetric Non-negative Matrix Factorization 12
2.2.3 Biased Matrix Completion 12

2.3 NAGC: New Attribute Graph Clustering 13
2.3.1 NAGC Model . 14
2.3.2 Optimization . 15
2.3.3 Computational Complexity 17

2.4 Related Work . 18
2.4.1 Attributed Graph Clustering 18
2.4.2 Representation Learning 19

2.5 Experiments . 19
2.5.1 Datasets . 20

ix

x CONTENTS

2.5.2 Measurements . 22
2.5.3 Parameter Settings . 23
2.5.4 Clustering Quality . 23
2.5.5 Bridging Topology and Attribute Spaces 25
2.5.6 Hyperparameter Analysis 26
2.5.7 Discussion About NAGC-U and NAGC-UH 28

2.6 Conclusion . 29

3 GNN Transformation Framework 31
3.1 Introduction . 31
3.2 Preliminaries . 33

3.2.1 Graph Convolutional Networks 34
3.2.2 Precomputation-based GNNs 35

3.3 GNN Transformation Framework 36
3.3.1 Linear Convolution Transformation 37
3.3.2 Efficient Precomputation 39

3.4 Experiments . 42
3.4.1 Effectiveness of LC Transformation (Q1) 44
3.4.2 Precomputation Efficiency (Q2) 47

3.5 Related Work . 47
3.6 Conclusion . 49

4 Comprehensive Evaluation of GNNs 51
4.1 Introduction . 51

4.1.1 Limitations of Existing Evaluation of GNNs 51
4.1.2 Requirements of New Graph Generators 52
4.1.3 Existing Generators . 54
4.1.4 Contributions . 55

4.2 Problem statement . 58
4.2.1 Graph Features . 58
4.2.2 Class features . 59
4.2.3 Problem Definition and Challenges 61

4.3 GenCAT graph generator . 63
4.3.1 Generating Model . 64
4.3.2 Algorithm . 72
4.3.3 Parameter Extraction from Given Graph Dataset . . . 77
4.3.4 Complexity . 78
4.3.5 Simulating Existing Generators 79

CONTENTS xi

4.4 Validation of Effectiveness and Efficiency of GenCAT 80
4.4.1 Evaluation of Graph/Class Features Regarding Topol-

ogy (Q1) . 81
4.4.2 Evaluation of Graph/Class Features Regarding Attributes

(Q2) . 84
4.4.3 Scalability (Q3) . 86
4.4.4 Reproduction of Real-world Graphs (Q4) 88
4.4.5 Ablation Study . 92
4.4.6 Summary of This Section 93

4.5 An Empirical Study of GNNs 94
4.5.1 Experimental Setup . 94
4.5.2 Classification Quality on Synthetic Graphs with Vari-

ous Characteristics . 100
4.5.3 Training Efficiency on Synthetic Graphs with Various

Graph Sizes . 105
4.5.4 Visualization of Generated Graphs 106
4.5.5 Accuracy Analysis on Node Classification 108
4.5.6 Experiments for Large Datasets 112
4.5.7 Summary, Open Questions, and Limitations 112

4.6 Related Work . 114
4.6.1 Synthetic Graph Generator 114
4.6.2 Empirical Study for GNNs 117

4.7 Conclusion . 117

5 Concluding Remarks 119
5.1 Summary of This Thesis . 119
5.2 Future Work . 120

5.2.1 Class Structure . 120
5.2.2 Scalability . 121
5.2.3 Evaluation . 121
5.2.4 Data Type . 121
5.2.5 Time-series of Graphs 122
5.2.6 General-purpose Pre-trained Models for Graphs 122

Acknowledgment 123

Chapter 1

Introduction

1.1 Background

Graph is a ubiquitous structure that occurs in many domains such as cita-
tion networks [121], web page networks [34], social networks [35], computer
vision [52], and gene expressions [15, 65]. Real-world graphs usually have at-
tributes on nodes. Actually, the graph databases support attributed graphs
or property graphs [36, 101]. We demonstrate an intuitive example of at-
tributed graphs in Figure 1.1, where each node (paper) has its attributes
(bag-of-words) and nodes are connected by citation relationships.

Node classification, a task of predicting the labels of nodes (i.e., assign-
ments of nodes to classes) by using a partially labeled network, is one of the
hottest topics since it has wide applications. In this thesis, we call a set of
nodes with the same label a class and assume that nodes in a class tend to
share similar attributes. For example, it is beneficial to predict categories of
papers, e.g., Machine Learning, Databases, and Natural Language Process-
ing as we show in Figure 1.1, in order to reduce human efforts in manually
labeling papers. Another example is web page networks where nodes indi-
cate web pages, edges indicate hyperlinks between pages, attributes indicate
the texts of pages, and class labels indicate the topics of pages. Also, in
social networks, nodes indicate user accounts, edges indicate friend/follow
relationships between accounts, attributes indicate user information such as
user descriptions, and class labels indicate communities of users. As for com-
puter vision, nodes are objects in an image, a pair of objects has an edge
if they are neighboring, attributes indicate node factors extracted from an

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of node classification on an attributed graph. Nodes
indicate papers, edges indicate citations between papers, attributes indicate
the bag-of-words of papers, and classes indicate the research fields of papers,
e.g., machine learning (ML), databases (DB), and natural language process-
ing (NLP).

image, and class labels indicate categories of objects such as humans, bikes,
and cars. As for gene expressions, nodes indicate genes, a pair of genes has an
edge if there is a high probability of linkage between the two genes, attributes
indicate what genes consist of, and class labels indicate the categories of the
functional pathway of nodes. To accurately predict class labels, most meth-
ods aim to leverage the interplay between class labels, node attributes, and
topology, which we call class structure.

Over the past few decades, various methods were proposed to solve a clas-
sification task. While non-ML methods, e.g., rule-based systems, were pro-
posed, they require tremendous human effort to improve prediction quality,
leading to impractical costs. Graph machine learning methods, e.g., Graph
Neural Networks (GNNs), are powerful tools for node classification in terms
of prediction quality. However, towards applying such graph machine learn-
ing methods to practical applications, several limitations remain: 1) hardly
leveraging class structure, i.e., existing methods do not effectively leverage
the relationship between the topology and attributes, leading to poor pre-
diction quality, 2) limited scalability, i.e., existing methods do not scale well
to large-scale graphs, 3) no comprehensive evaluation, i.e., existing meth-
ods have been assessed on a limited variety of graphs, leading to inadequate
analysis, 4) limited data types, i.e., existing methods that support various

1.2. LIMITATIONS OF EXISTING WORKS 3

node types and edge types obtain marginal performance gain compared to
methods that ignore such data types, 5) limited support for the time-series
of graphs, i.e., existing methods that support the time-series of graphs do
not effectively utilize node attributes and suffer from poor scalability, and 6)
no general-purpose pre-trained models, i.e., in the graph domain, there are
no pre-trained models for various downstream tasks while pre-trained models
achieve great success in other domains such as natural language processing
and computer vision.

The first three limitations regarding effectiveness, scalability, and evalua-
tion are fundamental to all the limitations since basic techniques and frame-
works which address the three limitations can be extended to more com-
plicated and practical settings, i.e., graphs with multiple node/edge types
and/or time-series information. For example, some nodes represent peo-
ple and others represent cities or products in a single graph. As for edges,
some edges indicate friend relationships between people, and others indicate
purchasing relationships between people and products. Also, those relation-
ships can vary over time. In other words, we focus on static homogeneous
graphs, i.e., graphs with a single node/edge type and no time-series infor-
mation. In fact, the state-of-the-art method for heterogeneous graphs [77] is
designed based on GAT [105] which can be applied to only static homoge-
neous graphs. Also, the state-of-the-art method for graphs with time-series
information [53, 108] is designed based on random walk sampling techniques
over graphs which is originally proposed for static homogeneous graphs. As
for general-purpose pre-trained models, effectiveness, scalability, and evalua-
tion are essential to ensure the model capability, adequate learning within a
reasonable time, and the generalizability of the model, respectively. In this
sense, overcoming the effectiveness, scalability, and evaluation limitations for
homogeneous graphs will be beneficial in overcoming the other limitations.
Hence, we addressed these three limitations in this thesis.

1.2 Limitations of Existing Works

To address the limitations of existing works, we discuss them in order.

4 CHAPTER 1. INTRODUCTION

1.2.1 Hardly Leveraging Class Structure

Traditional graph machine learning methods for node classification and/or
clustering [41, 55] typically focus on utilizing only the topology structure, i.e.,
they aim to capture the relationship between the topology and classes (or
communities). This means that they fail to incorporate the interplay between
classes, attributes, and topology. Recently few methods [49, 129] have been
proposed to capture the class structure in a given attributed graph. How-
ever, it is still an open question how we can effectively leverage the virtue
of attributed graphs to accurately predict the class labels of nodes. Con-
cretely, existing attributed graph machine learning methods suffer from two
limitations. First, they ignore non-linear relationship between the topology
and attributes. The second limitation is that they ignore the possibility of
missing positive edges, i.e., edges that exist in the real world but are not ob-
served, even though datasets typically do not reflect real-world phenomena
completely.

1.2.2 Limited Scalability

With the proliferation of the Web, Internet, and sensor devices, large-scale
graphs have been collected. However, most existing graph machine learning
methods have not been designed to handle such graphs with over a hundred
million nodes and billion edges despite the demand for analyzing large-scale
graphs in practice [29, 47]. Hence, it is important to develop efficient and
scalable methods for large-scale graphs. Analyzing large-scale graphs is one of
the hottest topics and several existing studies have addressed the scalability
problem of node classification [37, 82, 111]. However, they still suffer from
two major issues. First, though they have proposed their specific algorithms
that scale well to large-scale graphs, it is laborsome to apply the same idea
to other algorithms that have been widely studied. Second, precomputation
schemes that several scalable methods adopt are still not scalable to large-
scale graphs since they need to put complete graphs on the GPU memory.

1.2.3 No Comprehensive Evaluation

Several existing studies [30, 38] have addressed benchmarking the perfor-
mance of graph machine learning methods. A study [30] supports a variety
of graph tasks, i.e., node classification, graph classification, link prediction,

1.3. CONTRIBUTIONS AND ORGANIZATION OF THESIS 5

and graph regression. However, since only one or two datasets are used for
each task, no deep analysis for node classification is provided. Another study
[38] focuses on GNNs for materials chemistry. Due to the characteristics of
the data, the study considers only graph regression. As a result, the compre-
hensive evaluation of the methods on a node classification task is challeng-
ing since most methods are assessed on well-known but limited benchmark
datasets. Consequently, the existing evaluation lacks fine-grained analysis
from various characteristics of graphs. Moreover, graph machine learning
methods including GNNs have been broadly studied and many works have
proposed tons of those algorithms. This makes the above issue more serious.
While existing synthetic graph generators are used to mitigate the shortage
of datasets, they cannot generate realistic graphs. To clarify the strengths
and weaknesses of graph machine learning methods, we require a variety of
realistic graphs to evaluate graph machine learning methods.

Our fundamental solutions regarding the first three limitations would
provide benefit to future research addressing the rest of the limitations. We
will discuss their more details in Section 5.2.

1.3 Contributions and Organization of Thesis

In this thesis, we propose techniques to address the aforementioned limita-
tions against practical applications. Concretely, we propose a method that
effectively combines the topology and attributes in order to predict the class
labels of nodes in Chapter 2. In Chapter 3, we propose a framework that
improves the efficiency of existing graph machine learning methods. Then,
we propose an evaluation framework where users can investigate how their
own methods work on various graphs in Chapter 4. Finally, in Chapter 5,
we conclude this thesis and discuss future work. In the rest of this section,
we briefly describe the summaries of our techniques proposed in Chapters 2,
3, and 4, respectively.

1.3.1 Class Structure-aware Graph Clustering Method

Towards effective approaches capturing the class structure in attributed graphs,
we address an attributed graph clustering problem for the first step, which
can be regarded as unsupervised node classification. Note that we assume
that nodes with the same label form a community in this problem, i.e., graph

6 CHAPTER 1. INTRODUCTION

clustering is a special (and simple) case of node classification with this as-
sumption. To achieve high-quality clustering results, it is necessary to effec-
tively utilize both the topology and attribute information1. To address the
limitations discussed in Section 1.2.1, Chapter 2, which is based on our re-
search works published in [98, 139], describes the design and implementation
of an effective attributed graph clustering method. We show experiments
demonstrating that our method outperforms existing methods and balances
the effects of the topology and attributes to achieve high-quality clustering
results in Section 2.5.

1.3.2 Improving the Scalability of GNNs with Trans-
formations and Graph Decomposition

In Chapter 3, we focus on the scalability of graph machine learning meth-
ods while we address improving their effectiveness in Chapter 2. Since deep
neural network-based methods have recently achieved state-of-the-art perfor-
mance on node classification, we focus on node classification with GNNs. To
address the scalability issue discussed in Section 1.2.2, in Chapter 3, which
is based on our research work published in [81], we propose 1) a framework
that automatically transforms non-scalable GNNs into scalable GNNs and
2) a block-wise precomputation scheme that optimally decomposes large-
scale graphs into small and balanced blocks each of which can fit into GPU
memory. We experimentally validate that our transformation procedure and
optimized block-wise precomputation scheme are quite effective in Section
3.4.

1.3.3 Comprehensive Evaluation of GNNs with Flexi-
ble Synthetic Graph Generator

While in Chapters 2 and 3 we address the effectiveness and scalability prob-
lems of graph machine learning methods, respectively, we address the evalu-
ation problem of graph machine learning methods in Chapter 4. Similarly to
Chapter 3, we focus on GNNs due to their promising performance. To ad-
dress the evaluation problem aforementioned in Section 1.2.3, in Chapter 4,

1Since the essential difference between node classification and clustering is whether
the loss function includes a supervised loss or not, graph machine learning models for
clustering can be applied to node classification with a small modification.

1.3. CONTRIBUTIONS AND ORGANIZATION OF THESIS 7

which is based on our research works published in [78, 79, 80, 136, 137, 138],
we propose a flexible graph generator supporting various characteristics of
graphs and conduct empirical studies of GNNs by using the graph generator.
Through extensive experiments, we provide insightful takeaways for future
research on GNNs in Section 4.5. We hope the use of our evaluation frame-
work using the flexible graph generator will reduce the burden of comparing
existing GNNs and developing/evaluating new algorithms.

Chapter 2

Class Structure-aware
Attributed Graph Clustering
by Bridging Attribute and
Topology Spaces

2.1 Introduction

As we discussed in Chapter 1, graphs in the real world usually have attributes
on nodes. Actually, the graph databases support attributed graphs or prop-
erty graphs [36, 101]. However, most graph clustering techniques [57, 87, 115]
do not leverage the attributes of nodes since their design is limited to sim-
ple graphs without having attributes. Therefore, these techniques cannot
extract precise clusters without leveraging the attributes. There are emerg-
ing researches that tackle the clustering problem for attributed graphs [7,
50, 91, 116, 133] and the representation learning problem1 for attributed
graphs, such as ANRL [129] and AANE [49]. Despite the considerable im-
provements made by those methods, they have not effectively leveraged the
virtue of attributed graphs. There are two fundamental aspects of the at-
tributed graphs we should consider. First, the topology and the attributes
of real-world graphs have a complicated relationship with each other, i.e.,
the class structure, because they are obtained from different viewpoints in

1We will discuss the relationship between representation learning and clustering in
Section 2.4.

9

10 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

real-world but these viewpoints are correlated. Therefore, we need to balance
the effects of the topology and the attributes for each cluster independently:
some clusters are formed due primarily to the graph topology while some
others are formed due primarily to the attributes. Note that we consider a
more complicated relationship between the topology and attributes than the
relationship that existing methods assume since they cannot control the ef-
fect of the topology to the attributes for each cluster. Second, typical graphs
consist only of partially observed positive edges, i.e., edges that exist in the
real world but are not observed. This is because real-world graphs follow the
open world assumption: “absence of information is interpreted as unknown
information, not as negative” [58]. For example, a social graph may not re-
flect precisely the social connections in the real world: we can only observe
positive connections between people such as “likes” and “friendships”, but
cannot observe negative ones [46].

We take the above two aspects into account and propose NAGC, a New
Attributed Graph Clustering method by bridging the attribute space and
topology space and by taking the effect of partially observed positive edges.
To achieve high clustering quality, 1) NAGC learns a projection function
between the topology space and the attribute space so as to capture their
complicated relationship. The projection function consists of a rescale func-
tion and a transfer matrix that balances the effect from the attribute space
to the topology space for each cluster independently, and 2) NAGC lever-
ages PU (positive-unlabeled) learning [31, 46, 74] to take the effect of par-
tially observed positive edges into the cluster assignment. To the best of
our knowledge, our method is the first method that learns the representation
of attributed graphs 1) by capturing the complex relationship between the
topology and the attributes and 2) by applying the PU learning to the miss-
ing positive edges. Our method can precisely capture clustering results by
revealing the relationship between the topology and the attributes in real-
world graphs.

We extensively performed experiments for various clustering methods and
representation learning methods over various real datasets with ground truth.
We also performed a micro benchmark to validate the effectiveness of learn-
ing projection function and PU learning to the clustering quality. With these
experiments, we confirm that our method performs higher than or compara-
ble to the existing methods in terms of the clustering quality. In addition,
we confirm that NAGC actually captures complicated relationships between
attribute space and topology space by visualizing the transfer matrix. We

2.2. PRELIMINARIES 11

also confirm that our method is stable against the hyperparameter selection.
The rest of this chapter is organized as follows. We introduce fundamental

techniques for our method, Non-negative Matrix Factorization, Symmetric
Non-negative Matrix Factorization, and Biased Matrix Completion in Sec-
tion 2.2. We propose our method in Section 2.3. Section 2.4 addresses the
details of the related work. Section 2.5 gives the purpose and results of the
evaluations. Finally, we conclude this chapter at Section 2.6.

2.2 Preliminaries

Notation: We denote a matrix and its i-th row vector as upper boldface
X and under boldface xi. The set of non-negative real numbers is R+. We
denote an attributed graph G = (A,X), where A ∈ Rn×n

+ is an adjacency
matrix and X ∈ Rn×d

+ is an attribute matrix. For simple descriptions, we
additionally denote the topology of a graph Gtopology = (V,E) comprising
a set of nodes V = {1, 2, . . . , n} and edges E = {(i, j)} ⊆ [n] × [n]. This
corresponds to an adjacency matrix A. || · ||F and || · ||∗ are Frobenius norm
and the nuclear norm, respectively. We use ⊙ and ⊘ to denote element-wise
multiplication and element-wise division, respectively.

2.2.1 Non-negative Matrix Factorization

Given the number of clusters for topology and attributes, k1, k2≪ min{d, n},
respectively, we suppose a cluster assignment matrix U ∈ Rn×k1

+ and an at-
tribute factor matrix V ∈ Rd×k2

+ . Let us denote a transfer matrix H ∈ Rk1×k2
+

that represents the relationship between topology and attributes. Non-
negative Matrix Tri-Factorization (NMTF) [28], which is a novel extension
of Non-negative Matrix Factorization (NMF) [69], estimates local optimal
parameters U , V , and H by minimizing a non-convex loss:

min
U ,V ,H≥0

||X −UHV ⊤||2F . (2.1)

NMF is treated as a special case of NMTF where H is set to an identity
matrix. Compared with the original NMF, which estimates U , V , NMTF
generates more precise model by introducing transfer matrix H . However,
NMTF is limited to consider only linear relationships between topology and
attributes.

12 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

2.2.2 Symmetric Non-negative Matrix Factorization

The goal of graph clustering is to find a partition of nodes in a graph where
the similarity between nodes is high within the same cluster and low across
different clusters. Kuang et al. proposed Symmetric Non-negative Matrix
Factorization (SNMF) [63, 64], and showed an interesting relationship among
SNMF and graph clustering methods [88]. SNMF estimates a cluster as-
signment matrix U by minimizing a non-convex loss function that uses an
adjacency matrix A as input:

min
U≥0
||A−UU⊤||2F . (2.2)

Thanks to the non-negative constraint, we can obtain a clustering result by
assigning i-th node to the k′

1-th cluster that has the largest value in ui, that
means k′

1 = argmaxl{ui,l | l = (1, . . . , k)}. We don’t need to apply additional
clustering techniques such as k-means to the node vectors.

2.2.3 Biased Matrix Completion

Hsieh et al. [46] considered a matrix completion problem when only a subset
of positive relationships is observed, such as recommender systems and social
networks where only “likes” or “friendships” are observed. The problem is
an instance of PU learning, i.e. learning from only positive and unlabeled ex-
amples that has been studied in the classification problems. They introduced
the ρ-weighted loss for a bipartite graph G′ = (V ′, E ′) comprising a set of
nodes V ′ = {{1, 2, . . . , n}, {1, 2, . . . ,m}} and edges E =′ {(i, j)} ⊆ [n]× [m]:

ℓρ(zi,j) = ρ1(i,j)∈E′(zi,j − 1)2 + (1− ρ)1(i,j) ̸∈E′z2i,j, (2.3)

where ρ = [0, 1], 1(i,j)∈E′(·), and 1(i,j) ̸∈E′(·) are a bias weight, an indicator
function for positive edges, and an indicator function for unlabeled edges,
respectively. This loss can change a weight for reconstruction errors among
positive and unlabeled edges. When we set ρ = 0.5, it treats the positive
and unlabeled entities equally. With this loss, they proposed a biased matrix
completion as:

min
Z:||Z||∗≤λ

∑
(i,j)∈E′

ρ(zi,j − 1)2 +
∑

(i,j) ̸∈E′

(1− ρ)z2i,j. (2.4)

where λ ≥ 0 is a hyperparameter.

2.3. NAGC: NEW ATTRIBUTE GRAPH CLUSTERING 13

Table 2.1: Definition of main symbols.

Variable Explanation
A ∈ Rn×n

+ adjacency matrix
X ∈ Rn×m

+ attribute matrix

U ∈ Rn×k1
+ topology cluster assignment matrix

V ∈ Rm×k2
+ attribute factor matrix

H ∈ Rk1×k2
+ cluster assignment transfer matrix

W ∈ Rn×n
+ mask matrix of A

k1 ∈ N number of clusters for topology
k2 ∈ N number of clusters for attributes

λ ≥ 0
balancing parameter between
the topology and the attributes

ρ = [0, 1] bias weight for A
t ∈ N number of iterations

2.3 NAGC: New Attribute Graph Clustering

As we mentioned in Section 2.1, we need to consider two fundamental aspects
of the attributed graphs: 1) the topology and the attributes of real-world
graphs have a complicated relationship and 2) typical graphs usually have a
subset of positive edges implying that there are missing positive edges. The
novelty of NAGC is three-hold:

• We jointly decompose the topology (adjacency) matrix and the at-
tribute matrix into factor matrices to represent the node features in
the topology space and the attribute space. We employ SNMF and
NMTF to decompose the adjacency matrix and attribute matrix, re-
spectively.

• NAGC learns a projection function between the topology space and the
attribute space. The projection function consists of a rescale function
and a cluster assignment transfer matrix. The rescale function bridges
the scale gap between the two spaces. The transfer matrix bridges
the two spaces by balancing the effect from the attribute space to the
topology space for each cluster independently. This transfer matrix

14 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

Figure 2.1: Illustration of NAGC. A and X are an adjacency matrix and
an attributed matrix, respectively. U , V , and H denote a topology cluster
assignment, an attribute factor, and a cluster assignment transfer matrices,
respectively. f is a rescale function.

increases the expressive power of our model as deep learning models
typically increase their weight matrices.

• We leverages PU learning to take the effect of partially observed posi-
tive edges into the cluster assignment. That is, we put a larger bias to
partially observed positive edges than unlabeled edges.

Table 2.1 lists the main symbols and their definitions.

2.3.1 NAGC Model

We formalize our method as a minimization problem of a non-convex loss as
follows:

min
U ,V ,H≥0

Lρ(A−UU⊤) +
λ

2
||X − f(UH)V ⊤||2F . (2.5)

2.3. NAGC: NEW ATTRIBUTE GRAPH CLUSTERING 15

Figure 2.1 depicts the design of NAGC. The adjacency matrix A is decom-
posed into UU⊤, so U represents the matrix of the topology cluster assign-
ment. In contrast, the attribute matrix X is decomposed into f(UH)V ⊤, so
f(UH) represents the matrix of the attribute cluster assignment. By trans-
forming the matrix of the topology cluster assignment (U) to the matrix of
the attribute cluster assignment (f(UH)) with the rescale function f and
transfer matrix H , our method enables to capture the complex relationship
between the topology cluster assignment and the attribute cluster assign-
ment. In particular, H bridges the two assignments by balancing the effect
from the attribute space to the topology space for each cluster independently.
In addition, λ is a hyperparameter that balances globally the effects between
the topology and the attribute for all clusters. f denotes an element-wise
rescale function and we use the sigmoid function as f : f(x) = 1

1+e−x . There
are two reasons we adopt the sigmoid function. First, the sigmoid function
is differentiable so the parameter update rules of the existing method can be
used with minor modifications. Second, the sigmoid function is one of the
simplest functions for rescale function.

This choice can be generalized to any non-linear function. We use Lρ(Z)
to denote an error of the adjacency matrix A with ρ-weighted loss.

Lρ(Z) =
∑

(i,j)∈E

ρ(zi,j − 1)2 + (1− ρ)
∑

(i,j) ̸∈E

z2i,j. (2.6)

Note that, the number of clusters k2 for attribution is not necessary the same
as the number of clusters k1 for topology, since we suppose that the cluster
structure embedded in attributes differs from that in topology. NAGC can
be seen as a generalized SNMF because NAGC simulates SNMF by setting
λ = 0 and ρ = 0.5: no effects from attributes and partially observed positive
edges.

2.3.2 Optimization

Since our loss is non-convex for U , V , and H , we derive a parameter
estimation procedure that alternately updates each parameter by utilizing
the method of Lagrange multipliers [28]. Following the standard theory of
constrained optimization, we introduce Lagrangian multipliers α ∈ Rn×k1 ,
β ∈ Rm×k2 , and γ ∈ Rk1×k2 for the non-negative constraints U ,V ,H ≥ 0.

16 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

We define the Lagrangian function of our proposed method as:

L(U ,V ,H ;α,β,γ)

= Lρ(A−UU⊤) +
λ

2
||X − f(UH)V ⊤||2F

+ Tr(α⊤U) + Tr(β⊤V) + Tr(γ⊤H). (2.7)

For each parameter, we derive partial differences of L.

∂L
∂U

= −2ρAU − λ{(XV)⊙ f ′(UH)}H⊤

+ 2ρ(UU⊤ ⊙W)U + 2(1− ρ)(UU⊤ ⊙W ′)U

+ λ[{f(UH)V ⊤V } ⊙ f ′(UH)]H⊤ +α. (2.8)

∂L
∂V

= −λX⊤f(UH) + λV f(UH)⊤f(UH) + β. (2.9)

∂L
∂H

= −λU⊤{f ′(UH)⊙ (XV)}

+ λU⊤{f ′(UH)⊙ f(UH)}V ⊤V + γ. (2.10)

W ∈ Rn×n
+ is a mask matrix whose elements are set to wi,j = 1 if si,j ̸= 0 or

wi,j = 0 otherwise, and W ′ = 1−W . The KKT complementarity conditions
are: α ⊙ U = 0,β ⊙ V = 0,γ ⊙H = 0, ∂L

∂U
= 0, ∂L

∂V
= 0, and ∂L

∂H
= 0. By

satisfying these conditions, we can derive multiplicative update rules.

U ← U ⊙ [2ρAU + λ{(XV)⊙ f ′(UH)}H⊤]⊘
[2ρ(UU⊤ ⊙W)U + 2(1− ρ)(UU⊤ ⊙W ′)U

+ λ{(f(UH)V ⊤V)⊙ f ′(UH)}H⊤]. (2.11)

V ← V ⊙ {X⊤f(UH)} ⊘ {V f(UH)⊤f(UH)}. (2.12)

H ←H ⊙ [U⊤{f ′(UH)⊙ (XV)}]
⊘ [UT{f ′(UH)⊙ f(UH)}V ⊤V]. (2.13)

Our loss is convex with respect to V and H , however, as mentioned in [63],
the loss is a fourth-order non-convex function with respect to U . That means,
it is difficult to guarantee the monotonic convergence of our parameter esti-
mation method; thus we expect a good convergence property that every limit
point is a stationary point.

Algorithm 1 shows the algorithm for our method. Since non-convex min-
imization problems have multiple local minima, we apply k-means to the

2.3. NAGC: NEW ATTRIBUTE GRAPH CLUSTERING 17

Algorithm 1: NAGC-U algorithm

Input: A,X, k1, k2, λ, t
Output: clustering result C
1: Preprocess: A,X
2: Initialize: U ,V ,H
3: while t′ < t do
4: # alternately update parameters
5: U (t′+1) ← update (U (t′)) by Eq. (2.11)
6: V (t′+1) ← update (V (t′)) by Eq. (2.12)
7: H(t′+1) ← update (H(t′)) by Eq. (2.13)
8: while n′ < n do
9: # assign each node to the clusters
10: cn′ ← argmaxl{un′,l | l = (1, . . . , k1)}

attribute matrix X and use the result to initialize U and V . H is initial-
ized by random values in the same way as the standard NMTF. There are
two variations of our method, NAGC-U and NAGC-UH. They obtain clusters
based on the topology cluster assignment U and attribute cluster assignment
UH , respectively.

2.3.3 Computational Complexity

Let t be the number of iterations in the matrix decomposition. Since the
cost for SNMF is O(n2kt) [63, 64], the cost for updating rules of NAGC is
equal to O((n2 + dn)kt) where k = max(k1, k2) and k ≪ n in general. For
example, the operation of NAGC finishes in 3 seconds for WebKB which is a
small size dataset, in 60 seconds for Citeseer which is a middle size dataset,
and in 250 seconds for Flickr which is a relatively large size dataset2.

Limitations. Since NAGC depends quadratically on the number of nodes,
it does not scale to large-scale graphs, e.g., graphs with million nodes. While
we address the effectiveness of a graph clustering method in this chapter, we
will address the scalability and efficiency problems3 in the next chapter.

2The experiments are implemented on Python3.
3Though we focus on graph neural networks in the next chapter, they can be used as

clustering methods by transforming their loss functions into unsupervised fashions.

18 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

2.4 Related Work

There are many clustering methods for attributed graphs [7, 50, 91, 116, 133]
and representation learning techniques for attributed graphs [49, 119, 129].
Most of the representation learning for attributed graphs are influenced by
node embedding techniques [18, 41, 93, 104, 122].

2.4.1 Attributed Graph Clustering

Matrix decomposition-based. SNMF is recently extended to consider
both the topology and the attributes for discovering clusters of data entities.
DANMF [122] is a deep autoencoder-like nonnegative matrix decomposition
method, which is extended from SNMF. It learns hierarchical mappings be-
tween the original network and the final community assignment based on a
deep autoencoder-like architecture. CDE [71] shares the same design with
ours in that it decomposes topology matrix and attribute matrix by using
NMF, but it is also orthogonal to ours in that 1) it newly introduces a com-
munity structure embedding matrix (distance matrix from node to node in
cluster space) used as a topology matrix, whereas 2) our approach learns a
projection function between the topology space and the attribute space and
also leverages PU learning. TLSC [128] is based on generative models and
it does usually not perform better than NMF-based approaches. Indeed, the
experiments reported in [71] show that CDE performs higher than TLSC
in terms of the NMI measure. JWNMF [50] factorizes both the topology
and the attribute matrices at the same time, however, the clustering quality
is not high since it does not use the transfer matrix between the topology
space and attribute space: the transfer matrix effectively balances the effect
between those two spaces.

Distance-based. SA-Cluster [132] and its efficient version Inc-Cluster [133]
are attributed graph clustering methods expanded from distance-based graph
clustering. The key idea is to embed node attributes as new nodes into the
graph. A unified distance for the augmented graph is defined by the random
walk process, and the graph is partitioned by k-medoids. It is hard to apply
these methods to large graphs since the augmented steps increase the size of
the graph considerably.

Bayesian-based. BAGC/GBAGC [116, 117] learns a posterior distribu-
tion over the model parameters. This method assumes that the nodes in
the same cluster should have a common multinomial distribution for each

2.5. EXPERIMENTS 19

node attribute and a Bernoulli distribution for node connections. The at-
tributed graph clustering problem can be formulated as a probabilistic gen-
erative model. PAICAN [18] performs anomaly detection and clustering on
the attributed graph at the same time. PAICAN explicitly models partial
anomalies by generalizing the ideas of Degree Corrected Stochastic Block
Models [54] and Bernoulli Mixture Models.

2.4.2 Representation Learning

The representation learning generates node embeddings4 for attributed graphs,
which is a way of representing nodes as vectors, similarly to word embedding
techniques such as word2vec [84]. The embeddings can be used for various
tasks such as clustering, link prediction, and classification.

ANRL [129] combines a neighbor enhancement autoencoder and an attribute-
aware skip-gram model for learning node features that preserve the attributes
and the network structure. It controls the topology effect by tuning param-
eters for the contribution of the neighbor enhancement autoencoder and for
the window size on random walk. AANE [49] uses a hyperparameter λ that
balances globally the effects between the topology and the attribute for all
clusters. Notice that ANRL and AANE use hyperparameters to control the
effect of the topology to the attributes for all clusters, however, they cannot
control it for each cluster independently. This is because they simply propa-
gate the attributes by random walk on graph. TADW [119] employs NMTF
to decompose the topology matrix into the product of two factor matrices
and text feature matrix. TADW is not robust to the text feature since factors
are not extracted from the text feature.

Graph Convolutional Networks [61], that is a semi-supervised learning
method for a graph, has obtained considerable attention from machine learn-
ing and data mining fields due to its high performance in classifying graph
nodes. However, this approach needs a subset of true cluster labels on nodes,
and thus its goal is different from that of the attributed graph clustering.

2.5 Experiments

The purpose of our experiments is to answer the following questions:

4Representation learning techniques are closely related to clustering techniques since
graph clustering can be regarded as feature clustering on node embedding space.

20 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

Q1 Does NAGC perform higher than former methods? (Section 2.5.4)

Q2 Does NAGC capture the complicated relationship between the topology
and the attributes? (Section 2.5.5)

Q3 How largely the parameters affect the performance? (Section 2.5.6)

In detail, the first purpose of the experiments is to evaluate the cluster-
ing quality of NAGC5 compared with various methods: representation learn-
ing methods for attributed graphs (AANE [49], ANRL [129]), an attributed
graph clustering method (JWNMF [50]), graph clustering methods without
using attributes (METIS [57], DANMF [122]), and a typical attribute-based
clustering method (k-means). We used publicly available codes for those
methods. As for the representation learning methods, we learned the node
representation by using the same setting used in each paper. Then, we ob-
tain clustering results by applying k-means to the learned representation by
taking the same approach used in [41, 122]. We also evaluate a simple graph
clustering method without using attributes, METIS [55], and an attribute-
based clustering method, k-means, so that how much only the topology or
attributes of the graphs contribute to the clustering quality. We use two
variations of our method, NAGC-U and NAGC-UH, based on the topology
cluster assignment and the attribute cluster assignment, respectively. We
perform five restarts for each method and report the average of the results
for all the above experiments.

The second purpose is to evaluate how effectively the transfer matrix
bridges the two spaces to capture their complicated relationship, because the
transfer matrix is designed to balance the effect from the attribute space to
the topology space for each cluster independently.

The third purpose of our experiments is to investigate the details of the
quality improvement achieved by our method: we evaluate the effectiveness
of PU learning and the effect of the hyperparameters.

2.5.1 Datasets

We choose seven real-world datasets with ground truth in our experiments.
They cover wide variety of graph types and sizes. They are used in the
related papers of the attributed graph clustering. The graph types of our

5The source code of NAGC is available at https://github.com/seijimaekawa/NAGC.

2.5. EXPERIMENTS 21

datasets (web graph, blogs, Wikipedia, citation networks, social network)
cover more than half of the categories used in SNAP6 graph data archive.
Also, the graph sizes are from small to relatively large (the number of nodes
from 877 to 7, 564 and the number of edges from 1480 to 239, 365).

• WebKB7 is a web graph of four universities: nodes indicate web pages,
edges indicate hyperlinks between pages, the label for a node indicates
the owner university of the page, and the attributes of a node represent
the words that appear on the page.

• Polblog8 is a network of hyperlinks between blogs on US politics: nodes
indicate blog posts, edges indicate hyperlinks between blogs, the label
of a node indicates whether the blog is liberal or conservative, and the
attributes of a node represent the sources of the blogs.

• Wiki is a document network and the link among different nodes is the
hyperlink in a web page. The label of a node indicates the category of
the node. The attributes represent the TFIDF matrix of this dataset.

• Citeseer and Cora (see also footnote7 for detail) are citation networks.
The label of a node corresponds to a research field of the paper. The
attributes of a node consist of the words appeared in the paper.

• BlogCatalog is a blogger community network, where users interact with
each other. The labels of nodes indicate the topics of bloggers, to which
the bloggers register their blogs. The attributes of a node represent the
keywords of their blogs.

• Flickr is an online community in which people can share photos and
follow each other. The labels of nodes indicate communities to which
the nodes belong. We use the tags attached on each image as the
attribute information.

Table 2.2 summarizes the statistics of the datasets9. We also include the
modularity [87] and the average entropy for each of the true cluster assign-
ment: the modularity and the entropy represent the topological aspect and

6Stanford Large Network Dataset Collection: https://snap.stanford.edu/data/index.html
7http://linqs.cs.umd.edu/projects/projects/lbc/index.html
8http://www-personal.umich.edu/˜mejn/netdata/
9As we mentioned in Section 1.1, we focus on homogeneous graphs, i.e., graphs we use

have no edge types.

22 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

Table 2.2: The statistics of the datasets. Mod. and Ent. indicate the
modularity and the average entropy, respectively.

Dataset Node Edge Attribute Label Mod. Ent.
WebKB 877 1480 1703 4 0.739 0.152
Polblog 1490 16630 7 2 0.405 0.379
Wiki 2405 12761 4973 17 0.524 0.320
Cora 2708 5278 1433 7 0.640 0.054
Citeseer 3312 4660 3703 6 0.544 0.039
BlogCatalog 5196 171743 8189 6 0.224 0.036
Flickr 7564 239365 12047 9 0.121 0.012

attribute aspect, respectively. Intuitively, higher modularity indicates there
are dense connections in the same cluster but sparse connections between dif-
ferent clusters. Lower average entropy indicates there are similar attribute
values in the same cluster but dissimilar attribute values between different
clusters. Average entropy is defined as:

Average entropy =
m∑
i=1

k∑
j=1

|Cj|
nm

entropy(ai, Cj) (2.14)

where entropy(ai, Cj) is the information entropy of attribute ai in cluster
Cj. The values with respect to the modularity and the average entropy fall
within the range of [−1, 1] and the range of [0, 1], respectively.

2.5.2 Measurements

The modularity and entropy are not suitable measurements for the cluster-
ing evaluation of attributed graphs, because the resulting clusters should
take into account both aspects of the topology and attributes. We utilize
two measures, Adjusted Rand Index (ARI) [51] and Adjusted Mutual Infor-
mation (AMI) [107]. ARI is the corrected-for-chance version of the Rand
index [51]. Such a correction for chance establishes a baseline by using the
expected similarity of all pair-wise comparisons between clusterings speci-
fied by a random model. AMI corrects the effect of agreement solely due to
chance between clusterings. Note that it is an adjusted version of Normalized

2.5. EXPERIMENTS 23

Mutual Information (NMI), similar to the way that ARI corrects the Rand
index. They are typical measurements used for assessing the clustering qual-
ity with ground truth labels10. They are adjusted in a sense that random
cluster assignments make ARI and AMI scores close to zero. On the other
hand, non-adjusted measures such as NMI have a dependency between the
number of clusters and the number of samples used to compute the measure.
Therefore, the adjusted measures are more preferable for cluster evaluation.

2.5.3 Parameter Settings

We searched for optimum parameters, λ, k2, and ρ for each dataset and used
them in our experiments. λ is chosen from the set {10−10, 10−8, 10−7, 10−6,
10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100, 1000} by following the settings used in
[50]. The model does not work well when λ > 100.

Let k be the number of true clusters for each dataset. k2 is chosen from the
set {k, 5, 7, 10, 15, 20} for NAGC-U11 so that we can learn the model more pre-
cisely than when we use k. ρ is chosen from the set {0.5, 0.55, 0.75, 0.95, 0.995}.
To mitigate the different scales between A and X, we normalize A by mul-
tiplying each element of A with |X|

|A| . The iterate computation of our method

converges very fast (usually in 100 iterations) so the number of the iterations
t is fixed at 100 in all the experiments.

2.5.4 Clustering Quality

Table 2.3 shows the results of evaluating the clustering quality. NAGC-U is
obtained from the topology cluster assignment and NAGC-UH is obtained
from the attribute cluster assignment. The last column (Avg.) indicates the
average for all datasets. NAGC achieves the best performance not only in the
average results, but also in six datasets (out of seven) in ARI measurement
and three datasets in AMI measurement. The benefit of NAGC is that it
balances and combines the effects of both the topology and the attributes, as
we can see that NAGC is always better than METIS and k-means. Moreover,
NAGC generally works well regardless of the entropy of the datasets (see
Table 2.2). In particular, NAGC performs better than other methods even

10We choose AMI since NMI is not adjusted for chance. Note that the chance rates of
ARI and AMI are 0.

11We do the same by replacing k2 with k1 for NAGC-UH.

24 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

Table 2.3: Clustering performance of different datasets. The boldface font
represents the best performance for each dataset.

Dataset WebKB Polblog Wiki Cora Citeseer BlogCatalog Flickr Avg.

ARI NAGC-U 0.992 0.646 0.315 0.336 0.269 0.200 0.136 0.413
NAGC-UH 0.802 0.100 0.367 0.360 0.303 0.259 0.141 0.333
AANE 0.974 0.003 0.137 0.221 0.184 0.174 0.086 0.254
ANRL 0.990 0.000 0.212 0.439 0.296 0.252 0.053 0.320
JWNMF 0.908 0.513 0.132 0.309 0.077 0.149 0.133 0.317
DANMF 0.850 0.556 0.174 0.249 0.084 0.129 0.067 0.301
METIS 0.909 0.575 0.187 0.246 0.155 0.143 0.069 0.326
k-means 0.274 0.000 0.040 0.062 0.169 0.000 0.000 0.078

AMI NAGC-U 0.987 0.547 0.440 0.374 0.266 0.260 0.199 0.439
NAGC-UH 0.742 0.078 0.459 0.404 0.290 0.310 0.168 0.351
AANE 0.962 0.006 0.447 0.336 0.216 0.289 0.172 0.347
ANRL 0.984 0.000 0.378 0.491 0.349 0.337 0.095 0.376
JWNMF 0.899 0.442 0.260 0.232 0.087 0.215 0.202 0.334
DANMF 0.853 0.484 0.292 0.334 0.133 0.194 0.105 0.342
METIS 0.889 0.471 0.299 0.336 0.173 0.186 0.105 0.351
k-means 0.292 0.000 0.174 0.117 0.207 0.005 0.001 0.114

when the entropy is large (WebKB, Polblog, Wiki). NAGC also performs best
when the attributes do not effectively contribute to the clustering result, such
as when k-means works poorly (Flickr)12. This behavior implies that NAGC
selectively chooses the effect from the attribute space to the topology space
for each cluster independently.

In contrast, ANRL generally works well when the entropy is small (Cora,
Citeseer, BlogCatalog) but not otherwise13. ANRL learns the representation
equally from all the attributes, so it does not control the effect of each at-
tribute cluster independently to the topology cluster assignment: ANRL is
even worse than METIS for Polblog and Flickr.

To investigate more on the difficulty of the attributed graph clustering, we
show that the topology and the attributes of real-world graphs have different
cluster assignments. Table 2.4 gives the modularity and the average entropy

12k-means decides the centroids of clusters by treating all nodes equally so it does not
work well when most elements of the attribute matrix are zero. Actually, 99% of the nodes
are assigned to a single cluster in Flickr.

13The average entropy tends to be low when most elements of the attribute matrix are
zero regardless of the correlation between the attributes and the true label. Considering
the summation of all elements of the attribute matrix divided by the numbers of nodes
and attributes, Flickr has the smallest value, 0.0280. It is much smaller than the average
value of all datasets, 0.128. For this reason, Flickr has low entropy.

2.5. EXPERIMENTS 25

Table 2.4: Modularity and average entropy for WebKB dataset.

Modularity Entropy ARI
NAGC-U 0.737 0.152 0.992
AANE 0.731 0.152 0.974
ANRL 0.737 0.152 0.990
JWNMF 0.741 0.153 0.908
DANMF 0.718 0.153 0.850
METIS 0.741 0.153 0.909
k-means 0.252 0.146 0.274

for the clustering result of WebKB. Our method achieves the highest ARI
but does not achieve either the best modularity or the best average entropy.
This result implies that we should not optimize the model only to either the
topology or the attributes, but balance the effects between the topology and
the attributes.

2.5.5 Bridging Topology and Attribute Spaces

One of the most important contributions is how effectively NAGC captures
the complex relationship between the topology space and the attribute space.
Fig.2.2 depicts the heatmaps of the transfer matrix H for Polblog and Wiki
since H represents the relationship between the topology clusters and at-
tribute clusters. Note that the size of H is Rk1×k2 and the X and Y axes de-
pict attribute clusters (k2 dimensions) and topology clusters (k1 dimensions),
respectively. We choose Polblog and Wiki datasets in which NAGC-U and
NAGC-UH achieve the best results for both ARI and AMI. The darker ele-
ments indicate there is a larger effect from the attribute cluster to the topol-
ogy cluster, i.e., the topology and attribute clusters are strongly correlated
if the elements are dark. . In detail, in Fig.2.2 (a), most attribute clusters
(1,3,7-10,15-17) are colored in light color, this indicates that there is almost
no effect from those attribute clusters to topology clusters. In other words,
those attribute clusters do not have any correlations with topology clusters.
Considering a web graph with word information as an example, there is no
correlation between general words (such as “abstract” or “introduction” for

26 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

Small Large

(a) Polblog (k1=2, k2=20)

Small Large

(b) Wiki (k1=10, k2=17)

Figure 2.2: Heatmaps of the transfer matrix H . The darker elements indicate
there is larger effect from attribute cluster to topology cluster.

academic papers) and topology clusters. In contrast, the attribute cluster of
0,5,11,18,19 indicate theses attribute clusters effect mostly to topology clus-
ter 0. In Fig.2.2 (b), the dark elements in the matrix, such as (5,5), (12,8),
(13,3), show clear effect from an attribute cluster to a topology cluster. Also,
we can observe that the topology cluster of 4 receives almost equal effects
from multiple attribute cluster of 1,4,7,8,10,11,14,16.

These results validate that there is actually a complex relationship be-
tween topology space and attribute space and justify our motivation: we
should learn a projection function between the topology space and the at-
tribute space.

2.5.6 Hyperparameter Analysis

We discuss the effect of the hyperparameters of our method. Fig. 2.3 shows
the effect of λ to the clustering results. Other parameters are fixed at the
values when ARI becomes highest for each λ. There is a peak in each dataset
(λ = 10−4 on WebKB and λ = 10−2 on Cora) which indicates that the effect

2.5. EXPERIMENTS 27

10 9 10 7 10 5 10 3 10 1 101
0.2

0.4

0.6

0.8

1.0

A
R

I

= 0.5
= 0.55

= 0.75
= 0.95

= 0.995

(a) WebKB

10 9 10 7 10 5 10 3 10 1 101

0.10

0.15

0.20

0.25

0.30

0.35

A
R

I

= 0.5
= 0.55

= 0.75
= 0.95

= 0.995

(b) Cora

Figure 2.3: Effect of λ and ρ on ARI in our method for two datasets.

to the model is well balanced by λ between the topology and the attributes14.

The effect of k2 and ρ to ARI is shown in Fig. 2.4. Fig. 2.4a shows that
ARI slightly increases when k2 increases. ARI of the WebKB is enough high
(almost 1.0) when k2 = 20. Fig. 2.4b shows that there is a peak of ARI on
Cora when ρ = 0.95 and k2 = 10. From Fig. 2.3 and 2.4, we confirmed that
ARI is stable against the selection of λ (when λ < 0.1) and k2 in a wide
range. Thus, in practice, we suppose our method would perform well when
λ and k2 may be simply chosen e.g., λ = 0.01 and k2 = k1.

As for the hyperparameter of PU learning, ρ has a large influence on the
performance of our method as shown in Fig. 2.3 and 2.4. Note that, when
ρ = 0.5, PU learning is not applied because the weights for 0 and 1 are
treated as the same. To evaluate the effectiveness of the Positive Unlabeled
approach, we show the effect of ρ to ARI achieved by our method in Table 2.5.
It shows that, when the density is low, the best ρ tends to be high in general.
This results clarify the effect of PU learning, because this setting puts more
bias to positive edges and most real-world graphs are sparse. The WebKB
dataset behaves differently, since it is the web graph managed by universities
so there is almost no missing positive edges

14Even when λ is close to 0, the attributes contribute to the clustering results so the
clustering performance is kept high. When lambda=0, we observe that ARI and AMI
largely decrease.

28 CHAPTER 2. CLASS STRUCTURE-AWARE GRAPH CLUSTERING

4 5 7 10 15 20
k2

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
R

I
= 0.5
= 0.55

= 0.75
= 0.95

= 0.995

(a) WebKB

5 7 10 15 20
k2

0.24

0.26

0.28

0.30

0.32

0.34

A
R

I

= 0.5
= 0.55

= 0.75
= 0.95

= 0.995

(b) Cora

Figure 2.4: Effect of k2 and ρ on ARI in our method for two datasets.

2.5.7 Discussion About NAGC-U and NAGC-UH

NAGC-U is obtained from the topology cluster assignment and NAGC-UH
is obtained from the attribute cluster assignment. Here we have a question:
which clustering result the users should choose obtained from NAGC-U or
NAGC-UH? If we know the grand truth beforehand, we can choose either
of them depending on the grand truth. However, the grand truth is usually
unknown in real applications. In practice, we provide the both results to the
users so that they can choose more suitable one. This is a type of trial-and-
error tasks during clustering analysis, such as choosing the suitable number
of clusters.

We show NMI scores between the clustering results of NAGC-U and
NAGC-UH in Table 2.6. NAGC-U and NAGC-UH obtain the similar clusters
in five datasets which are WebKB, Wiki, Cora, Citeseer, and BlogCatalog
since NMI scores are high. The difference between the clusters obtained
from NAGC-U and NAGC-UH indicates that there are nodes whose cluster
assignments differ depending on whether the topology or the attribute more
largely effects to the clusters. On the other hand, NMI is 0.000 in Polblog.
This result implies that the topology is independent from the attributes in
this dataset. We also observe that in Flickr some pairs of clusters between in
the topology and in the attributes overlap but others do not, since the NMI
score for Flickr is relatively low.

2.6. CONCLUSION 29

Table 2.5: Effect of ρ on ARI achieved by our method. The density indicates
the (# of partially observed positive edges)/(# of all possible edges), that is
|E|/ n2.

Dataset WebKB Polblog Cora Citeseer
Density 0.18% 0.75% 0.07% 0.04%
ρ = 0.5 0.990 0.621 0.270 0.221
ρ = 0.55 0.992 0.625 0.296 0.216
ρ = 0.75 0.991 0.625 0.297 0.229
ρ = 0.95 0.512 0.646 0.336 0.254
ρ = 0.995 0.433 0.529 0.266 0.269

Table 2.6: NMI score for NAGC-U and NAGC-UH

Dataset WebKB Polblog Wiki Cora
NMI (U,UH) 0.834 0.000 0.735 0.838

Dataset Citeseer BlogCatalog Flickr
NMI (U,UH) 0.941 0.866 0.428

2.6 Conclusion

We considered the clustering problem of attributed graphs. We designed
an effective clustering method, NAGC, a new attributed graph clustering
method by bridging the attribute space and the topology space and taking
the effect of partially observed positive edges. The features of our method are
two holds and both of them largely contribute to the quality of the clustering
results. 1) NAGC learns a projection function between the topology space
and the attribute space. The projection function consists of a rescale function
and a transfer matrix that balances the effect from the attribute space to
the topology space for each node independently. 2) NAGC leverages PU
learning to take the effect of partially observed positive edges into the cluster
assignment.

Chapter 3

GNN Transformation
Framework for Improving
Efficiency and Scalability

3.1 Introduction

Many GNNs have been proposed for node classification and representation
learning including GCN [61], which is the most representative GNN vari-
ant, i.e., it is often used as a baseline method in other works [23, 76, 135].
Most existing GNNs adopt graph convolution that performs three tasks; 1)
feature aggregation1, 2) learnable weight multiplication, and 3) activation
function application (e.g., ReLU, a non-linear function). By stacking multi-
ple graph convolutional layers, they propagate node features over the given
graph topology. However, these existing GNNs cannot be efficiently trained
on large-scale graphs since the GNNs need to perform three tasks in graph
convolution every time learnable weights are updated. In addition, large-
scale graphs cannot be put on GPU memory for efficient matrix operations.
As a result, graph convolution is not efficient and scalable for large-scale
graphs.

A major approach to apply GNNs to large-scale graphs is to separate
feature aggregation from graph convolution so that GNNs can precompute
aggregated features [37, 82, 111]. These methods are called precomputation-

1Feature aggregation indicates aggregating node features/embeddings from neighbor
nodes, which is equivalent to message (node feature) exchange between connected nodes.

31

32 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

based GNNs. In detail, they remove non-linearity, i.e., activation functions,
from graph convolution so that feature aggregation is separated from weight
learning. Thanks to the independence of feature aggregation and weight
learning, precomputation-based GNNs are efficient in learning steps by pre-
computing feature aggregation before training learnable weights.

Though some existing works tackle the scalability problem of GNNs as
discussed above, most widely studied GNNs are not scalable to large-scale
graphs for the following two reasons. First, existing studies on precomputation-
based GNNs [37, 82, 111] focus on introducing several specific GNN archi-
tectures that are manually designed. So, it is laborsome to apply the same
precomputation idea to other GNNs. An interesting observation is that they
share the common motivation: precomputation of feature aggregation is in-
dispensable for high scalability. To our best knowledge, there are no works
that study a general framework that transforms non-scalable GNNs to scal-
able precomputation-based GNNs. Second, existing precomputation schemes
are not scalable because they need to put complete graphs (e.g., graphs with
one billion edges [47]) on GPU memory. Since the size of large graphs typ-
ically exceeds the memory size of general GPU, existing works precompute
feature aggregation on CPU.

To tackle the above issues, we address two research questions: Q1: Can
we design a general procedure that transforms non-scalable GNNs to efficient
and scalable precomputation-based GNNs while keeping their classification
performance? and Q2: Can we efficiently execute the precomputation on
GPU? There are two technical challenges which must be overcome to answer
our questions. First, we need to automatically transform non-scalable GNNs
to precomputation-based GNNs. We should develop a common transforma-
tion procedure that can be applied to various non-scalable GNNs while pre-
serving their expressive power. Second, we need to decompose large graphs
into small groups each of which can be handled efficiently with GPU. Typ-
ically, graph decomposition suffers from an imbalance problem since node
degree distributions usually follow power law distributions [86]. Hence, we
should divide graphs into balanced groups and select an appropriate group
size so that precomputation time is optimized.

In this chapter, we propose a framework that automatically transforms
non-scalable GNNs into precomputation-based GNNs with a scalable pre-
computation schema. As for the first challenge, we develop a new transfor-
mation procedure, called Linear Convolution (LC) transformation, which can
be applied to various non-scalable GNNs so that transformed GNNs work ef-

3.2. PRELIMINARIES 33

ficiently and scale well to large-scale graphs. Our transformation procedure
removes non-linear functions from graph convolution, but incorporates non-
linear functions into weight learning. This idea is derived from our hypothe-
sis that it is not crucial to incorporate non-linearity into graph convolutional
layers but into weight learning for prediction2. Since our transformation
preserves the major functionality of graph convolution and a similar expres-
sive power to original GNNs, the transformed GNNs can achieve competitive
prediction performance to the original ones while improving their scalabil-
ity. As for the second challenge, we develop a block-wise precomputation
scheme which optimally decomposes large-scale graphs into small and bal-
anced blocks each of which can fit into GPU memory. We introduce a simple
decomposition approach to ensure that blocks are balanced and give min-
imization formulas that decide the optimal block size under limited GPU
memory.

Through extensive experiments, we validate that our transformation pro-
cedure and optimized block-wise precomputation scheme are quite effective.
First, we show that our LC transformation procedure transforms non-scalable
GNNs to efficient and scalable precomputation-based GNNs while keeping
their node classification accuracy. Second, we show that our precomputation
scheme is more efficient than that of existing precomputation-based GNNs.
In summary, our transformation procedure provides simple and efficient base-
lines for future research on scalable GNNs by shining a spotlight on existing
non-scalable methods.

The rest of this chapter is organized as follows. We describe notations and
fundamental techniques for our method in Section 3.2. Section 3.3 proposes
our framework. We give the purpose and results of experiments in Section
3.4. Section 3.5 describes the details of related work. Finally, we conclude
this chapter in Section 3.6.

3.2 Preliminaries

An attributed graph with class labels3 is a triple G = (A,X,C) where A ∈
{0, 1}n×n is an adjacency matrix, X ∈ Rn×d is an attribute matrix assigning

2The validity of this hypothesis is discussed in Section 3.3.1
3We re-introduce an attributed graph because a given graph includes class information

in a node classification task. Note that since we consider an unsupervised task in Chapter
2, given attributed graphs in the chapter do not include class information.

34 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

Table 3.1: Notation and definitions

Variable Explanation
n number of nodes
d dimension of features
y number of classes
h dimension of hidden layer
K number of hidden layers

A ∈ Rn×n adjacency matrix

Ã ∈ RN×N extended adjacency matrix
S ∈ Rn×n normalized adjacency matrix
X ∈ Rn×d feature matrix
C ∈ Rn×y class matrix
D ∈ Rn×n degree matrix
H ∈ Rn×h node embeddings

W1 ∈ Rd×h,W2,...,K−1 ∈ Rh×h,WK ∈ Rh×y weight matrices
Y ∈ Rn×y predicted label matrix

attributes to nodes, and a class matrix C ∈ {0, 1}n×y contains class infor-
mation of each node, and n, d, y are the numbers of nodes, attributes, and
classes, respectively. If there is an edge between nodes i and j, Aij and Aji

are set to one. We define the degree matrix D = diag(D1, . . . , Dn) ∈ Rn×n

as a diagonal matrix, where Di expresses the degree of node i. We also de-
fine an identity matrix I = diag(1, . . . , 1) ∈ Rn×n and an adjacency matrix
extended with self-loops Ã = A+I. We define node embeddings H ∈ Rn×h,
where h is the dimension of a hidden layer. We summarize notation and their
definitions in Table 3.1.

3.2.1 Graph Convolutional Networks

Multi-layer GCN is a standard GCN model which was proposed in [61].
GCNs learn a feature representation for the feature of each node over layers.
For the k-th graph convolutional layer, we denote the input node representa-
tions of all nodes by the matrix H (k−1) and the output node representations
by H(k). The initial node representations are set to the input features, i.e.,

3.2. PRELIMINARIES 35

H (0) = X. Let S denote the normalized adjacency matrix

S = D̃− 1
2 ÃD̃− 1

2 . (3.1)

This normalized adjacency matrix is commonly used as a graph filter for
graph convolution. The graph filter is known as a low-pass filter that fil-
ters out noise in node features [61]. For each layer, GCN propagates the
embedding of a node to its neighbors as follows:

H(k) = σ(SH (k−1)Wk), (3.2)

where Wk denotes the weight matrix of the k-th layer and σ denotes a non-
linear function, e.g., ReLU. In the output layer, K-layer GCN outputs a
predicted label matrix Y ∈Rn×y as:

Y = softmax(SH (K−1)WK), (3.3)

where softmax(P)ij =
exp(Pij)∑y
j=1 exp(Pij)

for a matrix P . The number of layers is

typically set to K = 2 [61].

3.2.2 Precomputation-based GNNs

Several precomputation-based GNNs have been proposed recently [37, 82,
111]. Their fundamental and common idea is to remove non-linear functions
between each layer in order to precompute feature aggregation. We explain
Simplifying Graph Convolution (SGC for short) [111] which is the simplest
precomputation-based GNN. Thanks to the removal, K-layer GCN can be
rewritten as follows by unfolding the recursive structure:

Y = softmax(S . . .SXW1 . . .WK). (3.4)

The repeated multiplication with the normalized adjacency matrix S can be
simplified into a K-th power matrix SK and the multiple weight matrices
can be reparameterized into a single matrix W = W1 . . .WK . The output
becomes

Y = softmax(SKXW). (3.5)

By separating graph feature aggregation and weight learning, SGC precom-
putes SKX before learning W . The other methods also follow the same
idea: separating feature aggregation and weight learning and precomputing
feature aggregation.

36 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

Figure 3.1: Example of LC transformation. Upper part: non-scalable GNNs
operate K-layer graph convolution combining feature aggregation, weight
multiplication, and activation function application (ReLU). This example
corresponds to K-layer GCN if COMB outputs only HK . Lower part: LC
transformation separates feature aggregation and weight learning while keep-
ing the similar architectures with the original GNNs. LC versions avoid re-
computing feature aggregation whenever learnable weights are updated at
each learning step.

3.3 GNN Transformation Framework

We propose a general framework that automatically transforms non-scalable
GNNs to efficient and scalable precomputation-based GNNs and efficiently
executes precomputation of feature aggregation on GPU. We first introduce
a transformation procedure that automatically rewrites the formulations of
non-scalable GNNs so that the transformed GNNs run efficiently and scale
well to large-scale graphs (Section 3.3.1). We also describe a limitation of
our transformation, namely, that it does not support GNNs that require dy-
namical changes of graph filters during weight learning. Our transformation
procedure is applicable not only to GCN [61] but also to the state-of-the-
art GNNs, such as JKNet [114], H2GCN [135] and GPRGNN [23]. Next,
we introduce a block-wise precomputation scheme that efficiently computes
feature aggregation for large-scale graphs (Section 3.3.2). The core idea is
to decompose an adjacency matrix and feature matrix into disjoint and bal-
anced blocks each of which can be handled on GPU. Also, we formulate and
solve an optimization problem that decides the optimal size of blocks. Note

3.3. GNN TRANSFORMATION FRAMEWORK 37

that this scheme is a general approach since it can be applied to existing
precomputation-based GNNs [37, 82, 111].

3.3.1 Linear Convolution Transformation

LC transformation is the first concrete procedure that transforms non-scalable
GNNs to efficient and scalable precomputation-based GNNs, which have a
similar functionality to the input GNNs. We call the output the LC version
of the input GNN. LC transformation is motivated by the effectiveness of
SGC and Multi-Layer Perceptron (MLP). SGC preserves the major benefit
of graph convolution with efficient training by precomputing feature aggre-
gation, but it degrades the accuracy due to the lack of non-linearity [23].
Beside, MLP outperforms linear regression in classification task by using
non-linear functions but does not capture the structures of graphs. LC ver-
sion of GNN leverages both the strengths of SGC and MLP by precomputing
feature aggregation and then learning weights with non-linearity.

Figure 3.1 demonstrates an example of LC transformation by comparing
it with non-scalable GNNs. Intuitively, LC transformation separates feature
aggregation from graph convolution that performs 1) feature aggregation, 2)
weight multiplication, and 3) activation function application (e.g., ReLU, a
non-linear function). Notice that a normalized adjacency matrix S is ad-
jacent to the feature matrix X in the formulation of LC versions (see the
left part of the red box of the figure). So, we can precompute SkX in the
same way as SGC [111]. Thanks to the separation, LC versions can avoid
computing feature aggregation whenever learnable weights are updated at
each learning step (see the right part of the red box of the figure). Hence,
LC versions efficiently work and scale well to large-scale graphs.

Discussion

We discuss why LC versions work from two aspects, feature aggregation and
weight learning. As in the discussion on the spectral analysis [111], feature
aggregation acts as a low-pass filter that produces smooth features over the
graph, which is the major benefit of graph convolution. In this sense, LC
versions are expected to have the same functionality as the input GNNs
since LC transformation preserves feature aggregation within multi-hops. As
for weight learning, LC versions have a similar learning capability to their
original GNNs since they have a similar model architecture of multi-layer

38 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

neural networks. As a result, LC versions can achieve a similar prediction
performance to their original GNNs while scaling to large-scale graphs.

Procedure

Next, we describe the procedure of LC transformation, which removes non-
linear functions from graph convolution, but incorporates non-linear func-
tions into weight learning. We first give the definition of LC transformation
below:

Definition 3.3.1 (LC transformation) Given a non-scalable GNN algo-
rithm, LC transformation iteratively applies a function fLC to the formula-
tion of the input GNN since non-scalable GNNs have multiple graph convo-
lutional layers. fLC commutes matrix multiplication of S and a non-linear
function σ as follows:

fLC : g2(Sσ(g1(X))) −−→
fLC

g2(σ(Sg1(X))), (3.6)

where g1 and g2 indicate any functions that input and output matrices. The
iteration continues until the formulation does not change. LC transformation
outputs a precomputation-based GNN having the transformed formulation,
i.e., the LC version of the input GNN.

To intuitively explain the details, we use JKNet [114] as an example, which
is a widely used GNN. The formulation of JKNet (GCN-based) is as follows:

H = COMBK
k=1(Sσ(Sσ(. . . (SXW1) . . .)Wk−1)Wk), (3.7)

where COMB expresses a skip connection between different layers, such as
concatenation of intermediate representations or max pooling. By apply-
ing a softmax function to feature representations H , JKNet outputs a pre-
diction result Y , i.e., Y = softmax(H). We apply fLC to it in order to
transform the formulation of an input GNN. To this end, we assign g1(X) =
Sσ(. . . (SXW1) . . .)Wk−1 and g2(Sσ(g1(X))) = COMBK

k=1(Sσ(g1(X))Wk).
By utilizing fLC , g1, and g2, we transform Eq (3.7) as follows:

H −−→
fLC

COMBK
k=1(σ(S

2σ(. . . (SXW1) . . .)Wk−1)Wk). (3.8)

3.3. GNN TRANSFORMATION FRAMEWORK 39

Then, we iteratively apply fLC to the formulation by appropriately assigning
g1 and g2 for each iteration. Finally, we obtain the formulation of the LC
version of the input GNN, HLC , as follows:

HLC = COMBK
k=1(σ(σ(. . . (S

kXW1) . . .)Wk−1)Wk). (3.9)

Then, in the same way as the input GNN, the LC version outputs a predicted
label matrix Y = softmax(HLC).

The LC transformation procedure is applicable not only to JKNet but also
to general non-scalable GNNs including APPNP [62], MixHop [3], H2GCN [135],
and GPRGNN [23].

Limitation

Precomputation-based GNNs can use multiple graph filters such as an ex-
act 1-hop away adjacency matrix and Personalized PageRank diffusion ma-
trix [62]. Those GNNs do not dynamically control the propagation of features
during weight learning4, since they use constant graph filters in order to pre-
compute feature aggregation. Since our framework also leverages a precom-
putation scheme, it cannot support those existing GNNs [96, 106, 113] which
dynamically sample edges or modify the importance of edges during weight
learning. For example, Dropedge [96] randomly reduces a certain number of
edges at each iteration. A possible future research direction is that we simu-
late random edge reduction by utilizing the deviations of feature aggregation.

3.3.2 Efficient Precomputation

Existing precomputation-based GNNs need to use CPUs to compute feature
aggregations for large-scale graphs since they do not fit on GPU memory.
This CPU computation has large cost and a deteriorating effect on efficiency.

To tackle this problem, we propose a simple yet efficient block-wise pre-
computation scheme and provide a formulation for optimal decomposition
for our block-wise precomputation scheme. The core idea is to decompose
the edge set of a given graph into disjoint and balanced groups, while existing
approaches [131] decompose the node set into groups, i.e., row/column wise
decomposition. Our scheme is inspired by edge partitioning [40, 75], which

4Note that this dynamic mechanism regards the adjustable propagation rule of graph
convolution and is not related to the time-series of graphs.

40 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

aims to decompose a graph into groups having similar numbers of edges such
that communication costs for graph operations are minimized in distributed
environments. Our scheme consists of three steps. First, it decomposes an
adjacency matrix and feature matrix into small disjoint blocks each of which
can be put on GPU memory. Second, the scheme computes block-wise matrix
operations for the disjoint blocks on GPU. Third, it aggregates the results
of the block-wise matrix operations and obtains the whole matrix operation
result.

Precomputation on GPU

There are two matrix operations to be precomputed, adjacency matrix nor-
malization and feature aggregation. First, we describe the computation of
adjacency matrix normalization shown by Eq. (3.1). Since an adjacency ma-
trix is typically sparse, we utilize adjacency list (i, j) ∈ E , where Ãij =
1. To obtain small blocks each of which can be loaded on GPU memory,
we decompose E into disjoint sets that include similar numbers of edges,
E (1) ∪ · · · ∪ E (a), where a is the number of sets and E (p) ∩ E (q) = ∅ if p ̸= q.
Note that the sizes of the sets E (1), . . . , E (a) are balanced. Then, we decom-
pose Ã = Ã(1) + · · · + Ã(a), where Ã(1), . . . , Ã(a) ∈ Rn×n and Ã

(l)
ij = 1 if

(i, j) ∈ E (l). Then, we can rewrite Eq. (3.1) as follows:

S = D̃− 1
2 ÃD̃− 1

2 =
∑a

l=1 D̃
− 1

2 Ã(l)D̃− 1
2 . (3.10)

By appropriately selecting the number of blocks a, D̃− 1
2 Ã(l)D̃− 1

2 can be
executed on GPU. We sum the results of the block-wise matrix computations.
This summation can be efficiently computed on CPU by disjoint union of
edge lists since E (l), i.e., Ã(l), is disjoint each other. Since our decomposition
is agnostic on nodes, the decomposed blocks can be easily balanced while
row/column(node)-wise decomposition approaches suffer from an imbalance
problem. Further discussion on limitations follows below in this subsection.

Next, we introduce a block-wise computation for feature aggregation on
GPU. Algorithm 2 describes the procedure of the computation. To obtain
small blocks of a normalized adjacency matrix S, we decompose it into
S(1), . . . ,S(b) ∈ Rn×n where b is the number of blocks (line 2). Similarly
to the decomposition of A, each corresponding edge list is disjoint and in-
cludes similar numbers of edges. Also, in order to obtain small blocks of
a feature matrix X, we decompose it into X(1), . . . ,X(c), where c is the

3.3. GNN TRANSFORMATION FRAMEWORK 41

Algorithm 2: Block-wise feature aggregation.

Input: normalized adjacency matrix S, feature matrix X, number of
layers K

Output: aggregated feature list SX list
1: SX list = []
2: S(1),S(2), . . . ,S(b) = split(S) ▷ disjoint edge sets
3: Xprev = X
4: for k = 1 to K do
5: X(1),X(2), . . . ,X(c) = split(Xprev)
6: for i = 1 to c do
7: Xtmp = [0]n×⌈d/c⌉ ▷ same size to X(i)

8: for j = 1 to b do
9: Ztmp = S(j)X(i) ▷ on GPU
10: Xtmp = Xtmp +Ztmp ▷ on GPU
11: if i == 1 then
12: Xconc = Xtmp ▷ on CPU
13: else
14: Xconc = concat(Xconc,Xtmp) ▷ on CPU
15: SX list .append(Xconc)
16: Xprev = Xconc

number of blocks (line 5). Since we assume that X is a dense matrix, we
adopt column-wise decomposition, i.e., X = concat(X(1), . . . ,X(c)). Then,
we compute matrix multiplication S(j)X(i) for each pair on GPU (line 9).
We aggregate S(j) by summation (line 10) and aggregate Xtmp by concate-
nation (lines 11–14). Xprev is updated by the aggregated features Xconc (line
16). We repeat this aggregation K times (lines 4–16).

Optimal graph decomposition

We discuss an optimal decomposition for our block-wise precomputation
scheme. We have two requirements to decompose large matrices into dis-
joint blocks. First, each matrix operation for disjoint blocks can be executed
on GPU. Second, the number of disjoint blocks is as small as possible to re-
duce the number of block-wise matrix operations. To simplify the discussion,
we assume that the running time of a matrix operation on GPU is the same
regardless of the matrix size.

42 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

As for the block-wise adjacency matrix normalization, we minimize the
number of disjoint blocks, a. We formulate the minimization as follows:

min(a), subject to αABA+αSBS

a
+ αDBD ≤ BGPU, (3.11)

where αA, αS, and αD indicate coefficients for executing matrix operations
regarding A,S, and D, respectively, and BA, BS, BD, and BGPU indicate
the volume of an adjacency matrix, the volume of a normalized adjacency
matrix, the volume of a degree matrix, and the available volume of a GPU,
respectively. As for block-wise feature aggregation, we minimize the number
of pairs of disjoint blocks, bc. We formulate the minimization as follows:

minb,c(bc), subject to βSBS

b
+ βXBX

c
≤ BGPU, (3.12)

where βS and βX indicate coefficients for executing matrix operations regard-
ing S and X, respectively, and BX indicates the volume of a feature matrix.
Note that αA, αS, αD, βS, and βX depend on execution environments5.

Next, we discuss optimization regarding Eq. (3.11) and (3.12). As for
Eq. (3.11), it is trivial to find the minimum number of blocks a since there
are no other parameters. As for Eq. (3.12), an exhaustive search is applicable
since the number of combinations of b and c (natural numbers) is not large.
Consequently, these optimization problems can be easily solved.

Limitation

Our precomputation scheme focuses on feature aggregation on a whole graph.
This indicates that our scheme is not suitable for node-wise operations since it
may decompose the edge set of the same node into different groups. However,
accelerating feature aggregation on a whole graph is still crucial since many
GNNs [37, 61, 82, 111] adopt it.

3.4 Experiments

We design our experiments to answer the following questions; Q1: Can our
LC transformation improve the efficiency and scalability of GNNs? Q2: Can

5In real environments, users can measure αA, αS , αD, βS , and βX by monitoring the
memory usage on small graphs, even if users do not know the details of their own envi-
ronments.

3.4. EXPERIMENTS 43

Table 3.1: Summary of datasets.

Dataset Nodes Edges Features Classes

Flickr 89, 250 899, 756 500 7
Reddit 232, 965 11, 606, 919 602 41
arxiv 169,343 1, 166, 243 128 40

papers100M 111,059,956 1, 615, 685, 872 128 172

our block-wise precomputation scheme accelerate precomputation?6

Dataset. We use four commonly used datasets, Flickr [127], Reddit [42],
ogbn-arxiv (arxiv for short), and ogbn-papers100M (papers100M for short) [47].
Table 3.1 provides the summary of the datasets. The sizes of the datasets
range from 9K nodes to 110M.

In the Flickr dataset, nodes represent images uploaded to Flickr. If two
images share common properties such as same geographic location, same
gallery, comments by the same users, there is an edge between the nodes.
Node features represent the 500-dimensional bag-of-words associated with
the image (node). As for the class labels of nodes, the authors of [127] scan
over 81 tags of each image and manually merged them to 7 classes. In the
Reddit dataset, nodes represent posts. If the same user left comments on
two posts, then there is an edge between the two posts. Node features are
the embedding of the contents of the posts. The labels of nodes indicate
communities which the nodes belong to. In the ogbn-arxiv dataset, nodes
represent ARXIV papers and edges indicate that one paper cites another
one. Node features represent 128-dimensional feature vectors obtained by
averaging the embeddings of words in titles and abstracts. The class labels of
nodes indicate subject areas of ARXIV CS papers7. In the ogbn-papers100M
(papers100M) dataset, its graph structure and node features are constructed
in the same way as ogbn-arxiv. Among its nodes, approximately 1.5 million
nodes are labeled with one of ARXIV’s subject areas. As in [126], Flickr and
Reddit are under the inductive setting. ogbn-arxiv and ogbn-papers100M are
under the transductive setting. As for the inductive setting, we remove the
nodes in the test set during a model train phase and then conduct inference on
a whole graph during a test phase. On the other hand, as for the transductive

6Though the questions Q1 and Q2 look slightly different from the research questions
discussed in Section 3.1, we just rewrite the questions more concretely.

7https://arxiv.org/archive/cs

44 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

setting, models can see all nodes in datasets during a model train phase, i.e.,
the nodes in the test set are regarded as unlabeled nodes.

Baseline. We compare three types of existing methods as baselines; non-
scalable GNNs, precomputation-based GNNs, and sampling-based GNNs
which are scalable but inefficient (we discuss the details in Section 3.5). As for
non-scalable GNNs, we use GCN8 [61], JKNet9 [114], and GPRGNN10 [23].
As for precomputation-based GNNs, we use SGC11 [111] and FSGNN12 [82].
As for sampling-based GNNs, we use ShaDow-GNN13 [126]. FSGNN and
ShaDow-GNN are the state-of-the-art precomputing-based and sampling-
based GNNs, respectively. We note that we use our block-wise precompu-
tation to the precomputation-based GNNs instead of using its original CPU
computation for a fair comparison.

Setup. We tune hyperparameters on each dataset by Optuna [6] and use
Adam optimizer [59]. We adopt mini-batch training for precomputation-
based GNNs, sampling-based GNNs, and LC-versions to deal with large-scale
graphs. As for ShaDow-GNN, we use the best hyperparameter sets provided
by the authors and adopt GAT [106] as a backbone model since ShaDow-
GAT achieves the best accuracy in most cases reported in the paper. We
measure training time on a NVIDIA Tesla V100S GPU (32GB) and Intel(R)
Xeon(R) Gold 5220R CPUs (378GB).

3.4.1 Effectiveness of LC Transformation (Q1)

Table 3.2 shows the test accuracy of LC versions and the baselines. LC
versions (GCN LC, JKNet LC, and GPRGNN LC) achieve comparable test
accuracy with their original GNNs (GCN, JKNet, and GPRGNN) for all
datasets. Next, Table 3.3 shows the training time of LC versions and the
baselines. The LC versions run faster than their original GNNs. Note that
LC versions tend to stop earlier than non-scalable GNNs since LC versions
train their models more times due to mini-batch training. For example, in
Flickr data LC versions more efficiently train than non-scalable GNNs even

8https://github.com/tkipf/pygcn
9Since official codes of JKNet from the authors are not provided, we simply implement

JKNet based on the implementation of GCN.
10https://github.com/jianhao2016/GPRGNN
11https://github.com/Tiiiger/SGC
12https://github.com/sunilkmaurya/FSGNN
13https://github.com/facebookresearch/shaDow_GNN

3.4. EXPERIMENTS 45

Table 3.2: Comparison on test accuracy. We report the average values (stan-
dard deviation) over 5 runs.

Flickr Reddit arxiv
GCN 0.525(0.003) 0.945(0.000) 0.702(0.005)
JKNet 0.526(0.004) 0.941(0.006) 0.712(0.001)
GPRGNN 0.494(0.006) 0.918(0.012) 0.694(0.006)
SGC 0.494(0.037) 0.948(0.001) 0.692(0.004)
FSGNN 0.513(0.001) 0.964(0.001) 0.722(0.003)
ShaDow-GAT 0.531(0.003) 0.947(0.003) 0.716(0.004)
GCN LC 0.515(0.003) 0.947(0.001) 0.710(0.001)
JKNet LC 0.517(0.004) 0.951(0.000) 0.710(0.003)
GPRGNN LC 0.513(0.001) 0.961(0.000) 0.720(0.004)

Figure 3.2: Validation accuracy over training time (precomputation and
weight learning time) on papers100M. Plots indicate epochs. LC versions
(GCN LC, JKNet LC, and GPRGNN LC) are faster than FSGNN and
ShaDow-GAT while achieving competitive accuracy.

if they have similar training time per epoch. These results indicate that
our framework transforms non-scalable GNNs into efficient precomputation-
based GNNs with the comparable classification accuracy to the original
GNNs.

Comparison on a large-scale graph. Table 3.4 shows the performance
comparison on papers100M having more than 100 million nodes and one
billion edges. Non-scalable GNNs (GCN, JKNet, and GPRGNN) cannot
work on papers100M since the whole graph cannot be put on GPU mem-

46 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

Table 3.3: Comparison on training time (per epoch/total). Note that total
training time includes precomputation time for SGC, FSGNN, ShaDow-GAT,
GCN LC, JKNet LC, and GPRGNN LC. We report the average values over
5 runs.

Flickr Reddit arxiv
GCN 64.62[ms] / 129.24[s] 654.70[ms] / 1309.40[s] 210.81[ms] / 421.63[s]
JKNet 170.43[ms] / 253.25[s] 1428.51[ms] / 2552.45[s] 529.05[ms] / 1058.10[s]
GPRGNN 272.86[ms] / 539.48[s] 1456.01[ms] / 2806.62[s] 523.08[ms] / 961.76[s]
SGC 51.18[ms] / 30.31[s] 141.68[ms] / 285.43[s] 50.27[ms] / 42.23[s]
FSGNN 346.97[ms] / 133.63[s] 1066.66[ms] / 1793.91[s] 284.73[ms] / 382.67[s]
ShaDow-GAT 120.85e3[ms] / 3634.65[s] 376.42e3[ms] / 11321.09[s] 163.67e3[ms] / 4913.29[s]
GCN LC 56.75[ms] / 49.85[s] 165.73[ms] / 212.16[s] 62.59[ms] / 120.60[s]
JKNet LC 144.78[ms] / 78.24[s] 430.41[ms] / 865.71[s] 138.52[ms] / 277.63[s]
GPRGNN LC 287.54[ms] / 164.88[s] 818.13[ms] / 1645.49[s] 219.66 [ms] / 204.56[s]

Table 3.4: Results on papers100M. We show test/validation accuracy (stan-
dard deviation) and training time (per epoch / total). Total training time
includes precomputation time. OOM indicates that the execution is out of
memory.

Test accuracy Val accuracy Time (epoch / total)
GCN OOM OOM OOM
JKNet OOM OOM OOM
GPRGNN OOM OOM OOM
SGC 0.623(0.007) 0.667(0.002) 425.15[ms] / 2211.23[s]
FSGNN 0.665(0.003) 0.706(0.001) 3550.82[ms] / 8612.48[s]
ShaDow-GAT 0.666(0.003) 0.703(0.001) 2948.50e3[ms] / 92264.76[s]
GCN LC 0.647(0.006) 0.688(0.002) 611.90[ms] / 2477.55[s]
JKNet LC 0.641(0.003) 0.689(0.004) 1488.80[ms] / 3396.69[s]
GPRGNN LC 0.658(0.002) 0.696(0.001) 2749.27[ms] / 7410.47[s]

ory. GPRGNN LC achieves comparable accuracy (approximate one percent
difference) with FSGNN, which is the state-of-the-art precomputation-based
GNN while GPRGNN LC runs over 10% faster than FSGNN in terms of
both training time per epoch and total time. This indicates that our LC
transformation can automatically provide precomputation-based GNN algo-
rithms that achieve similar accuracy to the state-of-the-art GNN (and also
run faster) without manually designing new specific algorithms. Though
ShaDow-GAT achieves the highest accuracy, it requires more than 10× to-

3.5. RELATED WORK 47

tal training time than other models. This is because it needs to operate
graph convolutions on many enclosing subgraphs extracted from the whole
graph. SGC obtains lower accuracy than GCN LC. This result validates that
non-linearity contributes to weight learning for better classification.

In order to analyze the results on papers100M in details, we show the
validation accuracy at each epoch over total training time in Figure 3.2. Note
that total training time consists of precomputation and weight learning time.
We observe that GCN LC, JKNet LC, and GPRGNN LC are plotted in the
upper left corner of the figure. This observation indicates that they require
less total training time than FSGNN and ShaDow-GAT. The LC versions
achieve competitive performance with them. Through these experiments, we
demonstrate that LC versions are efficient and scalable for large-scale graphs.

3.4.2 Precomputation Efficiency (Q2)

To validate the efficiency of our block-wise precomputation, we compare it
with naive CPU computation adopted by existing works [47, 82]. We use a
large-scale graph, papers100M, which requires a 67GB normalized adjacency
matrix and a 57GB feature matrix. For adjacency matrix normalization, we
set the number of disjoint blocks of an adjacency matrix to a = 3, which
satisfies Eq. (3.11). Also, for feature aggregation we set numbers of disjoint
blocks of a normalized adjacency matrix and feature matrix to b = 10 and
c = 16, respectively, which satisfy Eq. (3.12).

Figure 3.3 shows the precomputation time for normalization and feature
aggregation on CPU and GPU. The result demonstrates that our block-
wise precomputation is 20× faster than CPU computation for normalization.
Also, the result indicates that our precomputation is up to twice faster than
CPU computation for feature aggregation. Hence, we conclude that our
precomputation is more efficient than CPU computation on a single machine.

3.5 Related Work

Relationship between non-scalable GNNs and LC versions. We dis-
cuss the background of non-scalable GNNs and their LC versions. Graph con-
volution is motivated by the 1-dimWeisfeiler-Lehman (WL-1) algorithm [110]
which is used to test graph isomorphism; two graphs are called isomorphic
if they are topologically identical. WL-1 iteratively aggregates the labels

48 CHAPTER 3. GNN TRANSFORMATION FRAMEWORK

Figure 3.3: Precomputation time comparison between a naive CPU compu-
tation and our block-wise computation.

of nodes and their neighbors, and hashes the aggregated labels into unique
labels. The algorithm decides whether two graphs are isomorphic or not
by using the labels of nodes at some iteration. Non-scalable GNNs such as
GCN [61] replace the hash function of WL-1 with a graph convolutional layer
which consists of feature aggregation, weight multiplication, and non-linear
function application. As for LC versions, they replace the hash function of
WL-1 with feature aggregation. These observations indicate that WL-1 is
analogous to feature aggregation of LC versions, similarly to graph convolu-
tion of non-scalable GNNs.

Sampling-based GNNs. Sampling-based GNNs [21, 22, 42, 126, 127] avoid
keeping a whole graph on GPU by computing node representations from
enclosing subgraphs of the input graph. The major drawback of the sampling-
based GNNs is that they need costly training time since they need to operate
graph convolutions on many enclosing subgraphs extracted from the input
graph.

GNNs dynamically modifying the importance of edges. As we dis-
cussed in Section 3.3.1, our transformation cannot support GNNs which dy-
namically control the propagation of features during weight learning. An
example of such GNNs is GAT [106], which learns attention parameters
controlling the importance of edges for each iteration. Another example is
GIN [113] learns a parameter controlling a weight between self features and
features from neighbors. One possible direction is that we first determine the
parameters by training on a subset of an input graph, then fix them in order
to precompute feature aggregation.

3.6. CONCLUSION 49

Distributed matrix operations. Matrix operations can be parallelized
for distributed computing [11, 17]. For example, the authors of [43] pro-
posed Mars which is an approach for hiding the programming complexity
of MapReduce on GPU. Also, MR-Graph [94] is a customizable and unified
framework for GPU-based MapReduce. It allows its users to implement their
applications more flexibly. As for distributed graph neural network training,
DistDGL [131] has proposed mini-batch training on graphs, which scales be-
yond a single machine. It suffers from an imbalance problem since it uses a
typical graph clustering algorithm METIS [56] to partition large-scale graphs
into subgraphs, while our scheme can partition an edge set into balanced
subsets. For further scale up of graphs, it would be important to combine
distributed computing and our block-wise precomputation for graphs.

3.6 Conclusion

We presented a framework that automatically transforms non-scalable GNNs
to efficient and scalable precomputation-based GNNs. There are two ma-
jor characteristics of our framework: 1) it supports a novel transforma-
tion procedure that transforms non-scalable GNNs to efficient and scalable
precomputation-based GNNs having a similar functionality to the original
GNNs, 2) the precomputation of the transformed GNNs can be efficiently
executed by our block-wise precomputation scheme that decomposes large-
scale graphs into disjoint and balanced blocks each of which can be handled
on GPU memory. Through our experiments, we demonstrated that the trans-
formed GNNs run more efficiently than their original GNNs and can be scaled
to graphs with millions of nodes and billions of edges. Due to the strong per-
formance of LC versions, we argue that LC versions will be beneficial as
baseline comparisons for future research on scalable GNNs.

Chapter 4

Comprehensive Evaluation of
Graph Machine Learning
Methods with Flexible
Synthetic Graph Generator

4.1 Introduction

Towards the practical use cases of graph machine learning methods, re-
searchers and developers need to deeply understand the pros and cons of
graph machine learning methods from various aspects, e.g., when methods
work well or not. However, it is still challenging to comprehensively evaluate
such graph machine learning methods because a variety of real-world graphs
is limited, leading to the lack of fine-grained analysis.

4.1.1 Limitations of Existing Evaluation of GNNs

Several studies [30, 38] addressed benchmarking the performance of GNNs.
However, the comprehensive evaluation of GNNs has been challenging since
most models are assessed on well-known but limited benchmark datasets such
as Cora, Citeseer, and PubMed [121]. Although recent studies [47, 73] provide
a collection of real-world datasets to mitigate the shortage of datasets, these
datasets are still insufficient to understand the pros and cons of various model
architectures.

51

52 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

To examine GNNs on graphs with different characteristics, a study [30]
uses a commonly used graph generator, SBM [2]. However, the quality and
variety of synthetic graphs generated by SBM are limited since it cannot
generate realistic graphs and does not support generating node attributes.
Due to the limitation, existing benchmarking studies of GNNs using real-
world and synthetic graphs lack fine-grained analysis, e.g., the evaluation
on graphs by changing one or a few target characteristic(s), while keeping
other characteristics unchanged. To the best of our knowledge, no studies
conducted comprehensive evaluations of GNNs on various synthetic graphs
with controlled characteristics regarding classes despite the great interest in
developing and evaluating GNNs.

Hence, in this chapter, we first address developing a new synthetic graph
generator that can generate realistic graphs with user specified characteristics
and then conduct an empirical study of node classification by using the new
graph generator.

4.1.2 Requirements of New Graph Generators

New synthetic graph generators should satisfy two requirements: the quality
and efficiency of graph generation. To ensure the quality of generated graphs,
generators need to support several phenomena that real-world graphs exhibit.
Also, to efficiently generate large-scale graphs, graph generation steps should
be efficient and scalable.

Phenomena in attributed graphs

The major topological characteristics that web graphs and social networks
have are small-world property and power law node degree distribution. Re-
garding the interplay between classes, attributes, and topology, we focus on
two widely known phenomena in attributed graphs: core/border and net-
work homophily/heterophily .

Core/border. There are two kinds of nodes in a class, core and border [33].
The core nodes in a class are nodes with similar attribute values to the
average attribute values of the nodes in the class. The border nodes in a
class are nodes with attribute values mixed from nodes in different classes.
In other words, core and border nodes strongly and weakly belong to their
classes, respectively. To generalize these phenomena, we assume that each

4.1. INTRODUCTION 53

Figure 4.1: Colors indicate the classes which nodes belong to. The nodes in
each class have similar attributes. The nodes in a class with the homophily
property (surrounded by a red circle) tend to connect internally. The nodes
in a class with the heterophily property (surrounded by a blue circle) tend
to connect externally.

node is correlated with multiple classes with certain degrees1

Homophily/heterophily. Homophily and heterophily are phenomena to
express the relationships between classes and the topology. First, homophily
is a well-known phenomenon of real-world graphs where nodes in the same
class are more likely to connect to each other. Classes with the homophily
property are called communities, i.e., sets of nodes that are densely connected
internally [83]. Second, heterophily is the inverse notion of homophily: nodes
with dissimilar attributes are more likely to connect to each other. From
the viewpoint of classes, nodes in a class with heterophily property are more
likely to connect to other classes than the class. Figure 4.1 shows an intuitive
example of classes with homophily/heterophily properties. Recent graph ma-
chine learning methods [134, 135] aim to capture both homophily/heterophily
phenomena.

In summary, to capture the class structure, i.e., the relationships be-
tween classes, attributes, and topology, graph generators should support the
core/border and homophily/heterophily phenomena.

1A class label represents the class to which a node is most correlated.

54 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Efficiency of graph generation

Since analyzing large-scale graphs is one of the hottest topics, graph gen-
erators should be efficient and scalable to evaluate methods for large-scale
graphs. However, it is not trivial to satisfy the constraints of the graph gen-
eration problem since they are interdependent and the problem of satisfying
even the single constraint on node degrees is NP-complete [13]. Moreover, the
high-quality and efficiency of graph generation, are in a trade-off relationship.
Hence, the generator should be designed to balance the two aspects.

4.1.3 Existing Generators

From the above discussion, graph generators should support class structure
and be efficient/scalable. However, most existing techniques do not explicitly
generate class labels and control the class structure of graphs. gMark [12, 13],
pgMark [14], and TrillionG [92] support class labels but are not designed to
control the class structure. LFR [67] and DC-SBM [54] are designed to sup-
port the relationship between the class labels and topology for evaluating
the performance of community detection [123] and label propagation meth-
ods [66]. They cannot simulate the core/border phenomena because they do
not control the connection proportions to classes from individual nodes (i.e.,
all nodes in a class have the same connection proportions). Some other meth-
ods for generating attributed graphs with class labels have been proposed,
such as ANC [68] and DANCer [16]. These attributed graph generators can-
not control the homophily/heterophily phenomena in each class since they
can set the same ratio of intra- and inter-edges to all classes. Moreover,
ANC and DANCer cannot control the variety of connection proportions be-
tween classes but each pair of classes in real-world graphs may have different
connection proportions. As for the efficiency of graph generation, graph gen-
erators supporting the relationship between the class labels do not scale well
due to their heavy edge generation steps that require over linear time to the
number of generated edges.

Graph generators based on deep learning have also been proposed re-
cently, such as VGAE [60], GraphVAE [103], and NetGAN [19]. They aim to
reproduce synthetic graphs from given input graphs, but they do not support
generating graphs with user-controlled class structure.

In summary, there are no graph generators that support flexibly control-
ling the proportions of connections between nodes and classes, leading to the

4.1. INTRODUCTION 55

lack of comprehensive evaluation of node classification.

4.1.4 Contributions

To address the above issue regarding the evaluation of graph machine learn-
ing methods with various graphs, in this chapter we propose an evaluation
framework with synthetic graphs, which allows users to evaluate their meth-
ods from various aspects. The contributions of this evaluation framework are
two-fold.

New synthetic graph generator

We propose a new graph generator, GenCAT, for synthetic graph genera-
tion satisfying the aforementioned requirements. GenCAT allows us to flex-
ibly control the class structure of a generated attributed graph by capturing
core/border and homophily/heterophily phenomena. We introduce node-
class membership proportion and node-class connection propor-
tion to capture the core/border and the homophily/heterophily phenomena,
respectively. First, the node-class membership proportion of a node repre-
sents how likely the node belongs to classes. A core node has a value close
to 1 for its class and a border node has balanced values for multiple classes.
Second, the node-class connection proportion of a node represents how likely
the node connects to classes. The node-class membership and connection
proportions of a node should be similar if the node’s class has the homophily
property and be the opposite if the node’s class has the heterophily property.

To efficiently generate graphs, we heuristically assign priorities to the
constraints of graph characteristics to be satisfied and take an effective edge
generation approach that utilizes inverse transform sampling [27]. Thanks
to this approach, GenCAT can generate graphs in linear time to the number
of edges.

We summarize the properties of graph generators in Table 4.1. GenCAT
supports all of the desired properties, whereas existing methods lack one or
more of them. Since GenCAT is a general generator that can support various
settings, it can also simulate the existing generators LFR and DC-SBM by
giving appropriate parameters (the details are described in Section 4.3.5)
without any modifications of GenCAT itself.

The three main characteristics of GenCAT are as follows:

56 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

T
ab

le
4.
1:

P
ro
p
er
ti
es

of
gr
ap

h
ge
n
er
at
or
s:

✓
an

d
×

in
d
ic
at
e
th
at

th
e
ge
n
er
at
or
s
sa
ti
sf
y
an

d
d
o
n
ot

sa
ti
sf
y

th
e
ch
ar
ac
te
ri
st
ic
,
re
sp
ec
ti
ve
ly
.
T
h
e
to
p
ol
og
ic
al

re
p
ro
d
u
ci
b
il
it
y
(t
h
e
se
co
n
d
ri
gh

t-
m
os
t
co
lu
m
n
)
in
d
ic
at
es

w
h
et
h
er

ge
n
er
at
or
s
ca
n
re
p
ro
d
u
ce

in
p
u
t
gr
ap

h
s.

T
h
e
co
m
p
le
x
it
y
co
lu
m
n
in
d
ic
at
es

th
e
ti
m
e
co
m
p
le
x
it
y

in
cl
u
d
in
g
tr
ai
n
in
g
st
ep
s.

O
(m

+
)
re
p
re
se
n
ts

th
e
co
m
p
le
x
it
y
w
h
ic
h
is

O
(m

)
w
h
en

th
e
n
u
m
b
er

of
n
o
d
es

is
fi
x
ed
.
*:

th
e
ti
m
e
co
m
p
le
x
it
y
of

A
N
C

an
d
D
A
N
C
er

al
so

d
ep

en
d
s
on

th
e
co
st

of
a
cl
u
st
er
in
g
m
et
h
o
d
,
e.
g.
,

th
e
co
st

of
K
M
ed
oi
d
s
is

O
(n

2
y
).

p
re
p
re
se
n
ts

th
e
n
u
m
b
er

of
th
re
ad

s,
f
th
e
d
im

en
si
on

of
th
e
la
te
n
t
fa
ct
or
s

an
d
B

th
e
b
at
ch

si
ze
.
S
ee

T
ab

le
4.
3
fo
r
ot
h
er

p
ar
am

et
er
s.

G
en
er
at
or

N
o
d
e-
cl
as
s
m
em

b
er
sh
ip

p
ro
p
or
ti
on

C
la
ss

la
b
el
s
(c
la
ss

si
ze
)

N
o
d
e

at
tr
ib
u
te

T
op

ol
og
ic
al

re
p
ro
d
u
ci
b
il
it
y

C
om

p
le
x
it
y

L
F
R

[6
7]

✓
(c
la
ss
-l
ev
el

on
ly
)

✓
(p
ow

er
la
w

on
ly
)

×
×

O
(m

+
)

D
C
-S
B
M

[5
4]

✓
(c
la
ss
-l
ev
el

on
ly
)

✓
(i
n
p
u
t
li
st
)

×
×

O
(n

2
)

A
N
C

[6
8]

✓
(c
la
ss
-l
ev
el

on
ly
)

✓
(c
lu
st
er
in
g
m
et
h
o
d
-d
ri
ve
n
)

✓
×

O
(m

)∗

D
A
N
C
er

[1
6]

✓
(c
la
ss
-l
ev
el

on
ly
)

✓
(c
lu
st
er
in
g
m
et
h
o
d
-d
ri
ve
n
)

✓
×

O
(m

)∗

p
gM

ar
k
[1
2,

13
,
14
]

×
✓
(s
ch
em

a-
d
ri
ve
n
)

✓
×

O
(m

)
T
ri
ll
io
n
G

[9
2]

×
✓
(s
ch
em

a-
d
ri
ve
n
)

×
×

O
((
m

lo
g
n
)/
p)

V
G
A
E
[6
0]

×
×

×
✓

O
(f
n
2
)

G
ra
p
h
V
A
E
[1
03
]

×
×

×
✓

O
(n

4
)

N
et
G
A
N

[1
9]

×
×

×
✓

O
(B

)
G
en
C
A
T

✓
✓
(p
ow

er
la
w
,
n
or
m
al
,
an

d
in
p
u
t
li
st
)

✓
✓

O
(m

y
r
+
d
y
n
)

4.1. INTRODUCTION 57

• GenCAT generates graphs with user-specified node degrees and the
connection proportions between nodes and classes.

• The attribute values generated by GenCAT follow user-specified dis-
tributions and users can flexibly control the correlation between the
attributes and classes.

• GenCAT scales linearly to the number of generated edges and can gen-
erate graphs with billion edges.

GenCAT is the first method having all three of these desirable characteristics.
For community use and further study, our complete code base is available as
open source.2

Empirical study of node classification

The comprehensive evaluation of GNNs has not been conducted due to lim-
ited real-world benchmark datasets. To understand the pros and cons of
GNNs, we empirically study the performance of GNNs through extensive
experiments on various graphs by synthetically changing one or a few tar-
get characteristic(s) of graphs. In terms of the four major characteristics of
attributed graphs with class labels, 1) class size distributions, 2) the rela-
tionship between classes and topology, 3) the relationship between classes
and attributes, and 4) graph sizes, we attempt to answer the following ques-
tions: Q1. To what extent do class size distributions affect the performance
of GNNs? Q2. How effectively do GNNs work on graphs with various edge
connection proportions between classes? Q3. To what extent do attribute
values contribute to the performance of GNNs? Q4. How effectively do
GNNs work on graphs with various sizes?

We summarize key takeaways of our empirical study, which we hope could
benefit the community focusing on developing new GNN algorithms:

• GNNs including the state-of-the-art methods suffer from a class imbal-
ance problem that typically deteriorates the performance of multi-class
classification. Interestingly, the simplest algorithm SGC [111] outper-
forms recent complicated GNN algorithms in a class imbalanced setting
because the complicated algorithms tend to over-fit to major classes.

2https://github.com/seijimaekawa/GenCAT

58 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

• GNNs generalizing to graphs with few edges within each class (we call
heterophilic graphs) provide marginal classification performance gains
in a heterophily setting from a graph-agnostic classifier MLP. This in-
dicates that such GNNs almost ignore the topology information in the
setting.

We hope the use of our framework will greatly relieve the burden of com-
paring existing baseline GNNs and developing new algorithms. Our code-
base3 is available under the MIT License.

Organization. The rest of this chapter is organized as follows. We describe
the problem statement and the challenges of a graph generation problem in
Section 4.2. We propose GenCAT in Section 4.3. Section 4.4 gives a detailed
experimental analysis of the quality of generated graphs and the efficiency
of graph generation. Then, Section 4.5 shows our empirical studies of node
classification with GNNs by using GenCAT. We also position our generator
and empirical studies in Section 4.6. Finally, we conclude this chapter in
Section 4.7

4.2 Problem statement

In this section, we first describe notation and define the graph/class features
of attributed graphs. Then, we define our problem and describe challenges
to solve our problem.

Notation

As we defined in Section 3.2, an attributed graph with class labels is G =
(A,X,C). Also, we define Ωl as the class for label l, i.e., the set of nodes
labeled with l.

4.2.1 Graph Features

We highlight two features that real-world graphs typically have: topology
statistics and attribute statistics, which are desirable in synthetically gener-
ated graphs.

3https://github.com/seijimaekawa/empirical-study-of-GNNs

4.2. PROBLEM STATEMENT 59

Topology statistics. Real graphs have well-known topological statistics
[70, 86]: for example, node degrees in social graphs often follow a power law
distribution. For this reason, graph generators should support various types
of distributions of node degrees.

Attribute statistics. Attributes in real datasets typically follow underlying
distributions. For example, binary categories follow Bernoulli distribution,
such as word appearance and questions with two possible answers. Also, it
is well known that many numerical attributes follow a normal distribution,
such as biological data and data including measurement errors. So, graph
generators should support various types of the distribution of attribute values
such as Bernoulli and normal distributions, which support typical attributes.

4.2.2 Class features

As we mentioned in Section 4.1, graph generators should support the node-
class membership/connection proportions capturing the phenomena of core/border
and homophily/heterophily. To generate the latent factors for expressing
the node-class membership/connection proportions, we identify three basic
statistics of class features as input parameters: class preference mean, class
preference deviation, and class size distribution. Also, to generate the latent
factor for expressing the relationship between the attributes and classes, we
identify a statistic of class features for the attributes: attribute-class corre-
lation.

Class preference mean. To simulate the homophily/heterophily phenom-
ena, we introduce class preference mean , M ∈ Rk×k. An element of class
preference mean, Ml1l2 expresses the average of connection proportions from
the nodes in class l1 to the nodes in class l2. We formulate class preference
mean between class l1 and class l2 as follows:

Ml1l2 =
1

|Ωl1 |
∑
i∈Ωl1

(
∑
j∈Ωl2

Aij/
n∑

j=1

Aij). (4.1)

Class preference mean is a more general notion than the simple binary rep-
resentation of homophily/heterophily. For example, if Mll = 0.7 and y = 3,
class l has a stronger homophily property because the nodes in class l are
more likely to connect to each other than the nodes in other classes. Note
that the diagonal elements express the proportions of the connections inside
of each class.

60 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Class preference deviation. We also introduce class preference devi-
ation , D ∈ Ry×y, in order to simulate the core/border phenomena. Class
preference deviation indicates the variety of node-class membership propor-
tions between classes. That is, it expresses the extent to which nodes in a
class belong to multiple classes. Class preference deviation is a more general
notion than the simple binary representation of core/border. An element of
class preference deviation, Dl1l2 indicates the standard deviation of connec-
tion proportions from nodes in class l1 to nodes in class l2. We formulate
class preference deviation between class l1 and class l2 as follows:

Dl1l2 =

√√√√ 1

|Ωl1 |
∑
i∈Ωl1

(
∑
j∈Ωl2

Aij/

n∑
j=1

Aij −Ml1l2)
2. (4.2)

That is, class preference mean and class preference deviation express the
average and deviation of the connection proportions between classes, respec-
tively.

Class size distribution. The class preference mean and class preference
deviation capture detailed characteristics of classes, however, they lack infor-
mation of class sizes. We introduce class size distribution , which com-
plements them. In many real-world graphs, such as social networks, the
distribution of class sizes is usually well-approximated by power law [24, 89].

Attribute-class correlation. Since the relationship between the attributes
and classes is typically various, we assume that each attribute is correlated
to classes with certain degrees. To capture the correlation, we introduce
attribute-class correlation , H ∈ Rd×y, which represents the strength of
the correlation between the attributes and classes. We formulate attribute-
class correlation between attribute δ and class l as the average of values of
attribute δ of nodes in class l:

Hδl =
1

|Ωl|
∑
i∈Ωl

(Xiδ). (4.3)

Since we assume that the topology and the attributes share the same class
structure, we utilize node-class membership proportions and the attribute-
class correlation in order to capture the correlations between nodes and at-
tributes.

4.2. PROBLEM STATEMENT 61

4.2.3 Problem Definition and Challenges

We can now define the problem that we solve in this chapter. We assume
two practical usage scenarios as follows. In the first scenario, the user inputs
statistics of graphs to be generated so as to flexibly control the characteristics
of generated graphs. In the second scenario, the user inputs graphs with class
labels so as to generate graphs similar to the given input graphs.

Problem Definition

We give two definitions for these two usage scenarios. Given either 1) statis-
tics of graphs; graph features (node degree and attribute distributions) and
class features (class preference mean, class preference deviation, class size
distribution, and attribute-class correlation) 4 or 2) topological information
(node degree, class preference mean, class preference deviation and class size
distribution) extracted from adjacency matrix A′ and class labels C ′ of a
given graph, attribute distributions, and attribute-class correlation, we effi-
ciently generate G = (A,X,C) whose statistics are similar to the inputs.

To address this graph generation problem, we define the loss L that in-
dicates the difference between the user-specified statistics and the statistics
of a generated graph. We formulate the loss as follows:

L = Ltopo + Lattr (4.4)

where Ltopo indicates the loss of the topological part and Lattr indicates the
loss of the attribute part. We design the losses, Ltopo and Lattr, in order
to clarify the relationship between the graph generation problem and the
constraints that generated graphs should satisfy graph features and class
features. First, we formulate the loss Ltopo as follows:

Ltopo = Ltopo
graph feature + Ltopo

class feature (4.5)

where Ltopo
graph feature indicates the topological loss between the given graph fea-

tures and the graph features in the generated graph and Ltopo
class feature indicates

4To make the input easier, we can accept the diagonal elements of class preference
mean instead of class preference mean and class preference deviation. In this case, the
deviation is randomly generated since we generate class preference mean from dirichlet
distribution.

62 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

a topological loss between the given class features and the class features in
the generated graph. Second, we formulate the loss Lattr as follows:

Lattr = Lattr
graph feature + Lattr

class feature (4.6)

where Lattr
class feature indicates the attribute loss between the given graph features

and the graph features in the generated graph and Lattr
class feature indicates an

attribute loss between the given class features and the class features in the
generated graph.

Challenges

To solve our problem, we address two major challenges. The first challenge
is that GenCAT must generate edges that satisfy multiple topological con-
straints5 of the graph features and the class features.

By adopting latent factors that express the node-class membership/connection
proportions, Ltopo

class feature is expressed with two parts: 1) the loss between a
generated graph and latent factors and 2) the loss between latent factors and
class features. We formulate Ltopo

class feature as follows:

Ltopo
class feature = Ledge precision︸ ︷︷ ︸

between generated graph and latent factors

+ Lmean + Ldeviation + Lclass size︸ ︷︷ ︸
between latent factors and class features

(4.7)

where Ledge precision is a loss that expresses the precision of the generated edges
according to the probabilities of the edge existence calculated by the latent
factors, Lmean is a loss between user-specified class preference mean and the
class preference mean estimated from the latent factors, Ldeviation is a loss
between user-specified class preference deviation and the class preference
deviation estimated from the latent factors, and Lclass size is a loss between
the expected class size distribution and the class size distribution in the
generated graph.

The second challenge is efficiently generating large-scale graphs. There
are two problems; 1) deciding whether there exists a graph satisfying given
node degrees is an NP-complete problem [13], 2) since GenCAT assumes

5The attribute part has fewer constraints such as the distribution of attribute values,
so we focus on the topology part here.

4.3. GENCAT GRAPH GENERATOR 63

that each node has its node-class membership/connection proportion, it is
required to estimate the probabilities of the edge existence of all node pairs,
resulting in the large cost of O(yn2). To overcome the first problem, we
design an efficient algorithm that heuristically assigns degrees to nodes and
generates edges that satisfy the node degrees so as to avoid the large cost
of satisfaction problem of graph generation. As for the second problem, we
take an efficient edge generation approach that utilizes an approximation in
order to achieve a linear time algorithm to the number of edges.

4.3 GenCAT: attributed graph generator for

controlling class structure

In this section, we explain the design of GenCAT. First of all, we introduce
latent factors and design the loss for class features Ltopo

class feature consisting
of Ledge precision, Lmean, Ldeviation, and Lclass size, shown in Eq. (4.7) by using
the latent factors. Also, we design the loss with graph feature, Ltopo

graph feature

and provide an overview of graph generation by GenCAT. Then, we de-
sign the losses with class and graph features regarding attributes so that
an adjacency matrix and an attribute matrix share the user-controlled class
structure in Section 4.3.1. As we described in Section 4.2, we provide two
scenarios of graph generation. In the first scenario, users input graph fea-
tures (node degree distribution and attribute value distribution) and class
features (class preference mean, class preference deviation, class size distri-
bution, and attribute-class correlation). In the second scenario, GenCAT
extracts the features from an input graph. We explain the first scenario in
Section 4.3.2 and then the second scenario in Section 4.3.3. Next, we analyze
the time and space complexities of GenCAT in Section 4.3.4. Finally, we
show how GenCAT simulates existing generators in Section 4.3.5. Table 4.2
lists the main symbols and their definitions for the following descriptions.
GenCAT supports various input parameters as shown in Table 4.3. The
most basic parameters are 1) the number of nodes, edges, attributes, and
classes to generate, and 2) the distribution parameters for class sizes6 and
attribute values.

6As for the exponents, we choose typical values of real networks: 1 ≤ ϕC ≤ 2, where
ϕC is the parameter for class size [67].

64 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Table 4.2: Definition of main symbols.

Variable Explanation
A ∈ {0, 1}n×n adjacency matrix
X ∈ Rn×d attribute matrix
C ∈ {1, . . . , y}n class label
Ωl ∈ {1, . . . , n}∗ set of nodes labeled with class l
U ∈ Rn×y node-class membership proportions
U ′ ∈ Rn×y node-class connection proportions
V ∈ Rd×y attribute-class proportions
θ,θ′ ∈ Rn expected and actual node degree proportions
ρ ∈ Ry

+ class size distribution
Z ⊂ {1, . . . , y}∗ candidate set for edge generation

4.3.1 Generating Model

The basic idea of GenCAT is to capture class structure by using intermediate
data structures, called latent factors, and then to generate graphs from the
latent factors (See Figure 4.2).

Latent factors

GenCAT generates output graphs with class labels by using three latent
factors: node-class membership proportions U ∈ Rn×y, node-class connection
proportions U ′ ∈ Rn×y, and attribute-class proportions V ∈ Rd×y, that are
core components for capturing class features in the real-world graphs.

GenCAT calculates adjacency matrix A according to the probabilities
of edge existence between nodes by multiplying U and U ′⊤ and attribute
matrix X by multiplying U and V ⊤. By sharing U in the generations of A
and X, GenCAT can inject the common characteristics of classes into both
the adjacency and the attribute matrices. We describe the detailed designs
of U and U ′ in Section 4.3.1 and V in Section 4.3.1.

We formally define three latent factors as follows:

Definition 4.3.1 (Node-class membership proportions U) U regards
a class assignment projection from nodes to classes. U is a matrix whose
size is n × y and each element is in [0,1]. An element at i-th row and j-th

4.3. GENCAT GRAPH GENERATOR 65

Table 4.3: Description of the graph generator parameters.

Input Description
n,m, d, y ∈ N number of nodes, edges, attributes, classes
M ∈ Ry×y class preference mean
D ∈ Ry×y class preference deviation
H ∈ Rd×y attribute-class correlation
ϕC ∈ R+ parameter for class size distribution
ω ∈ R deviation of normal distribution for attributes
r ∈ N number of iterations for edge generation

column indicates that node i likely belongs to class j if the element is close
to one.

Definition 4.3.2 (Node-class connection proportions U ′) U ′ regards an
edge connectivity projection from nodes to classes. U ′ is a matrix whose size
is n × y and each element is [0,1]. An element at i-th row and j-th column
indicates that node i likely has edges with nodes in class j if the element is
close to one.

Definition 4.3.3 (Attribute-class proportions V) V regards an attribute
projection from attributes to classes. V is a matrix whose size is d × y and
each element is [0,1]. An element at i-th row and j-th column indicates that
attribute i is likely correlated with class j if the element is close to one.

Loss from class feature regarding topology

To incorporate the class features into the edge generation of GenCAT, we
design the loss, Ltopo

class feature (Eq. (4.7)), which is expressed with 1) the loss
between generated graph and latent factors and 2) the loss between latent
factors and class features as follows.

Between generated graph and latent factors. We design GenCAT to
generate edges by using latent factors, U and U ′. According to the definition
of U and U ′, we can calculate the edge probability between nodes by mul-
tiplying U and U ′⊤, which expresses a composition of two projections, class
assignment from nodes to classes (U) and edge connectivity from classes to

66 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Figure 4.2: Illustration of our method. GenCAT first generates intermediate
data structures U ,U ′, and V and then generates the adjacency matrix A
and the attribute matrix X by using U ,U ′, and V . The class labels C are
generated based on class size distribution.

nodes (U ′⊤). By using the edge probabilities, we formulate the loss that
expresses the precision of the generated edges as below:

Ledge precision = ∥A−UU ′⊤∥F . (4.8)

Recall the definition of homophily/heterophily in Section 4.1: homophily is
a phenomenon where the nodes with similar attributes are more likely to
connect to each other and heterophily is the inverse notion of homophily. By
following them, we can design U and U ′ to have the same proportions for
nodes (rows) with homophily property and to have the reverse proportions
for nodes with heterophily property, respectively. To give precise definitions
of classes with the homophily/heterophily properties, we introduce types
of class. We assign positive topology type to a class with the homophily
property, and negative topology type to a class with the heterophily property
from input parameters as follows. Positive topology type is assigned to class
l if the diagonal elements of the class preference mean are larger than a
random connection proportion (Mll ≥ 1/y), otherwise negative topology
type is assigned. From the above discussion, we formulate U ′ of which nodes
(rows) in positive topology type classes have the same values of U and nodes
in negative topology type classes have the reversed values of U as below:

U ′
i. =

{
Ui. (i ∈ Ωl and Mll ≥ 1/y)
frev(Ui.) (i ∈ Ωl and Mll < 1/y).

(4.9)

4.3. GENCAT GRAPH GENERATOR 67

Also, the reverse function frev is formulated as follows:

frev(Ui.) =

{
1−Uih (h = l)
(1−Uih)

Uil∑y
j ̸=l(1−Uij)

(h ̸= l) (4.10)

where node i is a node whose class is typed with negative topology and class
l is a class which node i belongs to. Also, by regularizing the values other
than in the class each node belongs to, the sum of each row of U ′ equals to
one.

Notice that the edge generation by UU ′⊤ is a more generalized form of
UU⊤ used by SymNMF [63, 64], a well known technique for graph clustering.
SymNMF is a special case when all classes have homophily property, so node-
class membership proportions U are identical with node-class connection
proportions U ′.

Between latent factors and class features. Next, we design loss for-
mulas between latent factors and class features so that the latent factors
precisely capture the class features, which are class preference mean, class
preference deviation, and class size distribution. First, to reduce the loss
between user-specified class preference mean and the class preference mean
estimated by latent factors which is calculated by Ui. ∗U ′

i. as an approxima-
tion, we formulate the loss as follows:

Lmean =

y∑
l

∥Ml. −
1

|Ωl|
∑
i∈Ωl

Ui. ∗U ′
i.︸ ︷︷ ︸

estimated connection proportions

∥F (4.11)

where ∗ denotes the element-wise product. The reason that we adopt the
approximation to calculate the estimated class preference mean is that the
cost to obtain the exact proportion of edges between classes is the large cost
of O(kn2).7 Next, to reduce the loss between user-specified class preference
deviation and the estimated deviation, we also formulate the loss as follows:

Ldeviation =

y∑
l

∥Dl. −
√

1

|Ωl|
∑
i∈Ωl

(Ui. ∗U ′
i. −Ui. ∗U ′

i.)
2

︸ ︷︷ ︸
estimated deviation

∥F (4.12)

7The cost comes from UU ′⊤ which calculates all possible combinations of nodes.

68 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

where Ui. ∗U ′
i. denotes the average of Ui. ∗ U ′

i. where i ∈ Ωl. We adopt an
approximation due to the same reason as Eq. (4.11). Finally, we formulate
the loss between the expected class sizes and the class sizes in a generated
graph. The loss, Lclass size, is described as:

Lclass size =

y∑
l=1

(ρ[l]− |Ωl|/n)2 (4.13)

where ρ denotes the class size distribution specified by users and |Ωl|/n
represents the class size proportion of class l in a generated graph.

Loss from graph feature regarding topology

The graph feature is expressed with the topology statistic and the attribute
statistic and we focus on the topology part here. Because graph generators
should support user-specified node degrees, the quality of a generated graph
is computed by the difference between user-specified node degrees and the
node degrees of a generated graph as follows:

Ltopo
graph feature =

1

n

n∑
i=1

|θi − θ′
i

θi

| (4.14)

where θ is the expected node degree and θ′ is the actual node degrees. We
employ Mean Absolute Percentage Error (MAPE) for the loss. The reason
that we utilize MAPE is that it can treat high degree nodes and low degree
nodes equally. Other measures can be used, such as mean squared error.

Edge generation

Adjacency matrix A is generated by UU ′⊤ (See Eq. (4.8)). Thanks to the
latent factors, U and U ′, GenCAT can take into account user-specified class
features in the edge generation. As we mentioned in Section 4.2.3, the ad-
jacency matrix generation has two problems; 1) deciding whether there ex-
ists a graph having given node degrees is an NP-complete problem, 2) the
computational cost for the probability of edge existence, UU ′⊤, is O(yn2).
Moreover, these problems are correlated by the dependency between node
degrees (Eq. (4.14)) and edges generated based on the node-class member-
ship/connection proportions (Eq. (4.8)) because the degree of node i repre-
sents the number of edges associated with node i. Hence, GenCAT adopts

4.3. GENCAT GRAPH GENERATOR 69

an efficient algorithm that heuristically assigns degrees to nodes and gen-
erates edges that satisfy the node degrees so as to avoid the large cost of
the satisfaction problem of graph generation. Also, to overcome the large
cost to compute the edge probabilities, we incorporate an inverse transform
sampling [27] into our heuristic approach.

Approach to generate edges. The ideas of the approach are two-fold:
1) we generate edges in order starting from high degree nodes and 2) we
accelerate the calculation of the probability of edge existence by utilizing an
inverse transform sampling. The purpose of the first idea is that we avoid
leaving high degree nodes to the later phase of edge generation so that high
degree nodes can have a sufficient number of candidates to connect. If high
degree nodes are left to the later phase of generation, most edges which should
be associated with nodes may not be generated. Hence, we start the edge
generation in the order starting from high degree nodes so that they have
many candidates to connect with at the earlier phase of the edge generation.
As for the second idea, we interpret the probability of the edge existence
between node i and node j as computed by Ui. ∗U ′

j. in two selection steps,
Class selection from source node step based on U and Target node selection
from class step based on U ′⊤8. Thanks to the interpretation that transforms
the calculation into the two probabilistic selection steps, we can incorporate
inverse transform sampling into the approach. First, we describe the two
selection steps in detail, and then we explain how to utilize the sampling
method.

In Class selection from source node step, we choose classes Z ⊂ {1, . . . , y}θi
from each node i’s node-class membership proportions Ui.. Then, in Target
node selection from class step, a node is selected from the node-class con-
nection proportions U ′

.l
⊤ for each class l ∈ Z. An edge between the selected

node and node i is generated9. This approach still suffers from the high com-
putational cost to execute Target node selection from class for each source
node, which requires O(yn2).

Inverse transform sampling. To accelerate the approach, we incorporate
an inverse transform sampling for monotone densities into the approach. It
can considerably improve the speed of edge generation since it realizes that
the time complexity of Target node selection from class step is O(1). First, we

8We use source and target even if we assume undirected graphs
9The edge probability between node i and node j is calculated by

∑y
l=1 UilUjl which

corresponds to (UU ′⊤)ij .

70 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

probability of node i

=

…
node ID

1 2 3 4 i-1 i
…

nn-1

1

0

Cu
m

ul
at

ive
 d

en
sit

y
fu

nc
tio

n
of

Figure 4.3: The concept of inverse transform sampling. Bars represent the
cumulative density function of U ′⊤

.l where l indicates a class.

calculate the cumulative distribution function (CDF) of U ′⊤ for each class.
Figure 4.3 depicts the cumulative density function of U ′ by regularizing U ′

for a certain column. The horizontal axis indicates nodes, the vertical axis
indicates the CDF of a column (class) of U ′, and the function fCDF represents
the CDF of the probability that nodes are selected from the class. The width
between node i− 1 and node i indicates the probability of selecting node i,
which is expressed with fCDF (i) − fCDF (i − 1). We generate the value of
inverse CDF, f−1

CDF (x), which is a node ID of node i if fCDF (i − 1) ≤ x <
fCDF (i). This means that the inverse CDF returns a node ID based on the
probability by choosing a random number from zero to one. For the quick
access, we generate a list by which we can obtain a node ID based on its
selecting probability, in a similar way as the inverse CDF, by dividing the
range of random numbers into small steps. That is, a node ID of node i is
obtained by utilizing the list if the list receives the value between fCDF (i−1)
and fCDF (i). Using this list, Target node selection from class is executed
in O(1). Note that the complexity to generate the list is O(yn) because we
compute the CDF for each class.

Loss regarding attribute

As we mentioned in Section 4.2, GenCAT should support both 1) the class
feature that indicates the attribute-class correlation and 2) the graph feature
for attributes, which is the distribution of attribute values.

4.3. GENCAT GRAPH GENERATOR 71

First, we incorporate the node-class membership proportions U into at-
tribute generation so that GenCAT generates graphs with the class structure
shared by the topology and the attributes. To share the class structure with
the topology, an attribute matrix X is generated based on UV ⊤, which ex-
presses a composition of class assignment projection from nodes to classes
(U) and attribute projection from classes to attributes (V ⊤). In order to
reduce the loss between user-specified attribute-class correlation and the es-
timated attribute-class correlation, we formulate the loss as follows:

Lattr
class feature =

y∑
l=1

∥H⊤
.l −

1

|Ωl|
∑
i∈Ωl

(UV ⊤)i.︸ ︷︷ ︸
estimated attribute-class correlation

∥F . (4.15)

By designing attribute-class proportions V to reduce Lattr
class feature, generated

attributes satisfy user-specified attribute-class correlation. Since node-class
membership proportions are commonly used in edge generation and attribute
generation, the generated attributes share the class structure with the topol-
ogy.

Second, we design the loss Lattr
graph feature so that the distributions of gen-

erated attribute values are similar to the user-specified distributions. We
adopt the Earth-Mover (EM) distance10 that is a widely used measurement
of the distance between two distributions [10]. By using the EM distance,
we formulate Lattr

graph feature as follows:

Lattr
graph feature =

d∑
δ

inf
γ∈

∏
(X.δ ,p(X.δ))

E(α,β)∼γ[|α− β|] (4.16)

where
∏
(Xiδ, p(Xiδ)) denotes the set of all joint distributions γ(α, β) whose

marginals are Xiδ and p(Xiδ), respectively, and p(·) indicates user-specified
distributions for the attributes. This loss indicates the difference between
the distributions of generated attribute values and user-specified distributions
p(·) (Bernoulli or normal distribution). For instance, if users specify a normal
distribution for attributes, we formulate p(·) as follows:

p(Xiδ) = N (

∑n
i=1 Xiδ

n
,w2) (4.17)

where ω indicates the user-specified deviation of a normal distribution.

10Earth Mover distance is also known as Wasserstein-1

72 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Attribute generation

In order to reduce Lattr
class feature and Lattr

graph feature, first 1) we obtain base at-

tribute vectors for nodes by computing the product of U ,V ⊤ so that two
nodes in the same class (reflecting the effect of the topology and attributes)
should share similar attribute values, and then 2) we apply user-specified
distribution to the base attribute vectors so that the attribute values should
follow the distribution.

Therefore, GenCAT can generate an adjacency matrix A and an attribute
matrix X with user-controlled class structure. Also, GenCAT outputs class
labels C of nodes, which are obtained based on class size distribution.

4.3.2 Algorithm

We next explain the attributed graph generation algorithms of GenCAT in
detail. Algorithm 3 describes the whole procedure of graph generation. It
consists of three phases, latent factor generation phase, adjusting proportion
phase, and graph generation phase. First, in latent factor generation phase,
we generate and initialize latent factors by graph/class features specified by
users. Second, in adjusting proportion phase, we adjust the latent factors U
and U ′ to minimize the loss Lmean (Eq. (4.11)) and V to minimize the loss
Lattr
class feature (Eq. (4.15)) for graph generation. Finally, in graph generation

phase, we generate an adjacency matrix A and an attribute matrix X from
the latent factors.

Latent factor generation

In the latent factors generation phase (lines 1–11), we first generate a class
size distribution from a power law distribution controlled by input parameter
ϕC (line 2)11. Next, we generate a class label C for each node based on
the class size distribution and initialize U by a normal distribution whose
average is M and deviation is D (lines 3–5). To support both positive
and negative topology types, we initialize node-class connection proportions,
U ′, by U and then reverse the node-class membership proportions of nodes
which are in classes typed with negative topology (lines 6–10). Note that
this reverse realizes that each node has the large value in the node-class

11GenCAT allows users to adopt a normal distribution and to directly input class size
distribution ρ.

4.3. GENCAT GRAPH GENERATOR 73

Algorithm 3: Graph generation
input : n,m, d, y,M ,D,H, ϕC , ω, r, fS , fX
output: adjacency matrix A, attribute matrix X, class label C

1 ### Latent factors generation phase ###
2 ρ = power law(y, ϕC)
3 for i = 1 to n do
4 Ci = Randint(range=(1, y),weight=ρ)
5 Ui. = normal(MCi.,DCi.)

6 U ′ = U
7 for l = 1 to y do
8 if Mll <

1
y then

9 for i ∈ Ωl do
10 Ui. = frev(Ui.) (Eq. (4.10)) ▷ negative topology type

11 V = H
12 ### Adjusting proportion phase ###
13 for l = 1 to y do
14 if Mll ≥ 1

y then

15 Tmin = argmin
T

(∥Ml. − 1
|Ωl|

∑
i∈Ωl

fAP(Ui., T) ∗ fAP(Ui., T)∥F)

▷ minimize Lmean (Eq. (4.11)) by using fAP (Eq. (4.18))
16 for i ∈ Ωl do
17 Ui. = fAP(Ui., Tmin)
18 U ′

i. = Ui.

19 else
20 Tmin = argmin

T
(∥Ml. − 1

|Ωl|
∑

i∈Ωl
fAP(Ui., T) ∗ frev(fAP(Ui., T))∥F)

▷ minimize Lmean by using frev (Eq. 4.9) and fAP

21 for i ∈ Ωl do
22 Ui. = fAP(Ui., Tmin)
23 U ′

i. = frev(Ui.)

24 for δ = 1 to d do
25 Tmin = argmin

T
(∥Hδ. − 1

|Ωl|
∑

i∈Ωl
Ui. ∗ fAP(Vδ., T)∥F)

▷ minimize Lattr
class feature (Eq. (4.15)) by using fAP

26 Vδ. = fAP(Vδ., Tmin)

27 ### Graph generation phase ###
28 A = fS(U ,U ′, n,m, y, r) ▷ fS = Edge generation
29 X = fX(U ,V , ω)
30 return A,X,C

74 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

membership proportions for a class that the node belongs to according to
Eq. (4.10). Then, we initialize attribute-class proportions, V , by H so that
the attribute-class proportions reflect user-specified correlation between the
attributes and classes (line 11).

Adjusting proportion phase

The goal of this phase is to rescale the node-class membership proportions
and attribute-class proportions to reduce the losses imposed by the inputs
of class preference mean and attribute-class correlation, respectively. The
reason that we need to adjust these proportions is that the initialization
of the proportions is not designed to minimize the losses (Eq. (4.11) and
(4.15)) since the initialization aims to capture the tendency of user-specified
statistics.

First, we adjust the node-class membership proportions U for each class
to minimize the loss Lmean shown in Eq. (4.11) (lines 13–23). The procedure
adjusting U depends on whether a class is typed with positive topology (lines
14–18) or negative topology (lines 19–23). As for the positive topology type,
we adopt a grid parameter search for T from 0 to 1 in 0.05 step, in order
to minimize Lmean shown in Eq. (4.11) (line 15). To rescale the node-class
membership proportions with probability values for the minimization, we
utilize the same idea in [112] by adopting rescale function fAP below:

fAP(Ui., T) = U
1
T
i. /

y∑
j

(U
1
T
ij) (4.18)

where i is a node ID and T is a parameter which controls the degree of
rescale. Then, for each node i in the class l, we update Ui. by using fAP with
Tmin that is the output of the grid search (line 17) and update U ′

i. to the
same value as Ui. (line 18). As for the negative topology type, we use frev
(Eq. (4.9)) to compute U ′ from U and minimize Lmean by utilizing a grid
search similarly as positive topology type (line 20). Then, for each node i in
the class l, we update Ui. by using fAP with Tmin (line 22) and update U ′

i.

by using frev since the class l is typed with negative topology (line 23). Note
that we adjust Ui. ∗U ′

i. with M (See Eq. (4.11)) as an approximation since
the cost to obtain the exact proportion of edges between classes is O(yn2)12.

12O(yn2) stems from the matrix multiplication UU ′⊤ to consider all pairs of nodes.

4.3. GENCAT GRAPH GENERATOR 75

Algorithm 4: Edge generation(U ,U ′, n,m, y, r)

input : U ,U ′, n,m, y, r
output: A

1 ϕmin
d = argmin

ϕd

|m−
∑n

i=1(powerlaw(n, ϕd))i/2|

2 θ = sort(powerlaw(n, ϕmin
d), descending order)

3 θ′ = [0]n

4 for i = 1 to n do
5 counter = 0
6 while counter < r and θ′

i < θi do
7 ### Class selection from source node ###
8 Z = {}
9 for iter = 1 to θi − θ′

i do
10 Z = Z

⋃
Randint(range= (1, y),weight= Ui.)

11 ### Target node selection from class ###
12 for l ∈ Z do

13 j = Randint(range= (1, n),weight= U ′⊤
.l)

14 if Aij == 0 and θ′
i < θi and θ′

j < θj then
15 Aij = 1
16 Aji = Aij ▷ undirected graph
17 (θ′

i,θ
′
j) = (θ′

i + 1,θ′
j + 1) ▷ increment degrees

18 counter = counter + 1

19 return A

Second, we adjust the attribute-class proportions V for each attribute
to minimize the loss Lattr

class feature shown in Eq. (4.15) (lines 25–26). We can
obtain adjusted V by using a grid search similarly as U .

Graph generation phase

In the graph generation phase, we generate the adjacency matrix A (line 28)
and attribute matrix X (line 29) by using the adjusted latent factors.

Edge generation. Algorithm 4 describes how adjacency matrix A is gen-
erated. First, we adopt a grid parameter search for a power law parameter
ϕmin
d from 1 to 3 in 0.01 step, so as to reduce the loss between the number

76 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

of edges and the sum of the expected node degree proportions13 (line 1).
Then, θ is generated by using a power law distribution with ϕmin

d , and we
sort it in descending order so that we start edge generation from high degree
nodes as we mentioned in Section 4.3.1 (line 2). Let θ′ be the actual node
degrees during the edge generation. It is initialized as zeros (line 3) and its
entries θ′

i and θ′
j are incremented when a new edge (i, j) is generated (line

17). For each node i, edges are iteratively generated until θ′
i gets close to the

expected node degree proportion θi by Class selection from source node step
(lines 8–10) and Target node selection from class step (lines 12–17). Thanks
to these steps, GenCAT generates edges according to the stochastic process
specified by U and U ′⊤. In Class selection from source node step, classes
are chosen from the node-class membership proportions of source node i, Ui.

(line 10). Target node selection from class step is iterated for the classes
selected in the previous step (line 12). We select target node j from the
node-class connection proportions U ′⊤ (line 13).

In order to accelerate Target node selection from class step, we generate a
list to node prob by which we can obtain a node ID based on the probability
of selecting the node, in a similar way as the inverse CDF of U ′⊤. Setting a
step size w, which balances memory size and the accuracy of the selection,
to node prob is formulated below:

to node prob[c] = f−1
CDF (w · c) (4.19)

where c ∈ N and w ∗ c ≤ 1. The length of to node prob is 1/w. We set c by
the following equation14:

c = ⌈Rand(range(0, 1))/w⌉ (4.20)

We set w = 1/(100n) so as to vary with n since there is a trade-off between
memory size15 and the accuracy of the selection.

If neither the actual node degrees θ′
i or θ′

j reach the expected node de-
grees θi and θj, respectively

16, we generate an edge between them and then

13Users can input an arbitrary node degree distribution. In our algorithm, we show a
case of using a power law distribution that node degrees in real-world graphs often follow.

14If node IDs are numbered from 0 to n− 1, we just replace the ceiling function to the
floor function.

15to node prob needs the space complexity, O(yn), which is one of the largest elements
(The details are described in Section 4.3.4).

16If the actual node degrees reach the expected node degrees, that means the node has
enough number of edges.

4.3. GENCAT GRAPH GENERATOR 77

increment their node degrees (lines 14–17). Note there is a possibility that
the edge generation loop (lines 6–18) does not stop because there is such
a case that the last node of the loop cannot have its expected degree. To
avoid this, we exit the loop at the user-specified r iterations (line 6)17. It is
our future work to guarantee the theoretical quality bounds of the generated
graphs.

Attribute generation. Attribute matrix X is generated by fX(U ,V , ω)
(line 29 in Algorithm 3). As we described in Section 4.3.1, we obtain base
attribute vectors by multiplying UV ⊤ so that nodes in the same class should
share similar attribute values, and then we apply user-specified distribution
to the base attribute vectors so that the attribute values should follow the
distribution in order to reduce the loss Lattr

graph feature shown in Eq. (4.16).
As for the application of user-specified distributions, GenCAT supports two
types of distributions, normal distribution and Bernoulli distribution. First,
if users specify a normal distribution for attributes, we calculate Xiδ =
(UV ⊤)iδ +N (0, ω2). We normalize all attribute values to [0,1] without the
loss of generality. Second, if users specify the Bernoulli distribution for at-
tributes, we calculate Xiδ = B((UV ⊤)iδ), where B(x) is a function which
returns 1 with probability x or 0 with probability 1 − x. It is our future
work to support other distributions for the attributes such as power-law and
categorical distributions.

4.3.3 Parameter Extraction from Given Graph Dataset

Recall the second scenario that we described in Section 4.2: we extract pa-
rameters from input graphs with class labels and reproduce graphs similar
to the input graphs. GenCAT uses a parameter extracting function that
obtains topology statistic and class features of given graphs; node degrees,
class preference mean, class preference deviation, and class sizes. Finally, we
construct graphs in the same way as the first scenario.

Thanks to the parameter extracting function, GenCAT easily generates
graphs similar to those that users input. Additionally, it enables generating
graphs in arbitrary size with similar class features of the given graphs by
permitting users to change the numbers of nodes and edges.

17Although we adjust the sum of all the node degrees in θ to be the number of edges
m, some candidate edges may not be generated when the node degrees of the adjacent
nodes exceeds the expected ones, so the actual number of the generated edges tends to be
smaller than the expected number of edges, m.

78 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

4.3.4 Complexity

We discuss the time/space complexities of GenCAT. As is typical in network
analytics, we focus on sparse graphs [86] as real-world graphs are often sparse.
On the sparse condition, the mean of the node degree, θAvg, can be treated
as a constant. As the result, m ∝ n holds. Hence, m is considered to be a
much smaller value than n2.

Time complexity.

We analyze the time complexity of the latent factor generation, the edge
generation, and the attribute generation, respectively. First, the complexity
for generating the node-class membership/connection proportions and the
attribute-class proportions is O(yn + dy) based on their matrix sizes. Sec-
ond, adjusting proportion phase consists of two parts, adjusting the node-
class membership/connection proportions and adjusting the attribute-class
proportions. The former phase requires O(yn) to adjust them. The latter
phase requires O(dyn) to calculate UV ⊤. In practical cases, we can rewrite
1

|Ωl|
∑

i∈Ωl
UV ⊤ as PV ⊤, where P ∈ Ry×y and Pl. =

1
|Ωl|

∑
i∈Ωl

Ui.. The

computational cost of this phase is O(yn + dy2) owing to this transforma-
tion. Note that y is typically much smaller than n.

The edge generation consists of the Class selection from source node step
and the Target node selection from class step. In the former step, classes are
chosen based on the node-class membership proportions U for each node.
The cost is O(ynθAvg) since we select as many classes as the remained node
degrees. In the latter step, we select a node for each class selected in the
former step, based on the transpose of the topology proportions U ′. We
generate list to node prob to accelerate this selection. The cost of this step
is O(1) since this step only includes the operation of a random value gen-
eration and list access. These two steps require O(myr) since m = nθAvg

and r is a constant number of iterations for the edge generation. Finally,
in the attribute generation, the matrix multiplication UV ⊤ requires O(dyn)
and the application of user-specified distribution requires O(dn). Hence, the
complexity of the attribute generation is O(dyn). Therefore, the total time
complexity is O(myr + dyn).

4.3. GENCAT GRAPH GENERATOR 79

Space complexity.

The largest concern is the adjacency matrix A since the size of A could
be as large as n2. Hence, we use sparse representation for A, such as an
adjacency list, with size O(m). The sizes of the latent factors U ,U ′, and
V are O(yn), O(yn), and O(dy), respectively. To utilize inverse transform
sampling, we construct lists whose size is O(yn). The size of an attribute
matrix X is O(dn). Therefore, the space complexity is O(m+yn+dn) since
y is smaller than n.

4.3.5 Simulating Existing Generators

We show that GenCAT is a general generator of existing methods, LFR and
DC-SBM. First, LFR specifies the edge fraction of intra- and inter-edges
by a mixing parameter. So, GenCAT can simulate LFR by adding three
conditions that 1) nodes in a class have the same node-class membership
proportions: Ui. = Uj. if Ci = Cj, 2) the connection proportions between
each class and other classes are the same: Uih1 = Uih2 if h1, h2 ̸= Ci, and 3)
all classes have the same edge fraction of intra- and inter-edges: UiCi

= UjCj

for all pairs of nodes (i, j). To realize the first condition, we can set all
elements of D to zero so that every node in a class has the same node-class
membership proportion. As for the second condition, a given class preference
mean should satisfy Mlh1 = Mlh2 if h1, h2 ̸= l for each class l. For the third
condition, a given class preference mean should also satisfy Mll = µ where
1 ≤ l ≤ y and µ is a mixing parameter of LFR.

Next, DC-SBM specifies the connection proportions between classes. So,
the edge probabilities of GenCAT and DC-SBM correspond by adding a
condition that nodes in a class have the same node-class membership pro-
portions: Ui. = Uj. if Ci = Cj. To realize the condition, we can set all
elements of D to zero in addition to the first condition of LFR. As for graph
features, GenCAT can utilize the same distributions as the existing genera-
tors. Hence, GenCAT can simulate the existing generators in terms of both
graph/class features.

80 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

4.4 Validation of Effectiveness and Efficiency

of GenCAT

We next describe an experimental study of GenCAT. Our goal in the exper-
iments is to answer the following questions:

Q1 Does GenCAT support users to flexibly control graph/class features re-
garding topology? (Sec. 4.4.1)

Q2 Does GenCAT support users to flexibly control graph/class features re-
garding attributes? (Sec. 4.4.2)

Q3 How well does GenCAT scale? (Sec. 4.4.3)

Q4 How precisely does GenCAT reproduce real-world graphs? (Sec. 4.4.4)

Q5 How efficient and effective are the proposed techniques on edge genera-
tion? (Sec. 4.4.5)

In Q1 and Q2, we validate that GenCAT can output attributed graphs
following graph/class features specified by given parameters. In Q3 and Q4,
we evaluate the performance of scalability and reproducibility of GenCAT
compared with existing graph generators. In Q5, we demonstrate the effi-
ciency and effectiveness of the proposed techniques by conducting an ablation
study. We use LFR18 and DC-SBM19 as the main competitors because LFR
and DC-SBM generate graphs with class labels and controlled class-level
connection proportions, which are closest to the capabilities of GenCAT in
terms of generated topology structure. Since schema-driven (e.g., pgMark
and TrillionG) and clustering method-driven (e.g., ANC) approaches gener-
ate quite different graphs, it is hard to fairly compare them with GenCAT, so
we do not compare them with GenCAT. For evaluating scalability, we com-
pare GenCAT with LFR and DC-SBM. For evaluating reproducibility, we

18https://networkx.github.io/documentation/networkx-2.1/reference/

algorithms/generated/networkx.algorithms.community.community_generators.

LFR_benchmark_graph.html
19Since the source code of SBM is available, we extend SBM to DC-SBM that incorpo-

rates node degrees into its edge generation algorithm. Note that we make minor changes to
the code of SBM for the extension, but the cost of time and space for SBM is the same as
for DC-SBM. https://networkx.org/documentation/stable/reference/generated/
networkx.generators.community.stochastic_block_model.html

4.4. VALIDATIONOF EFFECTIVENESS AND EFFICIENCYOFGENCAT81

Table 4.4: MAPE between the expected node degree θ and the actual node
degree θ′.

m 216 217 218 219 220

Error 1.03e–3 7.37e–4 5.76e–4 5.25e–4 5.00e–4

compare GenCAT with LFR, DC-SBM, VGAE20, and NetGAN21. VGAE is
a baseline method of network embedding approaches. NetGAN is the-state-
of-the-art deep learning-based graph generator. We do not compare with
GraphVAE as it can only be used on very small graphs.

GenCAT is implemented in Python3. The experiments are operated on
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz with 1TB memory. All ex-
periments are operated on a single thread and a single core.

4.4.1 Evaluation of Graph/Class Features Regarding
Topology (Q1)

We here validate that GenCAT generates graphs following the users’ given
graph/class features regarding the topology.

Graph feature regarding topology

We show that GenCAT can generate graphs that almost follow given node
degrees by calculating the loss of graph features, the difference between the
expected node degree θ and the actual node degrees θ′ by Eq. (4.14). We
vary the number of edges m within the range of {216, 217, 218, 219, 220}. We set
the parameters y, r, and n as 5, 50, and m/16, respectively, all the diagonal
elements of M to 0.4 and the other elements to 0.15. We generate five graphs
and report the average of their results. Table 4.4 shows the MAPE of node
degrees. This result shows that the graphs generated by GenCAT almost
follows given node degrees.

20https://github.com/zfjsail/gae-pytorch
21https://github.com/danielzuegner/netgan

82 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

(a) Each cell represents the class pref-
erence mean of the generated graph,
M gen. The diagonal elements of M are
set to 0.6 and other elements are set to
0.08.

(b) Each cell represents the class prefer-
ence deviation of the generated graph,
Dgen. The diagonal elements of D
are set to [0.2, 0.2, 0.25, 0.25, 0.3, 0.3] and
other elements are set to 0.05.

Figure 4.4: Visualization of class preference mean and class preference devi-
ation. The parameters are set as follows: n = 216, m = 220, and y = 6.

Class feature regarding topology

We demonstrate that GenCAT flexibly controls class features in generated
graphs. Figure 4.4 shows the heatmaps of the class preference mean and the
class preference deviation of the generated graph. In this experiment, We set
all the diagonal elements of M to 0.6. Also, we set the diagonal elements
of D to [0.2, 0.2, 0.25, 0.25, 0.3, 0.3], respectively, and the other elements to
0.05. Let M gen and Dgen be a class preference mean and a class preference
deviation of the generated graph. First, we demonstrate that GenCAT can
control the class-level connection proportions. Figure 4.4a shows that the
diagonal elements of M gen are almost 0.6. The reason that the diagonal ele-
ments of M gen do not completely match 0.6 is that the edge generation step
is based on the probabilistic procedures. This figure validates that GenCAT
supports classes typed with positive topology. Figure 4.4b shows that Gen-
CAT can control the deviation of the connection proportions between nodes
and classes. There is a tendency that Dgen

00 and Dgen
11 are smaller than Dgen

44

4.4. VALIDATIONOF EFFECTIVENESS AND EFFICIENCYOFGENCAT83

(a) Negative topology classes. All diag-
onal elements of M are set to 0.05.

(b) Coexistence of positive and negative
topology classes. The diagonal elements
of M of class 0, 1, 2 are set to 0.9 and
the ones of class 3, 4, 5 are set to 0.05.

Figure 4.5: Visualization of adjacency matrices. The parameters are set as
follows: n = 3000, m = 30000, and y = 6.

and Dgen
55 . The reason that the diagonal elements of Dgen do not completely

match the values we set is that GenCAT prioritizes other constraints higher
than estimating class preference deviation in the edge generation, such as
the node degrees and the class preference mean. This result indicates that
GenCAT supports the deviation of the connection proportions, albeit at a
lower priority. In summary, the experiments validate that GenCAT supports
the connection proportions between nodes and classes by using the class pref-
erence mean and the class preference deviation. We compare GenCAT with
other generators in Section 4.4.4.

Next, we also validate that GenCAT supports various types of class labels
with negative and mixed topology types in graphs, respectively. Figure 4.5
shows the adjacency matrices of the generated graphs. Blue dots indicate
that there exist edges between nodes whose identifiers are the node IDs on
vertical and horizontal axes. In this experiment, we set the number of classes
to six, and we can observe the classes as blocks in the diagonal part of the
figure. Figure 4.5a additionally shows the case that all classes are negative
types. We set all diagonal elements ofM to 0.05, lower than the average. The
nodes clearly tend to connect with nodes from other classes. We demonstrate

84 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Table 4.5: Comparison of the distributions of the generated attributes and
the matrix multiplication UV ⊤ by using the EM distance. DEM(X, p(X))
denotes the sum of the EM distance between X and p(X) for all attributes,
as shown in Eq. (4.16). H (1), H (2), and H(3) are the variations of given
attribute-class correlations.

EM distance H(1) H (2) H (3)

DEM(X, p(X)) 0.049 0.089 0.108
DEM(UV ⊤, p(X)) 0.473 0.492 0.481

a more complicated case that both positive and negative topology types in a
single graph, in Figure 4.5b. Nodes from class 0, 1, 2 are densely connected
inside since the types of their classes are positive topology. Nodes from class
3, 4, 5 tend to connect with nodes from other classes. In summary, we confirm
that GenCAT flexibly controls the connection proportions between nodes and
classes.

4.4.2 Evaluation of Graph/Class Features Regarding
Attributes (Q2)

We demonstrate that GenCAT can generate node attributes following the
users’ given graph/class features regarding the attributes. In this experiment,
we set the parameters d, y, and n as 2, 4, and 5000, respectively22, all the diag-
onal elements of M to 0.7, the other elements to 0.1, the diagonal elements of
D to [0.2, 0.2, 0.25, 0.25], respectively, and the other elements of D to 0.1. We
set a normal distribution as the distribution of the attribute and its deviation
ω to 0.2. We vary attribute-class correlations H in three patterns of sepa-
ration degrees between classes: H (1) = [[0.5, 0.0, 0.0, 0.5], [0.0, 0.5, 0.0, 0.5]],
H(2) = [[0.4, 0.1, 0.1, 0.4], [0.1, 0.4, 0.1, 0.4]], and H (3) = [[0.3, 0.2, 0.2, 0.3],
[0.2, 0.3, 0.2, 0.3]].

22To make visualization easier to understand, we set the number of attributes d to
2. Note that GenCAT can efficiently generate more attributes since its time and space
complexities are linear to d (see Section 4.3.4)

4.4. VALIDATIONOF EFFECTIVENESS AND EFFICIENCYOFGENCAT85

(a) H
(1)
1. = [0.5, 0.0,

0.0, 0.5].
(b) H

(2)
1. = [0.4, 0.1, 0.1,

0.4].
(c) H

(3)
1. = [0.3, 0.2,

0.2, 0.3].

Figure 4.6: Histograms of the generated attributes (attribute1 in Figure 4.7)
with three variations of attribute-class correlations, H(1),H(2), andH(3). All
attributes of the three variations follow user-specified distributions which are
normal distributions even when given attribute-class correlations are different
from each other.

Graph feature regarding attribute

First, in order to validate that the attributes of generated graphs with var-
ious attribute-class correlations follow user-specified distributions (i.e., the
graph feature regarding attributes), Figure 4.6 shows the histograms of a
single attribute H1. for each variation of attribute-class correlations. We
observe that all distributions of the attribute values in the generated graphs
with H(1), H (2), and H (3) follow normal distributions, which are shown in
Figure 4.6a, 4.6b, and 4.6c, respectively. Hence, we conclude that GenCAT
can generate attribute values according to the given distribution even when
users input various attribute-class correlations. To quantitatively evaluate
the effectiveness of the application of distributions, we investigate the dis-
tance between the distributions of generated attributes X and user-specified
distributions p(X) by using the EM distance (Eq. (4.16)). We also calculate
the distance between user-specified distributions and the distributions of the
matrix multiplication UV ⊤ (i.e., we directly use the matrix multiplication)
for comparison. Table 4.5 shows the results of the EM distances for H(1),
H (2), and H(3). Since the distances between X and p(X) are smaller than
the distance between UV ⊤ and p(X), we confirm the effectiveness of the
application of user-specified distributions in the attribute generation.

86 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

(a) H(1) = [[0.5, 0.0,
0.0, 0.5], [0.0, 0.5, 0.0, 0.5]].

(b) H(2) = [[0.4, 0.1,
0.1, 0.4], [0.1, 0.4, 0.1, 0.4]].

(c) H(3) = [[0.3, 0.2,
0.2, 0.3], [0.2, 0.3, 0.2, 0.3]].

Figure 4.7: Distributions of the generated attributes with three variations
of attribute-class correlations. We depict the 2-D plots of the values of two
attributes. The colors indicate classes which nodes belong to.

Class feature regarding attribute

Next, to show that the generated attributes support the class features spec-
ified by users, Figure 4.7 depicts 2-D plots of the values of two attributes
in the generated graphs with H(1), H (2), and H(3). Intuitively, a range of
values of H indicates the differences of the attribute values for classes. Since
H (1) has a wide range of values (i.e., [0.0, 0.5]) the attributes in different
classes tend to have dissimilar values in Figure 4.7a. Then, Figure 4.7b and
4.7c show that the attributes of the nodes in classes are more mixed when
the values of the attribute-class correlations are more similar between classes.
Through this experiment, we observe that GenCAT can flexibly control the
class structure in the generated attributes by user-specified attribute-class
correlations. In summary of this subsubsection, we show that the attributes
in graphs generated by GenCAT closely follow the users’ desired graph/class
features.

4.4.3 Scalability (Q3)

To investigate the scalability of GenCAT, we demonstrate the runtime and
memory consumption with varying the number of edges. We vary the number
of edges m within the range of {221, 222, 223, 224, 225, 226, 227, 228, 229, 230}. We
set the parameters y, r, and n to 5, 50, and m/32, respectively, all diagonal
elements of M to 0.6, the other elements of M to 0.1, all diagonal elements

4.4. VALIDATIONOF EFFECTIVENESS AND EFFICIENCYOFGENCAT87

Table 4.6: Execution time and memory consumption: TO and OOM indi-
cate that the execution is not finished in 36 hours and is out of memory,
respectively.

m 221 222 223 224 225

Time GenCAT 1.90e2 3.77e2 7.50e2 1.56e3 3.16e3
[sec] LFR 2.17e2 7.66e2 4.19e3 1.50e4 6.05e4

DC-SBM 9.60e3 OOM OOM OOM OOM
Memory GenCAT 9.24e2 1.78e3 3.51e3 7.33e3 1.48e4
[MiB] LFR 1.40e3 2.25e3 3.99e3 7.45e3 1.39e4

DC-SBM 6.37e5 OOM OOM OOM OOM

m 226 227 228 229 230

Time GenCAT 6.53e3 1.34e4 2.84e4 5.92e4 1.23e5
[sec] LFR TO TO TO TO TO

DC-SBM OOM OOM OOM OOM OOM
Memory GenCAT 2.95e4 5.92e4 1.19e5 2.37e5 4.92e5
[MiB] LFR TO TO TO TO TO

DC-SBM OOM OOM OOM OOM OOM

of D to 0.2, and the other elements of D to 0.1. We compare GenCAT
with LFR and DC-SBM, which are the state-of-the-art generators closest in
functionality to GenCAT.23

We first evaluate runtime of GenCAT, LFR, and DC-SBM for topology
structure generation; recall that LFR and DC-SBM do not support attribute
generation. In Table 4.6, we show the runtime to generate edges. This
table indicates that GenCAT scales linearly to the number of edges and can
generate graphs with billion edges in a reasonable time (i.e., the generation for
230 edges finishes in 35 hours). Comparing GenCAT with LFR and DC-SBM,
GenCAT significantly outperforms them. This is because GenCAT efficiently
generate edges due to the inverse transform sampling, but LFR often fails
to generate edges as the graph size increases, and DC-SBM’s complexity is

23We do not compare with TrillionG that is the state-of-the-art method in terms of scal-
ability. The graphs generated by TrillionG are significantly different from those generated
by GenCAT since TrillionG is a schema-driven approach without attributes and without
flexible control of the class structure.

88 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

O(n2). From the results, we confirm that GenCAT efficiently and scalably
generates graphs with class labels.

Next, we analyze memory consumption. Table 4.6 shows the memory us-
age to generate graphs. It shows that GenCAT scales linearly to the number
of edges. GenCAT and LFR have similar memory consumption. We observe
that DC-SBM operates with memory usage proportional to the square of the
number of nodes.

In summary, these experiments validate that both time and space com-
plexities of GenCAT are linear to the number of edges, it significantly outper-
forms the state-of-the-art, and it generates edges with the controlled structure
of large sizes not possible to practically generate with the state-of-the-art.

4.4.4 Reproduction of Real-world Graphs (Q4)

To evaluate reproducibility of real graphs with GenCAT, we show how pre-
cisely GenCAT reproduces the real-world graph by comparing with existing
methods. We use GenCAT, VGAE, NetGAN, LFR, and DC-SBM24 to re-
produce the CORA dataset [85], which is a typical graph dataset often used
in studies of community structure, e.g., [19, 60]. In this graph, the numbers
of nodes, edges, and classes are 2810, 7981, and 7, respectively.

First, we clarify and explain the strong points and drawbacks of GenCAT
and existing methods by visualizing the adjacency matrices of CORA dataset
and generated graphs. Second, we quantitatively evaluate the class structure
in reproduced graphs by the class features introduced in Section 4.2.2. Third,
we also evaluate the class structure by community-related statistics which are
commonly used [19]. Finally, we demonstrate that GenCAT can generate
various size graphs with the same class structure as a given graph.

Visualization

Figure 4.8 shows the adjacency matrices of CORA dataset and generated
graphs. For a fair comparison, we randomly order the nodes in each class.
We here note that since VGAE and NetGAN do not explicitly generate the
class labels and the nodes in generated graphs bijectively correspond to the

24LFR and DC-SBM do not have a function to reproduce given graphs. So, for LFR
we manually set parameters appropriately to reproduce given graphs. As for DC-SBM,
we compute node degrees by the same way as GenCAT and input them as parameters for
DC-SBM.

4.4. VALIDATIONOF EFFECTIVENESS AND EFFICIENCYOFGENCAT89

(a) Original. (b) GenCAT. (c) VGAE.

(d) NetGAN. (e) LFR. (f) DC-SBM.

Figure 4.8: Visualization of adjacency matrices of CORA dataset and gen-
erated graphs.

nodes in original graphs, we assign nodes of the generated graph to the class
labels of the corresponding nodes of the original dataset. From Figure 4.8,
we observe that GenCAT most precisely reproduces CORA among the five
methods. This is because GenCAT can capture the connection proportions
between nodes and classes. VGAE does not precisely reconstruct the graph
structure since its main purpose is learning node embeddings. NetGAN does
not explicitly consider the class structures in its learning steps, so it fails to
reproduce the detailed parts. In LFR, inter-edges are uniformly distributed
because LFR randomly generates them. In DC-SBM, inter-edges of each pair
of classes are uniformly distributed since DC-SBM assumes that the nodes
in the same class have the same connection proportions.

Evaluation on class features

To evaluate the accuracy quantitatively, we measure the mean square errors
(MSE) of the class preference mean and class preference deviation between

90 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Table 4.7: Evaluation for class preference mean and class preference deviation
between the original graph and generated graphs. Mean squared error (MSE)
is used for the evaluation measure.

Mean squared error GenCAT VGAE NetGAN LFR DC-SBM
Class preference mean 8.71e–4 2.05e–2 2.93e–3 7.05e–3 1.66e–3
Class preference deviation 9.26e–4 4.12e–3 1.86e–3 5.36e–3 1.42e–3

Table 4.8: Statistics of Cora and the graphs generated by GenCAT and the
baselines, averaged over five trials.

Original GenCAT VGAE NetGAN LFR DC-SBM

Intra-community density 1.97e-3 1.89e-3 2.04e-3 1.41e-3 1.36e-3 1.88e-3
Inter-community density 5.07e-4 4.92e-4 4.87e-4 6.0e-4 7.03e-4 5.01e-4
Size of LCC 2810.0 2810.0 1686.4 2804.2 2810.0 2499.0
connected components 1.0 1.0 1123.4 3.4 1.0 306.2
Characteristic path length 5.27 4.36 3.99 5.19 4.74 4.14

Average rank - 1.8 3.8 3.0 2.8 3.2

the original graph and generated graphs. Table 4.7 shows the MSE of all the
methods. GenCAT achieves the best performance, and this result indicates
that GenCAT can precisely reproduce the class structures in a given real
graph.

Evaluation on community-related statistics

We evaluate the quality of generated graphs by statistics related to commu-
nities, in order to show that GenCAT can generate realistic communities in
a graph. The statistics include intra-community density, inter-community
density, the size of largest connected component (called LCC for short), the
number of connected components, and characteristic path length (average
number of steps along the shortest paths for all node pairs), which are used
in [19]. We observe that graphs generated by GenCAT are similar to the
original graph in terms of all community-related statistics. The bottom row

4.4. VALIDATIONOF EFFECTIVENESS AND EFFICIENCYOFGENCAT91

(a) n = 1500,m = 5000. (b) n = 6000,m = 20000.

Figure 4.9: Visualization of adjacency matrices of generated graphs with
various sizes.

in Table 4.8 shows the average rank of each method over all statistics and
demonstrates that GenCAT ranks the highest. This result means that Gen-
CAT reproduces graphs with similar statistics to the original one. Though
VGAE and DC-SBM precisely capture intra- and inter-community densi-
ties, they generate highly disconnected graphs. NetGAN achieves the closest
score for characteristic path length because it learns random walks on a
given graph. However, NetGAN cannot accurately capture intra- and inter-
community density because it does not explicitly learn communities in a given
graph. LFR fails to accurately reproduce intra- and inter-community den-
sity from the original graph since it assumes that all communities have the
same density. In summary, we validate that GenCAT can generate realistic
communities in a graph with regard to various statistics used commonly.

Changing graph size

Next, we demonstrate GenCAT generates various size graphs which have
the same class structures as a given graph. Figure 4.9 shows two adjacency
matrices of graphs generated by GenCAT: the parameters of the former are
n = 1500 and m = 5000, and those of the latter are n = 6000 and m = 20000.
Figure 4.9a shows the reproduced graph has the similar class structure to

92 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Table 4.9: Ablation study on edge generation. We show execution time,
MSE between user specified class preference mean and the class preference
mean of a generated graph, and MSE between user specified class preference
deviation and the class preference deviation of a generated graph. “w/o ITS”
and “w/o AP” indicate the variants removing inverse transform sampling and
adjusting proportion, respectively. We report the scores averaged over five
trials.

m 216 217 218 219 220

GenCAT 6.34 12.30 23.78 47.71 95.29
Time[sec] w/o ITS 30.70 110.10 421.84 1683.24 6714.91

w/o AP 6.01 11.52 22.15 44.87 89.87
Class GenCAT 1.25e-3 0.42e-3 0.20e-3 0.14e-3 0.09e-3
preference w/o ITS 1.19e-3 0.49e-3 0.24e-3 0.16e-3 0.09e-3
mean w/o AP 14.96e-3 13.57e-3 13.32e-3 12.96e-3 12.93e-3
Class GenCAT 2.71e-3 2.21e-3 2.09e-3 2.14e-3 2.02e-3
preference w/o ITS 3.05e-3 2.35e-3 2.30e-3 1.99e-3 2.11e-3
deviation w/o AP 5.22e-3 4.89e-3 4.89e-3 4.85e-3 4.82e-3

CORA dataset shown in Figure 4.8a25. Figure 4.9b shows that the larger
graph also has a similar class structure to the original dataset.

These experiments validate that GenCAT can generate the class struc-
tures of real-world graphs and enable users to choose arbitrary sizes of gen-
erated graphs while maintaining the accuracy of these structures.

4.4.5 Ablation Study

To validate the efficiency of inverse transform sampling (ITS) and the effec-
tiveness of adjusting proportion (AP), We evaluate the effect on edge gener-
ation of ITS and AP. We vary the number of edges m within the range of
{216, 217, 218, 219, 220}. We set the parameters y, r, and n as 6, 50, and m/16,
respectively, all diagonal elements of M to 0.6, and the other elements to
0.08. Also, we set the diagonal elements of D to [0.2, 0.2, 0.25, 0.25, 0.3, 0.3],
respectively, and the other elements to 0.05.

25We note that the adjacency matrix looks more sparse than the original dataset due
to the size of the figure.

4.4. VALIDATIONOF EFFECTIVENESS AND EFFICIENCYOFGENCAT93

Table 4.9 shows the execution time and losses between user specified class
preference mean/deviation and the class preference mean/deviation of a gen-
erated graph. We use MSE in order to measure the losses between those class
preference means/deviations. In this table, “w/o ITS” and “w/o AP” indi-
cate the variants removing ITS and AP, respectively. First, the table shows
that GenCAT and w/o AP scale linearly to the number of edges. On the
other hand, w/o ITS requires O(n2) because it calculates the matrix mul-
tiplication UU ′⊤ to obtain edge probability. Hence, we validate that ITS
accelerates the edge generation of GenCAT. Second, in Table 4.9 we observe
that GenCAT and w/o ITS can generate graphs that satisfy the constraints
of class preference mean/deviation better than w/o AP. From this observa-
tion, we validate that AP largely reduces the losses between user specified
class preference mean/deviation and the class preference mean/deviation of
a generated graph. Since the losses of GenCAT and w/o ITS are compara-
ble, this result indicates that ITS does not decrease the quality of generated
graphs.

In summary, we conclude that ITS improves the efficiency of GenCAT
while keeping the quality of edge generation in terms of class preference
mean/deviation. Also we validate that AP improves the quality of edge
generation.

4.4.6 Summary of This Section

We experimentally validated four major aspects of GenCAT: 1) edges in
generated graphs follow user-specified graph features (i.e., node degrees)
and user-specified class features (i.e., the proportions of connections be-
tween nodes and classes), 2) GenCAT can generate attributes that follow
user-specified attribute distributions and the controlled class structure, 3)
GenCAT scales linearly to the number of edges, and we show that GenCAT
generates graphs with billion edges, 4) GenCAT more precisely reproduces
the class structure in real-world graphs than existing methods. GenCAT is
the first graph generation method having all four of these practical features.
Through our experiments, we demonstrated that GenCAT can successfully
generate massive attributed graphs with sophisticated user-controlled class
structures.

Since GenCAT enables us to generate various graphs that are suitable
to evaluate GNNs, we conduct comprehensive evaluations of GNNs for node
classification with various graphs generated by GenCAT in the next section.

94 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

4.5 An Empirical Study of Node Classifica-

tion with GNNs

Thanks to our graph generator GenCAT proposed in Section 4.3, we can
generate various graphs by synthetically changing one or a few target char-
acteristic(s) of graphs for fine-grained analysis. In this section, we generate
a variety of graphs to evaluate GNNs, in terms of four major characteristics
of attributed graphs with class labels: 1) class size distributions, 2) the re-
lationship between classes and topology, 3) the relationship between classes
and attributes, and 4) graph sizes. To be concrete, we attempt to answer
the following questions: Q1. To what extent do class size distributions affect
the performance of GNNs? Q2. How effectively do GNNs work on graphs
with various edge connection proportions between classes? Q3. To what ex-
tent do attribute values contribute to the performance of GNNs? Q4. How
effectively do GNNs work on graphs with various sizes?

First, we describe the setups of our empirical studies. Second, we show
experiments regarding node classification performance and discuss the results
in detail. Finally, we measure the training time per epoch of GNNs on
synthetic graphs with various sizes to investigate their efficiency.

4.5.1 Experimental Setup

We use 16 GNNs including the state-of-the-art methods such as GPRGNN [23]
and shaDow-GNN [126] as we discussed in Section 326. We also execute
a graph-agnostic classifier (i.e., it ignores the topology structure), multi-
layer perceptron (MLP), in order to evaluate how largely the topology struc-
ture contributes to classification performance. We use random class splits
(60%/20%/20% of nodes for train/validation/test) whose ratio is provided
by [23]. We perform a grid search to tune the hyperparameters of GNNs
to generated graphs for each setting. The hyperparameter search space and
their best parameter set for each setting are reported in our codebase for the
experimental reproducibility. To reduce the randomness, we generate three
graphs for each setting of graph generation and execute GNNs with three
restarts for each generated graph. We report average scores and standard
deviations as error bars.

26We drop several existing methods such as GIN [113] and SIGN [37] due to the space
limitation. However, we do not fail to use the state-of-the-art methods.

4.5. AN EMPIRICAL STUDY OF GNNS 95

In our experiments, we extract parameters of the graph generation from
the Cora dataset, i.e., we obtain class and graph features from Cora. Note
that Cora has 2708 nodes, 5278 edges, 1433 attributes, and 7 classes. Then,
we configure one or a few parameters for each setting27. We use f1-macro to
evaluate classification quality, which can better reflect the performance on
minority classes than accuracy. We measure training time on a NVIDIA Tesla
V100S GPU (32GB) and Intel(R) Xeon(R) Gold 5220R CPU×2 (378GB).

Hyperparameter Search Space

We select hyperparameters for search space of GNNs according to their pa-
pers or codebases. We show hyperparameter search space for each GNN and
MLP as follows.

MLP. The hyperparameter search space of MLP is listed as follows:

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.002, 0.01, 0.05]

• Early stopping: [40, 100]

• Hidden layer: [64]

• Dropout: [0.5]

GCN.

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.002, 0.01, 0.05]

• Early stopping: [40, 100]

• Hidden layer: [16, 32, 64]

• Dropout: [0.5]

Monet.

• Weight decay: [5e-5, 5e-4, 1e-4]

27Parameters not mentioned are set to those extracted from Cora.

96 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

• Learning rate: [1e-4, 0.002, 0.001, 0.01]

• Early stopping: [100]

• Hidden layer: [64]

• Aggregation: [mean, max]

• Dropout: [0.5]

ChebNet.

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.002, 0.01, 0.05]

• Early stopping: [40, 100]

• Hidden layer: [16, 32, 64]

• Dropout: [0.5]

GAT.

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.002, 0.01, 0.05]

• Early stopping: [40, 100]

• Hidden layer: [16, 32, 64]

• Dropout: [0.5]

• Heads: [8]

• Output heads: [1, 4, 8]

GraphSAGE.

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.002, 0.1, 0.7]

• Epochs: [500]

4.5. AN EMPIRICAL STUDY OF GNNS 97

• Early stopping: [40, 100]

• Hidden layer: [64, 128]

• Layers: [2]

• Dropout: [0.5]

SGC.

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.2]

• Epochs: [100]

• Early stopping: [40]

JKNet.

• Skip connection: [cat, max, lstm]

As for the hyperparameters of base models, GCN, GAT, and Graph-
SAGE, we follow the best hyperparameters of base models.

GraphSAINT (-GAT and -GraphSAGE).

• Weight decay: [0]

• Learning rate: [0.002, 0.01, 0.01]

• Epochs: [300]

• Early stopping: [40]

• Hidden layer: [128, 256]

• Dropout: [0, 0.1, 0.2]

• Heads: [8]

• Output heads: [1]

• Walk length: [2, 4]

98 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

• Sample coverage: [50]

• Root: [1500, 2000]

shaDow-GNN (-GAT and -GraphSAGE).

• Weight decay: [0]

• Learning rate: [0.002, 0.01, 0.01]

• Epochs: [200]

• Early stopping: [40]

• Hidden layer: [128, 256]

• Dropout: [0, 0.1, 0.2]

• Heads: [8]

• Output heads: [1]

• Depth: [2]

• Number of neighbors: [5, 10, 20]

• Batch size: [64, 128]

FSGNN.

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.002, 0.01, 0.05]

• Early stopping: [40, 100]

• Weight decay for attention: [0.001, 0.01, 0.1]

• Dropout: [0.5]

• Hidden: [64]

• Number of layers: [3, 8]

GPRGNN.

4.5. AN EMPIRICAL STUDY OF GNNS 99

• Weight decay: [0, 5e-6, 5e-5, 5e-4]

• Learning rate: [0.002, 0.01, 0.05]

• Early stopping: [40, 100]

• Dropout: [0.5]

• Parameter initializing attention: [0.1, 0.5, 0.9]

• Number of propagation layer: [10]

• Number of layer of MLP: [3]

LINKX.

• Weight decay: [0.001]

• Learning rate: [0.002, 0.01, 0.05]

• Hidden layer: [64, 128]

• Dropout: [0, 0.5]

• Number of edge layers: [1, 2]

• Number of node layers: [1, 2]

• Number of prediction layer: [2, 3, 4]

Best Parameters

For the reproduction of Figures 4.10, 4.11, 4.12, 4.13, 4.14, and 4.15, we
report the best set of hyperparameters for each experiment. Since we use
over 20 synthetic graphs and 16 GNN models, we provide the best parameter
sets in our codebase. Please see README in the repository, to find the best
parameter sets.

100 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Table 4.10: URLs of baseline codes.

Baseline URLs

SGC https://github.com/Tiiiger/SGC

H2GCN https://github.com/GemsLab/H2GCN

FSGNN https://github.com/sunilkmaurya/FSGNN

GPRGNN https://github.com/jianhao2016/GPRGNN

Source Codes of Baseline GNNs

Table 4.10 summarizes the URLs to download the baseline codes. As for
GCN, MoNet, ChebNet, GAT, JKNet, GraphSAGE, GraphSAINT, Shadow-
GNN, and LINKX, PyTorch Geometric28 provides their model architec-
tures, so we implemented the GNN algorithms based on PyTorch Geo-
metric. As for H2GCN, the authors implemented it in TensorFlow, so
we reimplemented it in PyTorch for fair comparisons.

4.5.2 Classification Quality on Synthetic Graphs with
Various Characteristics

Various Class Size Distributions

Most studies on GNNs for node classification do not consider class size dis-
tributions in their evaluations. In fact, existing studies use only accuracy to
evaluate the classification quality since they do not consider class size dis-
tributions. However, class size distributions are typically imbalanced [44] in
practical use cases. Instead of using accuracy, we use f1-macro which is suit-
able to equally treat major and minor classes. The trade-off between fairness
and accuracy has been actively discussed [4, 25]. We also show experimental
results regarding accuracy in the supplementary materials.

Detailed setup. To investigate the extent to which class imbalance affects
the classification performance, we conduct experiments on synthetic graphs

28https://github.com/pyg-team/pytorch_geometric

4.5. AN EMPIRICAL STUDY OF GNNS 101

with configured class size distributions ρconf as follows:

ρconf
l =

α (l = 1)

α ∗ (1−
∑l−1

l′=1 ρ
conf
l′) (1 < l < y)

1−
∑l−1

l′=1 ρ
conf
l′ (l = y)

, (4.21)

where α indicates the size of the largest class. We set α ∈ [0.4, 0.5, 0.6, 0.7]
to investigate how GNNs perform on graphs with imbalanced classes, which
most existing studies ignore. Note that since the Cora dataset has seven
classes, the classes in generated graphs are imbalanced when α = 0.4, 0.5, 0.6,
and 0.7. To compare these imbalanced settings with a balanced setting, we
also conduct experiments with graphs having completely balanced classes.
For the intuitive explanation, we give the visualization showing how gener-
ated graphs look like in the supplementary material.

Observations. Figure 4.10 shows the node classification performance, i.e.,
f1-macro, with various class sizes. No methods consistently outperform other
methods across the balanced and imbalanced settings. In the balanced set-
ting, the very recent method GPRGNN achieves the best f1-macro due to
its high expressive capability. On the other hand, interestingly the simplest
algorithm SGC outperforms other complicated GNN algorithms in the im-
balanced settings, α = 0.4, 0.5, 0.6, and 0.7. A few studies [95, 109, 130]
have addressed a class imbalance problem with GNNs. However, they fo-
cus on typical homophilic graphs and ignore more complicated settings such
as the combinations of imbalanced classes, heterophily property, and large-
scale graphs. For example, widely used heterophilic datasets Texas, Wiscon-
sin, and Cornell have imbalanced classes, i.e., their largest classes contain
55%, 55%, 47% of nodes, respectively, while they all have five classes.

Various Edge Connection Proportions between Classes

To clarify in detail how effectively GNNs perform on graphs with various edge
connection proportions between classes, we conduct experiments with fine-
grained patterns of synthetic graphs in terms of edge connection proportions.

Detailed setup. To generate graphs with various edge connection propor-
tions, we configure the class preference means M conf as follows:

M conf
l1l2

=

{
max(MCora

l1l2
− 0.1 ∗ β, 0) (l1 = l2)

MCora
l1l2

+ 0.1 ∗ β/(k − 1) (l1 ̸= l2)
, (4.22)

102 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Figure 4.10: Classification perfor-
mance on graphs with various class
sizes.

Figure 4.11: Classification perfor-
mance on graphs with various edge
connection proportions.

where β is a parameter controlling the homophily/heterophily property in
a graph and MCora indicates the class preference mean of Cora. Note that
since the average diagonal elements of MCora is 0.81, synthetic graphs with-
out modifying the configuration generated from the Cora dataset are also
homophilic graphs. If β is small, classes have many intra-edges, i.e., ho-
mophily property. In contrast, if β is large, classes have few edges internally,
i.e., heterophily property. For intuitive explanation, we show how generated
graphs look like when varying β in the supplementary material. We generate
synthetic graphs for each β ∈ [0, 2, 4, 6, 8].

Observations. Figure 4.11 shows the node classification performance with
various edge connection proportions, i.e., class preference means. First, all
models work well in the homophily setting (see the rightmost points). On
the other hand, in the heterophily setting (see the leftmost points), GNNs
generalizing to heterophilic graphs perform well such as H2GCN, FSGNN,
and GPRGNN, while typical GNNs such as GCN and GAT fail to perform
well. However, they obtain the marginal improvement from MLP in the
heterophily setting despite their complicated designs. This indicates that
GNNs generalizing heterophilic graphs hardly utilize the topology informa-
tion and almost ignore the information in this setting even if graphs have
the strong heterophily property. Note that the average diagonal elements

4.5. AN EMPIRICAL STUDY OF GNNS 103

of M conf is 0.03 when β = 8, i.e., there are only few edges inside a class.
Since GraphSAGE adopts ego- and neighbor-embedding separation, it ob-
tains relatively high f1-macro scores in the heterophily setting. The very
recent method LINKX cannot achieve the state-of-the-art f1-macro scores.
This is because we just follow the hyperparameter search space specified in
[72] (for details, see the hyperparameter search space described in the sup-
plementary material). Broader search space may increase the classification
performance. Finally, all models obtain low f1-macro scores when edges are
almost randomly generated between classes (see plots locating around β = 6
in the horizontal axis). This is because the values of class preference means
are similar to uniform values in this case29.

Various Attribute Values

We aim to clarify the extent to which attribute values affect the performance
of GNNs by using fine-grained patterns of synthetic graphs in terms of at-
tribute values.

Detailed setup. We mix the attribute-class correlation HCora of Cora into a
uniform distribution with a certain degree γ, to generate graphs with various
attribute-class correlations, i.e., from biased attributes for classes to random
attributes. The mixing calculation formula to configure the attribute-class
correlations Hconf is as follows: Hconf = (HCora + γc)/(1 + γ), where c is
the average value of HCora, i.e., c =

∑d
i=1

∑k
j=1 H

Cora
ij /(d ∗ k). If γ = 0,

Hconf corresponds to the attribute-class correlation of the original. If γ
is large, Hconf is close to uniform, i.e., Hconf is less informative to predict
the class labels of nodes. We generate graphs with configured attribute-
class correlations for γ ∈ [16, 4, 1, 0]. To compare the above setting with
random attributes, we also conduct experiments with graphs having uniform
attribute-class correlation, i.e., every element of Hconf is c.

Observations. Figure 4.12 shows the node classification performance with
various attribute values. We observe that most models obtain low f1-macro
scores when attribute values are close to random, i.e., γ is large. The reason
that SGC works well in some cases is that it does not over-fit large classes
due to the simplicity of its model. Remember that Cora has weakly imbal-
anced classes as we discussed in Section 4.5.2. However, SGC is not stable

29Note that attributes also are almost random in this case since the class structure is
shared by the edge and attribute generation steps of GenCAT.

104 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Figure 4.12: Classification perfor-
mance on graphs with various at-
tribute values.

Figure 4.13: Classification perfor-
mance on graphs with various graph
sizes.

across various settings. Another observation is that the very recent method
GPRGNN consistently performs well compared with other GNNs. Finally,
MLP achieves the larger performance gain than most GNNs between the left-
most and rightmost points (random and biased attributes) in Figure 4.12.
This indicates some overlap between the contributions of the topology and
attributes to node classification.

Various graph sizes

To clarify how graph sizes affect the performance of GNNs, we conduct ex-
periments with graphs having various sizes and the same characteristics other
than sizes.

Detailed setup. To generate graphs with various sizes, we set pairs of the
numbers of nodes and edges (n,m) to [(3000, 5000), (6000, 10000), (9000, 15000),
(12000, 20000), (15000, 25000)].

Observations. Figure 4.13 shows the classification performance with various
graph sizes. We observe that several GNNs obtain lower f1-macro scores
when graphs are larger. GNNs may tend to over-fit larger classes and give less
priority to smaller classes when larger graphs can provide more patterns of

4.5. AN EMPIRICAL STUDY OF GNNS 105

Figure 4.14: Training time per epoch
of GNNs on graphs with various
sizes.

Figure 4.15: Training time per epoch
of GNNs on graphs with various
numbers of edges.

their subgraphs for model training, because the loss functions of most GNNs
are designed to increase their accuracy. Actually, when we use accuracy as a
metric, most GNNs achieve better scores as graphs grow (we show the results
regarding accuracy in the supplementary materials). As the same reason in
Section 4.5.2, SGC works well in some cases but is not stable across various
graph sizes. MLP increases its classification performance as graph sizes are
large, since it appropriately fits to node attributes by using more train data
from larger graphs.

4.5.3 Training Efficiency on Synthetic Graphs with Var-
ious Graph Sizes

Various numbers of nodes and edges

To investigate how graph sizes, i.e., the numbers of nodes and edges, affect
training efficiency, we measure the total execution time of GNNs for model
training with synthetic graphs with various sizes. Note that we use the same
synthetic graphs in Section 4.5.2. We tune the hyperparameters of GNNs
which maximize f1-macro scores by using a grid search.

Figure 4.14 shows the training time per epoch of GNNs on graphs with

106 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

various sizes. We observe that all methods tend to need longer training time
per epoch as graphs grow, since the sizes of matrices storing the topology and
attribute information increase. Shadow-GAT and Shadow-GraphSAGE re-
quire longer execution time than other GNNs because they execute a number
of convolutional operations on sampled subgraphs.

Various numbers of edges and fixed number of nodes

To investigate how the edge densities of graphs affect training efficiency, we
measure the execution time of GNNs for model training. We set the number
of edges to [5000, 10000, 15000, 20000, 25000] and the number of nodes to that
of nodes in Cora.

Figure 4.15 shows the training time per epoch of GNNs on graphs with
various edge densities. Most GNNs require similar training time per epoch
across sparse and dense settings since the size of the adjacency matrix is the
same. They perform efficiently as long as a whole graph can be stored in
a GPU memory30. Sampling-based GNNs, GraphSAGE, GraphSAINT, and
Shadow-GNN, tend to need longer training time per epoch as the edge den-
sity becomes higher, since nodes in more dense graphs have more neighbors.
The reason that the training time per epoch of Shadow-GAT and Shadow-
GraphSAGE decreases at graphs with 20000 edges is that smaller numbers of
sampled neighbors are selected in hyperparameter tuning to maximize their
f1-macro scores. Also, the reason that the training time per epoch of FSGNN
decreases at graphs with 15000 and 25000 edges is that fewer hops for feature
aggregation are selected than those of other settings.

4.5.4 Visualization of Generated Graphs

To intuitively show how generated graphs with configured characteristics
look like, we visualize several generated graphs used in our empirical studies.
We first show graphs with various class size distributions in Figure 4.16. In
Figure 4.16a, all classes share the same size. When we set α = 0.5, the largest
class (see the purple class in Figure 4.16b) includes 50% of nodes in a graph.
Setting α = 0.7 is a more extreme case. Figure 4.16c shows a graph where
the large classes (the purple, green, and blue classes) include most nodes in

30We briefly discuss the application of GNNs to large-scale graphs that exceed the size
of a GPU memory in Section 4.5.7

4.5. AN EMPIRICAL STUDY OF GNNS 107

a graph and a few nodes belong to other classes (the red, brown, and orange
classes).

(a) Balanced. (b) α = 0.5. (c) α = 0.7.

Figure 4.16: Visualization showing graphs with various class size distribu-
tions. Colors indicate the class labels of nodes.

Next, we show graphs with various class preference means in Figure 4.17,
which are used in Section 4.5.2. Figure 4.17a shows a graph with a strong
homophily property, i.e., nodes in each class are densely connected. When we
set β = 2, each class has more edges connecting to other classes than β = 0
while nodes in the same class are still plotted close together in Figure 4.17b.
In Figure 4.17c, the class separation becomes more ambiguous, compared
with smaller β. Graphs with larger β than 4 look like random graphs (see
Figures 4.17d and 4.17e), Also, Figure 4.18 depicts heatmaps representing
class preference means to show the exact values used in our experiments.
The class preference means in Figures 4.18a, 4.18b, 4.18c, 4.18d, and 4.18e
are used to generate graphs in Figures 4.17a, 4.17b, 4.17c, 4.17d, and 4.17e,
respectively. The larger diagonal elements of class preference means indicate
more edges within a class.

Finally, we visualize the attributes of generated graphs in Figure 4.19.
In our experiments, we generate attributes that are binary for each dimen-
sion since the Cora dataset has a binary value for each attribute dimension.
However, high-dimensional datasets with binary attributes are not suitable
to visualize. To address this, we utilize t-SNE31 to reduce the attribute di-
mension to two-dimensional real numbers. Figure 4.19a shows attributes

31https://scikit-learn.org/stable/modules/generated/sklearn.manifold.

TSNE.html

108 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

(a) β = 0. (b) β = 2. (c) β = 4.

(d) β = 6. (e) β = 8.

Figure 4.17: Visualization showing graphs with various class preference
means. Colors indicate the class labels of ndoes.

generated by using the attribute-class correlation extracted from the Cora
dataset, i.e., γ = 0. Nodes in the same class (nodes with the same color)
are plotted close together, e.g., many nodes colored with blue are plotted in
the right bottom part. On the other hand, Figure 4.19b depicts generated
attributes when setting γ = 4. The attributes are almost randomly plotted
because the configured attribute-class correlation is mixed with the average
value of Cora’s attribute-class correlation in this setting, i.e., the configured
attribute-class correlation has a weaker bias for some particular classes.

4.5.5 Accuracy Analysis on Node Classification

In Section 4.5.2, we utilize f1-macro which can better reflect the performance
on minority classes. We also use accuracy to evaluate classification quality
since it is commonly used in existing studies developing GNNs. We use

4.5. AN EMPIRICAL STUDY OF GNNS 109

(a) β = 0. (b) β = 2. (c) β = 4.

(d) β = 6. (e) β = 8.

Figure 4.18: Class preference means used in our experiments. Each cell
represents the class preference mean of the generated graph.

the same hyperparameter search space to Section 4.5.2 and report the best
parameter set for each setting in our codebase.

Various Class Size Distributions

Figure 4.20 shows accuracy on graphs with various class size distributions,
which are the same setting to Section 4.5.2. We observe that all models
obtain better accuracy as the size of the largest class increases. This re-
sult is the opposite of that of f1-macro. This suggests the risk of evaluating
accuracy alone when class size distributions are not balanced. Another obser-
vation is that a very recent method GPRGNN achieves the highest accuracy
across various class size distributions due to its model expressive capabil-

110 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

(a) γ = 0. (b) γ = 4.

Figure 4.19: Two-dimensional projection of attributes. Each dot indicates a
node and colors indicate the class labels of ndoes.

ity. The reason that accuracy scores are not stable across various class size
distributions is that accuracy highly depends on the characteristics of large
classes, i.e., classes to which many nodes belong. Actually, we observe that
the largest class has many edges within the class (i.e., the class is easy to
classify) when α = 0.4, 0.6. So, the accuracy scores in the settings are high.
Note that this trend happened by chance because we shuffled class IDs before
generating graphs.

Various Edge Connection Proportions

Figure 4.21 shows accuracy on graphs with various edge connection propor-
tions between classes, which is the same setting to Section 4.5.2. All GNNs
perform well in the homophily setting, i.e., β = 0. On the other hand, MLP
and GNNs considering the heterophily perform well when β = 8. We observe
that GPRGNN achieves the highest accuracy for all patterns of β since it
can utilize the information from high-order neighbors by its deep propagation
layer.

Various Attribute Values

Figure 4.22 shows accuracy on graphs with various attribute values, which is
the same setting to Section 4.5.2. We observe that all models obtain lower
accuracy as attribute values are closer to random and have a weaker bias for

4.5. AN EMPIRICAL STUDY OF GNNS 111

Figure 4.20: Accuracy on graphs
with various class size distributions.

Figure 4.21: Accuracy on graphs
with various edge connection propor-
tions.

some classes, i.e., γ is larger. Also, GPRGNN achieves the highest accuracy
across various settings.

Various Graph Sizes

Figure 4.23 shows accuracy on graphs with various graph sizes, which is the
same setting to Section 4.5.2. We observe that most GNNs tend to obtain
higher accuracy as graphs grow. This is because the models can fit to given
graphs better by using more patterns of subgraphs from larger graphs. Since
generated graphs have weakly imbalanced classes in this setting, interestingly
we observe a different behavior between scores of f1-macro (in Figure 4.13)
and accuracy (in Figure 4.23), i.e., accuracy slightly increases as graphs grow
while f1-macro tends to decrease.

Through these experiments with accuracy, we clarify that careful selection
of evaluation metrics is important to fairly compare GNNs since their classi-
fication performance depends on the metrics. Practitioners need to choose a
GNN algorithm that is suitable for their objectives. From the viewpoint of
research, though a few researches [109, 130] tackled a class imbalance problem
on graphs, various and complicated settings, e.g., the combinations of class
imbalance, heterophily property, and large-scale graphs, are still challenging.
These complicated settings need to be addressed towards real applications.

112 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

Figure 4.22: Accuracy on graphs
with various attribute values.

Figure 4.23: Accuracy on graphs
with various graph sizes.

4.5.6 Experiments for Large Datasets

We explored small datasets in our empirical studies. So, we also provide
experimental results using larger datasets in Figure 4.24. We set pairs of
the numbers of nodes and edges (n,m) to [(60000, 100000), (120000, 200000)].
Note that a graph with 120000 nodes is a size of the same magnitude as ogbn-
arxiv (169343 nodes). Due to time limitations, we use the hyperparameter
tuned to graphs with 15000 nodes and 25000 edges and also plot the results of
the graphs in the figure for comparison. Figure 4.24a shows f1-macro scores
and Figure 4.24b shows training time per epoch.

Observations. First, H2GCN suffers from out-of-memory on large graphs
since it computes a high-order adjacency matrix, i.e., an exact 2-hop away
matrix, which requires the power of the adjacency matrix. Then, the results
of other most GNNs on large graphs have similar tendencies to those on small
graphs.

4.5.7 Summary, Open Questions, and Limitations

Thanks to a variety of synthetic graphs with controlled characteristics en-
abled by GenCAT, our empirical study reveals several interesting findings
of GNNs that may be helpful for developing future algorithms, while lim-
ited benchmark datasets cannot provide such fine-grained analysis. We also

4.5. AN EMPIRICAL STUDY OF GNNS 113

(a) Classification performance (f1-
macro).

(b) Training time per epoch.

Figure 4.24: Experiments on large graphs.

provide an open-sourced PyTorch-based library to foster future research on
GNNs.

Open Questions

Through our empirical studies, we have identified several open questions to
developing new GNNs for node classification.

Class imbalance. We demonstrated that a class imbalance problem dete-
riorates the classification performance of most GNNs. This is because their
loss functions are not designed to maximize classification performance in a
class imbalance setting. Though a few studies [95, 109, 130] have addressed
a class imbalance problem on a node classification task with GNNs, their
main focus is homophilic and small-scale graphs. Hence, it is still an open
question how to develop GNNs that work well in various and complicated
settings such as the combinations of class imbalance, heterophily property,
and large-scale graphs.

Heterophily setting. Recent GNNs [23, 82, 135] have been proposed
to support homophilic and heterophilic graphs. However, the performance
of MLP on the strong heterophily setting is comparable to those of such
GNNs (see the leftmost points in Figure 4.11). This indicates that they
almost ignore the topology information from heterophilic graphs and there
is room for performance improvement in the heterophily setting. Hence, it is
an open question how to develop GNNs that can capture the class structure

114 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

from heterophilic graphs while achieving the state-of-the-art performance on
homophilic graphs.

We hope our experimental results motivate researchers to develop new
GNN algorithms that address the above open questions, since they are crucial
to apply GNN algorithms to real applications.

Limitations

In this empirical study, we focus on only a single task, node classification,
though it is one of the hottest tasks of GNNs. By focusing on node classi-
fication, we can provide deep analysis that clarifies the pros/cons of GNNs.
Also, this study does not support edge directions, edge labels, and time-series.
Several recent studies [48, 77, 125] focus on developing GNNs that work on
heterogeneous graphs in which objects of different types interact with each
other in various ways. It would be interesting to conduct experiments with
various heterogeneous graph datasets and benchmark such GNNs.

4.6 Related Work

4.6.1 Synthetic Graph Generator

There is a rich literature on graph generation (e.g., [9, 13, 20, 39, 70]). In this
section, we first review five types of graph generators; traditional generators,
generators for graphs with community structure, generators for graphs with
community structure and node attributes, generators for large-scale graphs,
and neural network-based graph generators. As described in Table 4.1, we
can see the advantages of GenCAT relative to the state of the art. Then, we
discuss the relationship between graph generators and a null model [1] that
has an unbiasedly random structure.

Existing graph generator

Traditional graph generator. While many traditional graph generators
have been proposed such as Erdős-Rényi [32], Barabasi-Albert [8], Chung-
Lu [5], and BTER [100], they cannot control the class structure in generated
graphs. As for Erdős-Rényi, users can specify only edge density for a whole
graph. Barabasi-Albert assumes that degree distributions follow power law

4.6. RELATED WORK 115

distributions and implements a preferential attachment process so that gen-
erated graphs have power law node degree distributions. Chung-Lu aims to
recreate a given node degree sequence. BTER controls degree distributions
and cluster coefficient in generated graphs. In summary, these graph gener-
ators explicitly control edge density or node degree distributions but ignore
the class structure in generated graphs.

Generator for graphs with community structure. This type of graph
generators takes into account not only the topological characteristic of a
complex graph (e.g., power law node degree) but also topological struc-
tures within communities. The LFR-benchmark [67] is designed to evalu-
ate community mining algorithms. This assumes that the distributions of
node degrees and community sizes follow power law distributions. The LFR-
benchmark is extended to generate synthetic graphs with overlapping com-
munities (i.e., nodes belong to multiple communities) [99] and hierarchical
communities [120]. DC-SBM [45, 54] supports controlling the proportions of
connections between classes. However, since this type of graph generators
does not support node attributes, it cannot capture relationships between
attributes and topological structures. In addition, these generators only con-
sider the class-level connection proportions, so nodes in a class have the same
node-class membership proportions.

Generator for graphs with community structure and node attributes.
There are few generators that take both community structure and node at-
tributes into account. This type of graph generators generates edges between
nodes according to the similarity of their attributes. ANC [68] is a gener-
ator for attributed graphs with community structure, and DANCer [16] is
an extended generator of ANC for generating dynamic graphs. In the de-
sign of ANC, the community structure of generated graphs only depends
on the attributes. This indicates that it cannot flexibly generate a variety of
graphs because users cannot explicitly control the connection proportions for
each class. In GenCAT, users can flexibly control the connection proportions
between nodes and classes in graphs.

Generators for large-scale graphs. There are a number of generators for
large-scale graphs [13, 20, 70, 92]. gMark [12, 13], pgMark [14], and Tril-
lionG [92] are schema-driven graph generation methods that support class
labels and edge predicates. pgMark allows users to flexibly generate graphs
by leveraging an optional schema definition, called a graph configuration,
and supports node attributes. TrillionG can generate large-scale graphs ef-

116 CHAPTER 4. COMPREHENSIVE EVALUATION OF GNNS

ficiently by leveraging a recursive vector model. However, the generators
cannot explicitly take community structure into account.

Neural network-based graph generators. Recently, neural network-
based graph generators [19, 60, 102, 103, 118, 124] have been developed to
reproduce real-world graphs. VGAE [60] and GraphVAE [103] construct
generative models by leveraging a variational autoencoder. The main idea
of them is that they consist of a graph encoder of GCN and a decoder that
outputs an adjacency matrix. Also, NetGAN [19] is proposed to learn the
generation of walks from biased random walks instead of graphs. However,
the existing graph generators aim to reproduce synthetic graphs from given
input graphs, so these generators cannot flexibly generate various graphs be-
cause users cannot explicitly control the characteristics of generated graphs.
Additionally, they cannot generate large-scale graphs due to the large train-
ing time of their models.

The use of null models in the study of graph generators

A typical way to analyze empirical data is to compare it with a randomized
version of the data, often called null model [1]. As for a graph generation
problem, given the same numbers of nodes and edges as the original data,
the edges in a null model are generated unbiasedly in terms of node degrees
and classes, i.e., all nodes have similar degrees and the same connection
proportions for all classes.

As we showed in our experiments, GenCAT can flexibly control the node
degrees and class structure in generated graphs and the generated graphs
can be biased by the node degrees and class structure. In this sense, graphs
generated by GenCAT are different from the null model. Moreover, GenCAT
can mimic a null model by appropriately setting its parameter, i.e., we set
node degrees to the same value for all nodes and set class preference means
to the same value for all pairs of classes. Graphs generated by other existing
graph generators also differ from the null model in their focus. For example,
LFR controls the ratio of intra- and inter-edges so the connection proportions
between classes are biased in its generated graphs, unlike a null model. As
for the traditional graph generators, they can generate graphs biased by
user-specified node degree, and/or cluster coefficient. In summary, the use
of a null model enables us to understand how generated graphs are biased
compared with their randomized versions.

4.7. CONCLUSION 117

4.6.2 Empirical Study for GNNs

Several studies [30, 38, 90] have addressed benchmarking GNNs. A study
[30] supports a variety of graph tasks, i.e., node classification, graph classi-
fication, link prediction, and graph regression. However, since only one or
two datasets are used for each task, no deep analysis for node classification
is provided. GraphWorld [90] provides limited insights for node classification
with GNNs because it ignores three aspects. First, it ignores recent GNNs
[23, 72, 82, 135] generalizing to heterophilic graphs, which have attracted
much attention from the community. Second, the study does not care about
class size distributions though they largely affect classification results. Note
that a class imbalance problem has been explored in the machine learning
field including graph mining [95, 109, 130]. Third, GraphWorld has not ex-
plored the efficiency of GNNs, which is one of the most common concerns of
machine learning methods. Another study [38] focuses on GNNs for mate-
rials chemistry. Due to the characteristics of the data, the study considers
only graph regression.

In summary, no work has extensively conducted experiments for node
classification with GNNs in order to clarify their applicability/limitations by
using graphs with various characteristics.

4.7 Conclusion

Toward the comprehensive evaluation of GNNs with graphs having various
characteristics, in this chapter we proposed a flexible graph generator Gen-
CAT and conducted empirical studies of GNNs by using the generator. As
for the graph generator, we validated that it can generate high-quality graphs
with controlled characteristics and scales linearly to the number of edges. As
for the empirical study, we clarified the pros/cons of GNNs and raised open
questions for current GNNs. We hope this work offers interesting insights for
future research.

Chapter 5

Concluding Remarks

5.1 Summary of This Thesis

In this thesis, we have performed studies with the goal of providing effective
and efficient graph machine learning methods and an evaluation framework
for such methods. We tackled three significant limitations of current graph
machine learning methods: hardly leveraging class structure, limited scala-
bility, and no comprehensive evaluation.

In Chapter 1, we first clarified the limitations of existing works on graph
machine learning methods for node classification towards real applications.
Then, we described the organization of this thesis.

In Chapter 2, we proposed an effective attributed graph clustering method
that bridges the topology space and the attribute space. The proposed
method captures a non-linear relationship between the topology and at-
tributes and the possibility of missing positive edges in a given graph while ex-
isting clustering methods ignore them. Thanks to the non-linearity and pos-
itive unlabeled learning in the loss function, the proposed method achieved
better clustering results than existing methods.

In Chapter 3, we proposed a GNN transformation framework that auto-
matically rewrites the formulation of a given non-scalable GNN into that of
the scalable version of the given GNN. Also, we proposed a block-wise pre-
computation scheme for further acceleration of precomputation-based GNNs.
Existing studies addressing the scalability issue of GNNs typically proposed
their specific model architectures. Though their basic idea is the same, it
is burdensome to apply the idea to existing non-scalable GNNs that have

119

120 CHAPTER 5. CONCLUDING REMARKS

been widely studied. To address this, the proposed framework automatically
transforms non-scalable GNNs into scalable GNNs.

In Chapter 4, we proposed a flexible synthetic graph generator that sup-
ports the class structure in attributed graphs and then conducted empirical
studies of GNNs for node classification by using the proposed generator.
While existing works evaluate GNNs with limited benchmark datasets, our
proposed generator and evaluation framework allow users to investigate how
largely each characteristic of graphs affects node classification results.

In summary, the techniques and frameworks proposed in this thesis suc-
cessfully provides baseline comparisons of graph machine learning methods
and reduce the burden of researchers and developers for evaluating their
methods from various aspects. We hope our proposals will be beneficial for
future research on graph machine learning methods.

5.2 Future Work

Through the advancements made in this thesis, we identify several challeng-
ing research opportunities regarding the three limitations in this section,
which are hardly leveraging class structure, limited scalability, and no com-
prehensive evaluation. We also discuss future research opportunities regard-
ing the rest of several limitations as we described in Chapter 1, which are
limited data types, limited support for time-series of graphs, and no general-
purpose pre-trained models.

5.2.1 Class Structure

Our proposed method in Chapter 2 incorporates non-linearity and PU learn-
ing into the model to capture the interplay between classes, attributes, and
topology. However, in real-world graphs, the contributions of attributes and
topology to classification results may vary. In this sense, models should
adaptively control the parameter balancing the effects from the attributes
and topology in the learning step. How to develop such adaptive algorithms
is still an open question.

5.2. FUTURE WORK 121

5.2.2 Scalability

In Chapter 3, we proposed a framework improving the efficiency and scala-
bility of existing non-scalable GNNs. Though we focused on a single machine
and single thread to execute GNN algorithms, distributed/parallelized com-
putation can accelerate the execution time of GNNs. Hence, it is our future
work to combine our proposed approach and distributed computation for
further scale-up of graphs.

5.2.3 Evaluation

Though we focused on node classification which is one of the hottest topics,
other tasks such as link prediction and graph classification are also important.
They are useful for many applications, e.g., link prediction is used to predict
the interactions between proteins and graph classification is used to predict
the functions of molecules. Similarly to node classification, comprehensive
evaluations using various graphs are required for the other tasks. Also in
this thesis, our empirical studies focus on a traditional setting in which a
whole graph and node attributes can be stored in a GPU memory at the
same time. It is our future work to address benchmarking scalable GNNs in
terms of efficiency and effectiveness on large-scale graphs.

5.2.4 Data Type

Though in this thesis, we focused on homogeneous graphs where nodes repre-
sent a single object and edges represent a single relationship between nodes,
graphs potentially include more flexible representations because nodes and
edges can represent multiple types. Considering practical use cases, it is
important to incorporate various objects and various relationships into a sin-
gle graph, i.e., a heterogeneous graph. Several studies [48, 77, 125] have
addressed developing graph neural networks for heterogeneous graphs. How-
ever, a study [77] clarified that such methods do not significantly outperform
existing GNNs ignoring node/edge types in terms of classification quality.
This implies that there is room for improvement since heterogeneous graphs
are more informative than homogeneous graphs due to their node/edge types.
Also, an evaluation framework for such graphs is required for future research.

122 CHAPTER 5. CONCLUDING REMARKS

5.2.5 Time-series of Graphs

All graphs are potentially time-series graphs. The timestamps of edges may
positively affect the model prediction performance. Hence, time-series anal-
ysis on graphs has attracted attention since it is useful for practical settings
such as recommendation and anomaly detection. Several studies [53, 97, 108]
have addressed developing GNNs for graphs with time-series information.
However, they do not effectively leverage node attributes, i.e., node attributes
are not used in their experiments. Moreover, they suffer from poor scalabil-
ity. In their experiments, graphs with up to 64,000 nodes are used, which are
not large graphs for real applications. Hence, an interesting direction would
be to effectively incorporate time-series information into GNN architectures
while keeping their efficiency reasonable.

5.2.6 General-purpose Pre-trained Models for Graphs

We need to train graph machine learning methods so that they fit a given
graph from scratch. To this end, we require large computational resources
and execution time if the graph is large-scale, which is usual in practical
settings. In the NLP domain, pre-trained language models [26] largely miti-
gate computational costs and training labels to tune the models for various
downstream tasks. So, pre-trained models allow users who have relatively
little computational resources to develop their new algorithms. However,
there are no general-purpose pre-trained models in the graph domain. This
is because graphs can potentially represent various phenomena, e.g., texts
are node sequences and images are grids, leading to little common back-
ground knowledge. Hence, it is still an open question of what is essential
information across different graphs.

Acknowledgment

First, I am indebted to my supervisor, Prof. Makoto Onizuka, who gave me
plenty of opportunities to study abroad and always encouraged me to go
ahead. Definitely, he positively changed my life. This thesis and all other
papers I wrote would never have been completed without his unfailingly wise
support. I owe a very important debt to Associate Prof. Yuki Arase who pro-
vided me valuable advice and guidance. I would like to express my deepest
appreciation to Associate Prof. Chuan Xiao who gave me insightful guidance
to my research work. I am deeply grateful to Assistant Prof. Yuya Sasaki
who frequently had discussions with me and suggested an exciting direction
every time. I would especially appreciate his daily assistance. My deepest
appreciation goes to Prof. George Fletcher (Eindhoven University of Tech-
nology) who accepted my two-month visit to his university and continuously
collaborate with me since then. Through my collaboration with him, I have
gained confidence in my ability to work outside of Japan.

I would like to thank the committee members of my thesis, Prof. Takahiro
Hara, Prof. Kaname Harumoto, Prof. Toru Fujiwara, Prof. Yasuyuki Mat-
sushita, and Prof. Shinji Shimojo at the Department of Multimedia Engineer-
ing of the Graduate School of Information Science and Technology of Osaka
University. Their careful comments improved the quality of the thesis.

I am very grateful for my team members including people who already
graduated. Fun discussions with them inspired me to make good research
progress. I also would like to thank the talented students and the secretary
at Onizuka laboratory. It was my pleasure to study and work with them.

My heartfelt appreciation goes to my family including my mother, father,
grandparents, uncle, aunt, and cousins. I would like to specially thank my
brothers, Shoichi and Takeru. They have been my aspirations since I was
born. Without their help and encouragement, I could never have decided to
start my Ph.D. program.

123

Reference

[1] Katharina A. Zweig. Network Analysis Literacy. Springer Vienna,
2016.

[2] Emmanuel Abbe. Community detection and stochastic block mod-
els: recent developments. The Journal of Machine Learning Research,
18(1):6446–6531, 2017.

[3] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipour-
fard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram
Galstyan. Mixhop: Higher-order graph convolutional architectures via
sparsified neighborhood mixing. In international conference on ma-
chine learning, pages 21–29. PMLR, 2019.

[4] Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller.
One-network adversarial fairness. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 2412–2420, 2019.

[5] William Aiello, Fan Chung, and Linyuan Lu. A random graph model
for massive graphs. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing, pages 171–180, 2000.

[6] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter op-
timization framework. In Proceedings of the 25th ACM SIGKDD in-
ternational conference on knowledge discovery & data mining, pages
2623–2631, 2019.

[7] Leman Akoglu, Hanghang Tong, Brendan Meeder, and Christos Falout-
sos. Pics: Parameter-free identification of cohesive subgroups in large
attributed graphs. In Proceedings of the 2012 SIAM international con-
ference on data mining, pages 439–450. SIAM, 2012.

125

126 REFERENCE

[8] Réka Albert and Albert-László Barabási. Statistical mechanics of com-
plex networks. Reviews of modern physics, 74(1):47, 2002.

[9] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki,
Thomas Neumann, Orri Erling, Peter Neubauer, Norbert Martinez-
Bazan, Venelin Kotsev, and Ioan Toma. The linked data benchmark
council: a graph and rdf industry benchmarking effort. ACM SIGMOD
Record, 43(1):27–31, 2014.

[10] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
generative adversarial networks. In International conference on ma-
chine learning, pages 214–223. PMLR, 2017.

[11] Feras M Awaysheh, Mamoun Alazab, Sahil Garg, Dusit Niyato, and
Christos Verikoukis. Big data resource management & networks: Tax-
onomy, survey, and future directions. IEEE Communications Surveys
& Tutorials, 2021.

[12] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and
N. Advokaat. Generating flexible workloads for graph databases. Pro-
ceedings of VLDB, 9(13):1457–1460, 2016.

[13] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George Fletcher,
Aurélien Lemay, and Nicky Advokaat. gMark: Schema-driven genera-
tion of graphs and queries. IEEE Transactions on knowledge and data
engineering, 29(4):856–869, 2017.

[14] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George Fletcher,
Aurélien Lemay, and Nicky Advokaat. The pgMark repository. Github,
https://github.com/ThomHurks/pgMark, 2018.

[15] Amir Ben-Dor and Zohar Yakhini. Clustering gene expression pat-
terns. In Proceedings of the third annual international conference on
Computational molecular biology, pages 33–42, 1999.

[16] Oualid Benyahia, Christine Largeron, Baptiste Jeudy, and Osmar R
Zäıane. Dancer: Dynamic attributed network with community struc-
ture generator. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 41–44. Springer, 2016.

REFERENCE 127

[17] Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexan-
dre V Evfimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold
Reinwald, Frederick R Reiss, Prithviraj Sen, Arvind C Surve, et al.
Systemml: Declarative machine learning on spark. Proceedings of the
VLDB Endowment, 9(13):1425–1436, 2016.

[18] Aleksandar Bojchevski and Stephan Günnemann. Bayesian Robust
Attributed Graph Clustering: Joint Learning of Partial Anomalies and
Group Structure. In Proceedings of AAAI, 2018.

[19] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan
Günnemann. Netgan: Generating graphs via random walks. In Inter-
national conference on machine learning, pages 610–619. PMLR, 2018.

[20] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat:
A recursive model for graph mining. In Proceedings of the 2004 SIAM
International Conference on Data Mining, pages 442–446. SIAM, 2004.

[21] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with
graph convolutional networks via importance sampling. In Interna-
tional Conference on Learning Representations, 2018.

[22] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. Cluster-gcn: An efficient algorithm for training deep and
large graph convolutional networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data min-
ing, pages 257–266, 2019.

[23] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive
universal generalized pagerank graph neural network. In ICLR, 2021.

[24] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Find-
ing community structure in very large networks. Physical review E,
70(6):066111, 2004.

[25] Pieter Delobelle, Paul Temple, Gilles Perrouin, Benôıt Frénay, Patrick
Heymans, and Bettina Berendt. Ethical adversaries: Towards miti-
gating unfairness with adversarial machine learning. ACM SIGKDD
Explorations Newsletter, 23(1):32–41, 2021.

128 REFERENCE

[26] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. North American Chapter of the Association for Compu-
tational Linguistics, 2018.

[27] Luc Devroye. Nonuniform random variate generation. Handbooks in
operations research and management science, 13:83–121, 2006.

[28] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonneg-
ative matrix t-factorizations for clustering. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 126–135, 2006.

[29] Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou,
Tianlong Chen, Xia Hu, and Zhangyang Wang. A comprehensive study
on large-scale graph training: Benchmarking and rethinking. In Pro-
ceedings of Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022.

[30] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua
Bengio, and Xavier Bresson. Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982, 2020.

[31] Charles Elkan and Keith Noto. Learning classifiers from only positive
and unlabeled data. In Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages
213–220, 2008.

[32] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[33] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press, 1996.

[34] Gary William Flake, Steve Lawrence, C Lee Giles, and Frans M Co-
etzee. Self-organization and identification of web communities. Com-
puter, 35(3):66–70, 2002.

REFERENCE 129

[35] Santo Fortunato. Community detection in graphs. Physics reports,
486(3-5):75–174, 2010.

[36] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, To-
bias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Pe-
tra Selmer, and Andrés Taylor. Cypher: An evolving query language
for property graphs. In Proceedings of the 2018 International Confer-
ence on Management of Data, pages 1433–1445, 2018.

[37] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Benjamin Chamber-
lain, Michael Bronstein, and Federico Monti. Sign: Scalable inception
graph neural networks. In ICML 2020 Workshop on Graph Represen-
tation Learning and Beyond, 2020.

[38] Victor Fung, Jiaxin Zhang, Eric Juarez, and Bobby G Sumpter. Bench-
marking graph neural networks for materials chemistry. npj Computa-
tional Materials, 7(1):1–8, 2021.

[39] Michelle Girvan and Mark EJ Newman. Community structure in so-
cial and biological networks. Proceedings of the national academy of
sciences, 99(12):7821–7826, 2002.

[40] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In 10th USENIX symposium on operating systems
design and implementation (OSDI 12), pages 17–30, 2012.

[41] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[42] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. Advances in neural information process-
ing systems, 30, 2017.

[43] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and
Tuyong Wang. Mars: a mapreduce framework on graphics processors.
In Proceedings of the 17th international conference on Parallel archi-
tectures and compilation techniques, pages 260–269, 2008.

130 REFERENCE

[44] Haibo He and Edwardo A Garcia. Learning from imbalanced data.
IEEE Transactions on knowledge and data engineering, 21(9):1263–
1284, 2009.

[45] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
Stochastic blockmodels: First steps. Social networks, 5(2):109–137,
1983.

[46] Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit Dhillon. Pu learn-
ing for matrix completion. In International conference on machine
learning, pages 2445–2453. PMLR, 2015.

[47] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph bench-
mark: Datasets for machine learning on graphs. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 22118–
22133. Curran Associates, Inc., 2020.

[48] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heteroge-
neous graph transformer. In Proceedings of The Web Conference 2020,
pages 2704–2710, 2020.

[49] Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network
embedding. In Proceedings of the 2017 SIAM international conference
on data mining, pages 633–641. SIAM, 2017.

[50] Zhichao Huang, Yunming Ye, Xutao Li, Feng Liu, and Huajie Chen.
Joint weighted nonnegative matrix factorization for mining attributed
graphs. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 368–380. Springer, 2017.

[51] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal
of classification, 2(1):193–218, 1985.

[52] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena.
Structural-rnn: Deep learning on spatio-temporal graphs. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pages 5308–5317, 2016.

REFERENCE 131

[53] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks:
Motif-aware representation learning on continuous-time dynamic
graphs. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[54] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and com-
munity structure in networks. Physical review E, 83(1):016107, 2011.

[55] George Karypis and Vipin Kumar. A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput.,
20(1):359–392, December 1998.

[56] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

[57] George Karypis and Vipin Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Distributed com-
puting, 48(1):96–129, 1998.

[58] C Maria Keet, W Dubitzky, O Wolkenhauer, KH Cho, and H Yokota.
Open world assumption. Encyclopedia of Systems Biology, pages 1567–
1567, 2013.

[59] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[60] Thomas N Kipf and Max Welling. Variational graph auto-encoders.
NIPS Workshop on Bayesian Deep Learning, 2016.

[61] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations, 2017.

[62] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann.
Predict then propagate: Graph neural networks meet personalized
pagerank. In International Conference on Learning Representations,
2019.

132 REFERENCE

[63] Da Kuang, Chris Ding, and Haesun Park. Symmetric nonnegative
matrix factorization for graph clustering. In Proceedings of the 2012
SIAM international conference on data mining, pages 106–117. SIAM,
2012.

[64] Da Kuang, Sangwoon Yun, and Haesun Park. SymNMF: nonnegative
low-rank approximation of a similarity matrix for graph clustering.
Journal of Global Optimization, 62(3):545–574, 2015.

[65] Brian Kulis, Sugato Basu, Inderjit Dhillon, and Raymond Mooney.
Semi-supervised graph clustering: a kernel approach. Machine learn-
ing, 74(1):1–22, 2009.

[66] Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. Fac-
torized graph representations for semi-supervised learning from sparse
data. In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’20, page 1383–1398, New
York, NY, USA, 2020. Association for Computing Machinery.

[67] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Bench-
mark graphs for testing community detection algorithms. Physical re-
view E, 78(4):046110, 2008.

[68] Christine Largeron, Pierre-Nicolas Mougel, Reihaneh Rabbany, and
Osmar R Zäıane. Generating attributed networks with communities.
PloS one, 10(4):e0122777, 2015.

[69] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788, 1999.

[70] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Falout-
sos, and Zoubin Ghahramani. Kronecker graphs: An approach to mod-
eling networks. Journal of machine learning research, 11(Feb):985–
1042, 2010.

[71] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. Community
detection in attributed graphs: An embedding approach. In AAAI
Conference on Artificial Intelligence, 2018.

[72] Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaish-
navi Gupta, Omkar Prasad Bhalerao, and Ser-Nam Lim. Large scale

REFERENCE 133

learning on non-homophilous graphs: New benchmarks and strong sim-
ple methods. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems,
2021.

[73] Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New bench-
marks for learning on non-homophilous graphs. In Workshop on Graph
Learning Benchmarks (GLB 2021) at WWW, 2021.

[74] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. Building
text classifiers using positive and unlabeled examples. In Third IEEE
international conference on data mining, pages 179–186. IEEE, 2003.

[75] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo
Kyrola, and Joseph M. Hellerstein. Distributed graphlab: A framework
for machine learning and data mining in the cloud. Proc. VLDB En-
dow., 5(8):716–727, apr 2012.

[76] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao,
Shuyuan Zhang, Xiao-Wen Chang, and Doina Precup. Is heterophily
a real nightmare for graph neural networks to do node classification?
arXiv preprint, 2021.

[77] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng,
Siming He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang.
Are we really making much progress? revisiting, benchmarking and re-
fining heterogeneous graph neural networks. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 1150–1160, 2021.

[78] Seiji Maekawa, Koki Noda, Yuya Sasaki, and Makoto Onizuka. Beyond
real-world benchmark datasets: An empirical study of node classifica-
tion with GNNs. In Proceedings of Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

[79] Seiji Maekawa, Yuya Sasaki, George Fletcher, and Makoto Onizuka.
Gencat: Generating attributed graphs with controlled relation-
ships between classes, attributes, and topology. arXiv preprint
arXiv:2109.04639, 2021.

134 REFERENCE

[80] Seiji Maekawa, Yuya Sasaki, George Fletcher, and Makoto Onizuka.
Benchmarking gnns with gencat workbench. Demo Track of Euro-
pean Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, 2022.

[81] Seiji Maekawa, Yuya Sasaki, George Fletcher, and Makoto Onizuka.
GNN transformation framework for improving efficiency and scalabil-
ity. In Proceedings of European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, 2022.

[82] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph
neural networks with simple architecture design. arXiv preprint, 2021.

[83] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of
a feather: Homophily in social networks. Annual review of sociology,
27(1):415–444, 2001.

[84] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[85] Jan Motl and Oliver Schulte. The CTU prague relational learning
repository. CoRR, abs/1511.03086, 2015.

[86] Mark Newman. Networks: An Introduction. Oxford University Press,
Inc., USA, 2010.

[87] Mark EJ Newman. Modularity and community structure in networks.
Proceedings of National Academy of Sciences, 103(23):8577–8582, 2006.

[88] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. Advances in neural information processing
systems, 14, 2001.

[89] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncover-
ing the overlapping community structure of complex networks in nature
and society. nature, 435(7043):814–818, 2005.

[90] John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi.
Graphworld: Fake graphs bring real insights for gnns. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and

REFERENCE 135

Data Mining, KDD ’22, page 3691–3701, New York, NY, USA, 2022.
Association for Computing Machinery.

[91] M. Parimala and Daphne Lopez. Graph clustering based on structural
attribute neighborhood similarity (SANS). In 2015 IEEE International
Conference on Electrical, Computer and Communication Technologies
(ICECCT), pages 1–4, 2015.

[92] Himchan Park and Min-Soo Kim. Trilliong: A trillion-scale synthetic
graph generator using a recursive vector model. In Proceedings of the
2017 ACM International Conference on Management of Data, SIG-
MOD ’17, page 913–928, New York, NY, USA, 2017. Association for
Computing Machinery.

[93] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, page 701–710, New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[94] Zhi Qiao, Shuwen Liang, Hai Jiang, and Song Fu. A customizable
mapreduce framework for complex data-intensive workflows on gpus.
In 2015 IEEE 34th International Performance Computing and Com-
munications Conference (IPCCC), pages 1–8, 2015.

[95] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin.
Imgagn: Imbalanced network embedding via generative adversarial
graph networks. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’21, page 1390–1398,
New York, NY, USA, 2021. Association for Computing Machinery.

[96] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Drope-
dge: Towards deep graph convolutional networks on node classification.
arXiv preprint, 2019.

[97] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and Michael Bronstein. Temporal graph networks for
deep learning on dynamic graphs. 2020.

136 REFERENCE

[98] Maekawa Seiji, Takeuchi Koh, and Onizuka Makoto. New attributed
graph clustering by bridging attribute and topology spaces. Journal of
Information Processing (TOD), 28, 2020.

[99] Neha Sengupta, Michael Hamann, and Dorothea Wagner. Benchmark
generator for dynamic overlapping communities in networks. In 2017
IEEE International Conference on Data Mining (ICDM), pages 415–
424, 2017.

[100] Comandur Seshadhri, Tamara G Kolda, and Ali Pinar. Community
structure and scale-free collections of erdős-rényi graphs. Physical Re-
view E, 85(5):056109, 2012.

[101] Martin Sevenich, Sungpack Hong, Oskar van Rest, Zhe Wu, Jayanta
Banerjee, and Hassan Chafi. Using domain-specific languages for an-
alytic graph databases. Proc. VLDB Endow., 9(13):1257–1268, sep
2016.

[102] Han Shi, Haozheng Fan, and James T Kwok. Effective decoding in
graph auto-encoder using triadic closure. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 906–913, 2020.

[103] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards gener-
ation of small graphs using variational autoencoders. In International
conference on artificial neural networks, pages 412–422. Springer, 2018.

[104] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei. Line: Large-scale information network embedding. In
Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, page 1067–1077, Republic and Canton of Geneva, CHE,
2015. International World Wide Web Conferences Steering Commit-
tee.

[105] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks.
In International Conference on Learning Representations, 2018.

[106] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.
arXiv preprint, 2017.

REFERENCE 137

[107] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information the-
oretic measures for clusterings comparison: is a correction for chance
necessary? In Proceedings of the 26th annual international conference
on machine learning, pages 1073–1080, 2009.

[108] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan
Li. Inductive representation learning in temporal networks via causal
anonymous walks. In International Conference on Learning Represen-
tations, 2021.

[109] Zheng Wang, Xiaojun Ye, Chaokun Wang, Jian Cui, and S Yu Philip.
Network embedding with completely-imbalanced labels. IEEE Trans-
actions on knowledge and data engineering, 33(11), 2020.

[110] Boris Weisfeiler and A. Lehmann, A. A reduction of a graph to a
canonical form and an algebra arising during this reduction. Nauchno-
Technicheskaya Informatsia, 2(9):12–16, 1968.

[111] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu,
and Kilian Weinberger. Simplifying graph convolutional networks. In
Proceedings of the 36th International Conference on Machine Learning,
pages 6861–6871. PMLR, 2019.

[112] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep em-
bedding for clustering analysis. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume
48, ICML’16, page 478–487. JMLR.org, 2016.

[113] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? 2019.

[114] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-
ichi Kawarabayashi, and Stefanie Jegelka. Representation learning on
graphs with jumping knowledge networks. In International conference
on machine learning, pages 5453–5462. PMLR, 2018.

[115] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger.
Scan: a structural clustering algorithm for networks. In Proceedings
of the 13th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 824–833, 2007.

138 REFERENCE

[116] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A
model-based approach to attributed graph clustering. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, page 505–516, New York, NY, USA, 2012. As-
sociation for Computing Machinery.

[117] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng.
GBAGC: A general bayesian framework for attributed graph cluster-
ing. ACM Transactions on Knowledge Discovery from Data (TKDD),
9(1):1–43, 2014.

[118] Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Condi-
tional structure generation through graph variational generative adver-
sarial nets. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[119] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y.
Chang. Network representation learning with rich text information. In
Proceedings of the 24th International Conference on Artificial Intelli-
gence, IJCAI’15, page 2111–2117. AAAI Press, 2015.

[120] Zhao Yang, Juan I Perotti, and Claudio J Tessone. Hierarchical bench-
mark graphs for testing community detection algorithms. Physical re-
view E, 96(5):052311, 2017.

[121] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting
semi-supervised learning with graph embeddings. In Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 40–48. JMLR.org, 2016.

[122] Fanghua Ye, Chuan Chen, and Zibin Zheng. Deep autoencoder-like
nonnegative matrix factorization for community detection. In Proceed-
ings of the 27th ACM International Conference on Information and
Knowledge Management, CIKM ’18, page 1393–1402, New York, NY,
USA, 2018. Association for Computing Machinery.

[123] Fanghua Ye, Chuan Chen, and Zibin Zheng. Deep autoencoder-like
nonnegative matrix factorization for community detection. In Proceed-
ings of CIKM, pages 1393–1402, 2018.

REFERENCE 139

[124] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In Jennifer G. Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning Research, pages
5694–5703. PMLR, 2018.

[125] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and
Hyunwoo J Kim. Graph transformer networks. In Advances in Neural
Information Processing Systems, pages 11960–11970, 2019.

[126] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, An-
drey Malevich, Rajgopal Kannan, Viktor K. Prasanna, Long Jin, and
Ren Chen. Deep graph neural networks with shallow subgraph sam-
plers. CoRR, abs/2012.01380, 2020.

[127] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. Graphsaint: Graph sampling based inductive
learning method. In International Conference on Learning Represen-
tations, 2020.

[128] Ge Zhang, Di Jin, Jian Gao, Pengfei Jiao, Francoise Fogelman-Soulié,
and Xin Huang. Finding communities with hierarchical semantics
by distinguishing general and specialized topics. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, IJ-
CAI’18, page 3648–3654. AAAI Press, 2018.

[129] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu,
Jianwei Zhang, Martin Ester, and Can Wang. Anrl: Attributed net-
work representation learning via deep neural networks. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence,
IJCAI’18, page 3155–3161. AAAI Press, 2018.

[130] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Im-
balanced node classification on graphs with graph neural networks. In
Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, WSDM ’21, page 833–841, New York, NY, USA,
2021. Association for Computing Machinery.

140 REFERENCE

[131] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang
Song, Quan Gan, Zheng Zhang, and George Karypis. Distdgl: dis-
tributed graph neural network training for billion-scale graphs. In 2020
IEEE/ACM 10th Workshop on Irregular Applications: Architectures
and Algorithms (IA3), pages 36–44. IEEE, 2020.

[132] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on
structural/attribute similarities. Proc. VLDB Endow., 2(1):718–729,
aug 2009.

[133] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Clustering large at-
tributed graphs: An efficient incremental approach. In 2010 IEEE
International Conference on Data Mining, pages 689–698, 2010.

[134] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nes-
reen K Ahmed, and Danai Koutra. Graph neural networks with het-
erophily. arXiv preprint, 2020.

[135] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,
and Danai Koutra. Beyond homophily in graph neural networks:
Current limitations and effective designs. In Proceedings of the 34th
International Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[136] 前川政司, George Fletcher, and 鬼塚真. コミュニティ構造を考慮した
属性付きグラフ汎用生成機構. 第 11回データ工学と情報マネジメント
に関するフォーラム（DEIM Forum), 2019.

[137] 前川政司, 佐々木勇和, George Fletcher, and 鬼塚真. コミュニティ構造
を制御する属性付きグラフ生成. 第 13回データ工学と情報マネジメン
トに関するフォーラム（DEIM Forum), 2021.

[138] 前川政司, 佐々木勇和, and 鬼塚真. コミュニティ構造を制御可能な属
性付きグラフ生成. 情報処理学会第 83 回全国大会, 2021.

[139] 前川政司, 竹内孝, 佐々木勇和, and 鬼塚真. 属性付きグラフのための非
線形関数を用いた接合加重非負値行列分解. 第 10回データ工学と情報
マネジメントに関するフォーラム（DEIM Forum), 2018.

