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Abstract 
It is known that there is relationship between protein conformation and function, and 
various experiments and computer simulations have been used to study the relationship. 
In recent years, computer-aided conformational sampling is becoming increasingly 
important to investigate biomolecular phenomena including protein–ligand, protein–
protein, and protein–DNA binding processes as well as protein folding. In many cases, 
generalized-ensemble methods are used to enhance sampling. For example, adaptive 
umbrella sampling, apply an effective potential, which is derived from temporarily 
assumed canonical distribution as a function of one or more arbitrarily defined reaction 
coordinates. However, it is not straightforward to estimate the appropriate canonical 
distribution, especially for cases applying multiple reaction coordinates. 
Multidimensional virtual-system coupled canonical molecular dynamics (mD-VcMD), 
which is one of the generalized-ensemble MD methods does not rely on the form of the 
canonical distribution. Therefore, it is practically useful to explore a high-dimensional 
reaction-coordinate space. 

In this study, I applied the mD-VcMD method to two types of system to verify 
its usefulness in the field of bioscience. At first, I performed the method with the simple 
molecular models consisting of three or four alanine peptides. I confirmed that mD-
VcMD efficiently searched 2D and 3D reaction-coordinate spaces defined as inter-peptide 
distances.  

Next, I applied the method to three systems consisting of mSin3B and one of 
three compounds, sertraline, YN3, and acitretin. Sertraline, YN3, and acitretin are 
chemical compounds designed to inhibit binding of neural restrictive silencer factor/RE1-
silencing transcription factor (NRSF/REST) to a corepressor mSin3B. These compounds 
can be a drug candidate for neurological diseases, such as Down’s syndrome, 
medulloblastoma, Huntington disease, cardiomyopathy, and neuropathic pain. The mD-
VcMD method produced useful quantities such as the spatial density of the ligand 
around the receptor, the intermolecular contact patterns, the propensity of molecular 
orientation, and the ligand flexibility. From these analyses, I showed that only sertraline 
produces a similar inter-molecular binding mode observed in the REST/NRSF–mSin3B 
complex. 
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Proteins are functional molecules with various roles in biological entities. Proteins are 
polypeptide chains with 20 types of amino acids as basic structural units, and form three-
dimensional structures by folding from one or more polypeptide chains. As seen in the 
Anfinsen’s research, proteins exerted their functions by spontaneously folding into a 
thermodynamically stable conformation called the native state. It was once thought that 
the stable conformation was determined only by the amino acid sequence. However, 
subsequent studies revealed that proteins form aggregates like amyloid within the cell 
and loses its function, which can be the cause of disease. In addition, a protein 
“chaperone” was discovered that suppresses the formation of these aggregates in cells 
and induces them to fold into the correct three-dimensional conformation. Furthermore, 
the discovery of intrinsically disordered proteins or intrinsically disordered regions that 
play various roles without adopting a specific three-dimensional structure in cells led to 
a revision of the above idea, known as Anfinsen's dogma. 
 The three-dimensional structures of proteins have been elucidated by 
experimental techniques such as X-ray crystallography, NMR, and cryo-electron 
microscopy. In addition to these experimental techniques, computer simulation has been 
also used to reveal the relationships between structures and functions. In this study, 
computer simulations of proteins are performed using, as it is called, the molecular 
dynamics method based on classical mechanics. But I utilize several techniques for 
efficient computation. If the number of atoms to be calculated is N, molecular dynamics 
simulation requires a computational load on the order of N2, and even with a 
supercomputer, a huge amount of computational time is required to obtain useful results. 
Therefore, in order to discover stable conformations among possible protein 
conformations, or to discover stable conformations in protein–ligand interactions, 
computational methods to efficiently sample the structural spaces are required. To 
tackle this problem, the generalized-ensemble algorithms such as the multicanonical 
molecular dynamics method and the replica exchange method have been developed.  

Multidimensional virtual-system coupled canonical MD (mD-VcMD) method 
used in this research is also positioned as one of these generalized-ensemble methods. 
In this mD-VcMD method, the internal parameters related to the structure of the protein 
in the system to be calculated, or the protein–protein/protein–ligand distances are set as 
reaction coordinates. And efficient samplings are performed along these reaction 
coordinates. Therefore, it is very useful for detailed investigation of proteins with flexible 
steric structures such as intrinsically disordered proteins, and interactions between 
proteins or between proteins and ligands. 
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 In this study, I performed computer simulations using the mD-VcMD method 
to examine interactions between multiple peptides, and the interactions between a 
protein with a flexible three-dimensional structure called mSin3B and compounds that 
can bind to it. I demonstrated that the mD-VcMD method satisfies both the efficiency 
and accuracy requirements, and that it is possible to explore and sample the 
conformational space to investigate the intermolecular interactions in detail. The result 
of this research shows the advantages to investigate a target that is difficult to 
experimentally clarify the relationship between structure and function due to its flexible 
three-dimensional structure, such as intrinsically disordered proteins. I believe that it 
will be useful for the progress in this field in the future. 
 The mD-VcMD method is explained in Chapter II, the results of applying this 
method to simple systems containing 3 and 4 molecules of alanine-peptide are described 
in Chapter III, and the results are applied to the systems containing mSin3B and its 
ligand molecules in Chapter IV. 
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2.1 Introduction 

In recent years, computer-aided conformational sampling is becoming increasingly 
important to investigate biomolecular phenomena including protein-ligand, protein-
protein, and protein-DNA binding processes as well as protein folding. Particularly, 
generalized-ensemble methods that enhance sampling along a parameter defined by the 
configuration of a system, or a reaction coordinate, have analyzed the free-energy 
landscapes of such biomolecular systems. A major class of methods uses energy (or 
entropy) as a reaction coordinate and enhances conformational changes by scaling 
energy1–20. This energy-enhancement approach is powerful and suitable for identifying 
major energy basins, to which a high probability of existence is partitioned, in a high-
dimensional and complicated potential energy space21,22. However, if a less-stable minor 
basin overlaps to the major basins in the energy axis, then the minor one is overlooked. 
If the minor basin has importance in the study, then the oversight is an important 
shortcoming23–25. Because this oversight is a natural outcome of energy-enhancement 
sampling, another type of reaction coordinate is required to search minor basins. 

An alternative class of generalized-ensemble methods including umbrella 
sampling26,27, adaptive umbrella sampling (AUS)28–31, and their variants13,32–38 
introduces a structural parameter, for example, intermolecular distance, for the reaction 
coordinate. In theory, AUS can avoid the oversight described above when major and 
minor basins can be discriminated on the reaction-coordinate axis. To drive 
conformational changes along the reaction-coordinate axis, AUS applies an effective 
potential 𝐸!"# as 

𝑬𝑨𝑼𝑺 = 𝑬𝑹 + 𝑹𝑻 𝐥𝐧[𝑷𝒄𝒂𝒏𝒐(𝝀; 𝑻)], (2.1) 

where 𝐸, represents the original potential energy defined by a force field, 𝑃-./0(𝜆; 𝑇) 
denotes a canonical distribution function along the reaction coordinate 𝜆(𝒓)  at 
temperature 𝑇 , and 𝑅  denotes the gas constant. The reaction coordinate 𝜆 , also 
denoted as 𝜆(𝒓) , is a function of atomic coordinates of the system, 𝒓 =
[𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, ⋯ , 𝑥3 , 𝑦3 , 𝑧3], where 𝑥4, 𝑦4, and 𝑧4, respectively, denote the 𝑥-, 𝑦-, and 
𝑧-coordinates of the 𝑖-th element in the Cartesian space, and 𝑁 represents the number 
of atoms in the system. For simplicity, I abbreviate arguments 𝒓 and 𝑇, respectively, 
for functions 𝜆(𝒓) and 𝑃-./0(𝜆; 𝑇), hereinafter. Molecular dynamics (MD) and Monte 
Carlo (MC) sampling using 𝐸!"#  instead of 𝐸,  generates a conformational ensemble 
with a uniform probability of existence along the reaction-coordinate axis. To apply AUS 
for studying molecular phenomena, the phenomena must be well characterized by 
conformational changes along with the reaction-coordinate axis. In other words, users 
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must find an appropriate definition of the reaction coordinate according to their interest. 
In general, phenomena in biomolecular systems tend to be highly complicated. A single 
structural parameter is insufficient to characterize the conformational changes25. To 
overcome this, some methods using multiple reaction coordinates have been proposed39–

42, where sampling is achieved in the multidimensional reaction-coordinate space. In 
multidimensional AUS, eq. (2.1) is replaced with the following equation as 

𝑬𝑨𝑼𝑺 = 𝑬𝑹 + 𝑹𝑻 𝐥𝐧[𝑷𝒄𝒂𝒏𝒐(𝝀)], (2.2) 

where 𝝀 is a vector of reaction coordinates, 𝝀 = <𝜆1, 𝜆2, ⋯ , 𝜆3!"=, and 𝑁,-  denotes the 
number of reaction coordinates. The multidimensional AUS can analyze the detailed 
free-energy landscape of complicated molecular phenomena in theory. 

However, AUS requires precise estimation of the canonical distribution 𝑃-./0(𝝀) 
as a function of reaction coordinates to calculate the effective potential at fixed 𝑇 . 
Because 𝑃-./0(𝝀) is unknown a priori in general, AUS simulation should be begun with 
an initial guess of 𝑃-./0(𝝀). The guess is improved through iterative AUS simulations 
until a resultant ensemble uniformly distributes along 𝜆. For this procedure, it is not 
guaranteed to converge the distribution. Accurate estimation of the rugged differentiable 
function 𝑃-./0(𝝀) would be practically problematic with the use of a limited number of 
samples. Particularly, applying a higher-dimensional reaction-coordinate space requires 
a higher-dimensional differentiable function for the canonical distribution, 𝑃-./0(𝝀) =
𝑃-./0(𝜆1, 𝜆2, 𝜆5, ⋯ ) at fixed 𝑇, which makes the estimation more difficult because of the 
so-called “curse of dimensionality.” Therefore, development of a new method enhancing 
the conformational sampling in a high-dimensional reaction-coordinate space without 
explicit estimation of high-dimensional canonical distribution as a continuous function 
is highly anticipated. 

Here, I introduce a new generalized-ensemble approach termed 
multidimensional virtual-system coupled canonical MD (mD-VcMD) to tackle this issue. 
This method is based on a series of virtual-system coupled sampling methods developed 
by Higo et al. These methods introduce a nonphysical system, called a virtual system, 
interacting with the physical system (molecular system or real system) to enhance 
conformational sampling43. The virtual system consists of some discrete states or virtual 
states. Transitions between them control the effective potential in the real system. In 
the real system, conformational changes are facilitated by interaction with the virtual 
system. Recently, Higo et al. presented the virtual system-coupled canonical sampling 
method and applied it for MC sampler with single and multiple reaction-coordinate 
systems, respectively, denoted as 1D-VcMC24 and mD-VcMC25. In addition to making the 
sampling applicable to more realistic molecular systems, which are expressed by all-
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atom models in explicit solvent, I recently reported an MD version of this approach with 
a single reaction coordinate, termed VcMD43. This method requires no estimation of the 
explicit form of the canonical distribution function. 

Because enhancement along a single reaction coordinate is sometimes 
insufficient for complex molecular systems, as described above, here I introduce an 
extension of VcMD to explore multiple reaction-coordinate space, termed mD-VcMD. 
 

2.2 Entire system of mD-VcMD 

As described in the “2.1 Introduction” section, mD-VcMD introduces a nonphysical 
system or virtual system, to enhance conformational sampling in the physical system or 
the real system. The coordinate of the virtual system is expressed as an integer vector, 
𝑳 = <𝐿1, 𝐿2, ⋯ , 𝐿3!"=, and migration of the coordinate 𝑳 enhances conformational motions 
(CFMs) along 𝝀. Details of coupling between 𝑳 and 𝝀 are described later. Because the 
entire system of mD-VcMD comprises the real and virtual systems, the phase space of 
mD-VcMD is defined formally as  

𝝓 = [𝒓, 𝒗, 𝑳], (2.3) 

where 𝒗 denotes a 3𝑁-dimensional vector describing atomic velocities. Each discrete 
position in the virtual system is a virtual state. The number of discrete states in each of 
the 𝑁,- axes is defined arbitrarily by users (Fig. 2-1). Migration of the real and virtual 
coordinates is performed independently based, respectively, on the equation of motion 
and MC method, as explained later.  
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Figure 2-1. Schematic illustration of multidimensional virtual-system coupled canonical 
molecular dynamics (mD-VcMD). This figure shows the case for two-dimensional (2D)-
VcMD as an example, where two reaction coordinates, 𝜆1 and 𝜆2, as well as two virtual 
coordinates 𝐿1  and 𝐿2 , are introduced as explained below. (A) The entire system 
composed of the real system and virtual system. The former is a usual molecular system 
consisting of atoms in the 3D Cartesian space [𝒓, 𝒗]. The latter is a discrete system 
expressed as 𝑳 = [𝐿1, 𝐿2]. The intermolecular distances 𝜆1  and 𝜆2  represent reaction 
coordinates. They are associated, respectively, to the first and second axes of the virtual 
system: 𝐿1 and 𝐿2. Assume that the system currently takes the virtual state marked by 
the bold line (green). The other colored states are explained in the legends of following 
panels. (B) The zone partitioning in the 2D reaction-coordinate space. Each of 𝜆1 and 𝜆2 
axis is divided into some regions or zones. In this example, five zones are defined for both 
the axes: 𝑧1

(1)  through 𝑧8
(1) and 𝑧1

(2)  through 𝑧8
(2), where superscript denotes the index 

for the reaction coordinate (i.e., the dimension of the virtual system), and subscript 
denotes the index for the zones in each axis. By their combination, there are 25 zones in 
the 2D 𝝀 space. (C) When the real system takes 𝜆1 and 𝜆2 values at the point “x” in the 
figure, the virtual system can take one of four virtual states shown as green, pink, cyan, 
and yellow. 
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2.3 Construction of the virtual system 

The virtual system is defined arbitrarily by users with the following procedure. To begin 
with, 𝑁,- reaction coordinates 𝝀 = <𝜆1, 𝜆2, ⋯ , 𝜆3!"= are defined as functions of 𝒓: 𝜆9 =
𝜆9(𝒓) . The 𝛾 th reaction coordinate D𝜆9E  associates to the 𝛾 -th axis of the 𝑁,- -
dimensional virtual coordinate D𝑳9E . Then, for each reaction-coordinate axis, the 
minimum and maximum values defining the range of the reaction coordinate to be 
sampled are ascertained. This range is divided into subregions or zones. The 𝑳9-th zone 

in the 𝛾-th axis, designated as 𝒛:#
(9), is defined as the range of 𝜆9, the upper and lower 

bounds of which are denoted, respectively, as G𝑧:#	
(9)H

<4/
 and G𝑧:#

(9)H
<.=

, 

𝒛𝑳𝜸
(𝜸) = IG𝒛𝑳𝜸	

(𝜸)H
𝒎𝒊𝒏

, G𝒛𝑳𝜸
(𝜸)H

𝒎𝒂𝒙
J. (2.4) 

It is noteworthy that neighboring zones should be set to have an intersection. 
As explained later, the intersection plays a fundamentally important role for migration 
of the virtual coordinate (i.e., transition among virtual states). Particularly, I applied the 

condition G𝑧:#
(9)H

<.=
= G𝑧:#C2	

(9) H
<4/

 to maximize intersections of neighboring zones (Fig. 2-

1B). A subspace, or zone, in the 𝑁,--dimensional reaction-coordinate space associated 
with the state 𝑳 is represented as 

𝒛𝑳 = G𝒛:%
(1), 𝒛:&

(2), … , 𝒛:'!"
(3!")H. (2.5) 

 

2.4 Hamiltonian of mD-VcMD 

The Hamiltonian of the entire system is defined as the following equation: 

ℋ = 𝐸D/E4FD(𝒓, 𝑳) + 𝐾(𝒗). (2.6) 

Kinetic energy 𝐾(𝒗) does not rely on the virtual system because the virtual 
particle discretely migrates without the kinetic energy. The potential energy 𝐸D/E4FD(𝒓, 𝑳) 
is described by the following equation: 

𝐸D/E4FD(𝒓, 𝑳) = 𝐸,(𝒓) + 𝐸,G(𝒓, 𝑳) + 𝐸G(𝑳). (2.7) 

Therein, 𝐸,(𝒓) represents the potential energy of the real system defined by the force 
field. 𝐸G(𝑳) is the potential energy of the virtual system for which the currently taken 
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virtual coordinate is 𝑳. In mD-VcMD method, the potential energy for each virtual state 
is given as 

𝐸G(𝑳) = 𝑔𝑳, (2.8) 

where 𝑳 denotes a virtual state (the coordinate in the virtual system) and 𝑔𝑳  is a 
constant potential energy parameter for the state 𝑳. Also, 𝐸,G(𝒓, 𝑳) is a coupling term 
between the real and virtual systems given as a flat-bottom potential: 

𝐸,G(𝒓, 𝑳) = 𝑐,GQR𝛿H#T
2

3!"

9

, (2.9) 

where 

𝛿H# =

⎩
⎪
⎨

⎪
⎧ 0																						(for	𝜆9 ∈ 𝒛:#

9 )

𝜆9 − G𝑧:#	
(9)H

<4/
							Rfor	𝜆9 < G𝑧:#	

(9)H
<4/

T

𝜆9 − G𝑧:#
(9)H

<.=
							Rfor	𝜆9 > G𝑧:#

(9)H
<.=

		T
						

 (2.10) 

and 𝑐,G is a spring constant. 
This term restrains the real system in a certain region of the reaction-coordinate 

space, or zone, associated to the currently taken virtual state: when the system takes a 
virtual state 𝑳, motions in the real system are restricted in zone 𝒛𝑳. 
 

2.5 Migration in each system 

In each time step of an mD-VcMD simulation, the system migrates in the phase space 
via motions of two types: the motion in the real system (CFM) performed by an MD 
integrator, and motion in the virtual states (inter virtual state transition [IVT]) done by 
an MC procedure. Later, I provide transition probabilities for the IVT. 

For the CFM, the atomic forces are calculated using the derivative of eq. (2.7) 
with respect to the atomic coordinates as, 

Forces = −
𝜕𝐸D/E4FD(𝒓, 𝑳)

𝜕𝒓  

= −
𝜕𝐸,(𝒓)
𝜕𝒓 −

𝜕𝐸,G(𝒓, 𝑳)
𝜕𝒓 −

𝜕𝐸G(𝑳)
𝜕𝒓 . (2.11) 

The third term is always zero because it is independent of the atomic 
coordinates. When reaction coordinate 𝜆  is in the zone associated with the current 
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virtual state 𝑳, the second term is also zero. The system behaves in the same manner as 
the canonical MD. Otherwise, the second term serves to pull the system to the inside of 
zone 𝒛𝑳. 

An IVT is performed by an MC procedure. For a pair of virtual states 𝑳4 and 𝑳I 
with respective zones 𝒛𝑳(  and 𝒛𝑳)  , the IVT between them can occur only when the 

following condition holds: 

𝝀 ∈ R𝒛𝑳( ∪ 𝒛𝑳)T. (2.12) 

Therefore, if 𝝀 is in the intersection between zones 𝒛𝑳( and 𝒛𝑳), then 𝑳4 might 
transition to 𝑳I, assuming that the current virtual state is 𝑳4. For the IVT from 𝑳4 to 
𝑳I, the energy difference between before and after IVT is 

𝛥𝐸D/E4FDD𝑳I , 𝑳4E = 𝐸GD𝑳IE − 𝐸G(𝑳4) 

= 𝑔𝑳) − 𝑔𝑳(. 
(2.13) 

The energy terms 𝐸,(𝒓) and 𝐸,G(𝒓, 𝑳) are zero because an IVT does not change 
𝒓 and does not occur for nonzero 𝐸,G(𝒓, 𝑳) because of eqs. (2.9) and (2.12). Then, the 
ratio of transition probabilities between these two virtual states is 

𝐴𝑳);𝑳(
𝐴𝑳(;𝑳)

= −expl
𝛥𝐸D/E4FDD𝑳I , 𝑳4E

𝑅𝑇 m, (2.14) 

where 𝐴𝑳);𝑳( denotes the transition probability from 𝑳4 to 𝑳I. If there are some zones 
associated with the same intersection (one zone is the current virtual state 𝑳4; Fig. 2-1c), 
then a destination state is chosen randomly according to the transition probabilities (eq. 
(2.14)), where I use a random number for the selection. 

To enhance the conformational sampling, the transition probability should be 
controlled appropriately by adjustment of the potential parameter 𝑔𝑳 for each virtual 
state. A procedure to ascertain the optimal 𝑔𝑳 is presented in the next section. 
 

2.6 IVT probability 

The artificial potential 𝑔𝑳  is introduced to control the distribution of the resultant 
ensemble of an mD-VcMD simulation regarding virtual state 𝑳 as 

𝑄D/E4FD(𝑳) = o 𝜌D/E4FD(𝝀, 𝑳) 𝑑𝝀
𝝀∈𝒛𝑳

, (2.15) 

where 𝜌D/E4FD(𝝀, 𝑳)  denotes the distribution function of the snapshots at [𝝀, 𝑳]  in a 
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resultant ensemble. I refer to 𝑄D/E4FD(𝑳) as the virtual state-partitioned probability. This 
quantity can be calculable by counting the frequency of snapshots at the state 𝑳 in 
trajectories without computation of the integral in eq. (2.15). When the artificial 
potential 𝑔𝑳 is a constant irrespective of 𝑳, an mD-VcMD simulation does not enhance 
the conformational sampling, and a trajectory behaves similarly to a conventional 
canonical MD simulation except for snapshots out of zones (with a nonzero 𝐸,G(𝒓, 𝑳)). I 
define the distributions obtained from this unbiased simulation as 𝜌-./0(𝝀, 𝑳)  and 
𝑄-./0(𝑳): 

𝜌-./0(𝝀, 𝑳) = 𝜌D/E4FD(𝝀, 𝑳)											(for	𝑔𝑳 = 	𝑐𝑜𝑛𝑠𝑡. ), (2.16) 

𝑄-./0(𝑳) = 𝑄D/E4FD(𝑳)											(for	𝑔𝑳 = 	𝑐𝑜𝑛𝑠𝑡. ). (2.17) 

I refer to 𝑄-./0(𝑳)  as virtual state-partitioned canonical probability. To 
enhance the conformational changes, the free-energy gaps between the virtual states 𝑳 
in the unbiased ensemble should be filled with artificial potential 𝑔𝑳. The potential 𝑔𝑳 
satisfying the following equation 

−𝑅𝑇 ln l
𝑄-./0(𝑳4)
𝑄-./0D𝑳IE

m = 𝑔𝑳) − 𝑔𝑳( (2.18) 

yields a resultant ensemble with the uniform distribution regarding the virtual states 
as 

𝑄D/E4FD(𝑳4) = 𝑐𝑜𝑛𝑠𝑡.		  (for all 𝑖). (2.19) 

Consequently, 𝑄-./0(𝑳) is necessary to adjust parameter 𝑔𝑳. In fact, I use only 
𝑄-./0(𝑳) instead of 𝑔𝑳  for the implementation (see the next section for a method to 
ascertain the IVT probability 𝐴𝑳);𝑳( from 𝑄-./0(𝑳)). Relations among these distribution 

functions are presented in Figure 2-2. 
Because 𝑄-./0(𝑳)  is unknown a priori, this is estimated through iterative 

simulations of mD-VcMD. For the first iteration, the uniform 𝑔𝑳 irrespective of 𝑳 is 
used. Therefore, the first estimation of 𝑄-./0(𝑳) is equivalent to the resultant ensemble 
𝑄D/E4FD(𝑳) of the first iteration: 

𝑄-./0
[1] (𝑳) = 𝑄D/E4FD

[1] (𝑳), (2.20) 

where superscript [1] represents the quantity obtained from the first iteration. The 
second iteration is performed using 𝑄-./0

[1] (𝑳) ; estimation of 𝑄-./0(𝑳)  is updated by 
reweighting the resultant ensemble as 
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𝑄-./0
[2] (𝑳) = 𝑄-./0

[1] (𝑳)𝑄D/E4FD
[2] (𝑳). (2.21) 

In general, the 𝑄-./0(𝑳) estimated by the 𝑀-th iteration is 

𝑄-./0
[P] (𝑳) = 𝑄-./0

[PQ1](𝑳)𝑄D/E4FD
[P] (𝑳), (2.22) 

where 𝑄-./0
[P] (𝑳) is 𝑄D/E4FD(𝑳) computed from the 𝑀-th iteration. If condition eq. (2.19) 

holds, then 𝑄-./0(𝑳) is converged. The iterations are performed until obtaining a near-
uniform distribution of 𝑄D/E4FD(𝑳) ; then the production run is performed using an 
estimated 𝑄-./0(𝑳). 

In practice, when a virtual state 𝑳4  is not sampled in the 𝑀 -th iteration, 
𝑄D/E4FD
[P] (𝑳4) and 𝑄-./0

[P] (𝑳4) are estimated as zero. To avoid this, I apply a pseudo count 

replacing the zero 𝑄D/E4FD
[P] (𝑳4)  with the minimum of z𝑄D/E4FD

[P] (𝑳){ for sampled virtual 

states. 
 

Figure 2-2. Schematic illustrations depict the distributions along a reaction 
coordinate 𝜆9 . (A) Canonical distribution 𝑃-./0D𝜆9E. One purpose of mD-VcMD is 
estimating this distribution. (B) Distributions obtained from mD-VcMD with constant 
𝑔:. The curves of 𝜌-./0D𝜆9, 𝐿9E for the neighboring 𝐿 should be well overlapped in a 
zone intersection, and should be equivalent to 𝑃-./0D𝜆9E. (C) Distributions obtained 
from mD-VcMD with biased 𝑔:. Shifting each curve 𝜌D/E4FDD𝜆9, 𝐿9E by the magnitude 
of 𝑄-./0D𝜆9E yields 𝜌-./0D𝜆9, 𝐿9E. 
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2.7 Implementation of IVT 

For the implementation of IVT, I do not use 𝑔𝑳 and eq. (2.14) explicitly. Instead, 
𝑄-./0(𝑳) is used as the parameter. I presume that the system has reaction coordinate 𝝀, 
which is at the intersection of 𝑛R4/S virtual states, 𝑳(1), 𝑳(2), … , 𝑳(/+(,-). For example, in 
the 2D reaction-coordinate system, four virtual states can intersect (𝑛R4/S = 4; Fig. 2-1). 
I refer to set of states having an intersection as linked virtual states. Since the transition 
probabilities among linked virtual states are independent on properties of virtual states 
other than these 𝑛R4/S virtual states, here I consider only these 𝑛R4/S virtual states. I 
introduce a one-hot vector indicating which virtual state out of 𝑛R4/S states is currently 
taken, 

𝝍~~~⃗ (𝝀, 𝑳) =

⎣
⎢
⎢
⎢
⎡ 𝛿D𝑳 − 𝑳

(1)E
𝛿D𝑳 − 𝑳(2)E

⋮
𝛿D𝑳 − 𝑳(/+(,-)E⎦

⎥
⎥
⎥
⎤
, (2.23) 

where 𝛿D𝑳 − 𝑳(4)E	represents a delta function defined as 𝛿D𝑳 − 𝑳(4)E = 1 for the condition 
𝑳 = 𝑳(4) and 𝛿D𝑳 − 𝑳(4)E = 0 for otherwise. An IVT from 𝝍 to 𝝍T in each time step is 
formulated as, 

𝝍T = 𝑨𝝍, (2.24) 

where 𝑨 is a transition probability matrix as 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡

𝐴:(%);	:(%) 𝐴:(%);	:(&) ⋯ 𝐴:(%);	:0,+(,-1%2 𝐴:(%);	:0,+(,-2
𝐴:(&);	:(%) 𝐴:(&);	:(&) ⋯ 𝐴:(&);	:0,+(,-1%2 𝐴:(&);	:0,+(,-2

⋮ ⋮ ⋱ ⋮ ⋮
𝐴:0,+(,-1%2;	:(%) 𝐴:0,+(,-1%2;	:(&) ⋯ 𝐴:0,+(,-1%2;	:0,+(,-1%2 𝐴:0,+(,-1%2;	:0,+(,-2
𝐴:0,+(,-2;	:(%) 𝐴:0,+(,-2;	:(&) ⋯ 𝐴:0,+(,-2;	:0,+(,-1%2 𝐴:0,+(,-2;	:0,+(,-2 ⎦

⎥
⎥
⎥
⎥
⎤

, (2.25) 

where probability 𝐴:());	:((), which presents the transition probability from 𝑳(4) to 𝑳(I), is 
normalized for each column as ∑ 𝐴:());	:(()

/+(,-
I = 1. To perform a VcMD simulation, the 

probabilities must be specified in advance. To make the resultant virtual state-
partitioned probability, 𝑄-./0(𝑳𝒊) uniform (eq. (2.19)), the transition probability matrix 
𝑨 is defined as 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡

𝐽:(%) 𝐽:(%) ⋯ 𝐽:(%) 𝐽:(%)
𝐽:(&) 𝐽:(&) ⋯ 𝐽:(&) 𝐽:(&)
⋮ ⋮ ⋱ ⋮ ⋮

𝐽:0,+(,-1%2 𝐽:0,+(,-1%2 ⋯ 𝐽:0,+(,-1%2 𝐽:0,+(,-1%2
𝐽:0,+(,-2 𝐽:0,+(,-2 ⋯ 𝐽:0,+(,-2 𝐽:0,+(,-2 ⎦

⎥
⎥
⎥
⎥
⎤

, (2.26) 

where 
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𝐽:(() = �𝑄-./0D𝑳(4)EQ
1

𝑄-./0(𝑳(I))
/+(,-

IU1
�
Q1

. (2.27) 

Consequently, 𝑄-./0(𝑳) is used as a parameter instead of 𝑔𝑳 to define the stability of 
the virtual state 𝑳. 
 

2.8 Canonical distribution of the real system 

A production run of mD-VcMD yields the biased distribution 𝜌D/E4FD(𝝀, 𝑳). Reweighting 
this distribution can generate the unbiased canonical distribution in the real system: 
𝜌-./0(𝝀). To begin with, the weight of each snapshot biased with the artificial potential 
𝑔𝑳 is canceled by multiplying the factor 𝑄-./0(𝑳) as 

𝜌-./0(𝝀, 𝑳) = 𝑐𝑄-./0(𝑳)𝜌D/E4FD(𝝀, 𝑳) (2.28) 

where 𝑐 is a normalization factor. For each 𝝀 in the intersection of 𝑛R4/S  zones, the 
weight is averaged over virtual states associated with these linked zones, as 

𝑃-./0(𝝀) =
1

𝑛R4/S
Q 𝜌-./0D𝝀, 𝑳[4]E

/+(,-

4U1
. (2.29) 

The canonical distribution 𝑃-./0(𝝀) is derived from the ensemble yielded by an 
mD-VcMD simulation. It is noteworthy that the canonical ensemble is obtainable based 
on the weighting parameter 𝑄-./0(𝑳) irrespective of the convergence of the distribution. 
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3.1 Introduction 
In this chapter, I provide mD-VcMD’s evaluations using simple molecular models 
consisting of three and four alanine-peptides in explicitly solvated systems. Although 
these simple systems are not expected to attract biological interest, they are suitable to 
evaluate the new method. In fact, the conformational ensembles of these systems can be 
also calculated using the conventional canonical MD method. Therefore, comparison of 
resultant conformational ensembles between mD-VcMD and the conventional canonical 
MD can be performed. I demonstrate that these two ensembles including diverse 
multimer states of peptides are quantitatively consistent. The mD-VcMD method 
produces the correct canonical ensemble. I adopt intermolecular distances for the 
multiple reaction coordinates to enhance association and dissociation processes of 
multimer. I demonstrate a free-energy landscape in the multidimensional reaction 
coordinate space and conformational diversity analyzed using hierarchical clustering. 
 

3.2 Materials and Methods 

3.2.1 Peptide system for 2D-VcMD and 3D-VcMD 
As described in “3.1 Introduction” section, I chose simple molecular systems to examine 
mD-VcMD by direct comparison between quantities from mD-VcMD and those from 
long-term conventional canonical MD simulations. Because biologically relevant 
molecular systems are highly complicated and because conformational sampling of such 
systems is beyond the sampling ability of the conventional canonical MD, simple model 
systems are necessary for comparison with the conventional method. 

I calculated the free-energy landscapes of peptide assemblies for an alanine 
capped with acetyl (Ace) and N-methyl (Nme) groups. The systems consisting of three 
and four peptides were simulated. Namely, the system with three capped-alanine (3-
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ALA), that with four capped-alanine (4-ALA), were simulated. More than one reaction 
coordinate are necessary to sample various molecular aggregates effectively in a 
simulation. The actual definition of the reaction coordinates applied here is given later.  

To construct the 3-ALA model, a random conformation of an alanine peptide 
was put in space. Then two copies of the peptide were placed at 10 Å, respectively further 
along the 𝑥-axis and along 𝑦-axis. The 4-ALA model was constructed by adding a copy 
of alanine peptide to the 3-ALA model, where the fourth peptide was at 10 Å distant from 
the first along the 𝑧-axis. Next, the peptides were immersed in a periodic boundary box 
(40 × 40 × 40	Å5 for both systems) filled by water molecules with gmx solvate module in 
the GROMACS package. The numbers of atoms were 6,207 and 6,217, respectively, for 
the 3-ALA and 4-ALA systems. 

For each system, energy minimizations with the steepest descent and the 
conjugate gradient methods were applied. Then, the systems were relaxed through the 
1.0 ns MD simulations with gradual heating from 10 to 300 K and an NPT simulation 
(constant pressure at 1 atm and temperature at 300 K) with the Berendsen barostat. 
Heavy atoms of the alanine peptides were restrained around the first generated positions 
during this relaxation process. The resultant cell dimension of the cubic cells were 39.73 
Å and 39.83 Å, respectively, for the 3-ALA and 4-ALA systems. Conformations in Figs. 
3-1A and 3-1B are the respective final snapshots from the NPT simulations for the 3-
ALA and 4-ALA systems. 

Their conformational ensembles at 300 K were investigated using the 2D-VcMD 
and 3D-VcMD simulations. For the 3-ALA system, the first reaction coordinate 𝜆1 was 
set to the intermass center distance between the first and second alanine peptides. The 
second reaction coordinate 𝜆2 was that between the first and third peptides (Fig. 3-1A). 
In the case of 4-ALA system, 𝜆1 and 𝜆2 were the same as those in the systems with 

Figure 3-1. Initial conformations of simulations for (A) 3-ALA and (B) 4-ALA 
systems. Dotted lines represent the reaction coordinates 𝜆1, 𝜆2, and 𝜆5.  
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three peptides, and the third reaction coordinate 𝜆5  was that between the first and 
fourth peptides (Fig. 3-1B). The 2D and 3D free-energy landscapes are visualized based 
on the potential of mean force (PMF) along these reaction coordinates. It is noteworthy 
that mD-VcMD provides statistical weights of each snapshot in the canonical 
distribution. Therefore, the free-energy landscape can be visualized along arbitrary 
structural parameters other than the reaction coordinates defining the virtual system. 
mD-VcMD simulations can be parallelized by using the trivial trajectory parallelization 
scheme44. In this study, 90 independent runs were performed in parallel for each system 
using different sets of initial atomic velocities. The last snapshot of each of the 90 runs 
from the 𝑀-th iteration was used for the initial conformation for the successive run in 
the (𝑀 + 1)-th iteration, except for the first iteration. The first iteration was initiated 
from the single conformation presented in Figures 3-1A or 3-1B for all runs. 

Table 3-1 presents the actual zones for the 2D-VcMD and 3DVcMD simulations. 
The sampling range of each reaction coordinate was divided into 13 zones and 6 zones, 
respectively, for 2D-VcMD and 3D-VcMD. I arbitrarily adjusted these conditions to be a 
similar volume of the virtual systems: 13 × 13 = 169 states and 6 × 6 × 6 = 216 states, 
respectively, for 2D- and 3D-VcMD simulations. The numbers of iterations were 8 and 7, 
respectively, for 2D-VcMD and for 3D-VcMD, of which the last iterations were the 
production runs. The MD time step for the simulation was 2.0 fs. The simulation length 
is listed in Table 3-2. A snapshot is saved every 5,000 steps of simulation. Consequently, 
an ensemble of 90,000 snapshots was generated from the production stage for both the 
2D-VcMD and 3D-VcMD. 

The mD-VcMD simulations were performed using a computer program named 
myPresto/omegagene45. The simulation conditions were the following: the SHAKE 
algorithm46 was used to fix the covalent-bond length related to hydrogen atoms, the 
velocity scaling method47 was used to control temperature 𝑇 , and the zero-dipole 
summation method48–50 was used to compute electrostatic interactions. The potential 
energy for the peptides and water molecules were, respectively, the AMBER ff99SB force 
field51 and the TIP3P model52. 
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Table 3-1. Zone partitioning of each axis 
 2D-VcMD 3D-VcMD 

𝑖[a] 𝑧9,4,<4/(Å) 𝑧9,4,<.=(Å) 𝑧9,4,<4/(Å) 𝑧9,4,<.=(Å) 
1 3.0 4.0 3.0 5.0 
2 3.5 4.5 4.0 6.0 
3 4.0 5.0 5.0 7.0 
4 4.5 5.5 6.0 8.0 
5 5.0 6.0 7.0 9.0 
6 5.5 6.5 8.0 15.0[b] 
7 6.0 7.0   
8 6.5 7.5   
9 7.0 8.0   
10 7.5 8.5   
11 8.0 9.0   
12 8.5 9.5   
13 9.0 15.0   

[a] Zone index. 
[b] For the third axis 𝜆5, this value is 16.0 Å. 
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Table 3-2. Simulation length of a single run for each iteration 

𝑀 
Simulation length (ns)[a] 

2D-VcMD 
(3-ALA) 

3D-VcMD 
(4-ALA) 

MDconv 
(3-ALA) 

MDconv 
(4-ALA) 

1 0.2 0.2 226.2 213.2 
2 0.2 0.2   
3 1.0 1.0   
4 1.0 1.0   
5 1.0 1.0   
6 1.0 3.0   
7 3.0 10.0[b]   
8 10.0[b]    

[a] Total simulation length is obtainable by multiplying 90 by the length. 
[b] Production stage. 

 
 
3.2.2 Conventional canonical MD 
My earlier study demonstrated that the ensemble obtained using the 1D-VcMD method 
converges to that from a long-term conventional canonical MD43. 

To confirm the convergence of resultant ensembles obtained from 2D-VcMD and 
3D-VcMD to canonical ensemble, I studied the same molecular systems with long-term 
conventional canonical MD simulations. First, I performed 90 runs of conventional 
constant volume and temperature MD for all the four systems at 300 K. I designate the 
conventional MD simulations as MDconv. The simulation lengths of each run are 
presented in Table 3-2, which are 13 times longer than 2D-VcMD and 3D-VcMD. That 
is, the total simulation lengths of 90 runs are 20.358 µs and 19.188 µs, respectively, for 
MDconv with three peptides (3-ALA) and MDconv with four peptides (4-ALA), which are 
22.6 and 21.3 times longer, respectively, than the production runs of 2D-VcMD and 3D-
VcMD simulations, respectively. The flat-bottom potential, eq. (2.9), was used to confine 
the conformation in the region along all reaction coordinate axes, which is the same 
region as the 2D-VcMD and 3D-VcMD simulations. The initial conformations of MDconv 
were the same as mD-VcMD simulations (Fig. 3-1 for 3-ALA and 4-ALA). 

To compare with the results of mD-VcMD, I calculated the virtual state-
partitioned canonical probability from MDconv, which is designated as 𝑄PW"3,4(𝑳). This 
quantity corresponds to 𝑄-./0(𝑳) from mD-VcMD. Although the conventional MD has 
no virtual state 𝑳, 𝑄PW"3,4(𝑳) was calculated as a population of snapshots, 𝝀 of which 
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is in 𝒛𝑳. When a snapshot at an intersection of 𝑛R4/S zones, population of all the 𝑛R4/S 
zones are added. Therefore, ∑ 𝑄PW"3,4𝑳 (𝑳) and ∑ 𝑄-./0𝑳 (𝑳) are greater than unity. 
 
3.2.3 Cluster analysis 
Conformational diversity of the canonical ensemble obtained from the 3D-VcMD 
simulation with the 4-ALA system was characterized using a cluster analysis. First, 
1,000 representative snapshots were picked from the original ensemble consisting of 
90,000 snapshots. These 1,000 snapshots were selected to obey the canonical ensemble 
𝑃-./0(𝝀). Next, the topology of intermolecular contacts in each snapshot 𝑠 was analyzed. 
To detect contacts, I considered three sites: Ace, Ala, and Nme. Contacts among sites in 
𝐼-th and 𝐽-th peptides were detected based on the threshold 𝑟XY for the distance between 
the centers of mass of the sites and encoded into a 3 × 3 binary matrix 𝑪[Z;[](𝑠), with 
elements 𝑐[4,Z;I,[](𝑠). In this study, I applied 7 and 8 Å for 𝑟XY. Since a pair of peptides is 
commutable, this matrix is converted into upper-triangular matrix 𝑪�[Z;[](𝑠) by adding 
element {𝑖, 𝑗} to the element {𝑗, 𝑖} for 𝑖	 > 	𝑗 pairs, where 𝑖 and 𝑗, respectively, denote 
indices of row and column in the matrix. In the matrix 𝑪�[Z;[](𝑠), elements 𝑐̂[4,Z;I,[](𝑠) only 
for 𝑖	 ≤ 	𝑗 can have a nonzero value (1 or 2). Since the 4-ALA system includes six 𝐼-𝐽 
pairs, six 𝑪�[Z;[](𝑠)  matrices are definable in a snapshot 𝑠 . Then, the dissimilarity 
between a peptide pair [𝐼; 𝐽] in a snapshot 𝑠. and a peptide pair [𝐾; 𝐿] in a snapshot 
𝑠\ was defined as the Euclidean distance between two matrices 𝑪�[Z;[](𝑠.) and 𝑪�[];:](𝑠\). 
I signified this dissimilarity as 𝐷^(𝐼, 𝐽, 𝑠.; 𝐾, 𝐿, 𝑠\). Dissimilarity between two snapshots 
𝑠.  and 𝑠\  was defined as the summation of 𝐷^(𝐼, 𝐽, 𝑠.; 𝐾, 𝐿, 𝑠\)  over all six pairs of 
peptides. The four peptides in the system are chemically identical and not 
distinguishable. Therefore, there are 4! possible values of this dissimilarity between the 
snapshots derived from the permutation of the peptides. I defined the minimum one as 
the dissimilarity between the snapshots, 𝐷(𝑠. , 𝑠\). For all pairs of 1,000 snapshots, 
𝐷(𝑠. , 𝑠\) were calculated. Hierarchical clustering was performed using Ward’s method. 
Details of this procedure are described in the next subsection. 
 
3.2.4 Inter-snapshot dissimilarity based on intermolecular contact topology 
To characterize the resultant ensemble including diverse molecular aggregates, cluster 
analysis was applied based on an inter-snapshot distance, which is defined here. In this 
subsection, I introduce a dissimilarity measure based on intermolecular contact 
networks, disregarding precise molecular and atomic positions; a smaller dissimilarity 
between two snapshots indicates that fewer contact rearrangements (adding or deleting 
contacts) are required to transform one network to the other. Because the systems 
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assessed in this study comprise a multimer of chemically identical molecules, the inter-
snapshot dissimilarity is expected to be defined as invariant with respect to molecular 
permutation. This symmetric property originating from the commutability of molecules 
makes the definition of inter-snapshot dissimilarity complicated. 

This subsection provides a definition of dissimilarity between a pair of 
snapshots. Assuming that the molecular system to be analyzed consists of 𝑛< 
chemically identical molecules, then for each molecule, 𝑛.  sites for intermolecular 
contacts are defined arbitrarily for example Cα atom of each residue. First, for the 
snapshot 𝑠, inter-site contacts between the 𝑖-th site of the 𝐼-th molecule and the 𝑗-th 
site of the 𝐽-th molecule, which are signified as 𝑐[4,Z;I,[](𝑠), are detected for all possible 
combinations of 𝑖, 𝐼, 𝑗, and 𝐽, as 

𝑐[4,Z;I,[](𝑠) = �1		Dfor	𝑟[4,Z;I,[] ≤ 𝑟XYE
0													(otherwise)

, (3.1) 

where 𝑟[4,Z;I,[] is the inter-site distance in 3D space and 𝑟XY is the distance threshold. 
Then, site-contact topology between molecules 𝐼 and 𝐽 is expressed as a matrix, named a 

Figure 3-2. Schematic examples of snapshots consisting of two chemically identical 
molecules indexed as 𝐼 and 𝐽. The four snapshots are termed 𝑠1 , 𝑠2 , 𝑠5 , and 𝑠_ , 
respectively, for panels (A), (B), (C), and (D). Two sites (circles) connected by a solid 
line constitute a molecule, where digits “1” and “2” are ordinal numbers of the sites. 
A broken line represents a site contact between two molecules.  

(A) (B) 
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site-contact matrix, as 

𝑪[Z;[](𝑠) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑐[1,Z;1,[](𝑠) 𝑐[1,Z;2,[](𝑠) ⋯ 𝑐[1,Z;/5Q1,[](𝑠) 𝑐[1,Z;/5,[](𝑠)
𝑐[2,Z;1,[](𝑠) 𝑐[2,Z;2,[](𝑠) ⋯ 𝑐[2,Z;/5Q1,[](𝑠) 𝑐[2,Z;/5,[](𝑠)

⋮ ⋮ ⋱ ⋮ ⋮
𝑐[/5Q1,Z;1,[](𝑠) 𝑐[/5Q1,Z;2,[](𝑠) ⋯ 𝑐[/5Q1,Z;/5Q1,[](𝑠) 𝑐[/5Q1,Z;/5,[](𝑠)
𝑐[/5,Z;1,[](𝑠) 𝑐[/5,Z;2,[](𝑠) ⋯ 𝑐[/5,Z;/5Q1,[](𝑠) 𝑐[/5,Z;/5,[](𝑠) ⎦

⎥
⎥
⎥
⎥
⎤

 (3.2) 

where notation [𝐼; 𝐽] specifies the pair of molecules and 𝑛. represents the number of 
sites in a molecule. 

Figure 3-2A and 3-2B present the case for a simplified model consisting of two 
identical molecules (𝑛< = 2) with two sites for each (𝑛. = 2). Their site-contact matrices 
eq. (3.2) are 

𝑪[Z;[](𝑠1) = G0 0
1 0H and 𝑪[Z;[](𝑠2) = G0 1

0 0H. (3.3) 

However, the intermolecular contact patterns of these two snapshots should be regarded 
as identical because the molecules are chemically indistinguishable. Therefore, I convert 
the site-contact matrix 𝑪[Z;[] to a matrix 𝑪�[Z;[] invariant with respect to the molecular 
permutation as 

𝑪�[Z;[](𝑠) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑐̂[1,Z;1,[](𝑠) 𝑐̂[1,Z;2,[](𝑠) ⋯ 𝑐̂[1,Z;/5Q1,[](𝑠) 𝑐̂[1,Z;/5,[](𝑠)

0 𝑐̂[2,Z;2,[](𝑠) ⋯ 𝑐̂[2,Z;/5Q1,[](𝑠) 𝑐̂[2,Z;/5,[](𝑠)
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝑐̂[/5Q1,Z;/5Q1,[](𝑠) 𝑐̂[/5Q1,Z;/5,[](𝑠)
0 0 ⋯ 0 𝑐̂[/5,Z;/5,[](𝑠) ⎦

⎥
⎥
⎥
⎥
⎤

, (3.4) 

where 

𝑐̂[4,Z;I,[](𝑠) = �
𝑐[4,Z;I,[](𝑠)																										(for	𝑖 = 𝑗)
𝑐[4,Z;4,[](𝑠) + 𝑐[I,Z;4,[](𝑠)			(for	𝑖 ≠ 𝑗). (3.5) 

The lower triangular elements of 𝑪�[Z;[](𝑠), i.e., 𝑐̂[4,Z;I,[](𝑠), for 𝑖	 > 	𝑗, are zero. I refer to 
this matrix as a contact topology matrix. One can define the element for 𝑖	 ≠ 	𝑗	as 
<𝑐[4,Z;4,[](𝑠) + 𝑐[I,Z;4,[](𝑠)= 2⁄  in the equation presented above. However, the current 
definition can express the number of intermolecular contacts clearly as exemplified 
below (eq. (3.7)). By this definition, both the two site-contact matrices in eq. (3.3) are 
converted into a contact topology matrix as 

𝑪�[Z;[](𝑠1) = 𝑪�[Z;[](𝑠2) = G0 1
0 0H. (3.6) 

The value “1” in the matrix indicates that only one intermolecular contact formed. The 
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site-contact and contact topology matrices for snapshot 𝑠5 in Fig. 3-2C are 

𝑪[Z;[](𝑠5) = G0 1
1 0H and 𝑪�[Z;[](𝑠5) = G0 2

0 0H. (3.7) 

The value “2” indicates that two intermolecular contacts formed. Fig. 3-2D shows 
snapshot 𝑠_ as another example, of which the matrices are: 

𝑪[Z;[](𝑠_) = G1 0
0 1H and 𝑪�[Z;[](𝑠_) = G1 0

0 1H. (3.8) 

Difference between 𝑪�[Z;[](𝑠5) and 𝑪�[Z;[](𝑠_) is derived from differences in the orientation 
of molecules. Sites in a molecule are distinguishable when the molecule is a polypeptide. 
This matrix specifies only whether pairs of sites are in contact or not, irrespective of 
precise molecular positions. Figure 3-3 presents examples of pairs of snapshots having 
the same contact topology matrix and different configurations in the 3D space.  

Next, I define a dissimilarity measure of the contact topology matrix between a 
molecular pair [𝐼; 𝐽] in snapshot 𝑠. and a pair [𝐾; 𝐿] in 𝑠\ as the Euclidean distance: 

Figure 3-3. Schematic examples of pairs of snapshots with an identical contact 
topology matrix but different 3D configurations. Whereas panels (A) and (B) have the 
same contact topology with contact between sites 1 and 2, these snapshots show 
different orientations of molecules. As another example, panels (C) and (D) with the 
zero matrix exhibit different relationship of molecules. 
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𝐷^(𝐼, 𝐽, 𝑠.; 𝐾, 𝐿, 𝑠\) = �Q Q R𝑐̂[4,Z;	I,[](𝑠.) − 𝑐̂[4,];	I,:](𝑠\)T
2/5

IU1

/5

4U1
�
1 2⁄

 (3.9) 

Smaller distances represent similar contact topologies between the molecular pairs [𝐼; 𝐽]  
and [𝐾; 𝐿]. Using eq. (3.9), the dissimilarity among four snapshots 𝑠1, 𝑠2, 𝑠5, and 𝑠_, in 
Fig. 3-2 is calculated as 

𝐷^(𝐼, 𝐽, 𝑠1; 𝐾, 𝐿, 𝑠2) = 0, (3.10) 

𝐷^(𝐼, 𝐽, 𝑠1; 𝐾, 𝐿, 𝑠5) = 𝐷^(𝐼, 𝐽, 𝑠2; 𝐾, 𝐿, 𝑠5) = 1, (3.11) 

𝐷^(𝐼, 𝐽, 𝑠1; 𝐾, 𝐿, 𝑠_) = 𝐷^(𝐼, 𝐽, 𝑠2; 𝐾, 𝐿, 𝑠_) = 31 2⁄ , (3.12) 

𝐷^(𝐼, 𝐽, 𝑠5; 𝐾, 𝐿, 𝑠_) = 61 2⁄ . (3.13) 

Because snapshots 𝑠1 and 𝑠2 are equivalent, the dissimilarity is zero (eq. (3.10)). In the 
conformational change from snapshot 𝑠1 to 𝑠5, one contact is added, which results in 
the dissimilarity of 1 (eq. (3.11)). In the conformational change from 𝑠1  to 𝑠_ , two 
contacts are added with removing one contact. These contact rearrangements correspond 
to dissimilarity of 31 2⁄  (eq. (3.12)). In the conformational change from 𝑠5 to 𝑠_, two 
contacts are deleted and two contacts are added, for which the dissimilarity is 61 2⁄  (eq. 
(3.13)). The higher dissimilarity indicates that more contact rearrangements are 
necessary to convert a matrix to the other. 

If the system consists of two molecules, then I use eq. (3.9) for the dissimilarity 
calculation. Next, I consider a system consisting of more than 2 molecules (𝑛< > 2). 
Figures 3-4A and 3-4B respectively portray two snapshots 𝑠8 and 𝑠a consisting of four 
molecules. If the molecules are distinguishable, then the dissimilarity between 𝑠8 and 
𝑠a might be calculated using a summation of 𝐷^(𝐼, 𝐽, 𝑠8; 𝐾, 𝐿, 𝑠a) over the six pairs of [𝐼; 𝐽] 
as 

𝐷(𝑠8, 𝑠a) =Q 𝐷^(𝐼, 𝐽, 𝑠8; 𝐾, 𝐿, 𝑠a)
[Z;[]

 

= 𝐷^(1, 2, 𝑠8; 1, 2, 𝑠a) + 𝐷^(1, 3, 𝑠8; 1, 3, 𝑠a) + 𝐷^(1, 4, 𝑠8; 1, 4, 𝑠a) 

						+𝐷^(2, 3, 𝑠8; 2, 3, 𝑠a) + 𝐷^(2, 4, 𝑠8; 2, 4, 𝑠a) + 𝐷^(3, 4, 𝑠8; 3, 4, 𝑠a) 

																		= 1 + (1 + 4)1 2⁄ + 0 + (1 + 1)1 2⁄ + (1 + 4)1 2⁄ + 1 

																		= 2 + √2 + 2√5.	

(3.14) 
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In the calculation above, the contact topology matrices for snapshot 𝑠8 (Fig. 3-4A) are 

𝑪�[1;2](𝑠8) = G0 1
0 0H , 𝑪

�[1;5](𝑠8) = G0 0
0 1H , 𝑪

�[1;_](𝑠8) = G0 0
0 0H, 

𝑪�[2;5](𝑠8) = G0 0
0 1H , 𝑪

�[2;_](𝑠8) = G0 2
0 0H , 𝑪

�[5;_](𝑠8) = G0 0
0 0H. 

(3.15) 

The contact topology matrices for snapshot 𝑠a (Fig. 3-4B) are 

𝑪�[1;2](𝑠a) = G0 0
0 0H , 𝑪

�[1;5](𝑠a) = G0 2
0 0H , 𝑪

�[1;_](𝑠a) = G0 0
0 0H, 

𝑪�[2;5](𝑠a) = G0 1
0 0H , 𝑪

�[2;_](𝑠a) = G0 0
0 1H , 𝑪

�[5;_](𝑠a) = G0 0
0 1H, 

(3.16) 

Actually, eq. (3.14) is calculated based on the [𝐼; 𝐽]-to-[𝐼; 𝐽] correspondence between 
snapshots 𝑠8  and 𝑠a  because it is assumed that all four molecules are mutually 
distinguished: In other words, a molecular pair [𝐼; 𝐽] in snapshot 𝑠8 corresponds to the 
molecular pair [𝐼; 𝐽] in snapshot 𝑠a. For cases in which molecules are indistinguishable, 
however, many possible correspondences exist between the pairs. For example, a 
dissimilarity might be defined as 

𝐷(𝑠8, 𝑠a) = 𝐷^(1, 2, 𝑠8; 2, 3, 𝑠a) + 𝐷^(1, 3, 𝑠8; 2, 4, 𝑠a) + 𝐷^(1, 4, 𝑠8; 1, 2, 𝑠a) (3.17) 

Figure 3-4. Three snapshots 𝑠8  for (A), 𝑠a  for (B), and 𝑠b  for (C). A snapshot 
consists of four molecules (𝑛< = 4): molecule 1–4. Broken lines represent contacts 
between molecules. 
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																									+𝐷^(2, 3, 𝑠8; 3, 4, 𝑠a) + 𝐷^(2, 4, 𝑠8; 1, 3, 𝑠a) + 𝐷^(3, 4, 𝑠8; 1, 4, 𝑠a) 

																											= 0 + 0 + 0 + 0 + 0 + 0 

																											= 0.	

This result is natural because the intermolecular contact topology is the same between 
snapshots 𝑠8 and 𝑠a in Figs. 3-4A and 3-4B. That is, the two snapshots are equivalent 
because the molecules are indistinguishable. 

Therefore, it is natural to define the inter-snapshot dissimilarity as the 
minimum of dissimilarities with varying pair correspondence between the snapshots. 
Given a snapshot, there are 𝑛<! molecular permutations (𝑛<! = 24 for 𝑛< = 4), and the 
𝑘-th arrangement is designated as 𝑎S (𝑘 = 1,⋯	, 𝑛<!). For instance, the molecular pairs 
in 𝑎1 and 𝑎2 might be arranged as 

𝑎1 = [1; 2], [1; 3], [1; 4], [2; 3], [2; 4], [3; 4], (3.18) 

and 

𝑎2 = [2; 3], [2; 4], [1; 2], [3; 4], [1; 3], [1; 4], (3.19) 

The arrangement 𝑎1 in eq. (3.18) is one used for snapshots 𝑠a in eq. (3.17). However, 
specification of the pair arrangements in 𝑎S  is unimportant in these analyses. An 
important matter is to assign all the 𝑛<! permutations to {𝑎S} exhaustively. I express 
the six molecular pairs arranged in 𝑎S generally as 

𝑎S = 𝑎S(1), 𝑎S(2), 𝑎S(3), 𝑎S(4), 𝑎S(5), 𝑎S(6). (3.20) 

For the examples in eqs. (3.18) and (3.19), 𝑎1(3) is [1; 4], and 𝑎2(2) is [2; 4]. 
Now, I define the inter-snapshot dissimilarity between 𝑠8 arranged in 𝑎1 and 

𝑠a in 𝑎S as 

𝐷[!%;	!-](𝑠8, 𝑠a) =Q 𝐷^D𝑎1(4), 𝑠8; 𝑎S(4), 𝑠aE
/6!

4U1
 

= 𝐷^D𝑎1(1), 𝑠8; 𝑎S(1), 𝑠aE + 𝐷^D𝑎1(2), 𝑠8; 𝑎S(2), 𝑠aE + 𝐷^D𝑎1(5), 𝑠8; 𝑎S(5), 𝑠aE 

						+𝐷^D𝑎1(_), 𝑠8; 𝑎S(_), 𝑠aE + 𝐷^D𝑎1(8), 𝑠8; 𝑎S(8), 𝑠aE + 𝐷^D𝑎1(a), 𝑠8; 𝑎S(a), 𝑠aE, 

(3.21) 

where the [𝑎1, 𝑎S]  specifies that the molecular pairs in snapshots 𝑠8  and 𝑠a  are 
arranged respectively in 𝑎1  and 𝐴S . Then, the inter-snapshot dissimilarity between 
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snapshots 𝑠8 and 𝑠a is defined as the minimum of §𝐷[!%;	!-](𝑠8, 𝑠a)¨ in all 𝑘: 

𝐷(𝑠8, 𝑠a) = min G𝐷[.%;	.%](𝑠8, 𝑠a), 𝐷[.%;	.&](𝑠8, 𝑠a), … , 𝐷d.%;	.,6!e(𝑠8, 𝑠a)H	. (3.22) 

The general form for the dissimilarity between snapshots 𝑠4 and 𝑠I is 

𝐷D𝑠4 , 𝑠IE = min
SU1,…,/6!

<𝐷[.%;	.-]D𝑠4 , 𝑠IE=	. (3.23) 

In the equations above, the molecular rearrangement for one snapshot is fixed to 𝑎1 
because the other arrangements are redundant for obtaining the minimum. 

I consider one more snapshot 𝑠b  (Fig. 3-4C). Molecule 1, surrounded by a 
broken-line oval, is disconnected from other molecules. Consequently, the dissimilarity 
between the snapshots 𝑠8 and 𝑠b is contributed only by the contact deletion as 

𝐷(𝑠8, 𝑠b) = min
SU1,…,/6!

<𝐷[.%;	.-](𝑠8, 𝑠b)=	 

= 𝐷^(2, 4, 𝑠8; 1, 3, 𝑠b) = √2,	

(3.24) 

where 

𝑪�[2;_](𝑠8) = G0 2
0 0H,	 (3.25) 

and 

𝑪�[1;5](𝑠b) = G0 0
0 0H.	 (3.26) 

Once the inter-snapshot dissimilarities are calculated among snapshots in a 
conformational ensemble, we can generate an inter-snapshot dissimilarity matrix 𝑫 for 
an ensemble: 

𝑫 =

⎣
⎢
⎢
⎢
⎢
⎡ 0 𝐷(𝑠1, 𝑠2) ⋯ 𝐷D𝑠1, 𝑠/8Q1E 𝐷D𝑠1, 𝑠/8E
𝐷(𝑠2, 𝑠1) 0 ⋯ 𝐷D𝑠2, 𝑠/8Q1E 𝐷D𝑠2, 𝑠/8E

⋮ ⋮ ⋱ ⋮ ⋮
𝐷D𝑠/8Q1, 𝑠1E 𝐷D𝑠/8Q1, 𝑠2E ⋯ 0 𝐷D𝑠/8 , 𝑠/8E
𝐷D𝑠/8 , 𝑠1E 𝐷D𝑠/8 , 𝑠2E ⋯ 𝐷D𝑠/8 , 𝑠/8Q1E 0 ⎦

⎥
⎥
⎥
⎥
⎤

 (3.27) 

Therein, 𝑛X represents the number of snapshots in the ensemble. The diagonal elements 
are zero: ∆(𝑠4 , 𝑠4) = 0. Applying a clustering method to this inter-snapshot dissimilarity 
matrix yields clusters based on the intermolecular contact topology are obtained. 
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3.3 Results and Discussion 

3.3.1 Uniformity of raw ensemble of the entire system  
The free-energy landscapes of the entire systems sampled from 3-ALA and 4-ALA using 
the 2D-VcMD and 3D-VcMD methods are shown, respectively, in Figures 3-5A and 3-6A. 
The landscapes were visualized based on the PMF for each virtual state as  

𝑃𝑀𝐹D/E4FD
[P] (𝑳) = −𝑅𝑇ln G𝑄D/E4FD

[P] (𝑳)H, (3.28) 

where superscript [𝑀] represents the 𝑀-th iteration. This PMF was normalized so that 
the largest 𝑄D/E4FD

[P]  is set to 1.0 (the lowest 𝑄D/E4FD
[P]  is set to zero: 𝑃𝑀𝐹D/E4FD

[P] = 0). Figures 
3-5A and 3-6A, respectively, portray the ensembles obtained from production runs for 3-
ALA (2D-VcMD) and 4-ALA (3D-VcMD), that is, eighth and seventh iterations. The 
landscapes show near-uniform distributions, and eq. (2.19) approximately holds. 

To assess the uniformity of distributions, the standard deviation of PMF, 
𝜎𝑃𝑀𝐹D/E4FD

[P] , for the 𝑀-th iteration was evaluated as 

𝜎𝑃𝑀𝐹D/E4FD
[P] = G〈𝑃𝑀𝐹D/E4FD

[P] 2
〉 − 〈𝑃𝑀𝐹D/E4FD

[P] 〉2H
1/2
, (3.29) 

Figure 3-5. Two-dimensional (2D) distributions of the (A) 𝑃𝑀𝐹D/E4FD(𝐿1, 𝐿2) and (B) 
𝑃𝑀𝐹-./0(𝐿1, 𝐿2) for the 3-ALA system calculated from the production run of 2D virtual-
system coupled canonical molecular dynamics. The 𝑥-axis and 𝑦-axis, respectively, 
represent virtual-state indices 𝐿1  and 𝐿2 , which, respectively, correspond to the 
intermolecular distance between the first and second peptides, and that between the 
first and third peptides. The PMF values are represented by colors (see the color bars). 
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where the operator 〈∙〉 denotes the average over the virtual states 𝑳 sampled in the 
simulation. Smaller 𝜎𝑃𝑀𝐹D/E4FD

[P]  indicates higher uniformity of the virtual state-
partitioned probabilities. Figure 3-7A demonstrates that 𝑄D/E4FD

[P] (𝑳)  were flattened 
rapidly with an increase in 𝑀 for both the 2D-VcMD (3-ALA) and 3DVcMD (4-ALA). 
The deviations were converged to small values. The 𝜎𝑃𝑀𝐹D/E4FD

[P]  values for the 
production stages of the 3-ALA and 4-ALA systems (𝑀 = 8 and 7, respectively) were 
0.057 and 0.10 kcal/mol, respectively. In theory, because the volume of the 
conformational space increases drastically with the number of alanine peptides, it is 
expected that 3D-VcMD provides considerably slower decrease in 𝜎𝑃𝑀𝐹D/E4FD

[P]  than 2D-

Figure 3-6. Three-dimensional (3D) distributions of the a) 𝑃𝑀𝐹D/E4FD(𝐿1, 𝐿2, 𝐿5) and 
b) 𝑃𝑀𝐹-./0(𝐿1, 𝐿2 , 𝐿5) for the 4-ALA system calculated from the production run of 3D-
virtual-system coupled canonical molecular dynamics. The 𝑥 -, 𝑦 -, and 𝑧 -axes, 
respectively, represent virtual-state indices 𝐿1 , 𝐿2 , and 𝐿5 , which, respectively, 
correspond to the intermolecular distance between the first and second peptides, that 
between the first and third peptides, and that between the first and fourth peptides. 
The 𝑧-axis is shown by slices. The PMF values are shown by colors (see the color 
bars). 
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VcMD does. However, the convergences were similar between 3D-VcMD and 2D-VcMD 
(Fig. 3-7A), which demonstrates the effectiveness of the mD-VcMD method to explore a 
high-dimensional reaction-coordinate space. 
 
3.2.2 Convergence of the canonical ensemble 
As described in “3.2 Materials and Methods” section, the distribution of unbiased 
ensemble 𝑄-./0

[P] (𝑳) is obtainable from the raw distribution 𝑄D/E4FD
[P] (𝑳). The PMF based 

on the virtual state-partitioned canonical probabilities 𝑄-./0
[P] (𝑳)	is defined as 

𝑃𝑀𝐹-./0
[P] (𝑳) = −𝑅𝑇 ln G𝑄-./0

[P] (𝑳)H. (3.30) 

This PMF is also normalized so that the largest 𝑄-./0
[P]  has 𝑃𝑀𝐹-./0

[P] = 0. Figures 
3-5B and 3-6B, respectively, demonstrate the 𝑃𝑀𝐹-./0

[P] (𝑳) for the production stages of 
2D-VcMD and 3DVcMD. The systems have symmetry for molecular permutations. 
Therefore, the distribution should be symmetric about the axis permutations in Figures 
3-5B and 3-6B. Apparently, the symmetry held well. This result suggests that the 

Figure 3-7. Convergence of 
ensembles along iterations for two-
dimensional (2D)-virtual-system 
coupled canonical molecular 
dynamics (VcMD; 3-ALA, broken 
lines) and 3D-VcMD (4-ALA, solid 
lines). (A) ∆𝑃𝑀𝐹D/E4FD

[P]  as a function of 
iteration No. 𝑀. (B) ∆𝑃𝑀𝐹-./0

[P;PC1] as 
a function of 𝑀 . (C) ∆𝑃𝑀𝐹-./0

[P;PW"3,4] 
as a function of iteration No. 𝑀. 
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sampling was sufficient for both systems. In both the systems, the associative state was 
less stable than the dissociative state, which occurs because the alanine peptide is too 
small to form a stable molecular complex without strong charge-charge interactions such 
as salt-bridges. It is likely that the critical nucleation size for stable growth of a 
molecular aggregate is larger than four molecules at 300 K at the examined molecular 
concentration. Convergence of 𝑄-./0

[P] (𝑳) along with iterations was assessed by the root 
mean square deviation of the PMF between successive iterations: 

∆𝑃𝑀𝐹-./0
[P;PC1] = ²

1
𝑁X.<h
[PC1] Q G𝑃𝑀𝐹-./0

[PC1](𝑳) − 𝑃𝑀𝐹-./0
[P] (𝑳)H

2
38569
[;<%]

𝑳

³

1/2

, (3.31) 

where 𝑁X.<h
[PC1] denotes the number of virtual states sampled in the (𝑀 + 1)-th iteration. 

If a virtual state 𝑳4 was not sampled in the 𝑀-th iteration (i.e., 𝑄-./0
[P] (𝑳4) = 0) and was 

done in iteration 𝑀 + 1 (i.e., 𝑄-./0
[PC1](𝑳4) > 0), then I set 𝑄-./0

[P] (𝑳4) as the minimum value 
of 𝑄-./0

[P] (𝑳)  in 𝑄-./0
[P] (𝑳4) > 0 . The small ∆𝑃𝑀𝐹-./0

[P;PC1]  indicates convergence of the 
virtual state-partitioned probabilities to the stationary state at the 𝑀-th iteration. 

As a result, Figure 3-7A shows the rapid convergence for both the 3-ALA (2D-
VcMD) and 4-ALA (3D-VcMD); deviations between the fifth and sixth iterations were, 
respectively, ∆𝑃𝑀𝐹-./0

[8;	a] = 0.20 kcal/mol and 0.11 kcal/mol. This property of 𝑄-./0
[P] (𝑳) is 

consistent with the quick convergence of 𝑄D/E4FD
[P] (𝑳) to near-uniform distributions in 

Figure 3-7A. 
 
3.3.3 Comparison with long-term conventional MD simulation 
To confirm the generation of accurate canonical ensembles obtained using the mD-VcMD 
simulations, I compared the virtual state-partitioned canonical distributions obtained 
from mD-VcMD, 𝑄-./0

[P] (𝑳), with those obtained from long-term conventional canonical 
MD simulations, 𝑄PW"3,4(𝑳). It is noteworthy that I have shown convergence of canonical 
distributions obtained from 1D-VcMD, 1D-VcMC, and 2D-VcMC to those from 
conventional canonical simulations in earlier studies24,25,43. Differences in these 
distributions were assessed by the root mean square deviations of the PMF by eq. (3.31) 
with replacing 𝑃𝑀𝐹-./0

[PC1](𝑳) with 𝑃𝑀𝐹PW"3,4(𝑳): 

∆𝑃𝑀𝐹-./0
[P;PW"3,4] = ²

1
𝑁X.<h
[P] Q G𝑃𝑀𝐹-./0

[P] (𝑳) − 𝑃𝑀𝐹PW"3,4(𝑳)H
2

38569
[;]

𝑳

³

1/2

, (3.32) 

where 
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𝑃𝑀𝐹PW"3,4(𝑳) = −𝑅𝑇 ln<𝑄PW"3,4(𝑳)=. (3.33) 

As a result, 𝑃𝑀𝐹-./0
[P] (𝑳)  was well converged to 𝑃𝑀𝐹PW"3,4(𝑳)  in both the 

systems (Fig. 3-7C). For both the 3-ALA and 4-ALA systems, five iterations were 
sufficient to converge the distribution; the ∆𝑃𝑀𝐹-./0

[P;PW"3,4] for 3-ALA and 4-ALA at the 
𝑀 = 5 were, respectively, 0.23 kcal/mol and 0.19 kcal/mol. Those at the production runs 
were, respectively, 0.18 kcal/mol and 0.13 kcal/mol, respectively. The cumulative 
simulation length from the first iteration to the fifth one is 3.4 ns for both the systems 
(Table 3-2). 

In fact, the overall geometry of the free-energy landscape generated by the 
conventional canonical MD also converged in a similar time scales (Fig. 3-8). However, 
this result does not necessarily indicate that the conformational sampling of these 
systems is a trivial issue. The free-energy landscapes (Figs. 3-5B and 3-6B) present that 
the trimer formation in 3-ALA system and tetramer formation in 4-ALA systems are 
rare events. In order to assess the efficiency for sampling of such rare states, I analyzed 
the number of unsampled virtual states in each 1-ns time window of trajectories. 
Because 90 parallel simulations were performed, a 1-ns window includes 90-ns trajectory. 
As a result, 81.4% and 82.2% of time windows for 3-ALA and 4-ALA systems had at least 
one unsampled virtual states in MDconv simulations, those values were zero for 2D- and 
3D-VcMD simulations (Fig. 3-9). This clarifies that conformational sampling is highly 
enhanced by using mD-VcMD method even in such simple molecular systems. 

Figure 3-8. Convergence of the ensembles obtained from the MDconv simulations for 
3-ALA and 4-ALA systems. The horizontal axis, ∆𝑃𝑀𝐹-./0

[PW"3,4(E);	PW"3,4] , shows the 
root mean square deviation of PMF between the ensemble obtained from the 
trajectories until time 𝑡 and that from the full-length trajectories. 
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3.3.4 Conformational diversity in the resultant ensembles 
To evaluate details of conformational ensemble generated by 3D-VcMD, I applied a 
cluster analysis to 1,000 randomly selected snapshots from the resultant ensemble of 4-
ALA. Based on the dendrogram depicted in Figure 3-10A, I defined two large clusters 
termed 𝑐1  and 𝑐2 . These clusters were divided, respectively, into three and two 
subclusters, which termed 𝑐1-1, 𝑐1-2, 𝑐1-3, 𝑐2-1, and 𝑐2-2 (red frames in Fig. 3-10A; 
examples of snapshots in each subcluster are shown in Fig. 3-11). These clusters can be 
characterized roughly in terms of the total number of contacting pairs of peptides, 
𝑁<0R-/E (𝑠), where 𝑠 denotes the snapshot index. Since the 4-ALA system includes four 
peptides, 𝑁<0R-/E (𝑠)  takes one integer value from zero to six. Figure 3-10B presents 
𝑁<0R-/E (𝑠)  for all representative snapshots. Apparently, most snapshots in cluster 𝑐1 
consisted of large aggregates. Particularly, all the snapshots in the cluster 𝑐1-3 were of 
the four-molecule aggregate (𝑁<0R-/E (𝑠) ≥ 4; Fig. 3-11C). Contrarily, most snapshots in 𝑐2 
had fewer than three contacts, which does not form tetrameric aggregates. Particularly, 
half of the snapshots in 𝑐2-2 were monomers (the region 𝑁<0R-/E (𝑠) = 0 in Fig. 3-10B; Fig. 
3-11E). The intermolecular distances assigned to the reaction coordinates 𝜆1, 𝜆2, and 𝜆5 

Figure 3-9. Histogram of 1-ns time window over the number of unsampled virtual 
states out of 169 and 216 states, respectively, for 3-ALA and 4-ALA systems. The 
results of MDconv (3-ALA), MDconv (4-ALA), two dimensional (2D)-virtual-system 
coupled canonical molecular dynamics (VcMD; 3-ALA), and 3D-VcMD (4-ALA) are 
shown in orange, black, red, and blue, respectively. The 2D- and 3D-VcMD 
simulations resulted in the identical histogram indicating that all the virtual states 
were sampled in any 1-ns time window. 
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for each snapshot also presented a trend by which 𝑐1 forms tighter contacts than 𝑐2 
does, especially for 𝑐1-3 and 𝑐2-2 (Fig. 3-10D). Details of contact information in each 
snapshot are displayed in Figure 3-10C. The vertical axis corresponds to each of 36 
positions of intersite contacts, i.e., each element of the upper-triangular matrix 𝑪�[Z;[](𝑠) 
for the six pairs of [𝐼; 𝐽]. The six 𝑪�[Z;[](𝑠) were arranged in descending order of the total 
number of contacts (summation of their elements), flattened, and concatenated into a 
36-dimensional vector. Figure 3-10C looks sparse even in the snapshot 𝑁<0R-/E (𝑠) = 6 
because it is sterically difficult to form tight contacts among all six pairs of peptides.  

In summary, the resultant conformational ensemble covered various contacting 
topologies of the four peptides. This result was robust to choice of the threshold distance 
to distinguish of whether contact or not; the case 𝑟XY = 8.0 Å is shown in Figure 3-12. It 
is qualitatively consistent with Figure 3-10 with 𝑟XY = 7.0 Å. 
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Figure 3-10. Conformational diversity of 1,000 representative snapshots from the 4-
ALA system. (A) The dendrogram was calculated based on the contact topology of 
snapshots. Clusters 𝑐1 and 𝑐2 are discriminated at the uppermost stream. Red frames 
encompass smaller clusters 𝑐1-1, 𝑐1-2, …, and 𝑐2-2 described in the main text. Panels 
(B), (C), and (D) show characteristics of each snapshot: (B) 𝑁<0R-/E (𝑠), (C) 𝑐[4,Z;I,[](𝑠), which 
are elements of 𝑪�[Z;[](𝑠) arranged in the order of the number of contacts in each pair of 
[𝐼; 𝐽] along the 𝑦-axis, and (D) the three reaction coordinates, 𝜆1, 𝜆2, and 𝜆5. Black, red, 
and green circles in panel (D) present the smallest, medium, and highest values of 
reaction coordinate in the representative snapshots. 
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Figure 3-11. Examples of snapshots in the sub-clusters (A) 𝑐1-1, (B) 𝑐1-2, (C) 𝑐1-3, 
(D) 𝑐2-1, and (E) 𝑐2-2c. Carbon atoms in the first, second, third, and fourth alanine 
peptides are shown, respectively, as green, cyan, magenta, and yellow. 
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3.4 Conclusions 

My earlier study of 1D-VcMD demonstrated a conformational sampling enhanced along 
a single reaction coordinate 𝜆 , which is the intermolecular distance between two 
molecules43. For a multimolecular system, however, facilitating rearrangement of 
multimer formation requires multiple intermolecular distances as reaction coordinates. 
In this study, I presented the mD-VcMD method to address this issue. Unlike 
multidimensional AUS, mD-VcMD requires no precise estimation of a high-dimensional 
canonical distribution function, 𝑃-./0(𝜆), to calculate the effective potential. Instead, the 
virtual state-partitioned canonical probability, 𝑄-./0(𝑳) , must be estimated through 
iterative simulations. 𝑄-./0(𝑳) can be regarded as a discretized function of 𝑃-./0(𝜆). The 
discretization of the distribution function by introducing the virtual system and flat-
bottom potentials make it easier to ascertain the effective potential, especially for a 
multidimensional reaction-coordinate system. In this method, convergence of 𝑄-./0(𝑳) 
through iterative simulations realizes uniform sampling in the reaction-coordinate space. 

Figure 3-12. Cluster analysis performed with the setting 𝑟XY = 8	Å for the 4-ALA 
system. Clustering was applied to the same conformational ensemble used for 
showing Fig. 3-10 (𝑟XY = 7	Å). 
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Even if it is not well converged, the canonical ensemble is obtainable by reweighting the 
raw distribution based on eqs. (2.28) and (2.29), in theory. 

Before applying this new method to complicated systems to resolve difficulties 
related to biology, I examined this method regarding capability to compute accurate 
canonical ensemble using the simple systems with alanine peptides. The distribution 
𝑄-./0(𝑳) was converged via only a few hundred-scale simulation (3.4 ns for 90 runs for 
first through fifth iterations in both 2D-VcMD and 3D-VcMD simulations). The resultant 
ensembles of 2D-VcMD and 3D-VcMD for 3-ALA and 4-ALA systems, respectively, 
showed quantitative agreement with those provided by long-term (ca. 20 times longer 
than the VcMD simulations) conventional canonical MD simulations. 

Although I presented applications only for simple molecular systems with weak 
interactions, mD-VcMD is applicable for systems involving stable molecular interaction 
in which a ligand binds to a deep pocket of a receptor. In such a system, enhancement 
along the intermolecular distance is insufficient because the ligand cannot enter into or 
exit from the pocket unless the gate of the pocket loosens. Then, the gate width of the 
pocket should be taken as another reaction coordinate. This situation was discussed by 
using a toy model in the earlier study25. Analyses of protein–small-ligand binding with 
a flexible receptor persists as a grand challenge in this field: mD-VcMD is useful to meet 
this challenge.  

For applying complicated systems, to find a suitable definition of a set of 
reaction coordinates is a key problem for the mD-VcMD method as well as other existing 
methods, e.g., umbrella sampling. However, as described in “2.1 Introduction” section, 
discretization of the reaction-coordinate space and biasing with the flat-bottom potential 
make it easier to apply higher-dimensional reaction-coordinate spaces. Even if it is 
difficult to find the optimal definition of a single reaction coordinate, applying some 
multiple reaction coordinates temporarily and finding the optimal coordinates, which 
can be constructed by linear combinations of the preliminary introduced ones, may 
provide a practical solution. 
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4.1 Introduction 

Neural restrictive silencer factor (NRSF), which is also known as Repressor-element 1 
silencing transcription factor (REST)53,54, is a fundamental repressor, which binds to 
repressor-element 1 (re1) or neural restrictive silencer element (nrse) of many neuronal 
genes55,56. Importantly, overexpression of NRSF/REST or dysregulation of its cellular 
expression pattern is related to many neuropathies: Medulloblastoma57,58, malignant 
pediatric brain tumor59, glioblastoma60,61, Huntington’s disease62–65, neuropathic 
pain66,67, Parkinson’s disease68, autism69, and fibromyalgia70. 

NRSF/REST mediates transcriptional repression recruiting two corepressor 
complexes: NRSF/REST binds to mSin3 at its N-terminus and to CoREST plus the 
histone H3K9 methyltransferase G9a at its C-terminus71. The mSin3 complex, which 
contains two histone deacetylases HDAC1 and HDAC272, was implicated as an 
important epigenetic regulator in cancer73. The corepressor mSin3B, an isoform of mSin3, 
consists of four paired amphipathic helix domains (PAH1–PAH4) connected by linkers 
among the domains, and an intrinsically disordered region of NRSF/REST binds to the 
cleft of PAH1 of mSin3B74. 

Interestingly, an NMR experiment has shown that the disordered regions of 
NRSF/REST folds into a helix when binding to the hydrophobic cleft of the PAH1 
domain74 (coupled folding and binding75–77). Figure 4-1 shows the PAH1 structure and 
the cleft position in the domain. A microscopic mechanism for the coupled folding and 
binding of this system was elucidated by the earlier computational study18. The NMR 
work provided a useful strategy for drug discovery: A compound that inhibits the binding 
of NRSF/REST to the PAH1 cleft of mSin3B can be a potential drug candidate to 
ameliorate the neuropathies70,78–81, and many compounds have been examined70,74,82. 
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In fact, Ueda et al. analyzed the NMR complex structure of NRSF/REST and 
the PAH1 domain of mSin3B, and proposed a compound mS-11 to inhibit the binding of 
NRSF/REST to the PAH1 domain70. This compound mimics the helical structure of a 
four-residue segment (Leu46-Ile47-Met48-Leu49) of NRSF/REST in the bound form, and 
importantly, this compound inhibited actually the binding of NRSF/REST to the PAH1 
domain. I call this four-residue segment a LIML sequence in this study. 

As mentioned in Chapters II and III, I developed a generalized ensemble 
method, multi-dimensional virtual-system coupled molecular dynamics (mD-VcMD) 
simulation and examined its availability43,83. This method enhances conformational 
sampling of biomolecules in an explicit solvent: By introducing multiple reaction 
coordinates (RCs) in the molecular system, the conformational motions of the molecules 
are enhanced with controlling the values of the multiple RCs. The search region in the 
RC space is expanded through iterative simulation. Importantly, a thermodynamic 
weight is assigned to each of the sampled conformations, and various thermodynamic 
quantities of the system are computed from the weighted snapshots. Then, Higo et al. 
extended the mD-VcMD method by using a genetic algorithm and named the method as 

Figure 4-1. (a) Complex structure of PAH1 domain and NRSF/REST. In this 
chapter, the PAH1 domain of mSin3B is denoted simply as “mSin3B”. Four helices, 
composing mSin3B, are denoted as H1– H4. The “C” and “N” are respectively the N- 
and C-termini for each chain. Shown structure is a snapshot from a sampling 
simulation18. (b) Schematic drawing of the mSin3B structure. The binding cleft of 
mSin3B is shown by a triangle. 
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a genetic-algorithm-guided mD-VcMD (GA-guided mD-VcMD) simulation84,85 where the 
genetic algorithm supports expansion of the search range effectively. They have shown 
that the sampling efficiency of the GA-guided mD-VcMD is significantly higher than that 
of the original mD-VcMD84. 

In this chapter, I investigate the spatial distribution of three compounds 
sertraline, YN3, and acitretin, respectively, around the PAH1 domain of mSin3B, which 
are obtained from the GA-guided mD-VcMD simulation of the system. The chemical 
structures of the three compounds are shown in Figure 4-2. I note that preceding 
experiments on sertraline and YN3 have shown that only sertraline exhibited 
medulloblastoma cell growth inhibitory activity, although both compounds bound to the 
PAH1 domain of mSin3B82. Another preceding experiment has shown that no inhibitory 
activities were detected for acitretin whereas it also binds to the PAH1 domain. I show 

Figure 4-2. (a) (left) Chemical structure of sertraline where three rings are named 
as “Ring A”, “Ring B”, “Ring C” in this chapter. Rings B and C are combined and 
called “Ring BC” simply. (right) Three reaction coordinates (RCs), 𝜆(i) , 𝜆(j), and 
𝜆(9), are introduced in the sertraline–mSin3B system. (b) (left) Chemical structure of 
YN3. The ring is named as “head”, and the opposite side of the ring as “tail” in this 
chapter. (right) Three reaction coordinates, 𝜆(i), 𝜆(j), and 𝜆(9), are introduced in the 
YN3–mSin3B system. (c) (left) Chemical structure of acitretin. The ring is named as 
“head”, and the opposite side of the ring as “tail” in this chapter. (right) Three 
reaction coordinates, 𝜆(i) , 𝜆(j), and 𝜆(9), are introduced in the acitretin–mSin3B 
system. In each panel, four helices of mSin3B are indicated by “H1”, “H2”, “H3”, and 
“H4” from the N- to C-terminal. Label “N” shows the position of the N-terminal of 
mSin3B. 𝜆(i) is defined by the distance between the center of mass of red-colored 
segments of mSin3B and that of blue-colored segment of mSin3B. 𝜆(j) is defined by 
the distance between the center of mass of green-colored segments of mSin3B and 
that of purple-colored part of compound. 𝜆(9) is defined by the distance between the 
center of mass of cyan-colored segments of mSin3B and that of orange-colored part 
of compound. 
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that the spatial distribution of the three compounds from the simulations rationally 
explains why only sertraline exhibited the inhibitory activity. Based on these 
computational results, I discuss a strategy to develop a drug candidate. 
 
 

4.2 Materials and Methods 

In this chapter, I denote the PAH1 domain of mSin3B simply as “mSin3B” for 
convenience. Besides, a system composed of sertraline and mSin3B is referred to as a 
“sertraline–mSin3B” system even when the two molecules are apart to each other during 
the simulation. Similarly, a system of YN3 and mSin3B is done to as a “YN3–mSin3B” 
system, and that of acitretin and mSin3B as a “acitretin–mSin3B” system. 
 

4.2.1 Three reaction coordinates 
First, I introduced multiple RCs in the system, where an RC was defined by the distance 
between centers of mass of two atom groups. Consider two atom groups 𝐺Y!  and 𝐺Yk 
(ℎ	 = 	𝛼, 𝛽, 𝛾, …) in a molecular system. The reaction coordinate (RC) 𝜆(Y) is defined by 

Figure 4-3. Two atom groups, 𝐺Y! and 𝐺Yk, are indicated by, red-colored and blue-
colored rectangles, respectively. Atoms in 𝐺Y! and 𝐺Yk are presented by small black 
filled circles. Center of mass of each atom group is presented by a cross. The distance 
between the two centers of mass is 𝜆(Y) (broken-line with arrows). 
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the distance between centers of mass of 𝐺Y! and 𝐺Yk (Figure 4-3). Superscripts 𝐴 and 
𝐵 indicate simply that two atom groups are pairing to define 𝜆(Y), and then, one can 
exchange the superscripts as: 𝐺Y! → 𝐺Yk  and 𝐺Yk → 𝐺Y!  without changing the value of 
𝜆(Y). 

For each of the ligand–receptor systems, I introduced three RCs, denoted as 𝜆(Y) 
(ℎ = 𝛼, 𝛽, 𝛾), presented in Figure 4-2. Schematic representation for the three RCs is given 
in Figure 4-4a. I briefly explain here the RCs as follows: The two atom groups 𝐺i! (red-
colored segments in Fig. 4-2) and 𝐺ik (blue-colored segments in Fig. 4-2) define the first 
RC 𝜆(i) . We can imagine readily that the move of 𝜆(i) opens/closes the cleft. Atom 
groups 𝐺j!  and 𝐺9!  are respectively green-colored and cyan-colored segments in 
mSin3B, and 𝐺jk and 𝐺9k are purple-colored and orange-colored portions in the ligand 
(Figure 4-2). The moves of 𝜆(j)   (distance between 𝐺j!  and 𝐺jk ) and 𝜆(9)  (distance 
between 𝐺9! and 𝐺9k) control the ligand approaching/departing to mSin3B. When 𝜆(j) 
increases with decreasing 𝜆(9) or when 𝜆(j) decreases with increasing 𝜆(9), the ligand 
rotates. 

I note that the selection of RCs can be arbitrary in theory if a very long 
simulation is possible. However, the selection is essentially important to raise the 

Figure 4-4. (a) Scheme of three RCs, 𝜆(Y) (ℎ = 𝛼, 𝛽, 𝛾), introduced for the current 
ligand–receptor system: Variation of 𝜆(i) controls the cleft opening/closing of the 
receptor. Variations of 𝜆(j) and 𝜆(9)  control ligand approaching/departing from 
receptor, and relative orientation of the ligand with respect to the receptor. (b) Three-
dimensional RC space constructed by 𝜆(i), 𝜆(j), and 𝜆(9), where phase point (filled 
circle) moves according to the system’s conformational motion. 
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efficiency in an actual simulation. Detailed information for the atom groups is given in 
Table 4-1. 

To study molecular binding extensively, the multi-dimensional RC region 
should involve both the unbound and bound conformations. For this purpose, I set the 
variable ranges for the three RCs wide enough (Table 4-2). The term “multi-dimensional 
(mD)” means three-dimensional (3D) in this chapter, whereas the current method is 
applicable to any dimensional RC space. 
 

Table 4-1. Atom groups to define three RCs. 
 Atom Group[a] 

RC 𝐺Y! 𝐺Yk 

𝜆(i) residues 33–38, 93–99[b] of mSin3B residues 63–75 of mSin3B 
𝜆(j) residues 40–43, 90–92 of mSin3B purple-colored portion in ligand in 

Fig. 4-2 
𝜆(9) residues 60–62, 77–80 of mSin3B orange-colored portion in ligand in 

Fig. 4-2 

[a] See the main text for definition of atom groups 𝐺Y!  and 𝐺Yk  (ℎ	 = 	𝛼, 𝛽, 𝛾, … ). 
Superscripts 𝐴 and 𝐵 are assigned to indicate the atom groups 𝐺Y! and 𝐺Yk, which 
are pairing to define 𝜆(Y). 
[b] “residues 𝑛1–𝑛2” involves all atoms in residues 𝑛1–𝑛2 in mSin3B. See also Fig. 4-
2 for positions of the atom groups in mSin3B. 

 
 

Table 4-2. Parameters[a] for RC-space division 

ℎ 𝑛lX(ℎ)[a] G𝜆1
(Y)H

<4/
[b] G𝜆/48(Y)

(Y) H
<.=

[b] ∆𝜆(Y)[c] 

𝛼 7 10.0 Å 18.0 Å 2.0 Å 
𝛽 19 0.0 Å 25.0 Å 2.5 Å 
𝛾 19 0.0 Å 25.0 Å 2.5 Å 

[a] Number of virtual states for each reaction coordinate 𝜆(Y). 

[b] Variable range for 𝜆(Y) is GG𝜆1
(Y)H

<4/
, G𝜆/48(Y)

(Y) H
<.=

H. 

[c] Zone width for each reaction coordinate 𝜆(Y). 
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4.2.2 Initial conformations of simulation 
After setting the RCs above, the initial conformation of simulation was generated. First, 
the tertiary structure of the receptor mSin3B (PAH1 domain) was taken from the PDBj 
site (https://pdbj.org/) (PDB ID: 2CZY), in which the receptor binds to the NRSF/REST 
fragment. After removing NRSF/REST from the complex, I introduced a ligand 
(sertraline, YN3, or acitretin) near mSin3B. As explained later, I randomized the 
position of the ligand to generate the initial conformations of the GA-guided mD-VcMD 
simulation, where the ligand was distant from the binding cleft of mSin3B. 

Next, I put the two molecules (ligand and mSin3B) generated above in a periodic 
boundary box (size is 70.05	Å5) filled by water molecules, and removed water molecules 
that overlapped to mSin3B or the ligand. Then Na+ and Cl− ions were introduced with 
randomly replacing water molecules by ions. The number of ions was set to a 
physiological ionic concentration with neutralizing the net charge of the whole system to 
zero. The resultant sertraline–mSin3B system consists of 33,543 atoms (1,200 atoms for 
mSin3B, 38 atoms for sertraline, 10,749 water molecules, 29 Na+, 29 Cl−), the YN3–
mSin3B system does of 33,533 atoms (1,200 atoms for mSin3B, 40 atoms for YN3, 10,745 
water molecules, 29 Na+, 29 Cl−), and the acitretin–mSin3B system does of 33,525 atoms 
(1,200 atoms for mSin3B, 50 atoms for acitretin, 10,739 water molecules, 29 Na+, 29 Cl−). 
After a short energy minimization, a short constant-volume and constant-temperature 
(300 K) simulation (NVT simulation) was performed. Then, a constant-pressure (1 atm) 
and constant-temperature (300 K) simulation (NPT simulation) was performed to relax 
the box size. The resultant box size was 68.9205	Å5, 68.9095	Å5, and 68.9095	Å5 for the 
sertraline–mSin3B, YN3–mSin3B, and acitretin–mSin3B systems, respectively. Those 
computations were done by using a program package myPresto/psygene86. The force 
fields used for those simulations are described later. 

Whereas the PAH1 domain is linked to the PAH2 domain by a long flexible 
linker in a real cell, only the PAH1 domain was computed in this simulation, and the 
inter-domain linker was treated as the C-terminal tail. This tail might be inserted into 
the binding cleft of PAH1 domain incidentally during the simulation. It is likely that the 
incidental insertion of the inter-domain linker into the cleft does not happen if the PAH1 
and PAH domains are connected by the linker. Thus, to prevent this incidental and 
artificial event, I applied weak restraints to the C-terminal tail. I introduced distance-
restraint energy, 𝐸FDX, between a part of PAH1 domain of mSin3B and its C-terminal 
tail to prevent the C-terminal tail from being inserted into the binding cleft of PAH1 
domain. The function form is: 
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𝐸FDX =

⎩
⎪
⎨

⎪
⎧0.5Q <𝑟4,I − D𝑟4,Im − 𝑟R0nE=

2

4,I
		(for	𝑟4,I ≤ 𝑟4,Im − 𝑟R0n)

0																																(for	𝑟4,Im − 𝑟R0n < 𝑟4,I < 𝑟4,Im + 𝑟oh)

0.5Q <𝑟4,I − D𝑟4,Im + 𝑟ohE=
2

4,I
					(for	𝑟4,I ≥ 𝑟4,Im + 𝑟oh)

, (4.1) 

where 𝑟4,I and 𝑟4,Im  are the C𝛼 atomic distance between residues 𝑖 and 𝑗 in a simulation 
snapshot and the reference complex structure (the NMR structure of the NRSF/REST–
mSin3B complex; PDB ID: 2CZY), respectively, and 𝑟R0n and 𝑟oh specify tolerances set 
to 2.0 Å. Thus, no restraint (𝐸FDX = 0) is applied to the atom-pair distance 𝑟4,I when 𝑟4,Im −
𝑟R0n < 𝑟4,I < 𝑟4,Im + 𝑟oh . This distance restraint was applied to three C𝛼 atomic distance 
pairs between Gly 92 and Asp 104, between Phe 93 and Ile 105, and between Asn 94 and 
Arg 106. By the restraints, the C-terminal did not move to the binding cleft, and 
fluctuated around the initial conformation (NMR structure; PDB ID: 2CZY) during the 
simulation. 

To generate the initial conformations of simulation, where the ligand is distant 
from the binding cleft of mSin3B, I applied interactions between mSin3B and the ligand 
so that the RCs fall in the following ranges: 15	Å < 𝜆(i) < 16	Å, 24	Å < 𝜆(j) < 25	Å, and 
24	Å < 𝜆(9) < 25	Å. Then, with applying these interactions I performed 256 runs starting 
from the last snapshot of the NPT simulation done above. Figure 4-5 display some of the 
last conformations picked randomly from those 256 runs for the three systems. I used 
those 256 conformations for the initial conformation of GA-guided mD-VcMD. 
Apparently, the ligand in these conformations was distant from the cleft of mSin3B (i.e., 
NRSF/REST position). These figures also display the NRSF/REST fragment binding to 
the cleft of mSin3B (PDB ID: 2CZY), whereas NRSF/REST did not exist in the current 
simulation. 
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4.2.3 The GA-guided mD-VcMD 
In order to determine IVT probability,	 𝑄-./0(𝑳) is used as the parameter (eqs. (2.26) and 
(2.27)). 𝑄-./0(𝑳) is estimated through iterative simulations of mD-VcMD, and 𝑄D/E4FD(𝑳) 

Figure 4-5. (a) Some initial conformations of GA-guided mD-VcMD for the 
sertraline–mSin3B system viewed from two different directions. Solvent is omitted. 
Shown mSin3B structure is the NMR structure (PDB ID: 2CZY). This figure also 
displays the NRSF/REST fragment (cyan-colored model) binding to mSin3B in the 
NMR structure, while NRSF/REST does not exist in the GA-guided mD-VcMD 
simulation. Labels H1, ..., H4 are helices 1–4 of mSin3B (PAH1 domain). (b) Some 
initial conformations for the YN3–mSin3B system viewed from two different 
directions. (c) Some initial conformations for the acitretin–mSin3B system viewed 
from different directions. 
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is used to update 𝑄-./0(𝑳)  (eqs. (2.21) and (2.22)). 𝑄D/E4FD(𝑳) , the virtual state-
partitioned probability, is calculated by counting the frequency of snapshots at the state 
𝑳 in trajectories. Therefore, if a poorly sampled region in the multidimensional RC space 
arose in an iterative simulation, this region might lead to conformational entrapment in 
a later iteration. To avoid the difficulty, Higo et. al. proposed a subzone-based mD-VcMD 
method, which is an extension of the original mD-VcMD; and a GA-guided mD-VcMD 
method, which extends the subzone-based mD-VcMD to expand sampling to non-
sampled RC regions using genetic algorithm (GA)84. 

Methodological details for GA-guided mD-VcMD are explained in Ref 84. Here, 
I explain the outline of GA-guided mD-VcMD and resultant quantities. This method 
controls the system’s motions by modulating the three RCs 𝜆(Y) (ℎ = 𝛼, 𝛽, 𝛾). Figure 4-4b 
presents schematically a distribution of the system’s conformation in the 3D RC space 
resulted from the moves of 𝜆(Y). 

The outline of the method is as follows: First, the entire 3D RC space is divided 
into many small zones. Then, the GA-guided mD-VcMD simulation provides a 
conformational distribution function 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E  of the system, where 
𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E is the probability of existence at position <𝜆(i), 𝜆(j), 𝜆(9)= in the 3D 
RC space constructed by 𝜆(i) , 𝜆(j) , and 𝜆(9). Because the conformational space of a 
biological molecular system is wide, the GA-guided mD-VcMD is executed via iterative 
simulations, during which the sampled RC region is expanded. The simulation is 
terminated when 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E  has converged. I discuss the convergence 
quantitatively later. After the convergence, a thermodynamic weight is assigned to each 
of stored snapshots using 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E, and the ensemble of the snapshots can be 
regarded as a thermally equilibrated conformational ensemble (canonical ensemble)84. If 
the GA-guided mD-VcMD simulation is done at temperature 𝑇 , then the canonical 
ensemble at 𝑇 is obtained. 

I performed 256 runs for an iteration in the present study to raise the sampling 
efficiency further. A simple integration of the 256 trajectories can be regarded as a long 
single trajectory44,87. When the 𝑀-th iteration is finished, I have snapshots stored from 
the 1st to 𝑀-th iterations. The 256 initial conformations for the (𝑀 + 1)-th iteration 
were selected from those stored snapshots so that the conformations distributed as even 
as possible in the 3D-RC space. On the other hand, when an RC region was sampled 
poorly, I prepared the initial conformations around the poorly sampled region84. Because 
I obtained the canonical ensemble at 300 K as a result of the GA-guided mD-VcMD, I 
calculated the distribution function of various quantities in equilibrium at 300 K. 
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4.2.4 Simulations 
The atom groups adopted for the current study to define the three RCs are given in Table 
4-1. Three RCs are illustrated in Figure 4-2. GA-guided mD-VcMD consists of iterative 
simulations, through which the conformational ensemble converges on an equilibrated 
one, 𝑄-./0(𝝀)		D𝝀 = 𝜆(i), 𝜆(j), 𝜆(9)E, at a simulation temperature (300 K) in the 3D-RC 
space. A thermodynamic weight is assigned to each of stored snapshots using 
𝑄-./0(𝝀) 84,85. This means that a thermally equilibrated conformational ensemble 
(canonical ensemble) is obtained in the allowed RC space. Table 4-2 lists actual values 

of parameters which control the simulations: 𝑛lX(ℎ), G𝜆1
(Y)H

<4/
, G𝜆/48(Y)

(Y) H
<.=

, and ∆𝜆(Y). 

Table 4-3 lists the zones: zG𝜆S
(Y)H

<4/
, G𝜆S

(Y)H
<.=

; 𝑘 = 1,… , 𝑛lX(ℎ){. An interzone transition 

was attempted once every 20 ps (1 × 10_ steps of simulation). See Ref. 84 for meaning of 
parameters. The simulation was performed using a computer program myPresto/ 
omegagene 45 with the following condition: SHAKE46 to fix the covalent-bond lengths 
related to hydrogen atoms, the Berendsen thermostat to control temperature47, the zero-
dipole summation method48–50 to compute accurately and quickly the long-range 
electrostatic interactions, a time-step of 2 fs (∆𝑡 = 2 fs), and simulation temperature of 
300 K. The Berendsen thermostat produces an ensemble that can approximate a 
canonical distribution for a many-atom system, whereas it generates a non-physical 
distribution for a small system88. To compute the original potential energy of the system, 
the Amber hybrid force fields (mixture parameter 𝑤 = 0.75)89 was used for mSin3B, the 
TIP3P potential model for water molecules52, and the Joung–Cheatham model for 
chloride and sodium ions90. 

The force fields for the sertraline, YN3, and acitretin were set as follows: First, 
the atomic partial charges were derived by quantum chemical calculations using 
Gaussian0391 at the HF/6-31G* level, followed by RESP fitting92. Then, those partial 
charges were incorporated into a GAFF (general amber force field) force-field file93. 
GAFF was designed to be compatible with conventional AMBER force-fields. The Amber 
hybrid force fields currently used for mSin3B was generated with mixing Amber 
parm9494 and parm9695 force fields to treat both helical and stranded polypeptides89, and 
the difference between parm94 and parm96 exists only in the dihedral energy 
parameters. Therefore, the inter-molecular interaction energy between mSin3B and the 
ligands is invariant mechanically among the parm94, parm96, and hybrid force fields. 
Those force field parameters were used for the energy minimization, NVT, NPT, and the 
GA-guided mD-VcMD simulations. 
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Table 4-3. Setting of zones 
Zone No.[a] Zones[b] 

𝑘 G𝜆S
(i)H

<4/
 G𝜆S

(i)H
<.=

[c] G𝜆S
(j)H

<4/
 G𝜆S

(j)H
<.=

 G𝜆S
(9)H

<4/
 G𝜆S

(9)H
<.=

 

1 10.0 12.0 0.00 2.50 0.00 2.50 
2 11.0 13.0 1.25 3.75 1.25 3.75 
3 12.0 14.0 2.50 5.00 2.50 5.00 
4 13.0 15.0 3.75 6.25 3.75 6.25 
5 14.0 16.0 5.00 7.50 5.00 7.50 
6 15.0 17.0 6.25 8.75 6.25 8.75 
7 16.0 18.0 7.50 10.00 7.50 10.00 
8   8.75 11.25 8.75 11.25 
9   10.00 12.50 10.00 12.50 
10   11.25 13.75 11.25 13.75 
11   12.50 15.00 12.50 15.00 
12   13.75 16.25 13.75 16.25 
13   15.00 17.50 15.00 17.50 
14   16.25 18.75 16.25 18.75 
15   17.50 20.00 17.50 20.00 
16   18.75 21.25 18.75 21.25 
17   20.00 22.50 20.00 22.50 
18   21.25 23.75 21.25 23.75 
19   22.50 25.00 22.50 25.00 

[a] Number of zones 𝑛lX is 7 for 𝜆(i) and 19 for 𝜆(j) and 𝜆(9). 
[b] Unit of zones is Å. 

[c] G𝜆S
(i)H

<4/
	G𝜆S

(i)H
<./

 are not assigned for 𝑘 ≥ 8 because number of virtual states is 

7: 𝑛lX(𝛼) = 7. See Table 4-2. 
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4.2.5 Spatial density of a compound around mSin3B 
As mentioned above, the GA-guided VcMD simulation produces a conformational 
ensemble, where a thermodynamic weight at 300 K is assigned to each constituent 
conformation. Thus, I can calculate a spatial distribution function of any structural 
quantity from the ensemble. In this study, I compute the spatial density 𝜌pq

(X)(𝒓), which 
is the probability of detecting the geometrical center (GC) of the ligand in the vicinity of 
a three-dimensional position 𝒓 = [𝑥, 𝑦, 𝑧] in the real space and the superscript 𝑠 is the 
system specifier: 𝑠 = sertraline–mSin3B, YN3–mSin3B, or acitretin–mSin3B. 

The GA-guided mD-VcMD assigns a thermodynamic weight (statistical weight 
at equilibrium) to each sampled snapshot84. Here I present a method to calculate spatial 
distribution of the center of mass of the ligands around the receptor mSin3B. First, I 
divide the 3D real space into cubes, whose volume ∆𝑉 is 2	Å	 × 	2	Å	 × 	2	Å. The cube 
position is specified by its center 𝒓	 = 	 [𝑥, 𝑦, 𝑧]. Next, I calculate the geometrical center 
(GC) of the ligand for each snapshot, and assign the snapshot to a cube that involves the 
GC. Then, I assign all of the snapshots to cubes. Last, I calculate the spatial density 
𝜌qp(𝒓) of the geometrical center at the cube 𝒓 as: 

𝜌pq
(X)(𝒓) =Q 𝑤4𝛿qp(𝒓; 𝑖)

4
, (4.2) 

where 𝑤4 is the thermodynamic weight assigned to snapshot 𝑖, and the superscript 𝑠 
specifies the ligand: 𝑠 = sertraline–mSin3B, YN3–mSin3B, or acitretin–mSin3B. The 
function 𝛿qp(𝒓; 𝑖) is a delta function defined: 

𝛿qp(𝒓; 𝑖) = À1		(if	CG	of	snapshot	𝑖	is	in	cube	𝒓)0																																																				(else). (4.3) 

Equation (4.2) is the thermodynamic weight assigned to the cube 𝒓. I normalized {𝑤4} 
as ∑ 𝑤44 = 1 for each system in advance. 

Another spatial density function is calculated with the same manner. For 
instance, a spatial density 𝜌qp!(𝒓) for the geometrical center of Ring A of sertraline 
(GCA) is calculated as follows: 

𝜌pq!
(X) (𝒓) =Q 𝑤4𝛿qp!(𝒓; 𝑖)

4
, (4.4) 

where 

𝛿qp!(𝒓; 𝑖) = À1		(if	CGA	of	snapshot	𝑖	is	in	cube	𝒓)0																																																							(else). (4.5) 

The superscript 𝑠 is set to sertraline–mSin3B. 
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4.3 Results 

4.3.1 Distribution of the system’s conformation in 3D RC space 
I repeated 14, 13, and 27 iterations for the sertraline–mSin3B, YN3–mSin3B, and 
acitretin–mSin3B systems, respectively. For all of the three systems, an iteration was 
composed of 256 runs. Each run was performed for 3 × 10a steps (6 ns; time step ∆𝑡 = 2 
fs). Thus, the total simulation length was 21.504 µs (= 14 × 256 × 6 ns), 19.968 µs (=
13 × 256 × 6 ns), and 41.472 µs (= 27 × 256 × 6 ns) for the sertraline–mSin3B, YN3–
mSin3B, and acitretin–mSin3B systems, respectively. A snapshot was stored every 
1 × 108 steps (200 ps), yielding 107,520, 99,840, and 207,360 snapshots, for the 
sertraline–mSin3B, YN3-mSin3B, and acitretin–mSin3B systems, respectively. 

Figure 4-6 demonstrates the conformational distributions of the three systems 
in the 3D RC space, where the density is normalized so that the largest density is set to 
1.0. I access the convergence of 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E with proceeding the iteration (i.e., 
the ordinal number of iteration). The assessment is done with 𝐸R0-.RD𝜆(i), 𝜆(j), 𝜆(9)E

Q1 
that is a function defined locally at each position in 3D RC space. This function was 
introduced to assess the accuracy of 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E84, and used actually to check 
the simulation quality85. The larger the function 𝐸R0-.RQ1 at a position <𝜆(i), 𝜆(j), 𝜆(9)=, 
the better the accuracy of 𝑄-./0 at the position. According to Ref. 85, I judged that a 3D-
RC region with 𝐸R0-.RQ1 ≥ 4.0 has an appropriate accuracy. 

Figures 4-7, 4-8, and 4-9 indicate that the regions with 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E >
0.001 are converged well. Although Fig. 4-6 is basically important to show that the 
sampling covered a wide conformational space, this figure is not useful for understanding 
the ligand’s distribution around mSin3B. In the next subsection, I analyze the ligand’s 
distribution using the canonical conformational ensemble. 
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Figure 4-6. Density 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E of (a) the sertraline–mSin3B, (b) YN3–
mSin3B, and (c) acitretin–mSin3B systems in the 3D-RC space. In GA-guided mD-
VcMD, the distribution is defined originally by 𝑄-./0D𝐿(i), 𝐿(j), 𝐿(9)E, where 𝐿(i), 
𝐿(j), and 𝐿(9) are respectively indices to specify the positions 𝜆(i), 𝜆(j) , and  𝜆(9) 

in the 3D-RC space. Then, I convert G𝐿4
(i), 𝐿I

(j), 𝐿S
(9)H  to: 𝜆4

(Y) = 0.5 zG𝜆4
(Y)H

<4/
+

G𝜆4
(Y)H

<.=
{, where 𝑖 = 1,… , 𝑛lX(ℎ)	(ℎ = 𝛼, 𝛽, 𝛾). See Table 4-3 for values of G𝜆4

(Y)H
<4/

, 

G𝜆4
(Y)H

<.=
, and 𝑛lX(ℎ). Then, 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E is normalized so that the highest 

density is set to 1. Contour levels are presented by colors in inset. 
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Figure 4-7. Convergence of distribution 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E  with proceeding 
iterative simulation for the sertraline–mSin3B system. Accuracy of 
𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E  is assessed by objective function 𝐸R0-.RD𝜆(i), 𝜆(j), 𝜆(9)E

Q1  84. 
Cyan contours, i.e., the equidensity region of 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E = 0.001, are those 
used in Figure 4-6. Black contours are the iso-objective-function surfaces of 
𝐸R0-.RD𝜆(i), 𝜆(j), 𝜆(9)E

Q1 = 4. The iteration No. of each panel is indicated near the 
panel. 
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Figure 4-8. Convergence of distribution 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E  with proceeding 
iterative simulation for the YN3–mSin3B system. See caption of Figure 4-7 for 
more information. 
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4.3.2 Distribution of ligands around mSin3B 
I computed the spatial density 𝜌pq

(X)(𝒓) for the geometric center of the ligands (Fig. 4-10). 
At the low-contour level ( 𝜌pq

(X)(𝒓) = 0.005𝜌m ; green-colored contours), the ligands 
distributed almost everywhere around mSin3B for all systems. This result is natural 
indicating that the sampling was done widely. With increasing the density level, the 
ligands tended to be localized at some surface regions of mSin3B (𝜌pq

(X)(𝒓) = 0.05𝜌m; blue-
colored contours). At the high-density level (𝜌pq

(X)(𝒓) = 0.005𝜌m; red-colored contours), a 
high-density conformational cluster (labeled Cluster A in the figure) can be identified in 
the cleft of mSin3B for sertraline and YN3, whereas acitretin did not show a remarkable 
cluster in the cleft. This indicates that the ligand–mSin3B binding for sertraline and 
YN3 is stronger than that for acitretin. 
 
 

Figure 4-9. Convergence of distribution 𝑄-./0D𝜆(i), 𝜆(j), 𝜆(9)E  with proceeding 
iterative simulation for the acitretin–mSin3B system. See caption of Figure 4-7 for 
more information. 
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Figure 4-10. Spatial density 𝜌pq
(X)(𝒓) (𝑠  = sertraline, YN3, or acitretin) of the 

geometric center (GC) at position 𝒓  for (a) the sertraline–mSin3B, (b) YN3–
mSin3B, and (c) acitretin–mSin3B systems in the 3D real space. See Section 4.2.5 
for procedure to calculate 𝜌pq

(X)(𝒓). Contour levels are shown in inset where 𝜌m =
0.001. Displayed structure of mSin3B is that after NPT simulation for each system, 
where labels H2 and H3 represent helix 2 and helix 3 of mSi3B, respectively. The 
high-density cluster (𝜌pq

(X)(𝒓) > 0.5𝜌m) in the cleft of mSin3B (PAH1) is named as 
Cluster A, and one near the N-terminal of mSin3B as Cluster B. (d) NMR structure 
of NRSF/REST–mSin3B complex (PDB ID: 2CZY), where cyan-colored model is 
NRSF/REST, and the magenta-colored segment is the LIML sequence of 
NRSF/REST. Label C indicates the position of the C-terminal tail of mSin3B. Two 
magenta-colored sidechains are Leu 46 and Leu 49 of the LIML sequence. Black 
broken-line circle indicates the position of the two sidechains. The circles in panels 
(a), (b), and (c) are presented to indicate the sidechain position of Leu 46 and Leu 
49. Green-colored sidechains are Val 75, Phe 93, and Phe 96 of mSin3B (see also 
green-colored sidechains of Figure 4-11a), which form a hydrophobic core with Leu 
46 and Leu 49 of the LIML sequence. 
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Figure 4-10d displays the NRSF/REST–mSin3B complex structure solved by 
the NMR experiment from the same orientation of Fig. 4-10a–c. A view of the 
NRSF/REST–mSin3B complex from a different orientation is presented in Figure 4-11. 
The binding cleft of mSin3B is hydrophobic (Figure 4-11b), and two residues Leu 46 and 
Leu 49 of the LIML sequence bind to the cleft forming a hydrophobic core with Val 75, 
Phe 93, and Phe 96 of mSin3B. See “4.1 Introduction” section for the LIML sequence. 
Interestingly, only the geometrical center of sertraline overlaps the position of Leu 46 
and Leu 49 of the LIML sequence (black broken-line circle) in the NRSF/REST–mSin3B 
complex, when the spatial density is viewed at the contour level of 𝜌pq

(X)(𝒓) = 0.5𝜌m . 
Therefore, sertraline forms a tighter hydrophobic core with the binding cleft of mSin3B 
than the other ligands do. 

I also observed a high-density cluster (Cluster B in Fig. 4-10) near the C-
terminal tail of mSin3B. Because the C-terminal tail was restrained (see the “4.2 
Materials and Methods”), the C-terminal tail did not fluctuate largely in the simulation 
in spite that the C-terminal tail is exposed to solvent. Therefore, it is likely that Cluster 
B was induced by this less-fluctuating C-terminal tail: Cluster B is an artificial cluster. 
Figure 4-12 displays a sertraline’s conformation taken from Cluster B. The nitrogen 
atom of Ring B of sertraline interacts electrostatically to an oxygen atom of Asp 104 of 
the C-terminal tail. Ring A of sertraline interacts with the hydrophobic residue Ile 61 of 
helix H4 of mSin3B, and Ring C of sertraline does with the hydrophobic residue Val 62 
of helix H4. Majority of conformations from Cluster B showed those interaction patterns. 
Therefore, it is likely that Cluster B disappears when the C-terminal tail is highly 
exposed to solvent and fluctuates largely. 
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Figure 4-11. NRSF/REST–mSin3B complex structure determined by NMR (PDB 
ID: 2CZY). (a) The LIML sequence of NRSF/REST is shown by magenta-colored 
ribbon model, and two hydrophobic residues Leu 43 and Leu 46 (magenta-colored 
labels) of the LIML sequence are displayed explicitly. These two residues contact 
to three hydrophobic residues Val 75, Phe 93, and Phe 96 (green-colored residues 
with black labels) of mSin3B. Labels H1, ..., H4 indicate helices 1, ..., 4 of mSin3B 
(PAH1 domain), respectively. (b) mSin3B is presented by a surface model, where 
hydrophobic surface is represented by white color. 
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4.3.3 Radial distribution function of ligand-cleft distance 
Figure 4-10 is insightful to guess the ligand–mSin3B interaction. Nevertheless, 𝜌pq

(X)(𝒓) 
was calculated using the geometrical centers of the ligands. There is a possibility that 
some parts of the ligands contacted to the hydrophobic cleft tightly even when the 
geometrical center was distant from the cleft. For instance, acitretin is a long molecule, 
and then the head or tail of acitretin (Figure 4-2c) may be inserted to the cleft keeping 
the geometrical center out of the cleft. 

To make clear this point, I calculated a radial distribution function (RDF) 
between the ligand and three residues Val 75, Phe 93, and Phe 96 located in the mSin3B 
cleft. 

Defining a distance 𝑟  between two objects in a system, we can calculate a 
distance distribution function (DDF) 𝑃(𝑟), where the probability of detecting 𝑟 in a 
window [𝑟, 𝑟 + 𝑑𝑟] is 𝑃(𝑟)𝑑𝑟. The normalization of DDF is defined as ∫ 𝑃(𝑟)𝑑𝑟r

m = 1. I 
use 𝑤1 (section 4.2.5) to calculate the DDF. Then, the radial distribution function (RDF) 
𝑝(𝑟)  is defined formally as: 𝑝(𝑟) = 𝑃(𝑟) 4𝜋𝑟2⁄ . This function is normalized as 
∫ 𝑝(𝑟)4𝜋𝑟2𝑑𝑟r
m = 1. 

In the present study, I calculate the minimum heavy-atomic distance 𝑟,
(X) 

between the ligand and one of three residues Val 75, Phe 93, and Phe 96 in the mSin3B 
cleft, where the subscript 𝑅 of 𝑟,

(X) is the residue specifier (𝑅 = Val 75, Phe 93, or Phe 

Figure 4-12. Conformation of 
sertraline taken from Cluster B. See 
Figure 4-10a for definition of Cluster B. 
The nitrogen atom of sertraline’s Ring 
B interacts electrostatically to an 
oxygen atom of Asp 104 of the C-
terminal tail of mSin3B, which is 
shown by brown-colored broken line. 
The distance between the two atom is 
2.8 Å. Hydrophobic contacts are formed 
between sertraline’s Ring A and Ile 61 
of helix H4 of mSin3B as well as 
between sertraline’s Ring C and Val 62. 



 68 

96) and the superscript 𝑠 is the system specifier defined in eq. (4.2). Then, I calculated 

three RDFs 𝑝 R𝑟,
(X)T for each system. 

Figure 4-13 demonstrates the resultant RDFs. For all of the systems, the 
function 𝑝(𝑟sYDta

(X) ) exhibited a peak at 3.5 Å regardless of the peak height. This result is 
plausible because the residue Phe 96 is located at the entrance of the cleft (Figure 4-
11a): The ligand can contact to Phe 96 without sinking into the cleft. More important 
RDFs are 𝑝(𝑟G.Rb8

(X) ) and 𝑝(𝑟sYDt5
(X) ) because Val 75 and Phe 93 are located at the bottom 

of the cleft. Apparently, the peaks of the RDFs at 𝑟,
(X)~4	Å for the acitretin–mSin3B 

system were considerably smaller than those for sertraline–mSin3B and YN3–mSin3B 
systems. This means that acitretin did not interact frequently or tightly with the bottom 
of the cleft. The highest peaks were from the sertraline-mSin3B system (Fig. 4-13a), and 
the peaks from the YN3–mSin3B were intermediate between sertraline and acitretin 
(Fig. 4-13b). These results suggest that sertraline may resemble the ligand–receptor 
interaction mode found in the NRSF/REST–mSin3B complex. 

Figure 4-13. Radial distribution functions (RDFs) 𝑝(𝑟,
(X)) for (a) the sertraline–

mSin3B (𝑠 = sertraline), (b) YN3–mSin3B (𝑠 = YN3), and (c) acitretin–mSin3B 
systems (𝑠 = acitretin). Three RDFs 𝑝(𝑟G.Rb8

(X) ), 𝑝(𝑟sYDt5
(X) ), and 𝑝(𝑟sYDta

(X) ) are shown 
by different colors as indicated in insets of panels. 
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To investigate more the ligand–receptor interactions for the sertraline–mSin3B 
system, I calculated the spatial density 𝜌qp!

(sertraline)(𝒓) of the geometrical center of Ring A 
of sertraline: See Figure 4-14a for the position of Ring A and eq. (4.4) for the procedure 
to calculate 𝜌qp!

(X) (𝒓). Figure 4-4b illustrates 𝜌qp!
(X) (𝒓) and 𝜌qp

(X)(𝒓) with the contour level 
of 0.5𝜌m. The contours in the mSin3B’s cleft correspond those for Cluster A in Fig. 4-10a. 
Thus, conformations taken from the contours are constituents of the most probable 
binding mode of the sertraline–mSin3B system. Ring A occupies the deeper position of 
the cleft than the geometrical center of the entire sertraline did. Thus, Ring A was closer 
to Val 75, Phe 93, and Phe 96 of mSin3B. In the next subsection, I investigate the 
conformations in this most probable binding mode. The contours near the C-terminal tail 
of mSin3B does to Cluster B, which is the artificial cluster as discussed before. 

Figure 4-14. (a) Chemical structure of sertraline, where Ring A and Ring BC 
(Rings B and C) are shown. (b) Spatial density 𝜌pq

(XDFEF.R4/D)(𝒓)  (blue-colored 
contours) for the geometric center of Ring A of sertraline in the sertraline–mSin3B 
system, where the contour level is 𝜌pq!

(XDFEF.R4/D)(𝒓) > 0.5𝜌m	(𝜌m = 0.001). Red-colored 
contours are 𝜌pq

(XDFEF.R4/D)(𝒓), which is spatial density of the geometric center of the 
entire sertraline. Labels H2 and H3 represent helices 2 and 3, respectively. Green-
colored residues are Val 75, Phe 93, and Phe 96 of mSin3B. See Section 4.2.5 for 
procedure to calculate 𝜌pq!

(XDFEF.R4/D)(𝒓). 
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4.3.4 Orientation of ligands bound to mSin3B 
The above analysis shows that the most stable/probable complex is not assigned to a 
single complex structure but to an ensemble of complex structures, which construct a 
high-density cluster. For the sertraline–mSin3B system, the most probable complex 
structures are those originated from Cluster A (Fig. 4-10a). Figure 4-15 demonstrates 
some conformations picked randomly from Cluster A. This figure also displays Val 75, 
Phe 93, and Phe 96 of mSin3B. Here I judged that Ring A was contacting to these 
residues when 𝑟,

(X) < 4.0	Å  was satisfied. Remember that 𝑟,
(X)  was defined in the 

previous subsection. In Fig. 4-15a Ring A contacted to Val 75 and Phe 93, and in Fig. 4-
15b Ring A did to Phe 93 and Phe 96. Ring A contacted to Phe 96 in Fig. 4-15c, and Ring 
A did to all of the three residues in Fig. 4-15d. Examining a number of snapshots, I 

Figure 4-15. (a)–(d) Sertraline–mSin3B complexes picked randomly from the high-
density cluster (Cluster A) of 𝜌pq

(XDFEF.R4/D)(𝒓) > 0.5𝜌m	(𝜌m = 0.001), which are shown 
by blue-colored contours. Magenta-colored portion is Ring A of sertraline. Red-
colored arrows are those pointing from the Ring-BC geometrical center to that of 
Ring A (see Fig. 4-16a for positions of Ring A and BC). Green-colored residues are 
Val 75, Phe 93, and Phe 96 of mSin3B. Ocher-colored lines represent contacts 
between sertraline and the three residues. Labels H1, ..., H4 are helices 1–4 of 
mSin3B (PAH1 domain). 
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concluded that ligand–receptor contacts shown in Fig. 4-13a were contributed mainly by 
Ring A. 

Red-colored arrows in Fig.4-15 shows the molecular orientations of sertraline 
has a tendency: Ring A was inserted into the binding cleft of mSin3B and Ring BC was 
left behind. To analyze more this tendency, I defined the molecular orientation of a 
snapshot for the three ligands: Fig. 4-16a, d, and g illustrate the ligand’s orientation for 
sertraline, YN3, and acitretin, respectively. 

Molecular orientation vectors for the compounds are defined by the red-colored 
vectors in Figures 4-16a, 4-16d, and 4-16g. Then, I defined a unit vector parallel to the 
molecular orientation vector for each snapshot: 𝒆4

(X)  where the subscript 𝑖 is the 
snapshot specifier and superscript 𝑠 is the system specifier (𝑠 = sertraline, YN3, or 
acitretin). Then, the average of 𝒆4

(X) at each cube was defined as: 

〈𝒆(X)(𝒓)〉 =
1

∑ 𝑤4𝛿qp(𝒓; 𝑖)4
Q𝒆4

(X)𝑤4𝛿qp(𝒓; 𝑖)
4

. (4.6) 

I calculated 〈𝒆(X)(𝒓)〉 in cubes whose densities were 𝜌qp
(X)(𝒓) ≥ 0.5𝜌m for sertraline and 

YN3, and 𝜌qp
(X)(𝒓) ≥ 0.1𝜌m  for acitretin. I aim to investigate the spatial pattern of 

〈𝒆(X)(𝒓)〉 in the high-density regions. Thus, I set the threshold for sertraline and YN3 
was set to 0.5𝜌m referring to Figs. 4-10a and 4-10b. On the other hand, the regions of 
0.5𝜌m did not appear around the cleft of mSin3B substantially for acitretin (Fig. 4-10c). 
Thus, I decreased the threshold to 0.1𝜌m for acitretin. 

Note that Ì〈𝒆(X)(𝒓)〉Ì represents a degree of ligand orientational ordering in 
each cube. Ì〈𝒆(X)(𝒓)〉Ì takes the maximum of 1 when all 𝒆4

(X)  have exactly the same 
orientations in the cube. If snapshots have uncorrelated orientations, then Ì〈𝒆(X)(𝒓)〉Ì 
becomes small. 

Figure 4-16b and c demonstrate the spatial patterns of 〈𝒆(XDFEF.R4/D)(𝒓)〉 for the 
sertraline–mSin3B system viewed from two different directions. This figure also 
indicates that Ring A tends to be inserted in the cleft of mSin3B, which is consistent to 
Fig. 4-15. 

I also calculated 〈𝒆(}35)(𝒓)〉  for the YN3–mSin3B (Fig. 4-16e and f) and 
acitretin–mSin3B (Fig. 4-16h and i) systems. Figure 4-16h and i show that the acitretin’s 
orientation tends to be parallel or anti-parallel to the helical cylinder of NRSF/REST in 
the NRSF/REST–mSin3B complex. I presume that these acitretin’s orientations have an 
advantage to fit the whole acitretin’s framework to the binding cleft of mSin3B. To 
stabilize one of the parallel or anti-parallel orientations of acitretin, an additional inter-
molecular interaction is required, which works differently between the two orientations. 
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I consider that there is no such interaction to stabilize effectively one of the two 
orientations for the acitretin–mSin3B system. 

On the other hand, the YN3’s orientations (Fig. 4-16e and f) were not aligned to 
the helical cylinder of REST/ NRSF but tilting from the helical cylinder. I presume that 
this tilting of YN3 is because YN3 is smaller than acitretin: YN3 may be responding to 
undulations of mSin3B’s molecular surface in the cleft. This point is discussed later 
again. 
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Figure 4-16. (a) A snapshot of sertraline, where three rings, Ring A, B, and C are 
defined and Rings B and C are unified as Ring BC. Ligand’s orientation (red-colored 
arrow) is defined by an arrow pointing from the geometric center of Ring BC to that of 

Ring A. Panels (b) and (c) illustrate spatial patterns of 〈𝒆(XDFEF.R4/D)(𝒓)〉 in the cleft of 
mSin3B viewed from two different directions. The vectors 〈𝒆(XDFEF.R4/D)(𝒓)〉  are 
assigned to high-density regions of 𝜌"#

(%&'(')*+,&)(𝒓) > 0.5𝜌.	(𝜌. = 0.001)  presented by 
gray contours. Red and black vectors are those with ,〈𝒆(𝑠𝑒𝑟𝑡𝑟𝑎𝑙𝑖𝑛𝑒)(𝒓)〉, ≥ 0.5 and  
,〈𝒆(𝑠𝑒𝑟𝑡𝑟𝑎𝑙𝑖𝑛𝑒)(𝒓)〉, < 0.5, respectively. This figure also displays NRSF/REST bound to 
mSin3B (PDB ID: 2CZY), and the magenta-colored segment is the LIML sequence of 
NRSF/REST. Note that NRSF/REST is not involved in the current simulation. Labels 
H1, ..., H4 are helices 1, ..., 4 of mSin3B (PAH1 domain). (d) A snapshot of YN3, where 
“head” and “tail” are colored by purple and orange, respectively. Red-colored arrow is 
the YN3’s orientation pointing from the geometric center of tail to that of head. Panels 

(e) and (f) illustrate spatial patterns of 〈𝒆(}35)(𝒓)〉. See captions for panels (b) and (c) 
for method to draw 〈𝒆(}35)(𝒓)〉  from two different directions. (g) A snapshot of 
acitretin, where “head” and “tail” are colored by purple and orange, respectively. Red-
colored arrow is the acitretin’s orientation pointing from the geometric center of tail to 

that of head. Panels (h) and (i) illustrate spatial patterns of 〈𝒆(.-4EFDE4/D)(𝒓)〉 from two 
different directions. See captions for panels (b) and (c) for method to draw 
〈𝒆(.-4EFDE4/D)(𝒓)〉. 
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4.3.5 Flexibility of ligands’ framework 
Figure 4-15 demonstrates the structural variety of the sertraline’s framework in the 
most probable complex state (Cluster A). To quantify the flexibility of the ligand’s 
framework, I calculated the distance distribution function, DDF, for a distance between 
two atoms set in each ligand. The procedure to calculate DDF for a distance is given in 
Section 4.3.2. 

Here, I picked the cyan- and orange-colored atoms in Figure 4-17a from the 
framework of each ligand, and calculated the distance between the two atoms: 𝑟.E0<Qh.4F

(X) . 
The DDFs 𝑃(𝑟.E0<Qh.4F

(X) ) for these distances are displayed in Figure 4-17b. The average 
of the distance < 𝑟.E0<Qh.4F

(X) >  and its standard deviation (amount of fluctuations) 
𝑆𝐷(𝑟.E0<Qh.4F

(X) ) were: 7.12 Å and 0.37 Å for sertraline, 6.01 Å and 0.14 Å for YN3, and 
13.15 and 0.47 Å for acitretin. The largest SD was assigned to acitretin. However, this 
does not mean that acitretin is the most flexible, because a long molecule may have 
generally a large SD even if the ligand is stiff, and because acitretin is the longest ligand 
of the three. I consider that the amount of fluctuations per unit length, 𝑠𝑑(X) =
𝑆𝐷(𝑟.E0<Qh.4F

(X) )/< 𝑟.E0<Qh.4F
(X) > , is a better quantity to quantify the flexibility of the 

molecular flexibility. The resultant 𝑠𝑑(X)  was 5.20 × 10Q2  for sertraline, 2.33 × 10Q2 
for YN3, and 3.57 × 10Q2 for acitretin. From these values, the framework of sertraline 
is the most flexible, acitretin has a considerably stiffer framework than sertraline does, 

Figure 4-17. (a) Structures of the three compounds sertraline, YN3, and acitretin. 
For each compound, inter-atomic distance 𝑟.E0<Qh.4F

(X)  ( 𝑠  = sertraline, YN3, or 
acitretin) is defined between cyan- to orange-colored atoms. A cyan-colored atom, 
which is involved in a ring for each ligand, is not set on the ring rotation axis to 
detect the ring-rotational motions. (b) Distance distribution functions (DDFs), 
𝑃(𝑟.E0<Qh.4F

(X) ), for the three distances. 
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and YN3 is stiffer than acitretin. The flexibility of the framework may be related the 
ligand’s molecular orientation as discussed later.  
 

4.4 Discussion 

Starting from the initial conformations where the ligands were distant from the cleft of 
mSin3B (Figure 4-5), only sertraline reproduced a similar intermolecular hydrophobic 
core with that observed in the REST/ NRSF–mSin3B complex (PDB ID: 2CZY): Ring A 
of sertraline, which is hydrophobic, bound deeply to the cleft of mSin3B with contacting 
to the hydrophobic sidechains sited in the cleft (Fig. 4-15). The binding scheme for the 
sertraline–mSin3B complex is summarized in the column of Fig. 4-18. The hydrophobic 
core formed between Ring A of sertraline and the cleft of mSin3B was similar with that 
formed in the NRSF/REST–mSin3B complex. I presume that the sertraline–mSin3B 
complex formation competes with the NRSF/REST–mSin3B complex formation, and that 
this competition leads to the medulloblastoma cell-growth inhibition activity of 
sertraline. 

It is interesting to compare the currently obtained complex structures (i.e., 
structures in Cluster A) with a modeled structure82, which was obtained from a docking 
software HADDOCK96. Although HADDOCK does not take the statistical-mechanical 
factors into the modeling, the receptor and ligand are modeled to bind to each other so 
as to satisfy experimental data, the chemical shift perturbation data82. Figure 4-19 
displays the HADDOCK complex structure using atomic coordinates presented by 
Kurita et al. Interestingly, Ring A sertraline in the HADDOCK model contacted to Phe 
93 and Phe 96 (the ocher-colored lines in the figure), and then, Ring A was oriented 
somewhat toward the inside of the mSin3B’s cleft (the red-colored arrow in the figure). 
Remember that these structural features were found in our computed complex 
structures in Cluster A (Figs. 4-15 and 4-16a). I emphasize that the current simulation 
did not use the experimental data in computation. 

Now, I discuss the interactions of acitretin with mSin3B. Acitretin has a low 
spatial density in the mSin3B’s cleft (Fig. 4-10c), which weakens the inhibitory activity 
partly. Furthermore, the framework of acitretin tends to be parallel or anti-parallel to 
the mSin3B’s cleft (Fig. 4-16c and the right panel of Fig. 4-18b). Remember that acitretin 
can be regarded as a long and stiff rod as shown in the above section. The parallel or 
anti-parallel molecular orientation is advantageous to be fit to the cleft. If acitretin has 
a flexible framework, acitretin may insert a portion into the hydrophobic cleft by bending 
the framework. 
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Next, I discuss the interactions of YN3 with mSin3B. Although YN3 had a high 
spatial density around the mSin3B’s cleft, YN3 did not sink deeply in the cleft and the 
hydrophobic core was not formed (Fig. 4-10b). This result is natural because YN3 can be 
regarded as a stiff rod. As discussed for acitretin above, the stiff rod fits well to the cleft 
taking the parallel or anti-parallel orientation. On the other hand, I presume that the 
slight tilt of < 𝒆(}35)(𝒓) > to the helix cylinder of NRSF/REST in the NRSF/REST–
mSin3B complex (Fig. 4-16b and the middle panel of Fig. 4-18b) is resulted from the 
small size of YN3. I.e., YN3 can adopt to the jaggedness of the inside of the cleft. If YN3 
has more flexibility, YN3 may exert the inhibitory activity by inserting a molecular 
portion into the cleft with varying the molecular conformation. On the other hand, the 
added flexibility may induce binding of YN3 to the other surfaces of mSin3B than the 

Figure 4-18. (a) Chemical structures of three compounds, and their orientations 
(gray arrows). Rings A, B and C of sertraline are depicted in magenta, black, and 
orange, respectively. Blue circles represent aromatic rings that are expected to 
interact with the hydrophobic cleft of mSin3B from conventional structure–activity 
relationship (SAR). Green circles represent π-electron rich regions. (b) Orientations 
of the compounds in the bound forms with mSin3B, resulted from the present MD 
simulation study. (c) Presence/absence of medulloblastoma cell-growth inhibition 
activities for the compounds. 
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cleft. These competitive effects of the molecular flexibility cannot be assessed only from 
the chemical structure of the compound. 

I also note another chemical property of YN3 and acitretin, which is 
disadvantageous for interacting with hydrophobic cleft of mSin3B: Both rings in these 
compounds have an oxygen atom (Figure 4-2b and c), which can interact to hydrophilic 
residues in mSin3B or water molecules electrostatically or by hydrogen bonding. 

The conventional structure–activity relationship (SAR) study has been based on 
the chemical structures and target-binding activity data. Figure 4-18a shows one of the 
possible alignments of the three compounds based on their chemical structures. Each 
compound has an aromatic ring corresponding to Ring A and each aromatic ring has side 
chains in the para position. While sertraline has Cl atoms on Ring A, YN3 and acitretin 
have methoxy groups whose volumes are close to that of the Cl atom. Instead of Ring C 
of sertraline, YN3 and acitretin have triple and double bonds, respectively. These bonds 
are 𝜋-electron rich, and can form CH–𝜋 interaction as same as aromatic rings. However, 
such SAR analysis could not explain presence and absence of the medulloblastoma cell-
growth inhibition activities of their compounds (Fig. 4-18c). The present MD simulation 
study predicted the molecular orientations of the compounds (Fig. 4-18b) and the 
presence/absence of the hydrophobic core in the cleft of mSin3B (Fig. 4-10). Importantly, 
only sertraline could reproduce the binding mode in the NRSF/REST–mSin3B complex. 
I emphasize that the current simulation method, the GA-guided mD-VcMD simulation, 
produces a thermodynamically acceptable ensemble consisting of various conformations 
(bound and unbound conformations), and importantly a thermodynamic weight is 
assigned to each snapshot in the ensemble. 

The preceding study82 classified 52 compounds into two pharmacophores, A and 
B, based on their chemical structures (see Fig. 2 of Ref.82), where sertraline belongs to 
Pharmacophore A and the YN3 to Pharmacophore B. Because acitretin has a structural 
similarity with YN3 apparently, acitretin belongs to Pharmacophore B. Based on Figs. 
4-16 and 4-18b, the compounds belonging to Pharmacophore B have the parallel or anti-
parallel orientation, and the compound belonging to Pharmacophore A has a 
perpendicular orientation. Therefore, the current MD procedure is useful if it is used 
with the pharmacophore analysis. 
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4.5 Conclusions 

Binding of the compounds to mSin3B (PAH1 domain) was investigated by the GA-guided 
mD-VcMD simulation. This method produced useful quantities such as the spatial 
density of the ligand around the receptor (Fig. 4-10), the intermolecular contact patterns 
(Fig. 4-13), the propensity of molecular orientation (Figs. 4-15 and 4-16), and the ligand 
flexibility (Fig. 4-17). From these analyses, I showed that only sertraline produces a 
similar inter-molecular binding mode observed in the NRSF/REST–mSin3B complex. 
Figure 4-20 is a schematic drawing to design an inhibitor. Given a framework of the 
compound, by adding a hydrophobic sidechain to the framework, the hydrophobic core is 
formed between the sidechain and the hydrophobic cleft of mSin3B. The flexibility of the 

Figure 4-19. Sertraline–mSin3B complex viewed from two different orientations 
(a) and (b), which was modeled by Kurita et al. 82 using HADDOCK modeling96. The 
atomic coordinates were provided from Kurita et al. In the HADDOCK modeling, 
the receptor and ligand bind to each other so as to satisfy chemical shift 
perturbation data. The magenta-colored portion is Ring A of sertraline. Red-colored 
arrow is the ligand’s orientation vector pointing from the Ring-BC geometrical 
center to that of Ring A. Green-colored residues are Val 75, Phe 93, and Phe 96 of 
mSin3B. Ocher-colored lines represent contacts between sertraline and the three 
residues. Labels H1, ..., H4 are helices 1-4 of mSin3B (PAH1 domain) 
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compound’s framework may increase the binding affinity, although a long and stiff 
framework may decrease the binding affinity. In general, it is difficult to specify the 
effect of the modification to the biological activity (i.e., inhibitory activity in the present 
study) only from the compound’s chemical structure. In contrast, the GA-guided mD-
VcMD is useful to identify the effect with analyzing the thermally equilibrated 
conformational ensemble. 

Because NRSF/REST is an intrinsically disordered segment that can bind to 
multiple proteins55,56 as mentioned in “4.1 Introduction” section, the current study is an 
example to design a compound that can inhibit binding of an intrinsically disorder 
segment to a protein receptor. 

The 3D models have been submitted to the Biological Structure Model Archive 
(BSM-Arc) of the PDBj under BSM-ID BSM00020 (https://bsma.pdbj.org/entry/20), 
which are freely available97. 
 

  

Figure 4-20. Scheme of a compound that binds to the cleft of mSin3B. 
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Chapter V 
 

General Conclusions 
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In this study, I introduced the multidimensional virtual-system coupled canonical 
molecular dynamics (mD-VcMD) method to compute free-energy landscapes of protein–
protein and protein–ligand interaction (Chapter II). First, I evaluated the method using 
simple molecular models consisting of three and four alanine-peptides in explicitly 
solvated systems (Chapter III). Second, I investigated the spatial distribution of three 
compounds sertraline, YN3, and acitretin, respectively, around the PAH1 domain of 
mSin3B, which are obtained from the GA-guided mD-VcMD simulation of the systems 
(Chapter IV). 
 In Chapter III, before applying the mD-VcMD method to complicated systems 
to resolve difficulties related to biology, I investigated this method's capacity to build 
correct canonical ensembles using the simple systems including consisting of alanine 
peptides. The resultant ensembles of 2D-VcMD and 3D-VcMD for 3-ALA and 4-ALA 
systems were well converged to the results of long-term conventional MD simulation 
(Figs 3-5, 3-6, and 3-7). And the conformational ensembles covered various contacting 
topologies of the three and four peptides (Figs 3-10, 3-11, and 3-12).  

These results show the mD-VcMD method is useful to investigate molecule 
interactions using computer simulation according to the arbitrary reaction coordinates. 
Although I presented applications only for simple molecular systems with weak 
interactions, mD-VcMD is applicable for systems involving stable molecular interaction 
in which a ligand binds to a deep pocket of a receptor. 

In Chapter IV, the binding of the compounds to mSin3B (PAH1 domain) was 
investigated by the GA-guided mD-VcMD simulation. This method produced useful 
quantities such as the spatial density of the ligand around the receptor (Fig. 4-10), the 
intermolecular contact patterns (Fig. 4-13), the propensity of molecular orientation (Figs. 
4-15 and 4-16), and the ligand flexibility (Fig. 4-17).  
 The results of simulations for the three systems consisting of mSin3B and one 
of three compounds are briefly described below. 

For sertraline and YN3, a high-density conformational cluster (designated 
Cluster A in Fig. 4-10) can be found in the cleft of mSin3B, but acitretin did not display 
a notable cluster in the cleft. This suggests that ligand–mSin3B binding is stronger for 
sertraline and YN3 than for acitretin. 

According to Fig. 4-13, the RDF peaks at 𝑟,
(X)~4	Å for the acitretin–mSin3B 

system were much lower than those for the sertraline–mSin3B and YN3–mSin3B 
systems, indicating that the acitretin did not interact with the bottom of the cleft 
frequently or tightly. The highest peaks of the RDFs were from the sertraline–mSin3B 
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system (Fig. 4-13a), and the peaks from the YN3–mSin3B were intermediate between 
sertraline and acitretin (Fig. 4-13b). 

Figure 4-15 and 4-16 show the following three points related to the molecular 
orientations of compounds; (1) The molecular orientations of sertraline has a tendency: 
Ring A of sertraline was placed into the binding cleft of mSin3B, whereas Ring BC 
remained outside. (2) The acitretin’s orientation tends to be parallel or anti-parallel to 
the helical cylinder of NRSF/REST in the NRSF/REST–mSin3B complex. (3) The 
orientations of the YN3 were tilting from the helical cylinder of NRSF/REST rather than 
aligned to it. 

Figure 4-17 shows that the framework of sertraline is the most flexible, acitretin 
has a considerably stiffer framework than sertraline does, and YN3 is stiffer than 
acitretin. 

From these analyses, I discussed that only sertraline produces a similar inter-
molecular binding mode observed in the NRSF/REST–mSin3B complex. In general, it is 
difficult to specify the effect of the modification to the biological activity (i.e., inhibitory 
activity in the present study) only from the compound’s chemical structure. In contrast, 
the GA-guided mD-VcMD is useful to identify the effect with analyzing the thermally 
equilibrated conformational ensemble. 

Finding a proper definition of a collection of reaction coordinates is a major issue 
for the mD-VcMD approach as well as other existing methods, such umbrella sampling, 
when addressing complicated systems. However, by discretizing the reaction-coordinate 
space and biasing with the flat-bottom potential, higher-dimensional reaction-coordinate 
spaces can be applied more easily. Even if finding the optimal definition of a single 
reaction coordinate is difficult, temporarily applying some multiple reaction coordinates 
and finding the optimal coordinates, which can be constructed by linear combinations of 
the previously introduced ones, may provide a practical solution. 
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