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Abstract

Many manufacturers have introduced robots, sensors, and IoT devices into their
industrial sites, and used the collected data from them to improve the productivity.
Specifically, sensors that monitor manual works by workers are expected to be used for
incorporating the real-world work activity information into the cyberspace, enabling to
simulate manufacturing processes with machine and human generated data. Although
sensor data are now easily obtained by attaching a smartwatch or other sensors to a
human worker, the data represent just a sequence of numerical values, not high-level
information that describes the work activities. Therefore, the development of work ac-
tivity recognition technologies that transform sensor data into high-level work activity
information is required.

In this thesis, we aimed to address three challenges for the development of work
activity recognition models and their practical applications. The first challenge is the
amount of training data. The cost of collecting labeled training data to build a work
activity recognition model for each worker in a factory is huge, and it is necessary to
build the model with a limited amount of training data to reduce this cost. The second
challenge is the usage of data from IoT devices. There are many IoT devices deployed
in the site, which can be an important source of information for work activity recog-
nition. However, there is no dataset of for work activity recognition that includes both
sensor data and data from IoT devices. Due to the unique characteristics of IoT device
data, it is necessary to explore the ways to combine sensor data with IoT device data that
take into account the characteristics of IoT device data. The third challenge is the inter-
pretability of neural network-based work activity recognition models. Neural networks
are considered to be black boxes, but it is important to improve the interpretability of
the models in order to introduce the models into the actual industrial sites.

Different workers on a production line are assigned to different tasks. In addition,
workers may change the standard work processes depending on their skill level and
other factors. Therefore, it is difficult to build a work recognition model for a target
worker by using training data collected from other workers. We proposed a lightweight
ordered-work segmentation network (LOS-Net), which is a lightweight model that ex-
tracts minimal necessary features and can be trained on limited training data from the
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target worker. We evaluated LOS-Net using data collected from 11 actual factory work-
ers and found that LOS-Net improved recognition performance by about 10% on aver-
age (F1-measure macro average) compared to baseline methods.

Many IoT devices have been installed in industrial sites. The usage logs of the
IoT devices strongly relates to the user’s activities and can be a very important source
of information for work activity recognition. However, because the data is generated
only at the time when an IoT device is used, it is much sparse in time compared to
general sensor data such as acceleration data. Therefore, a method to effectively fuse
sensor data with IoT data should be explored. To accelerate activity recognition studies
based on the sensor and IoT data fusion, we developed a large-scale multimodal dataset
of packing work activity called the “OpenPack dataset.” We collected over 53 hours
of work activity data from 16 subjects and obtained 20,129 work operation labels and
52,529 action labels. This dataset provides a total of nine data modalities, including
sensor data from inertial measurement units (IMUs), depth images, and keypoints, as
well as usage logs from IoT devices. In addition, we proposed a method that effectively
fuses acceleration data with IoT device data. We evaluated the model on the OpenPack
dataset and improved the F1-measure (macro average) by 0.03 pt compared to existing
methods.

In addition to the development of work activity recognition methods, we also ad-
dressed the issue of the interpretability of activity recognition neural networks. Many
recent activity recognition models, including models developed in this study, rely on
neural networks. There are few line managers who are familiar with ICT, and it is not
easy for them to trust the results of neural networks, which are considered as black
boxes. In this study, we applied a method called activation maximization to the sensor-
based activity recognition model in order to make the features extracted by the neural
network interpretable. Activation maximization is a method of visualizing feature repre-
sentations extracted by a unit in a neural network by generating an input signal to which
the unit of interest strongly responds. In generating such an input signal, the design of
the regularization term is important. We proposed two regularization methods that use
the unit outputs to determine if anomalous waveforms are generated and penalize them
accordingly. Qualitative and quantitative evaluations of the generated waveforms were
conducted to confirm their effectiveness.



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Work Processes Differ with Workers . . . . . . . . . . . . . . . 4
1.2.2 Difficulties in Sensor–IoT Data Coordination . . . . . . . . . . 5
1.2.3 Deep Learning Model is a Black Box . . . . . . . . . . . . . . 6

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Recognize Work Operations of Workers with a Limited Amount

of Training Data . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 New Large-scale Multimodal Dataset in Industrial Domain . . . 7
1.3.3 Visualization of the Concept Learned by a Unit of the Neural

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Acceleration-based Activity Recognition of Repetitive Works with Lightweight
Ordered-work Segmentation Network 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Acceleration-based Human Activity Recognition . . . . . . . . 20

vii



viii CONTENTS

2.2.2 Human Activity Recognition in Industrial Domains . . . . . . . 21
2.3 Activity Recognition with LOS-Net . . . . . . . . . . . . . . . . . . . 22

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 Refinement Module . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.6 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 Evaluation Methodologies . . . . . . . . . . . . . . . . . . . . 40

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.1 Recognition Accuracy . . . . . . . . . . . . . . . . . . . . . . 43
2.5.2 Contributions of WPCP module, Boundary Detector, and Re-

finement Module . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.3 Effect of Refinement . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.4 Effect of Boundary Detection . . . . . . . . . . . . . . . . . . 48
2.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 OpenPack: A Large-scale Dataset for Recognizing Packaging Works in
IoT-enabled Logistic Environments 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Datasets on Manual Tasks . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Sensor-Based Activity Recognition Methods . . . . . . . . . . 58

3.3 OpenPack Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Packaging Work . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Data Construction . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Ladder-Shaped Two-Stream Network
with Sparse Anchoring (LTS-Net) . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS ix

3.4.2 Anchor Stream . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Bidirectional Feedback Block (BF Block) . . . . . . . . . . . . 67

3.4.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Toward Understanding Acceleration-based
Activity Recognition Neural Networks with Activation Maximization 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Synthesizing Acceleration Data . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Activation Maximization (AM) . . . . . . . . . . . . . . . . . 76

4.3.3 Proposed Regularization Techniques to Suppress Extreme Ac-
tivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Dataset and Activity Recognition Model . . . . . . . . . . . . . 79

4.4.2 Activity Recognition Model . . . . . . . . . . . . . . . . . . . 80

4.4.3 Procedures of Activation Maximization . . . . . . . . . . . . . 80

4.4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.5 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 81

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Activation Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.1 Analysis of Extracted Feature Representations . . . . . . . . . 87

4.6.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



x CONTENTS

5 Conclusion and Future Work 91
5.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Robustness of Work Activity Recognition Models for Unex-
pected Worker’s Activity . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Developping Algorithm for Bottleneck Assessment and Process
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Acknowledgment 95



List of Figures

1.1 Overview of this study . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example of sensor data of factory works. Red, green, and blue lines
show x-, y-, and z-axis data, respectively. Rectangles below show ground
truth labels (identifiers) of activities. Top-down view video images are
also shown. Table provides identifier and name of each activity. . . . . 15

2.2 Distribution of recognition accuracy of U-Net with limited training data
(10 periods). Dots of the same color show F1-measures of the same test
and training sets with different random seeds. . . . . . . . . . . . . . . 16

2.3 (a) Example flow of work process represented in directed graph. Each
node corresponds to activity. Number in node represents identifier of
activity. Directed edge shows possible transition between activities.
(b) Example transition matrix constructed from example directed graph.
Value of (i,j)-th element in matrix shows if edge from i-th to j-th activ-
ity exists; 1: True and 0: False. . . . . . . . . . . . . . . . . . . . . . 22

2.4 Architecture of LOS-Net . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Overview of residual block. (a) Architecture of residual block in en-
coder. “k3s1” denotes parameter setting of convolution layer. For exam-
ple, it represents kernel of kernel size 3 and stride length 1. “(CBi, TBi)”
presents shape of tensor, i.e., CBi-dimensional time series with length
TBi. (b) Parameters used in each residual block. CBi is number of ker-
nels in first and second convolution layers. TBi is length of output time
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xi



xii LIST OF FIGURES

2.6 Overview of WPCP module. (a) Feature extraction from the input X in

with a dilated convolution kernel. Four example kernels are presented.
The first is a standard convolution kernel with dilation rate r = 1, and
the other examples are dilated convolution kernels with r = 3, r = 6,
and r = 12, respectively. For example, the second example kernel (r =

3) uses values of only 0, ±3, ±6, and ±9 time steps for convolution. (b)
Using multiple dilated convolution kernels with different dilation rates
to extract long-term work process context. . . . . . . . . . . . . . . . 27

2.7 Example of X 0
B5 and XWPCP with ground truth activity labels. XWPCP

seems to have many peaks around activity boundaries compared to X 0
B5,

indicating that dilated convolutions integrate information at distant time
steps in X 0

B5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Overview of the boundary detector . . . . . . . . . . . . . . . . . . . . 30

2.9 Example output of boundary detector with ground truth activity labels.
Upper graph shows estimates of start/end times of “Attach Label 2”
activity. Lower graph shows estimates of start/end times of “Read Label
2” activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Overview of the context–boundary integrator . . . . . . . . . . . . . . 33

2.11 Example of estimate correction by refinement module. (a) Example out-
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Chapter 1

Introduction

1.1 Background

Many manufacturers are now introducing robots, sensors, and IoT devices into their
factories aiming to transform them into smart factories. The data obtained from these
equipments are expected to be integrated and analyzed on the Cyber-Physical System
(CPS) and digital twin, and used for factory optimization such as factory monitoring,
finding bottlenecks of a work process, and improving the productivity as shown in the
upper portion of Fig. 1.1.

In the CPS and digital twin, it is important to reconstruct a copy of a physical fac-
tory in the cyberspace as accurately as possible, and the accuracy of the reconstruction in
cyberspace directly affects the accuracy of the simulation and analysis. From software-
controlled equipment such as machines and robots, control commands and working
status can be obtained directly via electronic means. This makes these machines com-
patible with the CPS and digital twin.

As an application of the CPS and digital twin, RPA (robotic process automation)
uses AI and other technologies to replace human workers. RPA is attracting attention
as a solution to the shortage of workers in manufacturing and other industries as well
as to maintain the product quality while reducing costs. However, it is not easy to re-
place all the workers with robots and machines in the manufacturing process. In recent
years, the high-mix low-volume production is the mainstream to flexibly respond to the
diverse and changing demands of customers. It is not cost-effective to introduce ex-

1
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Figure 1.1: Overview of this study

pensive robotic systems into the production system because tasks to conduct frequently
change, which require additional development and installation costs. Therefore, it is ex-
pected that these tasks such as assembly work in production lines and packaging work
at distribution centers will rely on human workers.

While human workers can perform complex and flexible tasks, it is not easy to
obtain information about their working status unlike manufacturing machines. This
means that it is still difficult to accurately incorporate human works into the simulations
in the CPS and digital twin. Although we can collect data from workers by attaching
wearable devices, such as smartwatches, to the workers, the collected sensor data, which
are just series of numerical data, do not describe high-level real-world contexts such
as activities of workers. Therefore, it is required to develop an activity recognition
technology that converts sensor data into high-level information, i.e., work activities
[1, 95, 94, 52, 2, 69, 21].

Activity recognition technologies use machine learning and other techniques to an-
alyze data obtained from a sensing device, such as a smartwatch worn by a user, to
estimate what kind of activity the user is performing for each time step. Many exist-
ing studies focus on the activities of daily living (ADL) and exercise such as “waking,”
“jumping,” “ascending stairs,” and “folding laundry” [71, 9, 7]. In this study, we focus
on work activities instead of such daily life activities. Specifically, we assume work
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activities such as “installing screws,” “attaching labels,” and “scanning barcodes” in as-
sembly work in a production line and packing work at a logistics center. By applying
activity recognition technologies to work activities, it is possible to know which worker
is performing which work activity at each time step, and how much time the worker
spends for each activity. This information is important for optimizing the manufactur-
ing process via the simulation in the CPS/digital twin. For example, when the end of
each work activity is accurately captured, it is possible to know when and how much
idle time is available, and to adjust the amount of tasks to be allocated to each worker.
Ultimately, we can open the way to the optimization of the entire work process in an
industrial site by taking into account not only the machines but also the human factors
that play a crucial role in the site.

Although camera-based activity recognition techniques have been actively studied
[97, 80, 96], the vision-based methods require multiple computationally expensive pro-
cesses other than activity recognition, such as the detection and identification of work-
ers. They also require high data transmission costs and a large data storage when cap-
tured images are processed on a server computer with GPUs. Furthermore, the problem
of occlusion cannot be ignored because of the variety of objects placed in an indus-
trial site. In contrast, because methods relying on wearable devices do not require
the detection and identification of workers, the developers can concentrate on the ac-
tion recognition task. In addition, the model is relatively lightweight compared to the
image-based methods, making it easy to address the scalability issue when applying
the activity recognition technology to all workers in the site. In terms of installation
costs, the cost of a camera-based behavior recognition system is expected to be very
expensive. This is because multiple cameras are required per worker to avoid occlu-
sion. In addition, high-specification cameras are required in factories to ensure reliable
performance in environments with extreme temperatures and humidity. The cost per
camera can rival or exceed the cost of purchasing a smartwatch. Moreover, processing
of video stream data requires high-performance GPU cards, which is an expensive cost.
For these reasons, we focused on the use of wearable devices in this study.

The characteristics of activity recognition technologies for factories and logistics
centers differ significantly from those for activities of daily living. First, different
workers are assigned to different tasks in many cases, and even the same task is
performed in different ways depending on the workers’ skill levels. Therefore, it is nec-
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essary to develop an activity recognition model for each worker. In other words, it is not
easy to use training data collected from different workers as training data for another
worker because of the above feature of the work activities. In addition to this, we need
to repeatedly update a large number of models due to the changes in the production pro-
cess, for example. Second, there are various business systems installed in factories
and logistics centers that manage data of IoT device usage and operations. These data
contain information strongly related to the worker’s activities, which have a potential
to improve the work activity recognition performance. Third, when making a decision
regarding work processes based on the results of activity recognition, it is necessary
to obtain the confidence of the production line manager regarding the results of
activity recognition. Specifically, a process in a deep model is considered to be a black
box, making it difficult to understand the process by humans. Currently, because there
are a few managers in industrial sites who are knowledgeable about ICT, it is not easy
for the managers to make a decision based on the recognition results from the black box,
and this can be a barrier to the introduction of activity recognition technologies.

As described above, the characteristics of work activities differ significantly from
those of activities of daily living, and there are many challenges that need to be ad-
dressed. However, by solving these problems, it will be possible to utilize informa-
tion about human workers which are considered to be highly uncertain. As a result,
overall optimization of the industrial sites with consideration of human factors will be
achieved.

1.2 Challenges

As mentioned above, activity recognition technologies in the industrial domains have
a wide range of possible applications. However, the work activities differ significantly
from the activities of daily life on which many existing studies have focused. In this
section, we explain the challenges arising from these differences.

1.2.1 Work Processes Differ with Workers

In an operation flow in a production line, a production process is divided into multiple
steps, and workers at different steps perform different tasks. In addition, skilled workers
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usually modify standard work processes and have their own ways of doing things. In
order to monitor the performance of workers throughout a factory, it is necessary to build
a large number of different activity recognition models for different workers because it
is not easy to use the training data collected from one worker as training data for other
workers because of the above features of the work activities. Therefore, it is inevitable
to collect some training data from each worker.

However, the cost of collecting labeled training data is large [95], and this cost is
not acceptable when the industrial site employs many workers. Therefore, the amount
of data collected from each worker should be small, and models should be trained on
the limited amount of training data.

1.2.2 Difficulties in Sensor–IoT Data Coordination

Various IoT devices are installed in smart factories and logistics centers. A usage log
of an IoT device strongly relates to the user’s activity at that time. For example, the
usage log generated when a user scans a barcode with a scanner indicates that the user
performed the “scan” action at that time with high probability, and is a reliable source
of information for activity recognition.

In contrast, the usage log of an IoT device is generated only at the time of use. For
example, when considering the action of scanning a label, it is reasonable to consider
the process from holding the scanner to putting the scanner on the table after reading the
barcode as a single activity, but the usage history of the scanner is recorded only at the
moment when the scanner recognizes the barcode. In other words, compared to sensor
data such as those from an accelerometer, which constantly generates data at regular
intervals, IoT device data is highly reliable information for recognizing specific actions
but is very sparse in time.

Therefore, the use of IoT device data, which is very different from sensor data,
in conjunction with general sensor data should be well investigated [54]. However,
although many datasets of daily activities are publicly available [71, 68], work activity
datasets that include both sensor data and IoT data are not publicly available, making it
difficult to explore the efficient sensor–IoT data coordination.
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1.2.3 Deep Learning Model is a Black Box

At present, few factory managers are familiar with ICT and related technologies. Be-
sides, many state-of-the-art (SOTA) methods in recent activity recognition research
[109, 64, 82, 32] are based on deep neural networks. Although neural network-based
methods tend to have high recognition accuracy, their recognition processes, which are
regarded as a black box, are more difficult to understand than those of the classic meth-
ods that require manual feature extraction [65, 44].

In the case of exercise and sleep stage recognition, for example, users use the sys-
tems to browse their activity histories, i.e., activity recognition results. The recognition
results are used only as a reference and are rarely used to make important decisions.
Therefore even when the recognition algorithm is a black box, it can be used without
any problems as long as the recognition is accurate.

In contrast, the factory manager makes decisions based on activity recognition re-
sults that may cause economic losses. Therefore, it is difficult to make important deci-
sions based on unreliable algorithms, and there is a demand for understanding the black
box process.

1.3 Approach

This study addressed the three issues in work activity recognition described in the pre-
vious section as follows.

1.3.1 Recognize Work Operations of Workers with a Limited Amount
of Training Data

In Chapter 2, we developed a work activity recognition model that enables recognition
with a limited amount of training data collected from a target worker. We proposed
the Light-weight Ordered-work Segmentation Network (LOS-Net), which is a compact
model designed to extract minimum features, taking into account the characteristics of
work activities. To realize this model, we proposed three modules included in LOS-Net.

First, the work process context pooling (WPCP) module, which uses a dilated con-
volution [28, 88, 87, 14] to efficiently capture features from a wide range was proposed.
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By combining multiple dilated convolutions, it can efficiently extract the short-term and
long-term context that is important for work process recognition. Second, the boundary
detector was designed for accurately detecting the start and end times of a work activity.
Since work activity recognition is a segmentation task, when the start and end times are
accurately detected, we can know activity labels between the two times. Because the
boundary of the activity itself depends on the previous and following work activities,
recognition becomes difficult when the order of the work activities is changed due to
errors or other reasons. Therefore, the system should be robust against changes in the
order of work activities by estimating the start and end times of each work activity in-
dependently. The third module is the refinement module. Because the standard work
procedures are specified, the order of the work activities is basically static. The refine-
ment module uses prior knowledge about the standard work activity order to correct
sporadic errors included in estimates by the recognition model.

1.3.2 New Large-scale Multimodal Dataset in Industrial Domain

In Chapter 3, to solve the problem of the lack of work activity datasets that include both
sensor data and IoT device data, we constructed the OpenPack dataset, a large-scale
multimodal dataset in the industrial domain that focuses on packaging work. OpenPack
contains over 53 hours of data from a total of 16 subjects, including 12 subjects who had
work experience in packaging. In addition to IoT device data, nine types of data were
collected, including IMU data, depth images, keypoints, and stress-related data such as
user blood volume pulse (BVP) and electrodermal activity (EDA). We annotated work
activities (operations) and their atomic actions, resulting in 20,129 operation labels and
52,529 action labels.

We also studied how to effectively fuse data with different characteristics, such as
sensor data from IMUs and data from IoT devices, and proposed the “Ladder-Shaped
Two-Stream Network (LTS-Net).” We can precisely estimate an activity label only at
the time when a log of an IoT device is recorded, meaning that IoT device logs are high-
confidence information while sparse in time. However, existing sensor fusion methods
[54, 30, 31] are not designed for the sparse data and cannot guarantee that this highly
reliable information will remain in the output because all the data are fed into the neural
network and recomputed in the network. Therefore, LTS-Net first generates pseudo-
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labels by using data from IoT devices, which are regarded as reliable estimates, and
updates the pseudo-labels with the help of sensor data while preserving high confidence
pseudo-labels. To achieve this, we prepare a module for feature extraction from sen-
sor data and a module for updating the pseudo-labels. These two modules exchange
information each other to form a ladder-shaped structure. The module that updates the
pseudo-labels has no trainable parameters, but updates the estimates according to the
confidence level of the pseudo-labels, enabling to preserve highly reliable information
from the IoT devices.

1.3.3 Visualization of the Concept Learned by a Unit of the Neural
Network

In Chapter 4, we applied activation maximization [19] to an activity recognition model
to unveil the process of the recognition model regarded as a black box. Activation
maximization is a method to visualize the concepts extracted by each unit in the neu-
ral network. Activation maximization generates an input signal in which the unit of
interest emits a large value (activation), enabling to visualize a waveform the unit of
interest responds to. However, in the waveform generation method, the design of an ap-
propriate regularization method greatly affects the quality of the generated waveforms
[40, 105, 55]. Without an appropriate regularization method, waveforms with very large
amplitudes that are not found in real situations are generated. In this study, we propose
a regularization method that uses the unit outputs to determine if anomalous waveforms
are generated and penalize them accordingly. We also created an “activation atlas” to
obtain a bird’s-eye view of the extracted features, and conducted a qualitative evalua-
tion.

1.4 Research Contribution

In this thesis, we make the following contributions.
In Chapter 2:

• We proposed a new activity recognition network (called LOS-Net) for ordered
repetitive works in industrial domains. The proposed network is designed to be
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trained on a limited amount of training data because preparing large training data
in industrial settings is expensive. LOS-Net has the following features compared
to conventional activity recognition models: (i) The network includes a decoder
with few parameters designed to capture only the necessary information for pre-
cise segmentation/recognition: long-term context regarding ordered works and
information regarding the boundaries between consecutive activities. (ii) The
network can refine the outputs of the decoder by referring to prior information
regarding the predefined order of activities. (iii) Owing to the above features,
LOS-Net works well with a limited amount of training data, which was investi-
gated by experiments.

• We demonstrated the effectiveness of the proposed method using sensor data col-
lected from actual factories and an actual logistic center.

In Chapter 3:

• We constructed OpenPack, which is the largest dataset on industrial work activity
recognition. We expect this data to contribute to research on industrial AI systems
by providing a challenging task, that is, to complex activity recognition via sensor
and sparse IoT data.

• We proposed LTS-Net to effectively utilize sparse readings from IoT devices via
a ladder structure.

• The results of the experimental evaluation showed that LTS-Net significantly im-
proved the performance, indicating the usefulness of the readings from IoT de-
vices and the effectiveness of the ladder structure in our method.

In Chapter 4:

• We proposed new activation maximization (AM) techniques for human activity
recognition networks: (i) a regularization term that penalizes extreme activations
generated in the AM process, and (ii) activation clipping that suppresses the gen-
eration of extreme activation. By leveraging the proposed techniques, we can
generate natural signals with reasonable activation values.
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• We evaluated the proposed method qualitatively and quantitatively using publicly
available datasets, and it was found that the proposed method could generate sig-
nals that are similar to those that actually appeared in a training dataset.

1.5 Structure of the Thesis

This thesis is structured as follows.

• Chapter 1 - Introduction
We first provided an introduction to this thesis. We discussed the background
of smart industrial environments and work activity recognition using wearable
devices such as smartwatches.

• Chapter 2 - Acceleration-based Activity Recognition of Repetitive Works with
Lightweight Ordered-work Segmentation Network
We introduce a possible solution for recognizing work activities with limited
training data. We proposed a model that extracts only necessary information from
sensor data and utilizes prior knowledge. The study in this chapter is based on
our work published in [103].

• Chapter 3 - OpenPack: A Large-scale Dataset for Recognizing Packaging Works
in IoT-enabled Logistic Environments
We introduce a new large-scale dataset in industrial domain. This dataset contains
data from IoT devices in addition to sensor and vision modalities. We also pro-
posed a model that fuses sensor data and IoT data effectively. The study in this
chapter is based on our work published in [104].

• Chapter 4 - Toward Understanding Acceleration-based Activity Recognition Neu-
ral Networks with Activation Maximization
We introduce a visualization technique that reveals the concepts extracted by hu-
man activity recognition models. A neural network is regarded as a black box,
and this method is one of the possible solutions for this problem. The study in
this chapter is based on our work published in [102].
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• Chapter 5 - Conclusion and Future Work
We conclude this thesis with a summary of contributions and with a discussion of
possible directions for future works.
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Chapter 2

Acceleration-based Activity
Recognition of Repetitive Works with
Lightweight Ordered-work
Segmentation Network

In this chapter, we describe our work on recognizing work activities using wearable
sensors. We explored the methods that can utilized prior knowledge such as activity
order to develop a model with a limited amount of training data.

2.1 Introduction

2.1.1 Background

Activity recognition using smart sensing devices such as smartphones and smartwatches
has been actively studied by the ubiquitous computing research community. Human ac-
tivity recognition, besides for daily life settings [71, 9, 7], has been studied for industrial
domains to improve the efficiency of manual works [1, 95, 3, 94, 2, 69, 21]. Work pro-
cesses such as those in the line production systems of factories and packaging tasks at
logistics centers mainly depend on human workers. To deal with the rapidly changing
demands of customers and suppliers, works by human workers are expected to continue

13
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to play an important role in the future [35, 66, 99]. Therefore, quantifying such manual
works is crucial for streamlining a work process, finding its bottlenecks, assessment of
a worker’s performance, and outlier detection.

In many manual works, such as those in line production systems and packaging
tasks in the logistic domain, a human worker repetitively performs a set of predefined
processes, with each process consisting of a sequence of activities in a predefined order,
e.g., attach labels, scan labels, and check size and weight. Fig. 2.1 shows example
acceleration data collected from the smartwatches worn by workers at an actual factory.
In this example, a typical series of works is iterated several times, with each iteration of
the process (i.e., work period) comprising a sequence of activities. Although the order
of activities is specified (by an instruction document in the case of factory assembly
works), the order can be changed by some factors, such as mistakes. The objective of
an activity recognition task focusing on such data is to estimate the class label for each
time step (data point).

2.1.2 Challenges

The major challenge of this task is the preparation of a large amount of training data
in actual industrial domains, because of the high costs of installing cameras at a work
place for annotation and manual labeling of the collected data. Moreover, in many cases,
the work processes performed in factories differ with the worker, making it difficult to
reuse labeled training data obtained from different workers. For example, in a factory
line production system, workers positioned at different stages along the line usually
conduct different predefined activities. This means that it is impossible to use training
data from other workers on the same line to train an activity recognition model of a
target worker. Whereas ultra-large factories have multiple lines for the same product,
high-mix low volume production is now the mainstream production type to deal with
rapid changing demands of consumers, resulting in different activities among different
lines in many cases. Therefore, activity recognition using a limited amount of training
data from a target worker is crucial in industrial domains.

The architecture of the state-of-the-art human activity recognition methods using
body-worn acceleration sensors includes an encoder–decoder with skip connections,
i.e., a U-Net-based architecture [72]. The encoder has multiple convolutional and pool-
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(a) Example of sensor data

(b) Activities that Shown in the Above Panel
ID Activity Name ID Activity Name ID Activity Name ID Activity Name ID Activity Name

0 Others 3 Remove Bar Code 6 Attach Label 2 9 Inspect 12 Button
1 Set 4 Attach Label 1 7 Turn 10 Remove Jig 13 Move
2 Read Bar Code 5 Read Label 2 8 Attach Jig 11 Weighing

Figure 2.1: Example of sensor data of factory works. Red, green, and blue lines show x-,
y-, and z-axis data, respectively. Rectangles below show ground truth labels (identifiers)
of activities. Top-down view video images are also shown. Table provides identifier and
name of each activity.

ing layers and gradually down-samples the input time series (sensor data) to acquire
high-dimensional representations with a low temporal resolution. Subsequently, the
decoder containing multiple deconvolution layers up-samples the low-resolution repre-
sentations to output the class label for each time step. U-Net is used for image seman-
tic segmentation and has the advantage of capturing long-term trends in sensor-based
human activity recognition. However, because the encoder and the decoder comprise
numerous trainable nodes, the architecture requires large training data. Fig. 2.2 shows a
distribution of the recognition accuracy of U-Net for factory work when we performed
the validation, where a set of 10-period data were used as training data1. As the amount

1Obtained periods were divided into sets of periods, with each set being composed of ten periods.
Each set was used as a test set and the other set was used as a training set. The training was conducted
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Figure 2.2: Distribution of recognition accuracy of U-Net with limited training data (10
periods). Dots of the same color show F1-measures of the same test and training sets
with different random seeds.

of training data is limited, the accuracy of U-Net, which contains large trainable pa-
rameters, is unstable. Herein, a trainable parameter indicates a parameter of a neural
network such as the weight of a node in a densely connected layer and a weight of a
kernel in a convolution layer. Even when we used the same test and training data, the
accuracy largely varied depending on random seeds, resulting in unreliable recognition
systems.

Besides, activities that are almost performed in a predefined order can be recognized
by leveraging the information regarding their order as prior information. For example,
several previous studies on activity recognition using classic machine learning specify
the transition probabilities between activities as prior information [18, 62, 47]. In the
case of human activity recognition using deep models, we can leverage recurrent neural
networks, such as long short-term memory (LSTM), to learn the long-term trends in
ordered activities. However, this approach also requires a large amount of training data.

2.1.3 Approach

In this study, we propose a human activity recognition model that can be trained on a
limited amount of training data from a target worker who is engaged in repetitive works
involving a predefined order of activities. Our idea to achieve work activity recognition

five times by changing random seeds. Refer to the evaluation section for the architecture of U-Net.
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with limited training data is to capture only the necessary information for precise activity
recognition, with a lightweight model. As shown in Fig. 2.1, an acceleration segment for
each activity is complex and composed of various waveforms (corresponding to small
hand actions). To precisely recognize such activities, it would be ideal to accurately
detect all these small actions. However, this approach requires a large model and a
large amount of training data. As this task, i.e., recognizing sequential activities, can be
regarded as a semantic segmentation task, we note that it is not necessary to precisely
identify small actions that are performed in the midst of an activity of interest. Instead,
it is more important to precisely detect small actions performed at the beginning and end
of an activity. In other words, it is only necessary to roughly identify actions performed
in the midst of the activity. In addition, for the recognition of ordered tasks, information
regarding the previous activity of an activity of interest is an important indication that
enables the precise detection of the beginning of current activity of interest. When
we can acquire long-term contextual information regarding the previous activity (e.g.,
information regarding a sequence of small actions in the previous activity), we can
robustly identify the beginning of the following activity of interest. For example, when
small actions A, B, and C are usually performed in this order at the end of the previous
activity, we can use that information to identify the start time of the activity of interest.

Therefore, in this study, for precise segmentation/recognition using limited train-
ing data, we propose a neural network architecture (called Lightweight Ordered-work
Segmentation Network; LOS-Net) that performs time-series segmentation/recognition
using a decoder that captures only necessary information. Specifically, a feature of the
decoder of the LOS-Net is performing segmentation/recognition by fusing the follow-
ing two types of important information with few parameters: (i) To achieve precise
segmentation, precise detection of the boundary between consecutive activities is cru-
cial. As shown in Fig. 2.1, we can observe trend changes in sensor data at some activity
boundaries (e.g., boundary between the fourth and fifth activities). Therefore, we extract
information on boundaries mainly from representations acquired in the shallow layers
of the LOS-Net encoder, which are expected to preserve the fine-grained information on
boundaries, and subsequently use the extracted boundary information to perform seg-
mentation/recognition. (ii) Long-term context of the work process of interest is crucial
for recognizing ordered activities. As mentioned above, in the recognition of an activity,
the information regarding its previous activity (e.g., information regarding a sequence
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of small actions in the previous activity) is useful. Therefore, we extract long-term
context from low-resolution representations acquired in the last layer of the encoder
using a convolution layer with few parameters. In the convolution layer, we apply a di-
lated convolution [28, 88, 87, 14], which inflates a convolution kernel by inserting holes
between the kernel elements, enabling a large receptive field and collection of infor-
mation from distant time steps using few parameters. Subsequently, we up-sample the
low-resolution long-term context extracted by the dilated convolution by simply using
linear interpolation, enabling to up-sample the representations with no trainable nodes.
(In contrast, U-Net gradually up-samples the low-resolution representations using many
deconvolution layers, thus requiring large parameters.)

Following this, we fuse the representations regarding the boundaries and the long-
term context to predict the activity class for each time step. As mentioned above, we
extract minimal important information (i.e., information regarding boundaries and the
long-term context) for precise segmentation/recognition using the decoder with few pa-
rameters.

To further enhance segmentation precision, the LOS-Net includes a module that re-
fines the outputs of the decoder by incorporating prior knowledge regarding the order
of activities, which can also accelerate precise recognition with limited training data.
In the work process in a line management system, the order of activities is generally
predefined in an instruction document. In packaging tasks, the order of activities is also
predefined, e.g., making a box followed by filling it with items. In this study, we assume
that the activity order is provided as a transition matrix, and subsequently correct the
outputs of the decoder based on the matrix. For example, we assume a work process
composed of activities A, B, C, D, and E performed in the same order. We also assume
that the decoder outputs show that activity E is performed immediately after activity
A. We detect such outlying transitions between the activities (i.e., A–E) by referring to
the transition matrix and subsequently refine the estimates in the segment correspond-
ing to the transition. In addition, a refinement procedure is designed to address the
insufficiency of the training data by data augmentation.

2.1.4 Contributions

The research contributions of this study are as follows:
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• We propose a new activity recognition network (called the LOS-Net) for ordered
repetitive works in industrial domains. The proposed network is designed to be
trained on a limited amount of training data because preparing large training data
in industrial settings is expensive. The LOS-Net has the following features com-
pared with conventional activity recognition models: (i) The network includes a
decoder with few parameters designed to capture only the necessary information
for precise segmentation/recognition: long-term context regarding ordered works
and information regarding the boundaries between consecutive activities. (ii) The
network can refine the outputs of the decoder by referring to prior information
regarding the predefined order of activities. (iii) Owing to the above features, the
LOS-Net works well with a limited amount of training data, which was investi-
gated by experiments.

• We demonstrate the effectiveness of the proposed method using sensor data col-
lected from actual factories and an actual logistic center.

2.2 Related Work

In recent years, with growing health awareness, wearable devices such as smartwatches
have become increasingly prominent and are used to record exercise, sleep, and vitals
(such as heartbeat) data. Wearable devices are equipped with various sensors, such
as inertial measurement units, heart rate sensors [68], electrodermal activity sensors
[25, 50, 92], and microphones [24, 23]. Research on activity recognition using data ob-
tained from such sensors has been actively conducted in the field of ubiquitous comput-
ing. Particularly, accelerometers have been gaining significant interest in many activity
recognition studies because they can directly capture details of the movements of the
body parts to which they are attached. We also use accelerometers in this research.

In this section, we summarize the applications of activity recognition technologies
based on accelerometers, activity recognition methods, and industrial applications of
activity recognition.
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2.2.1 Acceleration-based Human Activity Recognition

In the field of activity recognition using accelerometers, there have been studies to rec-
ognize activities of daily living (such as cleaning and cooking), exercises (such as run-
ning and workout), and activities of workers in factories and hospitals [68, 8, 9, 5, 94,
29].

Recently, activity recognition methods using neural networks have been actively
studied. Some methods use recurrent models, such as LSTM and gated recurrent units
(GRU) [26, 107], and others employ one-dimensional convolutional neural networks
(CNNs) [26, 54, 60]. In addition, methods that combine CNNs and LSTM have been
studied. In particular, DeepConvLSTM proposed by Ordóñez et al. [63] has been used
as a baseline in many activity recognition studies. In this study, we also use it as a
baseline for comparison. In this study, we apply a dilated convolution to efficiently
extract the long-term context in ordered activities using few parameters.

To recognize activities using acceleration data, many studies apply a sliding time
window and predict the activity class for each window [26]. In contrast, many human
works in industrial domains, which are the focus of this research, are composed of a
mixture of short- and long-duration activities performed sequentially without intervals.
Recognizing such activities using a time window with a fixed window size is diffi-
cult. For example, a small-sized window that fits short-duration activities is ineffective
for long-duration activities because of their fragmentation in the sliding time window
scheme.

To address the above problem, Yao et al. [98] proposed an approach called segmen-
tation or dense labeling, which predicts the class label of each data point in the input
time series. They also proposed a segmentation model motivated by a fully connected
network [42]. Following this study, a segmentation model based on U-Net was pro-
posed [109, 108]. Zheng et al. [109] used a U-net-based model for activity recognition.
In their study, they pointed out that a segmentation model generates small errors called
fragmentation and substitution. They proposed a method to reduce these errors by rule-
based post-processing. A U-Net based approach for time-series segmentation is also
used in the sleep stage recognition task [64]. In this study, we propose a lightweight
segmentation model based on an encoder–decoder model. In addition, we propose a
postprocessing method by leveraging the predefined activity order.
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2.2.2 Human Activity Recognition in Industrial Domains

Activity recognition technologies using wearable devices have been studied for appli-
cations in work environments such as factories, logistics centers, hospitals, and nursing
homes. In these domains, various applications have been developed based on activity
recognition, such as measuring the time required for a task, detecting missing opera-
tions, and assessing the performance of workers [21].

Aehnelt et al. [1] analyzed factory assembly tasks, and discussed requirements of
recognition system for the assembly tasks. Feldhorst et al. [20] recognized activi-
ties of manual order picking in a logistics center using an SVM and a random forest.
In addition, Rueda et al. [53] proposed a model called CNN-IMU to handle multiple
IMU sensor input and evaluated it on order picking activities. Reining et al. [67] used
attribute representations to recognize irregular actions in order picking. Attribute repre-
sentations are atomic human movements and poses, and an activity can be defined as a
set of attributes. For example, “walk” can be defined as “left foot or right foot, forward
and upright.” This representation enables us to easily alter the definition of an activity.
However, factory activities are too complex to describe using such attributes. In this
study, we use data collected in a real logistics center for evaluation and design a neural
network tailored to recognizing ordered work activities using limited training data. Xia
et al. [95, 94] leveraged the information extracted from work instruction documents,
such as standard duration of an activity and semantic similarity between activities, to
recognize factory activities using wrist-worn accelerometers in an unsupervised manner.
AI-Amin et al.[3, 2] recognized the assembly process of a three-dimensional printer.
They used an accelerometer, a gyroscope, and electromyograms (EMG) as well as a
CNN-based model for classification. An application for workers in a meat factory has
also been studied [69]. In contrast, this study proposes a neural network-based method
for industrial domains that is effective even when the amount of training data is limited.

Although many public datasets of daily activity recognition using IMU sensors are
available, there are few public datasets of industrial domains. Stiefmeier et al. [86]
collected data of automobile inspection tasks and classified a segment of the sensor
data into six classes. Niemann et al. [59] created a dataset called “LARa” for activity
recognition of manual order picking and packing tasks conducted in a logistics center.
They constructed a simulated experiment environment of a logistics center and collected
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(a) Directed Graph of Work Flow (b) Transition Matrix

Figure 2.3: (a) Example flow of work process represented in directed graph. Each node
corresponds to activity. Number in node represents identifier of activity. Directed edge
shows possible transition between activities. (b) Example transition matrix constructed
from example directed graph. Value of (i,j)-th element in matrix shows if edge from
i-th to j-th activity exists; 1: True and 0: False.

data from 14 subjects. There are several datasets available for video-based activity
recognition in the industrial domains. Dallel et al. [16] constructed a dataset called
“InHARD” containing 13 different human activities in an industrial environment. Ben-
Shabat et al. [10] created the “IKEA ASM” dataset, which records furniture assembly
activities. This dataset consists of sensor data from multi-view RGB cameras and a
depth camera.

2.3 Activity Recognition with LOS-Net

2.3.1 Preliminaries

This study assumes that workers wear body-worn inertial sensors, i.e., three-axis ac-
celerometers. In our experiment, the workers wear smartwatches on both their wrists,
with the accelerometers of the smartwatches collecting data at a sampling rate of ap-
proximately 30 Hz. The workers perform repetitive works in a predefined order of
activities, as shown in Fig. 2.1. The goal of this study is to predict the activity class for
each time step when a small amount of training data from a target user is given.

As mentioned above, we assume that the order of activities is predefined. Note that
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Figure 2.4: Architecture of LOS-Net

although the flow of a work process is a sequence in many cases, a work process can
have a structure of a directed graph, as shown in Fig. 2.3 (a). This is because the flow
of a work process can change depending on the condition of the item, condition of the
work place, and other factors. An example case is that a worker assembles a new box
only when the box into which he/she has just packed becomes full.

2.3.2 Overview

The structure of the proposed network (LOS-Net) is shown in Fig. 2.4. The input of
the network is a segment of six-axis acceleration data X 2 R6⇥NT with length NT as
follows:

X = [x1, x2, ..., xt, ..., xNT ].

The output of the network is a series of activity estimates Ŷ 2 RNC⇥NT with length NT

as follows:

Ŷ = [ŷ1, ŷ2, ..., ŷt, ..., ŷNT ].

For each data point xt at time t, the network outputs a class probability vector ŷt 2
RNC⇥1, which is an NC-dimensional vector, with the c-th element presenting the class
probability of the c-th activity class. NC is the number of activity classes.

As shown in Fig. 2.4, the LOS-Net is composed of three main components: encoder,
decoder, and refinement module. The encoder is composed of multiple convolution
layers (residual blocks [27]) and extracts features in various time scales (i.e., long- and
short-term trends). The decoder processes the extracted features to output the class
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estimate for each time step. The decoder is composed of three components: Work
Process Context Pooling (WPCP) module, Boundary Detector, and Context–Boundary
Integrator. The WPCP module extracts the long-term context of the work process (i.e.,
ordered work) from representations with low temporal resolutions extracted from the
last block of the encoder. Because the size of some convolution kernels in the WPCP
module is large, the kernels can collect information from distant time steps, which will
be introduced in Fig. 2.6 (a). Therefore, the module can recognize information regarding
previous/following activities using the kernels. For example, when the center of a kernel
is at time t and the time corresponds to the start time of activity C, the kernel with a large
size can collect information regarding the activities conducted before activity C. When
activities A and B are conducted in this order before activity C, the WPCP module can
predict the current activity at time t by referring to this information collected by the
kernel. The boundary detector extracts fine-grained information regarding the activity
boundaries. The context–boundary integrator fuses the long-term context of the work
process and the information on the boundaries to output the class estimate for each time
step. The refinement module of the LOS-Net refines the outputs of the decoder based
on prior knowledge on the order of activities.

Because the duration of some activities is extremely short, as shown in Fig. 2.1, it is
difficult for a window-based approach to handle these activities, as mentioned in Section
2.2.1. Therefore, we decided to use an encoder–decoder architecture, enabling the pre-
diction of a class label for each data point. To achieve a light-weight encoder–decoder
model in comparison to normal encoder–decoder models, we included the boundary
detector and WPCP module, which were designed to extract minimal important infor-
mation. In addition we designed the refinement module to deal with sporadic errors in
the outputs of the encoder–decoder model. Because the boundary detector estimates the
start/end times of each activity class independently, we can regard the boundary detec-
tor as not considering the relationship among the activity classes. Instead, the WPCP
module captures the temporal relationship among the activity classes using its dilated
convolution kernels.

Here, we introduce the three main modules of the LOS-Net (i.e., encoder, decoder,
and refinement module).
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(a) Architecture

(b) Parameters

Block Down-sampling (stride) CBi TBi

2 Yes (S = 2) 32 NT /2

3 Yes (S = 2) 64 NT /4

4 Yes (S = 2) 128 NT /8

5 No (S = 1) 256 NT /8

Figure 2.5: Overview of residual block. (a) Architecture of residual block in encoder.
“k3s1” denotes parameter setting of convolution layer. For example, it represents kernel
of kernel size 3 and stride length 1. “(CBi, TBi)” presents shape of tensor, i.e., CBi-
dimensional time series with length TBi. (b) Parameters used in each residual block.
CBi is number of kernels in first and second convolution layers. TBi is length of output
time series.

2.3.3 Encoder

The encoder of the LOS-Net is composed of a convolution block and four residual
blocks [27], enabling the construction of a deep model with residual connections. The
first convolution block is composed of a 1D-convolution layer with 64 kernels of kernel
length 3. The rationale of using only the first block as the convolution layer is that
using raw sensor data for a skip connection is irrelevant. Each residual block is mainly
composed of two 1D-convolution layers, as shown in Fig. 2.5 (a). In a residual block,
the input of the block (processed by one convolution layer for a skip connection) and
the output of the second convolution layer are added to avoid gradient diffusion (i.e.,
skip connection) as follows:

XBi = ReLU(1DConv2(XB(i�1)) + 1DConv(XB(i�1))),

where XBi is the output of the i-th block, 1DConv2() denotes two 1D-convolution lay-
ers with batch normalization in the residual block, 1DConv() denotes the 1D-convolution
layer for a skip connection, and ReLU() is the rectified linear activation function.

The deeper block in the encoder outputs shorter representations in time (i.e., lower
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resolution) with a higher dimension, which describe the long-term contexts. The table
in Fig. 2.5 (b) lists the number of kernels in the first and second convolution layers in a
residual block (CBi) as well as the length of the output time series (TBi). The 2nd, 3rd,
and 4th blocks in the encoder down-sample the input time series using a kernel stride
length of two. For example, the output of the second block is a 64-dimensional time
series with length Nt/2. The output of the 5th block is a 256-dimensional time series
with length Nt/8.

2.3.4 Decoder

As mentioned above, the decoder is composed of three components: WPCP module,
boundary detector, and context–boundary integrator. The context–boundary integrator
fuses the outputs of the WPCP module and the boundary detector.

Work Process Context Pooling (WPCP) Module

The WPCP module extracts the long-term context of ordered activities from the outputs
of the last residual block in the encoder with few parameters. This module is inspired
by the studies on image segmentation by Xi and Chen [93, 15]. Note that unlike in
image-based segmentation, it is important for our task to capture long-term contexts
regarding a sequence of small actions in the previous/next activity as mentioned in the
introduction section.

To collect information from distant time steps with few parameters, the WPCP mod-
ule leverages dilated convolution kernels [15]. As shown in Fig. 2.6 (a), a dilated con-
volution performs feature extraction using an inflated kernel by inserting holes between
the kernel elements, enabling the collection of information from distant time steps with
few kernel parameters. For example, the example second kernel shown in Fig. 2.6 (a),
i.e., r = 3, has a wide receptive field of nineteen time steps with only seven kernel
parameters. As expressed in the following equation, a large receptive field (2C · r + 1)
can be realized with a few parameters (2C + 1) by applying the dilated convolution to
the segment centered at the i-th element of an input X in.

DiConv(X in, i) =
CX

k=�C

xin
i+r·kw[k + C],
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(a) Dilated Convolution (b) WPCP Module

Figure 2.6: Overview of WPCP module. (a) Feature extraction from the input X in

with a dilated convolution kernel. Four example kernels are presented. The first is a
standard convolution kernel with dilation rate r = 1, and the other examples are dilated
convolution kernels with r = 3, r = 6, and r = 12, respectively. For example, the
second example kernel (r = 3) uses values of only 0, ±3, ±6, and ±9 time steps for
convolution. (b) Using multiple dilated convolution kernels with different dilation rates
to extract long-term work process context.

where xin
i is the i-th element in X in, r is the dilation rate, which specifies the spacing

between the elements in X in, w is an array storing the kernel weights of the dilated
convolution kernel, and 2C + 1 is the kernel size (number of kernel weights).

Figure 2.6 (b) shows the architecture of the WPCP module. The output of the last
block of the encoder, XB5, is fed into the point-wise convolution layer for dimen-
sionality reduction. We denote the output of this convolution as X 0

B5. Subsequently,
the WPCP module applies multiple dilated convolutions with different dilation rates to
X 0

B5 to obtain XWPCP as follows:

XWPCP = PwConv([PwConv(X 0
B5),Conv(X 0

B5, k = 7),DiConv(X 0
B5, k = 7, r = 3),

DiConv(X 0
B5, k = 15, r = 6),DiConv(X 0

B5, k = 15, r = 12), ]>)

where DiConv(·, k, r) is a dilated convolution with dilation rate r and kernel length k,
and PwConv(·) is a point-wise convolution, i.e., its kernel size is one. The first three
convolutions (intra-activity information in Fig. 2.6 (b)) use small dilation rates to obtain
short-term context, e.g., surrounding small actions.

As mentioned above, it is important for our task to capture long-term information
related to a sequence of small actions in the previous/next activity unlike the image
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Activity Boundary Activity BoundaryPeak Peak

Through the WPCP module,
peaks shifts toward activity
boundaries.

Figure 2.7: Example of X 0
B5 and XWPCP with ground truth activity labels. XWPCP

seems to have many peaks around activity boundaries compared to X 0
B5, indicating that

dilated convolutions integrate information at distant time steps in X 0
B5.

segmentation task. The main feature of the WPCP module is the extraction of such
long-term context through the remaining two convolutions (inter-activity information in
Fig. 2.6 (b)) that use larger dilation rates and kernel sizes, enabling information on each
of the sequential small actions in the previous/next activity to be convolved. As shown
in Fig. 2.6 (a), the dilated convolutions for inter-activity information (r = 6 and r = 12)
can collect information within ranges of up to 11.2 s and 22.4 s2 before and after the
time step of the kernel center, respectively.

Subsequently, linear interpolation is conducted to extend the length of XWPCP to
NT . As above, the WPCP module extracts the long-term context regarding the work
process using few parameters (0.4M parameters3). Refer to the Evaluation section for
the analysis of the number of parameters of the LOS-Net.

Figure 2.7 shows an example output of the WPCP module XWPCP (and X 0
B5)

with ground truth activity labels, indicating that the output can approximately capture
the trend changes of the sequence of activities. However, we also find that the output
cannot precisely present the trend changes (e.g., the boundary between the fifth and
sixth activities).

222.4 = 84⇥ 8/30. Thirty is the sampling frequency of the input signal.
3CB5 = 256, CWPCP = 128. Only the parameters in the convolution layers are considered.
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Boundary Detector

The boundary detector extracts fine-grained information regarding the activity bound-
aries from the output of the encoder. The aim of this module is to provide information on
the possible boundaries of each activity to the context–boundary integrator. We assume
this boundary detection problem to be a multilabel classification problem. As shown
in Fig. 2.8, the input of the boundary detector comprises the outputs of the first three
blocks of the encoder and the up-sampled outputs of the WPCP module; the output of
the boundary detector provides an estimate of the start/end times of each activity. More
specifically, the output of the boundary detector is a 2NC-dimensional time series with
length NT because the output is a series of estimates of the start/end times of each ac-
tivity class. For example, a series of estimates of the start times of the c-th activity class
is expressed as follows:

b̂
st

c = [bst,c1 , bst,c2 , ..., bst,ct , ..., bst,cNT
] 2 R1⇥NT ,

where bst,ct is the probability of the start time of the c-th activity at time t. Therefore, the
output of the boundary detector is expressed as follows:

B̂ =

2

6666666666666664

b̂
st

1 ,

b̂
ed

1 ,
...,
b̂
st

c ,

b̂
ed

c ,
...,

b̂
st

NC
,

b̂
ed

NC
,

3

7777777777777775

2 R2NC⇥NT ,

where b̂
ed

c denotes a series of estimates of the end times of the c-th activity.
This study assumes multilabel classification instead of multiclass classification be-

cause the latter can mistake the end times with the start times of two consecutive activ-
ities, resulting in their miss-detection. Assume that activities A and B are conducted in
this order. Because the end times of activity A and start times of activity B are similar
in the sensor data, multiclass classification for discriminating them may not work well.
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Figure 2.8: Overview of the boundary detector

The architecture of the boundary detector shown in Fig. 2.8 is inspired by the study
of Yu et al. [106] on image-based boundary detection. Note that unlike in image-based
boundary detection, because the boundaries corresponding to the start and end times of
an activity should be different in an activity recognition task, the boundary detector is
designed to detect these boundaries individually. We perform boundary detection by
leveraging two information types: “shallow features” and “class features.” The shallow
features are extracted from the shallow blocks in the encoder and contain the informa-
tion regarding the trend changes with fine temporal resolutions. The class features are
extracted from the last block and contain the long-term context information regarding
the start/end times of each class. Therefore, the class features have 2NC dimensions (2
corresponds to the start and the end).

To compute the shallow features, as shown in the “Boundary Feature Extractor” of
Fig. 2.8, we first apply a point-wise convolution for the dimensionality reduction to the
outputs of each block. Following this, we apply linear interpolation to extend the length
of the convolved outputs to NT . The number of dimensions of the outputs from the first,
second, and third blocks is reduced to CSF = 16. These features are concatenated to
form XSF 2 R3CSF⇥NT , corresponding to the shallow features.

To compute the class features, we also apply a point-wise convolution to reduce the
number of dimensions to 2NC (“Boundary Feature Extractor” in Fig. 2.8). Therefore,
the class features, XCF , are a 2NC-dimensional time series with length NT . XCF
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consists of 1D time series with length NT for the start/end of each class as follows:

XCF =

2

6666666666666664

xst
CF1,

xed
CF1,
...,

xst
CFc,

xed
CFc,
...,

xst
CFNC

,

xed
CFNC

,

3

7777777777777775

2 R2NC⇥NT ,

where xst
CFc is a time series for the start times of the c-th activity class and contains the

long-term context regarding these start times.
Subsequently, we perform multilabel classification by fusing the shallow and class

features. For the start/end times of each activity class, first, we concatenate the copied
shallow features with the corresponding class features, resulting in a tensor with shape
3CSF + 1 ⇥ NT as shown in “Shared Concatenation” in Fig. 2.8. For example, for the
start times of the c-th activity class, we concatenate the shared features XSF with the
class features of c-th class xst

CFc. After this procedure, we obtain the prediction results
(e.g., b̂

st

c ) of the start/end times of each class by feeding the concatenated tensor to a
convolution layer, enabling to predict b̂

st

c using its related features, i.e., XSF and xst
CFc.

Finally, we produce the output of boundary detector B̂ by concatenating the prediction
results.

To estimate the start/end times of the activity, we employ the Tversky loss function
[75] in the model training. The boundary detection task suffers from the class imbalance
problem as the number of negative samples overwhelms the number of positive samples.
Tversky loss is a loss function that is suitable for learning such imbalanced data by
independently adjusting the weight of both precision and recall. The loss function based
on the Tversky loss for multilabel classification can be calculated as follows:

Lb =
X

c,p2{st,ed}

TL(b̂
p

c , b
p
c,GT , �fp, �fn),

where b̂
p

c denotes the estimates of the start/end times of the c-th activity, and bpc,GT

denotes the ground truth of the start/end times of the c-th activity. Tversky loss TL(·) is
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defined as follows:

TL(b̂
p

cb
p
c , �fp, �fn) =

PNT

i=1 b̂1ib1iPNT

i=1 b̂1ib1i + �fp

PNT

i=1 b̂1ib0i + �fn

PNT

i=1 b̂0ib1i
,

where b̂1i and b̂0i denote the estimated probabilities for the positive/negative class at
time step i, and b1i and b0i are the associated ground truths. �fp and �fn are the weights
for false positives and false negatives, respectively.

We train the boundary detector to minimize the error between b̂
n

c and bnc,GT using
the above loss function. Note that the ground truth value for bstc,GT at time t is defined
as follows:

bst,ct,GT =

(
1 if MinTempDist(Sst,c, t) < Tbd

0 otherwise
,

where Sst,c is a set of the start times of the c-th activity class, MinTempDist(Sst,c, t) cal-
culates the minimum temporal absolute distance between time t and its closest starting
time of the c-th activity, and Tbd is the threshold for defining the boundaries. Therefore,
the boundary detector is trained to detect 2Tbd-second segments centered at the start/end
time. For the model training, refer to Section 2.3.6 in detail.

Figure 2.9 shows an example output of the boundary detector with ground truth ac-
tivity labels. Although there are several false positives of the detected boundaries (start
and end times), the boundaries between consecutive activities are precisely detected.

Context–Boundary Integrator

The context–boundary integrator integrates the outputs of the WPCP module and the
boundary detector to predict the activity estimate for each time step, as shown in Fig. 2.10.
To utilize the fine-grained boundary information predicted for each activity class, this
module first extracts the features for each class and subsequently combines the fea-
tures of all classes to perform multiclass classification. First, the up-sampled output of
the WPCP module and the output of the boundary detector are concatenated by shared
concatenation as shown in “Shared Concatenation” in Fig. 2.10. For example, we con-
catenate up-sampled XWPCP , b̂

st

c , and b̂
ed

c for the c-th class. The first convolution
layer processes the concatenated tensor for each class. We concatenate the outputs from
the first convolution layer for all classes, and feed it to the second, third and fourth
convolution layers, enabling the consideration of the relationships among the classes
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Figure 2.9: Example output of boundary detector with ground truth activity labels. Up-
per graph shows estimates of start/end times of “Attach Label 2” activity. Lower graph
shows estimates of start/end times of “Read Label 2” activity.

Figure 2.10: Overview of the context–boundary integrator

in generating the multiclass classification results, Ý 0; this is an NC-dimensional time
series with length NT .

2.3.5 Refinement Module

The refinement module corrects the sporadic errors in the output of the decoder. The in-
put of the module is Ý 0, which is the output of the decoder, and its output is a corrected
series of the activity estimates, Ŷ . The input (output) is an NC-dimensional time series
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with length NT . A NC-dimension vector at time t in the time series provides the class
probability of each class at time t. Fig. 2.11 (a) is an example output of the decoder,
showing an NC-dimensional time series as a heat map. We can see many sporadic errors
in the estimates.

The refinement is conducted based on a predefined order of activities. The refine-
ment module corrects the erroneous transitions in Ý 0 that are not specified in the pre-
defined order. In Fig. 2.3 (a), the order (flow) is presented as a directed graph. We
convert the graph into a transition matrix M , as shown in Fig. 2.3 (b), which is used in
the refinement module. M is an NC ⇥ NC matrix, with the (i, j)-th element showing
whether the transition from the i-th to j-th activity is available in the directed graph.
Here, mi,j is the (i, j)-th element of M and is calculated as follows:

mi,j =

8
>>><

>>>:

NaN if i = j

1 else if the graph has an edge from the i-th activity to the j-th activity

0 otherwise

,

We believe that prior information should be simple to the maximum extent because we
assume that it is prepared by non-activity recognition researchers. Therefore, this study
uses a simple directed graph (and a transition matrix) as the prior information.

Figure 2.12 (a) shows the architecture of the refinement module consisting of three
refinement blocks. In each refinement block, which is shown in Fig. 2.12 (b), first we
calculate the transition costs, which represent the costs of the activity transitions in the
input of the block. When a transition that is not specified in the transition matrix occurs,
its corresponding cost is high. Subsequently, we apply convolution layers to correct the
estimates near high-transition costs.

Computing Transition Costs

Using M and the input of the refinement block, Ý n (Ý 0, Ý 1, or Ý 2), we compute the
transition costs, C 2 R1⇥NT , which are a series of length NT whose t-th element ct
shows a transition cost at time t calculated as follows:

ct =

8
>>><

>>>:

0 if argmax(ýt) = argmax(ýt+1)

↵ else if mi,j == 1

1 else if mi,j == 0

,
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Figure 2.11: Example of estimate correction by refinement module. (a) Example output
of decoder Ý 0. (b) Calculated transition costs from decoder output. ↵ is 0.1. (c)
Example output of refinement module Ŷ .

(a) Refinement Mod-
ule

(b) Refinement Block

Figure 2.12: Overviews of (a) refinement module and (b) refinement block

where ↵ is the unified cost of the possible transitions (0 < ↵ < 1) and ýt is an element of
the input Ý n (Ý 0, Ý 1 or Ý 2) at time t, i.e., the class estimate at time t. Therefore, when
a transition of the class estimates from time t to time t + 1 occurs and is unavailable in
the transition matrix, i.e., the element corresponding to the transition is zero, a transition
cost at time t ct is one. When the transition occurs and is available in the transition
matrix, i.e., the element corresponding to the transition is one, ct is ↵. As shown in the
example in Fig. 2.11 (b), ct has a large value when sporadic errors occur in the estimates
of the decoder. When feeding the transition costs C into the network, the moving sum
with window size wcost is applied to smooth out the costs.
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Refining Estimates

Each refinement block corrects the errors in its input Ý n, i.e., the output of the last
block, using Ý n and transition costs C. First, we apply a dilated convolution to correct
the prediction errors for each activity class. This is because information from distant
time steps is necessary to correct the errors having relatively long durations, e.g., the
sporadic error at the beginning of the fourth activity in Fig. 2.11 (a). Subsequently,
we combine the results of the above process for all classes to correct the errors by
considering the relationships among the classes. Note that, as shown in Fig. 2.12 (b),
we introduce a skip connection to prevent ambiguous class estimates at the activity
boundaries. In our preliminary experiment, we found that class estimates around an
activity boundary become ambiguous, i.e., the probability values corresponding to the
correct classes become small, even when the transition is correct. This is because of the
above convolution operators, which collect the information within a long time window
and convolve them. Therefore, we employ a skip connection to recover the original high
probability values in the input of this refinement block Ý n.

First, for the c-th class, we extract ýn,c 2 R1⇥NT from Ýn 2 RNC⇥NT . Here, ýn,c is
a 1D time series with length NT , whose element at time t denotes the class probability
of the c-th class at time t. We concatenate ýn,c with the transition costs C 2 R1⇥NT and
apply point-wise and dilated convolutions with different dilation rates as follows:

f c = PwConv

 
PwConv

 "
ýn,c,

C,

#!
+

X

r=3,6,12,15

DiConv

 "
ýn,c,

C,

#
, r

!!
2 R1⇥NT .

Subsequently, the outputs f c of all classes, the transition costs C, and the input to
this refinement block Ý n are concatenated and fed into the two convolution layers to
output the corrected estimates, Ý n+1.

Ý n+1 = 1DConv
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Ý n,

3

7777777775

1

CCCCCCCCCA

1

CCCCCCCCCA

2 RNC⇥NT .



2.3. ACTIVITY RECOGNITION WITH LOS-NET 37

Fig. 2.11 (c) shows an example of the corrected estimates by the refinement module,
showing that sporadic errors are corrected.

We train the refinement blocks of the refinement module using the following loss
function:

Lr = �1CE(Ý 1,Y ) + �2CE(Ý 2,Y ) + �3CE(Ý 3,Y ),

where CE() computes the log–softmax cross-entropy and �1, �2 and �3 are trade-off
parameters. The first CE() in the loss function is responsible for the first refinement
block and calculates the error between the output of the first refinement block Ý 1 and
ground truth Y . The second and third CE() in the loss function are responsible for the
second and third refinement blocks. By employing CE() for each refinement block, we
can efficiently guide the parameter update of the independent blocks. In addition, we
use a larger value of �n for a deeper block, enabling gradual correction of the errors in
the predictions of the decoder.

Data Augmentation for Refinement Module

Because we assume that the amount of training data is limited, it is possible that the
refinement module cannot learn various patterns of wrong estimates in Ý . Therefore,
we perform data augmentation using Ý0 (and Y ) and fine-tune the refinement module
on the augmented data independent of the encoder and the decoder. Refer to Section
2.3.6 for the procedure of training in detail.

Here, we introduce the procedure for performing data augmentation in this method.
Because an input of the refinement module is simple, i.e., a series of probability vectors
Ý0, we can randomly generate various inputs based on it. We randomly generate Ý r

from Ý0 in the training data by (i) changing the duration of each activity and (ii) insert-
ing sporadic errors. To generate various Ý r, first, we randomly extend/shorten the du-
ration of each segment of an activity in Ý0 by linear interpolation/down-sampling. For
example, when activity A occurs at time ta and its duration is da in Y , we shorten/extend
the duration by randomly sampling the new duration, dnewa . The new duration is sam-
pled from the normal distribution. The mean and variance of the normal distribution is
obtained from ground truth Y in training data.

Following this, we randomly insert error predictions in the series of probability vec-
tors. For each segment of an activity, we assume that the prediction errors follow a
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Poisson distribution and persist as an exponential distribution, and randomly generate
segments of the error predictions based on the assumption. Assume that an activity A
occurs between times ts and te. First, we randomly determine the number of error seg-
ments for inserting. Subsequently, for each error segment, we randomly determine the
start and end times using the above distributions. The start and end times are selected
from a segment between times ts and te so that the error segments do not overlap with
each other.

2.3.6 Network Training

We train the LOS-Net by backpropagation based on SGD with momentum by minimiz-
ing the following loss function:

L(✓e, ✓d, ✓r) = �0Lc(✓e, ✓d) + �bdLb(✓e, ✓d, ✓r) + Lr(✓e, ✓d, ✓r),

where ✓e, ✓d, and ✓r are the network parameters of the encoder, decoder, and refinement
module, respectively. �0 and �bd are trade-off parameters. In addition, Lc(·) is the cross-
entropy loss associated with the class prediction of the decoder, i.e. Lc = CE(Ý 0,Y ).

We train the model in two steps as it is difficult to train three refinement blocks si-
multaneously. First, we train the encoder, decoder, and the first refinement block for Ne1

epochs with a learning rate of lr1, using Lc, Lb, and the first term of Lr. Subsequently,
we train the second and third refinement blocks for Ne2 epochs with lr2 on the aug-
mented data, with Lr. To accelerate the training, the parameters of the second and third
refinement blocks were initialized with the weights of the first refinement block that had
already been trained in the first step. In the second step of training, the parameters of
the encoder, decoder and the first refinement block are fixed.

2.4 Evaluation

2.4.1 Dataset

We evaluated the LOS-Net using acceleration data collected from 11 workers at actual
factories and a logistics center. The data were collected from the smartwatches (Sony
SmartWatch3 SWR50) worn on both hands, with a sampling rate of approximately 30
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Table 2.1: Dataset overview

Worker A B C D E F G H I J K

# of periods 40 40 40 40 40 60 100 30 50 20 70
# of activities (NC ) 12 12 16 16 19 19 14 14 9 10 10
AVG period duration 117s 127s 132s 118s 104s 103s 81s 134s 68s 106s 135s
(SD of duration) (15s) (20s) (41s) (12s) (64s) (17s) (11s) (66s) (27s) (35s) (54s)
data duration 78m4s 84m57s 88m33s 78m52s 69m31s 103m58s 136m23s 67m11s 57m7s 35m22s 158m0s
work type SCREW SCREW CHECK CHECK SCREW SCREW CHECK CHECK PACK PACK PACK

Table 2.2: Work overview

Work Type Location Description

SCREW Factory Install screws on products
CHECK Factory Check final products and record results
PACK Logistics Center Pack multiple items in a box

Hz. The collected data were manually annotated to generate the ground truth labels us-
ing video recordings. Activity labels were labeled by employed annotators with super-
vision by industrial engineers. The definitions of the activities were determined based
on instruction documents of these tasks prepared by managers of the sites. Table 2.1
provides an overview of our dataset. Note that a “period” in the table implies one it-
eration of the activities, as shown in the upper part of Fig. 2.1. The work processes
conducted by the different workers are different. The “work type” row shows a rough
category of the work by each worker. An overview of the work types is provided in
Table 2.2. The packing works are highly variable compared to the other works because
the size and number of items to pack are different in different periods.

Because a flow of activities in an instruction document of a work process is provided
as a tree or a series of ordered activities (with branches described in text) in an Excel
file, we constructed a directed graph based on the flow. Fig. 2.13 shows the directed
graphs of example work processes.

As a preprocessing, acceleration values greater than +3 G or smaller than�3 G were
clipped to address the measurement errors. Subsequently, normalization was performed
for each axis.
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(a) Work Flow of Subject A (b) Work Flow of Subject I

Figure 2.13: Examples of work flows

2.4.2 Evaluation Methodologies

This study assumes that a limited amount of training data is provided. Therefore, for
each worker, first, we divided the obtained periods into sets of periods, with each set
being composed of ten periods, resulting in Nfold sets. Subsequently, we trained the
recognition model on a set of periods and tested the model on the remaining sets (i.e.,
Nfold � 1 sets). We repeated this procedure so that each set became the training data
once. For robust evaluation, we repeated this cross-validation five times with different
random seed settings. The recognition method was evaluated using the macro-averaged
F1-measure based on an estimate for each time step. The macro-averaged F1-measure
is a widely used metric that is less affected by a class imbalance because it is computed
by simply averaging the F1-measures computed for each class. Because our dataset is
class-imbalanced, we use this metric for this experiment.

To evaluate the effectiveness of the LOS-Net, we designed the following methods:

• SVM(W): This is a classic machine learning method using a sliding time win-
dow. In this study, we used a sliding time window with length 3 seconds without
overlap. Handcrafted features were extracted within a window and concatenated
to form a feature vector. Specifically, we extracted 14 types of features from
each axis based on prior activity recognition studies [70]. SVM with radial basis
function (RBF) was used.

• CNN(W): This is a re-implementation of BaselineCNN proposed in a related
study [63]. This model is a baseline for deep learning using a sliding time window.
Acceleration data within each window were fed into four convolutional layers,
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followed by two fully connected layers. The number of units and kernel size are
set as in the previous study.

• CNN: This method performs dense labeling (i.e., predicting a class label for each
data point) using only convolutional operations. The network is composed of
eight convolutional layers with a kernel length of five, followed by the output
layer. The numbers of filters in the first six layers and the last two layers are 64
and 128, respectively.

• ConvLSTM: We re-implemented the ConvLSTM model proposed in [63]. The
model consists of five convolution layers with stride 1 followed by two LSTM
layers with 128 hidden units. The number of units and kernel size were set as in
the related studies [63, 109].

• LOS-Net(+attn32): This is a variant of the proposed method, and applies self-
attention [89] instead of the WPCP module. The output of the encoder is fed into
an attention layer with 32 attention heads. The attention output is then multiplied
by the output of the encoder, and then fed into the context–boundary integrator.
Because of the slow convergence of this architecture, we trained this model for
800 epochs, which is twice the number of epochs of the proposed method.

• U-Net: We re-implemented the model proposed in [109]. This model consists of
five encoding and decoding blocks. Each block is composed of two convolution
and pooling/unpooling layers. The number of units and the kernel size were set
as in the related study [109]. This method is the one of the state-of-the-art models
for human activity segmentation.

• LOS-Net: This is the proposed method.

In the window-based approaches, i.e., SVM(W) and CNN(W), the prediction result
for a window is expanded to the size of the window, enabling calculation of the F1-
measure based on all time steps. In the training of window-based models, the activity
class at the last time step in the window is used as the ground truth for that window and
models are trained to predict them. In the segmentation approaches, a segment of length
60 s (i.e., NT corresponds to the length of 60-second data) is fed to the models.
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In addition, we developed the following methods to evaluate each function in the
LOS-Net:

• LOS-Net(-WPCP): This is a variant of the LOS-Net. This method does not use
the WPCP module (and the refinement module). Therefore, the output of the fifth
block is directly fed to the context–boundary integrator.

• LOS-Net(-B): This is a variant of the LOS-Net. This method does not use the
boundary detector (and the refinement module). Therefore, an input of the context–
boundary integrator is only an output of the WPCP module.

• LOS-Net(-R): This is a variant of the LOS-Net. This method does not use the
refinement module. Therefore, an output of this method is identical to an output
of the decoder.

• LOS-Net(-R2): This is a variant of the LOS-Net. This method does not execute
the second training step, i.e., refinement using the augmented data.

We implemented the models using PyTorch and Sklearn. We executed this experi-
ment on a GPU cluster. The accelerator used in this experiment is Geforce GTX 1080,
Geforce RTX 2070, Quadro RTX 8000, or Titan RTX. Table 2.3 lists the experimental
parameters used in this experiment. Different Ne1 were used depending on the exper-
imental settings and model characteristics. In Zhang’s experiment [109], the networks
were trained for 100 epochs. However, the number of batches per epoch, i.e., the num-
ber of model updates, is smaller in our experiment because the number of samples is
smaller. To compensate for this, we increased the number of epochs to Ne1 = 300.
For the methods that include boundary detection, i.e., LOS-Net, LOS-Net(-WPCP), and
LOS-Net(-R), we set Ne1 = 400. This is because the boundary detection task is harder
and requires more iterations to reduce the loss for boundary detection compared to the
segmentation task.

Table 2.4 shows the number of parameters for each method. The parameters for
the LOS-Net are approximately 1/10 of those for the U-Net. Compared to the U-Net,
the number of parameters of the LOS-Net is smaller for both the decoder and encoder.
As the LOS-Net resolves long-term dependencies with the WPCP module, we used an
encoder with a smaller number of blocks than for the U-Net. Note that to make the
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Table 2.3: Experimental parameters

Model Training (1st Step) Refinement (2nd Step)

CWPCP 128 Optimizer SGD with momentum Optimizer SGD with momentum
CSF 16 – momentum 0.9 – momentum 0.9
Crefine 2NC – lr1 5.00E-02 – lr2 1.00E-02
↵ (transition cost) 0.1 batch size 16 batch size 16
wcost 30pt Ne1 300 Ne2 100

Ne1 (w/ boundary detection) 400 �2 0.95
�0 0.95 �3 1
�1 1
Tbd 15pt
�fp 0.4
�fn 0.6

Table 2.4: Number of parameters in each network. The parameters of the convolutional
layers, LSTM layers, and fully connected layers were counted. NT was set to 1800 (=
60 s).

Model # of Params Model # of Params Model # of Params

CNN-WIN 7,454,346 U-Net 11,537,162.00 LOS-Net 963,620
CNN 229,130 – Encoder 6,296,096 – Encoder 437,824
DeepConvLSTM 296,330 – Decoder 5,241,066 – WPCP 442,368

– Boundary Detector 9,508
– Context–Boundary Integrator 10,500
– Refinement Module (single block) 21,140

U-Net capture long-term dependencies, it is necessary to use a large number of blocks,
resulting in a large number of parameters.

2.5 Results

2.5.1 Recognition Accuracy

Table 2.5 shows the macro-averaged F1-measure for each method, for each worker.
Surprisingly, the LOS-Net greatly outperformed the other methods for all the work-
ers. Specifically, the F1-measures of the LOS-Net were much higher than those of the
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Table 2.5: F1-measure (and standard deviation shown below F1-measure) of the meth-
ods for eleven workers trained on 10 periods of data.

Worker Work Type SVM(W) CNN(W) CNN ConvLSTM U-Net LOS-Net(+attn32) LOS-Net

A SCREW 0.298 0.230 0.220 0.421 0.497 0.494 0.831
(0.005) (0.028) (0.022) (0.055) (0.055) (0.017) (0.029)

B SCREW 0.335 0.230 0.230 0.377 0.631 0.493 0.835
(0.006) (0.019) (0.015) (0.077) (0.022) (0.035) (0.012)

C CHECK 0.672 0.590 0.766 0.726 0.852 0.820 0.880
(0.004) (0.011) (0.019) (0.061) (0.015) (0.004) (0.007)

D CHECK 0.627 0.541 0.775 0.711 0.833 0.811 0.858
(0.006) (0.037) (0.017) (0.123) (0.029) (0.006) (0.008)

E SCREW 0.250 0.174 0.427 0.547 0.888 0.787 0.923
(0.013) (0.039) (0.075) (0.199) (0.011) (0.010) (0.006)

F SCREW 0.231 0.211 0.252 0.310 0.727 0.518 0.795
(0.006) (0.034) (0.026) (0.093) (0.04) (0.009) (0.005)

G CHECK 0.424 0.421 0.752 0.716 0.815 0.743 0.859
(0.007) (0.009) (0.015) (0.055) (0.034) (0.011) (0.009)

H CHECK 0.249 0.326 0.501 0.425 0.571 0.499 0.617
(0.007) (0.017) (0.008) (0.064) (0.026) (0.020) (0.017)

I PACK 0.299 0.272 0.431 0.298 0.537 0.369 0.565
(0.009) (0.016) (0.02) (0.051) (0.011) (0.009) (0.009)

J PACK 0.297 0.227 0.321 0.224 0.398 0.384 0.505
(0.017) (0.043) (0.015) (0.027) (0.086) (0.018) (0.017)

K PACK 0.318 0.277 0.335 0.282 0.450 0.398 0.535
(0.004) (0.008) (0.01) (0.048) (0.024) (0.005) (0.005)

window-based methods, i.e., SVM(W) and CNN(W). The duration of each activity var-
ied, as shown in Fig. 2.1, resulting in poor performance of the window-based methods.
Interestingly, the performance of the SVM(W), which is based on classic machine learn-
ing, is not very different from that of the CNN(W). This could be because the CNN(W),
which is a feature learning approach, could not extract meaningful features from a lim-
ited amount of training data. The CNN outperformed CNN(W) for many workers, indi-
cating the effectiveness of dense labeling in this task. However, the F1-measures of the
CNN were still poorer than those of the LOS-Net.

The LOS-Net also significantly outperformed the state-of-the-art recurrent model,
i.e., ConvLSTM. Surprisingly, the F1-measure of the LOS-Net was higher than that of
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the ConvLSTM by more than 30% for four workers. For the recognition of ordered
work, the temporal relationship with the previous/next activities is crucial. It seems that
the ConvLSTM fails to capture such a long-term context for ordered work sequences
with limited training data. Specifically, it was difficult for the LSTM layers in the Con-
vLSTM to capture the information of the next activity. The LOS-Net also significantly
outperformed the state-of-the-art U-Net by about 10% on average even though the num-
ber of parameters of the LOS-Net is approximately 1/10 of that of the U-Net. Specif-
ically, the LOS-Net outperformed the U-Net by 3.4–30% for the screwing tasks. The
screwing tasks contain similar activities (e.g., screwing different parts), making it diffi-
cult to discriminate between these activities. However, the LOS-Net can recognize these
activities while considering the long-term context and predefined order of activities. Al-
though an attention mechanism is effective for leveraging sensor data segments that are
useful for activity recognition, the training of an attention model is a data-hungry pro-
cess. Therefore, LOS-Net(+attn32) did not work well under our scenario. Moreover, the
F1-measures for the packaging tasks were poorer than those for many other tasks across
all the methods. This could be due to the packaging tasks being highly variable as the
number of items to pack varies in different periods. However, the LOS-Net achieved
the highest F1-measures for the packaging tasks.

Table 2.5 also shows the standard deviations of the F1-measures (inside parenthe-
ses). The standard deviations of the state-of-the-art deep models (U-Net and ConvL-
STM) are large in many cases, as shown in Fig. 2.2. In contrast, the standard deviations
of the estimates for the classic model, i.e., SVM(W), and the LOS-Net are small. As the
SVM(W) uses hand-crafted features, the estimates of the method are stable. In contrast,
the U-Net and ConvLSTM do not seem to learn effective features with limited train-
ing data. These results also indicate that the LOS-Net can learn efficient features with
limited training data.

Figure 2.14 shows example estimates of the LOS-Net, U-Net, and ConvLSTM. The
LOS-Net can precisely recognize activities with small errors at several activity bound-
aries. In the case of worker A, activities 2–10 comprise screwing activities. These activ-
ities were incorrectly estimated as activities 3, 10 or 11 by the U-Net and ConvLSTM
as shown in Fig. 2.14 (a), resulting in the low macro-averaged F1-measures of these
methods. In the screwing work, similar screwing activities are iterated several times;
therefore, it is important to capture long-term information on surrounding activities to
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(a) Worker A (b) Worker G

Figure 2.14: Examples of ConvLSTM, U-Net, and LOS-Net outputs

precisely recognize these activities. U-Net and ConvLSTM seem to fail to capture these
long-term dependencies, resulting in incorrect classification of all screwing activities
into specific classes (i.e., activities 3, 10, and 11). Similar incorrect predictions were
observed for workers B, E, F, I, J, and K.

The hand motions of activities in the item checking work are dis-similar with each
other unlike the screwing work. Therefore, even when long-term dependencies cannot
be extracted, these activities can be recognized with relatively high accuracy. However,
U-Net and ConvLSTM sometimes made wrong predictions when the duration of the
activity was long such as activity 1 in Fig. 2.14 (b). The LOS-Net suppresses such
errors by leveraging prior knowledge on the order of the work process.

2.5.2 Contributions of WPCP module, Boundary Detector, and Re-
finement Module

As shown in Table 2.6, the F1-measures of LOS-Net(-WPCP) are much poorer than
those of LOS-Net, suggesting that the WPCP module is the best contributor. Therefore,
capturing long-term context is necessary to achieve the high recognition performance
for the ordered works. In addition, as shown through the results of LOS-Net(-R) and
LOS-Net, the refinement module also improves the F1-measures by approximately 2–
5% for many workers. The refinement module also leverages the predefined order of
activities, indicating that information on the order of activities is crucial in this task. The
results of LOS-Net(-R2) and LOS-Net suggest that the data augmentation conducted for
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Table 2.6: Results of ablation study

w/o Refinement Module w/ Refinement Module
Worker Work Type LOS-Net(-WPCP) LOS-Net(-B) LOS-Net(-R) LOS-Net(-R2) LOS-Net

A SCREW 0.372 0.804 0.750 0.811 0.831
(0.018) (0.015) (0.043) (0.025) (0.029)

B SCREW 0.366 0.828 0.790 0.801 0.835
(0.021) (0.026) (0.048) (0.046) (0.012)

C CHECK 0.805 0.875 0.871 0.874 0.880
(0.008) (0.003) (0.005) (0.004) (0.007)

D CHECK 0.815 0.857 0.854 0.855 0.858
(0.004) (0.005) (0.004) (0.006) (0.008)

E SCREW 0.729 0.901 0.902 0.917 0.923
(0.011) (0.008) (0.018) (0.006) (0.006)

F SCREW 0.481 0.743 0.771 0.781 0.795
(0.008) (0.016) (0.003) (0.006) (0.005)

G CHECK 0.754 0.734 0.856 0.855 0.859
(0.018) (0.201) (0.019) (0.013) (0.009)

H CHECK 0.506 0.541 0.599 0.608 0.617
(0.014) (0.146) (0.019) (0.016) (0.017)

I PACK 0.381 0.511 0.534 0.551 0.565
(0.01) (0.017) (0.010) (0.006) (0.009)

J PACK 0.329 0.493 0.489 0.489 0.505
(0.01) (0.008) (0.016) (0.013) (0.017)

K PACK 0.327 0.532 0.518 0.528 0.535
(0.007) (0.005) (0.013) (0.007) (0.005)

the refinement also improved the F1-measures by approximately 1–2% in many cases.
Moreover, while it seems to be difficult to recognize the ordered work using only the
boundary detector, the boundary detector can fine-tune the prediction results.

2.5.3 Effect of Refinement

Figure 2.15 shows example estimates with and without the use of the refinement mod-
ule; LOS-Net(-R), LOS-Net(-R2), and LOS-Net. The prediction of the model without
the refinement module, i.e. LOS-Net(-R), contained several sporadic errors as shown in
Fig. 2.15 (a). Activity 5 of worker I is a long-duration activity, lasting more than 10 s,
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(a) Worker E (b) Worker I

Figure 2.15: Examples of LOS-Net(-R), LOS-Net(-R2), and LOS-Net outputs

and the workflow shown in Fig. 2.13 (b) shows that there are no transitions from activity
5 to activities 2, 7 and 8. However, the results of LOSNet(-R) contained transitions from
activity 5 to activities 2, 7, and 8 multiple times, as shown in Fig. 2.15 (b). The methods
using the refinement module, i.e., LOS-Net and LOS-Net(-R2), managed to suppress
these incorrect transitions.

2.5.4 Effect of Boundary Detection

The boundary detector greatly improved the F1-measures for workers G and H as shown
in Table 2.6. Fig. 2.16 indicates that the boundary detector has an ability to suppress
sporadic errors. In contrast, the boundary detector was not very effective for work-
ers A–E. This can be because we could achieve very high F-measures with only the
WPCP module. As for workers I–K, the boundary detector was also not very effective.
Table 2.7 shows average precision (AP) and its standard deviation of the boundary de-
tection in the LOS-Net. The AP was first calculated for each class and then averaged
across all classes. The APs of the boundary prediction were poor for workers I–K. This
can be because the tasks undertaken by them, i.e., packing works, were highly variable.
This is the reason why the boundary detector was not effective for these workers.
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(a) Worker F (b) Worker G

Figure 2.16: Examples of LOS-Net(-B) and LOS-Net(-R) outputs

Table 2.7: Classification accuracy of boundary detection (macro-averaged precision)

Worker A B C D E F G H I J K

AP 0.485 0.554 0.682 0.722 0.790 0.655 0.662 0.376 0.172 0.072 0.089
(SD) (0.043) (0.055) (0.011) (0.011) (0.046) (0.016) (0.014) (0.006) (0.021) (0.014) (0.004)

2.5.5 Discussion

Amount of Training Data

The experimental evaluation used 10 periods of data as training data, which comprised
data with a duration of approximately 15 minutes. Here, we investigate the effect of the
amount of training data on the recognition performance of the methods. We used a set
of ten-period data as test data and the remaining periods were used as a pool of training
data. Fig. 2.17 shows the F1-measures of the U-Net and LOS-Net when we changed the
amount of training data. As shown in the results, the LOS-Net outperformed the U-Net
in many cases even when the amount of training data is large. This can be because
the WPCP module, which has a large receptive field, captures long-term contexts that
are difficult to capture by the U-Net. As for workers A and B, the LOS-Net greatly
outperformed the U-Net when the number of training period was five. Even when the
number of training period is less than five, the LOS-Net outperformed U-Net in many
cases. Because the number of parameters of LOS-Net is much fewer than that of U-
Net, LOS-Net can efficiently capture crucial information on ordered work with limited
training data. Specifically, dilated convolution kernels of the WPCP module provide
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Figure 2.17: Transitions of recognition accuracy of U-Net and LOS-Net when we vary
the amount of training data. This experiment was conducted five times by changing the
random seed. Because the amount of data is limited for workers H and J, we did not
conduct this experiment for these workers.

a wide receptive field with few parameters. Note that, when the number of training
periods is low (e.g., 1–5), the test accuracy of the methods seems to be unstable. This
might be because when the amount of training data is limited, the test accuracy is greatly
affected by the quality of the limited training data applied. For example, sensor data of
packing tasks greatly vary depending on items to pack. When outlying periods, e.g.,
packing many items or packing vary large items, are included in training periods, these
outlying periods have a negative impact on the training process of LOS-Net. However,
LOS-Net still outperforms U-Net even when the number of training periods is very low,
indicating the effectiveness of LOS-Net in such cases.

2.6 Conclusion

This study presented a new activity recognition method for ordered manual tasks, such
as assembly work and packaging tasks in factories. The proposed LOS-Net is a lightweight
model that can be trained on a limited amount of training data. The LOS-Net is designed
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to extract necessary information related to the order of work: (i) the boundary informa-
tion between consecutive activities and (ii) the long-term context regarding the ordered
works, e.g., information regarding the previous/next activities. The LOS-Net also has a
module for correcting sporadic errors in estimates according to prior knowledge related
to the predefined order of activities. Using data collected in actual industrial scenarios,
our experiment demonstrated the effectiveness of the LOS-Net. The LOS-Net signifi-
cantly outperformed other state-of-the-art deep models. As a part of our future study,
we plan to extend our method to solve the panoptic segmentation task [34].
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Chapter 3

OpenPack: A Large-scale Dataset for
Recognizing Packaging Works in
IoT-enabled Logistic Environments

In this chapter, we describe our new large-scale public dataset in industrial domain. We
also explore method to fuse sensor and IoT data in efficient way.

3.1 Introduction

In industrial environments such as factories and logistics centers, human workers con-
tinue to perform important roles in ensuring flexible responses to rapidly changing de-
mands of customers and suppliers. Specifically, the number of workers employed in
logistics continues to increase [49, 77], and this trend is expected to persist in the future
[36, 66, 100]. For example, Amazon ships 2.5 billion packages annually in the U.S.,
which highlights the significance of streamlining shipping processes in global and re-
gional supply chains. Aiming to streamline work processes performed by human work-
ers and enable enterprises to make business decisions based on granular work informa-
tion, digitization is being widely implemented in industrial environments as part of the
Industry 4.0 transformation. In Industry 4.0, digitized data on human motion acquired
from sensor systems and readings from IoT-enabled devices (e.g., connected handheld
terminals) are expected to be used to achieve work activity recognition to quantify and

53
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streamline work processes performed by human workers. Therefore, activity recogni-
tion for human workers in industrial domains has recently attracted attention as a topic
of active research [95, 94, 52, 103].

However, the following challenges should be addressed to enhance work activity
recognition studies.

• Lack of datasets for industrial domains: The amount of publicly available
datasets for industrial domains containing complex activities (e.g., manufacturing
and packing/picking tasks) remains limited, and many of the available activity
recognition datasets focus only on simple daily activities (e.g., walking and run-
ning). Fig. 3.1 shows a typical series of packaging tasks iterated several times,
with each iteration of the process (i.e., period) comprising a sequence of opera-
tions in which the acceleration data indicate the complexity of operations. While
a dataset is available for the logistics domain [59], the activity classes used do not
reflect the complex work process1. In addition, the size of many existing datasets
does not suffice to fulfill the basic requirements of deep learning.

• Limited modality: Many public datasets for manual tasks provide only vision-
related modalities. However, because many types of manufacturing equipment
and storage systems are installed in industrial environments, occlusion tends to
pose challenges in applying vision-only approaches.

• Difficulties in human–IoT data coordination: Although digitization is pro-
gressing in actual industrial domains as part of the development of Industry 4.0,
to the best of our knowledge, no datasets on activity recognition that include both
sensory data on human motions and readings from IoT-enabled devices operated
by the human workers are publicly available.

• Lack of rich metadata: Many of the available datasets do not provide a rich set
of metadata related to manual works such as a set of the items to be packed, which

1The LARa dataset [59] does not consider the difference between work activities (e.g., packing items
and making a shipping box) in the definition of activity classes. Instead, these activities are defined as
handling-related classes, including handling (upward), handling (centered), and handling (downward),
which are defined as handling items and boxes at different positions. For example, in handling (upward),
a subject handles items with at least one hand reaching shoulder height.
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Scan Label

Close Box

Figure 3.1: Illustration of the OpenPack dataset. A subject iterated a typical series of
packaging works, with each iteration of the process (i.e., period) comprising a sequence
of complex operations.

limits the understanding of recognition results and the design of new, enhanced
research tasks.

To address these challenges, in this study, we propose a new multimodal dataset for
packaging work recognition in logistics, called OpenPack (Fig. 3.1). OpenPack consists
of 20, 129 instances of activities (operations) and 52, 529 instances of actions with 9
types of modalities captured from 16 distinct subjects with various levels of experience
performing packaging tasks. The features of OpenPack are summarized as follows. (i)
OpenPack is the first large-scale dataset for packaging work recognition that contains
readings from IoT-enabled devices. (ii) OpenPack provides multimodal work activity
data, including sensory data from body-worn inertial measurement units (IMUs), depth
images, and LiDAR point clouds for use in research on multi-/crossmodal, IMU-only,
and vision-only work activity recognition according to conditions in an expected target
environment. (iii) OpenPack also provides a rich set of metadata such as subjects’ levels
of experience in packaging work as well as their physical characteristics, enabling the
design of various research tasks (e.g., assessment of workers’ performance) in addition
to basic work activity recognition.

One of the main features of OpenPack is that it contains readings from IoT-enabled
devices operated by subjects. Although high performance is required of work activ-
ity recognition methods in industrial domains to develop critical applications such as
outlier detection, even state-of-the-art activity recognition methods cannot achieve suf-
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ficient performance by using noisy sensor data (e.g., vision-based and IMU sensor data).
Leveraging high-confidence readings from IoT-enabled devices, which strongly relate
to activities performed (e.g., readings from a handheld scanner to detect the “scan label”
operation), is expected to provide a key enabler to achieve precise recognition for real
applications.

Although readings from IoT-enabled devices are highly confident, they are sparse in
time because in general they are recorded only when a worker operates a device. There-
fore, an efficient strategy of activity recognition using such IoT data with noisy sensor
data (e.g., IMU data) may consider (i) leveraging available readings from IoT-enabled
devices as high-confidence anchors and then (ii) predicting an activity class at a time
step when readings are unavailable by referring to the sensor data and anchors surround-
ing the time step of interest. That is, because activity classes can be precisely predicted
at a time step when readings from IoT-enabled devices are available, we predict an ac-
tivity class at a time step when IoT data are unavailable by referring to surrounding IoT
data as anchors. However, even for state-of-the-art human activity recognition methods
that assume sensor data as input, there is no guarantee that a recognition model trained
by these methods would learn the abovementioned efficient recognition strategy if sen-
sor and IoT data were simply fed into the recognition model. Therefore, in this thesis,
we propose a novel activity recognition model for sensor and IoT data, called a ladder-
shaped two-stream network (LTS-Net), which is designed to be guided to learn the
abovementioned strategy. LTS-Net processes sensor data and high-confidence IoT data
in different streams and updates information in each stream by referring to information
in different streams while preserving information on the IoT data in deeper layers.

The key contributions of this research are summarized as follows: i) To the best of
our knowledge, OpenPack is the largest dataset on industrial work activity recognition.
We expect this data to contribute to research on industrial AI systems by providing a
challenging task, that is, to complex activity recognition via sensor and sparse IoT data.
ii) We propose LTS-Net to effectively utilize sparse readings from IoT devices via a
ladder structure. iii) The results of the experimental evaluation showed that LTS-Net
significantly improved the performance, indicating the usefulness of the readings from
IoT devices and the effectiveness of the ladder structure in our method.
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Table 3.1: Overview of public datasets of human activities/works. D: Depth, Acc: Ac-
celeration data, Gyro: Gyroscopic data, Ori: Orientation sensor data, EDA: Electroder-
mal activity, BVP: Blood volume pulse, Temp: Temperature.

Recording Activity # of Annotated
Domain Datasets Type of Task Length Class* work period Instances Subjects Modality IoT Devices View Year

Multi-modal
MHAD Daily Actions 82m 11 N/A 660 12 RGB+D+Keypoints+Acc+Mic No 12 2013
UTD-MHAD Daily Actions 9m 27 N/A 180 8 RGB+D+Keypoints+Acc+Gyro No 1 2015
MMAct Daily Actions 17h35m 37 N/A 36,764 20 RGB+D+Keypoints+Acc+Gyro

+Ori+WiFi+Pressure
No 4+Ego 2019

Cooking
CMU-MMAC Cooking - 5 186 186 39 RGB+D+Keypoints+Acc+Mic Yes (RFID) 5 2010
50 Salads Cooking 4h 52 50 2,967 25 RGB+D+Acc Yes (Acc) 1 2013

Procedural Activity
COIN Instruction Video 476h38m 180 N/A 46,354 N/A RGB (Youtube) No N/A 2019
IKEA-ASM Furniture Assembly 35h16m 33 371 16,764 48 RGB+D+Keypoints No 3 2021
Assembly101 Toy Assembly 42h+ 202 362 1M+ 53 RGB No 12 2022

Industrial

InHARD Industrial Actions 18h30m 14 + 72 38 4800 16 RGB+Keypoints (3D) No 3 2020
ABC Bento Bento Packaging 3h22m 10 199 151 4 MOCAP No 1 2021

LARa
Picking

14h50m 8 + 19
324 8878 16

RGB+Keypoints (3D) +Acc+Mic No 1
2020

Packaging 125 2103 10 +2022
OpenPack Packaging 53h50m 10 + 32 2048 20,129 16 D+Keypoints+LiDAR+Acc+Gyro

+Ori+EDA+BVP+Temp
Yes 2 2022

*When action classes are defined in a hierarchical manner, the numbers of classes in different levels are shown with separator “+”.

3.2 Related Work

3.2.1 Datasets on Manual Tasks

Although many multimodal, vision-based, and IMU-based datasets for daily activity
recognition have been made publicly available [84, 61, 13, 37], the number of publicly
available datasets for work activity recognition in industrial domains remains limited.
Table 3.1 summarizes the attributes of datasets on human activities and manual labor.
To the best of our knowledge, the LARa dataset [59, 58] is the only dataset on work
activity recognition in logistics. However, the activity classes used in the dataset do not
reflect the complexity of work processes well, and the number of activity (operation)
instances is limited, as mentioned in the introduction. In addition, the dataset does not
provide readings from IoT-enabled devices or a rich set of metadata.

The InHARD dataset [16] and the ABC Bento packaging dataset [4] are designed to
accelerate human-robot collaboration in industrial settings. The InHARD dataset con-
sists of RGB and 3D keypoint data from 16 subjects collected while they were assem-
bling various parts and components. The ABC Bento Packaging dataset is a dataset that
captures activities related to bento packaging. This dataset focuses on common mistakes
made by bento manufacturers, such as “forgetting to put in ingredients,” and provides



58 CHAPTER 3. OPENPACK DATASET

labels only for outlier types. The ABC Bento Packaging dataset is quite small to be
applied to data-driven algorithms, such as deep learning. These vision-based datasets
also lack sensor data modalities. In contrast, OpenPack is a large-scale dataset contain-
ing 20, 129 work operation instances with multimodal sensor data. The activity label set
used in this dataset was designed based on operations specified in instruction documents
used at actual logistic centers. In addition, OpenPack provides a rich set of metadata
such as the size and item code (JAN code) of each item and a set of items to be packed.

Datasets of various complex procedural activities are also available. Specifically,
many multimodal/vision-based cooking activity datasets are available such as CMU-
MMAC [84], 50 Salads dataset [85], Breakfast Actions Dataset [38], EPIC-KITCHENS
[17], and the Cooking Activity Dataset [39]. Vision-based datasets focused on proce-
dural activities other than cooking include IKAE-ASM [10] and Assembly101 [79] for
assembling furniture and toys, and COIN, a collection of instructional videos collected
from YouTube. As noted above, many multimodal or vision-based datasets on manual
tasks in daily life have been made publicly available. In contrast, the availability of
public datasets for industrial domains remains limited, and OpenPack is the first large-
scale dataset for activity recognition in industrial domains. This may be attributed to
the difficulties in collecting datasets for industrial domains compared to everyday tasks.
Collecting data for industrial applications requires close collaboration with industrial
engineers working in an actual target environment to coordinate an experimental envi-
ronment with various equipment for the target task, to define a set of activity labels by
obtaining an actual work instruction document used in the target industrial environment,
and to employ workers with experience in the target task as research subjects.

3.2.2 Sensor-Based Activity Recognition Methods

A number of activity recognition methods have been proposed. Methods that use IMU
sensors include DeepConvLSTM [82], U-Net [109], and Conformer [32]. LOS-Net
[103] and MGA-Net [52] were designed to recognize activities in industrial applica-
tions. Vision-based approaches have also been proposed, such as I3C [11], ST-GCN
[97], and MVT [96]. Although vision-based methods are very powerful, packaging
work is typically subject to occlusion caused by large items or boxes. Therefore, we
evaluated the proposed method on IMU sensor data. Several sensor fusion methods



3.3. OPENPACK DATASET 59

have been proposed for multimodal activity recognition, such as Multi-GAT [30], and
early/late fusion [54]. Data from IoT-devices are sparse but have a strong relationship
with specific activity classes, which is quite different from other sensor data. However,
these methods do not consider this property.

3.3 OpenPack Dataset

OpenPack2 is the first multimodal large-scale dataset for activity recognition in indus-
trial domains. 16 distinct participants packed 3,956 items in 2, 048 shipping boxes in
total, and the total duration of our dataset is 53.8 hours, consisting of 104 sessions (see
below). The total number of collected work operations and actions are 20, 129 and
52, 529 respectively. The average lengths of operations and actions are 9.2 and 4.1 sec-
onds respectively. OpenPack is the largest industrial dataset that includes both vision
and wearable sensor data with precise labels by annotators. The most similar dataset to
OpenPack is LARa [59], but the total data duration of LARa is 14.8 h. Further details
are introduced as follows.

3.3.1 Packaging Work

As shown in Fig. 3.1, a typical series of complex operations is iterated, with each iter-
ation (i.e., period) comprising a sequence of operations such as assembling a shipping
box and filling the box with items. In a given work period, a worker processes a single
shipping order. That is, the worker picks items in a specified order, double-checks the
items, assembles a shipping box, fills the box with the items, and so forth to complete
the order. When performing specific operations, the worker uses IoT-enabled devices
such as a handheld barcode scanner, and the operation is recorded and transmitted by
the device. Because the size of items to be packed, the number of items, and the size of
shipping items depend on shipping orders, sensor data collected in different work peri-
ods and the duration of the same operation in different work periods vary. The task of
recognizing specific actions is challenging owing to these characteristics of packaging
work.

2https://open-pack.github.io/
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Figure 3.2: Total recording length of each operation

3.3.2 Data Construction

Classes

Operation classes used in OpenPack were defined based on an instruction document
used in an actual logistics center. The document specifies a sequence of operations per-
formed by a worker, and each worker in the center performs operations according to
the document. Therefore, the basic activities performed by all workers, i.e., operations,
were used to label the dataset. Our dataset contains ten classes of operations, includ-
ing picking, relocating item labels, assembling boxes, inserting items, closing the box,
attaching a label to the box, scanning the label, attaching a shipping label, placing the
item on a rack, and filling out an order. Note that many other logistics centers also uti-
lize patterns of operations very similar to those used in this study. Fig. 3.2 shows the
distribution of the total recording length of each operation.

An instructional document also contains a description of each operation that explains
how to perform the operation. For example, a description of the “relocate item label”
operation is given as “Remove the label from the items and place it on the bottom margin
of the packaging list. Check the product name and quantity on the list and label with a
ballpoint pen.” Based on the description, we also defined a set of action classes included
in each operation. For example, as shown in Fig. 3.1, the “assemble box” operation is
composed of four actions, including “pick up cardboard,” “bend flap,” “attach tape,” and
“turn over box.” Our dataset contains 32 action classes in total. The action classes are
useful to enable a manager in a logistics center to assess the status of a job in progress
in detail.
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Subjects

We invited 16 subjects to participate in our data collection process. The ages of the
subjects were ranged from 20 and 50. 12 subjects had experience in packaging work
ranging from 1 month to 4 years. In addition, 4 subjects did not have work experi-
ence. One subject was left-handed. Each subject was assigned a consistent identifier
throughout the entire dataset.

Sessions and Work Periods

In our dataset, a session is composed of iterations of work periods. In each work period,
a subject processes the items on an order sheet. To complete the order, the subject
performs the operations specified in the instruction document.

3.3.3 Data Collection

Collection Environment

We collected data in a dedicated environment shown in Fig. 3.3. With the help of in-
dustrial engineers, we constructed a 3m ⇥ 5m environment designed to simulate an ac-
tual workspace in a logistics center. The environment mainly comprised a workbench,
a back table on which items were placed after being picked from shelves by another
worker, boxes containing air cushions, and a trash can. The distance between the work-
bench and the back table was approximately 2 meters, and a worker worked between
the bench and the back table. A handheld barcode scanner, a printer, and craft tapes
used for packaging were located on the right side of the table. Four types of cardboard
boxes were available for packing, including small, medium, large, and extra-large sizes,
as shown in Fig. 3.3.

Data Modalities

OpenPack provides nine data modalities, including acceleration, gyroscope, quaternion,
blood volume pulse (BVP), and electrodermal activity (EDA) data, temperature, as well
as keypoints, a LiDAR point cloud, and depth images collected in the dedicated envi-
ronment. Four IMU units were attached to the subject’s left and right wrists and upper
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Figure 3.3: Environmental setup

arms to collect acceleration data on three axes, as well as gyroscope and quaternion data
at 30 Hz. In addition, two Empatica E4 sensors were attached to the subject’s left and
right wrists to collect BVP and EDA signals at 64 Hz and 4 Hz, respectively, in addition
to acceleration data at 32 Hz. Kinect and LiDAR sensors were installed as front-view
cameras and RealSense (RS02) as a top-view camera as shown in Fig. 3.3. The LiDAR
sensor was considered effective in accurately tracking the subject’s position when they
were away from the workbench.

OpenPack also provides operational logs of IoT-enabled devices, i.e., the handheld
scanner and label printer, in the environment. The operational logs of the handheld
scanner, for example, contain a time-stamp of a scan and an identifier of a scanned item.
These are highly reliable sources of information for recognizing the scanning operation
and may improve recognition performance.

Data Collection Procedure

Before data collection, each subject received instructions related to the outline of the
experiment and the operations to be performed based on the instruction document. Sub-
sequently, we obtained the informed consent of the subjects, who then practiced the
packaging work by performing work periods up to five times. Subsequently, we acti-
vated and calibrated the sensors and attached the wearable sensors to the subjects.

The subjects iterated up to five data collection sessions within 6 h (including a 60-
min lunch break). At the beginning of each session, the subject received 20 order sheets
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and then sequentially processed the sheets. That is, the subject completed 20 shipping
boxes in the session. A 15-min break was included between two consecutive sessions.
Note that each session was conducted under either one of the following four scenarios.
After data collection, the data were labeled by annotators with 5-6 years of experience
in human/animal activity data labeling by reference to the RGB images with the help of
industrial engineers.

Scenarios

The difficulties in packaging work recognition depend on various factors in logistics
centers. For example, (i) some experienced workers alter operational procedures to im-
prove efficiency, (ii) the size and the number of items greatly affect workers’ movements
and sensor data, and (iii) workers sometimes perform irregular activities. To simulate
these situations and factors, we prepared the following four scenarios. Scenario 1 was
the most basic setup, in which workers followed instructions in principle. Scenario 2 al-
lowed workers to make changes to the work procedures according to their own judgment
and involved a richer variety of combinations by adding new items. Scenario 3 intro-
duced irregular activities, such as picking items for several boxes at once. In Scenario
4, a sound alarm was introduced to hurry workers to simulate a busy situation.

Metadata

OpenPack provides a rich set of metadata, which is mainly composed of subject- and
order-related metadata. The subject-related metadata contains information regarding
each of the participants’ experience in packaging tasks, as well as their dominant hand,
gender, and age.

Order-related metadata contains information regarding an order sheet processed by
a subject in a work period. OpenPack assumes an online order management system and
provides information regarding an identifier of an order and a set of items to pack in the
order. The management system also stores information regarding an identifier, product
code, and the size of each item. These identifiers are used to manage items in an order
management system. In contrast, product codes are unique numbers for each item,
which are widely used in retail sales and enable information to be retrieved regarding
an item, such as product name, product type, and price. OpenPack also provides this
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information.
In addition to the above order information, which can be automatically obtained

from the order management system, OpenPack also provides manually annotated meta-
data regarding mistakes and accidents in each period. For example, operations that
a subject forgot to perform and those that were conducted in the wrong order were
recorded.

Potential Research Tasks

In addition to basic operation and action recognition using depth or wearable sensors,
OpenPack enables various designs of research tasks, which includes the following: (i)
transfer learning across workers/sensor positions, (ii) crossmodal transfer learning us-
ing, e.g., knowledge distillation [37], (iii) skill assessment using sensor data and meta-
data related to work experience as ground truth, (iv) failure detection using sensor data
and metadata related to mistakes as ground truth, (v) counting the number of necessary
actions or the number of packed items using sensor data, (vi) estimating workers’ levels
of fatigue using sensor and physiological data.

3.4 Ladder-Shaped Two-Stream Network
with Sparse Anchoring (LTS-Net)

Based on the OpenPack dataset, we propose a new activity recognition model that ef-
fectively utilizes sparse readings from IoT-enabled devices. There is a strong connec-
tion between devices in use and a user’s current activity. For example, when a subject
uses a handheld scanner, the activity label for that moment would be “scan label.” In
this study, we leverage the high-confidence source, i.e., readings from IoT-enabled de-
vices, as an anchor to precisely recognize activities (operations). To efficiently leverage
anchors, we propose a LTS-Net for time-series classification (Fig. 3.4). The ladder-
shape is composed of bidirectional feedback blocks (BF blocks) comprising two ver-
tical streams, i.e., a feature stream and an anchor stream, and feedback branches that
are used to exchange information between the streams. Sensor data (e.g., IMU data)
are fed into the feature stream after initial feature extraction by the encoder, and feature
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Figure 3.4: Architecture of Ladder-shaped Two-stream Network

extraction is performed. Anchors and pseudo-estimates of activity classes generated
from the anchors are fed into the anchor stream, and the pseudo-estimates are refined
in deeper layers. By performing feature extraction and activity class estimation in dif-
ferent streams, we can refine pseudo-estimates generated from high-confidence anchors
by referring to sensor data while retaining the high-confidence information in deeper
layers.

3.4.1 Preliminary

We assume that x0 is time-series sensor data, such as acceleration and skeleton data, and
a 2 RNA⇥T is derived from readings from IoT devices, i.e., anchors. The outputs of
the model ýout 2 RNC⇥T are the probability of each activity (operation) label for each
time step. NA, NC , and T denote the number of anchor channels, the number of activity
classes, and the length of the time series, respectively. For example, when two types
of usages of IoT-enabled devices are available, e.g., scanning with a handheld scanner
and printing with a label printer, NA is 2. When the handheld scanner (i-th channel)
is used at time t, ai,t is set to 1. Otherwise, it is set to 0. In the example of the upper
portion of Fig. 3.5, the use of the handheld scanner corresponds to the 1st channel and
its corresponding value is 1 when it is used.
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3.4.2 Anchor Stream

To efficiently leverage anchors, an anchor sequence a, a pseudo-label sequence ý0 gen-
erated from a, and an anchor mask MA are fed into the anchor stream; Fig. 3.5 shows
an example. ý0 2 RNC⇥T is an initial pseudo-estimate of class probabilities calcu-
lated from a set of possible activity classes at each time step t determined based on
the anchor. We define a function that calculates the possible activity set at time t as
C(a, t). For example, when the handheld scanner is used at time t, i.e., at = [1, 0]T,
C(a, t) = {ScanLabel}, which is determined based on labeled training data. In con-
trast, when no IoT devices are used at time t, i.e., at = [0, 0]T, C(a, t) is a set of all the
activity classes because we cannot determine specific possible activity classes based on
at. An initial estimate (pseudo-label) at time t for the c-th class is calculated as follows.

ýc,t0 =

8
<

:
1/|C(a, t)|, c 2 C(a, t)

0, otherwise

As shown in the middle panel of Fig. 3.5, when the handheld scanner was used, the
element corresponding to Scan Label was 1, and the other elements were 0. When no
IoT devices were used at time t, |C(a, t)| was identical to NC and the class probability
(pseudo-label) was uniform, i.e., 1/NC , among all the classes. ý0 is updated within the
deeper layers in the anchor stream by referring to sensor data features.

Avoiding changing the high-confidence parts in the pseudo-labels is important in
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deeper layers. An anchor mask MA 2 RNC⇥T is introduced to specify elements of ýl

to be updated in the BF block. An element of the mask for the c-th class at time t, i.e.,
M c,t

A , is defined as follows.

M c,t
A =

8
<

:
0, ýc,t0 2 {0, 1}

1, otherwise.

As shown in the lower panel of Fig. 3.5, when probability 0 or 1 is assigned to the
ýc,t
0 , the corresponding element of the mask is set to 0 because we want to fix the high-

confident estimate. Otherwise, we assign 1 to allow updating the low-confident estimate
in the BF block.

3.4.3 Bidirectional Feedback Block (BF Block)

As shown in Fig. 3.4, LTS-Net comprises multiple BF blocks, each of which consists
of a pair of feedback branches and a set of modules between them. BF blocks extract
features from sensor data and update ý0 to make predictions by referring to the ex-
tracted features. The inputs to the l-th block are the outputs of the previous block: xl�1,
ýl�1, and MA. The output of this block is xl and ýl�1, with the same shape as the
corresponding input. ýl from the last BF block is the final output of LTS-Net.

Smoothing is first applied to the input pseudo-labels ýl�1. This removes sponta-
neous activity transitions in the pseudo-labels and propagates the anchor information to
the surroundings. The feature extractor is an arbitrary module that extracts features from
sensor data. For example, convolutional layers, Conformer [32], a WPCP module [103],
etc. can be used. We also use ýl�1 and a as additional inputs of the feature extractor to
employ anchor information in the feature extraction. The output of the feature extractor
xl is transformed to the same shape as ýl�1 by a 1D convolution and sigmoid function
to output ỹl 2 RNC⇥T , which is an estimate based mainly on sensor data. Then, ýl�1 is
updated by using ỹl as follows.

ýl = (1� �MA)ýl�1 + �MAỹl.

With this operation, the pseudo-label sequence is modified in each block while preserv-
ing anchor information. � controls the amount of update within a single block.
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Table 3.2: F1-measures of methods

F1-measure Macro Avg. Weighted Avg.
User U0104 U0108 U0110 All All

DCL-SA 0.762 0.782 0.643 0.752 0.766
DCL-SA (Early) 0.810 0.815 0.630 0.760 0.780
DCL-SA (Late) 0.820 0.807 0.725 0.797 0.813
Conformer 0.801 0.724 0.676 0.748 0.752
Conformer (Early) 0.834 0.778 0.716 0.787 0.797
LOS-Net 0.790 0.793 0.611 0.755 0.762
LOS-Net (Early) 0.819 0.815 0.675 0.784 0.802
LOS-Net (Late) 0.816 0.813 0.644 0.777 0.787
LTS-Net (WPCP) 0.847 0.842 0.757 0.830 0.846

3.4.4 Training

The loss function of LTS-Net is calculated based on the softmax cross-entropy CE(·)
computed on the output of the anchor stream ýout and the feature stream ŷout as follows:

L = CE(gt, ýout) + �CE(gt, ŷout),

where gt denotes the ground truth and � is a hyperparameter that controls the impact of
ŷout. Adam optimizer with the cosine annealing learning rate scheduler [43] is used for
training.

3.5 Evaluation

3.5.1 Evaluation Methodology

We evaluated LTS-Net on the OpenPack dataset. The data collected in Scenario 1 were
used for evaluation, and operation recognition (semantic segmentation) was performed.
Acceleration data from an IMU attached to the left wrist were used as the sensor data.
Subjects U0104, U0108, and U0110 were used as test subjects and the remaining sub-
jects were used as training subjects. The performance of our model was evaluated in
terms of F1-measure. Because the ground truth was provided at 1 Hz, the outputs of
the model were downsampled to 1 Hz before computing the metrics. We compared our
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Figure 3.6: Examples of time-series data of ground truth (red line) and class estimates,
i.e., probabilities. High- and low-class probabilities are yellow and blue, respectively.

LTS-Net to DeepConvLSTM + Self-Attention (DCL-SA) [82], Conformer [32], and
LOS-Net [103], which use only acceleration data as inputs. We also prepared early/late
fusion models for each method, which also use IoT data. As a feature extractor of the
LTS-Net, we used WPCP module and the number of BF block was set to 8. The model
parameters described in the original papers were used directly, whereas the optimization
parameters, such as the learning rate, were tuned.

3.5.2 Results

Table 3.2 shows the recognition performance on the test set of the models trained by
changing the random seed 5 times. The F1-measure (macro avg) is approximately 0.75
for all the existing methods when data from IoT-enabled devices are unavailable. By
adding data from IoT-enabled devices, the F1-measures of DCL-SA, Conformer, and
LOS-Net improved by up to 0.04. The F1-measre of DCL-SA (Late), which is the best
score among the existing methods, was 0.797 when data from IoT-enabled devices were
used. The proposed LTS-Net (WPCP) method, which employs the WPCP module as the
feature extractor, significantly outperformed DCL-SA (Late) in terms of F1-measure
by 0.033 (p = 0.019 by Welch’s t-test) and achieved 0.830 by effectively leveraging
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anchors. In particular, only LTS-Net achieved a score higher than 0.75 for U0110,
whose skill level was Expert and work speed is much higher than the other training
subjects. The same trend can be observed for the F1-measure (weighted average).

Figure 3.6 shows examples of model estimates. DCL-SA, which does not use an-
chors, failed to recognize the latter half of the scan label operation (Class ID: 700).
Although DCL-SA (Ealry) and LOS-Net (Late) employed anchors related to a hand
scanner, the estimates of the scan-label operation and surrounding operations were un-
stable compared with those of LTS-Net, indicating the ability of LTS-Net to efficiently
fuse IoT and sensor data.

LTS-Net outperformed LOS-Net proposed in Chapter 2. LOS-Net assumes a more
realistic environment with limited training data. In contrast, LTS-Net was developed for
an envionment with a large training dataset. Therefore, LTS-Net outperformed LOS-Net
on the OpenPack dataset. However, LTS-Net employs the LOS-Net’s WPCP module as
a feature extractor, which was proposed to recognize work processes that consist of
a sequence of actions. This LTS-Net result again showed that the WPCP module is
effective in recognizing work processes.

3.6 Conclusion

This study presented a new large-scale dataset for packaging work recognition called
OpenPack. OpenPack contains 53.8 hours of multimodal sensor data, including depth
images, IMU data, and readings from IoT-enabled devices. This dataset enables re-
searchers to explore more challenging activity recognition methods for industries, such
as collaboration with IoT devices. Furthermore, we propose LTS-Net to effectively
utilize sparse readings from IoT devices. The evaluation results on our dataset have
demonstrated the effectiveness of the proposed two-stream architecture.



Chapter 4

Toward Understanding
Acceleration-based
Activity Recognition Neural Networks
with Activation Maximization

In this chapter, we describe a supporting method for understanding the algorithm of
human activity recognition neural network. We focus on a visualization method called
Activation Maximization and explore the method to apply this technology for the hu-
man activity recognition model. We also propose one possible solution to overview the
concepts learned by the neural network.

4.1 Introduction

Owing to the recent proliferation of wearable devices, activity and gesture recognition
techniques using inertial sensors in the devices have been actively studied. These tech-
niques have many potential smart applications such as supporting elderly care, health-
care, and home automation. Although recent studies on activity and gesture recognition
have relied on deep learning [63, 54], the recognition process in neural networks has
been regarded as a black box. In the field of sensor-based activity recognition, some
studies have attempted to tackle this problem and visualize the inside of activity recog-
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nition neural networks. Zeng et al. and Ma et al. visualized a model with an attention
mechanism by drawing an attention map [107, 45]. Saeed et al. highlighted regions
in the input time-series that contributed to the model’s outputs using gradient informa-
tion. Although these methods can indicate important regions focused by the model, they
cannot reveal what features the models are extracting.

We believe that the techniques for visualizing the features learned by activity recog-
nition neural networks significantly contribute to researchers and developers of human
activity recognition methods and models as follows.

• Activation Atlas for human activity: An activation atlas [12] is an explorable
map of visual features that a network for vision-based object recognition uses to
recognize objects. In the case of activity recognition networks, we can generate
a map of acceleration data segments that show a universe of human activity con-
cepts, representing inherent relationships between activities and atomic human
motions constituting complex human activities. It can also contribute to explain-
able activity/gesture recognition, e.g., gesture-based authentication.

• Model validation: By visualizing the acceleration features extracted by a unit in
a convolutional neural network (CNN), we can easily determine if the network is
properly trained. For example, when the generated signals from many different
units in the CNN are similar, we can deduce that the network is redundant and
that a smaller network is suitable for the training data. We believe that such
information is useful for fine-tuning the CNN parameters such as the number of
units and network depth.

In the computer vision (CV) research community, techniques related to understand-
ing the inside of a neural network have been extensively studied to interpret network
behavior [40, 105, 48, 57, 76, 55, 81]. One of the promising techniques for analyzing
neural networks is activation maximization (AM) [19], which is used to find an input
image that maximizes the activation of a unit in a neural network to reveal the concept
learned by the unit [40, 105]. However, this method can generate images that exhibit ex-
treme activations but are unrecognizable by the human eye [56, 51]. Fig. 4.1 (1) shows
an acceleration signal generated by a naive AM using an activity recognition network
and the corresponding activation values. The dotted line indicates the 95th percentile
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Figure 4.1: Example output signals (acceleration data) of AM for a CNN unit in an
activity recognition network using (1) naive AM, (2) a method with amplitude clipping,
(3) the method proposed by [101], and (4) the proposed method. Fig. (5) shows an
actual signal found in the training dataset. The horizontal axis shows the sample index.
The background histogram and right vertical axes show the activation values of the
corresponding samples.

of the distribution of activation values for the corresponding unit when feeding all the
training data. The signals generated by the naive AM exhibit activation values that are
about 15 times larger than those of the training data, resulting in unrealistic extreme
amplitudes (10G) in the segments corresponding to the extreme activation values.

In the CV studies, various techniques for addressing this issue have been investi-
gated (e.g., regularization techniques [40, 105], introducing learned priors [55]). How-
ever, these techniques have been developed for image-based object recognition neural
networks and have not yet been applied to acceleration-based activity recognition. For
example, because the brightness value range of an RGB pixel of an image is restricted,
i.e., between 0 and 255, we can perform optimization constrained to the value range,
e.g., using clipping, to suppress meaningless noises. However, it is difficult to restrict
the value range of generated signals using a certain threshold value. This is because,
first of all, actual acceleration data has a smaller value range than the physical limit
such as the measurement range. Therefore, using the physical limit as a threshold value
may result in generating signals with extreme values that are not observed in normal
human movements. In addition, since each unit has different sensitivities to the ampli-
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tude of the input signal, it is difficult to cover all units with a single threshold value.
Fig. 4.1 (2) shows a signal generated using a clipping technique where the data points in
generated signals whose amplitudes exceed a threshold (= ±1.5G; approximately 95%
point of acceleration values in the training data) are ignored, indicating the difficulties in
suppressing extreme activation values. Therefore, techniques to suppress meaningless
noise with large amplitudes in acceleration data are required.

Therefore, this study investigates AM optimization techniques that are suitable for
acceleration-based activity recognition. We propose novel regularization techniques that
suppress extreme amplitudes by restricting the activation values in a feature map. The
primary contributions of this study are as follows. (i) To the best of our knowledge, this
is the first work that leverages activation values to regularize AM for neural networks.
(ii) We propose new AM techniques for human activity recognition networks: 1) a reg-
ularization term that penalizes extreme activations generated in the AM process, and
2) activation clipping that suppresses the generation of extreme activation. By leverag-
ing the proposed techniques, we can generate natural signals with reasonable activation
values, as shown in Fig. 4.1 (4). (iii) We evaluated the proposed method qualitatively
and quantitatively using publicly available datasets, and it was found that the proposed
method could generate signals that are similar to those that actually appeared in a train-
ing dataset (see Fig. 4.1 (4) and (5)).

4.2 Related Work

Investigating the decision criteria of a neural network is important for validating and
improving the network. Previous researches in the field of wearable sensor-based activ-
ity recognition have attempted to visualize action recognition neural networks in order
to reveal the decision criteria of the network, which is considered a black box. Zeng
et al. and Ma et al. proposed models with attention mechanisms to focus on impor-
tant modalities (e.g., important body parts where IMUs are attached) [107, 45]. They
visualized the attention map to validate the behavior of the attention layer. Saeed et al.
[73] introduced self-supervised learning to reduce the amount of labeled data required
for network training. They used a saliency map [81] to compare a self-supervised net-
work and a fully supervised network. A saliency map can visualize regions of the input
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signal (i.e., time segments), which greatly contributes to the network’s prediction using
gradient information. Fukui [22] also proposed a similar visualization technique that
does not use gradient information. Although a unit is the most fundamental element
that performs feature extraction, these methods can only locate the region of the input
signal (e.g., time segments and body parts) that the network has focused on, and cannot
explain the extracted concept at the unit level.

Visualization techniques for neural networks have also been actively studied in the
CV research field [81, 78, 48]. Among the various visualization methods, we focus on
activation maximization (AM) [19] in this study to obtain unit-level visualization. AM
is a technique to find an input that maximizes the activation of a unit in the network by
employing gradient ascent (see Section 4.3.2 for details). AM has been used to visualize
concepts related to an output class [105, 55] and the function of an intermediate unit [40,
105]. In this study, we focus on time-series acceleration data and attempt to investigate
the function of each unit in the trained model by employing AM.

AM tends to produce signals with high-frequency noises. Yoshimura et al. [101]
performed a preliminary investigation on using AM for activity recognition networks.
They simply employed a low-pass filter to reduce high-frequency noise. However, in
many cases, signals generated by their method had unnaturally large amplitudes as
shown in Fig. 4.1 (3). This might be because applying LPF in each iteration signif-
icantly alters the waveform, which is not suitable for gradient methods like AM that
gradually update the waveform. In contrast, we introduce/propose regularization tech-
niques for AM to generate natural signals.

Some prior studies generated acceleration data based on a generative adversarial
network [90, 83], which are used as additional training data. However, these methods
just generated signals similar to actual training data; they did not generate sensor data
features that a neural network learns.

4.3 Synthesizing Acceleration Data

4.3.1 Preliminaries

In this study, we assume three-axis acceleration sensors attached to a user. We also
assume a CNN-based neural network to recognize the user’s daily activities. Note that
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this neural network is trained in advance on a daily activity dataset. The input to the
neural network X is a sensor data segment within a sliding time window of length
NT . The intermediate output of unit u in the l-th layer is denoted as X(l,u). X is an
NS ⇥NT matrix, and X(l,u) is an N 0

S ⇥NT matrix. Note that NS is the total number of
input sensors (axes), and N 0

S is a constant that depends on the size of the convolutional
filters.

4.3.2 Activation Maximization (AM)

As mentioned above, AM is a technique to find an input that maximizes the activation
of a network unit by employing gradient ascent, thereby making it possible to reveal the
feature maps extracted by the unit. We obtain an input X⇤ that maximizes the activation
of a unit u in a network as follows:

X⇤ = argmax
X

f (l,u)(X) (4.1)

Note that f (l,u)(X) is a function that calculates a representative value of the feature map
of unit u in the l-th layer X(l,u) 2 RN 0

S⇥NT .
However, AM iteratively updates X to maximize the activation, starting from a

randomly generated X , which makes generating interpretable signals difficult. Specif-
ically, AM suffers from the following two problems. (i) The generated X⇤ is reported
to contain high-frequency noise [105]1. (ii) It is possible to generate inputs X⇤ that are
meaningless/unrecognizable to humans but exhibit high activation values [56].

To address these issues, Le et al. [40] reduced the noise when solving Equation 4.1
by introducing a constraint, with the norm of X being 1 (||X||2 = 1). Yosinski et al.
[105] reduced the high-frequency components by introducing a regularization term into
Equation 4.1 as follows:

X⇤ = argmax
X

�
f (l,u)(X)� wR(X)

�
(4.2)

where R(X) is the regularization term. They used the Lp norm and total variation
[74] as the regularization term. The Lp norm RLp(X) and total variation RTV (X) are

1To the best of our knowledge, the reason for such high-frequency noises has not yet been investigated
thoroughly.
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calculated as follows:

RLp(X) =

 
NS�1X

s

NT�1X

t

|xs,t|p
!1/p

, (4.3)

RTV (X) =

 
NS�1X

s

NT�2X

t

|xs,t � xs,t+1|
!
, (4.4)

where xs,t 2 X represents the sensor reading at sensor s and time t. In this study, we
propose a regularization term suitable for acceleration data and modify the objective of
AM (Equation 4.2).

Equation 4.2 is solved by employing the gradient method in a manner similar to
neural network training. To train a neural network, gradient descent is employed to
minimize the value of the loss function. In contrast, AM employs gradient ascent to
maximize the value of f (l,u)(X)� wR(X). First, we randomly initialize X . Then, X
is updated in gradient ascent as follows:

X  X + ⌘
@

@X

�
f (l,u)(X)� wR(X)

�
(4.5)

where ⌘ is the learning rate. We obtain the final result X⇤ by iterating the updating
process until convergence.

4.3.3 Proposed Regularization Techniques to Suppress Extreme Ac-
tivations

AM can generate unrecognizable signals; however, it exhibits extreme activations. For
example, let us assume a unit in the first CNN layer with all element values in its filter
being positive. Here, the ReLU function is used as the activation function. In this
case, the amplitude of the input signals X is proportional to the activation value of
the unit; thus, AM can generate signals with a significantly large amplitude. However,
as mentioned above, it is difficult to restrict the value range of the acceleration data
to be generated (i.e., clipping). In addition, because different units in the network have
different sensitivities in terms of input signal amplitudes, we cannot define a value range
for clipping based on the unobservable sensitivity of each unit. Therefore, we propose
to leverage activation values in a feature map (i.e., X(l,u)) to avoid generating such
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extreme signals. Because we can know the distribution of activation values for each
unit when we feed all the training data, we can easily define an adequate activation
value range for the unit based on the distribution. When an extreme activation value
is observed in a feature map in the iterations of the AM process, we can regard that a
segment in the input signals surrounding the extreme activation value is abnormal and
differs considerably from the signals observed in the network’s training data.

Therefore, this study specifies a threshold for the activation values (th(l,u)
eap ) for each

unit that is used to define extreme activation values. For example, in this study, this
threshold is determined based on the two-sigma rule using the activation values of the
unit when feeding all the training data2. Under the assumption that activation values are
normally distributed, this threshold roughly corresponds to the 95th percentile of the
activation values in the training data.

We propose a novel regularization term called “extreme activation penalty” (EAP)
that leverages the activation threshold, which is described as follows.

REAP (X
(l,u))

= Mean

✓⇢
a
(l,u)
s,t �th

(l,u)
eap |a(l,u)s,t 2X (l,u)

;a
(l,u)
s,t >th

(l,u)
eap

�◆
(4.6)

where a(l,u)s,t 2 X(l,u) represents the activation value at sensor s and time t. When some
activation values exceed the threshold, i.e., two-sigma of the activation values of the
training data, the averaged exceeded value is used as a penalty. As above, EAP directly
leverages the extreme activation values to suppress abnormal segments.

In addition, we introduce a second technique called “activation clipping” to sup-
press extreme activation values that are difficult to handle by EAP. In the normal AM
(Equation 4.1), a representative value, i.e., the mean, is calculated by f (l,u); therefore, it
is difficult to suppress an individual extreme activation value in X(l,u) even when EAP
is used. To address this issue, we apply the following clipping function to each value in
the feature map before calculating the mean of the activation values.

clipping(a(l,u)s,t ) =

8
<

:
th(l,u)

eap (a(l,u)s,t > th(l,u)
eap ),

a(l,u)s,t (otherwise).
(4.7)

By using the above activation clipping, activation values larger than the threshold are
2The mean and standard deviation are calculated over non-zero activation values.
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Figure 4.2: Network architectures used in the experiment: “k(5 ⇥ 1)” and “n64” rep-
resent the convolutional filter size (along with the time axis) and the number of units in
the layer of interest, respectively.

ignored, thereby preventing these activation values from becoming larger in the subse-
quent iterations of the AM process.

Our proposed method employs EAP in addition to the Lp norm and total variation
in R(X), and employs activation clipping.

4.4 Evaluation

4.4.1 Dataset and Activity Recognition Model

We employed two publicly available datasets to evaluate the proposed method: Daily
and Sports Activities Dataset (DSADS) [9] and mHEALTH dataset (MHEALTH) [8].

DSADS

Barshan et al. [9] collected human activity data (19 activity classes), e.g., data for
daily activities and sports, from eight participants using IMUs attached to the chest,
arms, and legs. In this experiment, the data from participants 7-8 were used as test
data, the data from participant 6 were used as validation data, and the data from the
remaining participants were used as training data. We used three-axis acceleration data
from sensors attached to the right hand and left leg, i.e., six sensors in total.
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MHEALTH

Banos et al. [8] collected human activity data (12 activity classes), e.g., data for simple
daily activities and exercise, from 10 participants using IMUs and ECG. In this exper-
iment, the data from participants 9-10 were used as test data, the data from participant
8 were used as validation data, and the data from the remaining participants were used
as training data. We used three-axis acceleration data from sensors attached to the right
lower arm and left ankle, i.e., six sensors in total.

4.4.2 Activity Recognition Model

For preprocessing, we down-sampled the data to 30 Hz and applied min-max normal-
ization. We then applied sliding time windows with a window size of 30 samples
(NT = 30pt = 1sec) and 50% overlap, which were fed into a neural network.

Figure 4.2 shows the network architecture used in this study. We designed our net-
work based on the shared-filter hybrid fusion (SF-HF) model [54]. The models were
trained using Adam optimizer [33] for 200 epochs with an initial learning rate of 10�4.
The models were trained five times with different random seeds. The f1-measures
(and standard deviation �) for the two datasets were 0.737 (� = 0.005) and 0.955

(� = 0.004), respectively. These scores are the average of the five runs. Based on the
results of neural network-based activity recognition [91, 63], the networks appeared to
be properly trained.

4.4.3 Procedures of Activation Maximization

AM was performed as described in the Synthesizing Acceleration Data section (Sec-
tion 4.3.2). We focus only on a single sensor when running AM because the SF-HF
model extracts features from each sensor independently. A 2-Hz sine wave (amplitude
of 0.3 G) was used as the initial X . The update step, i.e., Equation 4.5, was repeated
5,000 times with an initial learning rate ⌘ of 10�2. The learning rate was decayed by
multiplying it with � = 0.999 after every iteration. The weight of R(·) was set to
w = 0.1. These parameters were empirically selected.
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4.4.4 Methods

To investigate the effectiveness of our AM techniques, we prepared a regularization term
that penalizes according to the amplitudes of the signals to be generated (AAP). AAP
is short for “Abnormal Amplitude Penalty,” and this term directly restricts the value
range of the acceleration data to be generated by using a threshold of the amplitude of
acceleration data (thaap). For simplicity, we used thaap = 1.5 G for all datasets. (The
upper limit of the two-sigma rule for DSADS and MHEALTH are 1.37 G and 1.57 G,
respectively.)

For evaluation, we prepared the following methods. (1) LPF is applied according to
[101] (LPF). (2) Only the L2 norm and total variation are used (L2+TV). This is the
baseline method. (3) L2 norm, total variation, and AAP are used (L2+TV+AAP). (4)
L2 norm, total variation, and EAP are used (L2+TV+EAP). (5–6) Applying activation
clipping to methods (2) and (4), respectively (L2+TV+clip and L2+TV+EAP+clip).
L2+TV+EAP+clip is our proposed method.

4.4.5 Evaluation Methodology

Previous studies on the visualization of neural networks did not perform quantitative
evaluations [40, 101]. Instead, they conducted qualitative evaluations and demonstrated
the effectiveness of the proposed method through application examples. We qualita-
tively evaluated our proposed method by following the previous studies.

In addition, we performed quantitative evaluation. To quantitatively evaluate the
signals generated by the AM method, we determined whether the proposed method
generates signals that actually appear in the training data. The signals generated by AM
directly represent acceleration signals that a unit of interest in a CNN layer attempts
to detect in the training data. Therefore, if we can find a real waveform similar to the
signal generated by the AM, we can say that the method was able to generate a natural
waveform that was actually observed in the training data. In contrast, if we are unable to
find signals in the training data that are similar to the generated signals, we consider that
the method demonstrates poor performance. Thus, by comparing the generated signals
with actual signals in the training data, we quantitatively evaluated the quality of signals
generated by the method.
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We calculate the distance d(u, i) between the generated signals for unit u and the
segment extracted from the training data (X i) using the mean squared error (MSE)
with sliding windows. Then, we select the top-Nsim similar segments based on the
distance and calculate the average among the selected segments, which is used as the
evaluation metric (Ssim). If an AM method generates signals that are similar to actual
training signals, Ssim will be small.

The distance d(u, i) between the generated signals for unit u (X⇤) and a training
segment (X i) is defined as follows:

1. We compute the total activation value in each sliding time window of length sw(<

NT ) using a feature map X(l,u) of X⇤. The window size sw is defined as the
receptive fields of the convolutional layer of interest [6]. 3

2. We select the time window (length is sw) with the largest total activation value and
extract the corresponding part of the signals from X⇤. This segment is denoted
as x̂⇤.

3. We also extract segments of length sw from X i using sliding time windows. We
denote the segment extracted from time j to time (j + sw � 1) as x̂i,j .

4. We calculate the MSE between x̂⇤ and each segment from X i (i.e., x̂i,j).

5. The smallest MSE is defined as the distance (d(u, i)) between X⇤ and X i.

The distance d(u, i) is described as follows.

d(u, i) = min
j
{MSE(x̂⇤, x̂i,j)}, (4.8)

In many cases, the length of the characteristic waveform is shorter than the window
size of the generated signal. Therefore, we should focus on the important part of the
generated signal, i.e., x̂⇤. A segment with higher activation values is cropped from
the generated signals based on the values of the corresponding activation in Step.1 and
Step.2.

Finally, the evaluation metric Ssim is calculated as follows.

Ssim =
1

U

U�1X

u=0

"
1

Nsim

Nsim�1X

i=0

d(u, i)

#
, (4.9)

3ws = 5, 9, 13 for 1st, 2nd, and 3rd layer respectively
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where U represents the number of units in the layer of interest in which the amplitude
of the generated signals is smaller than thfail.

Some naive AM methods tend to fail to optimize signals, which results in generated
signals with considerably large amplitudes. When we compute the evaluation metric
Ssim for each layer, we ignore the MSE of the failed signals because these huge errors
obscure the errors of successfully generated signals. We consider generated signals
with amplitudes greater than thfail, which is defined as the maximum amplitude in the
training data, as a failure.

In this experiment, thfail was set to 10 G based on the largest amplitude in the two
datasets (i.e., 9.57 G). For Nsim, we set values corresponding to 1% of the total training
samples.

4.5 Results

To demonstrate the effectiveness of the EAP and activation clipping, we conducted
quantitative and qualitative evaluations.

4.5.1 Quantitative Analysis

Table 4.1 shows the results of the quantitative evaluation. Ssim (MSEs) is the average
over five training sessions with different random seeds. “Conv1” shows the score for
the first convolutional layer. The numbers in parentheses indicate the average number
of failed units within 64 units over five trials. As shown in the table, introducing EAP
and activation clipping significantly reduced the MSE. In particular, the MSEs and the
number of failed units for the proposed method are much smaller than those for L2+TV
and achieved the best scores, indicating that the proposed method generated signals
similar to those actually found in the training data. We calculated the score Ssim with
different Nsim (0.1%, 5%, 10%) and got the similar scores. This indicates that Nsim, a
hyper parameter of the evaluation metrics, has a small effect on the score.

EAP and activation clipping were introduced to control the activation values. In
order to confirm the effectiveness of them, we calculated the ratio of the maximum
activation within generated signals from each unit to the threshold (th(l,u)

eap ). Fig. 4.3
shows the results, with each bar showing the mean value over all units in each layer. In
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Table 4.1: Results of quantitative evaluation. Values in the table are Ssim, similarity
measure between the generated signals and the training singals that is defined in Sec-
tion 4.4.5. Smaller value is better. top-Nsim is set to 1%.

Dataset Method Conv1 Conv2 Conv3

DSADS LPF NaN (64.0) 3.242 (35.2) 1.534 (36.8)
L2+TV 9.960 (2.4) 4.882 (1.6) 1.441 (24.6)
L2+TV+AAP 8.060 (1.8) 3.841 (1.4) 1.616 (22.8)
L2+TV+EAP 6.643 (0.6) 3.213 (1.4) 2.005 (22.2)
L2+TV+clip 0.519 0.240 0.379
L2+TV+EAP+clip 0.485 0.213 0.321

MHEALTH LPF NaN (64.0) 3.356 (36.0) 2.249 (37.0)
L2+TV 7.841 7.919 (1.8) 2.292 (11.2)
L2+TV+AAP 6.438 7.201 (1.4) 2.672 (10.2)
L2+TV+EAP 5.874 7.287 (0.4) 3.283 (9.4)
L2+TV+clip 1.044 0.182 0.226
L2+TV+EAP+clip 1.021 0.157 0.197

many cases, the ratio values of the proposed method are closest to 1.0, indicating that
the proposed method seldom generates signals with extreme activation larger than the
threshold. This result also indicates that the proposed method is successful in control-
ling the activation values. These results show the effectiveness of using feature map
activation values in the regularization.

Figure 4.4 shows examples of signals generated by the proposed method and their
most similar training segments, as well as the time series of the activation values when
the signals are fed into the unit. The overlaid blue segments are segments with high acti-
vation values, showing characteristic segments learned by the unit. Fig. 4.4 suggests that
the proposed method could extract characteristic patterns that actually appear in human
activity (e.g., an downward slope in “Stairs Up” and a horn-like shape in “Cycling”).

4.5.2 Qualitative Analysis

Figure 4.5 right shows examples of signals generated by L2+TV+AAP and the proposed
method. This unit appears to extract a decrease in the acceleration data. Note that the
activation values for L2+TV+AAP at index = 5, 9, 20, 26 are very large. The dotted line
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Figure 4.3: The ratio of the maximum activation of the generated signal to the threshold
(th(l,u)

eap ). The values in the figure are averages in each layer. The error bars show the
minimum and maximum values over 5 runs. LPF was excluded because the number of
failed unit is too large.

shows the 95th percentile of the distribution of activation values in the training data, and
these activation values are two times larger than the 95th percentile. The extreme acti-
vation values (and the corresponding signals) are assumed to be significantly different
from those of the training data. In contrast, when EAP is used, the activation values are
suppressed and have reasonable values, which demonstrates the effectiveness of EAP.

We can confirm the effectiveness of the activation clipping from Fig. 4.6. As shown
in the left Fig. (L2+TV+EAP), even when EAP was used, we could not suppress abnor-
mal activation values in this case. This is because EAP cannot suppress an individual
outlying activation value since it penalizes based on a representative value of X(l,u).
In contrast, introducing activation clipping makes it possible to prevent signals with
extremely large activation values from becoming larger, resulting in the generation of
smoother signals.
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Figure 4.4: Signals generated by L2+TV+EAP+clip (blue signals) and their most sim-
ilar training segments (orange signals); the corresponding activation values are shown
in the lower panels. “Amp” and “Act” represent “amplitude” and “activation,” respec-
tively. These pairs are selected based on the MSEs (d(u, i)).

4.6 Activation Atlas

Here, we describe applications of the AM method and their effectiveness in the de-
velopment and analysis of human activity recognition neural networks using publicly
available datasets. Because a network has a large number of hidden units, it is not
efficient to browse the generated signals from each unit. Therefore, to facilitate the
analysis, we developed an “activation atlas” [12] for activity recognition. An activation
atlas is a map of the visual features of an object recognition neural network. Here, we
generate a 2D map of human activity features by transforming signals generated from
each unit using our method (i.e., a 30-dimensional data point) into a 2D data point using
t-SNE [46]. The application enables two types of analysis: (i) analysis of automatically
extracted feature representations, and (ii) parameter selection.
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Figure 4.5: Examples of generated signals by methods with and without EAP for the
same unit (Conv1 Unit03 of MHEALTH model).

Figure 4.6: Examples of signals generated by methods with and without clipping for the
same unit (Conv1 Unit02 of DSADS model).

4.6.1 Analysis of Extracted Feature Representations

One of the advantages of using neural networks is automated feature engineering. The
atlas enables us to easily browse the distribution of feature representations extracted in
different units and layers. Fig. 4.7 shows the atlas and examples of generated signals
from Conv1 (left) and Conv3 (right) in the model trained on DSADS. Each point corre-
sponds to a unit (and generated signals), and an identifier of the unit is associated with
the signals. In addition, the color of each point corresponds to the activity label of the
training segment that is most similar to the generated signals of interest.

As shown in the left figure, the first layer of the network seems to extract simple
features that look like slopes or flat waveforms. We can find three clusters on the map.
The cluster at the top-left and bottom-right are consisting of the signals with positive
and negative values, respectively. Although the value ranges are different, many simple
signals with similar shapes are extracted in the first layer. In contrast, as shown in the
right figure, data points of the third layer are scattered over the 2D map. Waveforms
with jagged high-frequency components combined with simple slopes, e.g., Unit25 and
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(1) Conv1 (1st layer) (2) Conv3 (3rd layer)

Figure 4.7: Activation Atlas for human activities generated from the 1st and 3rd layers
trained on DSADS. The center of each figure shows the Activation Atlas. A data point
corresponding to a unit is colored according to the class of the most similar signals.
Waveforms surrounding the map show signals generated by the units. The horizontal
and vertical axes of the waveform graph represent the sample index and the amplitude
[G], respectively.

Unit28, and waveforms with repeated complex patterns, e.g., Unit02, were generated.
Although deeper layers in an activity recognition network have been considered to

extract more complex patterns than shallow layers [41], our study is the first to con-
firm this fact by actually generating signals from these layers of activity recognition
networks.

As mentioned above, our method permits us to understand how the network was
trained in each layer.

4.6.2 Parameter Selection

Using smaller neural networks is effective for activity recognition on a mobile device
with limited computation power and battery life. Here, we verify the usefulness of
analyzing the distribution of extracted feature representations using AM to determine
the size of a neural network while maintaining recognition accuracy.

We trained activity recognition models on the MHEALTH dataset with a different
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number of units (convolutional filters), and the models were trained five times with dif-
ferent random seeds for each setting. Fig. 4.8 (1)-(6) show the AM results (atlas) for
the model obtained in the first training and Fig. 4.8 (7) shows the averaged recognition
accuracy (F1-measure). The error bars in Fig. 4.8 (7) are the maximum and minimum
recognition accuracies in the five runs. As shown in Fig. 4.8 (7), the recognition ac-
curacy is close to the upper limit when the number of units is 16. When unit=8, few
features are extracted from the lower left region. In contrast, when unit=16, several
units could cover the overall area of the lower left region, which is considered to be the
reason why this setting achieved the upper limit. By visualizing such signals in the dis-
tributions of Units=32, 64, and 128, we can confirm whether these signals are required
for recognition.

Interestingly, the points of the network with four units are located at the cluster
centers of the points of the network with 256 units. Although the F-measure of the
network with four units is poor, Fig. 4.8 shows that the network with four units attempts
to learn features of important signals to maximize the overall accuracy of the dataset.

As mentioned above, our method provides insights related to hyperparameter selec-
tion and permits us to reveal interesting behaviors of human activity recognition net-
works.

4.7 Discussion

In this study, we assumed that the distribution of the activation values of each unit was
one-sided normal distribution, and the value greater than approximate 95% point was
considered as an outlier using the 2-sigma rule. However, the criterion for judging an
outlier varies from situation to situation, and 2-sigma rule used in this study is just one
option to define the threshold. For example, if the unit responds only to very special
signals, it may be possible to detect an outlier at the 99% point estimated from the train-
ing data. The method proposed in this study can be expected to prompt the optimization
around the threshold value and can be applied to other threshold definitions according
to the assumptions. However, there is a possibility that the output of a unit may have
a distribution that is different from the normal distribution, such as a Gaussian mixture
distribution. In such cases, we cannot assure the effectiveness of our proposed method,
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Figure 4.8: 2D maps of neural networks with different unit numbers. Each network
is composed of three convolutional layers, with each of the layers constituting n units
(n = 4, 8, 16, 32, 64, 128), and has the SF-HF architecture. The number of units in the
fully connected layers is 256. The signals are generated from the third layer. Each
network was trained on MHEALTH.

which uses a single scalar value as a threshold value for anomaly detection. Further in-
vestigation is needed to determine in which cases our proposed method is not effective.

4.8 Conclusion

This study revealed the feature extraction functions of human activity recognition neural
networks using AM. To generate signals that maximize the activation of a convolutional
unit, we proposed new regularization techniques leveraging the distribution of activation
values from training data. We quantitatively and qualitatively evaluated the effective-
ness of the proposed techniques using publicly available datasets with the 2-sigma rule
as a method of determining the threshold. As a part of our future work, we would
like to investigate whether the proposed method is also effective in the other ways of
determining threshold values.
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Conclusion and Future Work

5.1 Thesis Summary

In this thesis, we developed three methods for recognizing workers’ activities using
wearable sensors. We believe that these methods can contribute to achieve smart manu-
facturing and logistics by incorporating information about real-world human works into
the cyberspace. Specifically, we proposed a new work activity recognition model, a new
dataset for work activity recognition, and an analysis technique for activity recognition
models.

To summarize this study, we reflect on the research goals described in Chapter 1 and
summarize the achievements here.

• Recognize Work Operations of Workers with a Limited Amount of Training
Data: In a factory production line, the work assigned to each worker is differ-
ent. In addition, the work procedures may differ depending on the skill level of
the worker and mistakes. Therefore, it is difficult to use labeled training data
collected from other workers as training data for a target worker. Therefore, it
is necessary to construct a work activity recognition model with limited training
data collected from each worker.
In Chapter.2, we proposed LOS-Net, a work activity recognition model that effi-
ciently extracts only necessary features with a lightweight model. To realize the
concept of LOS-Net, three components were proposed. The WPCP module ex-
tracts the short-term and long-term context of work activities with relatively few
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parameters by utilizing dilated convolution. The Boundary Detector estimates the
start and end times of each work activity, which enables robust boundary detec-
tion against changes in the work order. The Refinement Module corrects errors in
the decoder output by utilizing prior knowledge such as the order of operations.

• New Large-scale Multimodal Dataset in Industrial Domain: Many IoT de-
vices are installed in industrial sites, and the usage log of IoT devices strongly
relates to the user’s activities at the time the data was generated. Therefore, it
can be a useful resource for activity recognition. However, there is no publicly
available dataset for work activity recognition that includes both sensor data and
data from IoT devices. Furthermore, compared to sensor data, IoT device data is
very sparse in time, and how to fuse effectively them has not been fully explored.
In Chapter 3, we constructed a large-scale multimodal work activity recognition
dataset in the industrial domain called the OpenPack dataset, in which 16 sub-
jects’ work activities during packaging were recorded for 53 hours with 9 different
sensors. In addition to sensor data, we included data from IoT devices and meta-
data about subjects and orders. We proposed a novel activity recognition model
for sensor and IoT data, called a ladder-shaped two-stream network (LTS-Net).
LTS-Net processes sensor data and high-confidence IoT data in different streams
and updates information in each stream by referring to information in different
streams while preserving information on the IoT data in deeper layers.
We proposed LOS-Net in Chapter 2, under the realistic assumption where labeled
training data is limited. In contrast, LTS-Net was designed under the assump-
tion where there is a large amount of labeled training data including data from
IoT devices, in order to take advantage of the size and modality of the OpenPack
dataset. Therefore, LTS-Net outperformed LOS-Net in the evaluation of Chapter
3. Note that, work process context pooling (WPCP) module was used as the fea-
ture extractor in LTS-Net, suggesting that the module proposed for LOS-Net is
also effective under other assumptions.

• Visualization of the Concept Learned by a Unit of the Neural Network: Many
of SOTA activity recognition methods are based on neural networks. In order to
optimize manufacturing processes by utilizing the results of activity recognition,
it is necessary to obtain managers’ understanding and trust of the activity recog-
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nition algorithm. However, few managers are familiar with ICT technologies and
neural networks, and it is difficult for them to trust the results derived from incom-
prehensible algorithms, which may be a potential bottleneck to the introduction
of work activity recognition technologies into the site. Therefore, there is a need
for a method to explain the behavior of activity recognition neural networks to the
managers.
In Chapter 4, we proposed a visualization method to reveal the features extracted
by a trained activity recognition neural network. Activation maximization is one
of the visualization methods which visualizes the features extracted by the unit of
interest by generating the input signal to which the unit of interest responds most
strongly. In this study, we applied activation maximization to activity recognition
neural networks. In generating the input signal, the design of the regularization
term is important. We proposed a regularization method that determines whether
the input signal (acceleration) is abnormal based on its activation value. Based on
the proposed method, we created an activation atlas, which provides a bird’s-eye
view of the distribution of features extracted by the recognition model.
In Chapter 2 and Chapter 3, we proposed the work activity recognition models
based on deep learning. There are a lot of managers who are not familiar with ICT.
We believe that the proposed visualization techniques including an activation at-
las can deepen their understanding and gain their trust in the deep learning-based
models by visualizing a part of the decision-making process. This will lower the
barrier for installing work activity recognition models on the site and lead to their
continuous use.

5.2 FutureWork

In this thesis, we have proposed a solution to the problem of developing a work activity
recognition technology for practical use. In the following, we summarize the advanced
topics that should be addressed in the future.
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5.2.1 Robustness of Work Activity Recognition Models for Unex-
pected Worker’s Activity

In this thesis, we proposed a work activity recognition model and confirmed that it is
capable of recognizing work activities with high accuracy. In order to further improve
the recognition performance, it is necessary to deal with unexpected activities. The
proposed model utilizes prior knowledge of work activities, and we have qualitatively
confirmed that recognition becomes difficult when unexpected actions are taken. Al-
though it does not happen frequently, there are cases such as mistakes made during
work, or activities not related to the work, such as stopping work to talk to another
worker or manager. To deal with this problem, it is necessary not only to recognize ac-
tions, but also to explore tasks to detect irregular or wrong actions, and to use the results
to increase robustness against unexpected actions.

5.2.2 Developping Algorithm for Bottleneck Assessment and Pro-
cess Optimization

In this study, we focused on understanding the work activities of factory workers to solve
this problem. However, we have not yet sufficiently studied algorithms for optimization
of the entire factory, including robots. Using the work activity data generated by the
activity recognition technology, an algorithm is needed to detect where in the production
line there is inefficiency and which work activities are prone to procedural errors.
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