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CHAPTER 1

Introduction

In this thesis, the author provides three results related to minimal model theory.
Throughout this thesis, we will work over an arbitrary algebraically closed field k
of any characteristic unless otherwise mentioned. In this thesis, a scheme means
a separated scheme of finite type over k. We call such a scheme a variety if it is
reduced and irreducible.

The aim of minimal model theory is to establish the following statement.

Conjecture 1.0.1. Let (Z,B) be a Q-factorial projective log canonical pair.
Then there is a birational map f : Z 99K X such that either

(i) (Minimal model) KX +BX = f∗(KZ +B) is nef, or
(ii) (Mori fiber space) for a suitable morphism φ : X → S, −(KX + BX) is

φ-ample, ρ(X/S) = 1 and dimX > dimS.

Conjecture 1.0.1 was proved in [3] when (Z,B) is a kawamata log terminal pair
such that KZ +B is pseudo-effective with either B or KZ +B big, and that KZ +B
is not pseudo-effective.

We are interested in the structure of birational map between above models. A
birational map between two minimal models is isomorphic in codimension one (for
example, minimal models for surfaces are uniquely determined). Moreover, two
minimal models of any kawamata log terminal pair with any big boundary divisor
are connected by finitely many flops ([3, Corollary 1.1.3]). On the other hand,
Kawamata [24] proved that a birational map between two terminal pairs, whose
log canonical divisors, that is, the sum of the canonical divisor and a boundary
divisor, are nef, is the composition of a sequence of flops.

In contrast, Sarkisov [41] introduced a birational map between 3-fold Mori
fiber spaces called an elementary link and announced a proof that every birational
map between 3-fold Mori fiber spaces is connected by finitely many elementary
links, which is called the Sarkirov program. Reid reviewed the Sarkisov program
and outlined some key ideas involved in the proof in [40]. Unfortunately, the
author could not get their original papers and he found these information in [7].
Eventually, the Sarkisov program for 3-folds with Q-factorial terminal singularities
was completed by Corti [7]. Matsuki established the toric Sarkisov program for
3-folds with Q-factorial terminal singularities ([33, Chapter 14] and [44]). This
proof is based on the original idea by Sarkisov (cf. [7]). On the other hand, Hacon–
McKernan [21] proved the Sarkisov program for n-folds with Q-factorial terminal
singularities by using a brand new method. Roughly speaking, in the original
proof, we keep track of three invariants, called the Sarkisov degree, associated
with the singularities and we need to prove that the Sarkisov degree satisfies the
ascending chain condition. This proof heavily depends on a detailed study of the
singularities. On the other hand, Hacon–McKernan’s approach is quite different
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6 1. INTRODUCTION

from this. Hacon–McKernan used “the geography of (log) models” established in
[3] and [6], instead of the Sarkisov degree, and proved the following slightly weak
Sarkisov program, called the log Sarkisov program, for kawamata log terminal pairs
of any dimensional.

Theorem 1.0.2 (Log Sarkisov program for kawamata log terminal pairs, cf. [21,
Theorem 1.4]). Let (Z,B) be a projective Q-factorial kawamata log terminal pair.
Let φ : X → S and ψ : Y → T be two Mori fiber spaces, which are outputs of the
(KX + B)-MMP. Then the induced birational map σ : X 99K Y is connected by
finitely many elementary links.

As a result, by combining Theorem 1.0.2 and the following easy result, Hacon–
McKernan completed the Sarkisov program for n-folds with Q-factorial terminal
singularities.

Proposition 1.0.3 ([4]). Let φ : X → S and ψ : X → Y be two Mori fiber
spaces with Q-factorial terminal singularities. If X and Y are birational, then there
is a smooth projective variety Z such that φ and ψ are outputs of the KZ-MMP.

The log Sarkisov program was first introduced by Bruno–Matsuki [4], and they
called the above relation between two Mori fiber spaces, that is, there is a smooth
projective variety Z such that these are outputs of the KZ-MMP, the Sarkisov
relation. Unfortunately, the log Sarkisov program for log canonical pairs is still
open.

Conjecture 1.0.4 (Log Sarkisov program). Let (Z,B) be a projective log
canonical pair. Let φ : X → S and ψ : Y → T be two Mori fiber spaces, which are
outputs of the (KX + B)-MMP. Then the induced birational map σ : X 99K Y is
connected by finitely many elementary links.

Conjecture 1.0.4 for Z (not necessarily Q-factorial) surface was proved in [34].
The first purpose of the present thesis is to establish the generalization of

Conjecture 1.0.4 for toric varieties as follows. We remark that this result was
established in [35].

Theorem 1.0.5 ([35, Theorem 1.2]). Let Z be a Q-factorial projective toric
variety and let DZ be an R-divisor on Z. Let φ : X → S and ψ : Y → T be two
Mori fiber spaces, which are outputs of the DZ-MMP. Then the induced birational
map σ : X 99K Y is connected by finitely many Sarkisov links.

We note that DZ is not the log canonical divisor but arbitrary (not necessarily
effective) R-divisor and there are no assumptions about singularities except Q-
factoriality.

Elementary links in [41] are known as Sarkisov links. The Sarkisov links for
smooth surfaces are very simple as follows:

Type (I)

F1

p

��

F1

ψ
��

P2

φ

��

P1

~~
pt.
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Type (III)

F1

φ
��

F1

q

��
P1

  

P2

ψ

��
pt.

Type (II)

X ′ //

p

��

Y ′

q

��
X

φ

��

Y

ψ

��
S T.

Type (IV)

P1 × P1

φ

��

P1 × P1

ψ

��
P1

s
##

P1

t{{
pt.

In a link of Type (I) (resp. (III)), p : F1 → P2 (resp. q : F1 → P2) is a blow-up
of a smooth point of P2. A link of Type (II) is an elementary transformation of
P1-bundles over smooth curves. In a link of Type (IV), φ and ψ are projections to
P1. We remark that Sarkisov links for 4 or higher-dimensional Mori fiber spaces
are slightly different from the above links. More precisely, links of Type (VI) are
separated into two types (see Definition 2.0.1).

The second one is to give a new characterization of projective spaces. Now
there are various characterizations of of projective spaces. Using Kodaira vanishing
theorem, Kobayashi-Ochiai established the characterization of projective spaces
from the viewpoint of complete Ricci-flat Kähler metrics as follows.

Theorem 1.0.6 ([27, Theorem 1.1]). Let X be an n-dimensional complex pro-
jective manifold and let H be an ample Cartier divisor. Assume that −KX ≡
(n+ 1)H. Then X is isomorphic to Pn with OX(H) ' OPn(1).

Fujita generalized Kobayashi-Ochiai’s characterization by using his own theory,
that is, the theory of ∆-genus (see Section 3.2 for definition of ∆-genus).

Theorem 1.0.7 ([19, Theorem 1]). Let X be an n-dimensional complex nor-
mal projective variety with rational Gorenstein singularities and let H be an ample
Cartier divisor. Assume that KX + nH is not nef. Then X is isomorphic to Pn
with OX(H) ' OPn(1).

We establish a new characterization of projective spaces from the viewpoint of
minimal model theory by using the theory of quasi-log schemes (see Section 3.1 for
definition of quasi-log schemes) and the theory of ∆-genus. We remark that this
result was established in [15].

Theorem 1.0.8 ([15, Theorem 1.4]). Let [X,ω] be a projective quasi-log canon-
ical pair where X is defined over C and connected. Assume that ω is not nef and
that ω ≡ rD for some Cartier divisor D on X with r > n = dimX. Then X is
isomorphic to Pn with OX(D) ' OPn(−1). Moreover, there are no qlc centers of
[X,ω].
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For the reader’s convenience, we give Theorem 1.0.8 for log canonical pairs.

Theorem 1.0.9. Let (X,B) be a projective log canonical pair where X is defined
over C. Assume that KX + B is not nef and that −(KX + B) ≡ rD for some
Cartier divisor D on X with r > n = dimX. Then X is isomorphic to Pn with
OX(D) ' OPn(1). Moreover, there are no lc centers of (X,B), that is, (X,B) is
kawamata log terminal.

This theorem directly follows from Theorem 1.0.8 because arbitary log canoni-
cal pair (X,B) has a natural quasi-log canonical structure [X,KX+B] (cf. Example
3.1.3). This is joint work with his supervisor Osamu Fujino.

The third one is to give the generalization of the following ampleness criterion,
known as the Nakai–Moishezon criterion.

Theorem 1.0.10 ([22, Theorem 5.1]). Let X be a complete scheme and let L
be a line bundle on X. Then L is ample if and only if LdimZ · Z > 0 for every
positive-dimensional closed integral subscheme Z ⊂ X.

Theorem 1.0.10 was proved for smooth surfaces by Nakai [37] and for smooth
varieties of any dimensional by Moishezon [36]. After that, Kleiman clarified these
proofs and gave the simple proof of Theorem 1.0.10 in [26]. Theorem 1.0.10 was
generalized to R-line bundles on projective schemes by Campana–Peternell [5] by
using Kleiman’s method.

Our purpose is to relax the projectivity in Campana–Peternell’s result as fol-
lows. We remark that this result was established in [16].

Theorem 1.0.11 (Nakai–Moishezon criterion for real line bundles on complete
schemes, [16, Theorem 1.3]). Let X be a complete scheme and let L be an R-line
bundle on X. Then L is ample if and only if LdimZ · Z > 0 for every positive-
dimensional closed integral subscheme Z ⊂ X.

Unfortunately, Campana–Peternell’s arguments do not work for complete non-
projective schemes because they need an ample line bundle, equivalently, the pro-
jectivity of schemes. Moreover, Kleiman’s ampleness criterion does not always hold
for complete nonprojective schemes (see [26, Section 3] and [13, Example 12.1]).
We can explicitly construct a complete nonprojective toric threefold X and a line
bundle L on X such that L is positive on NE(X)\{0}, where NE(X) is the Kleiman–
Mori cone of X (see [26, Section 3]). Thus, we need some new idea to generalize
to R-line bundles on complete schemes.

For the proof of Theorem 1.0.11, we use the characterization of the augmented
base loci for R-line bundles on projective schemes established by Birkar [2]. Hence,
our approach is quite different from those of [26] and [5]. Although we can not
directly apply geometric arguments to R-line bundles, we can generalize Theorem
1.0.11 for proper morphisms.

Theorem 1.0.12 (Relative Nakai–Moishezon criterion for real line bundles on
complete algebraic spaces, [16, Theorem 1.5]). Let π : X → S be a proper morphism
between schemes and let L be an R-line bundle on X. Then L is π-ample if and only
if LdimZ · Z > 0 for every positive-dimensional closed integral subscheme Z ⊂ X
such that π(Z) is a point.

In Section 4.5, we generalize Theorem 1.0.11 to algebraic spaces. It plays a
crucial role in Kollár’s projectivity criterion for moduli spaces. For details, see [13]
and [28]. This is also joint work with his supervisor Osamu Fujino.
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The contents of this thesis mainly combine results obtained in [35], [15] and
[16].

1.1. Preliminaries

In this section, we quickly review the basic definition and results of minimal
model theory.

1.1.1. Fundamentals of algebraic geometry. Let us start with the defini-
tion of R-Weil divisors, R-Cartier divisors and R-line bundles.

Definition 1.1.1 (R-Weil divisors). Let X be a complete scheme. An R-Weil
divisor (resp. Q-Weil divisor) D is an element of WDiv(X)⊗ZR (resp. WDiv(X)⊗Z
Q), where WDiv(X) denotes the group of Weil divisors on X. For simplicity, R-Weil
divisors are usually called by R-divisors.

Definition 1.1.2 (R-Cartier divisors). Let X be a complete scheme. An
R-Cartier divisor (resp. a Q-Cartier divisor) D is an element of CDiv(X) ⊗Z R
(resp. CDiv(X)⊗ZQ), where CDiv(X) denotes the group of Cartier divisors on X.

Definition 1.1.3 (R-line bundles). Let X be a complete scheme. An R-line
bundle (resp. a Q-line bundle) L is an element of Pic(X)⊗ZR (resp. Pic(X)⊗ZQ),
where Pic(X) is the Picard group of X.

Remark 1.1.4. In minimal model theory, we usually confuse R-Cartier divisors
with R-line bundles. This is because the following natural homomorphism

ψ : CDiv(X)⊗Z R→ Pic(X)⊗Z R

is surjective if a complete scheme X is reduced.
On the other hand, in Chapter 4, we discuss the ampleness for R-line bundles on

a (not necessarily reduced) complete scheme. Thus, we carefully define the nefness,
ampleness, and semi-ampleness for R-line bundles as follows.

For simplicity of notation, we write the group law of Pic(X)⊗Z R additively.

Definition 1.1.5. Let π : X → U be a proper morphism between complete
schemes.

An R-line bundle L on X is nef over U (or π-nef) if L ·C > 0 for any curve C
contained in a fiber of π.

An R-line bundle L on X is ample over U (or π-ample) if we can write L =∑
i liLi such that li is a positive real number and Li is an ample line bundle on X

over U for every i.
An R-line bundle L on X is semi-ample over U (or π-semi-ample) if we can

write L =
∑
i liLi such that li is a positive real number and Li is a semi-ample line

bundle on X over U for every i, that is, the natural homomorphism π∗π∗L → L is
surjective.

Definition 1.1.6. Let π : X → U be a proper morphism between complete
schemes. Let ψ be a natural homomorphism as in Remark 1.1.4. We note that ψ
is not necessarily surjective. Let D be an R-Cartier divisor on X. If the image of
D by ψ is π-nef, π-ample, and π-semi-ample, then D is said to be π-nef, π-ample,
and π-semi-ample, respectively.
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Definition 1.1.7. Let π : X → U be a proper morphism between normal
quasi-projective varieties.

Two R-divisors D and D′ on X are R-linearly equivalent over U (denoted by
D ∼R,U D′) if there is an R-Cartier divisor B on U such that D −D′ ∼R π∗B.

Two R-divisors D and D′ on X are numerically equivalent over U (denoted by
D ≡U D′) if D −D′ is an R-Cartier divisor and (D −D′) · C = 0 for any curve C
contained in a fiber of π.

An R-line bundle L on X is nef over U (or π-nef) if L ·C > 0 for any curve C
contained in a fiber of π.

An R-Cartier divisor D on X is ample over U (or π-ample) if we can write
D ∼R,U

∑
i diDi such that di is a positive real number and Di is an ample Cartier

divisor on X over U for every i.
An R-Cartier divisor D on X is semi-ample over U (or π-semi-ample) if we can

write D ∼R,U
∑
i diDi such that di is a positive real number and Di is a semi-ample

Cartier divisor on X over U for every i.
An R-divisor D on X is big over U (or π-big) if there are an ample R-Cartier

divisor A and an R-divisor B ≥ 0 such that D ∼R A+B.
An R-divisor D on X is pseudo-effective over U (or π-pseudo-effective) if its

numerical class belongs to the closure of the cone of big divisors over U .
We make similar definition for Q-divisors.

Next, let us recall the basic operations and notations for R-divisors.

Definition 1.1.8 (Operation of R-divisors, [15, Definition 3.2]). Let V be
an equidimensional reduced scheme. Let D be an R-divisor on V and let D =∑
diDi be its prime decomposition, that is, each Di is an irreducible reduced

closed subscheme of V of pure codimension one with Di 6= Di for i 6= j and di is a
real number for every i. Then we put

D<1 =
∑
di<1

diDi, D
=1 =

∑
di=1

diDi and D>1 =
∑
di>1

diDi,

and

dDe =
∑
ddieDi and bDc = −d−De,

where dxe is the integer defined by x ≤ dxe < x+ 1.
For any subset S ⊂ R, we denote D ∈ S if di ∈ S for every i.

Definition 1.1.9 (Relative Picard numbers). Let f : X → Y be a proper
morphism between schemes. We define

N1(X/Y ) = {Pic(X)/ ≡Y } ⊗Z R

and

N1(X/Y ) = {Z1(X/Y )/ ≡Y } ⊗Z R,
where Z1(X/Y ) is the free abelian group of 1-cycles of X over Y . These are inducing
the following non-degenerate bilinear pairing:

N1(X/Y )×N1(X/Y )→ R.

It is well-known thatN1(X/Y ) andN1(X/Y ) are finite-dimensional R-vector spaces.
We write

ρ(X/Y ) = dimRN
1(X/Y ) = dimRN1(X/Y )
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and call it the relative Picard number of X over Y . We write ρ(X) = ρ(X/Y ),
N1(X) = N1(X/Y ) and N1(X) = N1(X/Y ) when Y is a point. We simply call
ρ(X) the Picard number of X.

Definition 1.1.10 (Kleiman-Mori cones). Let f : X → Y be a proper mor-
phism between schemes. The Kleiman-Mori cone NE(X/Y ) is defined as the convex
cone in N1(X/Y ) generated by 1-cycles of X over Y .

The nef cone Nef(X/Y ) is defined as the convex cone of all nef R-Cartier
divisors over Y . We write NE(X) = NE(X/Y ) and Nef(X) = Nef(X/Y ) when Y
is a point. It is well-known that NE(X/Y ) is dual to Nef(X/Y ).

Definition 1.1.11 (Linear systems). Let π : X → U be a projective morphism
between normal varieties. Let D be an R-divisor on X. The real linear system
associated to D over U is defined as

|D/U |R = {B ≥ 0 | B ∼R,U D}.
The stable base locus of an R-divisor D over U is defined as

B(D/U) =
⋂

D′∈|D/U |R

D′.

We consider that B(D/U) with the reduced scheme structure.

1.2. Minimal model theory

In this section, we collect some basic definition and results of minimal model
theory.

1.2.1. Singularities of pairs. First of all, we review singularities of pairs in
minimal model theory.

Definition 1.2.1. Let X be a normal variety and let D be an effective R-
divisor on X. We say that (X,D) is a pair if KX + ∆ is R-Cartier, where KX is
the canonical divisor of X.

Let (X,D) be a pair. Let f : Y → X be a proper birational morphism from a
normal variety Y . Then we can write

KY = f∗(KX +D) +
∑

aiEi.

Then we say that (X,D) is

(i) kawamata log terminal (klt, for short) if ai > −1 for any f and i, or
(ii) log canonical (lc, for short) if ai ≥ −1 for any f and i.

We say that X is Q-factorial if every Weil divisor on X is Q-Cartier. In addition,
we say that a pair (X,D) is Q-factorial if so is X.

Definition 1.2.2 (cf. [3, Definition 3.6.1]). Let f : X 99K Y be a proper
birational contraction of normal varieties and let D be an R-Cartier divisor on X
such that f∗D is also R-Cartier. Then we say that f is D-non-positive (resp. D-
negative) if there is a common resolution p : W → X and q : W → Y such that

p∗D = q∗f∗D + E,

where E ≥ 0 is q-exceptional (resp. E ≥ 0 is q-exceptional and whose support
contains the strict transform of the f -exceptional divisors).

Next, let us define some models of minimal model theory.
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Definition 1.2.3. Let f : X 99K Y be a birational contraction of normal
projective varieties and let D be an R-Cartier divisor on X such that f∗D is also
R-Cartier.

We say that f is a weak log canonical model of D if

• f is D-non-positive and
• f∗D is nef.

We say that f is a minimal model of D if

• Y is Q-factorial,
• f is D-negative and
• f∗D is nef.

Let φ : X → S be a contraction morphism of normal projective varieties.
We say that φ is a Mori fiber space of D if

• X is Q-factorial,
• −D is φ-ample,
• ρ(X/S) = ρ(X)− ρ(S) = 1 and
• dimS < dimX.

We say that φ has a Mori fiber structure if φ is a Mori fiber space of some R-Cartier
divisor.

We say that f is the output of the D-MMP if it is a minimal model of D or a
Mori fiber space of D. On the other hand, we say that f is the result of running the
D-MMP if it is any sequence of steps (i.e. divisorial contractions and flips) for the
D-MMP. We emphasize that the result of running the D-MMP is not necessarily a
minimal model of D or a Mori fiber space of D.

Definition 1.2.4 (Semi-ample models and Ample models, [3, Definition 3.6.5]).
Let X be a normal projective variety and let D be an R-Cartier divisor on X.

We say that a birational contraction f : X 99K Y is a semi-ample model of D if

• f is D-non-positive,
• Y is normal and projective, and
• f∗D is semi-ample.

We say that a rational contraction g : X 99K Y is the ample model of D if

• Y is normal and projective and
• there is an ample R-Cartier divisor H such that if p : W → X and
q : W → Y are a common resolution, then we can write p∗D ∼R q

∗H+E,
where E ≥ 0, then B ≥ E for any B ∈ |p∗D|R.

We close this section with explaining a special kind of the MMP with scaling
called a 2-ray game. For details, see [30, Chapter 6].

Definition 1.2.5 (2-ray games). Let (X = X0, B = B0) be a Q-factorial log
canonical pair and π : X → U be a projective morphism of normal varieties. Assume
that ρ(X/U) = 2. This means that the Klaiman-Mori cone NE(X0/U) is a 2-
dimensional closed cone in N1(X/S) and so it is generated by two extremal rays R0

and R′0. If KX +B is not nef over U , then we may assume that (KX0
+B0) ·R0 < 0.

If the (KX0 +B0)-negative extremal contraction f0 : X0 → Y0 corresponding to R0

is divisorial, then we finish.
Assume that f0 is small and let f+

0 : X1 → Y0 be its flip. Then ρ(X1/Y0) =

ρ(X0/Y0) = 2 and so NE(X/S) is also generated by two extremal rays R1 and
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R′1. Let R′1 be the extremal ray consisted of the curves contracted by f+
0 . Then

(KX1 +B1) ·R′1 > 0. If KX1 +B1 is not nef, then the (KX1 +B1)-negative extremal
ray is uniquely determined and it is R1, where B1 is the strict transform of B0. If
the (KX1

+B1)-negative extremal contraction f1 : X1 → Y1 corresponding to R1 is
divisorial, then we finish.

Assume that f1 is small and let f+
1 : X2 → Y1 be its flip. By repeating this

discussion, we uniquely obtain the following sequence of steps of the (KX0 + B0)-
MMP:

X0

f0   

// X1

f+
0~~ f1   

// X2

f+
1~~ f2

��

//

Y0 Y1

The 2-ray game is also explained from the viewpoint of cones of divisors. The
induced birational map Xi 99K Xi+1 is isomorphic in codimension one. Thus there
are the following natural isomorphisms:

N1(X0/U) ∼= N1(X1/U) ∼= · · ·N1(Xi/U) ∼= · · · .

The nef cone Nef(Xi/U) is a dual cone of NE(Xi/U) and so it is generated by
two extremal rays Li and L′i. We may assume that Li corresponds to f+

i , that is,
Li ·Ri=0, where Ri is the extremal ray corresponding to f+

i . Then Li is the pullback
of Nef(Yi/U). Similarly, L′i is also the pullback of Nef(Yi−1/U). Thus Nef(Xi/U)
and Nef(Xi+1/U) have the same edge coming from the pullback of Nef(Yi/U).

Nef(X0/U)

Nef(X1/U)

· · ·

Nef(Xi/U)

1.2.2. Basic results of the minimal model program. The following lemma
is well-known.

Lemma 1.2.6. Let (X,B) be a log canonical pair. Let D1, · · · , Dk ≥ 0 be
Cartier divisors passing through a closed point x ∈ X. If (X,B +

∑
Di) is log

canonical, then k ≥ dimX.

Proof. We proceed by induction on dimX. If dimX = 1, then it is clear. Let
ν : Y → Dk be the normalization of Dk and we put

KY +BY = ν∗(KX +B +Dk).

Since (X,B+
∑k
i=1Di) is log canonical, (Y,BY ) is also log canonical by adjunction

and Dk has no common components with Di for 1 ≤ i ≤ k−1. Thus by adjunction

again, (Y,BY +
∑k−1
i=1 ν

∗Di) is log canonical. We take a closed point y ∈ ν−1(x).
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Since x ∈ Supp ν∗Di for 1 ≤ i ≤ k − 1, it follows from the induction hypothesis
that

k − 1 ≤ dimY = dimX − 1.

This means that k ≤ dimX. �

The next one is the basic properties of ample models.

Lemma 1.2.7 ([3, Lemma 3.6.6]). Let X be a projective variety and let D be
an R-divisor on X.

(i) If gi : X 99K Xi are two ample models of D (i = 1, 2), then there is an
isomorphism χ : X1 → X2 such that g2 = χ ◦ g1.

(ii) If f : X 99K Y is a semi-ample model of D, then there is the ample model
g : X → Z of D and a contraction morphism h : Y → Z such that g = h◦f
with f∗D ∼R h

∗H, where H is an ample R-Cartier divisor corresponding
to g.

(iii) If f : X 99K Y is a birational map, then f is the ample model of D if and
only if f is a semi-ample model of D such that f∗D is ample.

1.3. Toric varieties

In this section, we quickly review minimal model theory for toric varieties.

1.3.1. Toric varieties. First of all, let us recall the definition of toric varieties.
Let N ' Zn be a lattice of rank n and let M = HomZ(N,Z) be its dual lattice.

Definition 1.3.1 (cf. [14, 2.1]). A toric variety X(∆) is associated to a fan
∆ = {σ}, a finite collection of convex cones σ ⊂ NR = N ⊗Z R satisfying:

(i) Each convex cone σ is rational polyhedral in the sense that there are
finitely many v1, . . . , vs ∈ N ⊂ NR such that

σ = {r1v1, . . . , rsvs|ri ∈ R≥0 for all i}
and it is strongly convex in the sense

σ ∩ −σ = {0}.
(ii) Each face τ of a convex cone σ ∈ ∆ is again contained in ∆.
(iii) The intersection of two cones in ∆ is a face of each.

Definition 1.3.2. The dimension dimσ of a polyhedral cone σ is the dimension
of the span of σ, that is, the smallest subspace of NR containing σ.

Theorem 1.3.3 ([8, Theorem 6.3.12]). Let D be R-Cartier divisor on a normal
toric variety X. The following are equivalent:

(i) D is semi-ample.
(ii) D is nef.
(iii) D · C ≥ 0 for all torus-invariant irreducible complete curve C ⊂ X.

The following lemma is the combinatorial characterization of Q-factoriality.

Lemma 1.3.4. [[8, Proposition 4.2.7]] Let X = X(∆) be a toric variety. Then X
is Q-factorial if and only if each of σ ∈ ∆ is simplicial, that is, there are v1, . . . , vs ∈
σ ∩N such that σ = {

∑
rivi | ri ≥ 0} where s = dimσ.

The following lemma is a well-known criteria for singularities of toric pairs.



1.3. TORIC VARIETIES 15

Lemma 1.3.5 ([8, Proposition 11.4.24]). Let (X,D) be a pair where X is toric
variety. If D ∈ [0, 1], then (X,D) is log canonical. Moreover if D ∈ [0, 1), then it
is kawamata log terminal.

1.3.2. The minimal model theory for toric varieties. In this subsection,
we collect the basic results of the toric minimal model theory without proof.

The toric minimal model theory was first established by Reid [39] for projective
toric varieties with Q-factorial terminal singularities. His proof depends on the
combinatorics for toric varieties. On the other hand, Fujino–Sato [14] gave an
alternative proof and generalized his result with few or no combinatorial arguments.

Theorem 1.3.6 ([14, Section 4]). Let Z be a Q-factorial projective toric variety
and let D be an R-divisor on Z.

Then we can run the D-minimal model program (D-MMP, for short). In other
words, there is a sequence of divisorial contractions and flips

Z = Z0
// Z1

// · · · // Zn = X

such that either

(i) if D is pseudo-effective, then X is a minimal model of DX , or
(ii) if D is not pseudo-effective, then there is a morphism X → S which is a

Mori fiber space of DX ,

where DX is the strict transform of D.

We note that if (Z,B) is a Q-factorial log canonical pair where Z is toric, then
KZ +B is not pseudo-effective and so (KZ +B)-MMP always ends up with a Mori
fiber space.

In the rest of this subsection, we assume that variety is Q-factorial. Then
definition of weak log canonical models and semi-ample models are coincides by
Theorem 1.3.3. Thus we can reformulate Lemma 1.2.7 as follows.

Lemma 1.3.7. Let X be a projective toric variety and let D be an R-divisor on
X.

(i) If gi : X 99K Xi are two ample models of Di (i = 1, 2), then there is an
isomorphism χ : X1 → X2 such that g2 = χ ◦ g1.

(ii) If f : X 99K Y is a weak log canonical model of D, then there is the ample
model g : X → Z of D and a contraction morphism h : Y → Z such that
g = h◦f with f∗D ∼R h

∗H, where H is an ample R-divisor corresponding
to g.

(iii) If f : X 99K Y is a birational map, then f is the ample model of D if and
only if f is a weak log canonical model of D such that f∗D is ample.





CHAPTER 2

The Sarkisov program

In this chapter, we closely follow [35]. Our purpose in this chapter is to establish
the log Sarkisov program for Q-factorial and toric varieties:

Theorem 1.0.5. Let Z be a Q-factorial projective toric variety and let DZ be
an R-divisor on Z. Let φ : X → S and ψ : Y → T be two Mori fiber spaces,
which are outputs of the DZ-MMP. Then the induced birational map σ : X 99K Y
is connected by finitely many Sarkisov links.

Let us start with the definition of Sarkisov links for toric varieties.

Definition 2.0.1. Let Z be a Q-factorial projective toric variety and let DZ

be an R-divisor on Z. Let φ : X → S and ψ : Y → T be two Mori fiber spaces,
which are outputs of the DZ-MMP.

The induced birational map σ : X 99K Y between φ and ψ is called a Sarkisov
link if it is one of the following four types:

Type (I)

X ′ //

p

��

Y

ψ

��
X

φ

��

T

~~
S.

Type (III)

X //

φ

��

Y ′

q

��
S

  

Y

ψ

��
T.

Type (II)

X ′ //

p

��

Y ′

q

��
X

φ

��

Y

ψ

��
S T.

Type (IV)

X //

φ

��

Y

ψ

��
S

s   

T

t~~
R.

In the above commutative diagram, the vertical arrows p and q are divisorial
contractions and the horizontal dotted arrows are compositions of finitely many
flops for the D′Z-MMP, where D′Z is an R-divisor on the top left space, that is, X ′

or X. The spaces X ′, Y ′ and R are realized as the ample models of R-divisors on
Z, which are the results of the DZ-MMP. In links of Type (I)-(III), R is Q-factorial.
Moreover, links of Type (IV) are separated into two types: (IVm) and (IVs). In a

17
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link of Type (IVm), s and t have both Mori fiber structures and R is Q-factorial.
In a link of Type (IVs), s and t are small birational contractions and R is not
Q-factorial. We note that links of Type (IVs) do not appear for dimZ ≤ 3.

Example 2.0.2. For toric 3-folds with terminal singularities, links of Type (I),
(II), (III) and (IVm) are completely classified by shramov and we can find various
examples in [43].

Let us construction an easy example of links of Type (IVs). Let S → R ← T
be a flop for a divisor and we put X = S×P1 and Y = T ×P1. Then here is a link
of Type (IVs).

Let Z be a Q-factorial projective toric variety and let D be a Weil divisor
on Z. Then there exists a positive integer m such that mD is linearly equivalent
to a torus-invariant Cartier divisor on Z. Hence any R-divisor on Z is R-linearly
equivalent to a torus-invariant R-Cartier divisor. Therefore, it is sufficient to prove
the following statement for Theorem 1.0.5.

Theorem 2.0.3. Let Z be a Q-factorial projective toric variety and let DZ be
a torus-invariant R-divisor on Z. Let φ : X → S and ψ : Y → T be two Mori
fiber spaces, which are outputs of the DZ-MMP. Then the induced birational map
σ : X 99K Y is connected by finitely many Sarkisov links.

By combining Proposition 1.0.3 and Theorem 1.0.5, we obtain the Sarkisov
program when Z is Q-factorial and toric.

Corollary 2.0.4. Let φ : X → S and ψ : X → Y be two toric Mori fiber
spaces with Q-factorial terminal singularities. If X and Y are birational, then the
induced birational map σ : X 99K Y is connected by finitely many Sarkisov links.

Moreover, Conjecture 1.0.4 for toric varieties, directly follows from Proposition
1.3.5.

Corollary 2.0.5 (Log Sarkisov program for toric varieties). Let (Z,B) be a
projective log canonical pair, where X is Q-factorial and toric. Let φ : X → S and
ψ : Y → T be two Mori fiber spaces, which are outputs of the (KX+B)-MMP. Then
the induced birational map σ : X 99K Y is connected by finitely many elementary
links.

2.1. Geography of (log) models

In this section, we explain “geography of (log) models”.
Let Z be a Q-factorial projective toric variety. Then the real vector space

generated by all torus-invariant prime divisors on Z is denoted by V(Z).
Let B be a convex polytope in V(Z). Let f : Z 99K X be a birational contraction

to a normal projective variety X and let g : Z 99K Y a rational contraction to a
normal projective variety Y . Let

E(B) = {DZ ∈ B | DZ is pseudo-effective},
Mf (B) = {DZ ∈ E(B) | f is a minimal model of DZ},
Ag(B) = {DZ ∈ E(B) | g is the ample model of DZ},
N (B) = {DZ ∈ E(B) | DZ is nef}

and we denote the closure of Ag(B) by Cg(B). We simply write Ag to denote Ag(B)
if there is no risk of confusion.
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In the rest of this subsection and next one, we fix the following notation unless
otherwise mentioned.

• Z is a Q-factorial projective toric variety,
• B is a convex polytope of V(Z), which is defined over Q.

Proposition 2.1.1. There are only finitely many rational contractions gi :
Z 99K Xi (1 ≤ i ≤ l) such that

E(B) =

l⋃
i=1

Agi ,

where Agi 6= Agj for i 6= j.

Proof. It follows from the finiteness of minimal models (see [8, Theorem
15.5.15]) and Lemma 1.3.7. �

The following two statements come from [21, Theorem 3.3] and these are easy
consequences of minimal model theory. Thus we give simple proofs. For the details,
see [21, Theorem 3.3 (2), (3)].

Proposition 2.1.2. With notation as in Proposition 2.1.1. If Agj ∩ Cgi 6= ∅
for 1 ≤ i, j ≤ l, then there is a contraction morphism gi,j : Xi → Xj such that
gj = gi,j ◦ gi.

Sketch of Proof. We take DZ ∈ Agi . Running the DZ-MMP, we end up
with a minimal model f : Z 99K X of DZ . Then there is a contraction morphism
g : X → Xi such that gi = g ◦ f . Using this morphism g, we can construct a semi-
ample divisor on Xi associated to the contraction morphism satisfying the desired
property. �

Proposition 2.1.3. With notation as in Proposition 2.1.1. Assume that B
spans N1(Z). For any 1 ≤ i ≤ l, the following are equivalent:

• there is a rational polytope C contained in Cgi which intersects the interior
of B and spans B.

• gi is birational and Xi is Q-factorial.

Sketch of Proof. Suppose that C span B. We take DZ belonging to the
relative interior of C ∩ Agi belonging to the interior of B. Running the DZ-MMP,
we end up with a minimal model f : Z 99K X of DZ . Then there is certain index
1 ≤ j ≤ l such that f = gj . Since DZ belonging to the relative interior of Agi , we
see that i = j. Thus gi = f is birational and Xi = X is Q-factorial. It is easy to
see the converse. �

The following proposition is the key result of this section.

Proposition 2.1.4 ([21, Theorem 3.3 (4)]). With notation as in Proposition
2.1.1. Assume that B spans N1(Z). If Cgi spans B and DZ is a general point
of Agj ∩ Cgi , which is also a point of the interior of B for 1 ≤ i, j ≤ l, then
ρ(Xi/Xj) = dim Cgi − dim Cgj ∩ Cgi .

Proof. Putting X = Xi and f = gi, by Proposition 2.1.3, X is Q-factorial and
f is birational. Let E1, . . . , Ek be all f -exceptional prime divisors. Since B spans
N1(Z), we can take Bi ∈ V(Z), which are linear combinations of the elements of
B, such that Bi ≡ Ei and put B0 =

∑
Bi and E0 =

∑
Ei. Since DZ is contained
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in the interior of B, there is a sufficiently small rational number δ > 0 such that
DZ + δB0 ∈ B. Then f is (DZ + δE0)-negative and so it is a minimal model of
DZ + δE0 and gj is the ample model of DZ + δE0. Thus DZ + δB0 ∈Mf (B) and
DZ + δB0 ∈ Agj . In particular, DZ + δB0 ∈ Agj ∩ Cf . Since DZ is general in
Agj ∩ Cf , DZ ∈Mf (B) and so f is DZ-negative.

We fix a sufficiently small rational number ε > 0 such that if D′Z ∈ B with
||D′Z −DZ || < ε, then D′Z ∈ B and f is DZ-negative. Then D′Z ∈ Cf if and only if
D′X = f∗D

′
Z is nef.

For any (a1, . . . , ak) ∈ Rk, we put E =
∑
aiEi and B =

∑
aiBi. We put

BX = {D′X = f∗D
′
Z | D′Z ∈ B} ⊂ V(X). Then D′X ∈ N (BX) if and only if

D′X + f∗B ∈ N (BX) as D′Z +B is numerically equivalent to D′Z + E. This means
that

Cf ' N (BX)× Rk

in a neighbourhood of DZ .
By the above argument and Lemma 1.3.7, D′Z ∈ Agj ∩ Cf if and only if it

holds that D′X = f∗D
′
Z ∈ N (BX) and there is an ample R-Cartier divisor H on

Xj such that f∗D
′
Z = (gi,j)

∗H, where gi,j : X → Xj is a contraction morphism.
Since DZ ∈ Agj ∩ Cf , there is an ample R-Cartier divisor H0 on Xj such that
f∗DZ = (gi,j)

∗H0 and so there are ample R-Cartier divisors H1, . . . ,Hρ(Xj), whose

images on N1(Xj) are linearly independent, such that f∗D
′
Z = (gi,j)

∗(H0 +
∑
biHi)

for any (b1, . . . , bρ(Xj)) ∈ Rρ(Xj) with H0 +
∑
biHi is ample. Thus

dim Cgj ∩ Cf = k + ρ(Xj).

Therefore we obtain

ρ(Xi/Xj) = ρ(Xi)− ρ(Xj)

= dimN (BX)− ρ(Xj)

= dim Cf − dim Cgj ∩ Cf .
�

We recall the following Bertini-type statement for the reader’s convenience.

Lemma 2.1.5 (cf. [21, Corollary 3.4]). Let P be a convex polytope in V(Z) which
spans N 1(Z). Then for any general affine subspace H ⊂ V(Z), the intersection
P ∩H of P and H satisfies the conclusions of Proposition 2.1.3 and 2.1.4.

Lemma 2.1.6 (cf. [21, Lemma 3.5]). Assume that B satisfies the conclusion of
Propositions 2.1.3 and 2.1.4 and that dimB = 2. Let f : Z 99K X and g : Z 99K Y
be two rational contractions such that dim Cf = 2 and dimO = 1, where O = Cf∩Cg.
Assume that ρ(X) ≥ ρ(Y ) and that O is not contained in the boundary of B. Let
DZ be a point in the relative interior of O and DX = f∗DZ .

Then there is a rational map π : X 99K Y such that g = π ◦ f and either

(1) ρ(X) = ρ(Y ) + 1 and π is DX-trivial,
(a) π is birational and O is not contained in the boundary of E(B),

(i) π is divisorial and O 6= Cg,
(ii) π is small and O = Cg,

(b) π has a Mori fiber structure and O = Cg is contained in the boundary
of E(B),

(2) ρ(X) = ρ(Y ), π is a DX-flop and O 6= Cg is not contained in the boundary
of E(B).
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Proof. By Proposition 2.1.3, f is birational and X is Q-factorial.
If O is contained in the boundary of E(B), then dim Cg = 1 and O = Cg.

By Proposition 2.1.4, there is a contraction π : X → Y which has a Mori fiber
structure. This is (1, b).

In the rest of proof, we may assume that O is not contained in the boundary
of E(B). If dim Cg = 1, then O = Cg. By Proposition 2.1.4, there is a contraction
π : X → Y with ρ(X/Y ) = 1. Since DZ is not contained in the boundary of E(B),
DZ is big and so π is birational. Thus by Proposition 2.1.3, Y is not Q-factorial
and so π is small. This is (1, a, ii).

We assume that dim Cg = 2. Then g is birational and Y is Q-factorial. Let
h : Z → W be the ample model of DZ . By Proposition 2.1.4, there are two
contractions p : X →W and q : Y →W with ρ(X/W ), ρ(Y/W ) ≤ 1. Then we can
explicitly calculate the Picard numbers of X and Y and there are only two cases
below:

(1) ρ(X) = ρ(Y ) + 1 or
(2) ρ(X) = ρ(Y ).

In (1), h = g and we put π = p. Then π is divisorial and this is (1,a, i).
In (2), ρ(X/W ) = ρ(Y/W ) = 1. Then dim Ch = 1 since dimO = 1. By

Theorem 2.1.3, W is not Q-factorial. Thus p and q are small and so π is DX -
flop. �

Lemma 2.1.7 (cf. [21, Lemma 3.6]). Let f : Z 99K X be a birational contraction
between Q-factorial projective toric varieties. Let DZ and D′Z be two torus-invariant
R-divisors on Z. If f is the ample model of D′Z and D′Z −DZ is ample, then f is
the result of running the DZ-MMP.

Proof. We take an ample divisor H on Z such that D′Z + H is ample and
tH ∼R DZ − D′Z for some positive real number 0 < t < 1. Then f is the ample
model of D′Z + tH. We take any s < t sufficiently close to t. Since f is (D′Z + tH)-
non-positive and H is ample, f is (D′Z+sH)-negative. Then f is the unique minimal
model of D′Z + sH. In particular, if we run the (D′Z + sH)-MMP with scaling of
H and the value of the scalar is s, then the induced morphism is f . �

Next we will see that a certain point contained in the boundary of E(V ) cor-
responds to a Sarkisov link. Before that we introduce the following additional
notation.

Notation 2.1.8. Assume that B satisfies the conclusion of Propositions 2.1.3

and 2.1.4 and that dimB = 2. Let D†Z be a point contained in the boundary of

E(B) and the interior of B. If D†Z is contained in only one polytope of the form C•
of two-dimensional, then we assume that it is a vertex of E(B).

Let Cf1 , . . . , Cfk be all two-dimensional rational polytopes containing D†Z , where
fi : Z 99K Xi are rational maps. Note that fi is birational and Xi is Q-factorial by
Proposition 2.1.3. Renumbering Cfi to Ci, let O0 (resp. Ok) be the intersection of
C1 (resp. Ck) with the boundary of E(B), and let Oi := Ci ∩ Ci+1 (1 ≤ i ≤ k − 1).
Then, we may assume that Oi is one-dimensional for any i. Let gi : Z 99K Si
be the rational contractions associated to Oi. We put f = f1 : Z 99K X = X1,
g = fk : Z 99K Y = Xk, X ′ = X2 and Y ′ = Xk−1. Then, by Proposition 2.1.2,
there are contraction morphisms φ : X → S = S0 and ψ : Y → T = Sk. Let

h : Z 99K R be the ample model of D†Z .
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D†Z

O1

O0

C1

k = 1

D†Z

Ok Ok−1

O1

O0

C1

C2

· · ·Ck−1Ck

k ≥ 2

Theorem 2.1.9 (cf. [21, Theorem 3.7]). Let B and D†Z be notation as above.

Let DZ be an R-divisor on Z with D†Z −DZ is ample.
Then φ and ψ are Mori fiber spaces, which are outputs of the DZ-MMP, and

fi are the result of running the DZ-MMP. Moreover, if D†Z is contained in more
than two polytopes, then φ and ψ are connected by a Sarkisov link.

Proof. By Lemma 2.1.6, we have the following commutative diagram:

X ′ = X2

p

��

// Y ′ = Xk−1

q

��
X = X1

φ

��

Y = Xk

ψ

��
S

s
$$

T

t
yy

R

where p, q and the horizontal arrow X ′ 99K Y ′ are birational and φ and ψ have

Mori fiber structures. Since D†Z − DZ is ample, for any i we can take Di ∈ Ci
such that Di −DZ is ample. By Lemma 2.1.7, fi is the result of running the DZ-
MMP. By Proposition 2.1.4, there is a contraction Xi → R with ρ(Xi/R) ≤ 2. If
ρ(Xi/R) = 0, then fi = h and this case does not happen. If ρ(Xi/R) = 1, then
Xi → R gives a Mori fiber structure. By Lemma 2.1.6, dim Ch = 1 and there is a
facet of Ci contained in the boundary of E(V ) and so i = 1 or k. Therefore if k ≥ 3,
then ρ(Xi/R) = 2 for any 1 < i < k and X ′ 99K Y ′ is connected by flops by Lemma
2.1.6 again. Moreover since ρ(X ′/R) = 2, p is divisorial and s is the identity, or p
is flop and s is not the identity. For q and t, similar conditions follow and there are
only 7 possibilities below:

(1) k = 1,
(2) k = 2, ρ(X/R) = 1 and ρ(Y/R) = 2,
(3) k = 2, ρ(X/R) = 2 and ρ(Y/R) = 1,
(4) k ≥ 3, p and q are divisorial, and s and t are the identities,
(5) k ≥ 3, p divisorial, q is flop, s is the identity and t is not the identity,
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(6) k ≥ 3, p is flop, q is divisorial, s is not the identity and t is the identity,
(7) k ≥ 3, p and q are flops, and s and t are not the identities.

In (1), X = Y and this is a link of Type (IV). In (2), s is the identity and
ρ(Y ) ≥ ρ(X). Then by Lemma 2.1.6, there is a divisorial contraction X ′ = Y → X.
Thus this is a special case of a link of Type (I). In (3), this is similar to (2) and
we obtain a special case of a link of Type (III). In (4), this is a link of Type (II).
In (5), this is a link of Type (I). In (6), this is a link of Type (III). In (7), this is a
link of Type (IV).

The rest of the proof is that a link of Type (IV) is splitting into two types
(IVm) and (IVs) in (1) and (7).

We assume that s is a divisorial contraction. Then there is a prime divisor F
on S which is contracted by s. Since ρ(X/S) = 1, there is a prime divisor E on

X such that mE = φ∗F for some m ∈ Z≥0. Since D†X = f∗D
†
Z is numerically

trivial over R, B(D†X +E/R) = E. Since ρ(X/R) = 2, by the 2-ray game, there are

birational contractions X 99K V
f ′−→W

g−→ U such that f ′ is a divisorial contraction
and g has a Mori fiber space. In (1), this is a contradiction since X = Y , φ and ψ
are Mori fiber spaces and ρ(X/R) = 2. In (7), W = Y and U = T and so this gives
a link of Type (III) and this is a contradiction. Similarly, t is not divisorial. Thus
s and t are not divisorial.

If s has a Mori fiber structure, then R is Q-factorial and so t has also a Mori
fiber structure. Thus this is a link of Type (IVm).

If s is a small contraction, then R is not Q-factorial and so t is also small. Thus
this is a link of Type (IVs). �

Lemma 2.1.10 (cf. [21, Lemma 4.1]). Let DZ be a torus-invariant R-divisor on
Z. Let f : Z 99K X and g : Z 99K Y be the results of the DZ-MMP. Let φ : X → S
and ψ : Y → T be two Mori fiber spaces which are outputs of the DZ-MMP.

Then we can find a two-dimensional convex polytope B ⊂ V(Z), which is defined
over Q, with the following properties:

(1) D′Z −DZ is ample for any D′Z ∈ E(B),
(2) Aφ◦f and Aψ◦g are not contained in the boundary of B,
(3) Cf and Cg are two-dimensional,
(4) Cφ◦f and Cψ◦g are one-dimensional,
(5) L = {D′Z ∈ E(B) | D′Z is not big} is connected.

Proof. We take ample torus-invariant divisorsH1, . . . ,Hr ≥ 0, which generate
N1(Z), and we put H = H1 + · · · + Hr. By assumption, there are ample divisors
C on S and D on T , respectively, such that

−f∗DZ + φ∗C and − g∗DZ + ψ∗D

are both ample. Let ε > 0 be a sufficiently small rational number. Then

−f∗DZ + εf∗H + φ∗C and − g∗DZ + εg∗H + ψ∗D

are both ample and f and g are both (DZ + εH)-negative. Replacing H by εH, we

may assume that ε = 1. We take a torus-invariant Q-divisor D̃Z on X sufficiently
close to DZ . Then

−f∗D̃Z + f∗H + φ∗C and − g∗D̃Z + g∗H + ψ∗D
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are both ample and f and g are both (D̃Z +H)-negative. We take torus-invariant
Q-divisors H ′r+1 and H ′r+2 on X and Y , respectively, such that

H ′r+1 ∈ | − f∗D̃Z + f∗H + φ∗C|Q and H ′r+2 ∈ | − g∗D̃Z + g∗H + φ∗D|Q.

There are torus-invariant Q-divisors Hr+1 and Hr+2 on Z such that

Hr+1 ∼Q f
∗H ′r+1 and Hr+2 ∼Q g

∗H ′r+2.

Let a > 0 be a sufficiently large rational number and we put a rational convex
polytope

B0 =

{
D̃Z + a

r+2∑
i=1

tiHi

∣∣∣∣∣
r+2∑
i=1

ti ≤ 1, ti ≥ 0

}
.

Possibly replacing Hi by suitable ones, we may assume that (2) holds for B0.

On the other hand, since f is (D̃Z +H+Hr+1)-negative and (φ◦f)∗(D̃Z +H+

Hr+1) is ample, D̃Z+H+Hr+1 ∈ Aφ◦f (B0). Similarly, D̃Z+H+Hr+2 ∈ Aψ◦g(B0)

and f and g are weak log canonical models of D̃Z +H+Hr+1 and D̃Z +H+Hr+2,

respectively. Thus D̃Z +H +Hr+1 ∈ Cf (B0) and D̃Z +H +Hr+2 ∈ Cg(B0).

Let H0 be the translation by D̃Z of the affine subspace generated by H+Hr+1

and H + Hr+2 and let H be a small perturbation of H0, which is defined over Q.
Putting B = B0 ∩H, B satisfies (1) and (2). Since B0 spans N1(Z), Cφ◦f (B0) spans
B0 and so by Lemma 2.1.5, B satisfies (3). By Proposition 2.1.4, dim Cφ◦f (B) =
dim Cψ◦g(B) = 1 and so B satisfies (4).

Finally we see that we can take B satisfying (5). Since φ and ψ are Mori fiber
spaces, we may assume that ρ(Z) ≥ 2. There is a surjective linear map from V(Z)
to N1(Z). Then the pullback of the pseudo-effective cone Eff(Z) ⊂ N1(Z) via this
map is the convex polyhedron P containing a (dimZ)-dimensional vector subspace
V since dimV(Z) = ρ(Z) + dimZ. Then possibly replacing Hi by suitable ones,
we can take a two-dimensional rational convex polytope B, which does not contan
V , since codimV = ρ(Z) ≥ 2. Thus B satisfies (5) as E(B) = B ∩ P. �

2.2. Proof of Theorem 2.0.3

Proof of Theorem 2.0.3. We take a two-dimensional rational convex poly-
tope B ⊂ V(Z) given by Lemma 2.1.10. We take D0 ∈ Aφ◦f and D1 ∈ Aψ◦g
belonging to the interior of B. As B is two-dimensional, removing two points D0

and D1, the boundary of E(B) separates into two parts. Then one of the two parts
of the boundary of E(B) is contained in L by Lemma 2.1.10 (5). Tracing this part
from D0 to D1, we obtain finitely many points Di (2 ≤ i ≤ k) which are contained
in rational polytopes of two-dimensional. By Theorem 2.1.9, each of Di gives a
Sarkisov link and σ is connected by these links. �

2.3. Examples

In this section, we give some examples of toric Sarkisov links, which are Q-
factorial surfaces with singularities.

Example 2.3.1 ([34]). We fix a lattice N = Z2 and take lattice points

v1 = (1, 0), v2 = (1, n), v3 = (−1, 0), v4 = (−1,−n),

where n is an integer with n ≥ 2.
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We consider the following fan

∆ = {R≥0v1 + R≥0v2,R≥0v2 + R≥0v3,R≥0v3 + R≥0v4,

R≥0v4 + R≥0v1 and their faces}.

Then the associated toric variety X = X(∆) is a projective Q-factorial toric surface.
We consider R2 → R defined by (x, y) 7→ y and R2 → R defined by (x, y) 7→ nx−y.

Then, we obtain two different toric morphisms p1, p2 : X → P1. This gives a
Sarkisov link of Type (IV).

X

p1
��

X

p2
��

P1

  

P1

~~
pt.

We note that X 6' P1 × P1.

Example 2.3.2. In Example 2.3.1, we put

v1 = (1, 0), v2 = (1, n), v3 = (0, 1), v4 = (−1,−1),

where n is an integer with n ≥ 2.
Then the associated toric variety X = X(∆) is a projective Q-factorial toric

surface with ρ(X) = 2. By removing v2, we obtain a toric birational morphism
X → P2. By removing v3, we get X → P(1, n− 1, n).

Thus we have a Sarkisov link of Type (II).

X

��

Y

��
P2

��

P(1, n− 1, n)

��
pt pt.

Example 2.3.3. In Example 2.3.1, we put

v1 = (1, 0), v2 = (1, n), v3 = (0, 1), v4 = (−1,−n),

where n is an integer with n ≥ 2.
We consider the associated toric variety X = X(∆). By removing v2, we have

a proper birational morhism X → P(1, 1, n). By considering R2 → R defined by
(x, y) 7→ nx− y, we can construct X → P1.
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Thus we obtain the following commutative diagram:

X

��

X

��
P(1, 1, n)

��

P1

{{
pt.

So we have Sarkisov links of Types (I) and (III).



CHAPTER 3

Results related to minimal model theory 1

In this chapter, the author provides the results related to minimal model theory
joint work with his supervisor Osamu Fujino and we closely follow [15]. In this
chapter, we will work over the complex number field C unless otherwise mentioned
and our purpose is to give the proof of Theorem 1.0.8.

Let us start with the definition of semi-log canonical pairs to give the corollary
of Theorem 1.0.8.

Definition 3.0.1 (Semi-log canonical pairs). Let X be a reduced equidimen-
sional scheme which satisfies Serre’s S2 condition and is normal crossing in codi-
mension one. Let B be an effective R-divisor such that KX +B is R-Cartier.

Let X =
⋃
Xi be the irreducible decomposition of X and let ν : Xν :=

∐
Xν
i →

X =
⋃
Xi be the normalization, where ν|Xνi : Xν

i → Xi is the usual normalization
for any i. Let Bν be an R-divisor on Xi such that KXν + Bν = ν∗(KX + B) and
let Bνi = Bν |Xνi .

Then we say that (X,B) is a semi-log canonical pair (an slc pair, for short) if
each pair (Xν , Bνi ) is log canonical.

We introduce some easy examples of semi-log canonical pairs

Example 3.0.2. Let (X,B) be a log canonical pair. Then (X,B) is a semi-log
canonical pair.

Example 3.0.3. Let (X,B) be a semi-log canonical pair where X is normal.
Then (X,B) is a log canonical pair.

We directly obtain the following result by combining Theorem 1.0.8 and The-
orem 3.1.5.

Corollary 3.0.4 ([16, Corollary 1.3]). Let (X,B) be a projective semi-log
canonical pair where X is connected. Assume that KX + B is not nef and that
KX + ∆ ≡ rB for some Cartier divisor D on X with r > n = dimX. Then X is
isomorphic to Pn with OX(B) ' OPn(−1) and (X,B) is kawamata log terminal.

3.1. Theory of quasi-log schemes

In this section, we collect some basic definition and results of the theory of
quasi-log schemes. The notion of quasi-log schemes was first introduced by Ambro
[1] as quasi-log varieties. First of all, we recall Fujino’s definition of quasi-log
schemes, which is slightly different from Ambro’s original one. For details, see [11,
Chapter 6]. Let us define globally embedded simple normal crossing pairs to define
quasi-log schemes.

Definition 3.1.1 ([11, Definition 6.2.1]). Let Y be a simple normal crossing
divisor on a smooth variety M . Let D be an R-divisor on M such that Supp(D+Y )

27
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is a simple normal crossing divisor on M and that D and Y have no common
irreducible components. Putting BY = D|Y , we consider the pair (Y,BY ). Then
we say that (Y,BY ) is a globally embedded simple normal crossing pair and M is
the ambient space of (Y,BY ). A stratum of (Y,BY ) is a log canonical center of
(M,Y +D) that is contained in Y .

Let us define quasi-log schemes.

Definition 3.1.2 ([11, Definition 6.2.2]). A quasi-log scheme (X,ω, f : (Y,BY )→
X) is the data which is X is a scheme, ω is an R-Cartier divisor on X, X−∞ ⊂ X
is a proper closed subscheme, C is a finite collection of reduced and irreducible
subschemes of X, and f : (Y,BY ) → X is a proper morphism from a globally
embedded simple normal crossing pair satisfying the following properties:

(i) f∗ω ∼R KY +BY .
(ii) The natural map OX → f∗OY (d−(B<1

Y )e) induces an isomorphism

IX−∞
∼−→ f∗OY (d−(B<1

Y )e − bB>1
Y c),

where IX−∞ ⊂ OX is the ideal sheaf defining a subscheme X−∞.
(iii) The collection of reduced and irreducible subschemes C coincides with the

images of (Y,BY )-strata that are not included in X−∞.

We simply write [X,ω] to denote (X,ω, f : (Y,BY ) → X) if there is no risk of
confusion. We say that each member of C is a qlc stratum of [X,ω], X−∞ is the
non-qlc locus of [X,ω], and f : (Y,BY ) → X is a quasi-log resolution of [X,ω]. A
qlc stratum C is a qlc center of [X,ω] if it is not an irreducible component of X.
We sometimes use Nqlc(X,ω) to denote X−∞.

A quasi-log scheme [X,ω] is a quasi-log canonical pair if X−∞ = ∅.

We give a very important example of quasi-log canonical pairs, i.e. quasi-log
schemes. Thanks to this example, we can consider log canonical pairs as quasi-log
canonical pairs.

Example 3.1.3 ([11, 6.4.1]). Let (X,B) be a pair. Let f : X → Y be a log
resolution of (X,B), that is, Exc(f) is a divisor and Supp f−1

∗ B∪Exc(f) is a simple
normal crossing divisor on Y . We put

KY +BY = f∗(KX +B).

We put ω = KX + B. Then (X,ω, f : (Y,BY ) → X) becomes a quasi-log scheme.
By construction, (X,B) is log canonical if and only if [X,ω] is quasi-log canonical.
We note that C is a log canonical center of (X,B) if and only if C is a qlc center
of [X,ω].

The following theorem is the adjunction and the vanishing theorem for quasi-log
schemes.

Theorem 3.1.4 ([11, Theorem 6.3.5]). Let [X,ω] be a quasi-log scheme and let
X ′ be the union of X−∞ = Nqlc(X,ω) with a (possibly empty) union of some qlc
strata of [X,ω]. Then the following properties hold:

(i) (Adjunction theorem) Assume that X ′ 6= X∞ . Then X ′ has a quasi-log
structure with ω′ = ω|′X and Nqlc(X ′, ω′) = X−∞. Moreover, the qlc
strata of [X ′, ω′] are the qlc strata of [X,ω] that are included in X ′.
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(ii) (Vanishing theorem) Let π : X → S be a proper morphism of schemes.
Let L be a Cartier divisor on X such that L − ω is nef and big over S.
Then Riπ∗(IX′ ⊗ OX(L)) = 0 for every i > 0, where IX′ ⊂ OX is the
ideal sheaf defining X ′.

Thanks to the following theorem, semi-log canonical pairs consider as quasi-log
canonical pairs.

Theorem 3.1.5 ([10, Theorem 1.1]). Let (X,B) be a quasi-projective semi-log
canonical pair. Then [X,KX + B] has a quasi-log structure with only qlc singu-
larities. Moreover, the set of slc strata of (X,B) gives the set of qlc centers of
[X,KX +B].

The following theorem is well-known for log canonical pairs.

Theorem 3.1.6 ([11, Theorem 6.3.11]). Let [X,ω] be a quasi-log scheme with
X−∞ = ∅. Then two intersection of two qlc strata is a union of qlc strata.

The following lemma is the generalization of Lemma 1.2.6 to quasi-log canonical
pairs.

Lemma 3.1.7 (([11, Lemma 6.3.13]). Let [X,ω] be a qlc pair. Let D1, · · · , Dk ≥
0 be Cartier divisors passing through a closed point x ∈ X. If [X,ω+

∑
Di] is qlc,

then k ≤ dimX.

We closed this section with very useful proposition of quasi-log schemes.

Proposition 3.1.8 ([11, Proposition 6.3.1]). Let f : V → W be a proper
birational morphism between smooth varieties and let BW be an R-divisor on W
such that SuppBW is a simple normal crossing divisor on W . Assume that

KV +BV = f∗(KW +BW )

and that SuppBV is a simple normal crossing divisor on V . Then we have

f∗OV (d−(B<1
V )e − bB>1

V c) ' OW (d−(B<1
W )e − bB>1

W c).
Furthermore, let S be a simple normal crossing divisor on W such that S ⊂
SuppB=1

W . Let T be the union of the irreducible components of B=1
V that are mapped

into S by f . Assume that Supp f∗BW ∪Exc(f) is a simple normal crossing divisor
on V . Then we have

f∗OT (d−(B<1
T )e − bB>1

T c) ' OS(d−(B<1
S )e − bB>1

S c),
where (KV +BV )|T = KT +BT and (KW +BW )|S = KS +BS.

3.2. Fujita’s Theory of ∆-genus

In this section, we quickly review Fujita’s ∆-genus. For details, see, for example,
[17], [18], [20], and [23]. Throughout this section, we will work over an algebraically
closed field of characteristic zero. Let us start with the definition of ∆-genus.

Definition 3.2.1. Let X be a variety and let D be a Cartier divisor on X.
Then ∆-genus ∆(X,D) is defined to be dimX + degB − dimCH

0(X,OX(H)).

The following theorem is the characterization of projective spaces by ∆-genus.

Theorem 3.2.2 ([20, Theorem 1.1], [27, Theorem 2.1]). Let (X,D) be a n-
dimensional projective polarized variety, that is, X is a variety and D is an ample
Cartier divisor on X. Then following are equivalent:
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(i) Dn = 1 and ∆(X,D) = 0.
(ii) X is isomorphic to Pn with OX(D) ' OPn(1).

3.3. Proof of Theorem 1.0.8

Before we prove Theorem 1.0.8, we give a sketch of proof of Theorem 1.0.9,
that is, Theorem 1.0.8 for log canonical pairs.

Sketch of proof of Theorem 1.0.9. Since KX + B is not nef, there is a
(KX + B)-negative extremal contraction φ : X → W by the cone and contraction
theorem for log canonical pairs (see [9, Thorem1.1]). Let us divide into several
cases.

Case 1 (dimW ≥ 1). By Lemma 1.2.6, we can take an effective R-Cartier
divisor B on W with the following properties:

(i) (X,B + φ∗B) is log canonical outside finitely many points, and
(ii) there exists a log canonical center C of (X,B + φ∗B) such that φ(C) is a

point with dimC ≥ 1.

In this situation, we obtain that

−(KX +B + φ∗B)|C ≡ rD|C

and D|C is ample since φ(C) is a point. Therefore, by the vanishing theorem for
quasi-log schemes (see Lemma 3.3.1 below), we obtain

χ(C,OC(tD)) ≡ 0.

This is a contradiction since H|C is ample. This means that dimW ≥ 1 does not
happen.

Case 2 (dimW = 1). Since φ : X → W is a (KX + B)-negative extremal
contraction, we see that H is ample. We can explicitly determine

χ(X,OX(tD))

by −(KX +B) ≡ rD with r > n and the vanishing theorem for log canonical pairs
(see [9, Theorem 8.1]). Then we get Hn = 1 and

dimCH
0(X,OX(D)) = n+ 1.

Therefore,

∆(X,D) = n+Hn − dimCH
0(X,OX(D)) = 0

holds. By Theorem proj-space, this implies that X ' Pn with OX(D) ' OPn(1).

�

Lemma 3.3.1. Let [X,ω] be a projective quasi-log canonical pair such that X is
irreducible with dimX = n ≥ 1. Let H be an ample Cartier divisor on X, Assume
that −ω ≡ rH for some r > n. Then X ' Pn with OX(H) ' OPn(1), r ≤ n + 1,
and there are no qlc centers of [X,ω].

Proof. We divide the proof into several steps.
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Step 1. In this step, we will see that X ' Pn with OX(H) ' OPn(1). We
consider the Hilbert polynomial of the polarized pair (X,H):

χ(X,OX(tH)) =

n∑
i=0

an(−1)i dimCH
i(X,OX(tH)).

Since H is ample, it is a nontrivial polynomial of degree n. Since

(3.3.1) tH − ω ≡ (t+ r)H

is ample for t ≥ −n by assumption, we obtain that

Hi(X,OX(tH) = 0

for any i > 0 and t ≥ −n by Theorem 3.1.4 (ii). Since

H0(X,OX(tH)) = 0

for t < 0 and

χ(X,OX) = dim(X,OX) = 1,

we have

(3.3.2) χ(X,OX(tH)) =
1

n
(t+ 1) · · · (t+ n).

Thus we obtain that Hn = 1 and

dimCH
0(X,OX(H)) = n+ 1.

Therefore, we have

∆(X,H) = n+ 1− (n+ 1) = 0

and so by Theorem 3.2.2, X ' Pn with OX(H) ' OPn(1).

Step 2. In this step, we will see that r ≤ n+ 1. Assume that r > n+ 1. Then
by (3.3.1) and Theorem 3.1.4 (ii), we have

Hi(X,OX(−(n+ 1)) = 0

for i > 0. Thus we obtain that

χ(X,OX(−(n+ 1)) = dimCH
0(X,OX(−(n+ 1)H) = 0.

On the other hand, by (3.3.2), we have

χ(X,OX(−(n+ 1)) = (−1)n 6= 0.

This is a contradiction. Therefore, we see that r ≤ n+ 1.

Step 3. In this step, we will see that [X,ω] has no qlc centers. Assume that
there is a zero-dimensional qlc center P of [X,ω]. Then the evaluation map

H0(X,OX(−H))→ C(P )

is surjective since

H1(X, IP ⊗OX(−H)) = 0

by Theorem 3.1.4 (ii), where IP ⊂ OX is the ideal sheaf defining P . Thuswe obtain
that

H0(X,OX(−H)) 6= 0.

This is a contradiction since H is ample. Therefore, there are no zero-dimensional
qlc centers of [X,ω].
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Assume that there is a qlc center C of [X,ω] with dimX ≥ 1. By Theorem
3.1.4 (i), [C,ω|C ] is also a quasi-log canonical pair with dimC < dimX. Since

−ω ≡ rH

with r > n, we have

−ω|C ≡ rH|C
with r > n ≥ dimC + 1. This is a contradiction with Step 2. Thus there are no qlc
centers of [X,ω].

We finish the proof of Lemma 3.3.1.

�

The following lemma is an easy consequence of Theorem 3.1.4.

Lemma 3.3.2. Let [X,ω] be a projective quasi-log scheme with dimX−∞ = 0
or X−∞ = ∅, where X−∞ = Nqlc(X,ω). Let L be a Cartier divisor on X such that
L− ω is ample. Then

Hi(X,OX(L)) = 0

for i > 0.

Proof. It follows from Theorem 3.1.4 if X−∞ = 0. Thus we may assume that
dimX−∞ = 0. We consider the following short exact sequence:

0→ IX∞ → OX → OX∞ → 0.

Then the above sequence induces the following long exact sequence:

(3.3.3) · · · → Hi(X, IX∞ ⊗OX(L))→ Hi(X,OX(L))→ Hi(X, IX∞(L))→ · · · .

By Theorem 3.1.4 (ii), we obtain that

Hi(X, IX∞ ⊗OX(L)) = 0

fori > 0. Since dimX∞ = 0 by assumption, we have

Hi(X, IX∞(L)) = 0

for i > 0. Therefore, by (3.3.3), we see that

Hi(X,OX(L)) = 0

holds true for i > 0. �

Lemma 3.3.3. Let [X,ω] be a quasi-log canonical pair such that X is irreducible.
Let φ : X → W be a proper surjective morphism to a quasi-projective variety W
with dimW ≥ 1. Let P ∈ W be a closed point such that dimφ−1(P ) ≥ 1. Then
there is an R-Cartier divisor B ≥ on W such that [W,ω+φ∗B] is a quasi-log scheme
with the following properties:

(i) [X,ω + φ∗B] is quasi-log canonical outside finitely many points, and
(ii) there is a qlc center C of [X,ω+φ∗B] such that φ(C) = P with dimC ≥ 1.

Proof.
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Case 1. In this case, we assume that there are no qlc centers of [X,ω] in
φ−1(P ).

Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω]. We take general very
ample Cartier divisors B1, . . . Bn+1 on W such that P ∈ SuppBi for any i. By
3.1.8, we may further assume that(

Y,

n+1∑
i=1

(φ ◦ f)∗Bi + SuppBY

)
is a globally embedded simple normal crossing pair. By Lemma 3.1.7, we can take
0 < ε < 1 with the following properties:

(i)
(
By + c

∑n+1
l=1 (φ ◦ f)∗Bi

)>1

= 0 or dim f

(
Supp

(
BY + c

∑n+1
l=1 (φ ◦ f)∗Bi

)>1
)

=

0, and

(ii) there is an irreducible component G of
(
BY + c

∑n+1
l=1 (φ ◦ f)∗Bi

)=1

such

that dim f(G) ≥ 1.

We put B = c
∑n+1
l=1 Bi. Then

f : (Y,BY + (φ ◦ f)∗B)→ [X,ω + φ∗B]

gives a desired quasi-log structure on [X,ω + φ∗B] by construction.

Case 2. In this case, we assume that there is a qlc center C of [X,ω] in φ−1(P )
with dimC ≥ 1,

It is clear when we put B = 0.

Case 3. In this case, we assume that every qlc center of [X,ω] contained in
φ−1(P ) is zero-dimensional.

Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω]. We take general very
ample Cartier divisors B1, . . . , Bn+1 on W such that P ∈ SuppBi for any i as in
Case 1. Let X ′ be the union of all qlc centers contained in φ−1(P ). By 3.1.8, we may
assume that the union of all strata of (Y,BY ) mapped to X ′ by f , which is denoted
by Y ′, is a union of some irreducible components of Y . We put Y ′′ = Y − Y ′,
KY ′′ +BY ′′ = (KY +BY )|Y ′′ , and f

′′
= f |f ′′ . We may further assume that(

Y ′′,

n+1∑
i=1

(φ ◦ f ′′)∗Bi + SuppBY ′′

)
is a globally embedded simple normal crossing pair in the same way as in Case 1.
Then we note that

IX′ = f
′′

∗ OY ′′(b−(B<1
Y ′′c − Y

′|Y ′′ )
holds, where IX′ is the ideal sheaf defining X ′. We also note that B

′′

Y ≥ Y ′|′′Y by
construction. By Lemma 3.1.7, we can take 0 < ε < 1 with the following properties:

(i) dim f
′′
(

Supp
(
BY ′′ + c

∑n+1
l=1 (φ ◦ f ′′)∗Bi

)>1
)

= 0, and

(ii) there is an irreducible component G of
(
BY ′′ + c

∑n+1
l=1 (φ ◦ f ′′)∗Bi

)=1

such that dim f
′′
(G) ≥ 1.

We put B = c
∑n+1
l=1 Bi.

f
′′

: (Y
′′
, BY ′′ + (φ ◦ f

′′
)∗B)→ [X,ω + φ∗B]
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gives a desired quasi-log structure on [X,ω + φ∗B] by construction.
We finish the proof of Lemma 3.3.3.

�

Proof of Theorem 1.0.8. We put H = −D.

Case 1. In this case, we assume that X is irreducible. Since ω is not nef, there
is an ω-negative extremal contraction φ : X → W by the cone and contraction
theorem for quasi-log schemes([11, Theorem 6.7.3 and Theorem 6.7.4]). If dimW ≥
1, then we can take an R-Cartier divisor D on W satisfying the properties in Lemma
3.3.3. Let C be a qlc center of [X,ω + φ∗B] as in Lemma 3.3.3. We put

C ′ = C ∪Nqlc(X,ω + φ∗B).

By Theorem 3.1.4 (i), [C ′, ω|′C ] is a quasi-log scheme. There is the following short
exact sequence:

(3.3.4) 0 // Kerα // O′C
α // OC // 0.

such that Kerα = 0 or the support of Kerα is zero-dimensional. Since dimφ(C ′) =
0, we have

−(ω + φ∗B)|′C ≡ rH|′C .
Thus by assumption,

(tH − (ω + φ∗B))|′C ≡ (t+ r)H|′C
is ample for t ≥ −n. Therefore, by Lemma 3.3.3 and (3.3.4),

Hi(C,OC(tH)) = Hi(C ′,O′C(tH)) = 0

for i > 0 and t ≥ −n. Since H|C is ample, we have

H0(C,OC(tH)) = 0

for t < 0. Thus we have
χ(C,OC(tH)) = 0

for t = 1, . . . ,−n and so we get that

χ(C,OC(tH)) ≡ 0

since n ≥ dimC + 1. This is a contradiction since H|C is ample. This means that
W = 0 and so H is ample. By Lemma 3.3.3, X ' Pn with OX(H) ' OPn(1), and
there are no qlc centers of [X,ω].

Case 2. We assume that X is not irreducible and we take an irreducible com-
ponent X ′ of X such that ω′ = ω|′X is not nef. Then by Theorem 3.1.4 (i), [X ′, ω′]
is a quasi-log canonical pair such that ω′ ≡ rD|′X with r > n ≥ dimX ′. By
the above argument, we see that H|′X is ample. Thus by Lemma 3.3.1, X ′ ' Pn
with OX′(H) ' OPn(1). On the other hand, if X 6= X ′, then [X ′, ω′] has a qlc
center since X is connected by Theorem 3.1.6 and Theorem 3.1.4 (i). This is a
contradiction and this case does not happen.

�
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Results related to minimal model theory 2

In this chapter, the author provides the results related to minimal model theory
joint work with his supervisor Osamu Fujino and we closely follow [16]. In this
chapter, our purpose is to establish the generalization of the classical result, the
Nakai–Moishezon ampleness criterion, to R-line bundles on complete schemes. By
the standard reduction argument, it is sufficient to treat the case where X is a
complete normal variety. Therefore, all we have to do is to establish the following
theorem.

Theorem 4.0.1 (Nakai–Moishezon ampleness criterion for real Cartier divisors
on complete normal varieties, [16, Theorem 1.4]). Let X be a complete normal
variety and let L be an R-Cartier divisor on X. Then L is ample if and only if
LdimZ · Z > 0 for every positive-dimensional closed subvarieties Z ⊂ X.

4.1. Augmented base locus of R-Cartier divisors

In this section, we explain some properties of augmented base loci of R-divisors
following [2]. Let us recall the definition of base loci and stable base loci.

Definition 4.1.1 (Base loci and stable base loci of Q-divisors). Let X be a
projective scheme and let D be a Cartier divisor on X. The base locus of D is
defined as

Bs|D| = {x ∈ X |α vanishes at x for every α ∈ H0(X,OX(D))}.
We consider Bs|D| with the reduced scheme structure.

The stable base locus of a Q-Cartier divisor L on X is defined as

B(L) =
⋂
m

Bs|mL|

where m runs over all positive integers such that mL is Cartier. Note that B(L) is
considered with the reduced scheme structure.

Definition 4.1.2. Let X be a projective scheme and let L be an R-Cartier
divisor on X. The augmented base locus of L is defined as

B+(L) =
⋂
H

B(L−H),

where H runs over all ample R-Cartier divisors on X such that L−H is Q-Cartier.
We consider B+(L) with the reduced scheme structure.

Definition 4.1.3. Let X be a projective scheme and let L be an R-Cartier
divisor on X. The exceptional locus of L is defined as

E(L) =
⋃

dimV >0,L|V is not big

V,

35
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that is, the union runs over all positive-dimensional subvarieties V ⊂ X such that
L|V is not big.

It is called the null locus when L is nef.

Definition 4.1.4 (Augmented base loci of R-divisors). Let X be a projective
scheme and let L be an R-Cartier divisor on X. The augmented base locus of L is
defined as

B+(L) =
⋂
H

B(L−H)

where H runs over all ample R-divisors such that L−H is Q-Cartier. As usual, we
consider B+(L) with the reduced scheme structure.

Birkar defined B+(L) differently (see [2, Definition 1,2]). Then he proved that
his definition coincides with the usual one (see Definition 4.1.4). For the details,
see [2, Lemma 3.1 (3)].

In order to explain Birkar’s theorem (see Theorem 4.1.6), it is convenient to
introduce the notion of exceptional loci of R-divisors.

Definition 4.1.5 (Exceptional loci of R-divisors). LetX be a projective scheme
and let L be an R-Cartier divisor on X. The exceptional locus of L is defined as

E(L) =
⋃

dimV >0, L|V is not big

V,

that is, the union runs over the positive-dimensional subvarieties V ⊂ X such that
L|V is not big.

Note that E(L) is sometimes called the null locus of L when L is nef.
The following result is a key ingredient of this section.

Theorem 4.1.6 ([2, Theorem 1.4]). Let X be a projective scheme and let L be
a nef R-Cartier divisor on X. Then

B+(L) = E(L)

holds.

For the details of Theorem 4.1.6, we strongly recommend the reader to see
Birkar’s original statement in [2, Theorem 1.4]. We will use Theorem 4.1.6 when
X is a normal projective variety in the proof of Theorem 4.0.1.

4.2. Proof of Theorem 4.0.1

Let us start with the following lemma.

Lemma 4.2.1. Let X be an n-dimensional projective variety and let L be a nef
R-Cartier divisor on X. Then L is big if and only if Ln > 0.

Before we prove Lemma 4.2.1, we need the following bigness criterion:

Lemma 4.2.2 ([31, Theorem 2.2.15]). Let X be an n-dimensional projective
variety and let L and A be a nef Q-divisors on X. If

Ln > n · (Ln−1 ·A)

holds, then L−A is big.
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Proof of Lemma 4.2.1. Assume that L is big, then there are an ample R-
divisor A and an effective R-Cartier divisor E on X such that L ∼R A+ E. Then

Ln = (A+ E) · Ln−1 ≥ A · Ln−1 > · · · > An > 0.

Conversely, assume that Ln > 0. We take ample R-divisors A1 and A2 on X
such that L+A1 and A1 +A2 are Q-Cartier divisors on X. Since Ln > 0, we may
assume that

(L+A1)n > n((L+A1)n−1 · (A1 +A2))

by replacing A1 and A2 with sufficiently small ones. By Lemma 4.2.2,

L−A2 = (L+A1)− (A1 +A2)

is big. Hence L is also big. �

Proof of Theorem 4.0.1. Let

X =

k⋃
i=1

Ui

be a finite affine Zariski open cover of X and let U i is the closure of Ui in PN . By
[32, Lemma 2.2], we can take an ideal sheaf I on Ui with SuppO(Ui)/I ⊂ U i\Ui
such that the blow-up of Ui along I eliminates the indeterminacy of Ui 99K X.
Therefore, by taking the normalization of the blow-up of Ui along I, we get a
projective birational morphism πi : Xi → X from a normal projective variety Xi

such that πi : π−1(Ui)→ Ui is an isomorphism.

Xi

~~

πi

��
U i // X

Since π∗i L is nef by assumption, it follows from Theorem 4.1.6 that there is an
ample R-Cartier divisor Hi on Xi such that π∗i L−Hi is Q-Cartier and that

B(π∗i L−Hi) = B+(π∗i L) = E(π∗i L)

holds. Thus by Lemma 4.2.1 and the assumption that LdimZ · Z > 0 for every
positive-dimensional closed subvariety Z ⊂ X,

E(π∗i L) = Exc(πi)

holds. Since L is R-Cartier, we can write

L =
∑
j∈J

ljLj ,

where lj ∈ R and Lj is Cartier for any j ∈ J . There is a real number ε > 0 such
that if mj ∈ Q with |lj −mj | < ε for any j ∈ J , then

π∗i

∑
j∈J

mjLj

− π∗i L+Hi

is ample. Then

B

π∗i
∑
j∈J

mjLj

 ⊂ B(π∗i L−Hi) = Exc(πi)
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holds. This implies that

B

∑
j∈J

mjLj

 ⊂ πi(Exc(πi)) ⊂ X\Ui

holds. Therefore, we have

B

∑
j∈J

mjLj

 ⊂ k⋂
i=1

(X\Ui) = ∅.

This means that
∑
mjLj is semi-ample for any mj ∈ Q with |lj −mj | < ε and so

we can write

L =
∑
p

rpMp,

where rp ∈ R and Mp is a semi-ample Q-divisor for every p. Thus L is semi-ample
and so there is a morphism f : X → Y onto a normal projective variety Y with
f∗OX ' OY and an ample R-Cartier divisor A on Y such that L ∼R f∗A. Since
L · C > 0 for any curve C ⊂ X by assumption, f is an isomorphism. Thus L is
ample. �

4.3. Proof of Theorem 1.0.11

Lemma 4.3.1. Let X be a complete scheme and let L be an R-line bundle on

X. Let X =
∑k
i=1

⋃
Xi be the irreducible decomposition of X. Then L is ample if

and only if L|(Xi)red is ample for every i.

Proof. This statement is well known for Q-line bundles. Hence, we will freely
use this lemma for Q-line bundles in this proof. Assume that L is ample. Then we
can write

L =
∑
j

ajLj ,

where ai is a positive real number and Lj is an ample line bundle for every j. Thus
L|(Xi)red is also ample for every i.

Conversely, assume that L|(Xi)red is ample for every i. Since L is an R-line
bundle, we can write

L =

m∑
j=1

ljLj ,

where lj is a real number and Lj is a line bundle for every j. We put

Vi =

(p1, . . . , pm) ∈ Rm
∣∣∣∣∣∣
m∑
j=1

pjLj |(Xi)red is ample


for every i. Then Vi contains a Euclidean open neighborhood of l = (l1, . . . , lm)

for every i since
∑m
j=1 pjLj |(Xi)red is ample by assumption. Hence V =

⋂k
i=1 Vi

contains a Euclidean open neighborhood of l ∈ Rm. Thus we can take positive real
numbers r1, . . . , rp and

v1 = (v11, . . . , v1m), . . . , vp = (vp1, . . . , vpm) ∈ V ∩Qm
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such that l =
∑p
α=1 rαvα. Then

Aα :=

m∑
j=1

vαjLj ∈ Pic(X)⊗Z Q

is ample for every α since vα ∈ V ∩Qm. Since we can write

L =

p∑
α=1

rαAα,

L is ample by definition. �

Lemma 4.3.2. Let X be a complete scheme and let L be an R-line bundle on X.
Let π : Y → X be a finite surjective morphism between complete varieties. Then L
is ample if and only if π∗L is ample.

Proof. This statement is well known for Q-line bundles. Hence, we will freely
use this lemma for Q-line bundles in this proof. Assume that L is ample. Then it
is obvious that π∗L is ample.

Conversely, assume that π∗L is ample. Since L is an R-line bundle, we can
write

L =

m∑
j=1

ljLj ,

where lj is a real number and Lj is a line bundle for every j. Since π∗L is ample,
there exists a positive real number ε such that if |lj − αj | < ε for every j, then

π∗

 m∑
j=1

αjLj


is ample. Moreover, if we further assume that αj ∈ Q for every j, then

m∑
j=1

αjLj

is ample since π is a finite surjective morphism. Hence we can write

L =

m∑
j=1

rjAi

such that ri is a positive real number and Ai is an ample line bundle for every i.
This means that L is ample by definition. �

Proof of Theorem 1.0.11. By Lemma 4.3.1, we may assume that X is a
variety. Let ν : Xν → X be the normalization of X. Note that ν is a finite
surjective morphism. Then, by Lemma 4.3.2, it is sufficient to prove that ν∗L is
ample. Hence we further assume that X is a complete normal variety. In this case,
the ampleness of L follows from Theorem 4.0.1. �
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4.4. Proof of Theorem 1.0.12

In this section, we prove Theorem 1.0.12. More precisely, we reduce Theorem
1.0.12 to a special case where X is a normal variety, which is nothing but Theorem
4.0.1. Let us start with the following elementary lemma.

Lemma 4.4.1. Let π : X → S be a proper surjective morphism between schemes
and let L be an R-line bundle on X. Assume that L|Xs is ample for every closed
point s ∈ S, where Xs = π−1(s). Then L is π-ample.

Before we prove Lemma 4.4.1, we prepare the following lemma, which is also
well known for Q-line bundles.

Lemma 4.4.2. Let π : X → S be a proper surjective morphism between schemes
and let L be an R-line bundle on X. Assume that L|Xs0 is ample for some closed

point s0 ∈ S, where Xs0 = π−1(s0). Then there exists a Zariski open neighborhood
Us0 of s0 such that L|π−1(Us0 ) is ample over Us0 .

Proof. This statement is well known for Q-line bundles. Hence, we will freely
use this lemma for Q-line bundles in this proof. For details, see, for example, [31,
Theorem 1.7.8.].

Since L is an R-line bundle, there exist line bundles Mj for 1 ≤ k ≤ k such
that

L =

k∑
j=1

bjMj

in Pic(X)⊗Z R, where bj is a real number for every j. We put

A =

(c1, . . . , ck) ∈ Rk
∣∣∣∣∣∣
k∑
j=1

cjMj |Xs0 is ample

 .

Then A contains a Euclidean open neighborhood of (b1, . . . , bk). Hence we can
write

L =
∑
i

aiLi,

where Li is a line bundle on X such that ai is a positive real number and Li|Xs0
is ample for every i. Since Li|Xs0 is ample for every i, there exists a Zariski open

neighborhood Us0 of s0 such that Li|π−1(Us0 ) is ample over Us0 for every i (see, for

example, [29, Proposition 1.41]). Therefore, Li|π∗(Us0 ) =
∑
i aiLi|π−1(Us0 ) is ample

over Us0 . �

Let us prove Lemma 4.4.2.

Proof of Lemma 4.4.1. We use the same notation as in the proof of Lemma
4.4.2. Note that S is Noetherian since it is a separated scheme of finite type over
an algebraically closed field. Hence, by Lemma 4.4.2, we can take s1, . . . , sl ∈ S
such that

l⋃
α=1

USα = S,
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where USα is a Zariski open neighborhood of Sα in S for every α, and that
L|π−1(USα ) is ample over USα for every α. We put

Aα =

(c1, . . . , ck) ∈ Rk
∣∣∣∣∣∣
k∑
j=1

cjMj |π−1(USα)
is π-ample over USα

 .

ThenAα contains a Euclidean open neighborhood of (b1, . . . , bk). Therefore,
⋂l
α=1Aα

also contains a Euclidean open neighborhood of (b1, . . . , bk). Hence, we can write

L =
∑
i

aiLi

in Pic(X) ⊗Z R such that ai is a positive real number and Li is a π-ample line
bundle on X for every i. �

Finally, we prove Theorem 1.0.12.

Proof of Theorem 1.0.12. If L is π-ample, then it is obvious that it satisfies
the desired property. Hence, by Lemma 4.4.1, it is sufficient to prove that L|Xs
is ample for every closed point s ∈ S, where Xs = π−1(s), under the assumption
that LdimZ ·Z > 0. This follows from the Nakai–Moishezon ampleness criterion for
R-line bundles on complete schemes (see Theorem 1.0.11). �

4.5. The generalization of Theorem 1.0.11 to algebraic spaces

In this section, as an application of Theorem 1.0.11, we prove the Nakai–
Moishezon ampleness criterion for R-line bundles on complete algebraic spaces.

Theorem 4.5.1 (Nakai–Moishezon ampleness criterion for real line bundles on
complete algebraic spaces, [16, Theorem 1.6]). Let X be a complete algebraic space
over an algebraically closed field k and let L be an R-line bundle on X. Then L
is ample if and only if LdimZ · Z > 0 for every positive-dimensional closed integral
subspace Z ⊂ X.

Before we prove Theorem 4.5.1, let us start with two well-known results of
algebraic spaces.

Theorem 4.5.2 (Nakai–Moishezon criterion for line bundles on complete al-
gebraic spaces, [28, Theorem 3.11] or [38, Theorem (1.4)]). Let X be a complete
algebraic space and let L be a line bundle on X. Then L is ample if and only if
LdimZ · Z > 0 for every positive-dimensional closed integral subspace Z ⊂ X.

Lemma 4.5.3 ([28, Lemma 2.8]). Let X be an algebraic space of finite type.
Then there is a scheme Y and a finite surjective morphism f : Y → X.

Proof of Theorem 4.5.1. By Lemma 4.5.3, there is a finite surjective mor-
phism f : Y → X from a complete scheme Y . By Theorem 1.0.11, f∗L is an ample
R-line bundle on Y . We write

L =
∑
i

aiLi,

where ai is a positive real number and Li is a line bundle on X for every i. We put

M =
∑
i

biLi,



42 4. RESULTS RELATED TO MINIMAL MODEL THEORY 2

where bi is a positive real number for every i. If |ai − bi| << 1 for every i, then
f∗M is an ample Q-line bundle on Y since f∗L is ample. Therefore, mM is an
ample line bundle on X for some positive integer m by Theorem 4.5.2. This implies
that X is projective. Thus, by Theorem 1.0.11 again, L is an ample R-line bundle
on X. �
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