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Abstract

In this doctoral thesis, various properties of baryon resonances are investigated

using the Sakai-Sugimoto model, one of the holographic QCD models. Even though

the Roper resonance is one of the most experimentally established baryon resonances,

it is difficult to explain its various properties theoretically. We find that the mass

formula obtained from the Sakai-Sugimoto model captures the characteristics of the

experimental data of Roper resonances well. Therefore, we attempted to calculate

other properties of the Roper resonance, especially the electromagnetic transition

amplitude and the decay width of the one pion emission. We also tried to do similar

analyses for other nucleon resonances (∆(1232), N∗(1535)).

For this purpose, it is necessary to obtain the baryon wave function and chiral

current in the Sakai-Sugimoto model. In the holographic QCD model, baryons appear

as D-branes. In particular, in the Sakai-Sugimoto model, this D-brane is identified

with an instanton on D8 brane. Therefore, we consider the motion of this instanton

in moduli space and quantize it to obtain the wave function of the baryon. This

is the conventional method used in the analysis of solitons and is called collective

coordinate quantization. After that, we performed calculations and compared them

with experimental data using the current defined as the Noether current of chiral

symmetry in the Sakai-Sugimoto model. On the other hand, some problems exist in

the definition of chiral current, therefore we pointed out these problems.

In addition, Roper-like excitations have recently been found in heavy baryons.

Therefore, we discuss the extension of the Sakai-Sugimoto model to heavy flavor

for the purpose of these analyses.

1



Acknowlegement

First of all, I would like to express my gratitude to my advisor, Professor Atsushi

Hosaka, for guiding my research through enlightening discussions. Without the knowl-

edge from the fundamental to the recent development of hadron physics that I gained

from him, I would not have been able to complete my research and write this doctoral

dissertation. I would also like to thank Professor Noriyoshi Ishii for his many helpful

suggestions and comments. Some of my work owes to his suggestions. I am also grate-

ful to Professor Kazuyuki Ogata, who was transferred to Kyushu University in the

middle of my doctoral course. The basic knowledge of numerical computation that I

learned from him was especially helpful in carrying out my research. I would also like

to take this opportunity to thank Prof. Hiroyuki Noumi, Prof. Masayuki Asakawa,

and Prof. Tatsuma Nishioka for their assistance in sub-reviewing this doctoral thesis.

I would like to thank all RCNP members. In particular, I am very happy to my

collaborators, Akihiro Iwanaka (D1 student) and Yuto Kaneko (M2 student) in RCNP

Theory group, for many exciting discussions. I would like to appreciate the secretary,

Sachiko Karasuyama, for providing us for a comfortable environment for our research

life. This work was supported by JST SPRING, Grant Number JPMJSP.

2



Contents

Chapter 1. Introduction 5

1.1 Nucleon resonances . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Sakai-Sugimoto model . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Baryons for Sakai-Sugimoto model . . . . . . . . . . . . . . . . 12

1.4 Construction of the doctoral thesis . . . . . . . . . . . . . . . . 14

Chapter 2. Hadrons in the Sakai-Sugimoto model 15

2.1 The gauge/gravity (string) correspondence . . . . . . . . . . . . 15

2.2 The Sakai-Sugimoto model . . . . . . . . . . . . . . . . . . . . . 17

2.3 Mesons in the Sakai-Sugimoto model . . . . . . . . . . . . . . . 24

2.4 Baryons in the Sakai-Sugimoto model . . . . . . . . . . . . . . . 35

Chapter 3. SU(Nf = 2 + 1) Sakai Sugimoto model 54

3.1 Flavor SU(3) Skyrme model . . . . . . . . . . . . . . . . . . . . 55

3.2 Hyperons in the Sakai-Sugimoto model . . . . . . . . . . . . . . 66

3.3 Dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Heavy and exotic baryons in the Sakai-Sugimoto model . . . . . 92

Chapter 4. Properties of nucleon resonances 109

4.1 The definition of the chiral current in the Sakai-Sugimoto model 109

4.2 The static properties of the nucleon . . . . . . . . . . . . . . . 124

4.3 Dynamical properties of the nucleon resonances . . . . . . . . . 134

Chapter 5. Summary and Outlook 163

Appendix A Details of the calculation 167

3



A.1 (2.4.19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.2 (2.4.20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.3 (2.4.22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.4 (2.4.49) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.5 (2.4.60) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.6 (2.4.67) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.7 (3.2.25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.8 (3.3.11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.9 (3.3.15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.10 (3.3.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.11 (3.3.18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.12 (3.3.20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.13 (3.3.27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.14 (3.3.54) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.15 (3.3.55) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.16 (3.3.63) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.17 The calculation of section 3.3.2 . . . . . . . . . . . . . . . . . . 184

Appendix B Gauss’s law 186

Appendix C Lie derivative 189

Appendix D Chern-Simons term 192

D.1 CS term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

D.2 New CS term 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

D.3 New CS term 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Appendix E The wave function of the SU(2) rotation W (t) 216

E.1 W (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

E.2 Wave function for W (t) . . . . . . . . . . . . . . . . . . . . . . . 217

E.3 Some expectation values . . . . . . . . . . . . . . . . . . . . . . 218

References 220

4



Chapter 1.

Introduction

The strong interactions forming the baryons that occupy more than 99% of the

visible matter in our universe are described by quantum chromodynamics (QCD).

However, due to their non-perturbative nature, the behavior of low-energy QCD is

not always well understood. While the properties of the ground state baryons such as

masses and magnetic moments of the octet baryons, are thought to be well understood,

much part of them are actually governed by the flavor symmetry. The dynamics

of low energy QCD is more directly reflected in the excited/resonant states of the

baryons [1]. This was the case as we have seen in the developments of the atomic

physics where various observations of atomic spectra revealed their origin due to the

motion of electrons and their interactions. We expect a similar situation for QCD;

from the study of baryon spectra we may be able to extract the information of the

constituents, or effective degrees of freedom, that govern the structure of baryons and

their interactions. This motivates us to study baryon resonances.

While the first-principles calculations of the ground state have been developed by

Lattice QCD, the simulations of resonances is difficult, because resonances are rec-

ognized as a continuum (scattering) state. For this reason, investigation by effective

models that incorporate the appropriate degrees of freedom have been useful. Among

various effective models, the most standard one is the constituent quark model that

describes baryon resonances as excitations of quarks that are confined inside the

baryons [2, 3, 4, 5, 6, 7]. The model reproduces well the properties of the ground

state baryons and reasonably well the first resonant states. The model can also pre-

dicts further resonant states. However due to its simplicity the predictive power is
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limited, and for some resonances, the model lead serious discrepancies in comparison

with experimental data. Difficulties are in many cases decay properties of resonances,

which are the most important dynamical properties, for example, the decay widths

and electromagnetic transition amplitudes [8]. This is because the quark model de-

scribe the resonances as a stable particle, although the actual baryon resonances are

recognized as poles appearing in the scattering amplitudes of mesons and baryons.

The dynamically coupled-channel model (DCC model) is a well-known model that re-

spects the actual resonances [9]. This model explains the properties of resonances very

well by using scattering cross-section data as input. However, it is a phenomenological

model that requires a large amount of data input.

In this doctoral thesis, the dynamical properties of nucleons are discussed in the

Sakai-Sugimoto model, which is the most successful holographic QCD description of

low-energy QCD [10, 11]. So far, static properties such as the mass spectra have been

investigated in this model by well utilizing the extra-dimensional degrees of freedom,

where its success has been shown [12, 13, 14, 15, 16]. On the other hand, it is also

essential to elucidate the dynamical properties of resonances and their interactions. In

this study, as a milestone of the new development of the study of dynamical properties

in the holographic model of QCD, the properties of the nucleon resonance are investi-

gated [17, 18]. Moreover, this model describes nucleon as solitons (instantons) [12, 14],

whose are resonances expressed as their collective motion excitations, namely stable

particles. Here, the extra-dimensional degrees of freedom play an important role. As

described below, this extra-dimension includes the degrees of freedom of the meson

and its resonances. Then, from the viewpoint of our four-dimensional spacetime, this

solitons (instantons), baryon, can be interpreted as a meson-baryon composite sys-

tem. Considering that the actual nucleon resonance is recognized as the poles of the

scattering amplitudes of the meson and baryon, this baryon picture is very interesting.

From this point of view, it is worthwhile to investigate various properties of nucleon

resonance using this model.

In addition, hadrons with heavy quarks and their resonances have been studied with

great interest in recent years [19, 20, 21, 22, 23, 24]. In particular, the existence of

Roper-like heavy baryons is of intriguing concern [8]. The Roper-like excitations are

observed at energies above about 500 MeV from the ground state that shows flavor-

independent properties [23]. Therefore, it is desirable to extend the Sakai-Sugimoto

6



model to cases involving heavy flavors [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. This

thesis also presents our work on the development of the Sakai-Sugimoto model in this

direction [36].

Hadron resonance as a fundamental excitation produced by the QCD vacuum shows

various aspects and opens up many interesting research areas. The nature of the

resonance states can be not only theoretically understood but also experimentally

verified. Therefore, theoretical and experimental investigation of the structure and

properties of hadron resonance are expected to reveal the puzzle of low-energy QCD.

1.1 Nucleon resonances

In the following, we discuss the specific resonances.

1.1.1 The ∆(1232) resonance

The ∆(1232) resonance is a resonant state with isospin 3/2 and spin-parity 3/2+

quantum numbers, with a mass of 1232 MeV and a decay width of about 100 MeV [37].

In the picture of the quark model, which describes a nucleon as three quarks, it can be

interpreted as an excitation by a magnetic dipole transition that flips the spin-isospin

of one quark of the nucleon.

It is the most strongly excited compared to the other nucleon resonances, and

decay to a pion and a nucleon with a branching ratio of almost 100%. The quark

model, which successfully explains the magnetic moment of the nucleon, was expected

to reproduce the ∆(1232) resonance electromagnetic transition amplitude, but its

prediction is much smaller [3, 38, 7] than the amplitude observed in experiments [39].

It has been found that a simple description of the nucleon as a three-body system of

quarks is not sufficient to explain this transition amplitude, in which it is important

to take into account the meson clouds produced by the strong coupling of the ∆(1232)

resonance to the pion and nucleon [40]. It is now becoming clear that this picture

of a meson-baryon composite system is also very important for understanding other

nucleon resonances.
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1.1.2 Roper resonance

The Roper resonance is the first excited state of the nucleon, with spin-parity 1/2+,

a mass of 1440 MeV and a decay width of about 160 ∼ 190 MeV, which is one of the

most established resonances since L. D. Roper observed its existence in the 1960s [41].

Nevertheless, there are many unsolved puzzles regarding its structure and properties.

A long-standing controversial puzzle is the issue of the mass of the Roper reso-

nance. Since the establishment of the picture of baryons composed of three constituent

quarks, there have been many studies using the non-relativistic quark model. On one

hand, the quark model was found to reproduce experimental values of the masses of

many nucleon resonances by using harmonic oscillator-type confinement potentials.

On the other hand, the mass of the Roper resonance cannot be explained by the

quark model picture. Its mass smaller than the negative parity nucleon N∗(1535) has

attracted great amount of interests because the naive quark model predicts the mass

of the Roper resonance much higher than that of the negative parity state.

Turning to the dynamical properties of the Roper resonance, a further problem was

unveiled. That is the fact that the quark model cannot reproduce the data obtained

from the electromagnetic transitions of the Roper resonance. The electromagnetic

excitations of nucleon resonances have long been studied experimentally and theo-

retically as an important source of information for understanding QCD. The helicity

amplitudes extracted from this electro-production data distinguish competing mod-

els. In earlier years, the data were insufficiently precise and the amount of helicity

amplitude data points was limited. However in recent years, mainly with the advent

of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jef-

ferson National Accelerator Facility (JLab), a large amount of precise data has been

obtained [42, 43, 44, 45, 46]. Motivated by this, many theoretical studies [47, 8, 9, 24]

have been devoted to the understanding of this process for the Roper resonance, in

particular, it has been argued that the quark three-body picture is inappropriate and

that it is important to consider the effect of the meson cloud [9, 8].

This is not the only problem with the Roper resonance. An almost vanishing decay

width of one pion emission, which is a forbidden process in the limit of zero momentum

of the outgoing pion in the non-relativistic quark model, disagrees with the large value
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of the experimental data. To solve these problems about electromagnetic transition

and one pion emission, many theoretical efforts have been devoted. It was pointed

out that relativistic effects of the confined quarks at short distance and meson cloud

effects at long distance are important to improve the problems [9, 8].

It follows that these two problems about electromagnetic transition and one pion

emission of the Roper resonance stem from the properties of the non-relativistic quark

model. These transition processes are related to the following matrix element;

⟨spin⊗ isospin|Ospin,isospin|spin⊗ isospin⟩ × ⟨ψN
∗
|eiq⃗·x⃗|ψN ⟩ . (1.1.1)

where the Ospin, isospin is the operator of the spin and isospin, ψN(N∗) is the wave

function of the nucleon (the Roper resonance), q⃗ is the momentum of a pion or

a photon. This transition process is forbidden in the limit of q⃗ → 0 due to the

orthogonality of the wave function. However, the experimental value has a finite

value in this limit, which is a contradiction.

In Ref.[47], the prediction for the helicity amplitude of the electromagnetic transi-

tion at the real photon point was improved by adding a correction for the effect of

internal quark dynamics. Recently, similar results have been obtained for the decay

width of one pion emission. The effect of internal quark dynamics, which is important

for the solution of this problem, contributes as a relativistic correction term to the

matrix elements as follows. Denoting the momentum of the internal quark as p⃗, we

find that the relativistic corrections add the following terms to the matrix elements;

⟨spin⊗ isospin
∣∣Ospin,isospin

∣∣spin⊗ isospin⟩ × ⟨ψN
∗ ∣∣p⃗eiq⃗·x⃗∣∣ψN ⟩ . (1.1.2)

Due to the internal quark momentum p⃗, this matrix element is not zero even in the

limit of q⃗ → 0.

The importance of the effect of the meson clouds around the quark is also remarked

on for the understanding of the Roper resonance [9, 8]. As discussed below, the baryon

picture of the Sakai-Sugimoto model leads us to expect that the effect of meson clouds

is incorporated.

1.1.3 Negative parity resonance

The negative parity resonance N∗(1535) is the second excited state of the nucleon

with a mass slightly larger than the Roper resonance. There has been interest in
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studying N∗(1535) from several perspectives, as follows For example, it has been dis-

cussed that when chiral symmetry is restored at finite temperature and finite density,

a degenerate pair of different parity states are observed, i.e., the existence of chiral

partners. The negative parity resonance N∗(1535) is considered to be a reasonable

candidate for a nucleon’s chiral partner [48, 49, 50, 51]. This fact is of great interest

because it indicates that N∗(1535) may play an important role in understanding the

chiral symmetry of QCD.

On the other hand, this resonance is known to be strongly coupled to ηN , which is

an almost exclusive property of this resonance [52, 53, 54]. Therefore, the production

of N∗(1535) can be identified by observing the η meson. This property also allows

the study of N∗(1535) through meson-nucleus bound states. When the η meson-

nucleus bound states are observed, the energy and structure of the bound state depend

strongly on the interaction between the η meson and the nucleus, which in other words

can also be said to reflect the nature of N∗(1535) in the nucleus. Therefore, N∗(1535)

is an interesting research issue because it allows us to further understand the nucleon

resonance by studying the meson-nucleus bound state. So far, the search for this

resonance state has been conducted, which has not yet led to its identification[55, 56],

but the above-mentioned interest has led to ongoing intensive research.

While in the quark model nucleon resonances are described as three-quark systems,

in several models [57, 58, 59], the negative parity state N∗(1535) may be described

as composite states of a ground state baryon and a negative parity meson such as

KΣ. The baryon picture of the Sakai-Sugimoto model can be interpreted as a meson-

baryon composite system, and the analysis of this doctoral thesis has a very interesting

possibility for the understanding of baryon resonances including N∗(1535).

1.2 Sakai-Sugimoto model

The Sakai-Sugimoto model [10, 11] has been recognized as the holographic QCD

that best reconstructs strongly coupled massless QCD in the large Nc limit at low en-

ergies. In the holographic QCD, the question is how to realize QCD in the framework

of string theory.

After Polchinski pointed out the importance of D-branes [60], the AdS/CFT (anti-de

Sitter/conformal field theory) correspondence was conjectured by Maldacena [61]. A
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non-conformal, supersymmetric four-dimensional pure Yang-Mills (YM) theory and

its dual gravity theory were constructed, for example by Witten, by using Nc D4

brane [62, 63]. We see that the open string with two endpoints on this Nc D4-brane

corresponds to a U(Nc) gluon field of Nc × Nc adjoint representations. The field

of U(Nc)-fundamental representations corresponding to the quark is an open string

with one of its two endpoints on this D4-brane. The other endpoint should be placed

on the D-brane corresponding to the flavor degrees of freedom. In this way, we can

introduce quarks into the pure YM theory. However, due to the addition of the new

D-brane, we can no longer use the gravity solution proposed by Witten. In general,

it is quite difficult to obtain a gravity solution for such a complex D-brane system.

Therefore, it was proposed in Ref. [64], to introduce D-branes corresponding to the

degrees of freedom of the flavor as probes (that have a negligible back reaction to

the background field). This allows us to incorporate quark degrees of freedom into

four-dimensional pure YM theory based on Witten’s Nc D4-brane system and its dual

gravity theory. Furthermore, an assignment of D-branes that reproduces the chiral

symmetry and its spontaneous breaking was proposed by Ref. [10, 11]. This is the

SakaiSugimoto model used in this thesis.

The gravity theory equivalent to massless QCD can be regarded as an effective ac-

tion of the flavor gauge field in the five dimensional space (four space-time and one

extra dimension), implementing the spontaneous breaking of chiral symmetry [65, 66],

allowing many hadron physics predictions to be obtained with simple analytical cal-

culations [10, 11]. For example, from this effective theory of mesons, scalar and vector

meson spectra can be obtained, which well reproduce experimental data. It also shows

that the model contains a pion, which is an Nambu-Goldstone (NG) boson associated

with the spontaneous breaking of the chiral symmetry. This pion is massless, as one

would expect from the fact that the Sakai-Sugimoto model is the gravitational theory

equivalent of massless QCD. This model also contains the Skyrme model including

the Wess-Zumino-Witten (WZW) term and the (axial-) vector meson. Furthermore,

the chiral anomaly is reproduced from the Chern Simons (CS) term corresponding to

the WZW term in this model. In addition, many other qualitative and quantitative

predictions related to hadron physics are possible, such as vector meson dominance,

the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relation, the pion form

factor, the U(1)A anomaly, and so on. Moreover, surprisingly, there are practically
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only two parameters in this model. Nevertheless, it has achieved great success in

explaining light flavor hadron physics.

1.3 Baryons for Sakai-Sugimoto model

In the Sakai-Sugimoto model, baryons are analyzed by soliton picture [12, 14].

T. Skyrme constructed the Skyrme model, which describes baryons as solitons of an

infinite number of pions, which can explain many properties of baryons [67, 68, 69, 70,

71]. On the other hand, the Sakai-Sugimoto model is a hadron effective model of 1+4

dimensional spacetime, which leads the Skyrme model by projecting the model onto

four-dimensional spacetime employing Atiyah-Manton’s method [72]. Furthermore,

the extra dimension of the model naturally accommodates various excited states of

mesons. The baryons in the Sakai-Sugimoto model are known to emerge as instantons

on the D8 brane [73, 74, 14, 12, 75]. The dynamics of baryons is described as the

collective motion of instantons/solitons, which is a very different description from the

quark model with a single-particle picture. Interestingly, as we will see below, the

baryon picture of the Sakai-Sugimoto model is closely related to that of the meson

cloud, which has recently been revealed in the study of Roper resonances.

For the purposes of this doctoral thesis, there are several facts that are particu-

larly noteworthy in this model, as described below. First, the model describes baryon

resonances as meson-baryon composite systems. Baryon resonances are represented

using extra dimensions that play a crucial role in the realization of the description

of mesons and their resonant states. When the baryon resonance is viewed from

a 4-dimensional space-time perspective, the Lagrangian appears as a meson-baryon

composite system. The extra-dimensional degrees of freedom are also used to rep-

resent the negative parity excitation, because the meson-baryon (soliton) composite

system is critically important for the description of negative-parity states. In the

quark model, we describe the negative parity excitation as an orbital excitation of a

single quark. This model, which describes baryons as solitons (instantons), is simi-

lar to the baryon picture of the Skyrme model, but it is known that it is generally

difficult to deal with negative parity excitation in the Skyrme model. One way is to

introduce meson fluctuations around the soliton solutions i.e., meson-baryon compos-

ite system [57, 58]. Therefore, one of the unique points of this model is that it can
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describe the negative parity excitation by utilizing the extra dimensional degrees of

freedom. Furthermore, in the obtained mass formula, the masses of the Roper reso-

nance and the negative parity state are degenerate [12]. This is a good feature of the

hadron resonance mass spectra than the quark model.

In addition to the discussions in the light flavor sector, recent experiments have also

discovered Roper-like states in heavy flavors, which has stimulated some theoretical

works. Under these situations, studies on the extended the Sakai-Sugimoto model to

heavy flavors have been performed in Ref. [36, 31] and others. In particular, in our

study Ref. [36], we find that the extra dimension again plays an important role in

introducing heavy flavors to the Sakai-Sugimoto model.

Further studies of the static properties of baryons in this model have been conducted

by [16, 13]. For this purpose, it is necessary to define the chiral current using this

model. There are two ways to define the chiral current in this model. One is to define

the current using the GKP-Witten relation from the standpoint of the AdS/CFT

correspondence [16], and the other is to obtain the current as the Noether current

from the standpoint of the hadron effective model [13]. The former method is a

natural definition of current from the viewpoint of AdS/CFT correspondence, but it

causes problems in the analysis of baryons because the current is defined as coupling

with the external field in the extra-dimensional boundary. The baryons in this model

are identified with instanton solutions in a 3+1 dimensional space including one extra

dimension, but since instanton solutions usually have spatial SO(4) symmetry, the

current becomes zero when the baryons exist. This is because the classical solution

is obtained by ignoring the effect of the warp factor. In Ref. [16], they obtained an

asymptotic solution at the boundary that incorporates the effect of the warp factor

leading to a well-defined current evaluation. They used this current to investigate the

static properties of the baryon and found that it roughly captured the experimental

data. On the other hand, almost at the same time as Ref. [16], a study of nucleon

resonance with the current obtained from the latter definition was carried out and

found to roughly reproduce the experimental data. However, since this current has

non-uniqueness in its form, they determine this non-uniqueness so that the chiral

current of the Skyrme model is derived when reduced to four-dimensional space-time.

Using these currents, we investigate the dynamical properties of baryons, in partic-

ular, electromagnetic transition amplitudes and the decay width of one pion emission.
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They are related to the following matrix elements, using a certain function f for the

soliton picture of the baryon.

⟨spin⊗ isospin
∣∣Ospin,isospin

∣∣spin⊗ isospin⟩ × ⟨ψN
∗

ρ

∣∣f(x⃗, ρ)eiq⃗·x⃗∣∣ψNρ ⟩ , (1.3.1)

where ψN
∗

ρ is the wave function for instanton monopole vibration of size ρ. Unlike

(1.1.1), this matrix element has a nontrivial form and thus has the potential to solve

problems concerning the dynamical properties of the Roper resonance from a different

perspective in comparison to relativistic corrections. In particular, analysis of the

properties of baryon resonance by the Sakai-Sugimoto model is essential to verify the

validity of the description of baryon resonance and to understand its phenomenological

meaning. In this doctoral thesis, we will explain both current definitions and calculate

the physical quantities. The results will show that the latter definition is more effective

for a comprehensive analysis of baryon resonances.

1.4 Construction of the doctoral thesis

The role of each chapter is described below. Chapter 2 reviews the analysis of

mesons and baryons in the Sakai-Sugimoto model. In particular, we emphasize

that the SakaiSugimoto model has a meson cloud picture. In addition, the reso-

nances of baryons and their dynamics are expressed as the collective motion of in-

stantons/solitons. By explaining this point, we will clarify the baryon picture as a

meson-baryon complex system. In addition, Roper-like excitations have recently been

found in heavy flavor baryons. Therefore, we first review the treatment of flavor SU(3)

including s quark and then discuss the extensions that introduce heavy flavor to the

Sakai-Sugimoto model based on Chapter 3. Furthermore, we define the chiral current

to analyze the dynamical properties of the baryon resonance. Therefore, in Chapter

4, we will first discuss the definition of the chiral current, and then calculate various

physical quantities and compare them with experimental data. Finally, we summarize

and discuss prospects in Chapter 5.
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Chapter 2.

Hadrons in the Sakai-Sugimoto model

Since the gauge/gravity (string) correspondence was conjectured, there have been

many attempts to use this correspondence to elucidate the non-perturbative effects

of QCD. The Sakai-Sugimoto model has attracted attention as the holographic QCD

that most reproduces low-energy QCD phenomena [10, 11].

2.1 The gauge/gravity (string) correspondence

For this section, we briefly describe the gauge/gravity (string) correspondence. In

the next section, we will introduce the holographic QCD model that best explains

low-energy QCD, the Sakai-Sugimoto model.

First, we give the least required introduction to superstring theory. Superstring

theory provides a unified description of gravity and gauge theory. This is because there

are naturally two possible types of strings. One is a closed string whose ends are closed

and looped, and the other is an open string whose ends have two endpoints. In the

low energy region, where the string can be regarded as a point particle, the properties

of particles are reflected in differences in oscillations of these strings, indicating that

the closed string is a graviton and the open string is a gauge particle. Closed and open

strings can interact to transit with each other, and the consistency of the quantization

of the strings shows that the space-time of superstring theory can be formulated only

in ten dimensions.

Now consider a superstring theory that consists of only closed strings. At low energy,

this theory is known to be a supergravity theory, and it is known that there are several
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vacuum solutions, in other words, several ten-dimensional spacetime structures. The

most trivial solution is flat spacetime. Not only that there is a black-p-brane solution,

which is a ten-dimensional spacetime that corresponds to a four-dimensional black

hole, with a charge and a horizon extending into p + 1 dimensions. For example, in

the case of p = 3, it is represented by the following metric;

ds2 = H(r)−1/2(−dt2 + dx⃗2) +H(U)1/2
(
dr2 + r2dΩ2

5

)
H(r) = 1 +

r40
r4
, r0 = (4πgsNc)

1/4ls, (2.1.1)

where there exists a horizon at r = 0. The charge carried by the black-p-brane is called

the Ramond-Ramond charge (RR charge), which is coupled to a tensor field (gauge

field) called the Ramond-Ramond field (RR field). Hence, the black-p-brane solution

is the source of the graviton and RR fields. From here, the most important work

towards the gauge/gravity (string) correspondence was done by Polchinski [60]. He

showed that a D-p-brane placed on a flat spacetime, i.e., spreading in p+1 dimensions,

and an object that is an endpoint of an open string is equally a source of graviton

and RR fields. It should be emphasized here that at the same time, an open string

that behaves as a gauge field was introduced.

This fact implies the equivalence of a theory with a D-p-brane placed in flat space-

time and a string theory in black-p-brane spacetime. From here, we have one more

thing to consider to elevate this conjecture to the equivalence of gauge theories and

gravity (string) theories. Now, the former theory consists of a gauge field correspond-

ing to an open string and a closed string. In order to discuss the correspondence with

the gauge theory, we need to extract only the degrees of freedom of the gauge theory

on the D-p-brane. For this purpose, we consider the following limit (decoupling limit)

which decouples the closed strings from the gauge fields;

g2YM = (2π)p−2gsl
p−3
s = fixed, ls → 0. (2.1.2)

Then, the coupling constant κ = (2π)7/2gsl
4
s/
√
2 of the open and closed strings are

zero, decoupling them. Next, consider keeping the energy scale of the physical quan-

tity related to the open string finite under the decoupling limit. Now, if one of the

multiple D-p-branes is separated by δl in parallel, the open string stretched between

the separated branes gains a mass of δl/l2s . This mass corresponds to the energy scale

that should be kept finite. To keep this mass finite under the decoupling limit, we
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need to set δl → 0. If we replace the overlapping D-p-brane with a black-p-brane, we

see that the limit of δl → 0 corresponds to considering a near horizon. Based on the

above observations, Maldacena proposed the equivalence between the gauge theory

on the D-p-brane and the gravity theory in the near horizon of the black-p-brane [61].

This is roughly how we reached the gauge/gravity (string) correspondence.

In the actual analysis, technical problems require the following further condition.

Instead of considering superstring theory as a spacetime equivalent to D-p-brane,

we have considered a supergravity theory in which the string is treated as a point

particle. The condition for this treatment to be viable is that the string length must

be sufficiently smaller than the energy scale considered. The string length ls correction

in supergravity theory is expressed as

(Classical gravity theory) +O(Rl2s). (2.1.3)

This means Rl2s ≪ 1. As concretely shown in the description of the Sakai-Sugimoto

model, this corresponds to the limit where the ’t Hooft coupling is large, i.e., the case

of λ ≡ g2YMNc ≫ 1.

Furthermore, in the explanation so far, we have considered the classical theory of

gravity, but a quantum correction to the supergravity theory must be suppressed to

justify this treatment. It is known that this quantum correction is added as follows;

(Classical gravity theory) +O(R4G10), (2.1.4)

where G10 = (2π)7g2s l
8
s/(16π) is the gravitational constant in ten dimensions, and this

correction is known to correspond to an expansion of 1/N2
c in terms of gauge theory.

2.2 The Sakai-Sugimoto model

In order to adapt this gauge/gravity (string) correspondence to the QCD analysis,

the following points need to be further resolved

1. Introduce quarks of fundamental representation

2. Break the supersymmetry

3. Break the conformal invariance and introduce ΛQCD

For the items 2 and 3, an idea was proposed by Witten to solve them [25]. Let us

consider a 4 + 1 dimensional gauge theory on an Nc D4-brane. The extra dimension
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is S1 compactified. Assuming the compactification radius as RKK , this theory can

be regarded as a 3 + 1-dimensional gauge theory to a good approximation in energy

regions sufficiently lower than 1/RKK =MKK . Gauge theories on D4-branes were not

initially conformally invariant and in the present case RKK is introduced as the scale

in this case. ThisRKK plays the role of ΛQCD. In addition, for the S1 compactification

direction, supersymmetry can be broken by imposing periodic boundary conditions

on the boson and anti-periodic boundary conditions on the fermion. In this way,

we can construct a strongly coupled SU(Nc) large Nc pure Yang-Mills theory at low

energy.

Introduce quarks

To introduce quarks as fundamental representations of SU(Nc), we perform the fol-

lowing procedures. In the setup so far, we only have fields of adjoint representations

of SU(Nc), i.e., gluons and their superpartners. In order to approach QCD, it is nec-

essary to incorporate the fundamental representations of SU(Nc) gauge groups into

the theory. The reason why only adjoint representations exist is that the endpoints

of open strings only lie on D4-branes. To introduce the fundamental representation,

we need to consider the situation where only one endpoint is on the D4-brane. Then,

the other endpoint should also be on the D-brane, which introduces a flavor D-brane

that plays the role as the other endpoint [64]. Quarks and antiquarks are distin-

guished by the orientation of the open string. This is because the color charge of

the endpoints on the D4-brane is reversed when the orientation is altered. At this

time, a new open string with both ends on the flavor D-brane also arises. This degree

of freedom is decoupled in the near-horizon limit like the closed string. The open

string corresponding to a quark is also the fundamental representation of the U(Nf )

gauge group because it has endpoints on the flavor D-brane. The flavor symmetry of

QCD is a global symmetry, which means that the quark we have just introduced has

a different symmetry than ordinary QCD. However, as mentioned above, the adjoint

representation that guarantees gauge symmetry on the flavor D-brane is decoupled in

the near horizon limit, so this flavor symmetry can be regarded as a global symmetry.

Here, it is necessary to restrict the flavor D-brane to a combination of branes such

that the ground state that appears by quantizing the open string stretched between
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the color D-brane and the color D-brane is stable.

The gravity dual and probe approximation

It is generally difficult to obtain the gravitational duality of a complex brane sys-

tem in which there are two types of branes with color and flavor degree of freedom

respectively. Therefore, we consider a situation in which a flavor D-brane is put as a

probe in the gravity dual spacetime of a color D-brane. This flavor D-brane should

deform the background spacetime, but since the contribution is proportional to Nf ,

we can neglect the effect of the flavor D-brane on the background spacetime in the

case of Nc ≫ Nf . Such a treatment of the brane is called probe approximation [64].

On the other hand, the flavor D-brane is influenced by the background spacetime and

its induced metric needs to be considered. Recalling that the color D-brane carries

gluons and the flavor D-brane carries quarks, this treatment corresponds to an ap-

proximation in which the gluons affect the quarks but the quarks do not affect the

gluons, which, in Lattice QCD terms called the quench approximation.

2.2.1 The brane construction

Now that we have described how to introduce quarks, we next need to introduce a

proper flavor D-brane. At this time, it is necessary to introduce a flavor D-brane that

reproduces the chiral symmetry and its breaking, which are important for low-energy

phenomena in QCD.

The Sakai-Sugimoto model consists of Nc D4 branes and Nf D8, D8 branes in type

IIA superstring theory [10, 11]. Table 2.1 shows the brane configurations in the model.

The numbers label the direction of each axis of the ten-dimensional spacetime, and

Table 2.1 The brane configuration in the Sakai-Sugimoto model

0 1 2 3 4 5 6 7 8 9

D4 ◦ ◦ ◦ ◦ ◦ × × × × ×
D8 ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦
D8 ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦

the symbols ◦ and × indicate whether the brane is extended in that axis direction or
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not. Please refer to Figure 2.1 together.
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Fig.2.1 Schematic of D brane configuration

In this brane configuration, under the decoupling limit, the undesired degrees of

freedom are decoupled and low-energy massless QCD is realized. Under strong cou-

pling and large Nc, by replacing the D4-brane with the corresponding classical super-

gravity theory solution (black-4-brane) and considering an open string theory on the

D8-D8 brane put as a probe (probe approximation), we obtain an effective theory for

QCD analysis. In classical supergravity theory, the decoupling limit corresponds to

the vicinity of the black-4-brane horizon, then the analysis of massless QCD can be

realized by examining the open string theory on the D8 brane considering the induced

metric in this background space-time. From this theory, the effective theory of mesons

is obtained in which the baryon is analyzed as its soliton solution. The replacement

of the black-4-brane shows the existence of a solution such that the D8, D8 brane

connects, which can be interpreted as a geometric realization of the spontaneously

chiral symmetry breaking.

By placing the D4 brane at the origin of R5 labeled by x5-x9, the brane configura-

tion of the Sakai-Sugimoto model is invariant to the SO(5) rotation that rotates the

coordinate system of the space manifold R5. Since this symmetry does not exist in

QCD, the fields appearing in the theory must be singlet for the SO(5) symmetry.

2.2.2 The metric of the black 4-brane

For the analysis of QCD, we need a holographic dual of the described above brane

configuration. Treating D8-D8 as a probe, we are now interested in the near-horizon of
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the holographic dual of the D4 brane, which corresponds to QCD. The black 4-brane

solution near the horizon is given by

ds2 =
(U
R

)3/2(
ηµνdx

µdxν + f(U)(dx4)2
)
+
(R
U

)3/2( dU2

f(U)
+ U2dΩ2

4

)
(2.2.1)

eϕ = gs

(U
R

)3/4
, F4 = dC3 =

2πNc
V4

ϵ4, f(U) = 1− U3
KK

U3
, (2.2.2)

with the Minkowski metric as ηµν = (−1, 1, 1, 1) [62]. Here ϕ is the dilaton field, C3

the RR 3-form, and F4 its field strength. This ten-dimensional spacetime consists of

the manifold R4 × [0,∞) × S4, where U labels the radial direction orthogonal to S4

and U = UKK represents the horizon in the black 4-brane background spacetime [62].

The S4 is labeled by Ω4, and V4 = 8π2/3 and ϵ4 are the volume and volume form of

S4, respectively. The constant R is expressed by using the string coupling constant

gs and string length ls as follows;

R3 = πgsNcl
3
s . (2.2.3)

To decouple the redundant fermions in this metric, x4 is compactified to S1. Con-

sider the behavior of f(U) = 1 − U3
KK/U

3 in front of this (dx4)2. For U > UKK , as

U increases, the radius of the circle around which x4 is wrapped also increases. On

the other hand, when U = UKK , this circle vanishes, which means that at U ≤ UKK ,

spacetime no longer exists. Since chiral symmetry is realized as a global symmetry

on D8 and D8, the geometry in which D8 and D8 are connected to the black 4-

brane background spacetime represents the spontaneously chiral symmetry breaking

(Fig. 2.2).

2.2.3 Conditions to be satisfied by parameters on the YM theory side

Let us summarize the conditions for allowing the analysis of massless QCD by the

gravity theory described above. In the following, the restrictions on the parameters

R, UKK , gs, etc. in string theory are rewritten as conditions on parameters on the

YM theory side. Furthermore, we find that all these constants can be expressed in

the dimension MKK , which makes the expression of the action very simple. This is

very useful for the analysis in this thesis [11].

The relation between the YM coupling constant gYM and the parameters of string
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Fig.2.2 The geometrical realization of the spontaneously chiral symmetry breaking

theory can be written as follows by reading from the effective action of D4 brane;

g2YM =
gs

T4(2πα′)2δτ
=

(2π)2gsls
δτ

(2.2.4)

Tp =
1

(2π)plp+1
s

, α′ = l2s . (2.2.5)

Also, although there seems to be singularity in U = UKK in (2.2.1), the compacti-

fication of x4 into S1 naturally introduces periodicity in this axis by one rotation of

S1. By choosing this periodicity well, singularity can be avoided (see Appendix A.4

of [76]). With δx4 for this periodic, singularity can be eliminated by choosing

δx4 =
4π

3

R3/2

U
1/2
KK

. (2.2.6)

In terms of the compactification radius 1/MKK , we are written as

δx4 = 2π
1

MKK
, (2.2.7)

so there is a relation

MKK =
3

2

U
1/2
KK

R3/2
(2.2.8)

between MKK , UKK and R.
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From the above, we see that the parameters on the string theory side and those on

the YM theory side are related to

R3 =
1

2

g2YMNcl
2
s

MKK
, UKK =

2

9
g2YMNcMKK l

2
s

gs =
1

2π

g2YM
MKK ls

. (2.2.9)

We now consider the conditions on the YM theory side for the validity of the

description by the black 4-brane of the D4-brane. As mentioned in the previous

section, for the description by classical supergravity theory to be valid, the string

length must be sufficiently smaller than the energy scale considered, and the quantum

corrections of the supergravity theory must be suppressed.

The curvature of the black-4-brane spacetime is R ∼
√
λls, which imposes the

condition that ls is smaller than the curvatureR, the typical length scale of spacetime.

Thus, it is attributed the following conditions for ’t Hooft coupling λ;

ls
R

= λ−1/2 ≪ 1 → λ≫ 1. (2.2.10)

The effective coupling constant eϕ of the string should be small enough for the loop

correction of the closed string to be negligible, which is given by (2.2.2) is

eϕ = gs

(UKK
R

)3/4( U

UKK

)3/4
=
g2YMλ

3
√
3π

( U

UKK

)3/4
, (2.2.11)

with the relations (2.2.9). Since we are now considering a near-horizon neighborhood,

U/UKK ∼ 1, the condition eϕ ≪ 1 is rewritten as

g4YMλ≪ 1. (2.2.12)

If we express the above requirements in terms of parameters on the YM theory side,

we get

g2YM ≪ 1

λ
≪ 1. (2.2.13)

This condition is realized by g2YM → 0 and Nc → ∞, by taking λ finite yet large

values, which shows that this massless QCD is a strongly coupled gauge theory with

large Nc.
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Furthermore, it can be seen that the string length ls does not appear explicitly

in the action SDBI
D8 (2.3.5) that we analyze and derive later in this thesis. Since

U
1/2
KKR

3/2 ≫ l2s is required with λ≫ 1 as mentioned above, it is possible to set

l2s =
9

2
λ−1M−2

KK (2.2.14)

with a value of the same dimension that is small enough without losing generality.

Using this and the relation (2.2.9), we can express them as MKK , and if we set

MKK = 1, then we find that we can set them as

MKK = 1, R3 =
9

4
, UKK = 1. (2.2.15)

They can be easily recovered in the final dimensional analysis.

2.3 Mesons in the Sakai-Sugimoto model

We can perform the study of mesons by examining the open string theory on the

D8 brane, which is set as a probe in the black 4-brane. Fig. 2.3 shows that the meson

of the Sakai-Sugimoto model is an open string with both ends on the D8 brane. The

open string with one end on the D4 brane and the other on the D8 brane corresponds

to a quark. The distinction between quark and anti-quark is defined by the orientation

of the strings. When the D4 brane is replaced by the black 4 brane, the two strings

are attached and are interpreted as a meson, as shown in the lower right picture in

Fig. 2.3. At this time, the definition of quark and anti-quark orientation works well.

A high-dimensional meson field appears as the massless mode of the open string on

the D8 brane. By mode expansion of this meson field and dimensional reduction to

four-dimensional space-time, we obtain the spectra of actual mesons. These meson

spectra include not only pions but also scalar and vector mesons and their resonance

states. Considering that the actual nucleon resonance appears as a pole of scattering

between the meson and the nucleon, it is reasonable to describe them as a meson-

baryon multi-system. The dimensional reduction of the open string theory on the

D8 brane leads to the action of the Skyrme model with scalar and vector mesons,

which has already been studied in the framework of hidden local symmetry [77]. If we

consider the skyrmion as a nucleon, it is indeed nothing but a meson-baryon composite

system.
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Fig.2.3 Mesons in the Sakai-Sugimoto model

2.3.1 Open string theory on the D8 brane

Now consider the gauge field on the D8 brane placed in the black four-brane

background space-time. The gauge field on the D8 brane has nine components:

(Aµ(x
ν , U, yα), AU (x

µ, U, yα), Aα(x
µ, U, yβ)), (µ, ν = 0, 1, 2, 3, α, β = 6, 7, 8, 9). As

mentioned in section 2.2.1, S4 is labeled by yα while the radial direction orthogonal

to them is U . The brane configuration is invariant under the SO(5) transformation

that rotates the coordinate of R5 labeled by (U, yα), therefore the gauge field on the

D8 brane is also required to be invariant to this transformation (Appendix C).

In the Sakai-Sugimoto model, this invariance is realized by only utilizing the radial
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component among the gauge field components on R5 and ignoring the others (Fig. 2.4:

In this figure, the rotation of R5 is depicted as a rotation of a two-dimensional plane).

Namely, it means to consider the case where the gauge field on the D8 brane is

Fig.2.4 The SO(5) symmetric gauge fields in the Sakai-Sugimoto model

(Aν(x
ν , U), AU (x

µ, U), Aα = 0).

By using the gauge fields described above, the DBI action SDBI
D8 on the D8 brane is

written as

SDBI
D8 = T8

∫
d9xe−ϕTrf

√
−det(gD8 + 2πα′F ) (2.3.1)

Tp =
1

(2π)plp+1
s

, eϕ = gs

(U
R

)3/4
, α′ = l2s ,

where ls is string length, gs string coupling constant, and Trf the trace for flavor

space (Hereafter, unless otherwise noted, we consider the trace for the flavor.). The

det is performed on a 9 × 9 matrix of space-time components, e.g., gMN (gD8 =

gMNdx
MdxN ) and FMN = ∂MAN − ∂NAM + [AM , AN ]. When we consider the D8

brane embedded in the black 4-brane, the induced metric on the D8 brane is written

as [62, 76]

ds2D8 =
(U
R

)3/2
ηµνdx

µdxν +
(R
U

)3/2
f−1(U)dU2 +

(R
U

)3/2
U2dΩ4. (2.3.2)
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Using det(AB) = detAdetB and detX = det(elnX) = etr(lnX) we obtain√
−det(g + 2πα′F ) =

√
−det(g)(det[1 + 2πα′g−1F ])1/2

=
√
−det(g) exp

[1
2
tr ln (1 + 2πα′g−1F )

]
=
√
−det(g) exp

[1
2
tr
(
2πα′g−1F − 1

2!
(2πα′g−1F )2 +O(F 4)

)]
= f−1/2

(R
U

)3/4
U4
(1
2
+

1

4
(2πα′)2gMNgPQFMPFNQ +O(F 4)

)
(2.3.3)

Then, substituting Aα = 0 and eϕ = gs(U/R)
3/4 into SDBI

D8 , we have the SDBI
D8 as

follow;

SDBI
D8 = T8g

−1
s (2πα′)2

∫
d4xdUdΩ4

(R
U

)3/4
U4f−1/2(U)

× Trf

(1
4
gµνgρσFµρFνσ +

1

2
gµνgUUFµUFνU

)
+ const +O(F 4). (2.3.4)

Furthermore, we perform the following replacements, gµν = (U/R)−3/2ηµν , gUU =

(R/U)−3/2f(U) and

U = UKKu

u3 = 1 + z2,
du

dz
=

2

3
u−1/2f1/2,

then we finally obtain

SDBI
D8 = κ

∫
d4xdzTrf

(1
4
K−1/3ηµνηρσFµρFνσ +

1

2
KηµνFµzFνz

)
(2.3.5)

κ =
9

4
(2πα′)3T8V4g

−1
s =

λNc
108π3

, (2.3.6)

with u(z)3 = K(z) = 1+ z2 and (2.2.15). Here, because all fields does not depend on

yα, we integrate as follow; ∫
dΩ4 = V4. (2.3.7)

2.3.2 Mode expansion

To obtain the actual meson field, we employ a mode expansion of the five-

dimensional gauge fields by a complete set of the function of z and obtain
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four-dimensional gauge fields [10]. It is arbitrary how to choose a complete set; we

take the one to diagonalize the kinetic and the mass term in the four-dimensional

space-time. Here we discuss how to find such a complete set systematically based on

the discussion in Ref. [25], even though such a complete set is easily found in the

original action of the Sakai-Sugimoto model. The key point is to impose an on-shell

condition.

By ignoring interaction terms, the equations of motion are

Aµ : ∂ν∂νAµ − ∂µ∂νAν +K1/3∂z(K∂zAµ)−K1/3∂z(K∂µAz) = 0 (2.3.8)

Az : ∂µ∂µAz − ∂z∂µAµ = 0. (2.3.9)

Here, the gauge fields are Fourier transformed into momentum space

Aµ(x
ν , z) =

∫
d4pϵµ(p

ν , z)eip·x (2.3.10)

Az(x
µ, z) = −i

∫
d4pϵz(p

µ, z)eip·x, (2.3.11)

to obtain

−p2ϵµ + pµp · ϵ+K1/3∂z[K(∂zϵµ − pµϵz)] = 0 (2.3.12)

−p2ϵz + ∂z(p · ϵ) = 0, (2.3.13)

where the polarization vector is redefined as

ϵ̃µ = ϵµ − pµ

∫
dzϵz. (2.3.14)

This redefinition corresponds to a gauge fixing, the Az = 0 gauge, in position space.

Then, equations of motion become

−p2ϵ̃µ + pµp · ϵ̃+K1/3∂z(K∂z ϵ̃µ) = 0 (2.3.15)

∂z(p · ϵ̃) = 0. (2.3.16)

(a) Transverse mode (p · ϵ̃ = 0)

In the case of the transverse mode, with the on-shell condition (−p2 = (mV
n )

2), the

equation of motion (2.3.15) is

(mV
n )

2ϵ̃µ +K1/3∂z(K∂z ϵ̃µ) = 0, (2.3.17)
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while (2.3.16) is trivially satisfied. By performing a mode expansion ϵ̃µ(p
µ, z) =

ψn(z)X
n
µ (x

µ) and transferring it back to position space, the EOM becomes

(mV
n )

2ψn(z) +K1/3∂z(K∂zψn(z)) = 0, (2.3.18)

which is the eigenvalue equation that must be satisfied by the complete set ψn(z)

such that the kinetic term and the mass term are diagonalized. The mode expansion

performed here is rewritten as follows,

Aµ(x
ν , z) =

∫
d4pϵ̃µ(p

µ, z)ep·x = ψn(z)

∫
d4pXn

µ (p)e
ip·x

=
∑
n≥1

ψn(z)X
n
µ (x

ν) (2.3.19)

Az(x
µ, z) = 0. (2.3.20)

(b) Longitudinal mode (ϵ̃µ = pµϵ̃)

In the case of the longitudinal mode, the equations of motion become

∂z(K∂z ϵ̃) = 0 (2.3.21)

(mS
n)

2∂z(ϵ̃) = 0. (2.3.22)

Solving the above equation, we obtain

∂z ϵ̃ = C1(p
µ)K−1 (2.3.23)

ϵ̃ = C1(p
µ) arctan z + C2(p

µ) (2.3.24)

with an arbitrary pµ function C1(p
µ). Then, the lower equation means (mS

n)
2 = 0.

The mode expansion is written as

Aµ(x
µ, z) =

∫
d4ppµϵ̃(p

ν , z)eip·x

= arctan z(−i)∂µ
(∫

d4pC1(p
ν)eip·x

)
+ C2

= C1 arctan z∂µY
0(xν) + C2 (2.3.25)

Az(x
µ, z) = 0, (2.3.26)

where C1,2 are determined by normalization and C2 = 0.
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From the above, together with transverse and longitudinal mode, we obtain the

mode expansion

Aµ(x
µ, z) =

∑
n≥1

ψn(z)X
n
µ (x

ν) + C1 arctan z∂µY
0(xν) (2.3.27)

Az(x
µ, z) = 0. (2.3.28)

if we perform a gauge transformation, we get

Aµ(x
µ, z) =

∑
n≥1

ψn(z)X
n
µ (x

ν) + C1 arctan z∂µY
0(xν) (2.3.29)

Az(x
µ, z) = 0, (2.3.30)

where, in the Ref. [10], Xn
µ (x

ν) and Y n(xµ) are denoted as Bnµ(x
ν) and φn(xµ) re-

spectively. The above discussion also applies to the case where a mass term is added

to the 5-dimensional YM action.

Without the interaction term and substituting the mode expansion (2.3.29) into

(2.3.5), we obtain

Fµν = (∂µX
n
ν − ∂νX

n
µ )
∑
n≥1

ψn(z) (2.3.31)

Fµz = −Xn
µ

∑
n≥1

∂zψn(z)− ∂µY
0C1K

−1. (2.3.32)

Using the eigenvalue equations (2.3.18) and the normalization condition

κ

∫
dzK−1/3ψnψm = δnm (2.3.33)

κ

∫
dzKC2

1 (φ
0)2 = 1, (2.3.34)

we get a 4-dimensional meson effective action;

SDBI
D8 = −

∫
d4xTrf

[1
2
ηµν∂µY

0∂νY
0 +

∑
n≥1

(1
4
ηµνηρσFnµρF

n
νσ +

1

2
(mV

n )
2ηµνXn

µX
n
ν

)]
(2.3.35)

with Fnµν = ∂µX
n
ν − ∂νX

n
µ . Let me comment on what can be learned from the above

discussion. First, we see that Y 0 is a massless scalar field. It will be easy to guess

that this corresponds to a pion field. Second, Bnµ is a vector field, whose mass (mV
n )

2
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should be determined by finding the eigenvalues of the eigenvalue equation (2.3.18).

The vector meson spectra are obtained in this way and are found to be in good

agreement with experimental values. This is explained below.

2.3.3 Party and charge conjugation

We have discussed how the spectrum of vector mesons is obtained, however, to

identify the fields that correspond to actual mesons, it is necessary to investigate the

transformational properties of these vector fields concerning the parity transformation

P and the charge conjugate transformation C.

At first, the action is obviously invariant under the 5-dimensional proper Lorentz

transformation (t, x1, x2, x3, z) → (t,−x1,−x2,−x3,−z). This transformation is noth-

ing but a parity transformation in 4-dimensional theory after the z integral. Thus,

we have the parity transformation

P : (t, x1, x2, x3, z) → (t,−x1,−x2,−x3,−z) (2.3.36)

in this 5-dimensional theory. Because this parity transformation P is a proper Lorentz

transformation, the transformation property of the gauge field is

P : (A0, A1, A2, A3, Az) → (A0,−A1,−A2,−A3,−Az), (2.3.37)

namely,

P : (Aµ, Az) → (Aµ,−Az). (2.3.38)

Furthermore, because (2.3.18) is invariant with respect to P : z → −z, ψn(z) is

either an even or an odd function. By solving the eigenvalue equation, we find

n = 1, ψ1(z) : even

n = 2, ψ2(z) : odd

n = 3, ψ3(z) : even

·
·
·

and determine that ϕ0 = K−1 = (1 + z2)−1 is an even function. Considering this
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properties of the fields and (2.3.38), we find

n = 1, X(1)
µ (z) → +Xµ(1)

n = 2, X(2)
µ (z) → −Xµ(2)

n = 3, X(3)
µ (z) → +Xµ(3)

·
·
·

and we finally conclude

Y 0 : pseudo scalar particle

X1
µ : pseudo vector particle

X2
µ : vector particle

X3
µ : pseudo vector particle

·
·
·

with attention to the raising and lowering indices.

On the other hand, the charge conjugation C switches particles and antiparticles,

which from the string theory viewpoint corresponds to reverse the orientation of the

string. Therefore, C : A → −AT corresponds to a charge conjugation. However, by

this definition, we see that the DBI action is invariant under this transformation, but

the CS term, ∫
C3TrfF

3, (2.3.39)

changes its sign.

Therefore, let us define

C : (A, z) → (−AT ,−z) (2.3.40)

to keep the action invariant. Because we are concerned with charge conjugation in

four-dimensional theory, the property of transformation for z is arbitrary as long as

the integral value remains unchanged. Thus, the charge conjugation of the field is
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determined to be

C : Aµ → −ATµ , Az → ATz . (2.3.41)

From the above, we determine

Y 0 : 0−+

X1
µ : 1−−

X2
µ : 1++

X3
µ : 1−−

·
·
·

with the JPC of the fields in the four-dimensional theory. As expected, Y 0 is an NG

boson, or pion, associated with spontaneous breaking of the chiral symmetry, and has

zero mass in the case of the chiral limit. For vector mesons, we also identify them

as X1
µ : ρ, X2

µ : a1, X
3
µ : ρ′(1465), X4

µ : a′1(1640), ....etc. Finally, in the next section,

we will calculate the masses of these vector mesons to verify that we reproduce the

experimental values.

2.3.4 Spectra for vector mesons

To calculate the mass of a vector meson, we just need to solve for Eq. (2.3.18). As

this eigenvalue equation is solved numerically in Ref. [10], we will discuss their method

of computation. The eigenvalue equations with their normalization conditions that

must be solved are shown once again as follows;

−K1/3∂z(K∂zψn(z)) = (mV
n )

2ψn(z) (2.3.42)

κ

∫
dzK−1/3ψnψm = δnm. (2.3.43)

To solve the eigenvalue equation, we need to know the asymptotic behavior of ψn(z).

First, in order to avoid divergence of the integral of the normalization condition,

the integrand should be such that it decreases more rapidly than z−1 at z → ∞.

Therefore, the asymptotic behavior,

ψn(z) ∼ O(za), a < −1/6, (z → ∞) (2.3.44)
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is required. Also, at large z, the eigenvalue equation becomes

z2ψn(z) + zψn(z) = 0. (2.3.45)

From these two observations, we know that the behavior of ψn(z) at z → ∞ is

ψn(z) ∼ O(z−1). (2.3.46)

Therefore, if we define a new function

ψ̃n(z) = zψn(z), (2.3.47)

we can conclude that it behaves as

ψ̃n(z) ∼ O(z0), (z → ∞). (2.3.48)

For the new function ψ̃n(z), we find a formal solution in the form of an infinite

series. The eigenvalue equation for this new function is

K∂2z ψ̃n − 2

z
∂zψ̃n +

( 2

z2
+ (mV

n )
2K−1/3

)
ψ̃n = 0. (2.3.49)

A transformation into η for z = eη this equation become

∂2ηψ̃n +A∂ηψ̃n +Bψ̃n = 0 (2.3.50)

A = −1 + 3e−2η

1 + e−2η
=

∞∑
l=0

Ale
− 2l

3 η (2.3.51)

B =
2e−2η

1 + e−2η
+ λne

− 2
3η(1 + e−2η)−4/3 =

∞∑
l=0

Ble
− 2l

3 η, (2.3.52)

and we that A and B are given as infinite series of e−
2l
3 η, with

A0 = −1, A1 = 0, A2 = 0, A3 = −2, A4 = 0, A5 = 0, .... (2.3.53)

B0 = 0, B1 = λn, B2 = 0, B3 = 2, B4 = −4

3
λn, B5 = 0, .... . (2.3.54)

From this, by expanding ψ̃n with

ψ̃n =
∑
l

αle
− 2l

3 η, (2.3.55)
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the αl are obtained by. a recurrence formula. Substituting this series expansion ψ̃n

for (2.3.50), we obtain the following recurrence formula as

4l2

9
αl −

2

3

l∑
m=1

mAl−mαm +

l−1∑
m=0

Bl−mαm = 0. (2.3.56)

By choosing α0 = ±1 appropriately and solving this ecurrence formula sequentially,

we obtain

α1 = − 9

10
(mV

n )
2, α2 =

81

280
(mV

n )
4, α3 = −1

3
− 27

560
(mV

n )
6, .... . (2.3.57)

At large z, it is sufficient to truncate e−
2l
3 η at about l = 3. In the region of large z,

using (2.3.55), the differential equation is solved toward the origin by the difference

method. At the origin, shooting method with the boundary condition

∂zψn(0) = 0 or ψn(0) = 0 (2.3.58)

yields the result

(mV
n )

2 = 0.67−−, 1.6++, 2.9−−, 4.5++, .... . (2.3.59)

If we restore MKK by dimensional analysis and determine MKK to reproduce the

experimental value of 776 MeV for the mass ρ, we obtain Table 2.2. Here, we chose

Table 2.2 The spectra for vector mesons

ρ a1 ρ′ a′1

theory [776] 1189 1607 2023

experimetal 776−− 1230++ 1465−− 1720++

α0 = 1 for ρ and a1, and α0 = −1 ρ′ and a′1. Also, MKK was chosen to be 949 MeV.

2.4 Baryons in the Sakai-Sugimoto model

In the previous section, we saw that the open string theory on D8 brane is a five-

dimensional effective theory of mesons that includes also resonances. If we reduce

this theory to four dimensions, we find that the YM term yields the Skyrme action,

and the CS term yields the WZW term. Considering that Skyrmion is regarded as
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a baryon, this effective theory is interpreted as a meson-baryon composite system in

four-dimensional space-time. Moreover, this fact is important for the explanation of

realistic nucleon resonances.

In the Sakai-Sugimoto model, baryons are interpreted as D4 branes (baryon vertices)

wrapped around S4 [73, 74]. The open string theory on the D4 brane (baryon vertex)

that characterizes the dynamics of this baryon is regarded as ADHM data. This

ADHM data is interpreted as instantons on the D8 brane. The relation between the

instanton and the Skyrmion is written as

U(xµ) = P exp
(
−
∫ ∞

−∞
dz′Az(x

µ, z′)
)
, (2.4.1)

where U(xµ) is the chiral field [72]. Thus, in the Sakai-Sugimoto model, the soliton

interpretation of baryons is justified from the standpoint of superstring theory.

Studies of baryons by the Sakai-Sugimoto model have been done by Ref. [14] and

Ref. [12]. In this thesis, we use the latter approach which is much easier to analyze.

In this approach, baryons are treated and analyzed as instantons in a 4-dimensional

space in a 5-dimensional space-time.

2.4.1 Classical Solutions

The first step is to find a static solution that is independent of time. The time de-

pendence is introduced by assigning it to the collective coordinates. This is a method

called the moduli space approximation method, which is used when considering the

case of slow-moving solitons [78, 79].

CS term

At first, we introduce the CS term, which has been neglected until now. The

effective action of Dp branes is described by DBI action and CS term [80]. The CS

term is

SCS
D8 = µp

∫
D8

∑
q

Cq ∧ Tr(e2πα
′F2+B2) (2.4.2)

µp = Tp =
1

(2π)plp+1
s

, (2.4.3)

36



where Cp is the RR p-form field, B2 the KR field, and ∧ the wedge product. From the

properties required for the black 4-brane solution, we have B2 = 0, Ck = 0 (k ̸= 7−4),

and the sum remains valued only at q = 3. Since this integral is in nine-dimensional

spacetime, only the 9-form survives. Performing the series expansion, there is only

one term that is the 9-form together with the 3-form C3, then, the CS term is

SCS
D8 ∝

∫
D8

C3 ∧ Tr(F2)
3. (2.4.4)

Since (F2)
3 is a 6-form, we see that it is zero as long as we consider the five components

of (Aµ, Az).

With

(F2(A))
3 = dω5(A) (2.4.5)

ω5(A) = Tr
(
AF 2 − i

2
A3F − 1

10
A5
)
, (2.4.6)

if we remind that it was

F4 = dC3 =
2πNc
V4

ϵ4 (2.4.7)

in the black 4 brane solution in (2.2.1), the (2.4.4) is computed as∫
D8

C3 ∧ dω5 =

∫
R4×[0,∞)×S4

dC3 ∧ ω5

=
2πNc
V4

∫
S4

ϵ4 ∧
∫
R4×[0,∞)

ω5 (2.4.8)

(it is non-trivial to ignore the surface term), and using∫
S4

F4 = 2π, (2.4.9)

we have the final expression of the CS term

SCS
D8 =

Nc
24π2

∫
R4×[0,∞)

ω5(A). (2.4.10)
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Action

The action used in the analysis of baryons is

SD8 =SDBI + SCS

=− κ

∫
d4xdzTrf

(1
4
K(z)−1/3F2

µν +
1

2
K(z)F2

µz

)
+

Nc
24π2

∫
R4×[0,∞)

ω5(A) (2.4.11)

κ =
λNc
108π3

, K(z) = 1 + z2 (2.4.12)

ω5(A) = Tr
(
AF2 − i

2
A3F − 1

10
A5
)
, (2.4.13)

omitting the notation D8 and using the shorthand notation ηµνηρσFµρFµσ = F2
µν .

The Hermitian conjugate U(Nf ) gauge field is denoted by A (A† = A). Sometimes it

is more convenient to use the anti-Hermitian conjugate gauge field, so in such cases,

after a word of caution, we denote it by A → iA (A† = −A). When there is no

subscript, it is assumed that the notation is in differential form. This U(1) term

physically corresponds to an ω meson (or ϕ meson). Taking into account that, in

the Skyrme model, the ω meson is responsible for stabilizing the soliton solution, this

term is expected to play an important role in the present case as well. The field

strength is a term in differential form, denoted

F = dA+ iA ∧A. (2.4.14)

d is the outer derivative and ∧ is the wedge product.

The U(Nf ) gauge field is decomposed into and U(1) and written as

A = Aata +
1√
2Nf

ÂI, (2.4.15)

where I is the unit matrix of Nf ×Nf . The coefficients of the U(1) term are chosen

to be

Trf

( 1√
2Nf

I
1√
2Nf

I
)
=

1

2Nf
Trf (I) =

1

2
, (2.4.16)

aligned with the normalization of

Trf (t
atb) =

1

2
δab. (2.4.17)
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Then, the action is written as

SDBI =− λNc
108π3

∫
d4xdzTrf

(1
4
K−1/3F 2

µν +
1

2
KF 2

µz

)
− 1

2
κ

∫
d4xdz

(1
4
K−1/3F̂ 2

µν +
1

2
KF̂ 2

µz

)
(2.4.18)

SCS =
Nc
24π2

∫ [
ω5(A) +

3√
2Nf

ÂTrfF
2 +

1

2
√

2Nf
ÂF̂ 2

+
1√
2Nf

d
(
ÂTrf

(
2FA− i

2
A3
))]

, (2.4.19)

where (2.4.16) is used. To obtain the above expression, which separates the U(1) part

of the CS term, requires a complicated calculation, which is shown in Appendix A.1.

The calculations so far are valid for arbitrary Nf .

In the rest of this section we will mainly discuss the case Nf = 2. In this case, the

identity (Appendix A.2) is

ω5(A) = 0, (2.4.20)

and the action is

SDBI =− λNc
108π3

∫
d4xdzTrf

(1
4
K−1/3F 2

µν +KF 2
µz

)
(2.4.21)

SCS =
Nc
24π2

ϵMNPQ

∫
d4xdz

[3
8
Â0Trf (FMNFPQ)−

3

2
ÂMTrf (∂0ANFPQ)

+
3

4
F̂MNTrf (A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ + (total derivative terms)

]
,

(2.4.22)

where M,N,P,Q = 1, 2, 3, z and ϵ0123z = ϵ123z = +1 (see Appendix A.3 for the

calculation of the CS term). In the following parts of this section, M,N,P,Q =

1, 2, 3, z unless otherwise noted.

The stability of the instanton solution

Because the direction z is curved and the time component is coupled, It is generally

difficult to find the classical solution of the obtained action (2.4.24). If we now recall

λ≫ 1, we will expect the 1/λ expansion to work. As we will soon show, this expansion

works well to find the classical solution analytically, keeping up to the next-leading
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of the 1/λ expansion. If we also drop the next-leading of the 1/λ expansion, the

instanton shrinks, and there is no stable solution.

First, by using

ϵijkFjkϵimnFmn =(δjmδkn − δjnδkm)FjkFmn

=FjkFjk − FjkFkj = 2FjkFjk, (2.4.23)

the lower bound of energy is found to be

E(ρ) =
κ

4

∫
d4xdz

(1
2
K−1/3(ϵijkF

a
jk)

2 +K(F aiz)
2
)

≥κ
2

∫
d4xdz

(√
K(z)−1/3K(z)|ϵijkF ajkF aiz|

)
≥
∣∣∣κ
2

∫
d4xdzϵijkF

a
jkF

a
iz

∣∣∣
=8π2κ|NB |, (2.4.24)

where the second line of deformation used Schwartz’s inequality, and the last expres-

sion used

NB =− 1

32π2

∫
d3xdzϵMNPQtr(FMNFPQ)

=− 1

16π2

∫
d3xdzϵijkF

a
jkF

a
iz. (2.4.25)

The equality condition is√
K(z)−1/3ϵijkF

a
jk =

√
K(z)F aiz, (2.4.26)

and this is satisfied at ρ = 0, so if we drop the next leading of the 1/λ expansion, the

instanton shrinks.

1/λ expansion

We have shown that if we drop the next leading of the 1/λ expansion, there is no

stable solution. If we include up to the next leading, we no longer ignore the CS term.

Then, we expect the solution to be stable as follows [12]. If we focus on the first term

of the CS term (2.4.22), we find

ϵMNPQ

∫
d4xdzÂ0Trf (FMNFPQ). (2.4.27)
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This is the term that represents the Coulomb interaction in 5 dimensions, whose

energy is known to behave as 1/ρ2. Therefore, it is expected that the instanton do

not shrink because of this term. It has also been discussed that the soliton is stabilized

by the ω meson, in the context of the Skyrme model [81, 82]. Since the U(1) part of

the gauge field corresponds to the ω meson, it is expected to stabilize the instanton

solution similarly to the Skyrme model.

The current approach considers the motion of the soliton in moduli space, so the

spatial integration is performed at the end. Therefore, it is better to do a rescale so

that the classical solution is easy to obtain. By choosing a good rescale, the equations

of motion for each field can be separated to easily find the classical solution. Such a

rescale is

xM → λ−1/2xM , AM → λ1/2AM

FMN → λFMN , F0M → λ1/2F0M . (2.4.28)

Under this rescale the action become

SDBI =− aNc

∫
d4xdzTrf

[λ
2
F 2
MN +

(
− z2

6
F 2
ij + z2F 2

iz − F 2
0M

)
+O(λ−1)

]
− 1

2
aNc

∫
d4xdz

[λ
2
F̂ 2
MN +

(
− z2

6
F̂ 2
ij + z2F̂ 2

iz − F̂ 2
0M

)
+O(λ−1)

]
(2.4.29)

SCS =
Nc
24π2

ϵMNPQ

∫
d4xdz

[3
8
Â0Trf (FMNFPQ)−

3

2
ÂMTrf (∂0ANFPQ)

+
3

4
F̂MNTrf (A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ + (total derivatives)

]
,

(2.4.30)

with i, j = 1, 2, 3. Because of K−1/3 → (1 + (λ−1/2z)2)−1/3 ≃ 1− 1
3λ

−1z2 +O(λ−2),

note that the effects of curved extra dimensions are sub-leading of 1/λ expansion.

Because the 1-form A does not change under the rescale, the form of the CS term,

which is a 5-form integral, also do not change.
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Classical solutions

We perform the 1/λ0 expansion and obtained a solution order by order. The action

(2.4.29) gives the EOM;

A0 : DMF0M +
1

64π2a
ϵMNPQF̂MNFPQ +O(λ−1) = 0 (2.4.31)

AM : DNFMN +O(λ−1) = 0 (2.4.32)

Â0 : ∂M F̂0M +
1

64π2a
ϵMNPQ

[
Trf (FMNFPQ) +

1

2
F̂MN F̂PQ

]
+O(λ−1) (2.4.33)

ÂM : ∂N F̂MN +O(λ−1) = 0. (2.4.34)

In the leading order, the SU(2) and the U(1) part of the gauge field are obtained as

follow. First, within the above EOM, the classical solution of (2.4.32) is called the

instanton solution. The solution with topological number (baryon number) B = 1 is

known as a BPST instanton[83] and is written as

AM (x) = −if(ξ)g∂Mg−1 (2.4.35)

f(ξ) =
ξ2

ξ2 + ρ2
, ξ =

√
(x⃗− X⃗)2 + (z − Z)2 (2.4.36)

g(x) =
(z − Z)− i(x⃗− X⃗) · τ⃗

ξ
, (2.4.37)

where (X⃗, Z) represents the position of the instanton in (x1, x2, x3, z) space and ρ

is the size of the instanton. Next, (2.4.34) requires that ÂM be pure gauge, which

always is vanished by a gauge transformation, then we obtain

ÂM = 0. (2.4.38)

In the next to leading order, by using the above two solutions, we obtain the time-

components of the SU(2) and U(1) gauge field as follow. Gauss’ s law (2.4.31) becomes

D2
MA0 = 0, (2.4.39)

which is the solution to this equation obtained in the Appendix A.6. Finally, by

substituting the solution obtained so far into (2.4.41), we get

∂2M Â0 +
3

π2a

ρ4

(ξ2 + ρ2)4
= 0. (2.4.40)
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Solving this equation gives the solution,

Â0 =
1

8π2a

1

ξ2

(
1− ρ4

(ξ2 + ρ2)2

)
. (2.4.41)

The solution obtained from the above can be summarized as

A0 = 0 (2.4.42)

AM (x) = −if(ξ)g∂Mg−1 (2.4.43)

Â0 =
1

8π2a

1

ξ2

(
1− ρ4

(ξ2 + ρ2)2

)
(2.4.44)

ÂM = 0, (2.4.45)

which is an instanton solution with baryon number one.

Finally, we obtain the mass of the soliton for the static case. The action (2.4.29)

has the form

S = SDBI + SCS =

∫
dt(E(t)kinetic − E(t)potential). (2.4.46)

In the static case, the time derivative term vanishes (Ekinematic = 0), so the action is

written as

S =−
∫
dtE(t)potential = −

∫
dtM (2.4.47)

M =+ aNc

∫
d3xdzTrf

[λ
2
F 2
MN +

(
− z2

6
F 2
ij + z2F 2

iz − F 2
0M

)
+O(λ−1)

]
− 1

2
aNc

∫
d3xdz

[λ
2
F̂ 2
MN +

(
− z2

6
F̂ 2
ij + z2F̂ 2

iz − F̂ 2
0M

)
+O(λ−1)

]
− Nc

24π2
ϵMNPQ

∫
d3xdz

[3
8
Â0Trf (FMNFPQ)−

3

2
ÂMTrf (∂0ANFPQ)

+
3

4
F̂MNTrf (A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ

]
. (2.4.48)

Substituting the classical solution, we obtain

M =8π2κ+ κλ−1

∫
d3xdz

[
− z2

6
Trf (Fij)

2 + z2Trf (Fiz)
2
]

− 1

2
κλ−1

∫
d3xdz

[
(∂M Â0)

2 +
1

32π2a
Â0ϵMNPQTrf (FMNFPQ)

]
+O(λ−1)

=8π2κ
[
1 + λ−1

(ρ2
6

+
1

320π4a2
1

ρ2
+
Z2

3

)
+O(λ−1)

]
(2.4.49)
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(see A.4). We find that this static solution takes the minimum value

Mmin = 8π2κ+

√
2

15
Nc (2.4.50)

at

Z = 0 (2.4.51)

ρ2 =
1

8π2a

√
6

5
. (2.4.52)

The reason for the stabilization of the solution is understood to be due to 1/ρ2. This

1/ρ2 term is originated from

ϵMNPQ

∫
d4xdzÂ0Trf (FMNFPQ). (2.4.53)

The physical meaning of this term has already been explained.

In the discussion so far we have considered the static case. The baryon state could

be obtained by giving the time dependence to the collective coordinate of the instanton

solution and considering a quantum mechanical system in which this coordinate is the

dynamical variable. We will discuss this step by step.

2.4.2 Collective coordinates

The solution space spanned by the collective coordinates is called moduli space,

which is a solution space that can move without changing its energy. By regarding

these collective coordinates as dynamical variables with time dependence, a quantum

mechanical system is obtained. By quantizing this system, we obtain the baryon

state. As will be described later, if we include the sub-leading of the 1/λ expansion,

the energy changes with the moving of (Z, ρ), and these variables are not precisely the

collective coordinates. The moduli space of instanton solutions of topological number

one that we are dealing with is denoted as

M = R4 × R4/Z2. (2.4.54)

The first R4 is the space labelled by (X⃗, Z) and is interpreted as the position of the

instanton in the 4-dimensional space (x1, x2, x3, z). On the other hand, R4/Z2 is rep-

resented by the size of the instanton ρ and its SU(2) orientation W ∈ SU(2). This
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W can also be expressed as W = a = a4I + iaaτ
a using Pauli matrices τa and unit

matrix I, where aI satisfies
∑
I a

2
I = 1, (I = 1, 2, 3, 4). This four-dimensional mani-

fold R4/Z2 can also be parameterized using the parameter yI , which is the coordinate

that labels the coset space of the four-dimensional Cartesian coordinate system by Z2

The yI transforms to yI → −yI for Z, where two different coordinate are related as

aI = yI/ρ (2.4.55)

ρ =
√
y21 + y22 + y23 + y24 . (2.4.56)

Now, we consider the case of a slowly moving soliton. The method often used in

such cases is the moduli space approximation method [78, 79]. As already mentioned

several times, this method considers a quantum mechanical system in moduli space,

with time dependence on the collective coordinates. It has been argued in (2.4.49)

that the variables (Z, ρ) is no longer precisely the collective coordinate if we keep up

to the sub-leading of 1/λ. However, since the excitation energies involved in them are

smaller than in the others [12], we can still deal with them as collective coordinates.

This allows us to treat the baryon excitation modes.

Thus, an arbitrary solution of the gauge field with time dependence in the moduli

space is denoted by

A0(t, x) = ∆A0(t, x) (2.4.57)

AM (t, x) =W (t)AclM (x;Xα(t))W (t)−1, (2.4.58)

with Xα = (XM , ρ). We use the notation x0 = t since we consider time and space

independently. So far, there seems to be no reason why the time component of the

gauge field should be induced in (2.4.57). The induced time component is an essential

requirement in the gauge theory (Appendix B). We can also understand this time

component from the fact that the EOM (2.4.31) would not be satisfied without this

induced term.

If we give a time dependence to the collective coordinates of the solution, this

solution only moves in moduli space and is still expected to be a solution of (2.4.32).

However, this does not mean that the other equations of motion are unchanged.

Therefore, we will check whether the solution given the time dependence satisfies the

equations of motion again.
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First, after giving a time dependence to the gauge field in collective coordinates,

the field strength is written as

FMN =WF clMNW
−1 (2.4.59)

F0M =∂0AM − ∂M∆A0 + i[∆A0, AM ]

=W
(
Ẋα ∂

∂Xα
AclM −Dcl

MΦ
)
. (2.4.60)

The calculation of F0M is shown in Appendix A.5, where Φ is defined by

Φ =W−1∆A0W −W−1Ẇ . (2.4.61)

With this Φ, (2.4.57) and (2.4.58) are together denoted as

A(t, x) =
(
Acl(x;Xα(t)) + Φ(t, x)dt

)W (t)
. (2.4.62)

The calligraphic letter in the notation when including to SU(2) and U(1) terms.

The above equation is of the 5-form in the (t, x1, x2, x3, z) such that it In the above

equation, a 5-form of (t, x1, x2, x3, z), which is a shorthand for AV (t,x) = V −1AV +

iV −1dV .

From the above, (2.4.32) becomes

DNFMN = 0 → Dcl
NF

cl
MN = 0, (2.4.63)

which does not change the form of the equation of motion when the solution has a

time dependence. Therefore, the solution is still BPST instanton;

AM (x) = −if(ξ(t))g(x;Xα(t))∂Mg(x;X
α(t))−1. (2.4.64)

This is natural since it is just the definition of the collective coordinates. We also

see that (2.4.34) does not change its form, hence (2.4.41) does not change either,

indicating that we can still use

Â0 =
1

8π2a

1

ξ(t)2

(
1− ρ(t)4

(ξ(t)2 + ρ(t)2)2

)
(2.4.65)

ÂM = 0 (2.4.66)

as a solution to the equation of motion. So, the three solutions only change the

collective coordinate from constants to variables with time dependence.

46



The only equation that changes is (2.4.31), which becomes

Dcl
M

(
Ẋα ∂

∂Xα
AclM −Dcl

MΦ
)
= 0, (2.4.67)

where we use the Eq. (2.4.60), The Φ is determined by solving this equation. As

shown in Appendix A.6, the solution of Φ(t, x) is obtained as follow;

Φ(t, x) = −ẊN (t)AclN (x) + χa(t)Φa(x) (2.4.68)

Φa = f(ξ)g(x;Xα(t))tag(x;X
α(t))−1 (2.4.69)

χa(t) = −2itr(taW
−1Ẇ ) = 2(a4ȧa − ȧ4aa + ϵabcabȧc). (2.4.70)

Here, it is useful to have the following equation;

g∂Mg
−1 =

{
i
ξ2

(
(z − Z)τ i − ϵija(x

j −Xj)τa
)

− i
ξ2 (x

a −Xaτa)
(2.4.71)

∂M (g∂Mg
−1) ∝ (xM −XM )g∂Mg

−1 = 0. (2.4.72)

and spin and isospin are defined by

Ji = 8π2κρ2tr(−iW−1Ẇ ti), (2.4.73)

Ia = 8π2κρ2tr(iẆW−1ta) = −WJitiW
−1. (2.4.74)

By introducing the time dependence, a kinetic term of (2.4.29) appears. We can

now identify the coefficients (mass) of the kinetic term with the metrics of the moduli

space (the kinetic term in the U(1) term is still zero) which is written as

+aNc

∫
d4xdzTrfF

2
0M =aNc

∫
d4xdzTrf (D

cl
MΦ− ȦclM )2

=
mXα

2
gαβẊ

αẊβ . (2.4.75)

Since Xα = (X, XZ , ρ) are found to be orthogonal to each other, the mass is written
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as mXα . From the above, Lagrangian is obtained as

S =

∫
dtL =

∫
dt(Lkinetic − Lpotential) (2.4.76)

L =LX + LZ + Ly +O(λ−1) (2.4.77)

LX =−M0 +
mX

2
Ẋ2 (2.4.78)

LZ =
mZ

2
Ż2 − mZω

2
Z

2
Z2 (2.4.79)

Ly =
my

2
(ρ̇2 + ρ2ȧ2I)−

myω
2
ρ

2
ρ2 − Q

ρ2
(2.4.80)

=
my

2
ẏ2I −

myω
2
ρ

2
y2I −

Q

ρ2
. (2.4.81)

The plus term in L is the result of the time dependence, and the minus term is the

original potential term (2.4.49), with

M0 = 8π2κ, mX = mZ =
my

2
= 8π2κλ−1 = 8π2aNc

ω2
Z =

2

3
, ω2

ρ =
1

6
, Q =

N2
c

5mX
=

Nc
40π2a

. (2.4.82)

As described above, we have obtained a quantum mechanical system with a finite

number of time-dependent collective coordinates as dynamical variables.

2.4.3 Collective coordinates quantization

The derived mechanical system is quantized to obtain the spectra of baryons. We

consider here the case where the position of the instanton, the baryon, is X⃗ = 0. The

collective coordinate quantization described here is often used in the quantization of

solitons[84, 85, 81, 86].

For the dynamical variable (Z, ρ, aI) in the Lagrangian, we impose the canonical

commutation relation and quantize the system. Then, we obtain the Hamiltonian,

H =M0 +Hy +HZ (2.4.83)

Hy = − 1

2my

( 1

ρ3
∂ρ(ρ

3∂ρ) +
1

ρ2
(∇2

S3 − 2myQ)
)
+

1

2
myωρ2ρ

2 (2.4.84)

HZ = − 1

2mZ
∂2Z +

1

2
mZω

2
ZZ

2, (2.4.85)

where ∇2
S3 is Laplacian on the S3.
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Since the HZ is the Hamiltonian of the harmonic oscillator, its eigenvalue is

EZ = ωZ

(
nZ +

1

2

)
=

2nZ + 1√
6

. (2.4.86)

Let us find the eigenvalues and eigenfunctions for the Hy. ∇2
S3 is the Laplacian on

S3, whose eigenvalues and eigenfunctions are

∇2
S3T (l) = −l(l + 2)T (l). (2.4.87)

Here, T (l) is the spherical harmonics on S3, which is expressed as

T (l) = CI1...llaI1 ...aIl (2.4.88)

with the traceless symmetric tensor CI1...ll of rank l. Using this function, we write

the eigenfunctions of the Hy in the variable-separated form

ψ(yI) = Rl(ρ)T
(l)(aI). (2.4.89)

When operate Hy on Rl(ρ), we obtain the eigenvalue equations,

HlRl(ρ) = EyRl(ρ) (2.4.90)

Hl = − 1

2my

( 1

ρ3
∂ρ(ρ

3∂ρ)−
l(l + 2) + 2myQ

ρ2

)
+

1

2
myω

2
ρρ

2. (2.4.91)

Here, if we replace

l̃ =− 1 +
√

(l + 1)2 + 2myQ, l̃(l̃ + 2) = l(l + 2) + 2myQ, (2.4.92)

we can write it as

Hl = − 1

2my

( 1

ρ3
∂ρ(ρ

3∂ρ)−
l̃(l̃ + 2)

ρ2

)
+

1

2
myω

2
ρρ

2. (2.4.93)

Now, if we write

Rl(ρ) = exp
(
− myωρ

2
ρ2
)
ρl̃v(myωρρ

2), (2.4.94)

with x = myωρρ
2, we see that v(x) must be satisfied by(
x∂x + (l̃ + 2− x)∂x +

1

2

(Ey
ωρ

− l̃ − 2
))
v(x) = 0. (2.4.95)
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This is a confluent hypergeometric differential equation for v(x), and a normalizable

and regular solution exists only at

1

2

(Ey
ωρ

− l̃ − 2
)
= n ∈ Z. (2.4.96)

Since v(x = myωρρ
2) can be labeled by n and l̃, if we denote v(x = myωρρ

2) =

F (−n, l̃;x), then the confluent hypergeometric function

F (α, γ; z) =
∞∑
k=0

(α)k
(γ)k

zk

k!
(2.4.97)

(α)k = α(α+ 1) · · · (α+ k − 1) (2.4.98)

satisfies (
x∂x + (l̃ + 2− x)∂x + n

)
F (−n, l̃;x) = 0. (2.4.99)

Using F (−n, l̃;myωρρ
2), we can write

R(ρ) = exp
(
− myωρ

2
ρ2
)
ρl̃F (−n., l̃;myωρρ

2), (2.4.100)

so the eigenvalue is obtained as

Ey =ωρ(l̃ + 2n+ 2) (2.4.101)

=

√
(l + 1)2

6
+

2

15
N2
c +

2nρ + 1√
6

. (2.4.102)

From the above, the eigenvalues of H are

M =M0 + Ey + EZ (2.4.103)

=M0 +

√
(l + 1)2

6
+

2

15
N2
c +

2(nρ + nZ + 1)√
6

(2.4.104)

which is the baryon mass formula we desired.

2.4.4 Physical interpretation of quantum numbers

We discuss the physical interpretation of quantum numbers appearing in the mass

formula. Considering the SU(2)L × SU(2)R transformation for W (t);

W (t) → gLW (t)gR, gL/R ∈ SU(2)L/R (2.4.105)
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the gauge field AM transforms as

AM (t, xN ) =W (t)AclM (xN )W (t)−1

→gLW (t)gRA
cl
M (xN )g−1

R W (t)−1g−1
L

= gLAM (t, RxN )g−1
L . (2.4.106)

This means that gL corresponds to the isospin Ia and gR, which causes spatial rota-

tion, corresponds to the spin Ja. Furthermore, as discussed in the 3.1.3 section, we

see that the relation

tr(I2a) = tr(J2
a) (2.4.107)

I = J =
l

2
. (2.4.108)

Let us now look at the quantum number (nρ, nZ). The parity transformation is

defined by P : (t, xM ) → (t,−xM ), as discussed in the 2.3.3 section. The baryons

with odd (even) quantum numbers nZ correspond to negative (positive) parity ex-

citation, because the wave functions are odd (even) with respect to the Z → −Z
transformation. The states of each baryon obtained from the Sakai-Sugimoto model

should be identified with the states shown in Fig. 2.3 and 2.4. with MKK = 500.

Table 2.3 The spectra of N(l = 1)

(nρ, nz) (0, 0) (1, 0) (0, 1) (1, 1) (2, 0)/(0, 2) (2, 1)/(0, 3) (1, 2)/(3, 0)

Prediction [940+] 1348+ 1348− 1756− 1756+, 1756− 2164−, 2164+ 2164+, 2164+

Experiment 940+ 1440+ 1535− 1655− 1710+, ? 2090−, ? 2100+, ?

Table 2.4 The spectra of ∆(l = 3)

(nρ, nz) (0, 0) (1, 0) (0, 1) (1, 1) (2, 0)/(0, 2) (2, 1)/(0, 3) (1, 2)/(3, 0)

Prediction 1240+ 1648+ 1648− 2056− 2056+, 2056− 2464−, 2464+ 2464+, 2464+

Experiment 1232+ 1600+ 1700− 1940− 1920+, ? ? , ? ? , ?

Finally, we comment on the obtained baryon mass formula. At large Nc, the mass

formula (2.4.103) is approximately written as

Nc ≫ 1 (2.4.109)

M ≃M0 +

√
2

15
Nc +

1

4

√
5

6

(l + 1)2

Nc
+

2(nρ + nZ + 1)√
6

. (2.4.110)
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Considering up to the order of O(Nc), we see that it is a static baryon mass formula

(2.4.50). Interestingly, the Nc dependence of (2.4.109) has the same form as the result

of Ref. [69, 81] in large Nc QCD. This means that the mass splitting between states

of the same internal excitation states of different spins is of the order of 1/Nc, and

the mass splitting between the internal excitation states of each other is of the order

of N0
c .

The wave functions of baryon states

Here is a summary of the baryon wave function. The canonical momentum of

(X⃗, Z, yI) is

P⃗ =M0
˙⃗
X = −i ∂

∂X⃗
, PZ =M0Ż = −i ∂

∂Z
, ΠI = 2M0ẏI = −i ∂

∂yI
.

(2.4.111)

Also, as mentioned above, the left rotation gL of W corresponds to isospin Ia and the

right rotation gR of W corresponds to spin Ja, so isospin and spin are given as

Ia =
i

2

(
y4

∂

∂ya
− ya

∂

∂y4
− ϵabcyb

∂

∂yc

)
(2.4.112)

Ja =
i

2

(
− y4

∂

∂ya
+ ya

∂

∂y4
− ϵabcyb

∂

∂yc

)
. (2.4.113)

(2.4.114)

See also the discussion of Appendix E for this. The Hamiltonian is given by

H =
1

2M0
(P⃗ 2 + P 2

Z) +
1

4M0
Π2
I + U(ρ, Z) (2.4.115)

U(ρ, Z) = 8π2κ
(
1 +

ρ2

6
+

N2
c

320π4κ2
1

ρ2
+
Z2

3
t
)
. (2.4.116)

The eigenfunctions of this Hamiltonian are characterized by (l, I3, J3, nρ, nz) and mo-

mentum p⃗ and are denoted by

|p⃗, B, s⟩ = |p⃗⟩ |B⟩ , |p⃗⟩ = 1

(2π)3/2
eip⃗·X⃗ , (2.4.117)

|B⟩ = |l, I3, J3⟩ |nρ⟩ |nZ⟩ . (2.4.118)
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In the following, we omit the normalization constants and provide specific wave func-

tions. First, with respect to |l, I3, J3⟩, for example, it is given as

|l = 1, I3 = J3 = l/2⟩ = a1 + ia2, (2.4.119)

|l = 3, I3 = J3 = l/2⟩ = (a1 + ia2)
3. (2.4.120)

From this expression, using the ladder operator I− = I1 − iI2, we get

|l = 1, I3 = −l/2, J3 = l/2⟩ = I−(a1 + ia2) = a4 + ia3. (2.4.121)

Also, with respect to |ρ⟩, we obtain

|nρ = 0⟩ = ρ−1+2
√

1+N2
c /5e

−M0√
6
ρ2
, (2.4.122)

|nρ = 1⟩ =
(2M0√

6
ρ2 − 1− 2

√
1 +N2

c /5
)
ρ−1+2

√
1+N2

c /5e
−M0√

6
ρ2
. (2.4.123)

Finally, for |Z⟩, we have

|nZ = 0⟩ = e
−M0√

6
Z2

, (2.4.124)

|nZ = 1⟩ = Ze
−M0√

6
Z2

. (2.4.125)

From the above, the wave functions of the proton and neutron are

|p⟩ = ρ−1+2
√

1+N2
c /5e

−M0√
6
ρ2
e
−M0√

6
Z2

(a1 + ia2) (2.4.126)

|n⟩ = ρ−1+2
√

1+N2
c /5e

−M0√
6
ρ2
e
−M0√

6
Z2

(a4 + ia3), (2.4.127)

respectively (see also Appendix E). Also, ∆(1232)++ is represented as

|∆(1232)++⟩ = ρ−1+2
√

1+N2
c /5e

−M0√
6
ρ2
e
−M0√

6
Z2

(a1 + ia2)
3. (2.4.128)

(2.4.129)

Furthermore, the wave functions of the Roper and negative parity resonances are

given by

|N∗(1440)⟩ =
(2M0√

6
ρ2 − 1− 2

√
1 +N2

c /5
)
ρ−1+2

√
1+N2

c /5e
−M0√

6
ρ2

×e−
M0√

6
Z2

(a1 + ia2) (2.4.130)

|N∗(1535)⟩ =ρ−1+2
√

1+N2
c /5e

−M0√
6
ρ2
Ze

−M0√
6
Z2

(a1 + ia2). (2.4.131)
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Chapter 3.

SU(Nf = 2 + 1) Sakai Sugimoto

model

In this chapter, we discuss the description of hadrons by the SU(Nf = 2+1) Sakai-

Sugimoto model toward the analysis of hyperons and heavy baryons. The s quarks

can be introduced by SU(3) rotations in the collective coordinate quantization, as

is accomplished in the conventional quantization of solitons. To demonstrate this,

section 3.1 will review how to introduce s-quarks as SU(3) rotations in the Skyrme

model. Then, in section 3.2, we review how to introduce s-quarks using the same

method in the Sakai-Sugimoto model. At this time, it is known that the following

two problems occur.

1. Although the introduction of the mass of the s-quark is important for the

analysis of hyperons, the Sakai-Sugimoto model is a massless QCD, which does

not have an established way to introduce the mass.

2. In flavor SU(3), the constraint term that should be imposed on the hypercharge,

which is necessary to consider solitons as baryons (fermions), does not appear

from the CS term of the Sakai-Sugimoto model.

For the first point, we will briefly review one way to introduce mass. For the second

point, we succeeded in obtaining a constraint term in Ref. [87], but the chiral anomaly,

which was well reproduced in the original Sakai-Sugimoto model, disappeared. Later,

in Ref. [88], the CS term was obtained that reproduced the chiral anomaly and still

produced the constraint term. These points are discussed in detail in Appendix D
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because they are beyond the scope of this paper.

Next, we show how to introduce heavy quarks such as c and b into the Sakai-

Sugimoto model, based on the method we proposed in Ref. [36]. We obtain the

mass spectrum of the heavy baryons by collective coordinate quantization of the

classical solution of the action obtained using the dimensional reduction method of

gauge theory proposed by Forgács-Manton. This method, which is similar to the

bound state approach in the Skyrme model[57, 58, 89, 90, 91], is shown to reproduce

well the mass spectra of the heavy baryon and its resonance states, as well as the Pc

state, which has attracted much attention due to its recent experimental observations.

Similar studies have been made in Ref. [27, 28, 30, 31, 33, 92].

In this thesis, we will explain the following flow concerning the study of the Sakai-

Sugimoto model of SU(Nf = 2 + 1). In section 3.1, we first explain the flavor

SU(3) Skyrme model to prepare the analysis of baryons in the flavor SU(3) Sakai-

Sugimoto model. The necessity of the constraint term and the analysis method when

a mass term is incorporated will be useful for understanding subsequent sections. In

section 3.2, we discuss how to introduce s-quarks in Sakai-Sugimoto. The problems

with the constraint terms are described in Appendix D. It can be seen that this

constraint term does not appear from the CS term used in the original paper on the

Sakai-Sugimoto model [10, 11]. We explained in the Appendix along with Ref. [87, 88],

which solved this problem. In the former paper, the chiral anomaly disappeared, and

the latter paper realized both the constraint term and the chiral anomaly. Then,

in the section 3.2.2, we will briefly review how to deform [93, 94, 95] the Sugimoto

model so that quarks have masses. Next, we discuss how to introduce heavy quarks

such as c and b quarks into the Sakai-Sugimoto model. For this purpose, the method

of dimensional reduction proposed by Forgács-Manton will be explained. Then, we

introduce heavy quarks into the Sakai-Sugimoto model and obtain their mass spectra.

This discussion is based on our study Ref. [36].

3.1 Flavor SU(3) Skyrme model

In this section we explain how to obtain the Hamiltonian of a quantum mechan-

ical system in collective coordinates through the flavor SU(3) Skyrme model. This

explanation helps to understand similar arguments in the Sakai-Sugimoto model (the
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difference with the Sakai-Sugimoto model is the absence or not of (ρ, Z)). It is im-

portant in the next section to discuss how the constraint terms impose restrictions on

the state and how to deal with the mass terms. In this section, we have adapted the

notation to Ref. [76] and discuss it in more detail with reference to Ref. [85] etc.

3.1.1 Classical solutions

The action of the SU(3) Skyrme model is written by

S = SSk + SSB + SWZW (3.1.1)

SSk =

∫
d4x
(f2π
4
Tr∂µU∂

µU† +
1

32e2
Tr[U†∂µU,U

†∂νU ]2
)

(3.1.2)

SSB =

∫
d4x
(f2π
4
(m2

π +m2
η)Tr(U + U† − 2)

+

√
3

6
f2π(m

2
π −m2

K)Tr[
1

2
t8(U + U†)]

)
(3.1.3)

SWZW = − Nc
240π2

∫
S5

Tr[U†dU ]5

= − Nc
240π2

ϵαβγδϵ
∫
S3×D2

d5xTr[U†∂αUU
†∂βUU

†∂γUU
†∂δUU

†∂ϵU ], (3.1.4)

where, with xα = t, x1, x2, x3, s, the 2-dimensional disk D2 is parameterized by (t, s).

The first term in (3.1.2) is a chiral term, µ = 0, 1, 2, 3、U(x) = e4iπa(x)ta/fπ , tr(tatb) =

δab/2, and the second term is the Skyrme term, which is the higher-order derivative

term needed to prevent the soliton from shrinking. The action (3.1.3) is the symmetry

breaking term, which is expanded to lead to

LSB ≃
∫
d4x
(1
2
m2
π(π

2
1 + π2

2 + π2
3) +

1

2
m2
K(π2

4 + π2
5 + π2

6 + π2
7) +

1

2
m2
ηπ

2
8

)
. (3.1.5)

The action (3.1.4) is the Wess-Zumino-Witten term, which is necessary to reproduce

the chiral symmetry and is also important in the sense that only the parity symmetry

in QCD is extracted from the redundant symmetry [70, 71].

As a static (time-independent) soliton solution U0(x) of baryon number 1, it is

known that the SU(3) hedgehog solution given by

U0(x) =

(
exp(ix̂ · F (r)) 0

0 1

)
(3.1.6)

x̂ =
x

r
, F (r = 0) = 0, F (r → ∞) = nπ(= π). (3.1.7)
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3.1.2 Collective coordinates

Let us give time dependence to the collective coordinates as in the previous section.

Focusing only on the collective coordinates that generate the soliton rotation, we

consider the motion in the moduli space as written as

U(t,x) =W (t)U0(t,x)W (t)−1 (3.1.8)

W (t) = eiξa(t)ta , a = 1 ∼ 8, (3.1.9)

where, for SWZW on the different manifold, it is defined as

W (t, s = 0) =W (t) (3.1.10)

W (t, s = 1) = 1. (3.1.11)

In fact, W (t) ∈ SU(3) is not precisely a collective coordinate due to the symmetry

breaking term, but we will treat it as a collective coordinate in the same sense as

(ρ, Z) in the previous chapter.

The transformation of the collective coordinate W (t) and the corresponding quan-

tum numbers are given as follows;

1. Isospin rotation SU(2)L ⊂ SU(3)L : (I, I3)

W (t) → gLW (t), gL ∈ SU(2)L (3.1.12)

2. Hypercharge U(1)L ⊂ SU(3)L : Y

W (t) → eiξLt8W (t), eiξLt8W (t) ∈ U(1)L (3.1.13)

3. spin rotation (spatial rotation) SU(2)R ⊂ SU(3)R : (J, J3)

W (t) →W (t)g−1
R , gR ∈ SU(2)R (3.1.14)

4. Right hypercharge U(1)R ⊂ SU(3)R : YR

W (t) →W (t)e−iξRt8 ∈ U(1)R (3.1.15)

YR =
1

3

 1 0 0
0 1 0
0 0 −2

 , YR =
2√
3
t8 (3.1.16)
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It can be seen from

U(t, x) →W (t)e−iξRt8
(

exp(ix̂ · F (r)) 0
0 1

)
eiξRt8W (t)−1

= U(t, x) (3.1.17)

that the transformation of the right hypercharge is an unnecessary degree of freedom.

Thus the moduli space is the homogeneous space SU(3)/U(1)R, and YR is not a

physical degree of freedom. We consider SU(3) as a moduli space according to Ref. [84,

86, 85, 96, 97] instead of SU(3)/U(1)R, and treat the degrees of freedom of U(1)R as

constraints.

By substituting (3.1.8) into the action S (LSB will be treated as perturbative later),

the Lagrangian is given as

S =

∫
dtL (3.1.18)

L =−M0 +
1

2
I0(ȧ21 + ȧ22 + ȧ23) +

1

2
I ′
0(ȧ

2
4 + ȧ25 + ȧ26 + ȧ27)

+
2√
3
NcB(U0)ȧ8, (3.1.19)

where B(U0) is the baryon number, I0 and I ′
0 are the coefficients obtained by per-

forming the spatial integration numerically. Since we are now considering the case of

baryon number 1, the Lagrangian can also be written as

L =−M0 +
1

2
I0

3∑
b=1

ξ̇aCabξ̇cCcb +
1

2
I ′
0

7∑
b=4

ξ̇aCabξ̇cCcb

+
1

2
√
3
Ncξ̇aCa8, (3.1.20)

with

W (t)−1Ẇ (t) = iCab(ξ(t))taξ̇b = itaȧa (3.1.21)

ȧ2a = 4[Tr(−itaW (t)−1Ẇ (t))]2, Cabξ̇b = ȧa (3.1.22)( 4√
3
NcB(U0)Tr(−it8W−1Ẇ (t)) =

2√
3
NcB(U0)ȧ8

)
(3.1.23)
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3.1.3 Hamiltonian and constraint term

Let us quantize and find the Hamiltonian. From L(ξ, ξ̇) (3.1.20), the canonical

momentum of ξ is derived as

πa =
∂L(ξ, ξ̇)

∂ξ̇a
= I0

3∑
b=1

Cabξ̇cCcb + I ′
0

7∑
b=4

Cabξ̇cCcb +
Nc

2
√
3
Ca8 (3.1.24)

C−1
ba πa = I0ξ̇aCab, b = 1, 2, 3 (3.1.25)

C−1
ba πa = I ′

0ξ̇aCab, b = 4, 5, 6, 7 (3.1.26)

C−1
ba πa =

Nc

2
√
3
, b = 8, (3.1.27)

where we impose the canonical commutation relation

[ξa, πb] = iδab (3.1.28)

[ξa, ξb] = 0, [πa, πb] = 0.

We now define

Ra = C−1
ba πa. (3.1.29)

This is the generator of SU(3)R acting on W (t) from the right, as shown soon. In

the same way as Cab(ξ), from

W (t)Ẇ (t)−1 = iEab(ξ)taξ̇b, (3.1.30)

the SU(3)L generator is defined to be

La = E−1
ba πa. (3.1.31)

From these definitions, we obtain the relation between Ra and La as

WW−1ẆW−1 = iCab(ξ)WtaW
−1ξ̇b

= −WẆ−1 = −iEab(ξ)taξ̇b
Cab(ξ)WtaW

−1 = −Eab(ξ)ta
La = −WRaW

−1. (3.1.32)

From the above, the two Casimir operators are

tr[(Rata)
2] = tr[(Lata)

2] (3.1.33)

tr[(Rata)
3] = −tr[(Lata)

3], (3.1.34)
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which are interpreted as spin and isospin rotations, where they are complex conjugate

representations of each other.

From the canonical commutation relation (3.1.28), we can derive

πa =
1

i

∂

∂ξa
(3.1.35)

Ra =
1

i
C−1
ab

∂

∂ξb
, La =

1

i
E−1
ab

∂

∂ξb
, (3.1.36)

so by using (3.1.32), we obtain

W−1(RaW ) =
1

i
C−1
ab W

−1 ∂W

∂ξb
=

1

i
C−1
ab iCbctc

=ta

RaW =Wta. (3.1.37)

Similarly, using (3.1.32), we obtain

WW−1(LaW )W−1 =
1

i
WE−1

ab W
−1 ∂W

∂ξb
W−1 =

1

i
E−1
ab iCbcWtcW

−1

=ta

LaW =− taW. (3.1.38)

Furthermore, since

W−1[Ra.Rb]W =W−1RaWtb −W−1RbWta =W−1W [ta, tb] = ifabctc

=ifabcW
−1RaW (3.1.39)

W−1[La.Lb]W =−W−1LatbW +W−1LbtaW = −W−1[ta, tb]W = −ifabcW−1tcW

=ifabcW
−1LaW (3.1.40)

and

RaLbW = −tbRaW = −tbWta

LbRaW = LaWta = −tbWta

(3.1.41)

are confirmed, we obtain the commutation relation between Ra and La,

[Ra.Rb] = ifabcRa (3.1.42)

[La.Lb] = ifabcLa (3.1.43)

[Ra, Lb] = 0. (3.1.44)
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From this commutation relation and (3.1.37) and (3.1.38), we identify Ra as the spin

rotation of SU(3)R and La as the isospin rotation of SU(3)L.

Using Ra (3.1.29), Hamiltonian can be expressed as

H =M0 +
1

2

1

I0

3∑
b=1

R2
a +

1

2

1

I ′
0

7∑
b=4

R2
a (3.1.45)

or

H =M0 +
1

2

( 1

I0
− 1

I ′
0

) 3∑
b=1

R2
a +

1

2

1

I ′
0

8∑
b=1

L2
a −

1

2

1

I ′
0

R2
8. (3.1.46)

Also, from (3.1.29) and (3.1.24) we have

YR =
2√
3
R8 =

2√
3
C−1

8a πa =
2√
3

Nc

2
√
3

=
Nc
3
. (3.1.47)

In Nc = 3, the constraint YR = 1 is imposed on this system.

Since the weight diagram for the 8- and 10-dimensional representations of SU(3)R

is Fig. 3.1, this constraint restricts the spin state to a half-integer (1/2 in the 8-

dimensional representation and 3/2 in the 10-dimensional representation). These

represent the spin 1/2 flavor octuplet baryon (N,Σ,Λ,Ξ) and the spin 3/2 flavor

decuplet baryon (∆,Σ∗,Ξ∗,Ω), respectively.

Here, considering (3.1.37) and (3.1.38), we define the wave function of the Hamil-

tonian (3.1.46) as a function as follows;

Ψ
(p,q)
I,I3,Y ;J,J3,YR=1(W ) =

〈
(p, q); I, I3, Y

∣∣∣D(n)(W )
∣∣∣ (p, q); J, J3, YR = 1

〉
, (3.1.48)

where D(n)(W ∈ SU(3)) is the n-dimensional matrix representation of SU(3), and

SU(3)L and SU(3)R generators, which were previously denoted ta, are now distin-

guished as Ia and Ja (t8 remains the same Y and YR). This function is called the

Wigner D-function. Then, from (3.1.37) and (3.1.38), Ra and La act on the wave

function as

RaΨ
(p,q)
I,I3,Y ;J,J3,YR=1(W ) =

〈
(p, q); I, I3, Y

∣∣∣D(n)(W )Ja

∣∣∣ (p, q); J, J3, YR = 1
〉

(3.1.49)

LaΨ
(p,q)
I,I3,Y ;J,J3,YR=1(W ) =

〈
(p, q); I, I3, Y

∣∣∣ IaD(n)(W )
∣∣∣ (p, q); J, J3, YR = 1

〉
,

(3.1.50)
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Fig.3.1 Weight diagram and constraint

where the operations of Ja and Ia on |(p, q); J, J3, YR = 1⟩ and ⟨(p, q); I, I3, Y | can
be expressed by Ra, La and Ψ

(p,q)
I,I3,Y ;J,J3,YR=1(W ). In other words, Ia and Ja act in

Hilbert space, while La and Ra act in a space spanned by the coordinate ξ, where

8∑
a=1

L2
a =

8∑
a=1

R2
a =

1

3
[p2 + q2 + pq + 3(p+ q)] (3.1.51)

3∑
a=3

R2
a = J(J + 1) (3.1.52)

holds.

Finally, from this constraint, we show that the transformation properties of the

wave function for spatial rotation are that of a fermion. For a spatial rotation, W (t)
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transforms to

W (t) →W (t)

 eiθ/2 0 0
0 e−iθ/2 0
0 0 1

 ,

(
eiθ/2 0
0 e−iθ/2

)
∈ SU(2). (3.1.53)

In particular, for the transformation of θ = 2π that makes one rotation, it transforms

to

W (t) →W

 −1 0 0
0 −1 0
0 0 1

 =W exp

iπ
 1 0 0

0 1 0
0 0 −2


=We3iπYR (3.1.54)

If we let it act on the wave function, it becomes

e3iπYRΨ
(p,q)
I,I3,Y ;J,J3,YR=1(W ) =e3iπNc/3

〈
(p, q); I, I3, Y

∣∣∣D(n)(W )
∣∣∣ (p, q); J, J3, YR = 1

〉
=eiπNcΨ

(p,q)
I,I3,Y ;J,J3,YR=1(W ) (3.1.55)

so we know that it converts to

Ψ(W ) → eiπNcΨ(W ) =

{
−Ψ(W ), Nc = odd
+Ψ(W ), Nc = even

(3.1.56)

Therefore, we conclude that for Nc = 3, the wave function is a fermion.

3.1.4 Mass deformation

In the previous discussions, the mass term

SSB =

∫
d4x
(f2π
4
(m2

π +m2
η)Tr(U + U† − 2)

+

√
3

6
f2π(m

2
π −m2

K)Tr[
1

2
t8(U + U†)]

)
= −1

2
γ
(
1−D

(8)
88 (W )

)
(3.1.57)

D
(8)
88 (W ) =

1

8
tr(t8W

†t8W ) (3.1.58)
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has been neglected. In this thesis, we treat the mass term as a perturbation according

to Ref. [84, 86, 85, 96, 97] etc. Now the Hamiltonian is the sum of

H =M0 +
1

2

( 1

I0
− 1

I ′
0

) 3∑
b=1

R2
a +

1

2

1

I ′
0

8∑
b=1

L2
a −

1

2

1

I ′
0

R2
8

δH =+
1

2
γ
(
1−D

(8)
88 (W )

)
. (3.1.59)

The problem we are considering now is the case δH = 1
2γ
(
1 − D

(8)
88 (W )

)
, while we

generalize to δH = 1
2γ
(
1−D

(8)
ab (W )

)
, (a = 1 ∼ 8). With baryons labeled

B = (P,N,Λ,Σ+,Σ0,Σ−,Ξ0,Ξ−,∆++,∆+,∆0,∆−,Σ∗+,Σ∗0,Σ∗−,Ξ∗0,Ξ∗−,Ω−, ....),
(3.1.60)

the wave function ΨB(W ) of the baryon corresponding to B can be expressed for

example as

ΨP (W ) =
〈
(1, 1); I = 1/2, I3 = 1/2, Y = 1

∣∣∣D(8)(W )
∣∣∣ (1, 1); J = 1/2, J3, YR = 1

〉
(3.1.61)

and

ΨΣ∗−(W ) =
〈
(3, 0); 1,−1, 0

∣∣∣D(10)(W )
∣∣∣ (3, 0); 3/2, J3, 1〉 . (3.1.62)

When δH operates on the wave function, it should be represented by a linear

combination of all baryon states belonging to the irreducible representation. Let us

consider only the diagonal terms, ignoring the off-diagonal components as they are

small. Let δH operates on a certain state and let
〈
D

(8)
ab (W )

〉
B

be the expansion

coefficient of the baryon wave function in the same irreducible representation, then it

is expanded as

D
(8)
ab (W )ΨB(W ) =

〈
D

(8)
ab (W )

〉
B′

ΨB′(W ), (3.1.63)

where B′ runs in the octuplet. Multiplying by Ψ∗
B(W ) and integrating over W yields〈

D
(8)
ab (W )

〉
B′

∫
dWΨ∗

B(W )ΨB′(W ) =
〈
D

(8)
ab (W )

〉
B

=

∫
dWΨ∗

B(W )D
(8)
ab (W )ΨB(W ), (3.1.64)
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then summing the product of〈
D

(8)
ab (W )

〉
B
=

∫
dWΨ∗

B(W )D
(8)
ab (W )ΨB(W )

=
∑
γ

(
8 n nγ
a µ µ

)(
8 n nγ
b ν ν

)
(3.1.65)

and the Clebsch-Gordan coefficients of SU(3) over the two 8-dimensional represen-

tations gives
〈
D

(8)
ab (W )

〉
B

[94, 84]. n and nγ are the representation dimensions

of ΨB(W ), while the other quantum numbers that label ΨB(W ) are denoted µ =

(Y, I, I3) and ν = (YR, J, J3).

For example, we show the quantum numbers of the baryons in the 8-dimensional

representation, where a, b = (Y, I, I3) = (0, 1, 0) or (0, 0, 0) for a, b = 3 or 8.

B is labeled by (µ; ν) = (Y, I, I3;YR, J, J3) and
〈
D

(8)
ab (W )

〉
B

is calculated as

Table 3.1 The quantum numbers of the 8-dimensional representation baryons

Y I I3 YR J J3

〈
D

(8)
38

〉
B

〈
D

(8)
88

〉
B

P 1 1/2 1/2 1 1/2 J3
1

10
√
3

3
10

N 1 1/2 −1/2 1 1/2 J3 − 1
10

√
3

3
10

Λ 0 0 0 1 1/2 J3 0 1
10

Σ+ 0 1 1 1 1/2 J3
1

2
√
3

− 1
10

Σ0 0 1 0 1 1/2 J3 0 − 1
10

Σ− 0 1 −1 1 1/2 J3 − 1
2
√
3

− 1
10

Ξ0 −1 1/2 1/2 1 1/2 J3
2

5
√
3

− 1
5

Ξ− −1 1/2 −1/2 1 1/2 J3 − 2
5
√
3

− 1
5

(y, i, i3; y
′, i′, i′3) = (a;µ) or (y, i, i3; y

′, i′, i′3) = (b; ν) in Table [98]. From the above

discussion, the baryon mass formula becomes

M = H + δH =M0 +
1

2

( 1

I0
− 1

I ′
0

)
J(J + 1) +

1

2

1

I ′
0

1

3
[p2 + q2 + pq + 3(p+ q)]

− 1

2

1

I ′
0

(√3

2

)2
+

1

2
γ
(
1−

〈
D

(8)
88 (W )

〉
B

)
(3.1.66)

8 : (p, q) = (1, 1), J = 1/2 (3.1.67)

10 : (p, q) = (3, 0), J = 3/2. (3.1.68)
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This treatment of the mass term is essentially the same for baryons in the Sakai-

Sugimoto model.

3.2 Hyperons in the Sakai-Sugimoto model

Let us analyze baryons in the SU(3) Sakai-Sugimoto model with respect to the

analysis of the flavor SU(3) in the Skyrme model. The analysis will proceed as follows.

First, in section 3.2.1, we obtain the mass formula for the baryon. The problem of

the CS term is discussed in detail in the Appendix D. In section D.1, we summarize

the problems of the CS term, and in sections D.2 and D.3, we introduce two CS terms

that were proposed to solve these problems. Next, in section 3.2.2, we discuss how to

introduce quark masses into the Sakai-Sugimoto model.

3.2.1 Baryons in flavor SU(3) Sakai-Sugimoto model

As shown in (2.4.18) and (2.4.19), the action is

SDBI =− λNc
108π3

∫
d4xdzTrf

(1
4
K−1/3F 2

µν +
1

2
KF 2

µz

)
− 1

2
κ

∫
d4xdz

(1
4
K−1/3F̂ 2

µν +
1

2
KF̂ 2

µz

)
(3.2.1)

SCS =
Nc
24π2

∫
ω
SU(Nf )
5 (A) +

Nc
24π2

√
2

Nf
ϵMNPQ

∫
d4xdz

[3
8
Â0Trf (FMNFPQ)

− 3

2
ÂMTrf (∂0ANFPQ) +

3

4
F̂MNTrf (A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ

+ (total derivative)
]
, (3.2.2)

for any Nf (Appendix A.3). For Nf > 2, the significant difference from the SU(2)

case is that ω5(A) is not zero. Under the same rescale as in the SU(2) case, the DBI

action becomes

SDBI =− aNc

∫
d4xdzTrf

[λ
2
F 2
MN +

(
− z2

6
F 2
ij + z2F 2

iz − F 2
0M

)
+O(λ−1)

]
− 1

2
aNc

∫
d4xdz

[λ
2
F̂ 2
MN +

(
− z2

6
F̂ 2
ij + z2F̂ 2

iz − F̂ 2
0M

)
+O(λ−1)

]
, (3.2.3)

which is exactly the same as in the SU(2) case, where since the CS term is an integral

in differential form, it does not change form under this rescale.
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Classical solutions

Since the analysis is performed up to the order of λ0, we can solve the equation

of motions by considering only the highest order of 1/λ expansion. The equation of

motions can be obtained as

A0 : DMF0M +
1

64π2a

√
2

Nf
ϵMNPQF̂MNFPQ

+
1

32
√
3π2a

ϵMNPQ

(
FMNFPQ − 1

Nf
Trf (FMNFPQ)

)
+O(λ−1) = 0 (3.2.4)

AM : DNFMN +O(λ−1) = 0 (3.2.5)

Â0 : ∂M F̂0M +
1

64π2a

√
2

Nf
ϵMNPQ

[
Trf (FMNFPQ) +

1

2
F̂MN F̂PQ

]
+O(λ−1)

(3.2.6)

ÂM : ∂N F̂MN +O(λ−1) = 0. (3.2.7)

Apart from the change in coefficients due to SU(2) becoming SU(Nf ), the only dif-

ference from the SU(2) case is the last term in (3.2.4). This difference is due to the

fact that ω
SU(Nf )
5 (A) is not zero, which means that the classical solution of A0 has a

finite value unlike the SU(2) case.

Let us first solve (3.2.5). The solution of this equation is obtained by embedding

the BPST instanton solution (2.4.35) of SU(2) in SU(Nf ) as follows;

AclM (xN ) =

(
A
SU(2)BPST
M 0

0 0Nf−2

)
. (3.2.8)

Setting this ansatz means that all the degrees of freedom of the strange quark are

carried by the collective coordinates.

The equation of motions (3.2.6) and (3.2.7) can be solved exactly as in the case of

SU(2) as

Â0 =
1

8π2a

1

ξ2

(
1− ρ4

(ξ2 + ρ2)2

)
(3.2.9)

ÂM = 0. (3.2.10)

Finally, let us find the solution for SU(Nf ) of (3.2.4), which is the only difference

from the SU(2) case. Substituting the solutions we have found so far, we get the
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equation

D2
MA0 −

3

2π2a

ρ4

(ξ2 + ρ2)2

(
P2 −

2

Nf
1Nf

)
= 0, (3.2.11)

where P2 is

P2 =

 1 0 0
0 1 0
0 0 0Nf−2

 , (3.2.12)

such that it can be expressed as

P2 =
2√
3
t8 +

2

3
13 (3.2.13)

in the case Nf = 3. This equation can be obtained as

Acl0 = − 1

16π2a

1

ξ2

(
1− ρ4

(ξ2 + ρ2)2

)(
P2 −

2

Nf
1Nf

)
. (3.2.14)

From the above, the mass formula for the static soliton solution is calculated to be

S =−
∫
dtM

M =κ

∫
d3xdzTrf

[1
2
(F clMN )2 − λ−1

(z2
6
(F clij )

2 + z2(F cliz )
2 − (F cl0M )2

)]
− κ

2
λ−1ϵMNPQ

∫
d3xdz

[√ 2

Nf

3

8
Âcl0 Trf (F

cl
MNF

cl
PQ) +

3

4
Trf (A

cl
0 F

cl
MNF

cl
PQ)

]
+O(λ−1)

=8π2κ
[
1 + λ−1

(ρ2
6

+
1

320π4a2
1

ρ2
+
Z2

3

)]
. (3.2.15)

Interestingly, this mass formula takes the same form for any Nf , despite the new con-

tributions of (F cl0M )2 and Trf (A
cl
0 F

cl
MNF

cl
PQ) compared to SU(2) case. The minimum

value of this mass formula also remains the same,

Mmin = 8π2κ+

√
2

15
Nc (3.2.16)

at

ρ2 =
1

8π2a

√
6

5
, Z = 0. (3.2.17)

The argument so far is true for arbitrary Nf . In the following, we only talk about

the case Nf = 3.
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Collective coordinates

In Nf = 3, the collective coordinate is

1. The position of the instanton in the (x⃗, z) space : XM = (X⃗, Z)

2. The size of instanton : ρ

3. SU(3) orientation : W ∈ SU(3).

Let us consider the motion of a soliton in moduli space with time dependence on this

collective coordinate. In this case, the time-dependent gauge field can be written as

AM (t, xN ) =W (t)AclM (xN ;Xα(t))W−1 (3.2.18)

A0(t, x
M ) =W (t)Acl0 (x

M ;Xα(t))W (t)−1 +∆A0(t, x
M ) (3.2.19)

ÂM (xN , t) = 0 (3.2.20)

Â0(x
N , t) = Âcl0 (x

M ;Xα(t)). (3.2.21)

Except for A0, the equation of motion for the static case is satisfied even if we make

the collective coordinate time-dependent. For A0, we add ∆A0(t, x
M ) because the

original equation (3.2.4) (Gauss’ law) cannot be satisfied if the field is time-dependent.

This is a unique property to gauge theory, and although Gauss’ law seems to be a

redundant equation, one should always pay attention to whether it is satisfied or not

(Appendix B).

Let us resolve Gauss’ law. First, we see that the field strength, which is time-

dependent due to the insertion of the collective coordinate, is written as

FMN =W (t)F clMNW (t)−1 (3.2.22)

F0M =W (t)
(
Ẋα ∂

∂Xα
AclM −Dcl

MΦ−Dcl
MA

cl
0

)
W (t)−1, (3.2.23)

which is defined as

Φ(t, xM ) =W (t)−1∆A0W (t)− iW (t)−1Ẇ (t). (3.2.24)

Gauss’ law (3.2.4) then becomes

Dcl
M

(
ẊN ∂

∂XN
AclM + ρ̇

∂

∂ρ
AclM −Dcl

MΦ
)
= 0 (3.2.25)

From this, by determining Φ, the time-dependent A0 is solved again.
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We need to consider the case where each collective coordinate is orthogonal to each

other, so let’s separate them like

Φ = ΦX +Φρ +ΦSU(3) (3.2.26)

and find the solution. For details, please refer to Appendix A.7. For ΦX and Φρ, we

can find

ΦX = −ẊNAclN (3.2.27)

Φρ = 0 (3.2.28)

exactly as in SU(2). The rest can be solved for

Dcl
MD

cl
MΦSU(3) = 0, (3.2.29)

and the result is obtained as

ΦSU(3) = χa(t)Φa(x;X
α(t)) (3.2.30)

Φa(x;X
α(t)) = ua(ξ)g(x;X(t))ta(x;X(t))−1 (3.2.31)

ua(ξ) =


f(ξ), (a = 1, 2, 3)

f(ξ)1/2, (a = 4, 5, 6, 7)
1, (a = 8)

(3.2.32)

χa(t) = −2itr(taW (t)−1Ẇ (t)). (3.2.33)

Since the collective coordinates give the field time-dependent, Lagrangian L of

SYM + SCS =
∫
dtL has changed, denoting the change as δL,

δL =δLYM + δLCS (3.2.34)

δLYM =aNc

∫
d3xdztr

(
F 2
0M − (F cl0M )2

)
=aNc

∫
d3xdztr

(
ẊNF clMN + ρ̇

∂

∂ρ
AclM − χaDcl

MΦa

)2
. (3.2.35)

where δLYM is the change caused by

F0M =W (t)
(
ẊNF clMN + ρ̇

∂

∂ρ
AclM − χaDcl

MΦa −Dcl
MA

cl
0

)
W (t)−1, (3.2.36)

and, from this change, arises the kinetic term of each collective coordinate. δLCS is

zero as far as we use the CS term used in the original paper [10, 11] of the Sakai-

Sugimoto model (the problems with the CS term are comprehensively explained in
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Appendix D.1). Without considering the CS term here, the Lagrangian of the system

with the collective coordinates listed above as the dynamical variables is

L =−M0 +
mX

2
Ẋ2 + LZ + Lρ + LρW + LCS (3.2.37)

LZ =
mZ

2
(Ż2 − ω2

ZZ
2) (3.2.38)

Lρ =
mρ

2
(ρ̇2 − ω2

ρρ
2)− K

mρρ2
(3.2.39)

LρW =mρρ
2
(1
8

3∑
a=1

(χa)2 +
1

16

7∑
4

(χa)2
)

(3.2.40)

=2I1(ρ)
3∑
a=3

[
tr(−iW−1Ẇ ta)

]2
+ 2I2(ρ)

7∑
a=4

[
tr(−iW−1Ẇ ta)

]2
, (3.2.41)

where we can calculate the coefficients as follows,

M0 = 8π2κ (3.2.42)

mX = mZ =
mρ

2
= 8π2κλ−1 = 8π2aNc (3.2.43)

ω2
Z =

2

3
, ω2

ρ =
1

6
(3.2.44)

K =
Ncmρ

40π2a
=

2

5
N2
c (3.2.45)

I1(ρ) =
1

4
mρρ

2, I2(ρ) =
1

8
mρρ

2. (3.2.46)

No further analysis will yield the constraint terms necessary to obtain the baryon

spectra, so we will replace the CS terms with those shown in Appendix D.2 and D.3,

and continue the analysis by assuming that the constraint terms have arisen. In other

words, we will analyze L in (3.2.37) plus

Nc

2
√
3
χ8(t) =

Nc√
3
tr(−iW (t)−1Ẇ (t)t8). (3.2.47)

Collective coordinate quantization

The wave function can be separated as

ϕ(z)Ψ(W )ψ(ρ), (3.2.48)
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thus the Hamiltonian can be written as

H =M0 +HZ +Hρ +HρW (3.2.49)

HZ = − 1

2mZ
∂2Z +

1

2
mZω

2
ZZ

2 (3.2.50)

HρW =
1

2I1(ρ)

3∑
a=1

(Ra)
2 +

1

2I2(ρ)

7∑
a=4

(Ra)
2 (3.2.51)

Hρ = − 1

2mρ

1

ρη
∂ρ(ρ

η∂ρ) +
1

2
mρω

2
ρρ

2 +
K

mρρ2
. (3.2.52)

For HZ , it is the same as in the SU(2) Sakai-Sugimoto model, and for HρW , the

eigenvalue equations can be solved in the same way as explained in the SU(3) Skyrme

model. For η of Hρ, we can set η = 8 in the SU(3) case, but let us continue the

analysis with the general η. Considering the constraint

R8 =
Nc

2
√
3
, (3.2.53)

then the Hamiltonian is

HρW =
1

2

( 1

I1
− 1

I2

) 3∑
b=1

R2
a +

1

2

1

I2

8∑
b=1

L2
a −

1

2

1

I2
R2

8

=
2

mρρ2

(
− j(j + 1) + 2

1

3
(p2 + q2 + pq + 3(p+ q))− N2

c

6

)
, (3.2.54)

so we can write the mass formula as

Hϕ(z)Ψ(W )ψ(ρ) =M0ϕ(z)Ψ(W )ψ(ρ) + (Hzϕ(z))Ψ(W )ψ(ρ)

+ (Hρψ(ρ))ϕ(z)Ψ(W ) + (HρWΨ(W ))ϕ(z)ψ(ρ)

=
(
M0 +

√
2

3

(
nZ +

1

2

))
ϕ(z)Ψ(W )ψ(ρ)

+ ϕ(z)Ψ(W )
(−2j(j + 1) + 4

3 (p
2 + q2 + pq + 3(p+ q))− N2

c

3

mρρ2
+Hρ

)
ψ(ρ)

=
(
M0 +

√
2

3

(
nZ +

1

2

)
+ E

(p,q)
ρtot

)
ϕ(z)Ψ(W )ψ(ρ).
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Here, the eigenvalues of Htot
ρ are E

(p,q)
ρtot as follows;

(−2j(j + 1) + 4
3 (p

2 + q2 + pq + 3(p+ q))− N2
c

3

mρρ2
+Hρ

)
ψ(ρ)

=
(
− 1

2mρ

1

ρη
∂ρ(ρ

η∂ρ) +
1

2
mρω

2
ρρ

2 +
K ′

mρρ2

)
ψ(ρ)

= Htot
ρ ψ(ρ) = E

(p,q)
ρtot ψ(ρ) (3.2.55)

K ′ =
N2
c

15
+

4

3
(p2 + q2 + pq + 3(p+ q))− 2j(j + 1). (3.2.56)

Therefore, the mass formula can be obtained by solving the eigenvalue equation

Htot
ρ ψ(ρ) = E

(p,q)
ρtot ψ(ρ) (3.2.57)

Htot
ρ = − 1

2mρ

1

ρη
∂ρ(ρ

η∂ρ) +
1

2
mρω

2
ρρ

2 +
K ′

mρρ2
(3.2.58)

K ′ =
N2
c

15
+

4

3
(p2 + q2 + pq + 3(p+ q))− 2j(j + 1) (3.2.59)

at the end. Now, by replacing

ψ(ρ) = e−z/2zβv(z) (3.2.60)

z = mρωρρ
2, β =

1

4
(
√

(η − 1)2 + 8K ′ − (η − 1)), (3.2.61)

the eigenvalue equation becomes the differential equation

(
z
d2

dz2
+
(
2β +

η + 1

2
− z
) d
dz

+
(E(p,q)

ρtot

2ωρ
− β − η + 1

4

))
v(z) = 0, (3.2.62)

which is that of the congruent hypergeometric function. Since it is known that this

equation must be

E
(p,q)
ρtot

2ωρ
− β − η + 1

4
= n, n ∈ Z (3.2.63)

to have a regular solution, for n = nρ, we can write v(z) using the confluence hyper-

geometric function

F (α, γ; z) =
∞∑
k=0

(α)k
(γ)k

zk

k!
(3.2.64)

(α)k = α(α+ 1) · · · (α+ k − 1) (3.2.65)
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like

v(z) = F
(
− nρ, 2β +

η + 1

2
; z
)
, (3.2.66)

whose eigenvalue is obtained as

E
(p,q)
ρtot = ωρ

(
2nρ +

1

2

√
(η − 1)2 + 8K ′ + 1

)
. (3.2.67)

From the above, the mass formula is obtained as

M =M0 +

√
(η − 1)2

24
+
K ′

3
+

√
2

3
(nρ + nZ + 1). (3.2.68)

3.2.2 Introduce quark masses and obtain the Hyperon spectora

Several attempts have been made to introduce quark masses in the Sakai-Sugimoto

model [93, 99, 100, 101, 102, 103]. This doctoral thesis will introduce quark masses

into the Sakai-Sugimoto model according to Ref. [93] and explain the analysis of flavor

SU(3) baryons in the Sakai-Sugimoto model.

Since the chiral symmetry is not explicitly broken on the original brane configuration

of the Sakai-Sugimoto model, in the Ref. [93], by addingNf D6 brane to theD4−D8−
D8 brane system, they achieve a chiral symmetry is broken. That is, we placed the D6

branes as shown in Table 3.2 and connected theD8-branes andD8-branes. This brane

Table 3.2 Configuration of D6-brane

0 1 2 3 4 5 6 7 8 9

D4 ◦ ◦ ◦ ◦ ◦ × × × × ×
D8−D8 ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦

D6 ◦ ◦ ◦ ◦ ◦ × ◦ ◦ × ×

configuration leads to the existence of a worldsheet instanton, and it was shown in

Ref. [93] that this worldsheet instanton introduces quark masses. Furthermore, from

the gravity theory side, this worldsheet instanton is found to have the form [93]

c

∫
d4xPtr

[
M
(
exp

[
− i

∫ zm

−zm
Azdz

]
− 1Nf

)]
+ c.c., (3.2.69)
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which is consistent with the result obtained from the chiral perturbation theory, where

c is a constant determined from experimental values as a parameter andM is the quark

mass matrix.

In the following, we take into account that the action on the gravity theory side

involves the deformation

δS = c

∫
d4xPtr

[
M
(
exp

[
− i

∫ zm

−zm
Azdz

]
− 1Nf

)]
+ c.c. (3.2.70)

P exp
[
− i

∫ +∞

−∞
dzAz

]
= exp[2iπ(x)/fπ] = U(x) (3.2.71)

δS =

∫
d4xδL (3.2.72)

δL = ctr
[
M(U + U† − 21Nf

)
]
, (3.2.73)

incorporating this mass term as a perturbation, as discussed in the Skyrme model.

The difference from the Skyrme model is that this term depends not only on the

collective coordinates of the SU(3) orientation but also on ρ, so we also need to

calculate the expectation value of the part that depends on ρ.

The variation δL of the Lagrangian is calculated as

δL = −4c

3
(1− cos f(r))

[
(mu +md +ms)−

√
3

2
(md −mu)D

(8)
38 (G)−

2ms −mu −md

2
D

(8)
88 (G)

]
(3.2.74)

using (3.2.8) and ÂM = 0 of the solution obtained in section 3.2.1, where we used

D
(8)
ab (G) =

1

2
tr(G†λaGλb) (3.2.75)

already defined in the description of the Skyrme model. Now, using the Gell-Mann-

Oakes-Renner relation

m2
π± =

2c

f2π
(mu +md), m2

K± =
2c

f2π
(mu +ms), m2

K0,K̄0 =
2c

f2π
(md +ms),

(3.2.76)

(where c is input to best reproduce the masses of mπ± , mK± , and mK0,K̄0), the

deformation of the mass formula due to the introduction of quark masses in the
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Sakai-Sugimoto model is given by

δM =−
∫
d3xδL[Acl] (3.2.77)

δM =4πf2πρ
3 × 1.104× 1

3

[(
1−

√
3D

(8)
38 (G)−D

(8)
88 (G)

)
m2
K0,K̄0

+
(
1 +

√
3D

(8)
38 (G)−D

(8)
88 (G)

)
m2
K± +

(
1 + 2D

(8)
88 (G)

)
m2
π±

]
. (3.2.78)

Then, using the wave function

ϕ(z)Ψ(W )ψ(ρ) (3.2.79)

defined by (3.2.48), we can calculate δM to obtain the mass splitting for each baryon

state. Concretely, we need to calculate∫ ∞

0

dρρηρ3ψ(ρ)2 (3.2.80)

and ∫
dWΨ∗

B(W )D
(8)
ab (W )ΨB(W ), (3.2.81)

with η = 8 for SU(3). Since calculation for the latter are described in the discussion of

the Skyrme model, we will only give an explanation of the former. The wave function

has the form

ψ(ρ) = Cnρ(p,q)le
−mρωρρ

2/2(mρωρρ
2)βF

(
− nρ, 2β +

η + 1

2
;mρωρρ

2
)
. (3.2.82)

Cnρ(p,q)l is a normalization constant, which is determined from∫ ∞

0

dρρηψ2 = 1. (3.2.83)

From the above, if we write the equation only for nρ = 0, we get

⟨ρn⟩nρ=0,(p,q),l =

∫ ∞

0

dρρηρnψ(ρ)2 =
Γ(2β + η+1

2 + n/2)

(mρωρ)n/2Γ(2β + η+1
2 )

. (3.2.84)

This allows us to evaluate the mass splitting of baryons, but quantitatively it does

not reproduce the experimental data very well (see Ref. [94]).
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3.3 Dimensional reduction

In the next section, we discuss how to introduce heavy flavor into the Sakai-

Sugimoto model. We have proposed a method to implement heavy flavor in the

Sakai-Sugimoto model by employing dimensional reduction while utilizing the extra-

dimensional degrees of freedom. Therefore, in this section, as a first step, we explain

the Forgács-Manton approach to dimensional reduction of gauge theories [104, 105].

We mentioned in section 2.3.1 that the theory on the gravity side of the Sakai-

Sugimoto model is a 9-dimensional YM-CS theory. In Ref. [10, 11], they have obtained

five-dimensional YM-CS theory by setting the gauge field component on S4 in the

9-dimensional spacetime R4 × [0,∞) × S4 to zero and considering the gauge field

configurations that ignores the S4 coordinate dependence. However, it is not necessary

to treat the gauge field in this way. Therefore, it is a worthwhile attempt to review

the analysis of higher-dimensional gauge theories from a more general perspective.

High-dimensional gauge theory has been studied in Ref. [104, 106, 107] etc (As a

textbook, Ref. [108] is very helpful).

In this chapter, we will explain Forgács and Manton’s argument [104, 105]. They

showed that if a gauge field (G is the gauge group) is symmetric under some group

S *1 as well as a metric on a space-time manifold has the same symmetry, then the

YM theory can be generally reduced to a lower dimensional YM-Higgs theory.

In this thesis, we will explain the Ref. [104, 105] in the following steps. First, in the

section 3.3.1, we derive the symmetry equation and the consistency condition (called

in this thesis following Ref. [104]), which are used to determine the form of a gauge

field with a certain symmetry. It is important to understand what it means for a

gauge field to be symmetric for a space-time transformation. We will then explain

how to solve the symmetry equation and the consistency condition in the section 3.3.2.

It is easy to solve these equations on the group manifold of the group S, but from

the viewpoint of dimensional reduction, it is important to be able to find solutions

on the homogeneous space of this group as well. Based on the above discussion, in

*1 The symmetry of vector fields was outlined in Fig. 2.4, but in the case of gauge fields, the

restriction is weakened, as will be explained later
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section 3.3.3 we will discuss in general how higher dimensional gauge theories can be

reduced to lower dimensional YM-Higgs theories. In the section 3.3.4, we solve for the

constraints that emerge in the dimensional reduction (the discussion in this section is

not only for the Sakai-Sugimoto model, but can be used in general).

3.3.1 Symmetry equations

Tensor field T ρσ...µν... is symmetric (Appendix C) with respect to the group S generated

by the generator ξm means that

LξmT
ρσ...
µν... = 0 (3.3.1)

is satisfied by the Lie derivative Lξm (see also Fig. 2.4), where

LξmT
ρσ...
µν... = (∂µξ

λ)T ρσ...λν... + (∂νξ
λ)T ρσ...µλ... + ...

− (∂λξ
ρ)Tλσ...µν... − (∂λξ

σ)T ρλ...µλ... − ... .

+ ξλ∂λ T ρσ...µν... (3.3.2)

On the other hand, a gauge field is symmetric under a group S if the gauge trans-

formation absorbs the change caused by the symmetric transformation (see Fig. 3.2).

We write g = exp(W (x)) for the elements of G with W (x) = W a(x)T a (T a is the

generator of G) and expand it to W (x) = λmWm(x) with the basis λm of the vector

space of ξ = λmξm. Then, (3.3.1) is the weakened condition

LξmAµ = DµWm, (3.3.3)

where Wm is the Lie algebra of the gauge group G and DµWm = ∂µWm + [Aµ,Wm].

Now we found that the symmetry equations of the gauge field Aµ are

(∂µξ
ρ
m)Aρ + ξρm(∂ρAµ) = DµWm, (3.3.4)

where m is the number of generators of the group S. W transforms as a scalar for

the coordinate transformations, and its gauge transformation is

W g =gWg−1 + ξρ(∂ρg)g
−1 (3.3.5)

=gWg−1 + (Lξg)g
−1. (3.3.6)
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gauge transformation

Spatial rotation

Fig.3.2 Symmetric gauge fields

This means that the symmetry equation is an equation that depends neither on the

choice of coordinates nor on the choice of gauge.

We will show the definition of the symmetry generator ξm and discuss how ξm can

be obtained. It is important to note that ξ is defined not only on S, but also on coset

space S/R. The generator ξm of a group S (of dimension N) is a vector field such

that it satisfies

[ξm, ξn]
µ = fmnpξ

µ
p (3.3.7)

using Lie brackets

ηµ = [ξm, ξn]
µ = ξρm∂ρξ

µ
n − ξρn∂ρξ

µ
m.
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Since the Lie bracket operator is antisymmetric to satisfy the Jacobi identity, it is a

representation of the Lie algebra of the group S. We now turn from the discussion on

space-time manifolds to that on group manifolds. When we use µ in the subscripts,

it means that we have a space-time manifold in mind; otherwise, we use α or α̂.

The relation between arguments on group manifolds and space-time manifolds will

be discussed in section 3.3.3. The most fundamental solution of (3.3.7) is the set of

infinitesimal right transformations of the group S. Suppose that the group manifold

S has coordinate yα̂. Then, we define the infinitesimal right transformation ξα̂(yβ̂)

to be

s× (1 + ϵJm) = s(yα̂ + ϵξα̂m) ≃ s+ ϵξα̂m∂α̂s, (3.3.8)

where s(yα̂) ∈ S. It means that the result of the group operator on the left-hand

side causes a transformation of the coordinates as shown on the right-hand side. This

equation can be written as

sJm = Lξms. (3.3.9)

From this equation, we can obtain ξα̂m. We can verify that the infinitesimal right

transform ξα̂(yβ̂) defined in this way satisfies (3.3.7) as follows. The action of the

commutator of the Lie derivative on s is written as

(LξmLξn − LξnLξm)s = s[Jm, Jn] = fmnpsJ
p。 (3.3.10)

This expression is transformed into

L[ξm,ξn]s = fmnpLξps (3.3.11)

(Appendix A.8), from which we can derive (3.3.7).

We can also obtain a solution of (3.3.7) from a right transformation on the right

coset space of S. Let R be a subgroup of S of dimension N − N ′ such that it has

generator Jm, (N ′ + 1 ≦ m ≦ N), Then this coset Rs has N ′ coordinates yα and

Rs× (1 + ϵJm) = Rs+ ϵξαm∂αRs (3.3.12)

is obtained by the same argument as before.

We can assign yα to the coset space S/R and yω to the subgroup R. If we determine

the representative element of coset S/R to be

s0(y
α) ∈ Rs(yα) (3.3.13)
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in each class, all elements of S can be uniquely written as

s(yα̂) = r(yω)s0(y
α) (3.3.14)

by yα̂ = (yω, yα).

Under the transformation of the group S, we can find the relation satisfied by the

Lie algebra Wm used to absorb the change in Aµ. The commutator

(LξmLξn − LξnLξm)Aµ = Lξm(DµWn)− Lξn(DµWm)

of the Lie derivative becomes

LfmnpξpAµ = Dµ(LξmWn − LξnWm + [Wm,Wn]), (3.3.15)

with the left and right sides transformed, respectively (Appendix A.9). From this, we

obtain

LξmWn − LξnWm + [Wm,Wn]− fmnpWp = 0. (3.3.16)

The equation that Wm must satisfy is called the consistency condition, following

Ref. [104]. Therefore, when there is a pair of Lie algebras of G such that (3.3.16) is

satisfied, we can obtain an S-symmetric gauge field Aµ by applying the constraints

of (3.3.4).

In the rest of this section, we will find some relations that we will use later. From

(3.3.4), the symmetry equation for Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] is given by

LξmFµν = DµLξmAν −DνLξmAµ = (DµDν −DνDµ)Wm

= −[Fµν .W ] (3.3.17)

(Appendix A.10). Using (3.3.4), we obtain

ξµmFµν = Dν(Wm − ξµmAµ) (3.3.18)

(Appendix A.11). If we define Ψm = ξµmAµ −Wm, we can write this as

ξµmFµν = −DνΨm. (3.3.19)

Furthermore, using (3.3.19), (3.3.16), and (3.3.7), we obtain

ξµmξ
ν
nFµν = fmnpΨp + [Ψm,Ψn] (3.3.20)

(Appendix A.12). The Ψm is related to the Higgs sector after dimensional reduction.
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3.3.2 The solution of the symmetry equation

Again, symmetry equations and consistency conditions are given as

LξmAµ = DµWm (3.3.21)

LξmWn − LξnWm+[Wm,Wn]− fmnpWp = 0. (3.3.22)

Since both symmetry generators (3.3.8) and (3.3.12) for S and S/R satisfy the com-

mutation relation (3.3.7), solutions for (3.3.21) and (3.3.22) exist for both S and

S/R. From the viewpoint of dimensional reduction, the solution defined on S/R is

important. The consistency condition on S/R is

LξmWn(y
α)− LξnWm(yα)+[Wm(yα),Wn(y

α)]− fmnpWp(y
α) = 0. (3.3.23)

Now, Wm is redefined as

Wm(yω, yα) =Wm(yα) ∀yα. (3.3.24)

For Wm, it is sufficient that exist the ones satisfying (3.3.21) and (3.3.22), so such a

redefinition is no problem as long as it can be solved. It is easy to conclude that this

Wm also satisfies the consistency condition on S. That is,

LξmWn(y
α̂)− LξnWm(yα̂)+[Wm(yα̂),Wn(y

α̂)]− fmnpWp(y
α̂) = 0 (3.3.25)

is satisfied. If we define the new field Wα̂ as

Wm = ξα̂mWα̂, (3.3.26)

(3.3.25) becomes

∂α̂Wβ̂ − ∂β̂Wα̂ + [Wα̂,Wβ̂ ] = 0 (3.3.27)

(Appendix A.13), and thus Wα̂ can be expressed as

Wα̂ = (∂α̂g)g
−1 (3.3.28)

in pure gauge on S. Although Wm satisfies the consistency condition both on S and

on S/R, by considering the fields on S, Wm can also vanish because Wα̂ can be set

to zero by gauge transformation using (3.3.5) *2.

*2 If we consider on S/R, we can only perform gauge transformations independent of yω .
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Symmetry equation is also considered in the same way as the consistency condition.

The symmetry equation on S/R is

LξmAα = DαWm

⇔ (∂αξ
β
m)Aβ + ξβ∂βAα = ∂αWm − [Aα,Wm] (3.3.29)

using Aα(y
β) andWm(yα). In order to embed in S,Wm(yα) and Aα(y

β) are redefined

by (3.3.24) and

Aα̂(y
β̂) = (Aω(y

β̂), Aα(y
β̂)) = (0, Aα(y

β)), (3.3.30)

respectively. This restriction on Aα̂(y
β̂) should be understood as the restriction that

symmetry equations impose on gauge fields. This restriction will be discussed later.

In this case, because of

(∂αξ
β
m)Aβ = (∂αξ

β̂
m)Aβ̂ (3.3.31)

ξβ∂βAα = ξβ̂∂β̂Aα, (3.3.32)

(3.3.29) can be written as

(∂αξ
β̂
m)Aβ̂ + ξβ̂∂β̂Aα = ∂αWm − [Aα,Wm]. (3.3.33)

On the other hand, considering that ξαm is independent of yω, (3.3.24), and (3.3.30),

then

(∂ωξ
β̂
m)Aβ̂ + ξβ̂∂β̂Aω = ∂ωWm − [Aω,Wm] (3.3.34)

automatically holds. Therefore, by combining these two equations, we obtain the

symmetry equation on S,

LξmAα̂ = Dα̂Wm, (3.3.35)

with Aα(y
β) and Wm(yα) defined on S/R. As mentioned above, since Wm can be set

to zero by embedding on S, the symmetry equation can be simplified to the form

LξmAα̂ = 0, (3.3.36)

which is known how to solve. Now the restriction to Aα̂ is attributed to (3.3.30) and

(3.3.36).
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Instead of solving (3.3.36), we solve the more general equation

LξmT
γ̂δ̂....

α̂β̂....
= 0. (3.3.37)

We defined the symmetry generator (vector field) ξm as an infinitesimal right trans-

formation in (3.3.8). In the same way, the infinitesimal left transformation ξ̃m can be

defined as

(1 + ϵJm)s = s− ϵξα̂m∂α̂s (3.3.38)

⇔ Jms = −Lξms. (3.3.39)

The vector field ξ̃m は ξm satisfies Lie bracket algebra as well as ξm. In fact, this

infinitesimal left transformation turns out to be

Lξm ξ̃
α̂
n = 0. (3.3.40)

This is trivial from the fact that the Lie derivative and Lie bracket are equivalent

with

Lξ̃nLξms = −Jn(sJm) = −(Jns)Jm = LξmLξ̃ns

⇔ [ξm, ξ̃n] = 0 (3.3.41)

in the present case, by noting that ξ̃α̂n is a tensor with superscripts. Furthermore, if

we define as the inverse ξ̃mα̂,

ξ̃mα̂ξ̃
α̂
n = δmn, ξ̃mα̂ξ̃

β̂
m = δβ̂α̂ (3.3.42)

of ξ̃α̂m with (m, α̂), it is easy to show that this vector field also satisfies

Lξm ξ̃mα̂ = 0 (3.3.43)

by Leibniz rule. Based on the above discussion, the solution of (3.3.37) is given by

T γ̂δ̂....
α̂β̂....

= λmn...pq...ξ̃mα̂ξ̃nβ̂ ...ξ̃
γ̂
p ξ̃
δ̂
q (3.3.44)

with the constant λmn...pq....

Now the solution of symmetry equation (3.3.36) can be expressed as

Aaα̂ = Φam(x)ξ̃mα̂(y), (3.3.45)
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with λm = Φam(x). Since Φ only has not to depend on y, we have given it an x

dependence. In the discussion so far, we have considered only group manifolds, so

we do not need to consider x-dependence. However, as we will discuss later, when

the group S acts on the space-time manifold, we introduced the x-dependence here

because it exists as a coordinate of a space not related to the group S. The reason

Aω components seem to remain is that we have performed a gauge transformation to

set Wm to zero. Furthermore, setting λmn = δmn gives the rank two tensor,

h̃α̂β̂ = ξ̃α̂mξ̃
β̂
m. (3.3.46)

This is the (left) metric tensor of the Lie group, since it gives the inner product of

two vectors, like

ξ̃mα̂h̃
α̂β̂ = ξ̃β̂n . (3.3.47)

We can also define the (right) metric tensor hα̂β̂ = ξα̂mξ
β̂
m, which now satisfies

Lξmh
α̂β̂ = (Lξmξn)

α̂ξβ̂ + ξα̂n (Lξmξn)
β̂

= fmnpξ
α̂
p ξ

β̂
n + fmnpξ

α̂
nξ

β̂
p

= 0, (3.3.48)

because the Lie derivative and the Lie brackets are equivalent. This means that hα̂β̂

and h̃α̂β̂ are covariant for symmetric transformations that shift with ξα̂m. Moreover,

with

Lξme = ξα̂m∂α̂e = eJm = Jm

L ˜ξm
e = ξ̃α̂m∂α̂e = −Jme = −Jm

⇔ ξα̂m = −ξ̃α̂m, (3.3.49)

we conclude

hα̂β̂ = h̃α̂β̂ , (3.3.50)

which holds for arbitrary elements, because the metric keeps on the Lie group in the

present case. We also note that a similar argument yields

fmnpξ̃
α̂
mξ̃

β̂
n ξ̃

γ̂
p = −fmnpξα̂mξβ̂nξγ̂p , (3.3.51)
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which we will need later.

Finally, we discuss the constraint (3.3.30) imposed on Aα̂(y
β̂) when the symmetry

equation is embedded. This requires that Aω = 0 and that the remaining components

are independent of yω. A necessary and sufficient condition for this constraint is that

Fiω, Fαω, Fωτ must all be zero. Fωτ = 0 requires Aω = 0 while Fiα = 0, Fαω = 0

requires Ai, Aα to be independent of yω respectively. Noting that we can now set

Wm = 0, from (3.3.19) and (3.3.20), the field strength are written by

Fα̂i = ξ̃mα̂(∂iΦm + [Ai,Φm]) (3.3.52)

Fα̂β̂ = −ξ̃mα̂ξ̃nβ̂(fmnpΦp + [Φm,Φn]) (3.3.53)

(we used (3.3.51) when obtaining the second equation), so in order to set Fiω, Fα̂ω

to zero, we require

ξ̃mα(∂iΦm + [Ai,Φm]) = 0 (3.3.54)

ξ̃nω(fmnpΦp + [Φm,Φn]) = 0. (3.3.55)

The meaning of the above equation can be understood as follows. For m > N ′, ξ̃ωm is

also the symmetry generator of the subgroup R, so the following equation obtains

ξ̃α̂m∂α̂s = −Jms (3.3.56)

ξ̃ωm∂ωs = −Jms, (3.3.57)

from which conclude

ξ̃αm = 0, m > N ′. (3.3.58)

Then,

ξ̃mω = 0, m ≤ N ′ (3.3.59)

is also trivially satisfied. In the case m > N ′ (where N ′ is determined to be the Lie

algebra of R), ξ̃mω is an infinitesimal left transformation of R. On the other hand, in

the case m ≤ N ′, ξ̃mω is zero. Therefore, (3.3.54) and (3.3.55) become

∂iΦn + [Ai,Φn] = 0 n > N ′ (3.3.60)

fmnpΦp + [Φm,Φn] = 0 n ≤ N ′, (3.3.61)

which is the final form of the constraint we wanted (Appendix A.14 and A.15).
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Taking this constraint into account, we can further discuss about (3.3.45). First,

from (3.3.61), by setting Φ′
m = −Φm (m > N ′), Φ′

m can be regarded as the generator

of the subgroup R of G. Then Φ′
m is a constant and (3.3.60) is

[Ai,Φm] = 0. (3.3.62)

Here, looking at (3.3.45), Aω are non-zero. As already mentioned, one of the impli-

cations of constraint was that this component is zero. By gauge transformation, we

can show that this Aω component can be set to zero. For m > N ′, Jm and −Φm are

generators of S and the subgroup R of G, respectively, so Aω is written by

Aω = Φmξ̃mω = −Jmξ̃mω = (∂ωr)r
−1 (3.3.63)

(Appendix A.16), where r(yω) = exp(αm(yω)Jm) = exp(αm(yω)(−Φm)) and we used

(∂ωr)r
−1 = −Jmξ̃mω. (3.3.64)

Since r is also an element of the gauge group, we can vanish as follows;

Aω →r−1Aωr + (∂ωr
−1)r = r−1(∂ωr)r

−1r + (∂ωr
−1)r

= r−1(∂ωr) + (∂ωr
−1)r = 0. (3.3.65)

Since r commutes with Ai, the other gauge field components are

Ai = Ai(x) (3.3.66)

Aα = r−1Φmrξ̃mα (3.3.67)

under this gauge transformation, where i is the index that labels the space-time

manifold that is not affected by S transformations. Note that Ai is y
α̂ independent

because this fields should also be S-symmetric, which means

LξmAi(x, y) = (∂iξ
µ)Aµ + ξµ(∂µAi(x, y))

= ξα(∂αAi(x, y)) = 0, (3.3.68)

with ξµ(x, y) = (ξi(x, y), ξα(x, y)) = (0, ξα(yβ)). Under this gauge fixing, Wα̂ is

Wω = −r−1(∂ωr) = −r−1(∂ωr)r
−1r = −r−1Φmξ̃mωr (3.3.69)

Wα = 0 (3.3.70)
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so Wm = ξα̂mWα̂ is

Wm = −r−1Φnrξ
ω
mξ̃mω, (3.3.71)

which allows Aω to be absorbed within Wm. Since Aα and Wm are independent of

yω, we can always take r = 1 by choosing r appropriately. Thus, it is simplified to

Aα = Φmξ̃mα (3.3.72)

Wm = −Φnξ
ω
mξ̃nω. (3.3.73)

3.3.3 Dimensional reduction of the action

When the subspace of a space-time manifold is X and the group S acts transitively

on X , we have a homogeneous space S/R ∼= X . Then the metric of X is proportional

to the metric hαβ on S/R. The S-symmetric gauge fields that lived on the group

manifold S discussed in the previous section are also S-symmetric gauge fields on X .

For example, R3 and S3 can be divided into [0,∞)×S2. Since SO(3) acts transitively

on S2 (corresponding to X ), SO(3)/SO(2) ∼= S2. When, for example, the metric of

a space-time manifold can be written as

hµν(xi, yα) =

(
hij(x) 0

0 1
R2(x)h

αβ(y)

)
, (3.3.74)

dimensional reduction is possible in general.

If the original action can now be written as

L = −1

8
Tr

∫
dDxµh1/2FµνFστh

µσhντ , (3.3.75)

it can be expanded to

L = −1

8
Tr

∫
dD

′
xidN

′
yαh1/2

[
FijFklh

ikhjl +
2

R2
FiαFjβh

ijhαβ +
1

R4
FαβFγδh

αγhβδ
]
.

(3.3.76)

If we gauge transform Aω = 0 and note that hα̂β̂ = h̃α̂β̂ , the second term of this

action can be calculated as

FiαFjβh
ijhαβ = (∂iAα − ∂αAi − [Ai, Aα])(∂jAβ − ∂βAj − [Aj , Aβ ])h̃

αβhij

= (∂ir
−1Φmr − [Ai, r

−1Φmr])ξ̃mα(∂jr
−1Φnr − [Aj , r

−1Φnr])ξ̃nβh̃
αβhij

= r−1(∂iΦm − [Ai,Φm])ξ̃mα̂(∂jΦn − [Aj ,Φn])ξ̃nβ̂ ξ̃
α̂
k ξ̃

β̂
kh

ijr

= r−1DiΦkDjΦkh
ijr, (3.3.77)
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which is no longer yω dependent. We also see that r disappears from the action

without taking r = 1. This result can also be obtained using (3.3.19). The third term

can be calculated in the same way as

FαβFγδh
αγhβδ = (frstΦt + [Φr,Φs])(frstΦt + [Φr,Φs])

= 2V (Φ). (3.3.78)

From the above, the action is reduced to

L = Ω

∫
dD

′
xRN

′
(dethij)

1/2Tr
[1
4
FijFklh

ikhjl +
1

2R2
DiΦmDjΦmh

ij +
1

2R4
V (Φ)

]
(3.3.79)

by dimension reduction.

3.3.4 Solution of Constraint

A general method for solving the constraints arising from dimensional reduction

is given by Manton in Ref. [105]. The constraint we want to solve now is for the

SU(2+1) case including c and b quarks, which is also specifically calculated for the

SU(3) gauge group in this paper. In this case, the constraints (3.3.60) and (3.3.61)

we want to solve now become

∂µΦ3 + [Aµ,Φ3] = 0 (3.3.80)

∂zΦ3 + [Az,Φ3] = 0 (3.3.81)

fm3pΦp + [Φm,Φ3] = 0. (3.3.82)

First, let us briefly review the essential knowledge of group theory required in this

section. For details, please refer to Ref. [105]. In this section, we will use a Chevalley

basis, which allows us to relate the properties of commutation relations and Killing

forms to root usefully.

Choose all d bases of any compact Lie algebra g that are commutative with each

other and denote them by Hi, then Hi satisfying

[Hi,Hj ] = 0, (i, j = 1, ..., rank(g)) (3.3.83)

is called a Cartan subalgebra and its maximum number is denoted by rank (g). The

adjoint representation of allHi has a common eigenvector vω of d−rank(g) eigenvalues

ωi (ω denotes each root). For a vω, ωi is called the root of g. The root is a finite set
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of vectors spanning rank(g) -dimensional Euclidean space. Each root has a one-to-

one correspondence with its generator, which we denote by χω. In this case, we can

replace the basis of g with a new d basis of Hi and χω. The commutation relation of

the newly chosen generators, including (3.3.83), is

[Hi, χω] = ωiχω (3.3.84)

[χω, χ−ω] =
2ωi
ω · ω

(3.3.85)

[χω, χτ ] = (r + 1)χω+τ . (3.3.86)

Furthermore, the Killing form has the property

(Hi, χω) = 0

(χω, χ−ω) =
2

ω · ω
(χω, χτ ) = 0, (τ ̸= ω). (3.3.87)

An ω string through τ means a set of roots τ − rω, ..., τ + qω consisting of root ω

and τ . The r, q is the largest integer for which τ − rω, ..., τ + qω. If we define the

quantity

⟨τ, ω⟩ = 2τ · ω
ω · ω

, (3.3.88)

then

r − q = ⟨τ, ω⟩. (3.3.89)

holds.

In particular, in the case of SU(3), we consider a γ string through α consisting of

two roots of α− γ, α because we will use it later. For r = 0, q = 1, we obtain

⟨α, γ⟩ = 2
|α|
|γ|
cosθ = 1 (3.3.90)

using (3.3.89), where θ is the angle between α and γ. Then, since

⟨γ, α⟩ = 2
|γ|
|α|

cosθ (3.3.91)

is also satisfied, the relation

γ · γ
α · α

= 4cos2θ = ⟨γ, α⟩ (3.3.92)
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is also concluded. Furthermore, with β = α−γ, we get that the commutation relation

between these two is

[χγ , χβ ] = χα, [χ−γ , χ−β ] = −χ−α,

[χ−γ , χα] = χβ , [χγ , χ−α] = −χ−β ,

[χα, χ−β ] = ⟨γ, α⟩χγ , [χ−α, χβ ] = −⟨γ, α⟩χ−γ . (3.3.93)

Now we are ready to solve constraint. To solve (3.3.80) and (3.3.81), we first set

up ansatz Φ3 = ϕ3iHi(= const). In this case, (3.3.80) and (3.3.81) is

[Aµ,Φ3] = 0 (3.3.94)

[Az,Φ3] = 0. (3.3.95)

Therefore, Aµ,z also satisfies this constraint if it is a linear combination of Cartan

subalgebras. For Aµ,z, another solution exists. From (3.3.84), we have

[Φ3, χγ ] = Φ3iγiχγ , (3.3.96)

so if we choose Φ3i so that Φ3iγi = 0, the constraint is satisfied by writing Aµ,z as

a linear combination of Cartan subalgebra and χ±γ . Now, when we define a Cartan

subalgebra denoted

hγ =
2γi
γ · γ

Hi, (3.3.97)

we can write

t1 =
1

2
i(χγ + χ−γ), t2 =

1

2
(χγ − χ−γ), t3 =

1

2
ihγ , y =

1

2
ih (3.3.98)

for the generator of SU(2)×U(1). Here h is another Cartan subalgebra defined or-

thogonal to hγ and normalized to

(h, h) = (hγ , hγ) =
4

γ · γ
. (3.3.99)

From the above discussion, to satisfy (3.3.80) and (3.3.81), we should choose Φ3 =

ϕ3iHi and

Aµ,z = A1
µ,z(x, z)t1 +A2

µ,z(x, z)t2 +A3
µ,z(x, z)t3 +Bµ,z(x, z)y, (3.3.100)

where Φ3iγi = 0.

91



Next, let’s solve constraint (3.3.82). Since fmnp is a structure constant of SO(3),

constraint is written as

[Φ3,Φ1(x, z)] = −Φ2(x, z) (3.3.101)

[Φ3,Φ2(x, z)] = Φ1(x, z). (3.3.102)

Here, by defining Φ = Φ1 + iΦ2, Φ̃ = Φ1 − iΦ2, the constraint is

[Φ3,Φ(x, z)] = iΦ(x, z) (3.3.103)

[Φ3, Φ̃(x, z)] = −iΦ̃(x, z). (3.3.104)

Considering a γ string through α, we can choose Φ3iαi = i to keep Φ3iγi = 0. Then

Φ3iβi = Φ3i(γi − αi) = −i, which satisfies constraint (3.3.82) by setting

Φ = ϕ1χα + ϕ2χβ , Φ̃ = ϕ̃1χ−α + ϕ̃2χ−β . (3.3.105)

Since Φ1,2 is a real linear combination of generators of Lie algebras, we also find that

Φ1,2 is

ϕ̃1 = −ϕ∗1, ϕ̃2 = −ϕ∗2. (3.3.106)

Finally, Φ3 is chosen such that Φ3iγi = 0 and Φ3iαi = i, so that Φ3 is determined

as follows;

Φ3 =
1

2
iZ(hα + hβ), Z =

(
2− 1

2
⟨γ, α⟩

)−1
. (3.3.107)

This Φ3 can be identified with the subgroup U(1) of SU(3) if the basis is well chosen,

so the extra gauge field component (ω component) is zero, which satisfies another

requirement of the constraint. From the above, the constraint has been solved.

3.4 Heavy and exotic baryons in the Sakai-Sugimoto model

In the Sakai-Sugimoto model, we study the hadron physics by analyzing the 8 + 1

dimensional flavor gauge theory on the D8 brane in the black 4-brane background.

The gauge fields are denoted as AaM where a = 1, ..., 8 are for the flavor index and

M = 0, ..., 3, z, 6, ..., 9 for gauge field components. In comparison with actual QCD,

they have utilized five components, AaM=0,...,3,z, while the other four were ignored

when they derived a five-dimensional gauge theory as discussed in section 2.3.1 [10].
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Then the fifth-dimensional degrees of freedom play a role in generating various hadron

resonances of light flavors of u, d quarks in the four-dimensional space-time.

In this section, by utilizing a gauge field that lives in the extra dimension, we

extend the Sakai-Sugimoto model to the SU(2+1) flavor with heavy quarks. We find

that this gauge field transforms to a heavy meson by the method of dimensional

reduction proposed by Forgács and Manton (refer to the previous section and also

Ref. [36, 104, 105]). Thus, by this method, we obtain an action consisting of a

heavy meson and a light meson, where the mass term is supplemented. Starting from

this action, we derive the mass formula for the heavy baryon based on the method

of collective coordinate quantization of solitons. It is worth noting that our mass

formula includes not only conventional states but also exotic states such as Pc states.

3.4.1 Effective action with heavy and light mesons

In this subsection, we introduce heavy flavor to the action of the Sakai-Sugimoto

model by using the extra-dimensional gauge field. Therefore, we start the discussion

from the 9-dimensional action (2.3.1). The SU(2+1) (light+heavy flavors) gauge fields

on the probed D8 brane in the D4 brane background R4 ×S5 have nine components,

AM (M = 0−3, U, α), where U is a radial coordinate of S5 and α = ψ,φ, θ1, θ2 angular

coordinates of S5. The gauge fields have also flavor components denoted by the index

a, where AM = AaMλ
a/2 and λa are the Gell-Mann matrices. In the previous chapter

and Ref. [10, 11], the gauge field components on S4, Aα, were ignored. In the present

work, by regarding A4−7
α among Aaα as heavy mesons, we try to introduce heavy flavors

in the Sakai-Sugimoto (SS) model. Following Forgács-Manton method, this field is

transformed into a scalar field corresponding to the heavy meson field by dimensional

reduction of the extra dimension S4 with keeping the gauge field A4−7
α .

Since there are two types of terms in our action, this section is divided into two

parts. First, we explain how to reduce the dimensions of the higher dimensional Yang-

Mills gauge theory based on the explanation in the section. Second, we discuss the

Chern-Simons term that we will need.

93



The Yang-Mills part

In the present analysis, we treat Aψ and Aφ components as a heavy-meson field to

study the system consisting of heavy-mesons and nucleons. Aθ1 and Aθ2 components

are ignored for the minimal use of the extra-dimensional degrees of freedom. To reduce

the nine-dimensional theory to four dimensions while preserving the gauge field A4−7
α ,

we use Forgács-Manton’s dimensional reduction method [104].

We start our discussion with the action (2.3.1);

SDBID8 ≃ T8
(
2π2α′)2 ∫ d9xe−ϕ

√
−detggMNgPQtr

(
1

4
F

SU(3)
MP F

SU(3)
NQ

)
. (3.4.1)

Here, for the latter discussion, the metric of the D4 black brane is written as the

following 9× 9 matrix;

gMN =


(
R
U

)3/2
ηµν 0 0

0
(
U
R

)3/2
f 0

0 0
(
U
R

)3/2
U−2gαβ (Ω4)

 , (3.4.2)

where U is the radial coordinate of S5, R and UKK characterize the structure of S5,

with f = 1 − U3
KK/U

3 and the Minkowski metric, diag (ηµν) = (−1,+1,+1,+1).

With the generator of SO(3) transfomation ξm,

ξ1 = ξM1 ∂M = cosφ
∂

∂ψ
− cotψ sinφ

∂

∂φ
,

ξ2 = ξM2 ∂M = −sinφ
∂

∂ψ
− cotψ cosφ

∂

∂φ
,

ξ3 = ξM3 ∂M =
∂

∂φ
, (3.4.3)

which causes rotations around each axis in the (U,ψ, φ) space as Cartesian coordinate,

from the discussion of subsection 3.3, symmetry equation (3.3.4)(
∂Mξ

N
m

)
AN + ξNm∂NAM = ∂MWm + i [AM ,Wm] . (3.4.4)
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finally reduces to the following ansatz

Wm =

(
Φ3

sinφ

sinψ
, Φ3

cosφ

sinψ
, 0

)
, (3.4.5)

Aµ,U = Aµ,U (xν , U) ,

Aψ = −Φ1 (x
µ, U) ,

Aφ = Φ2 (x
µ, U) sinψ − Φ3cosψ, (3.4.6)

and constraint

[Φ3,Φ1] = −iΦ2,

[Φ3,Φ2] = iΦ1,

[Φ3, Aµ,U ] = 0, (3.4.7)

considering the consistency condition (3.3.16), where Φ1,2 are a function of (xµ, U),

Φ3 a constant and we employ a set of ansatz for field configurations.

If we substitute (3.4.5) and (3.4.6) for (3.4.1), we can perform the integration of

the higher dimensional manifold S4 (also refer to section 3.3.3), resulting in a five-

dimensional action;

SYM = κ

∫
d4xdztr

[
−1

2
K−1/3F 2

µν −KF 2
µz

−4

9
(DµΦm)

2 − 4

9
K4/3 (DzΦm)

2

−16

81
K1/3 (iϵrstΦt + [Φr,Φs])

2

]
,

(3.4.8)

where κ = Ncλ/216π
3 = aNcλ, Nc is a color number, and λ the t’Hooft coupling

constant. We use the change of variables between U and z by U3/U3
KK = 1+z2 = K.

R and UKK are expressed by Kaluza-Klein mass MKK (2.2.15), which set MKK = 1.

Following section 3.3.4, we solve the constraint (3.4.7), then we have the solutions;

Aµ,z = A1
µ,z

λ1
2

+A2
µ,z

λ2
2

+A3
µ,z

λ3
2

+A8
µ,z

λ8
2
. (3.4.9)

Φ =
1

2

 0 0 ϕ1
0 0 ϕ2
0 0 0

 , Φ̃ =
1

2

 0 0 0
0 0 0
ϕ∗1 ϕ∗2 0

 , (3.4.10)
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where Φ = Φ1 + iΦ2, Φ̃ = Φ1 − iΦ2 and ϕ1,2 are complex scaler fields [105]. These

expressions imply that the gauge fields Aµ,z correspond to light mesons and ϕi to

heavy mesons. In fact, this situation corresponds to the separation of the brane

carrying the heavy flavor from the two light branes in the brane picture. The ϕ

corresponds to the string which connects the light and heavy branes, thus this can

be regarded as a heavy meson. It is also discussed in Ref. [109] that the mass of the

string on S4 is heavier. Substituting the light-heavy decomposed fields (3.4.9) and

(3.4.10) for the Yang-Mills action (3.4.8), we find

SYM = κ

∫
d4xdz

{
tr

[
−1

2
K−1/3F 2

µν −KF 2
µz

]
−4

9
(Dµϕ)

†
(Dµϕ)−

4

9
K4/3 (Dzϕ)

†
(Dzϕ)

−16

81
K1/3

(
12

9
− 2ϕ†ϕ+

(
ϕ†ϕ

)2)2
}
. (3.4.11)

where ϕ† = (ϕ∗1, ϕ
∗
2) is a two component isospinor [105]. Fµν,z is the field strength of

the SU(2)× U(1) gauge fields (3.4.9), and Dµ,z a covariant derivative.

The Chern-Simon part

We consider the dynamics of (anti) heavy meson fields under the soliton background

in the next subsection. It is known that the Wess-Zumino-Witten term plays an

important role in the dynamics of the heavy baryon [57, 58, 90], which leads to, for

example, the contribution of the attraction (repulsion) that the heavy meson receives

from the soliton background. We start with the following Chern-Simons (CS) term

*3, introduced in Ref. [87], because this term leads to the WZW term.

SCS =
Nc
24π2

∫
trF3

trF3 =dω5 (A)

=d

[
tr

(
AF2 − i

2
A3F − 1

10
A5

)]
, (3.4.12)

*3 The Chern-Simon term is defined properly in an odd dimensional space-time. Here following

Ref. [87] we call the CS term for
∫
trF3.

96



where F is the field strength of A, and the 1-form A is A = AMdx
M = AMdx

M +

ÂMdx
M (M = 0, 1, 2, 3, z, s).

The U(1) term of (3.4.12) decomposes

SCS =
Nc
24π2

∫
trF 3

+
Nc
24π2

1√
2Nf

∫ [
3ÂtrF 2 +

1

2
ÂF̂ 2

]
, (3.4.13)

where in the second term we have used the Stokes’s theorem to reduce the six-

dimensional integral to the five-dimensional one. If we choose Az = 0 gauge, omit

massive modes, and integrate over z, the first term is

Nc
24π2

∫
trF 3 ≃ − iNc

240π2

∫
tr
(
UdU−1

)5
, (3.4.14)

which is nothing but the WZW term [87].

Using the instanton solution of Ref. [12], the Atiyah-Manton approach [72] yields a

chiral field U of the following form;

U |s=0 = exp

(
iH (x) x̂ · τ/fπ 0

0 0

)
, (3.4.15)

where x̂ is a unit vector, τ a Pauli matrix, fπ the decay constant of the pion and the

function H (x) is given as∫ +∞

−∞
dz′Aclz (x, z′) = H (x) x̂ · τ .. (3.4.16)

The choice of s = 0 corresponds to the boundary of the six-dimensional manifold on

which the WZW term is defined. In order for the WZW term to vanish identically in

the SU(2) case, we introduce the heavy meson fields φ (x) corresponding to the λ4−7

components into the chiral fields as follows;

U |s=0 = exp

(
iH (x) x̂ · τ/fπ φ (x) /fH
φ† (x) /fH 0

)
, (3.4.17)

where fH is the decay constant of heavy mesons. As we will discuss later, the function

φ (x) corresponds to the lowest eigenmode of the heavy meson fields ϕ when performed

the mode expanded in the fifth z-dimension.
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Substituting (3.4.17) for (3.4.14) we find

−i Nc
240π2

∫
tr
(
UdU−1

)5
=
iNc
f2H

∫
d4xBµ

(
φ†Dµφ− (Dµφ)

†
φ
)
, (3.4.18)

where Bµ is the baryon number current by the soliton,

Bµ=
ϵµναβ

24π2
tr
[(
Uπ∂νU

−1
π

) (
Uπ∂αU

−1
π

) (
Uπ∂βU

−1
π

)]
,

(3.4.19)

with Uπ = exp (iH (x) x̂ · τ/fπ) [58].

The model action

To achieve our aim, we need to introduce a mass term into the action, which is not

easy to implement in the Sakai-Sugimoto model. We discussed a way to accomplish

this in section 3.2.2, but here, for simplicity, we will supplement the mass term to the

action we will use as follows.

S = SYM + SCS −m2K1/3ϕ†ϕ (3.4.20)

where the function K1/3 is introduced in accordance with (3.4.11) in consideration of

the curved nature of the fifth-dimension.

3.4.2 Classical solutions

In the same way as section 2.4.1, we performe the 1/λ expansion and obtain a

solution for the gauge configuration order by order. In the leading order, the SU(2)

∈ SU(3) part of the gauge field AclM (x, z) and the U(1) part ÂclM (x, z) are same as the

solution (2.4.45). In the next to leading order, the time-components of the SU(2) and

U(1) gauge fields are the solution (2.4.45),

The solution of the heavy meson fields ϕ

Now we find a static classical solution of the heavy meson field ϕ(x, z) under the

above gauge field background. For this purpose, we first employ mode expansion with
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a complete set {ψn (z)} according to section 2.3.2.

ϕ (x, z) =
∑
n=0

φn (x)ψn (z) , (3.4.21)

where φn are two component isospinors. We can choose an arbitrary complete set

{ψn (z)}, and therefore, we choose the one to diagonalize the kinetic and mass terms

in the four-dimensional space-time. The eigenvalue equations that such a complete

set should satisfy are found according to section 2.3.2 as follows,

−∂z
(
K4/3∂zψn (z)

)
+m2K1/3ψn (z) = λnψn (z) .

(3.4.22)

These eigenstates ψn (z) correspond to various meson resonances with their eigenval-

ues regarded as their squared masses. If we consider only the lowest eigenmode, the

quadratic terms in ϕ of (3.4.11) become

κ

∫
d4x

[
−∂µφ† (x) ∂µφ (x)−m2

Hφ
† (x)φ (x)

]
, (3.4.23)

where M = 0, 1, 2, 3, z, mH =
√
λ0, and we redefine ψ = ψ0, φ = 2/3φ0. The

mass parameter m is determined such that mH becomes the heavy meson mass

(D(1870), B(5279)).

Next, we perform a 1/λ expansion to derive the equation of motion that φ = 2/3φ0

must satisfy. We consider the following rescale;

x̃0 = x0, x̃M = λ1/2xM ,

Ã0 = A0, ÃM = λ−1/2AM , φ̃ = λ−1/2φ, (3.4.24)

where M = 1, 2, 3, z. In the following calculations, we omit the tilde for simplicity.

Then, the action for φ, Sφ becomes to the leading order of 1/λ expansion

Sφ ∼ aNcλ
1

∫
d4x

(
−∂iφ†∂iφ− φ†

(∫
dzψ2A2

M

)
φ

)
,

(3.4.25)

where A2
M is proportional to identity matrix by substituting the solution (2.4.45).

Therefore, to solve the equation of motion for φ (x) we can decompose the two com-

ponent SU(2) spinor φ (x) into f (x)χ, where χ is a two component spinor. Then,
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the resulting equation of motion for φ is given as

∂2rf +
2

r
∂rf −

(
3

∫
dz

ψ2
(
z2 + r2

)
(z2 + r2 + ρ2)

2

)
f = 0.

(3.4.26)

To solve this equation, we discuss asymptotic behavior, where for simplicity, we

rescale the variables as ξ → ρξ. First, at r → 0, the third term of (3.4.26) approaches

zero, so we know that f has the asymptotic form f ∼ r−1. Next, we consider the

behavior in r → ∞. To do so, multiply (3.4.26) by r2 to get

r2∂2rf + r∂rf −

(
3

∫
dzψ2

(
z2/r2 + 1

)
(z2/r2 + 1 + 1/r2)

2

)
f = 0.

(3.4.27)

If z is small, the integrand of the third term of (3.4.27) becomes(
z2/r2 + 1

)
(z2/r2 + 1 + 1/r2)

2 ∼ 1.

Also if z is large, that term becomes smaller than 1. However, in this case ψ becomes

almost zero, so in this region, the third term does not contribute to the equation of

motion (3.4.27). Therefore, we can set the third term equals 3f . From the above,

f |r→∞ satisfies the following equation;

r2∂2rf + r∂rf − 3f = 0.

Therefore, the asymptotic behavior at r → ∞ is

f ∼ r
−1−

√
13

2 .

We have solved Eq. (3.4.26) numerically satisfying the above asymptotic behaviors.

Considering the classical solution of the gauge field and the moduli space parame-

terized by the collective coordinates of this solution, we will see next that the mass

formula of the heavy baryon can be obtained by performing a collective coordinate

quantization.
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3.4.3 Quantization

Collective coordinates

The collective coordinates of the present model consist of those used in section 2.4.2

in addition to that generated by the introduction of the heavy mason.

• Position of the instanton (X, Z)

• Size of the instanton ρ

• SU(2) orientation V

• Two component SU(2) spinor χ

where (X, Z) and ρ are the position and size of the instanton, respectively, and V the

SU(2) matrix corresponding to soliton rotations. The two component SU(2) spinor is

introduced as the collective coordinate corresponding to the vibrations of the heavy

meson field as follows.

ϕ = f (x)ψ (z)

(
χ1

χ2

)
= f (x)ψ (z)χ. (3.4.28)

We give time dependence to the classical solutions from these through the collective

coordinates. In the collective coordinate quantization of the gauge theory, we need

to be a bit careful [108], which we discussed in Appendix B. Now, for the classical

solution we have obtained, we introduce the collective coordinate for the gauge field

and for ϕcl as follows.

AM
(
t, xN

)
= V AclM

(
xN ;XN (t) , ρ (t)

)
V −1 − iV ∂MV

−1,

(3.4.29)

ϕ
(
t, xN

)
= V ϕcl

(
xN ; ρ (t) , χ (t)

)
, (3.4.30)

where V = V
(
t, xN

)
is an element of the gauge group SU(2). In the A0 = 0 gauge

with imposing the Gauss’s law:

Dcl
M

(
ẊN ∂

∂XN
AclM + ρ̇

∂

∂ρ
AclM −Dcl

MΦ

)
= 0, (3.4.31)

where M,N = 1, 2, 3, z, Φ = −iV −1V̇ and Dcl
M = ∂M + i

[
AclM ,

]
. By having the

solution of Φ to (3.4.31) [12], spurious motions along the gauge orbits are removed in

the collective motions (refer to Appendix B).
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Heavy meson field

The action involving the heavy meson fields is written as follows;

Sφ =aNc

∫
d4x

[
λ1
(
−∂iφ†∂iφ− φ†

(∫
dzψ2A2

M

)
φ

)
+λ0

(∫
dzψ2 (D0φ)

†
D0φ−m2

Hφ
†φ

)]
+λ0

iNc
f2H

∫
d4xBµ

(
φ†Dµφ− (Dµφ)

†
φ
)
, (3.4.32)

where the covariant derivative D0 is defined as D0φ = ∂0φ+ iA0φ.

It is convenient to introduce the heavy meson field as [110]

ϕ = e∓imHtϕ̃ = f (x)ψ (z) e∓imHtχ̃ (t) , (3.4.33)

where −/+ correspond to heavy/anti-heavy mesons. Here we perform a 1/mH ex-

pansion in addition to the 1/λ expansion and consider only its leading term. Then,

we substitute the solutions (3.4.30) for (3.4.32), the first line of (3.4.32) is zero and

the second line becomes∫
d4xdzf2ψ2

[
(D0 (V χ))

†
D0 (V χ)−m2

Hχ
†χ
]

≃ 2mH

∫
d4xdzf2ψ2χ̃†D0χ̃. (3.4.34)

Finally, the third line becomes

Nc
ρ2

( 4

πf2H

∫
drsin2H

dH

dr
f2 − a

∫
d3xdzÂcl0 ψ

2f2
)
χ̃†χ̃, (3.4.35)

because the only the time component of Bµ contributes, i.e.

B0 =
1

2π2

sin2H

r2
dH

dr
, (3.4.36)

where using the rescale xM → ρxM , Âcl0 is

Âcl0 =
1

8π2a

1

ξ2

[
1− 1

(ξ2 + 1)
2

]
. (3.4.37)
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Quantization

By employing the normalization aNc
∫
d3xdzf2ψ2 = 1, absorbing the coefficient

of the kinetic term of χ̃ and integrating over the space of (xµ, z), in addition to the

Lagrangian (2.4.77), we obtain the Lagrangian of the collective coordinate χ̃∫
dt [LX + LZ + Ly] +O

(
λ−1,m−1

H

)
,

Lχ = ±iχ̃†∂tχ̃±A
Nc
ρ2
χ̃†χ̃, (3.4.38)

where we define constant A as follows;

Nc
ρ2

( 4

πf2H

∫
drsin2H

dH

dr
f2 − a

∫
d3xdzÂcl0 ψ

2f2
)
χ̃†χ̃,

(3.4.39)

Before giving the mass formula, we discuss the physical meaning of quantum num-

bers [57]. In the classical solution, the heavy meson fields have the spin 0 and the

isospin 1/2. First, we consider the isospin rotation. By the isospin rotation gI = eiθ·I,

the gauge fields are transformed into

AM→ gIAMg
−1
I − igI∂Mg

−1
I

= (gIV )AclM (gIV )
−1 − i (gIV ) ∂M (gIV )

−1
. (3.4.40)

On the other hand, the heavy meson field transforms

V χ̃→ gIV χ̃. (3.4.41)

Therefore, V carries the isospin, and V and χ̃ have the following transformation

properties: {
V → gIV
χ̃→ χ̃.

(3.4.42)

Second, we consider the spatial rotation. When the gauge transformation which

is equivalent to the spatial rotation is written as gJ = eiθ·J, spatial rotation act the

gauge field as follows:

AM
(
t, RNPx

P
)

= V AclM
(
RNPx

P ;RNPX
P
)
V −1 − iV V −1

=
(
V e−iθ·I

)
AclM

(
xN ;XN

) (
V eiθ·I

)−1 − i
(
V e−iθ·I

)
∂M

(
V eiθ·I

)−1
, (3.4.43)
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where the hedgehog like structure relates the spatial rotation to isospin rotation, and

so the spatial rotation is expressed by gI . Also, the scalar field is transformed into

V ϕ̃ (t, x) → V ϕ̃
(
t, RMNx

N
)
= V eiθ·Jϕ̃ = V e−iθ·Ifψeiθ·Tχ̃ (t) , (3.4.44)

where T = J + I is the grand spin operator. Therefore, V and χ have the following

transformation properties: {
V → V e−iθ·I

χ̃→ eiθ·Tχ̃.
(3.4.45)

From the above, after doing the collective rotation, χ̃ has the spin 1/2 and the isospin

0. Thus, we should quantize χ̃ as fermions:{
χ̃i, χ̃

†
j

}
= χ̃iχ̃

†
j + χ̃†

jχ̃i = δij . (3.4.46)

3.4.4 Mass formula

By correcting the term proportional to 1/ρ2 in (2.4.77), our Hamiltonian has the

same form as in Ref. [12]. Therefore, we perform the same quantization procedure,

which leading to the following mass formula,

M =M0 +
(
NQ +NQ

)
mH

+

√
(l + 1)

2

6
+

2N2
c

15

(
1− 40aπ2A

Nc

(
NQ −NQ

))
MKK

+
2 (nρ + nZ) + 2√

6
MKK , (3.4.47)

where M0 is the instanton mass, NQ/Q the number of heavy/anti-heavy mesons. The

numerical constant, A, is the new term added to the mass formula of Ref. [12] in our

analysis.

The spin of a heavy baryon is represented by the sum of the spin of the instantons

and havey mesons. The instanton spin and isospin are both l/2 from the hedgehog

structure. Also, as mentioned in subsection 2.4.4, when nZ is even or odd, the wave

function of nZ has even and odd parities. Note that ϕ̃ = fψχ̃ has parity even.

Parameters in or mass are (M0,MKK ,m, fπ) and are shown in Table. 3.3. Also,

m is determined so that mH is the mass (D(1870), B(5279)) of the heavy meson.
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The pion decay constant is fπ = 61.2 MeV which is about 30% smaller than the

experimental value 93.2 MeV [111, 81]. The heavy meson decay constant fH was

determined to be fD/fπ = 1.7 and fB/fπ = 1.6 in the charm and bottom baryon

analyses, respectively, with reference to Ref. [111]. For the Kalza-Klein mass, we

used MKK = 500 MeV, which reproduces the nucleon and ∆(1232) mass splitting,

following Ref. [12]. Having these inputs, there is only one free parameter M0 which

is fixed to reproduced the mass of Λc(2286). We see that our mass formula differs

from Ref. [31] by a term proportional to A. This term depends on the heavy meson

decay constant fH , while there is no such parameter dependence in the mass formula

of Ref. [31]. From (3.4.39) with the decay constant values as in Table. 3.3, we find

A = 0.078 for charm and A = 3.7 for bottom sectors, respectively.

Table 3.3 Parameters in our model.

M0(MeV) MKK(MeV) m/MKK m/MKK fπ/MKK

-572 500 4.385 10.62 0.122

(charm) (bottom)

Results are summarized in Table. 3.4.

These results have some characteristic properties as follows.

• As in Ref. [12] and Table. 2.3, this mass formula shows degeneracy of the Roper

resonance and negative parity resonance, which is consistent with the experi-

mental data in the light flavor sector, while this feature is difficult to explain

in the quark model. This feature is also generalized to the hyperon case [112],

hence it is an interesting question whether this feature exists when extended

to charms and bottoms. Possible candidates are Λc(2765) and Λb(6072), while

their spin and parity are to be determined. In particular, since it has been

argued that the excitation energy of the Roper resonance is flavor independent,

our results are consistent [23] with this context.

• If we expand the mass formula (3.4.47) by 1/Nc, the mass splitting of Λc and

Σc is proportional to 1/Nc. This splitting is related to the spin-spin interaction,

and the Nc dependency is consistent to that of the 1/Nc expansion scheme.

• Because we have included only the leading terms of 1/mH expansion, we have
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Table 3.4 Predictions of our mass formula for the charmed and bottomed

baryons in comparison with experimental data where available. Masses of heavy

quark doublet, for instance Σc and Σ∗
c , are degenerate in the heavy meson limit

mH → ∞.

B IJP l nρ nz NQ NQ our model/MeV exp./MeV

Λc 0 1
2

+
0 0 0 1 0 [2286] 2286

Σc 1 1
2

+
2 0 0 1 0 2523 2453

1 3
2

+
2 0 0 1 0 2523 2520

Λ∗
c 0 1

2

−
0 0 1 1 0 2694 (2595)

0 1
2

+
0 1 0 1 0 2694 (2765)

Σ∗
c 1 1

2

−
, 1 3

2

−
2 0 1 1 0 2931 -

1 1
2

+
, 1 3

2

+
2 1 0 1 0 2931 -

Pc
1
2
1
2

−
, 12

3
2

−
1 0 0 1 1 4255 4312/4380/4440,4457

P ∗
c

1
2
1
2

−
, 12

3
2

−
1 0 1 1 1 4664 -

1
2
1
2

+
, 12

3
2

+
1 1 0 1 1 4664 -

Λb 0 1
2

+
0 0 0 1 0 5676 5620

Σb 1 1
2

+
2 0 0 1 0 5919 5810

1 3
2

+
2 0 0 1 0 5919 5830

Λ∗
b 0 1

2

−
0 0 1 1 0 6084 5912

0 1
2

+
0 1 0 1 0 6084 (6072)

Σ∗
b 1 1

2

−
, 1 3

2

−
2 0 1 1 0 6327 -

1 1
2

+
, 1 3

2

+
2 1 0 1 0 6327 -

Pb
1
2
1
2

−
, 12

3
2

−
1 0 0 1 1 11070 -

P ∗
b

1
2
1
2

−
, 12

3
2

−
1 0 1 1 1 11480 -

1
2
1
2

+
, 12

3
2

+
1 1 0 1 1 11480 -

obtained the heavy quark symmetry (HQS) singlet Λc,b(0
1
2

+
) and the degen-

erate doublet Σc,b(1
1
2

+
, 1 3

2

+
). On the other hand, the lowest Λc,b(0

1
2

−
) and

Λc,b(0
3
2

−
), which correspond to λ mode in a quark model, do not exist in the

present model. This is because the present analysis considers only instanton

excitations, which in terms of the quark model is related to the ρ mode. The

negative parity lowest mode Λc,b(0
1
2

−
) and Λc,b(0

3
2

−
) corresponding to λ mode

106



should be described by considering the bound state of the instanton as a nu-

cleon and the second lowest eigenmode of the mode expansion (3.4.22). These

are future work.

• Empirically, the mass splitting of Λc and Λ∗
c is about twice larger than that of

Λc and Σc. In the present study, the value of A plays an important role to make

this order of baryon masses. In particular, for ∆Σc−Λc
≡M(Σc)−M(Λc) and

∆Λ∗
c−Λc ≡ M(Λ∗

c) −M(Λc), we have ∆Σc−Λc < ∆Λ∗
c−Λc in accordance with

the experimental data, while the formula in Ref. [31] results in the reversed

relation. Let B be

B = 1− 40aπ2A

Nc
. (3.4.48)

For B = 0, we find ∆Σc−Λc
= ∆Λ∗

c−Λc
. As A becomes smaller (i.e. B becomes

larger), ∆Σc−Λc
becomes larger, and at some point, ∆Λ∗

c−Λc
equals 2∆Σc−Λc

.

Recently, in Ref. [33], they have realized the same mass ordering as ours by the

correction to the mass formula of Ref. [31], as a result of their analysis of the

subleading term up to 1/mH .

• Our mass formula can also predict the recently reported Pc(4312/4380/4440, 4457)states.

Similarly, we predict the masses of the hidden bottomed pentaquark states,

which have not yet been observed (denoted as Pb in this paper). However, due

to the instanton hedgehog structure, our mass formula cannot generate 1
2
5
2

+
.

3.4.5 Conclusion

In this section we discuss how to analyze the heavy baryon by the Sakai-Sugimoto

model and derive the mass formula. We describe the heavy baryon as a bound state

of instantons and heavy mesons corresponding to nucleons by interpreting the extra-

dimensional component of the gauge field as a heavy meson, which was ignored in

Ref. [10]. The heavy baryon is described as the bound state of the instanton and

heavy meson corresponding to the nucleon. In this process, we obtained the action

consisting of the light meson and heavy meson fields that form the instanton by using

the Forgács-Manton method [104, 105] as a method of dimensional reduction while

keeping the extra dimensional component of the gauge field corresponding to the

heavy meson. To obtain the mass formula, we introduced a new collective coordinate
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for the vibrations of the heavy meson and performed the quantization of the system

according to the method of collective coordinate quantization. When quantizing our

model, as in Ref. [57], heavy mesons behave as heavy quarks, which was referred to

as transmutation of quantum numbers in the intrinsic frame of the hedgehog instan-

ton [31]. Finally, we compared the obtained mass spectra with the experimental data

and confirmed that our results are consistent with the experiments.

In our model, we have considered the limit of the large Nc and the t’Hooft coupling

λ as in [12], and also took the limit of large mH . We have treated the only lead-

ing terms of 1/mH , so we have obtained the HQS singlet Λc,b(0
1
2

+
) and the doublet

Σc,b(1
1
2

+
, 1 3

2

+
). Also, our mass formula has yielded the degenerate Roper like and odd

parity excitations. Moreover, we have realized the mass ordering ∆Σc−Λc
< ∆Λ∗

c−Λc
,

which is failed to reproduce in Ref. [28] in accordance with the experimental data. Fur-

thermore, our model has hidden charmed pentaquark states Pc(4312/4380/4440, 4457)

reported recently [113, 114]. Similarly, we have predicted the masses of hidden bot-

tomed pentaquark states not yet observed.

As a further development, the analysis performed for nucleon resonance in section

4.3 may be applied to heavy baryons. The Forgács-Manton method [104] used in this

study may also be applied to the study of neutron stars with hyperons. Our recent

work has shown that this method can be useful in considering ansatz for introducing s

quarks in the study of neutron stars by holographic QCD. This is another interesting

future work.
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Chapter 4.

Properties of nucleon resonances

In this chapter, we use the Sakai-Sugimoto model to calculate the electromagnetic

transition amplitudes and decay widths of several low-lying nucleon excited states.

These observables strongly reflect the internal structure of hadrons, leading to a fur-

ther understanding of the properties of hadron resonances and a deeper understanding

of low-energy QCD. In particular, since the Sakai-Sugimoto model represents hadron

resonances by utilizing the geometry of extra dimensions, it is useful to investigate

the dynamical properties in order to verify the validity of this picture.

First, in the next section, we define the chiral current. In the Sakai-Sugimoto

model, the current has been defined from two points of view. Therefore, we discuss

these points and review two definitions. After that, in section 4.2, we will explain the

analysis of static properties of nucleons, and finally, in section 4.3, we will introduce

our recent works on the analysis of dynamical properties of nucleon resonances.

4.1 The definition of the chiral current in the Sakai-Sugimoto

model

In order to investigate the dynamical properties of nucleon resonances, it is neces-

sary to define the chiral current. In the Sakai-Sugimoto model, the chiral current is

defined using the GKP-Witten relation. However, because this method defines the

chiral current in the boundary of the bulk theory, the matrix element of the current by

baryon states vanishes in the case where there is a BPST instanton solution (baryon)

with SO(4) symmetry in a four-dimensional space. This is attributed to the fact that
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by procesure of the 1/λ expansion, we ignore the effects of the warp factors h(z) and

k(z), and obtain the classical solution. Therefore, taking into account the effect of the

warp factor, we determine the asymptotic behavior of the soliton solution to allow the

calculation of well-defined currents. Alternatively, by considering the bulk theory as

a five-dimensional hadron effective theory, we can have another definition of currents.

The former is a proper method from the viewpoint of AdS/CFT correspondence,

which has been confirmed to explain the nucleon properties well [16]. On the other

hand, the latter method, which also reproduce the nucleon properties well [13], has

an unclear connection with the AdS/CFT correspondence. However, considering that

the five-dimensional hadron model proposed in Ref. [77] leads to the same action as

the Sakai-Sugimoto model, the bulk theory of the Sakai-Sugimoto model is expected

to work as a hadron effective theory, which ensures the validity of the latter current.

4.1.1 The chiral current in the GKP-Witten relation

The GKP-Witten relation

The GKP-Witten relation regards the field in the bulk as external fields of the

gauge theory existing at its boundary and allows the analysis of physical quantities

coupled to it [115, 116]. Here, we defined the external fields as follow;

Aα (x
µ, z) = Acl

α (xµ, z) + δAα (x
µ, z) (4.1.1)

which are related to the left and right gauge fields in the four dimensional space at

z → ±∞,

δAµ (x
ν , z → +∞) = ALµ (x

ν) ,

δAµ (x
ν , z → −∞) = ARµ (x

ν) .

Substituting this field into the action, the coefficients of the first order in ALµ, ARµ

is identified with the left and right currents J µ
L , J

µ
R with the sign properly taken into

account,

κ

∫
d4x

[
2tr
(
δAµk (z)Fcl

µz

)]z=+∞
z=−∞ ,

= −2

∫
d4xtr (ALµJ µ

L +ARµJ µ
R ) . (4.1.2)
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where

J µ
L = −κ

(
k (z)Fcl

µz

) ∣∣
z=+∞,

J µ
R = +κ

(
k (z)Fcl

µz

) ∣∣
z=−∞. (4.1.3)

The vector and axial-vector currents are then obtained by

J µ
V = J µ

L + J µ
R = −κ

[
k (z)Fcl

µz

]z=+∞
z=−∞

J µ
A = J µ

L − J µ
R = −κ

[
ψ0 (z) k (z)Fcl

µz

]z=+∞
z=−∞ , (4.1.4)

with ψ0 (z) = (2/π) arctan z.

The baryon number current is defined as

JµB =
2

Nc
ĴµV = − 2

Nc
κ
[
k(z)F̂µz

]z=+∞

z=−∞
. (4.1.5)

Then, baryon number density is given by

J0
B =

2

Nc
ĴµV = − 2

Nc
κ
[
k(z)F̂ 0z

]z=+∞

z=−∞
= − 2

Nc
κ

∫
dz∂z

(
k(z)F̂ 0z

)
. (4.1.6)

Here, by using equation of motion, it becomes

J0
B = − 1

64π2

∫
dzϵ0MNPQF aMNF

a
PQ + (total derivative). (4.1.7)

Furthermore, integrating this in space, it coincides with the instanton number, as

expected.

In the following, we will derive the four-dimensional effective action including the

external field by mode expansion and see how JV,µ and JA,µ are written by the

meson field, which is a component of this action. By using VV/A,µ = AL,µ ± AR,µ,

this effective action is written as

S|O(AL,AR) = −2

∫
d4xtr

(
VV,µJ µ

V + VA,µJ µ
A

)
. (4.1.8)

Now, as in (2.3.29), we perform the mode expansion of the gauge fields as

Aµ(x, z) =

∞∑
n=1

vnµ(x)ψ2n−1(z) +

∞∑
n=1

anµ(x)ψ2n(z), (4.1.9)

Az(x, z) = Π(x)ϕ0(z), (4.1.10)
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then substitute it into the action to get the 4-dimensional action

S|O(AL,AR) =

∫
d4x2tr

(
VV,µ

∞∑
n=1

gvnv
n
µ + VA,µ

( ∞∑
n=1

gana
n
µ + fπ∂µΠ

))
,

(4.1.11)

where fπ is the pion decay constant and gvn and gan the decay constant of the vector

and axial vector meson, respectively, giving as

fπ = 2

√
κ

π
, gvn = −2κ(k(z)∂zψ2n−1)|z=+∞, gan = −2κ(k(z)∂zψ2n)|z=−∞.

(4.1.12)

It should be emphasized that in the Sakai-Sugimoto model, these constants are not

parameters but quantities determined by the functions ψn(z) of the complete system

and the warp factor h(z), k(z), which reflects the QCD information. For later use,

the following expressions are also given;

gvn = λ2n−1κ

∫
dzh(z)ψ2n−1, gan = λ2nκ

∫
dzh(z)ψ2nψ0. (4.1.13)

From this action, by reading JV,µ and JA,µ, we obtain the following expression,

JV,µ = −
∞∑
n=1

gvnv
n
µ , JA,µ = −fπ∂µΠ−

∞∑
n=1

gana
n
µ, (4.1.14)

which show that vector currents are denoted by vector mesons only, indicating vector

meson dominance.

The asymptotic behavior of the instanton solutions

The above current defined by z → ∞ vanishes when the BPST instanton solution

with SO(4) symmetry is substituted. This is because the effect of the warp factor

in the z direction is neglected to solve the classical solutions at the large λ limit.

Therefore, in the following, we will consider asymptotic behavior in z → ∞ of the

instanton solution.

We will determine the asymptotic behavior of the soliton solution, which allows

to evaluate a well-defined of the U(Nf )L × U(Nf )R chiral symmetry. Without 1/λ
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expansion, the equations of motion are

2κ
[
Dν(h(z)Fνµ) +Dz(k(z)Fzµ)

]
+

Nc
32π2

ϵµNPQRFNPFQR = 0, (4.1.15)

2κDµ(k(z)Fµz) +
Nc
32π2

ϵµνρσFµνFρσ = 0, (4.1.16)

with N,P,Q,R = 0, 1, 2, 3, z. Let us consider time-dependent gauge configuration in

the moduli space. We have already discussed in section 2.4.2, we can give a time

dependence to the classical solutions of the gauge field as follows;

AM = V Acl
MV

−1 − iV ∂MV
−1, (4.1.17)

where V and W are related as

Φ ≡W−1∆A0W − iW−1Ẇ = −iV −1V̇ . (4.1.18)

In the following transformation of the equation, this notation is more convenient, so

we will use V (t, x⃗, z). Here, it is useful to perform the following gauge transformation;

Aα → AGα ≡ GAαG
−1 − iG∂αG

−1, (4.1.19)

with G =Wg−1V −1. Then, the gauge fields are

AG0 = −i(1− f(ξ))WẆ−1 + i(1− f(ξ))ẊMW (g−1∂Mg)W
−1, (4.1.20)

AGM = −i(1− f(ξ))W (g−1∂Mg)W
−1, (4.1.21)

where this choice of gauge is helpful in considering asymptotic behavior.

Now, we treat the U(1) part as a perturbation under the background of the gauge

configuration of the SU(2) instanton with asymptotic behavior. The leading contri-

bution to the U(1) part is obtained by solving the following linearized equation of

motion.

∂M∂
M Â0 =

3

π2aλ

ρ4

(ξ2 + ρ2)4
(4.1.22)

∂M∂
M Âi =

3

π2aλ

ρ4

(ξ2 + ρ2)4

(
Ẋi +

χa

2
(ϵiajxj − δiaz) +

ρ̇xi

ρ

)
(4.1.23)

∂M∂
M Âz =

3

π2aλ

ρ4

(ξ2 + ρ2)4

(
Ż +

χaxa

2
+
ρ̇z

ρ

)
(4.1.24)

Here we have substituted (4.1.20) and (4.1.21) into the equations of motion for (4.1.15)

and (4.1.16) with the warp factors k(z) = h(z) = 1. We also neglected the terms
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involving ∂20 because we are interested in slowly moving solitons. The regular solution

is found as follows.

Â0 =
1

8π2aλ

1

ξ2

[
1− ρ4

(ξ2 + ρ2)2

]
=

1

8π2aλ

ξ2 + 2ρ2

(ξ2 + ρ2)2
(4.1.25)

Âi = − 1

8π2aλ

[ ξ2 + 2ρ2

(ξ2 + ρ2)2
Ẋi +

ρ2

(ξ2 + ρ2)2

(χa
2
(ϵiajxj − δiaz) +

ρ̇xi

ρ

)]
(4.1.26)

Âz = − 1

8π2aλ

[ ξ2 + 2ρ2

(ξ2 + ρ2)2
Ż +

ρ2

(ξ2 + ρ2)2

(χaxa
2

+
ρ̇z

ρ

)]
(4.1.27)

The solutoins (4.1.26) and (4.1.27) were ignored when obtaining the mass formula

because they are subleading in the 1/λ expansion but kept here because they are

leading contributions to the U(1) current.

So far we have considered solutions valid in the ξ ≪ 1 region. Now we consider how

to find solutions in the region of 1 ≪ ξ. The key observation is that all components

of the gauge field are suppressed in the ρ ≪ ξ ≪ 1 region in the large λ limit. This

implies that the nonlinear terms in the equations of motion can be neglected. Thus,

our strategy is to find a solution to the linearized equation of motion in the ρ ≪ ξ

region and smoothly connect it to the previous solution in the overlapping region

ρ≪ ξ ≪ 1 (much larger than ρ but much smaller than 1). At ρ≪ ξ ≪ 1, considering

1

8π2aλ

ξ2 + 2ρ2

(ξ2 + ρ2)2
→ 1

2aλ

1

4π2

1

ξ2
(4.1.28)

the gauge field can be approximated as follows;

Â0≃ − 1

2aλ
Gflat(x⃗, z; X⃗, Z) (4.1.29)

Âi≃
1

2aλ

[
Ẋi +

ρ2

2

{χa
2

(
ϵiaj

∂

∂Xj
− δia

∂

∂Z

)
+
ρ̇

ρ

∂

∂Xi

}]
Gflat(x⃗, z; X⃗, Z)

(4.1.30)

Âz≃
1

2aλ

[
Ż +

ρ2

2

(χa
2

∂

∂Xa
+
ρ̇

ρ

∂

∂Z

)]
Gflat(x⃗, z; X⃗, Z) (4.1.31)

AG0 ≃ 4π2ρ2iWẆ−1Gflat(x⃗, z; X⃗, Z)

+2π2ρ2WτaW−1
(
Ẋi
(
ϵiaj

∂

∂Xj
− δai

∂

∂Z

)
+ Ż

∂

∂Xa

)
Gflat(x⃗, z; X⃗, Z)

(4.1.32)

AGi ≃ 2π2ρ2
(
Wτ iW−1 ∂

∂Z
+ ϵijaWτaW−1 ∂

∂Xj

)
Gflat(x⃗, z; X⃗, Z) (4.1.33)

AGz ≃ −2π2ρ2WτaW−1 ∂

∂Xa
Gflat(x⃗, z; X⃗, Z), (4.1.34)
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where the function,

Gflat(x⃗, z; X⃗, Z) = − 1

4π2ξ2
(4.1.35)

is the Green’s function in the flat R4, which satisfy

∂M∂
MGflat(x⃗, z; X⃗, Z) = δ3(x⃗− X⃗)δ(z − Z). (4.1.36)

We can verify that, as expected, these gauge configurations also satisfy the non-

sourced and linearized YM equations and the gauge condition;

∂βF̂
αβ = ∂βF

αβ |linear = 0 (4.1.37)

∂αÂα = 0, ∂αAGα = 0. (4.1.38)

In order to connect the solution to the large ξ region, we have to consider the effect

of the curved background. In this region, we only need to generalize (4.1.37) and

(4.1.38) to the case of nontrivial warp factors as follows,

h(z)∂2µÂi + ∂z(k(z)∂zÂi) = 0, ∂2µÂz + ∂z(h(z)
−1∂z(k(z)Âz)) = 0, (4.1.39)

h(z)∂2µA
G
i + ∂z(k(z)∂zA

G
i ) = 0, ∂2µA

G
z + ∂z(h(z)

−1∂z(k(z)A
G
z )) = 0, (4.1.40)

h(z)∂µÂµ + ∂z(k(z)Âz) = 0, h(z)∂µAGµ + ∂z(k(z)A
G
z ) = 0, (4.1.41)

where, in this case, all gauge field components are suppressed again, so the nonlinear

terms can be neglected. To solve this, we need to define two Green’s functuons in the

curved space,

G(x⃗, z; X⃗, Z) = κ
∞∑
n=1

ψn(z)ψn(Z)Yn(|x⃗− X⃗|) (4.1.42)

H(x⃗, z; X⃗, Z) = κ
∞∑
n=0

ϕn(z)ϕn(Z)Yn(|x⃗− X⃗|), (4.1.43)

where the ψn(z) and ϕn(z) are the complete sets defined in the mode expansion, and

Yn(r) is the Yukawa potential with meson mass mn =
√
λn,

Yn(r) = − 1

4π

e−
√
λnr

r
, (4.1.44)

which satisfy

(∂2i − λn)Yn(|x⃗− X⃗|) = δ3(x⃗− X⃗). (4.1.45)
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Here, It is no coincidence that the complete sets of mode expansions were used here.

Recalling that the discussion of mode expansion also dropped the nonlinear terms

(section 2.3.2), it is easy to see that (4.1.39) and (4.1.40) is, for instance,

h(z)∂2µ(ψnYn) + ∂z(k(z)∂z(ψnYn)) = 0 (4.1.46)

→ ψn∂
2
µYn + h(z)−1∂z(k(z)∂zψn)Yn = 0 (4.1.47)

→ ψn(∂
2
µ − λn)Yn = 0. (4.1.48)

Using (2.3.17) and (4.1.45), one can easily verify

h(z)∂2iG+ ∂z(k(z)∂zG) = δ3(x⃗− X⃗)δ(z − Z), (4.1.49)

∂2iH + ∂z(h(z)
−1∂z(k(z)H)) = k(z)−1δ3(x⃗− X⃗)δ(z − Z), (4.1.50)

∂z(k(z)H) + h(z)∂ZG = 0, (4.1.51)

where we used the condition

κh(z)
∞∑
n=1

ψn(z)ψn(Z) = δ(z − Z), κk(z)
∞∑
n=1

ϕn(z)ϕn(Z) = δ(z − Z)(4.1.52)

for the complete system. This condition ensure normalized orthogonality of the eigen-

functions for ψm and ϕm, as follow,∫
dzψm(z)δ(z − Z) = ψm(Z)=

∞∑
n=1

∫
dzκh(z)ψm(z)ψn(z)ψn(Z)

=
∞∑
n=1

δnmψn(Z) (4.1.53)

∫
dzϕm(z)δ(z − Z) = ϕm(Z)=

∞∑
n=1

κ

∫
dzk(z)ϕm(z)ϕn(z)ϕn(Z)

=

∞∑
n=1

δnmϕn(Z). (4.1.54)

Thus, the completeness condition (4.1.52) can also be used in the case where n is a

sum of even numbers or odd numbers only, where we will use these conditions later.
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From the above, the solution is given as

Â0 = − 1

2aλ
G
(
x⃗, z; X⃗, Z

)
,

Âi =
1

2aλ

[
Ẋi +

ρ2

2

(
χa

2

(
ϵiaj

∂

∂Xj
− δia

∂

∂Z

)
+
ρ̇

ρ

∂

∂Xi

)]
G
(
x⃗, z; X⃗, Z

)
,

Âz =
1

2aλ

[
Ż +

ρ2

2

(
χa

2

∂

∂Xa
+
ρ̇

ρ

∂

∂Z

)]
H
(
x⃗, z; X⃗, Z

)
, (4.1.55)

A0 = 4π2ρ2iWẆ−1G
(
x⃗, z; X⃗, Z

)
+2π2ρ2WτaW−1

(
Ẋi

(
ϵiaj

∂

∂Xj
− δia

∂

∂Z

)
+ Ż

∂

∂Xa

)
G
(
x⃗, z; X⃗, Z

)
,

Ai = −2π2ρ2WτaW−1

(
ϵiaj

∂

∂Xj
− δia

∂

∂Z

)
G
(
x⃗, z; X⃗, Z

)
,

Az = −2π2ρ2WτaW−1 ∂

∂Xa
H
(
x⃗, z; X⃗, Z

)
, (4.1.56)

where the index i runs 1 - 3.

The chiral current

We substitute the classical solution into the definition of above chiral current. In

the following calculations, since we consider wave functions in low-lying states, Z can

be considered as Z ∼ O(λ−1/2N
−1/2
c ) ≫ 1, from which we can approximate that

h(Z) = k(Z) = 1. The eigenvalue equation satisfied by the complete sets ψn(z) of

mode expansions is then approximated by

−∂2Zψn(Z) ≃ λnψn(Z). (4.1.57)

Using this and (4.1.51), the following approximation holds;

∂ZH + ∂zG ≃ 0, (∂2i + ∂2Z)G ≃ 0, (∂2i + ∂2Z)H ≃ 0 (4.1.58)

By taking this approximation into account, the field strength is given as

F̂iz ≃
1

2aλ

[
Ż∂iH − Ẋi∂zG− ρ2χa

4

(
(∂i∂a − δia∂2j )H − ϵiaj∂j∂zG

)]
(4.1.59)

F0z ≃2π2∂0(ρ
2WτaW−1)∂aH − 4π2ρ2iWẆ−1∂zG

−2π2ρ2WτaW−1Ẋi
(
(∂i∂a − δia∂2j )H − ϵiaj∂j∂zG

)
(4.1.60)

Fiz ≃2π2ρ2WτaW−1
(
(∂i∂a − δia∂2j )H − ϵiaj∂j∂zG

)
. (4.1.61)
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With (4.1.13), GV/A(Z, r), HV/A(Z, r) are defined by

GV (Z, r) =
[
k(z)∂zG

]z=+∞
z=−∞ = −

∞∑
n=1

gvnψ2n−1(Z)Y2n−1(r) (4.1.62)

GA(Z, r) =
[
ψ0(z)k(z)∂zG

]z=+∞
z=−∞ = −

∞∑
n=1

ganψ2n(Z)Y2n(r) (4.1.63)

HV (Z, r) =
[
k(z)H

]z=+∞
z=−∞ = −

∞∑
n=1

gvn

λ2n−1
∂Zψ2n−1(Z)Y2n(r) (4.1.64)

HA(Z, r) =
[
ψ0(z)k(z)H

]z=+∞
z=−∞ = − 1

2π2

1

k(Z)

1

r
−

∞∑
n=1

gan

λ2n
∂Zψ2n(Z)Y2n(r).

(4.1.65)

From these, The vector and the axial vector current are obtained as follow;

Ĵ0
V,A =

Nc
2
GV,A (4.1.66)

Ĵ iV,A =−Nc
2

[
Ż∂iH

V,A − ẊiGV,A − ρ2χa

4

(
(∂a∂i − δia∂2j )H

V,A − ϵiaj∂jG
V,A
)]

(4.1.67)

J0
V,A =2π2κ

[
∂0(ρ

2WτaW−1)∂aH
V,A − 2ρ2iWẆ−1GV,A

−ρ2WτaW−1Ẋi
(
(∂a∂i − δia∂2j )H

V,A − ϵiaj∂jG
V,A
)]

(4.1.68)

J iV,A =−2π2κρ2WτaW−1
(
(∂a∂i − δia∂2j )H

V,A − ϵiaj∂jG
V,A
)
, (4.1.69)

where, since ψ2n−1(Z) are an even function of Z and ψ2n(Z) an odd function of Z,

GV ,HA are an even function and GA,HV an odd function.

4.1.2 The chiral current in the 5-dimensional effective theory

Chiral symmetry in the Sakai-Sugimoto model

Now, we define the chiral current as of the Noether current of chiral symmetry from

the point of view of the effective theory of hadrons [13]. Therefore, we first discuss

the chiral symmetry of this model.

The pion field of this model is defiened by the Atiyah-Manton construction [72] in
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gauge condition AM (xµ, z) → 0 (z → ±∞) as follows;

U(xµ) = Pexp
(
− i

∫ +∞

−∞
dzAz(x

µ, z)
)
, (4.1.70)

where the pass ordering is product of left at z → +∞ to right at z → −∞. The chiral

transformation of the pion field,

U(xµ) = gLU(xµ)gR, (4.1.71)

(gL, gR) ∈ U(Nf )L × U(Nf )R,

is realized by a gauge transformation of the flavor SU(Nf ) gauge field as follows;

AM → gAMg
−1 − ig∂Mg

−1, (4.1.72)

g(xµ, z) →

{
gL (z → +∞)

gR (z → −∞)
(4.1.73)

with g(xµ, z) ∈ SU(Nf ) and constants (gL, gR).

Noether currents

The infinitesimal local gauge transformation,

δξAM (xµ, z) = ϵ(xµ, z)DMζ(xµ, z), (4.1.74)

leads to the following Noether currents;

JMζ = JMYMζ + JMCSζ , (4.1.75)

JµYMζ(x, z) = −2κtr
(
h(z)FµνDνζ + k(z)FµzDzζ

)
,

JzYMζ(x, z) = −2κk(z)tr
(
FzνDzζ

)
,

JMCSζ(x.z) = − Nc
64π2

ϵMNPQRtr
(
{FNP ,FQR}ζ

)
.

with u(Nf ) Lie algebra ζ(x
µ, z), with a function ϵ(xµ, z) vanishing at infinity, and the

covariant derivative DMζ(xµ, z) = ∂Mζ + iAMζ. Because of the chiral symmetry of

the Sakai-Sugimoto model is related to the SU(Nf ) gauge transformation, The chiral

current in the 4-dimensional space-time is defined as

jµζ (x) =

∫ +∞

−∞
dzJµζ (x, z). (4.1.76)
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Here, to satisfy the 4-dimensional current conservation law, we impose the following

boundary condition,

Jzζ (x, z → ±∞) = 0. (4.1.77)

With unit and Pauli matrices tC = 1/2(I, τa) (C = 0, 1, 2, 3) and

ψ±(z) =
1

2
± 1

π
arctanz →

{
1 (z → ±∞)

0 (z → ∓∞)
, (4.1.78)

we adopt as ζ the following one:

ζ(x, z) = ψ±(z)tC , (4.1.79)

then the expression of our current (4.1.76) leads to left/right current jµL/R(x); There-

fore, the vector/axial-vector current is then defined as follows;

jµ,CV = jµ,CL + jµ,CR , (4.1.80)

jµ,CA = jµ,CL − jµ,CR . (4.1.81)(
jµL/R(x) = jµ,CL/RtC = jµ,aL/R

τa

2
+ ĵµL/R

I

2

)
(4.1.82)

Here, we define

ψV (z) = ψ+(z) + ψ−(z) = 1 (4.1.83)

ψA(z) = ψ+(z)− ψ−(z) =
2

π
arctanz, (4.1.84)

then the vector / axial vector current are written by

JµV/A,a =−2iκtr
{
(h(z)[Fµz,Aν ] + k(z)[Fµz,Az])ta

}
ψV/A(z)

−2κk(z)tr(Fµzta)
dψV/A(z)

dz

− Nc
64π2

ϵµNPQRtr
(
{FNP ,FQR}ta

)
ψV/A(z). (4.1.85)

Because of the Acl
i,z = 0 in the static case, the baryon number current become

j0B(x) =
2

Nc
ĵ0V (x) =

∫ ∞

−∞
dzĴ0

V (x)

=− Nc
64π2

ϵµNPQR
∫ ∞

−∞
dztr(FNPFQR), (4.1.86)

which identifies with the topological number current of instanton solutions.
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The 1/λ expansion of the current

In the following, we will carry on the discussion by using the 1/λ expansion order

by order. Therefore, we will consider rescaling the current by λ. With ψ̃V,A(z) and

κ = O(λ), by using the following rescaling,

xM → λ−1/2xM , AM → λ1/2AM

FMN → λFMN , F0M → λ1/2F0M , (4.1.87)

the chiral current are written as

J0
V/A,a(x, z) =−2iκλ

{
tr
( ∑
M=i,z

[F0M ,AM ]ta

)
ψ̃V,A(z) + tr(F0zta)

dψ̃V,A(z)

dz

}
− Nc
64π2

λ2ϵMNPQtr({FMN ,FPQ}ta)ψ̃V,A(z)

−2κ
{
tr
((

− z2

3

∑
j

[F0j ,Aj ] + z2[F0z,Az]
)
ta

)
ψ̃V,A(z) + z2tr(Fizta)

dψ̃V,A(z)

dz

}
(4.1.88)

J iV/A,a(x, z) =−2κλ3/2
{
tr
( ∑
M=i,z

[FiM ,AM ]ta

)
ψ̃V,A(z) + tr(Fizta)

dψ̃V,A(z)

dz

}
−2κλ1/2

{
tr
((

− z2

3

∑
j

[Fij ,Aj ] + z2[Fiz,Az]
)
ta

)
ψ̃V,A(z) + z2tr(Fizta)

dψ̃V,A(z)

dz

}
+
Ncλ

3/2

8π2
ϵijktr

[
(FjkF0z + 2F0jFkz)ta

]
ψ̃V,A(z), (4.1.89)

where the gauge fields (4.1.20), (4.1.21), (4.1.25), (4.1.25) and (4.1.25) rescaled as

follows;

AG0 = −i(1− f(ξ))WẆ−1 + i(1− f(ξ))ẊMW (g−1∂Mg)W
−1 (4.1.90)

AGM = −i(1− f(ξ))W (g−1∂Mg)W
−1 (4.1.91)

Â0 =
1

8π2a

ξ2 + 2ρ2

(ξ2 + ρ2)2
(4.1.92)

Âi = − 1

8π2a

[ ξ2 + 2ρ2

(ξ2 + ρ2)2
Ẋi +

ρ2

(ξ2 + ρ2)2

(χa
2
(ϵiajxj − δiaz) +

ρ̇xi

ρ

)]
(4.1.93)

Âz = − 1

8π2a

[ ξ2 + 2ρ2

(ξ2 + ρ2)2
Ż +

ρ2

(ξ2 + ρ2)2

(χaxa
2

+
ρ̇z

ρ

)]
. (4.1.94)
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In the following calculations, we will proceed with the analysis by considering only

terms that give the main contribution to the 1/λ expansion for a certain physical

quantity. For some physical quantities, the contribution of the first term as leading

vanishes, hence the second and third terms of JMV/A,a, which are subleading of the 1/λ

expansion, provide the main contribution.

We give some comments on what we learn from the above rescaling for later discus-

sion. First, we find that the effect of the warp factor is a contribution from subleading

in both the time and spatial components of the current. Therefore, unless the con-

tribution from the leading term is zero, we can treat it as k(z) = h(z) ∼ 1. Next,

regarding the contribution from the CS term, on the one hand, it contributes to the

leading term of the time component of the current. On the other hand, it gives a sub-

leading contribution to the spatial component. The spatial component of the U(1)

gauge field can be set zero in the calculation of leading order, since it only contributes

to the CS part of the current. These facts are employed in the following calculations.

4.1.3 Some comments for two definitions of current

The relation between the two current definitions

First, we discuss the connection between the definitions of the two currents. The

5d Noether current [13] is transformed as follows,

Jµζ (x, z) =−2κ∂νtr
[
h(z)Fµν(x, z)ζ(x, z)

]
− 2κ∂ztr

[
h(z)Fµz(x, z)ζ(x, z)

]
−tr
[
(EOM term)× ζ(x, z)

]
. (4.1.95)

With the current j̃µL/R(x) based on the bulk/boundary correspondenc, jµζ (x) =∫
dzJµζ (x, z) is written by

jµζ (x) = tr(ζLj̃
µ
L(x) + ζRj̃

µ
R(x)) + ∂νχ

µν(x) + (EOM term), (4.1.96)

where χµν(x) is the following antisymmetric tensor,

χµν = −χνµ = −2κ

∫ ∞

−∞
dztr

[
h(z)Fµν(x, z)ζ(x, z)

]
. (4.1.97)

We will remark on what can be learned from the above relation. First, the identity

∂µ∂νχ
µν = −∂µ∂νχµν = 0 indicates that the difference between the two currents
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does not contradict the conservation law of currents. Also, if the surface term coming

from ∂iχ
0i can be ignored, then we can show that the conserved charge, such as

the baryon number defined by Q =
∫
d3xj0(x), leads to the same result with the

two different definitions. Similarly, global quantities such as axial vector coupling,

which involve spatial integration of currents, do not depend on the definition of the

two currents. However, since local currents take different forms from each other, the

two currents lead to different results for physical quantities, for example, the isovector

magnetic moment µI=1 (4.2.27) and isospin charge density, to which the local currents

contribute explicitly.

Gauge non-invariance of the current

Next, while the current j̃µL/R(x) based on the bulk/boundary correspondence is

gauge-invariant from the above expressions, the 5d Noether chiral current is generally

gauge-dependent. As a result, it is gauge-dependent concerning physical quantities

that depend on the local current form. It is still unknown how this problem should

be solved. Here, conserved charges, such as baryon number, take the same form in

both definitions, as described above. Therefore, these quantities can still be defined

as gauge invariant. Related to this, there is another problem that ζ(x, z) cannot be

uniquely determined. The quantity ζ(x, z) only needs to be any function that satisfies

the boundary condition (4.1.73) and takes values on U(Nf ). Thus, using this non-

uniqueness, we see that the current is gauge-invariant under a simultaneous gauge

transformation

AM→ gAMg
−1 − ig∂Mg

−1

ζ→ gζg−1 (4.1.98)

In this thesis, we have already mentioned that we determine this ζ(x, z) to reduce to

the chiral current of the Skyrme model by dimensionality reduction. Considering that

the hadron effective action of the Sakai-Sugimoto model has the same structure as

that of the phenomenological model using hidden local symmetry proposed by Son-

Stephanov [77], the above treatment seems reasonable. However, it cannot be claimed

that this method follows the dictionary of gauge/gravity (string) correspondence.
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4.2 The static properties of the nucleon

Using currents and classical solutions obtained above, in this section, we review

the analysis of static properties of nucleons. We have introduced two definitions

of currents and summarized the results obtained from each current. Note that the

choice of parameters is different for each analysis of the two currents. When using

the chiral current obtained from the GKP-Witten method (hereafter named GKP-

Witten current), we have chosen (κ,MKK) = (0.00745, 940 MeV) to reproduce the ρ

meson mass (776 MeV) and the pion decay constant (92.4 MeV) following Ref. [16].

On the other hand, when using the chiral current as a 5d Noether current (called 5d

Noether current), we consider the nucleon mass as the classical massM0 of the soliton

according to Ref. [13], and choose a parameter set (κ,MKK) = (0.0243, 488 MeV)

that reproduces the mass of nucleon (939 MeV) and the mass splitting of N(940) and

∆(1232) (293 MeV).

4.2.1 Baryon number current and isoscalar mean square radius

We have considered baryons as instantons in this doctoral thesis. Therefore, the

baryon number corresponds to the topological number of instantons. Since the topo-

logical number current is defined as

J0
B(x) =

1

32π2
ϵ0NPQR

∫ ∞

−∞
dztr(FNPFQR), (4.2.1)

we therefore expect the baryon number current to be defined in the same form. The

baryon number current obtained from the GKP-Wittten current coincides with the

instanton topological number current, as shown in (4.1.5). A similar fact can be

derived from the baryon number currents obtained from the Neother currents, as

shown in (4.1.86).

The baryon number density is defined by

ρB(r) = 4πr2 ⟨J0
B(r)⟩ . (4.2.2)

Using this, the isoscalar mean square radius is written by

⟨r2⟩I=0 =

∫ ∞

0

drr2ρB(r). (4.2.3)
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In the following, we will calculate the baryon number, baryon number density, and

isoscalar mean square radius for each current.

■ GKP-Witten current

We confirm that the baryon number B = 1 is actually obtained by substituting

the classical solution into the baryon number currents. First, by substituting the

asymptotic solution(4.1.56) and (4.1.55) into the GKP-Witten current, we obtain

J0
B = −

∞∑
n=1

gvnψ2n−1(Z)Y2n−1(r). (4.2.4)

The baryon number is computed as follows,

NB =

∞∑
n=1

gvn ⟨ψ2n−1(Z)⟩
(
−
∫ ∞

0

dr4πr2Y2n−1(r)
)
=

∞∑
n=1

gvn

λ2n−1
⟨ψ2n−1(Z)⟩

=
∞∑
n=1

κ

∫ ∞

−∞
dzh(z)ψ2n−1(z) ⟨ψ2n−1(Z)⟩ = ⟨

∫ ∞

−∞
dzδ(z − Z)⟩ = 1, (4.2.5)

wheret he shorthand notation ⟨O⟩ = ⟨B|O|B⟩ is used hereafter, with attention to

normalization, which is defined as follows;

⟨ψ2n−1(Z)⟩ = ⟨nZ |ψ2n−1(Z)|nZ⟩ (4.2.6)

by using (2.4.124).

The baryon number density is

ρB(r) = r
∞∑
n=1

gvn ⟨ψ2n−1(Z)⟩ e−
√
λ2n−1r, (4.2.7)

therefore, the isoscalar mean square radius is defined by

⟨r2⟩I=0 =

∫ ∞

0

drr2ρB(r) = 6
∞∑
n=1

gvn

λ22n−1

⟨ψ2n−1(Z)⟩ (4.2.8)

Numerical calculations show that this value is estimated to be√
⟨r2⟩I=0 ≃ 0.785fm, (4.2.9)

which roughly reproduces the experimental value of 0.806 fm.

■ The 5d Noether current
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Substituting the classical BPST instanton solution for the 5d Noether current, we

obtain

j0B(x, z) =

∫ ∞

−∞

2

Nc
J0
V,0(x, z) = − 1

32π2
ϵMNPQ

∫ ∞

−∞
tr({FMN , FPQ}

I

2
)

=− 4

32π2
ϵijk

∫ ∞

−∞
tr(FijFkz) =

15

8π

ρ4

(r2 + ρ2)7/2
, (4.2.10)

where the contribution from F̂ij , F̂iz is negligible here, because the spatial integration

leads to zero. We also dropped the terms involving Ż in order to take the expectation

value with the nucleon state. Furthermore, the effect of the warp factor is treated as

h(z) ∼ k(z) ∼ 1 because it is a contribution of sublearding in the 1/λ expansion. If

we spatial integrate this, we get

NB =

∫ ∞

0

4πr2dr
15

8π

ρ4

(r2 + ρ2)7/2
= 1. (4.2.11)

By the same calculation as (4.2.8), the isoscalar mean square radius is evaluated to

be √
⟨r2⟩I=0 =

√
3 ⟨ρ2⟩
2

= 0.82fm, (4.2.12)

which is larger than the result by GKP-Witten current. Here, the expected value of

ρ2 can be obtained analytically as follows;

⟨ρ⟩ =⟨nρ|ρ2|nρ⟩ =
∫∞
0
ρ3dρρ2ρ−2+4

√
1+N2

c /5e
− 2M0√

6
ρ2∫∞

0
ρ3dρρ−2+4

√
1+N2

c /5e
− 2M0√

6
ρ2

=

√
6

16π2κ

(
1 + 2

√
1 +

N2
c

5

)
. (4.2.13)

by using (2.4.122).

4.2.2 Charge density

In this subsection, we discuss the nucleon charge density, which is written as

J0
em(t, x) = J0

V,a=3(t, x) +
1

2
J0
B(t, x), (4.2.14)
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with the isospin density J0
V.a=3(t, x) and the baryon number current. Therefore, the

electric charge is calculated as

Qem =

∫
d3xJ0

em(t, x). (4.2.15)

As a result, Qem = I3 +NB/2 should be obtained. Also, the electric charge radius is

given by

⟨r2⟩E =

∫
d3xr2J0

em(t, x). (4.2.16)

■ GKP-Witten current

Since we take the expectation value with the nucleon state, we only need to consider

the even function terms of Z in the current J0
em(t, x). Therefore, the current matrix

element is

⟨J0
em⟩ =

(
i4π2κρ2tr(τ3WẆ−1)− 1

2

) ∞∑
n=1

gvn ⟨ψ2n−1(Z)⟩
∫ ∞

0

4πr2Y2n−1(r)

=I3 +
NB
2

= I3 +
1

2
, (4.2.17)

where Ia = −i4π2κρ2tr(τaWẆ−1) and the same calculation as (4.2.5) was performed.

Thus, as expected, Qem = 1 for the proton case and Qem = 0 for the neutron case.

You can see from the calculation of (4.2.17) that we can check ⟨r2⟩I=0 = ⟨r2⟩I=1.

Therefore, the electric charge radius is obtained as

⟨r2⟩E,p = ⟨r2⟩I=0 = (0.785 fm)2 (proton) (4.2.18)

⟨r2⟩E,n = 0 (neutron), (4.2.19)

where the experimental values are ⟨r2⟩expE,p ≃ (0.875 fm)2, ⟨r2⟩expE,n ≃ −0.116 fm2,

which fails to reproduce neutron data.

■ The 5d Noether current

The electric charge radius can be written as the sum of the isoscalar mean square

radius and the isovector mean square radius discussed in the previous subsection.

Therefore, here we discuss the isovector mean square radius before considering the

electric charge radius. The five-dimensional isovector current is written by

J0
V,a(x, z) = 2κtr

[( ∑
M=i,z

i
[ ∂
∂ρ
Acl
M , A

cl
M

]
ρ̇(t)−

∑
M=i,z

i
[
Dcl
MΦb, A

cl
M

]
χb(t)

)
W (t)−1taW (t)

]
.

(4.2.20)
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By using ∑
M=i,z

i
[
Dcl
MΦb, A

cl
M

]
=

8

ρ2
f̃(ξ)3ta, (4.2.21)

the isovector current is calculated

j0V,a(t, x) =

∫ ∞

−∞
dzJ0

V,a(x, z) =
3

4π

ρ2

(r2 + ρ2)5/2
Ia. (4.2.22)

Therefore, the isovector mean square radius is defined by

⟨r2⟩I=1 =
⟨
∫
d3xr2j0V,a=3(t, x)⟩ρ

⟨
∫
d3xj0V,a=3(t, x)⟩ρ

, (4.2.23)

which is logarithmically divergent at r → ∞. This occurs in the Skyrme model as well,

and it is quite natural to obtain similar results from this current, which is determined

to realize the chiral current of the Skyrme model with a low energy limit.

4.2.3 Magnetic moment

The magnetic moment µ is defined as

µ =
1

2

∫
d3xx× Jem, (4.2.24)

where Jem = (J1
em, J

2
em, J

3
em) is the electromagnetic current

Jem = JV,a=3 +
1

2
JB . (4.2.25)

The magnetic moments are decomposed into isovector and isoscalar magnetic mo-

ments, respectively, as follows,

µ =
1

2
µI=1 +

1

2
µI=0 (4.2.26)

µI=1 =

∫
d3xx× JV,a (4.2.27)

µI=0 =
1

2

∫
d3xx× JB . (4.2.28)

These are generally written in the following form;

µI=1 =
gI=1

2MN

σ

2
⊗ τ3 (4.2.29)

µI=0 =
gI=0

2MN

σ

2
, (4.2.30)
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where gI=1,0 is the isovector and isoscalar g-factor, respectively, andMN is the nucleon

mass. The magnetic moment of a proton or neutron is also defined as

µp =
gp

2MN

σ

2
=

1

2

gI=1 + gI=0

2MN

σ

2
(4.2.31)

µn =
gp

2MN

σ

2
=

1

2

gI=1 + gI=0

2MN

σ

2
, (4.2.32)

where gp,n is the g-factor of the proton and neutron.

■ GKP-Witten current

The isovector magnetic moment was calculated to be

µiI=1 = ϵijk
∫
d3xxjtr(JkV τ

3) = −4π2κρ2tr(Wτ iW−1τ3), (4.2.33)

where we performed the same procedure as when we calculated the baryon number

charge (4.2.5). If we use the relation,

⟨N ′|tr(tiW−1taW )|N⟩ =1

4
⟨N ′|tr(σiW−1τaW )|N⟩

=−1

4

2

3
⟨N ′|σi ⊗ τa|N⟩ , (4.2.34)

valid for nucleon states (Appendix E.3.2), µiI=! is calculated to be

16π2κ

3
ρ2

σ

2
⊗ τ3. (4.2.35)

Therefore, the g-factor is obtain

gI=1= 2MN
16π2κ

3
⟨ρ2⟩ = 2MN

16π2κ

3

√
5 + 2

√
5 +N2

c

2Nc
ρ2cl

= 2MN
16π2κ

3

√
5 + 2

√
5 +N2

c

2Nc

Nc
8π2κ

√
6

5

=
4MN

MKK

1 + 2
√

1 +N2
c /5

6
≃ 7.03, (4.2.36)

whereMKK dependence was recovered by dimensional analysis in the last expression.

Next, we calculate the isoscalar magnetic moment. It is easy that only the last
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term in (4.1.67) contributes to the following integral:

µiI=0 =
1

2
ϵijk

∫
d3xxjJkB =

1

Nc
ϵijk

∫
d3xxj ĴkV

=− 1

Nc
ϵijk

∫
d3xxj

Nc
2

ρ2χa

4
ϵkal∂jG

V

=−ρ
2χi

12

∫ ∞

0

dr4πr3∂rJ
0
B(r) =

ρ2χi

4
=

J i

16π2κ

=
σi

32π2κ
(4.2.37)

From the above, g-factor is

gI=0 =
MN

8π2κ
≃ 1.68. (4.2.38)

The experimental value is gexpI=0 ≃ 1.76, which gives a quite good prediction.

■ The 5d Noether current

The isovector magnetic moment can be calculated as

µiI=1 = ϵijk
∫
d3xxjjkV,a=3(t, x), (4.2.39)

First, we need the current jiV,a(t, x). In the present case, we ignore the contributions

coming from the warp factor and CS term, since they are 1/λ subleading. Therefore,

the only current to consider now is

J iV,a(x, z) = −2κtr
[( ∑

M=j,z

i[F cl
iM , A

cl
M ]
)
W−1taW

]
. (4.2.40)

Here, using ∑
M=j,z

i[F cl
iM , A

cl
M ] =

16ρ4

ξ2(ξ2 + ρ2)3
(zti − ϵijax

jta), (4.2.41)

the current is calculated to be

jiV,a(t, x) =

∫ ∞

−∞
dzJ iV,a(x, z)

=
4πκ

ρ2

(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)5/2

)
ϵijkx

jtr(tkW
−1taW ). (4.2.42)

Using this, the isovector magnetic moment is calculated to be

µiI=1 = ϵijk

∫
d3xxjjkV,a=3(t, x) = −8π2κρ2tr

(
tiW (t)−1t3W (t)

)
, (4.2.43)
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then we obtain the g-factor

gI=1 =
16π2κ

3
MN ⟨ρ2⟩ =

√
2

3

(
1 + 2

√
1 + 2

√
1 +

N2
c

5

)
MN = 6.83. (4.2.44)

This result is inconsistent with the experimental data and closer to the Skyrme model

results than the (4.2.36) results.

Next, the isoscalar magnetic moment is calculated as

µiI=0 =
1

2
ϵijk

∫
d3xxjjkB(t, x). (4.2.45)

Again, using the current

J iB(x, z) =− 1

8π2
ϵijktr(FjkF0z + 2F0jFkz)

=
3

π2

ρ4

(ξ2 + ρ2)4
[
(δiaz − ϵijax

j)χa(t) + 2xi
d

dt
ln ρ(t)

]
(4.2.46)

ignoring the contributions from the warp factor and CS term, the subleading terms

of 1/λ, the 4-dimensional current is given as

jiB(t, x) =

∫ ∞

−∞
dzJ iB(x, z)

=
15

16π

ρ2

(r2 + ρ2)7/2

(
− ϵijkx

jχa(t) + 2xi
d

dt
ln ρ(t)

)
. (4.2.47)

From this, the isoscalar magnetic moment is calculated to be

µiI=0 =
1

2
ϵijk

∫
d3xxjjkB(t, x) =

ρ2

4
χi(t) =

1

16π2κ
Ji, (4.2.48)

so the g-factor is given as

gI=0 =
MN

8π2κ
= 1. (4.2.49)

Again, this value is much smaller than the prediction obtained from the GKP-Witten

current and does not agree with the experimental data.
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4.2.4 Axial coupling and axial radius

In the non-relativistic k → 0 limit, the axial coupling of the nucleon is defined by

using the axial current J iA(x) as follows;∫
d3xeik·x ⟨N, s′3I ′3|JaiA |N, s3, I3⟩ × 2

=
2

3
gNNA (k = 0) (σa)s′3,s3

(τa)I′3,I3
, (4.2.50)

where the factor 2/3 on the right-hand side is needed in the chiral limit [14]. Here,

axial coupling is related to coupling gπNN of πNN through the Goldberger-Treiman

relation

gNNA =
fπgπNN
MN

. (4.2.51)

■ GKP-Witten current

With axial current (4.1.69), the matrix elements of axial current are computed as∫
d3xJa,iA =

4

3
π2κρ2tr(Wτ iW−1τa)

∫
d3x∂2jH

A. (4.2.52)

Using (4.1.45), ∂2jH
A transformed to

∂2jH
A =∂2j

( 1

2π2

1

k(Z)

1

r
−

∞∑
n=1

gan

λ2n
∂Zψ2n(Z)Y2n(r)

)
=
(
4π

1

2π2

1

k(Z)
−

∞∑
n=1

gan

λ2n
∂Zψ2n(Z)

)
δ3(x⃗− X⃗)−

∞∑
n=1

gan∂Zψ2n(Z)Y2n(r),

(4.2.53)

the first and second terms of (4.2.53) cancel each other because

∞∑
n=1

gan

λ2n
⟨∂Zψ2n(Z)⟩ = ∂Z

∫
dzψ0(z)κh(z)

∞∑
n=1

ψ2n(z) ⟨ψ2n(Z)⟩

= ∂Z

∫
dzψ0(z)δ(z − Z) = ∂Zψ0(Z) =

2

π

1

k(Z)
(4.2.54)
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is satisfy by the same argument as (4.2.5). Because of∫
d3x∂2j ⟨HA⟩ =−

∞∑
n=1

gan ⟨∂Zψ2n(Z)⟩
∫ ∞

0

dr4πr2
(
− 1

4π

e−
√
λ2nr

r

)
=

∞∑
n=1

gan∂Zψ2n(Z)

∫ ∞

0

drre−
√
λnr =

2

π

1

k(Z)
, (4.2.55)

gNNA is obtained by

gNNA =
16πκ

3

〈 ρ2

k(Z)

〉
, (4.2.56)

where (4.2.5) is used. If a numerical calculation is performed, the axial coupling is

computed as

gNNA ≃ 0.734, (4.2.57)

where the experimental value is gNNA |exp ≃ 1.27, indicating that the predicted value

of this model is considerably smaller than the experimental value.

■ The 5d Noether current

In leading of 1/λ expansion, the effect of the warp factor and the contribution from

the CS term can be ignored, hence the 5d axial current is calculated to be

J iA,a(x, z) = − 8κρ2

ξ2(ξ2 + ρ2)2

[4ρ2zψA(z)
ξ2 + ρ2

+
(
z2 − x2

3

ψA(z)

dz

)]
tr
(
tiW (t)−1taW (t)

)
.

(4.2.58)

Although ψA(z) is written as ψA(z) = (2/π) arctan z, as far as leading of the 1/λ

expansion is concerned, we can treat ψA(z) ≃ (2/π)z as well as the effect of the warp

factor. Thus, the 4-dimensional current can be written as

jiA,a(t, x) =

∫ ∞

−∞
dzJ iA,a(x, z)

=
32κ

3ρ2

[
8r − 8r4 + 12ρ2r2 + 3ρ4

(r2 + ρ2)3/2

]
tr
(
tiW (t)−1taW

)
. (4.2.59)

Since this 4-dimensional current becomes∫
d3xjiA,a(x, t) = −32πκρ2

3

(
tiW (t)−1taW

)
, (4.2.60)
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by spatial integration, axial coupling is calculated as

gA =
16πκ

3
⟨ρ2⟩ . (4.2.61)

From this, we obtain the axial coupling

gA =

√
6

3π

(
1 + 2

√
1 +

N2
c

5

)
= 1.13. (4.2.62)

Remarkably, in the leading calculation of the 1/λ expansion, this value does not

depend on the parameters of the model. Nevertheless, we find that it predicts a value

quite close to the experimental data.

Table 4.1 Results from the each analysis on the static properties of the nucleon.

GKP-Witten current 5d Noether current ANW [81] Exp√
⟨r2⟩I=0 0.785 0.82 0.59 0.806√
⟨r2⟩E,p 0.785 - - 0.875√
⟨r2⟩E,n 0 - - −0.116

gI=1 7.03 6.83 6.38 9.41

gI=0 1.68 1 1.11 1.76

gNNA 0.734 1.13 0.61 1.27

4.3 Dynamical properties of the nucleon resonances

In the previous section, we reviewed static properties of nucleons, which have been

carried out by [16, 13], etc. However, to understand the nature of the baryon reso-

nances, it is also necessary to reveal their dynamical properties. When considering

dynamical processes of baryons, it is important to include interactions involving pions,

because many baryon resonances are formed and decay through pions. The contribu-

tion of mesons other than pions is also important, and it has been shown that many

phenomena can be explained by a hybrid structure where constituent quarks form the

core structure which is dressed by meson clouds [8, 9].

The Sakai-Sugimoto model leads to an effective model of hadrons as a flavor gauge

theory in five dimensions as a holographic dual of massless QCD. The gauge field,
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which plays the fundamental role in this model, originated from an open string with

both ends in the D8 brane carrying the flavor, and by mode expansion, we identify

each mode, including pions, with an infinite number of vector/axial-vector mesons.

According to Chapter 2, baryons are interpreted as instantons on the D8 brane [74,

73, 12]. The dynamics of baryons at low energies are given by collective motions of

instantons/solitons, which is quite different from the quark model based on a single

particle picture of quarks. Moreover, in the low energy limit, it is known that the

Skyrmion [67] is derived by projecting an instanton in the five-dimensional spacetime

onto 4-dimensional spacetime using the Atiyah-Manton method [72]. As mentioned

in Chapter 2, these baryon pictures of the Sakai-Sugimoto model are closely related

to the meson cloud picture, which has been found in the study of nucleon resonances

so far. A particularly remarkable fact in this model is that the masses of the Roper

resonance and the negative parity state degenerate in the resulting mass formula.

This shows that it captures the features of the hadron spectroscopy better than the

other models. We consider it a worthwhile attempt to investigate the dynamical

properties of nucleon resonance using the Sakai-Sugimoto model, which has the above

features. This attempt is also expected to be a milestone in the development of the

study of dynamical properties of nucleon resonance using holographic QCD. In this

section, in subsection 4.3.1, we first calculate the axial coupling and the decay width

of one pion emission calculated from this coupling using GKP-Witten current. Next,

in subsection 4.3.2, we attempt to analyze the electromagnetic form factor. Finally,

in subsection 4.3.3, we summarize the results.

4.3.1 The axial coupling and one pion emission

In this subsection, we investigate the one-pion emission processes of nucleon reso-

nances using the GKP-Witten current of the Sakai-Sugimoto model. In particular,

we aim to calculate the axial coupling and decay width.

Formulation

By evaluating the matrix elements of the axial vector current, the axial coupling

gNN
∗

A is obtained. The axial coupling is related to the coupling constant gπNN∗ of
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πNN∗ through the Goldberger-Treiman relation, one of the low energy theorems.

From this gπNN∗ , the decay width of one pion emission is calculated.

It turns out that the equation of axial coupling is completely different for positive

and negative parity resonance states. In the non-relativistic limit, the axial current

between the nucleon N and the positive/negative parity excited state N∗
even/odd is

defined by

JµA = ψNγ
µψN∗

even
, (4.3.1)

JµA = ψNγ
µγ5ψN∗

odd
, (4.3.2)

(4.3.3)

with

ψB =

(
uB
0

)
, B = N,N∗

even, N
∗
odd, (4.3.4)

where γ5 is required if the parities of the initial and final states are the same, but

not if they are different. From the above, in the case of B = N∗
even, only the spatial

component of the current, and in the case of N∗
odd, only the time component of the

current contributes to the current in the relativistic limit.

Therefore, in the following, we present the formulation of the axial coupling and

the decay width in each case.

■ Positive parity N∗
even

The axial coupling g
NN∗

even

A (k) for the transition N∗
even → N+π is defined as follows

: ∫
d3xeik·x ⟨N, s′3I ′3|JaiA |N∗

even, s3, I3⟩ × 2

= g
NN∗

even

A (k)
(
δia −

kika
k2

)
(σa)s′3,s3

(τa)I′3,I3
. (4.3.5)

in the chiral limit, this is written as∫
d3x ⟨N, s′3, I ′3|JaiA |N∗

even, s3, I3⟩ × 2

=
2

3
g
NN∗

even

A (σa)s′3,s3
(τa)I′3,I3

, (4.3.6)

where the factor 2/3 on the right-hand side is needed [81].
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The decay width of N∗
even → N + π can be computed by the formula

ΓN∗
even→N+π =

1

2MN∗
even

∫
d3pN

(2π)
3
2EN

d3pπ

(2π)
3
2Eπ

× (2π)
4
δ4 (pN + pπ) |tfi|2 , (4.3.7)

where the amplitude tfi is given by the Lagrangian

L = i
MN +MN∗

2fπ
g
NN∗

even

A ψN∗
even

γ5τ⃗ · π⃗ψN + h.c., (4.3.8)

as follows

tfi = ⟨N(−k⃗)π(k⃗)|L|N∗
even(⃗0)⟩

=
√

2MN∗
even

√
MN + EN

×
MN +MN∗

even

2fπ

g
NN∗

even

A

EN +MN
⟨s′3|σ⃗ · k⃗|s3⟩ . (4.3.9)

Here we have expressed the effective πNN∗
even coupling gπNN∗

even
in terms of the axial

coupling by using the Goldberger-Treiman relation,

g
NN∗

even

A =
fπgπNN∗

even(
MN +MN∗

even

)
/2
. (4.3.10)

Hence we obtain

ΓN∗
even→N+π

=
k

4π

MN + EN
MN∗

even

(
MN +MN∗

even

2fπ

g
NN∗

even

A k

EN +MN

)2

. (4.3.11)

where k is the momentum of the decaying pion and is given by

k =

(
M2
N∗

even
− (MN +mπ)

2
)1/2(

M2
N∗

even
− (MN −mπ)

2
)1/2

2MN∗
even

(4.3.12)

■ Negative parity transition

The axial coupling g
NN∗

odd

A (k) for the transition N∗
odd → N +π is defined as follows:

g
NN∗

odd

A (τa)I3I′3 =

∫
d3xeik·x ⟨N, I ′3|ja0A |N∗

odd, I3⟩ × 2 (4.3.13)
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The decay width of N∗
odd → N + π can be computed by the formula

ΓN∗
odd→Nπ =

1

2MN∗
odd

∫
d3pN

(2π)32EN

d3pπ
(2π)32Eπ

(2π)4δ4(pN + pπ)|tfi|2 (4.3.14)

The transition matrix tfi of the Lagrangian

L = i
g
NN∗

odd

A

2fπ
ψNγ

0∂0π
aτaψN∗

odd
, (4.3.15)

is defined as

tfi= ⟨N(−k);π(k)|L|N∗
odd(0)⟩

= i
g
NN∗

odd

A

2fπ
Eπ
√
EN +MN

√
2mM∗

odd
δs3s′3 . (4.3.16)

Hence we obtain

ΓN∗
odd→Nπ =

(g
NN∗

odd

A )2

16π

|k|E2
π(Eπ +mN )

f2πMN∗
odd

(4.3.17)

Here we have expressed the effective πNN∗
even coupling gπNN∗

even
in terms of the axial

coupling by using the Goldberger-Treiman relation,

g
NN∗

odd

A =
fπgπNN∗

odd(
MN∗

odd
−MN

)
/2
. (4.3.18)

Results

There are two parameters of this model, MKK and κ. Following Ref. [81] they are

determined to reproduce the mass of the ρ (776 MeV) meson, and the pion decay

constant fπ = 92.4 MeV,

MKK = 940 MeV, κ = 0.00745 (4.3.19)

In Table. 4.3.1, we also summarize the results with the parameter set used in Ref. [13].

Now that we are prepared to calculate the axial coupling and decay width for

one pion emission, we will present the results for the low-lying nucleon resonances

described in Chapter 1.

■ Roper resonance
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First, we obtain the axial coupling gA for the transition from the Roper resonance

to the nucleon. In momentum space, the axial current is given by

J̃µA(q⃗) =

∫
d3x e−iq⃗·x⃗JµA(r),

J̃cjA (q⃗) = e−iq⃗·X⃗2π2κρ2tr
(
τ cWτaW−1

)
×
(
δaj −

kakj

k⃗2

)∑
n≥1

gan∂Zψ2n (Z)

k⃗2 + λ2n
, (4.3.20)

where the following equation is used,∫
d3xe−ik⃗·x⃗Yn(|x⃗− X⃗|) = −e−ik⃗·X⃗ 1

k⃗2 + λn
. (4.3.21)∫

d3xe−ik⃗·x⃗HA(Z, |x⃗− X⃗|) = −e−ik⃗·X⃗ 1

k⃗2

∞∑
n=1

gan∂Zψ2n(Z)

k⃗2 + λ2n
. (4.3.22)

Using (4.3.20), (2.4.122), (2.4.123) and (E.3.2), we obtain

g
NN∗(1440)
A (q⃗) =

8π2κ

3
⟨Rnρ=1|ρ2|Rnρ=0⟩

∑
n=1

gan ⟨∂Zψ2n (Z)⟩
k⃗2 + λ2n

(4.3.23)

where ⟨∂Zψ2n (Z)⟩ stands for the expectation value using the wave functions of Z and

Rnρ
is the confluent hypergeometric functions (2.4.122), which normalized as follow,∫ ∞

0

dρρ3Rnρ
(ρ)2 = 1. (4.3.24)

The matrix element of ρ2 can be computed and the result is

⟨RN∗(1440)|ρ2|RN ⟩=

(
1 + 2

√
1 +

N2
c

5

)−1/2

⟨RN |ρ2|RN ⟩

=

√
5

2Nc

(
1 + 2

√
1 +

N2
c

5

)1/2

ρ2cl (4.3.25)

with ρcl being the classical instanton size given by

ρ2cl=
Nc
8π2κ

√
6

5
. (4.3.26)

We notice that the transition matrix elements of N∗ (1440) → N + π are related

to the nucleon matrix elements, which is an interesting feature of the present model
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associated with the collective nature of the baryons. The axial coupling constant is

then defined g
NN∗(1440)
A = gNN

∗(1440)

A (⃗0) at k⃗ = 0. Using the relation (4.2.5),

∑
n=1

gan∂Zψ2n (Z)

λ2n
=

2

π

1

k (Z)
, (4.3.27)

g
NN∗(1440)
A can be expressed in a compact form:

g
NN∗(1440)
A =

16πκ

3
⟨RN∗ |ρ2|RN ⟩

〈
1

k (Z)

〉
. (4.3.28)

Using the two parameters mentioned in (4.3.19), the prediction of the present model

for g
NN∗(1440)
A is

g
NN∗(1440)
A = 0.352. (4.3.29)

With the axial coupling (4.3.29), we investigate the one pion emission decay

N∗(1440) → πN . Before we go on, we will give an explanation of the experimental

values. Because the Roper resonance has a very large width causing uncertainties in

the Breit-Wigner fitting, we refer to the result of the pole analysis. Following the

PDG table [117], we quote the following nominal values

MN∗(1440) = 1360− 1380 (∼ 1370) MeV, (4.3.30)

Γtotal = 160− 190 (∼ 175) MeV,

and the branching ratio of the one pion decay

N∗(1440) → Nπ : 55− 75 %. (4.3.31)

Using the lower and upper bounds for the total decay width and branching ratio, we

find the partial decay width of the one pion decay

ΓN∗(1440)→πN ∼ 90− 140 MeV. (4.3.32)

Using MN = 940 MeV, MN∗ = 1370 MeV, mπ = 140 MeV (pion mass), k =

342 MeV, we find

ΓN∗(1440)→N+π = 49 MeV (4.3.33)

By considering the form factor effect, the g
NN∗(1440)
A value at k⃗ = 342 MeV becomes

about 13 % smaller, and hence ΓN∗(1440)→N+π ∼ 43 MeV (The form factor is given
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in Fig.1 in Ref. [16].). If we use MN∗ = 1440 MeV and k = 398 MeV [117], we find

77 MeV for (4.3.78) and 64 MeV for the finite k. These estimations show that there

is ambiguity in comparison with actual experimental data due to uncertainties in the

exact resonance point.

Our predictions of the decay width obtained from different resonance points is

are smaller than the experimental value (4.3.32). This is because the nucleon axial

coupling gNNA is small. In fact, the nucleon gNNA is computed in a similar manner as

for g
NN∗(1440)
A . The result is

gNNA = 0.732. (4.3.34)

This value is significantly smaller than the experimental value gNNA = 1.25. The

small gA is a common problem of the solitonic description of baryons. One possible

resolution to recover the experimental value gNNA = 1.25 is to take into account 1/Nc

corrections (Ref. [118] and references there). Here, we will not discuss this point

further and point out some interesting features of the present model. We find that

the following relation holds between the axial coupling of the nucleon and that of the

transition from Roper to the nucleon.

g
NN∗(1440)
A /gNNA =

(
1 + 2

√
1 +

N2
c

5

)−1/2

= 0.5. (4.3.35)

It is worth remarking here that this relation is independent of the parameters of the

model. If we determine the value of g
NN∗(1440)
A to derive the experimental value of

ΓN∗→πN ∼ 110 MeV, we find the ratio

g
NN∗(1440)
A /gNNA = 0.77/1.25 ∼ 0.6, (4.3.36)

which agrees well with the present model prediction within ∼ 20 % accuracy, whose

agreement is better than the absolute value.

■ Negative parity resonance N∗(1535)

It is obvious from the structure of the axial current that the spatial component of

the axial current does not contribute to the axial coupling g
NN∗

odd

A due to the parity

determined by the wave function of Z and the completely anti-symmetric tensor ϵibj .

Therefore, only the time component of the axial current contributes in the negative
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parity transition in the non-relativistic limit [119]. The time component of the axial

current is written as

J̃0
A,a(k) =2π2κ

[
i
ka
k2

tr[τa∂0(ρ
2Wτ bW−1)]

]
e−ik·X

∞∑
n=1

gan∂Zψ2n

k2 + λ2n

+
(
Ia − 2π2κρ2

Pi
M0

ϵiajkj

)
e−ik·X

∞∑
n=1

ganψ2n

k2 + λ2n
, (4.3.37)

J̃ iA,a(k) =2π2κρ2tr(τaWτ bW−1)e−ik·X
[(
δbi −

kbki
k2

) ∞∑
n=1

gan∂Zψ2n

k2 + λ2n

−iϵibjkj
∞∑
n=1

ganψ2n

k2 + λ2n

]
, (4.3.38)

in the momentum space. The axial coupling at the transition momentum k⃗ = 0 is

expressed as

g
NN∗(1535)
A (k2) =

∫ ∞

−∞
dZψnZ=0(Z)ψnZ=1(Z)

∞∑
n=1

ganψ2n

k2 + λ2n
, (4.3.39)

using this axial current and the wave functions (2.4.124) and (2.4.125) which are

normalized as follows, ∫ ∞

∞
dZψnZ

(Z)2 = 1. (4.3.40)

The axial coupling constant is defined by k⃗ = 0 and g
NN∗(1535)
A = g

NN∗(1535)
A (⃗0).

Using the relation (4.2.54), we obtain

g
NN∗(1535)
A =

∫ ∞

−∞
dZψnZ=1(Z)ψnZ=0(Z)ψ0(Z). (4.3.41)

We analytically obtain the following result;

g
NN∗(1535)
A =

√
2

π
e2M0/

√
6erfc

(√ 2√
6
M0

)
, (4.3.42)

where erfc(x) is a complementary error function. From the above, we obtain the

following values as axial coupling,

g
NN∗(1535)
A = 0.42. (4.3.43)
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The axial coupling constant at an arbitrary value of k is
calculated by (20) to find the result,

gNN!

A ðk2Þ ¼
Z

∞

−∞
dZψZðZÞψ 0

ZðZÞ
X∞

n¼1

ganψ2nðZÞ
k2 þ λ2n

; ð21Þ

where ψZðZÞ and ψ 0
ZðZÞ are normalized wave functions.

Before discussing the actual decay at a finite k, we would
like to briefly show the case at k ¼ 0, where some analytic
calculations are possible. Using

X∞

n¼1

ganψ2nðZÞ
λ2n

¼ 2

π
arctanZ ¼ ψ0ðZÞ; ð22Þ

we get

gNN!

A ¼
Z

∞

−∞
dZψZðZÞψ 0

ZðZÞψ0ðZÞ:

We obtain analytically with the result,

gNN!

A ¼
ffiffiffi
2

π

r
e

2ffiffi
6

p M0erfc
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ffiffiffi
6

p M0

s #
; ð23Þ

where erfcðxÞ is the complementary error function.
For numerical estimate, we choose the parameters,

κ ¼ 0.00745;

MKK ¼ 940 MeV;

which are related to

M0 ¼ 8π2κ ¼ 0.588;

κ ¼ π
4

f2π
M2

KK
;

and so fπ ¼ 92.4 MeV. MKK is determined to reproduce
the mass of ρð776 MeVÞ [16]. Using the parameters, we
obtain the value,

gNN!

A ¼ 0.42: ð24Þ

B. Decay width

Let us calculate the decay width of the Nð1535Þ → Nπ
decay proses from the axial coupling we calculated, and
compare it with the experimental value.
The decay width is given by

ΓN!→Nπ ¼
1

2mN!

Z
d3pN

ð2πÞ32EN

d3k
ð2πÞ32Eπ

× ð2πÞ4δ4ðpN þ k − pN! Þjtfij2; ð25Þ

with

tfi ¼ hNð−kÞ; πðkÞjLjN!ð0Þi

¼ i
gNN!

A

2fπ
Eπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þmN

p ffiffiffiffiffiffiffiffiffiffiffi
2mN!

p
δs3s03 ;

L ¼ i
gNN!

A

2fπ
ψ̄Nγ0∂0πaτaψN! ;

where mN! is the mass of Nð1535Þ, mN the nucleon mass,
EN the energy of nucleon, Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

π

p
, and mπ the

pion mass. Hence, we obtain

ΓN!→Nπ ¼
gNN!2
A

16π
jkjE2

πðEN þmNÞ
f2πmN!

; ð26Þ

where k is the momentum of the emitted pion,

jkj ¼
$
m4

N! þm4
N þm4

π

4m2
N!

−
2ðm2

N!m2
N þm2

Nm
2
π þm2

πm2
N! Þ

4m2
N!

%
1=2

:

Here, to obtain πNN! coupling constant, we have used the
Goldberger-Treiman relation,

gπNN! ¼ mN! −mN

2fπ
gNN!

A : ð27Þ

From PDG, mN! ¼ 1510 MeV, mN ¼ 940 MeV, mπ ¼
140 MeV, and jkj ¼ 448 MeV, where the mass ofNð1535Þ
is the pole position. In addition, we need to compute gAðk2Þ
at jkj ¼ 448 MeV.We have numerically computed the sum
over n in (21) and verified a good convergence for the
maximum value n ∼ 15. The result is shown in Fig. 1 in the
form of the form factor, Fðk2Þ ¼ gAðk2Þ=gAð0Þ, as a
function of k2 ¼ jkj2 in units ofM2

KK. The actually emitted
pion momentum jkj ¼ 448 MeV corresponds to k2 ∼ 0.25,
where Fðk2Þ ∼ 0.75. Thus, the value of the axial coupling

0.5 1.0 1.5

0.5

1.0

0

F(k2)

 in units of k2 M2
KK

FIG. 1. The emitted pion momentum k dependance of the form
factor FAðk2Þ.

DECAY PROPERTIES OF Nð1535Þ IN THE HOLOGRAPHIC … PHYS. REV. D 105, 114057 (2022)

114057-5

Fig.4.1 The emitted pion momentum k dependence of the form factor

Using MN = 940 MeV, MN∗ = 1510 MeV, mπ = 140 MeV (pion mass), q =

448 MeV, we find

ΓN∗(1535)→N+π = 54 MeV, (4.3.44)

where the mass of the resonant state is the result from pole position. In this computa-

tion the value of gNN
∗

A at q⃗ = 0 is used. By considering the form factor effect, the gNN
∗

A

value at q⃗ = 448 MeV becomes about 25 % smaller, and hence ΓN∗(1535)→N+π ∼ 30

MeV (Fig. 4.1). According to PDG, the total decay width of the negative parity

resonance N∗(1535) is 130 MeV, and the branching ratio of the one pion emission is

32 ∼ 52%, so the partial decay width is

Γexp
N∗(1535)→Nπ = 42− 68MeV. (4.3.45)

Although our results are somewhat smaller than the experimental values, This value

is in good agreement with the experimental value at the level of accuracy that is to

be expected for models of this type.

■ ∆(1232)

Using (4.3.20) and (2.4.122), we obtain

gNN
∗

A (q⃗) =
8
√
2π2κ

3
⟨RN |ρ2|RN ⟩

∑
n=1

gan ⟨∂Zψ2n (Z)⟩
k⃗2 + λ2n

,

(4.3.46)
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where we used the following instead of (4.2.34),

⟨N, I ′3, s′3|tr(Wτ iW−1τa)|∆+(1232), I3 = 1/2, s3 = 1/2⟩ = 2
√
2

3

(
σi
)
s′3,1/2

(
τa
)
I′3,1/2

(refer to (E.3.3) Appendix E) (4.3.47)

From the above, the axial coupling gN∆
A is obtained as

gN∆
A = 1.18. (4.3.48)

Using MN = 940 MeV, MN∗ = 1232 MeV, mπ = 140 MeV (pion mass), k =

229 MeV, we find

Γ∆+→N+π = 160 MeV (4.3.49)

By considering the form factor effect, the gN∆
A value at k⃗ = 229 MeV becomes about

10 % smaller, and hence Γ∆→N+π ∼ 140 MeV. Therefore, our prediction reproduces

the experimental value of Γ∆→N+π ∼ 131 MeV quite well.

Discussion

The parameter set used so far was chosen to reproduce the ρ meson mass and the

pion decay constant fπ. This parameter set does not reproduce the mass splitting

of the baryon resonance. On the other hand, we can reproduce the mass splitting

of a nucleon and ∆(1232) by choosing MKK = 488 MeV as in section 2.4. Also we

determine κ = 0.0137 to reproduce the pion decay constant fπ = 64.5 MeV, following

Adkins et al. [81]. In addition to the parameter set in the main discussion, this

parameter set is also included and the results are summarized in Table. 4.3.1.

Table 4.2 The axial coupling obtained from each set of parameters.

MKK κ gNNA g
NN∗(1440)
A g

NN∗(1535)
A g

N∆(1232)
A

Set1 940 MeV 0.00745 0.732 0.352 0.42 1.18

Set2 488 MeV 0.0137 0.837 0.402 0.35 1.35

EXP. - - 1.25 0.77 0.51 1.07

By choosing Set2, a large decay width can be obtained. However, in this case, it

can be seen that the form factor decreases rapidly with increasing k⃗. Therefore, when
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the effect of the form factor is taken into account, the decay width becomes smaller

than the result of Set1.

Thus, the behavior of the result depends on the choice of parameters. Nevertheless,

we find that our results reproduce relatively well the decay width of the one-pion emis-

sion of the Roper resonance, which is almost zero in the quark model. Furthermore,

it should be emphasized that one of the unique and remarkable features of this model

is that the relation between the nucleon axial coupling constant gNNA and g
NN∗(1440)
A

is independent of the parameters of the model.

So far transitions of one pion emissions have been described well. Turning to the

electromagnetic transitions, however, we have found that the GKP-Witten current

does not reproduce the experimental data of the Roper resonance well. Therefore,

in the next chapter, we will attempt to calculate the electromagnetic transition form

factor using the 5d Noether current instead of the GKP-Witten current.

4.3.2 The electromagnetic transition form factor

The pion loop gives an important contribution to the electromagnetic transition

amplitude at relatively small momentum transfers because the spontaneous breaking

of the chiral symmetry produces Goldstone bosons (pions) that are massless at the

chiral limit. The importance of this contribution was already known long ago from

the fact that the electromagnetic transition amplitude of ∆(1232) is underestimated

when only the constituent quarks is taken into account [3, 38, 7]. Furthermore,

recent experiments at the Thomas Jefferson National Accelerator Facility (JLab) have

extracted helicity amplitudes wide range of momentum transfer of electromagnetic

transitions from the nucleon to the Roper resonance [42, 43, 44, 45, 46], which is in

serious conflict with the prediction of the naive quark model. To solve these problems,

many theoretical efforts have been made [6, 7, 47, 8, 9, 24]. It was pointed out that

relativistic effects of the confined quarks at a short distance and meson cloud effects

at a long distance are important to improve the above-mentioned problems [8, 9].

The Sakai-Sugimoto model justifies the description of baryons as solitons of mesons,

and the picture here is like the meson cloud picture itself. Therefore, by analyzing

the electromagnetic transition amplitude in this model, the importance of the meson

cloud effect can be understood from a different perspective, in terms of the soliton
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Fig.4.2 The transverse helicity amplitude A1/2 in units of 10−3 GeV−1/2 as

function of the four-momentum transfer Q2. The sources of experimental data

are shown in the panel [42, 43, 44, 45, 46].

picture.

In particular, the electromagnetic transition amplitude of A1/2 of the Roper reso-

nance shows a unique feature not found in other nucleon resonances. The experimental

data of A1/2 of the Roper resonance is shown in Fig. 4.2. It takes a finite negative

value near the real photon point Q2 ∼ 0. This feature essentially cannot be explained

from the quark model, which has successfully explained the properties of many baryon

resonances, as explained in section 1. Understanding this behavior is important for

revealing low-energy QCD. Therefore, in this subsection, which fails to explain this

behavior, we will analyze it using the 5d Noether current.
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Formulation

Using the current obtained in section 4.1.2, the helicity amplitude is given by

A3/2(Q
2) =

√
2πα

K

∫
d3x

〈
ψN , s3 =

3

2

∣∣∣∣ ϵ(+)
µ jµem

∣∣∣∣ψN∗ , s3 =
1

2

〉
ei|⃗k|x

3

,(4.3.50)

A1/2(Q
2) =

√
2πα

K

∫
d3x

〈
ψN , s3 =

1

2

∣∣∣∣ ϵ(+)
µ jµem

∣∣∣∣ψN∗ , s3 = −1

2

〉
ei|⃗k|x

3

,(4.3.51)

S1/2(Q
2) =

√
2πα

K

∫
d3x

〈
ψN , s3 =

1

2

∣∣∣∣∣ |⃗k|Q ϵ(0)µ jµem

∣∣∣∣∣ψN∗ , s3 =
1

2

〉
ei|⃗k|x

3

.(4.3.52)

Here, α is the fine structure constant, Q the virtuality of the photon, and the 3-

momentum k⃗ of the photon is assumed to be directed along the x3 axis in the N∗

rest frame. Also, A3/2 is defined only when considering the transition from a resonant

state with spin 3/2 to a nucleon. Due to the energy conservation law, we have the

following equation:

k2 = Q2 +
(Q2 +m2

i −m2
f )

2

4m2
f

. (4.3.53)

In the case of real photons, i.e., Q2 = 0, we find that |⃗k| becomes K = (m2
f −

m2
i )/(2mf ). The polarization vectors for the axis are defined by

ϵ(0)µ =
1

Q
(|⃗k|, 0, 0,−k0) (longitudinal mode) (4.3.54)

ϵ(±)
µ =

1√
2
(0, 1,±i, 0) (transverse mode). (4.3.55)

Results

In this subsection, we determine two parameters Kaluza-Klein Mass MKK and κ,

which we determine according to Ref.[13] as follows;

MKK = 488 MeV (4.3.56)

κ = 0.0243. (4.3.57)

■ Roper resonance
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Here we substitute (4.1.20), (4.1.21) and (4.1.25) into the electromagnetic current

expression,

jµem = jµ,C=3
V +

1

Nc
jµ,C=0
V , (4.3.58)

then we get the following concrete expression [13];

j0em(xµ) =
3

4π

ρ2

(r2 + ρ2)5/2
I3 +

15

16π

ρ4

(r2 + ρ2)7/2
(4.3.59)

jiem(xµ) =
4πκ

ρ2

(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)5/2

)
ϵijkx

jtr(tkW
−1t3W )

+
15

32π

ρ4

(r2 + ρ2)7/2
(
− ϵijax

jχa + 2xi
d

dt
lnρ
)

(4.3.60)

where Ia is isospin operator Ia = 8π2κρ2tr
(
iẆW−1ta

)
and i, a = 1, 2, 3. Here, in the

present case, the term of the time derivative of Z is omitted because it is zero due to

the evenness of the wave function.

This completes the preparation for calculating the helicity amplitude of the elec-

tromagnetic transition.

Using the wave function (2.4.122), (2.4.123), and the concrete expression of the

current (4.3.59) and (4.3.60), the helicity amplitude is calculated as follows

A1/2(Q
2) = −

√
2πα

K

∫ ∞

0

dρρ3ψnρ=0 (ρ)ψnρ=1 (ρ)∫ ∞

0

drr3
{ 16π2κ

3
√
2ρ2

(8
r
− 8r4 + 20r2ρ2 + 15ρ4

(r2 + ρ2)5/2

)
+

15

32
√
2π2κ

ρ2

(r2 + ρ2)7/2

}
j1(kr),

(4.3.61)

S1/2(Q
2) = −

√
2πα

K

∫ ∞

0

dρρ3ψnρ=0 (ρ)ψnρ=1 (ρ)∫ ∞

0

drr2
(3
2

ρ2

(r2 + ρ2)5/2
+

15

4

ρ4

(r2 + ρ2)7/2

)
j0(kr), (4.3.62)

where jn(x) is a spherical Bessel function, the normalized wave function ψlρ is defined

by

ψnρ
(ρ) =

Rnρ
(ρ)√∫∞

0
dρρ3R2

nρ
(ρ)

, (4.3.63)

with the confluent hypergeometric functions Rnρ (2.4.94) and for the calculation of

S1/2, we used j0em from the current coservation law Qµj
µ
em = 0.
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Fig.4.3 The transverse helicity amplitude A1/2 in units of 10−3 GeV−1/2 as
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By performing numerical integration, the helicity amplitudes of the electromagnetic

transition for the Roper resonance obtained from our calculation are shown in figure.

It can be seen that this result achieves global agreement with experimental data.

These results have some remarkable properties, as follows.

(i) We find that our A1/2 near the real photon point Q2 = 0 has a finite negative

value. The non-relativistic quark model fails to explain this property. This is due

to the orthogonality between the radial wave function of the Roper resonance

and the ground state nucleon obtained from the quark model, which leads to

the transition process mentioned to be a forbidden process. Several theoretical

studies have attempted to solve this problem and have discussed the importance

of relativistic corrections and the effect of meson clouds. The present approach

shows that, in addition to the above, it is important to take into account the

collective motion resulting from the soliton picture of the baryon. An impor-

tant result of the collective motion comes from a dependence the current on the

instanton size ρ. When we expand the current by powers of ρ, its leading term

starts from ρ2. This is an essential property of the soliton picture of baryons,

indicating that the collective motion of mesons plays an important role. This

picture is quite different from the single-particle picture of the quark model. Our

results indicate that the collective motion mechanism of baryons is an impor-

tant contribution to our understanding of the phenomena associated with Roper

resonances (excitation energies and decays).

(ii) The experimental data for A1/2 flips its sign around Q2 ∼ 0.5 GeV2. Our results

roughly capture this behavior around Q2 ∼ 0.7 GeV2.

(iii) Our model prediction underestimates the experimental data of A1/2 at Q2 ≳
1 GeV2. This is because our results are calculated up to order 1/λ. Moreover, the

model by meson fields should be applied to the low energy region Q2 ≤ 1 GeV2.

Also, for energy regions larger than MKK , the contribution from redundant

modes not present in QCD, which should have been decoupled in section ??, is

larger, making the prediction less reliable.

(iv) Our prediction closely approximates the experimental data for S1/2 although

there is some overestimate. In the calculation of S1/2, we used only the time

component of the current (4.3.59) because we used the current conservation law.
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This charge density satisfies ∫
d3xj0em = I3 +

1

2
, (4.3.64)

for the electric charge. We consider that the fact that our prediction of S1/2

reproduces the experimental data well is ensured by the fact that it satisfies

(4.3.64).

(v) There are only two parameters in this model, κ and MKK . We determined

these parameters from the mass of the nucleon and the delta. With this set of

parameters, the static nature of the baryons has been studied, and it has been

found to predict the experimental data well (subsection 4.2). We emphasize that

the tuning of only two parameters predicts well not only the static but even the

dynamical properties of baryons.

■ N∗(1535)

In the calculation of the helicity amplitude of the negative parity resonance

N∗(1535), when using (4.3.59) and (4.3.60) as the electromagnetic current, it

becomes zero due to the wave function evenness of Z. Therefore, it is necessary to

newly consider the time derivative term of Z, which was ignored in the analysis of

the Roper resonance. The electromagnetic current obtained is as follows,

j0em =
4πκ

ρ2

[(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)5/2

)]
Żxbtr(WtbW

−1ta), (4.3.65)

where the spatial component of the current contributing to A1/2 of the N∗(1535)

becomes zero when only the leading of the 1/λ expansion is considered. Therefore,

by considering the effect of the warp factor and the spatial component of the U(1)

gauge fields, the current spatial component is

jiem(t, x) =
8πκ

ρ4

[(8r2(4r2 + 3ρ2)√
r2 + ρ2

+
ρ6

(r2 + ρ2)3/2
− 8r(4r2 + ρ2)

)
Ztr(WtcW

−1ta)

+
4

3

(4(6r2 + ρ2)

r
− 24r4 + 40ρ2r2 + 15ρ4

(r2 + ρ2)3/2

)
xixcZtr(WtcW

−1ta)
]
,

(4.3.66)

when the calculation is performed up to subleading of the 1/λ expansion. Here, we

still see that the spatial component of U(1) gauge fields does not contribute to A1/2.
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From the above, the helicity amplitudes can be calculated as follows.

A1/2 =

√
2πα

K

32π2κ

3

∫ ∞

0

dρρ3ψnρ=0(ρ)
2

∫ ∞

−∞
dZZ2ψnZ=0(Z)ψnZ=1(Z)∫ ∞

0

drr2
[(8r2(4r2 + 3ρ2)√

r2 + ρ2
+

ρ6

(r2 + ρ2)3/2
− 8r(4r2 + ρ2)

)
j0(kr)

−4

3

(
4r(6r2 + ρ2)− r2(24r4 + 40ρ2r2 + 15ρ4)

(r2 + ρ2)3/2

)j1(kr)
kr

]
,(4.3.67)

S1/2 = −
√

2πα

K

∫ ∞

0

dρρ3ψnρ=0(ρ)
2∫ ∞

0

drr2
[8πκrρ2

3
√
6

(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)3/2

)
⟨Z2⟩

]
j1(kr), (4.3.68)

where, note the normalization, ⟨Z2⟩ is the expectation value of the wave function of

Z, and using

⟨nZ = 1|
(
− i

M0

∂

∂Z

)
|nZ = 0⟩ =

∫∞
−∞ dZZe

−M0√
6
Z2
(
− i

M0

∂
∂Z

)
e
−M0√

6
Z2√∫∞

−∞ dZZ2e
− 2M0√

6
Z2 ∫∞

−∞ dZe
− 2M0√

6
Z2

=

∫∞
−∞ dZZe

−M0√
6
Z2
(
− 2i√

6
Z
)
e
−M0√

6
Z2

∫∞
−∞ dZZ2e

− 2M0√
6
Z2 ∫∞

−∞ dZe
− 2M0√

6
Z2

= − 2i√
6

∫∞
−∞ dZe

− 2M0√
6
Z2

∫∞
−∞ dZZ2e

− 2M0√
6
Z2

⟨nZ = 0|Z2|nZ = 0⟩

= − 2i√
6

32π2κ√
6

⟨Z2⟩ , (4.3.69)

　 with (2.4.111).

We have performed numerical computations of the integral (4.3.67) and (4.3.68)

and show the helicity amplitudes of the electromagnetic transition amplitudes for the

negative parity resonance N∗(1535), Fig. 4.5 and Fig. 4.6. Some comments on these

results are given below.

(i) For A1/2, there is no contribution from leading of 1/λ expansion. It is also

found that the calculation with the contribution of subleading underestimates

the experimental data. We consider that this is because this calculation is based

on the 1/λ expansion. It is possible to evaluate the current without the 1/λ

expansion. It is important to consider the contribution of the warp factor to the

classical solution, because the excitation of the negative parity state corresponds

to the oscillation in the Z direction. By the same argument as in section 4.1.1,
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it is possible to obtain an asymptotic solution for the instanton configuration.

Substituting this solution into the 5d Noether current yields a new contribution

from the j̃µL/R(x) term in Eq. (4.1.96). This term is essentially the same as

the contribution coming from the GKP-Witten current. The difference in the

gauge configuration of the instanton solution appears in the difference in the

magnitude of the coupling constant of the meson-baryon complex system in four

dimensions. As explained in section 1.1, the Negative parity resonance is known

to be strongly coupled to ηN . Therefore, it is necessary to consider a gauge-

field configuration that reproduces the coupling properties of the negative parity

resonance to the meson. From this point of view, it is also necessary to consider

the effect of the warp factor to obtain a classical solution. This is a future

challenge, which, if accomplished, is expected to further deepen understanding

of holographic QCD dynamics.

(ii) It can be seen that the shape of A1/2 is very similar to the experimental data,

even though the absolute values are quite small. In particular, the peak value is

Q2 = 0.6 GeV2, which is very close to the experimental behavior.

(iii) For S1/2, there is a leading contribution of 1/λ expansion, indicating that it

reproduces the experimental data very well.

(iv) The 5d Noether current has a non-uniqueness in the determination of ζ(x, z),

which has been determined to reproduce the chiral current of the Skyrme model.

However, in the Skyrme model it is not easy to generate negative parity states

within the collective quantization method; one way is to introduce meson fluc-

tuations around the soliton solutions [57]. To take into account such dynamics,

it may be necessary to reconsider the criteria for determining ζ(x, z), which is

however beyond the present study.

■ ∆(1232)

Calculate the helicity amplitude of the Delta resonance ∆(1232). For A3/2 and

A1/2, we can use the current of (4.3.60). As for S1/2, we can see that if we define

it using j0, the value will vanish in the leading of 1/λ expansion, so we consider the
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effect of the warp factor, the current time component is

j0em(x) =
1

6πρ4

[(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)5/2

)
Z2

−
(
8r − 8r4 + 12ρ2r2 + 3ρ4

(r2 + ρ2)3/2

)]
(x3)2J3tr(Wt3W

−1t3). (4.3.70)

From the above, the helicity amplitudes are written as

A1/2 =−
√

2πα

K

∫ ∞

0

drr2
∫ ∞

0

dρρ3ψnρ=0(ρ)
2j1(kr)

=
8π2κ

3ρ2

(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)5/2

)
(4.3.71)

A3/2 =−
√

2πα

K

∫ ∞

0

drr2
∫ ∞

0

dρρ3ψnρ=0(ρ)
2j1(kr)

=
8
√
2π2κ

3ρ2

(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)5/2

)
(4.3.72)

S1/2 =

√
2πα

K

∫ ∞

0

drr2
∫ ∞

0

dρρ3ψnρ=0(ρ)
2 2 sin kr − (kr)2 sin kr − 2kr cos kr

(kr)3

×
√
2r2

18ρ4

[
⟨Z2⟩

(8
r
− 8r4 + 20ρ2r2 + 15ρ4

(r2 + ρ2)5/2

)
−
(
8r − 8r4 + 12ρ2r2 + 3ρ4

(r2 + ρ2)3/2

)]
.

(4.3.73)

We performed numerical computations of the integral (4.3.71), (4.3.72) and (4.3.73)

and show the helicity amplitudes of the electromagnetic transition amplitudes for the

delta resonance ∆(1232), Fig. 4.7, 4.8 and 4.9. Some comments on these results are

given below.

(i) For A1/2, there is a leading contribution of 1/λ expansion. However, the ob-

tained values are considerably smaller than the experimental data, although

they reproduce the approximate behavior. We consider that this is because the

present calculation follows the prescription of 1/λ expansion as well as Roper

resonance and Negative parity resonance.

(ii) For S1/2, there is no leading contribution from the 1/λ expansion. Therefore,

we performed a calculation of the subleading of the 1/λ expansion including

the effect of the warp factor. However, the absolute values obtained are much

smaller than the experimental data.
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(iii) The results of our analysis depend significantly on the parameter κ of this model.

We show the κ dependence of the numerical results in Fig. 4.10. We can see that

the absolute value of our prediction of the electromagnetic transition amplitude

becomes larger as κ becomes larger. However, as κ increases, we overestimate

the experimental data in the high-momentum transition region.

Discussion

In this subsection, we have performed an analysis of the electromagnetic form factor

of a typical nucleon resonance using the 5d Noether current. As a result, it is shown

that S1/2 of the Roper resonance and the negative parity resonance approximately

reproduce the experimental data. In particular, for the Roper resonance A1/2, we find

that at the real photon point Q2 = 0, it reproduces an interesting feature that takes

a finite negative value, which the quark model fails to explain. This is essentially

owing to the representation as a collective motion of the nucleon resonance. The

representation of baryon resonances is completely different from the quark model,
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which considers quark three-body dynamics, suggesting the importance of the collec-

tive motion in the excitation created by the QCD vacuum. In Fig. 4.11, we compare

our prediction with the non-relativistic quark model. Our prediction shows a signifi-

cant improvement compared to that of the quark model concerning the reproduction

of the experimental data.

On the other hand, our results underestimate the experimental data overall for the

A1/2 of the negative parity resonance and Delta resonance ∆(1232). However, the

results we have given in this subsection are calculations based on the 1/λ expansion.

Therefore, we expect an improvement in our results by performing the calculations

without the 1/λ expansion. This method is discussed in Ref. [16]. We expect that

our results will be further improved by using their asymptotic solutions (4.1.55) and

(4.1.56).

The 5d Noether current can be used to obtain the axial coupling obtained in sub-

section 4.2.4. By using the current (4.2.59) defined in section 4.1.2, the axial coupling
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of nucleon is written by,

1

2
gNNA =

∫
d3xji,C=i

A (xµ)

=

∫
d3x

32κ

3ρ2

(
8r − 8r4 + 12ρ2r2 + 3ρ4

(r2 + ρ2)3/2

)
tr(tiW

−1taW )

=−32πκρ2

3
tr(tiW

−1taW ). (4.3.74)

By performing the Fourier transform, we obtain the axial coupling;

gNNA (k⃗ → 0) =
16πκ

3
⟨ψN |ρ2|ψN ⟩

=

√
6

3π

(
1 + 2

√
1 +

N2
c

5

)
= 1.13, (4.3.75)

where k⃗ is 3-momentum of pion. It is interesting to note that the axial coupling

constant obtained from this current is a value that does not depend on the parameters

of our model. In the same way as in subsection 4.3.1 there is also a relation between
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the axial coupling gNNA (4.3.75) and the axial coupling of the N∗(1440) → N + π

transition that does not depend on the parameters of our model as follows;

gNNA /gNN
∗

A =
(
1 + 2

√
1 +

N2
c

5

)1/2
= 2.08. (4.3.76)

From this relation, we obtain gNN
∗

A = 0.543. According to Ref. [17, 119], the decay

width of the N∗(1440) → N + π transition is

ΓN∗(1440)→N+π

=
k

4π

MN + EN
MN∗

(
MN +MN∗

2fπ

gNN
∗

A q

EN +MN

)2

. (4.3.77)

UsingMN = 940 MeV, MN∗ = 1370 MeV, k = 342 MeV, mπ = 140 MeV (pion mass), fπ =

64.5 MeV (pion decay constant), we find

ΓN∗(1440)→N+π = 117 MeV, (4.3.78)

where, In this computation, the value of gNN
∗

A at k⃗ = 0 is used. These results provide

quite good values for the experimental data. However, the shape of the form factor

shows a sharp decrease with increasing k⃗. Therefore, when the effect of the form

factor is taken into account, the value is considerably smaller than the experimental

value (Fig. 4.12). On this point, again, the 5d Noether current does not explain the

behavior well.

As described above, there are several problems when analyzing the dynamical prop-

erties of nucleon resonance using the 5d Noether current. Nevertheless, it is notewor-

thy that we can reproduce the experimental data of A1/2 of the Roper resonance.

It is difficult to explain the experimental data of A1/2 (Roper) in the quark model.

Therefore, our results indicate the importance of the collective motion mechanism of

the mesons that construct the nucleon.

4.3.3 Summary and discusstion

In this section, we investigate the dynamical properties of nucleons by using the

current defined by the Sakai-Sugimoto model. There is a problem with the definition

of current in the Sakai-Sugimoto model. The solution to this problem is discussed

from two viewpoints [16, 13], leading to the GKP-Witten current and the 5d Noether
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current, respectively. First, using the GKP-Witten current, we calculated the axial

coupling of the nucleon resonance and the decay width of the one pion emission

derived from it, showing that it reproduces the experimental data well. This suggests

that the effect derived from the collective motion of baryons/solitons in this model is

important. On the other hand, turning to the electromagnetic transition amplitudes,

we find that the GKP-Witten current cannot reproduce the experimental data for A1/2

of the Roper resonance. Therefore, we next calculated the electromagnetic transition

amplitude of the nucleon resonance using the 5d Noether current and compared it

with the experimental data. As a result, we succeeded in capturing the features of the

experimental data of A1/2 of the Roper resonance well. However, it fails to reproduce

the experimental data of the electromagnetic transition amplitudes of the Negative

parity resonance and the Delta resonance. Moreover, while it reproduces the value

of axial coupling well, the momentum dependence of its form factor is inconsistent

with the experimental data. This may indicate a limitation of the analysis by 1/λ

expansion. In Ref. [16], an analysis method beyond the 1/λ expansion is presented,

which is expected to improve the results by performing the same analysis using an

asymptotic solution for the instanton solution.

Despite the above problems, our analysis suggests that the collective motion mech-

anism of the meson field plays an important role in a comprehensive understanding of

the nucleon resonance created by the QCD vacuum, for which further developments
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are expected. We need to clearly understand the role of each of the several mecha-

nisms (for example, collective motion, single particle picture, and so on) for explaining

nucleon resonances for the description of nucleon resonances in future studies.
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Chapter 5.

Summary and Outlook

In this doctoral thesis, we attempted to study the dynamical properties of nucleon

resonance using the Sakai-Sugimoto model. Therefore, as a preparation, in section 2,

we gave a brief description of the Sakai-Sugimoto model and mainly discussed how

to treat mesons and baryons. In particular, we emphasized that the effective theory

of hadrons derived from this model can be interpreted as a meson-baryon composite

system. The Sakai-Sugimoto model leads to a 5-dimensional hadron effective theory

as a holographic dual of QCD. The extra dimension then provides a description of

pions, ρ-mesons and their infinite resonant states. By performing mode expansion

and dimensional reduction, we obtain an action consisting of a Skyrme field as a

nucleon and an infinite number of meson fields (Skyrme model and infinite number of

meson fields and their couplings). This meson-baryon composite system is critically

important for studying the nature of nucleon resonance. This is because the recent

simple hadron models (e.g., the quark model) face some limitations with respect to

the analysis of nucleon resonances, whereas models that describe nucleon resonances

as resonant states of mesons and nucleons have had much success. The importance

of such a description of the resonance state is also suggested from the experimental

point of view. This is because the quark model describes nucleon resonances as stable

particles, whereas the actually observed nucleon resonances are recognized as poles of

the scattering amplitudes of mesons and baryons. We should try to understand the

nature of nucleon resonance with respect to these facts.

The Sakai-Sugimoto model describes nucleon resonance as a soliton in 5-dimensional

space-time consisting of meson fields. As mentioned above, this model leads to a

163



meson-baryon composite system by dimensional reduction to 4 dimensions, so we be-

lieve that it is an interesting attempt to study the properties of nucleon resonance

using this model. In particular, the Roper resonance, the first excited level of the nu-

cleon, is considered to correspond to the monopole excitation, and the Sakai-Sugimoto

model, which describes the Roper resonance as a soliton size vibration, respects this

picture.

Furthermore, hadron resonances involving heavy quarks have been studied inten-

sively in recent years. In particular, it has been shown that Roper-like excitations

exist even in heavy baryons [23]. Interestingly, it was noted that Roper-like excitations

have an excitation energy of roughly 500 MeV from the ground state, even in situa-

tions where one of the quarks is replaced by a heavy quark. This flavor-independent

nature of Roper-like excitations is very interesting. We showed in chapter 3 that the

extra dimensional degrees of freedom of the Sakai-Sugimoto model are also useful in

the description of heavy hadrons [36]. We derived the mass spectra of heavy baryons

using the Sakai-Sugimoto model in section 3.4. As a further development, we expect

a similar analysis to our chapter 4.

As a further development of the study of hadron resonances in the Sakai-Sugimoto

model, we described in chapter 4 the study of the dynamical nature of nucleon reso-

nances. One of the significant results of this doctoral thesis is that we have pointed

out the importance of the aspect of collective motion of mesons for a comprehensive

understanding of nucleon resonance. We have performed calculations of the decay

widths of one pion emission and have shown that they reproduce well the experimen-

tal data for low lying states. A particularly interesting feature is that the relation

between the axial coupling g
NN∗(1440)
A and the nucleon axial coupling is independent

of the model parameters. Such a relation is a feature not obtained from other models.

We then performed a calculation of the electromagnetic transition amplitudes. In par-

ticular, our analysis captures well the A1/2 feature of the Roper resonance (Fig. 4.3),

suggesting the importance of the collective motion aspect of nucleon resonances in the

description of Roper resonances. On the other hand, the transition amplitudes of the

Delta resonance ∆(1232) and the negative parity resonance N∗(1535) underestimate

the experimental data. This may be due to the fact that our calculations are based

on the 1/λ expansion. Therefore, analysis beyond the 1/λ expansion is expected.

Specific analysis is an important issue to be addressed in the future. One possible
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analysis method is to use asymptotic solutions for instanton solutions as described

in section 4.1.1. This produces a contribution from j̃µL/R in the current’s expression

(4.1.96). Since this contribution is practically the same as the current contribution

used in Ref. [16], a large change in the analytical results is expected.

Finally, we remark on several points regarding further future developments.

First, as mentioned immediately above, we expect to improve our results by con-

cretely performing an analysis beyond the 1/λ expansion. In particular, as we have

already mentioned many times, this model, when reduced to 4 dimensions, leads to an

action consisting of mesons and baryons, and furthermore, their coupling constants

are not parameters but fully determined by the warp factor and the eigenfunctions of

the mode expansion, reflecting the QCD information. By clarifying the relationship

between the magnitude of these couplings and the asymptotic solution of the instan-

ton solution, the phenomenological aspect of the Sakai-Sugimoto model becomes more

clear. As a result of such analysis, a deeper understanding of the dynamic nature of

holographic QCD can be achieved.

It is also possible that some of the failures in our analysis arise from problems as-

sociated with the definition of chiral currents in the Sakai-Sugimoto model. While

the chiral current obtained from the GKP-Witten method, which is a proper tool for

holographic QCD analysis, gives a good prediction for the decay width of the one

pion emission, it does not reproduce the experimental data of A1/2 for the Roper res-

onance, which exhibits characteristic behavior. Therefore, we have analyzed A1/2 of

the Roper resonance by considering the 5d bulk theory of the Sakai-Sugimoto model

as a 5d hadron effective model like Ref. [77] and by defining the chiral current as a

Noether current, and found that we succeeded in reproducing the approximate be-

havior of A1/2 of the Roper resonance. The relationship between these two currents

is a theoretical issue to be clarified in the future. For example, in Ref. [121], it is

confirmed analytically that the definition of the energy momentum tensor in terms

of the Noether current of the bulk theory of the Sakai-Sugimoto model and the defi-

nition obtained from the bulk/boundary correspondence exactly coincide in the zero

momentum transfer case.

Furthermore, the dynamical properties of resonance states of heavy baryons can

be investigated by using our proposed method of introducing heavy flavor into the

Sakai-Sugimoto model, as in section 4.3. In particular, Roper-like excitations in heavy
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baryons exhibit flavor independent properties, thus understanding how Roper reso-

nances corresponding to monopole-like excitations are generated in situations where

one quark is replaced by a c quark or b quark is of great interest for understanding

the dynamics of low-energy QCD.

Such monopole excitations, which have the same spin parity as the ground state

and cannot be captured by a simple picture, are also known in the nuclear physics

context, such as the Hoyle state, the first excited state of Carbon, and the JP =

0+ excited state of Oxygen. The existence of such monopole excitations can be

interpreted as suggesting that components strongly bound by a strong force may

benefit energetically from monopole-like excitations rather than from excitation of

them alone. Such nuclear excitations by solitons have been studied [122, 123, 124,

125], and our study may be able to be extended in this direction. It is hoped that

understanding these unique excitations to many-body systems governed by strong

forces will open up a deeper understanding of QCD.

Finally, there has been great interest in recent years in the study of the gravitational

form factor of hadrons, that our research is expected to develop in this direction as

well. The gravitational form factor is a form factor derived from the matrix elements of

the energy-momentum tensor, and is responsible for information on the mass and spin

distribution in hadrons, as well as the distribution of pressure and stress that confine

quarks and gluons into hadrons. These quantities, in addition to the electromagnetic

and axial form factors obtained in this doctoral thesis, have the possibility to lead to a

more detailed understanding of the structure of hadrons. Recently, in Ref. [126, 127],

experimental pressure and stress distributions for nucleons have stimulated the study

of gravitational form factors, which have been seen only as theoretical objects, and

many theoretical studies have been conducted [128, 129, 130, 131, 132, 133, 134, 135,

136, 137, 138, 139, 140, 141] (Review : [142]). Furthermore, using the Sakai-Sugimoto

model, the expectation value of the energy-momentum tensor of the nucleon has been

calculated to obtain the D-term, which is one of the gravitational form factors [121].

One of our future research directions is to analyze the gravitational form factor of

nucleon resonances. By studying the gravitational form factor of nucleon resonances,

we can understand their internal pressure and stress distribution, which may open a

new insight into how the strong force confines the quarks and gluons.
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Appendix A

Details of the calculation

A.1 (2.4.19)

We show the following expression for the CS term;

SCS =
Nc
24π2

∫
R4×[0,∞)

Trf

(
AF2 − i

2
A3F − 1

10
A5
)

=
Nc
24π2

∫ [
ω5(A) +

3√
2Nf

ÂTrfF
2 +

1

2
√
2Nf

ÂF̂ 2

+
1√
2Nf

d
(
ÂTrf

(
2FA− i

2
A3
))]

. (A.1.1)

All products are wedge products.

1. F̂ = dÂ, F = dA+ iA2, Trf (T
aT b) = 1

2δ
ab.

2. From the properties of wedge product, ÂA+AÂ = ÂA− ÂA = 0.

3. From the antisymmetric properties of wedge product, Â2 = 0.

4. The terms of one power of the field (F and A) in SU(Nf ) are zero from traceless.

5. Since the coupling constant is absorbed in the gauge field, more than three

squares of the SU(Nf ) field is zero.

6. From the properties of trace and antisymmetry of the wedge product, TrfA
2 =

0.

are used as needed, where

A = AaT a +
1√
2Nf

ÂI. (A.1.2)
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Substituting

A2 =
(
A+

1√
2Nf

Â
)2

= A2 +
1√
2Nf

(AÂ+ ÂA) +
1

2Nf
Â2 = A2 (A.1.3)

A3 =
(
A+

1√
2Nf

Â
)
A2 = A3 +

1√
2Nf

ÂA2 (A.1.4)

A5 =
(
A3 +

1√
2Nf

ÂA2
)
A2 = A5 +

1√
2Nf

ÂA4 (A.1.5)

F2 = F 2 +
1√
2Nf

(FF̂ + F̂F ) +
1

2Nf
F̂ 2 = F 2 +

1√
2Nf

dÂF +
1

2Nf
dÂ2 (A.1.6)

A3F =
(
A3 +

1√
2Nf

ÂA2
)(
F +

1√
2Nf

F̂
)

= A3F +
1

2Nf
dÂA3 +

1√
2Nf

ÂA2F +
1

2Nf
ÂA2dÂ (A.1.7)

AF2 =
(
A+

1√
2Nf

Â
)(
F 2 +

1√
2Nf

dÂF +
1

2Nf
dÂ2

)
= AF 2 +

2

2Nf
dÂAF +

1

2Nf
dÂ2A+

1√
2Nf

ÂF 2 +
1

Nf
ÂdÂF +

1

2Nf
√

2Nf
ÂF̂ 2

(A.1.8)

for the CS term, we get

SCS =
Nc
24π2

∫
R4×[0,∞)

Trf

[(
AF 2 − i

2
A3F − !

10
A5
)

+
2√
2Nf

dÂ2trAF +
1√
2Nf

ÂtrF 2 +
1

2Nf
√
2Nf

ÂF̂ 2 ×Nf

− i

2
√

2Nf
dÂtrA3 − i

2
√

2Nf
dÂtrA2F

]
(A.1.9)

Here, we calculate the total derivative term;

1√
2Nf

d
(
ÂTrf

(
2FA− i

2
A3
))

=
2

2Nf
dÂtrAF − i

2
√
2Nf

dÂtrA3

− 1√
2Nf

Âtr
(
2dFA+ 2FdA− i

2
dAA2 +

i

2
AdAA− i

2
A2dA

)
(A.1.10)
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Furthermore, the calculation of the term of the second line yields

(second line) =− 2

2Nf
Âtr(−dAA− iAdA)A− 2√

2Nf
ÂtrFdA+

3i

2
√
2Nf

ÂtrA2dA

=− 4i√
2Nf

ÂtrA2dA− 2√
2Nf

ÂtrFdA+
3i

2
√
2Nf

ÂtrA2dA

=− 5i

2
√
2Nf

ÂtrA2dA− 2√
2Nf

ÂtrFdA

=− i

2
√
2Nf

(ÂtrA2dA+ ÂtrA2iA2)− 1

2
√

2Nf
ÂtrA4 − 2i√

2Nf
ÂtrA2dA

− 2√
2Nf

(ÂtrFdA+ ÂtrFiA2) +
2i√
2Nf

ÂtrdAA2 − 2√
2Nf

ÂtrA4

=− i

2
√
2Nf

ÂtrA2F − 2√
2Nf

ÂtrF 2, (A.1.11)

which shows the desired expression.

A.2 (2.4.20)

For SU(2), by identity,

ω5(A) = Tr
(
AF 2 − i

2
A3F − 1

10
A5
)
= 0. (A.2.1)

The formula for the product of generators of SU(N) is listed below.

T aT b =
1

2N
δab +

1

2
dabcT c +

i

2
fabcT c (A.2.2)

tr(T aT b) =
1

2
δab (A.2.3)

tr(T aT bT c) =
1

4
(dabc + ifabc) (A.2.4)

tr(T aT bT cT d) =
1

4N
δabδcd +

1

8
(dabe + ifabe)(dcde + if cde) (A.2.5)

tr(T aT btcT dT e) =
1

8N
δab(dcde + if cde) +

1

4N
(dabe + ifabe)δcd

+
1

16
(dabf + idabf )(dcdg + dcdg)(defg + defg) (A.2.6)

Using the fact that, dabc = 0 for Nf = 2, there are only three generators of SU(2),

and that in the calculation of tr(A5), the terms involving δab are also zero due to the

antisymmetry of the wedge product, we have ω5(A) = 0 for SU(2).
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A.3 (2.4.22)

For arbitrary Nf , we show

SCS =
Nc
24π2

√
2

Nf

∫ [3
2
ÂtrF 2 +

1

4
ÂF̂ 2 + d( )

]
Nc
24π2

ϵMNPQ

∫
d4xdz

[3
8
Â0Trf (FMNFPQ)−

3

2
ÂMTrf (∂0ANFPQ)

+
3

4
F̂MNTrf (A0FPQ) +

1

16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ + (total derivative term)

]
.

(A.3.1)

If we factor out
√
2/Nf , this calculation can be used regardless of Nf . The point

is to drop terms over two squares in the SU(Nf ) field (A and F ). This is because

considering g2YM ≪ 1/λ ≪ 1, g3YM should be dropped, which is consistent with

keeping the zeroth-order of λ in the analysis of baryons here.

Using that the differential form is written by

ωn =
1

n!
dnxϵµ1....µnωµ1....µn

, (A.3.2)

we expand

ÂtrF 2 =d5xϵ0MNPQ 1

2!

1

2!
(Â0trFMNFPQ − ÂM trF0NFPQ + ÂM trFN0FPQ

− M̂trFNPF0Q + ÂM trFNPFQ0)

=d5xϵ0MNPQ 1

4
(Â0trFMNFPQ − ÂM tr∂0ANFPQ × 4 + ÂM tr∂NA0FPQ × 4) +O(A3),

(A.3.3)

the last term becomes

ϵ0MNPQÂM tr∂NA0FPQ =− ϵ0MNPQ(∂N ÂM trA0FPQ + ÂM trA0∂NFPQ)

=− ϵ0MNPQ∂N ÂM trA0FPQ

=− 1

2
ϵ0MNPQF̂MN trA0FPQ, (A.3.4)

Therefore, we obtain

ÂtrF 2 =d5xϵ0MNPQ
(1
4
Â0trFMNFPQ − ÂM tr∂0ANFPQ − 1

2
F̂MN trA0FPQ

)
+O(A3).

(A.3.5)
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Also, the term with only U(1) term expand

ÂF̂ 2 = ϵ0MNPQ(Â0F̂MN F̂PQ − 4ÂM F̂0N F̂PQ), (A.3.6)

so the first equation could be proved.

A.4 (2.4.49)

We prove

M =8π2κ+ κλ−1

∫
d3xdz

[
− z2

6
Trf (Fij)

2 + z2Trf (Fiz)
2
]

− 1

2
κλ−1

∫
d3xdz

[
(∂M Â0)

2 +
1

32π2a
Â0ϵMNPQTrf (FMNFPQ)

]
+O(λ−1)

=8π2κ
[
1 + λ−1

(ρ2
6

+
1

320π4a2
1

ρ2
+
Z2

3

)
+O(λ−1)

]
(A.4.1)

For this, we can just integrate by substituting the classical solution obtained. One

should use as follows;

Fij =
2ρ2

(ξ2 + ρ2)2
ϵijaτ

a, Fzj =
2ρ2

(ξ2 + ρ2)2
τj . (A.4.2)

A.5 (2.4.60)

Calculate the field strength of the time-dependent gauge field in collective coordi-

nates. By substituting the time-dependent gauge field into F0M = ∂0AM − ∂MA0 +

i[A0, AM ], the field strength is calculated as

F0M =∂0AM − ∂M∆A0 + i[∆A0, AM ]

=ẆAclMW
−1 +WAclMẆ

−1 +W∂0A
0
MW

−1

−W (∂MW
−1∆A0W )W−1 − iW [AclM ,W

−1∆A0W ]W−1. (A.5.1)

Here, using

∂0(W
−1W ) = 0 = Ẇ−1W +W−1Ẇ (A.5.2)
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we calculate

ẆAclMW
−1 +WAclMẆ

−1

=W (W−1ẆAclM )W−1 −W (AclMW
−1Ẇ )W−1

=W [W−1Ẇ ,AclM ]W−1

=Wi[AclM , iW
−1Ẇ ]W−1 (A.5.3)

and we obtain

F0M =W∂0A
0
MW

−1 +W∂M (iW−1Ẇ )W−1W−1 +W (i[AclM , iW
−1Ẇ ])W−1

−WDcl
M (W−1∆A0W )W−1

=W
(
Ẋα ∂

∂Xα
AclM

)
W−1 −

(
WDcl

M (W−1∆A0W )W−1 −WDcl
M (iW−1Ẇ )W−1

)
=W

(
Ẋα ∂

∂Xα
AclM −Dcl

MΦ
)
, (A.5.4)

where Φ is defined by

Φ =W−1∆A0W −W−1Ẇ (A.5.5)

With ∂MW (t) = 0, note that we introduce, for example,

(0 =)W∂M (iW−1Ẇ )W−1W−1. (A.5.6)

A.6 (2.4.67)

Here, we determine the metric of the collective coordinates,

L =
mX

2
gαβẊ

αẊβ − U(Xα) +O(λ−1) (A.6.1)

U(Xα) =U(ρ, Z) =M0 +mX

(ρ2
6

+
1

320π4a2
1

ρ2
+
Z2

3

)
(A.6.2)

ds2 =gαβdX
αdXβ (A.6.3)

=dX⃗2 + dZ2 + 2(dρ2 + ρ2da2I) (A.6.4)

=dX⃗2 + dZ2 + 2dy2. (A.6.5)

To do this, we use

+aNc

∫
d4xdzTrfF

2
0M =aNc

∫
d4xdzTrf (D

cl
MΦ− ȦclM )2

=
mXα

2
gαβẊ

αẊβ . (A.6.6)
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Then, we need to solve

Dcl
M

(
Ẋα ∂

∂Xα
AclM −Dcl

MΦ
)
= 0. (A.6.7)

Since we desire a metric such that each of (X⃗, Z, aI) is diagonalized, we decompose

as

Φ = ΦX +Φρ +ΦSU(2). (A.6.8)

As a result, the equations we need to solve are also decoupled to become

Dcl
M

(
ẊN ∂

∂XN
AclM −Dcl

MΦX

)
= 0 (A.6.9)

Dcl
M

(
ρ̇
∂

∂ρ
AclM −Dcl

MΦρ

)
= 0 (A.6.10)

Dcl
MD

cl
MΦSU(2) = 0. (A.6.11)

We will solve them in the steps below. It is useful to know that we can write

g∂Mg
−1 =

{
i
ξ2

(
(z − Z)τ i − ϵija(x

j −Xj)τa
)

− i
ξ2 (x

a −Xaτa
(A.6.12)

∂M (g∂Mg
−1) ∝ (xM −XM )g∂Mg

−1 = 0 (A.6.13)

for the BPST solution.

First, for

Dcl
M

(
ẊN ∂

∂XN
AclM −Dcl

MΦX

)
= 0, (A.6.14)

We easily find that we can write

ΦX = −ẊNAclN (A.6.15)

X for the BPST solution. From this, noting

∂

∂N
AclM = −∂NAclM (A.6.16)

we obtain

ẊN ∂

∂XN
AclM −Dcl

MΦX =− ẊN∂NA
cl
M + ẊN∂MA

cl
N + iẊN [AclM , A

cl
N ]

=ẊNF clMN . (A.6.17)
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Therefore, we calculate

mX

2
gMN Ẋ

M ẊN =κλ−1

∫
d3xdztr

[
(−ẊMF clPM )(−ẊNF clPN )

]
=κλ−1ẊM ẊN

∫
d3xdztrF clPMF

cl
PN , (A.6.18)

then, by substituting the solution and integrating this, we obtain

gMN =
2κλ−1

mX

∫
d3xdztrF clMPF

cl
NP = δMN . (A.6.19)

Next, for

Dcl
M

(
ρ̇
∂

∂ρ
AclM −Dcl

MΦρ

)
= 0 (A.6.20)

because of

∂ρA
cl
M = − 2ρ

ξ2 + ρ2
AclM , (A.6.21)

(A.6.22)

we can calculate

Dcl
M ρ̇∂ρA

cl
M = ∂M

(
− 2ρ̇ρ

ξ2 + ρ2
AclM

)
− 2iρ̇ρ

ξ2 + ρ2
[AclM , A

cl
M ] = 0, (A.6.23)

then we obtain

Φρ = 0. (A.6.24)

From this, in the same way as above, we get the following metric

gρρ =
2κλ−1

mX

∫
d3xdztr

( ∂
∂ρ
AclM

)2
= 2. (A.6.25)

Finally, for

Dcl
MD

cl
MΦSU(2) = 0, (A.6.26)

Moving on to singular gauge,

A
cl

M (x) = g(x)−1
(
Acl(x)− i∂M

)
g(x) = −i(1− f(ξ))g(x)−1∂Mg(x) (A.6.27)

ΦSU(2)(t, x) = g(x;X(t))−1ΦSU(2)(t, x)g(x;X(t)) (A.6.28)

(A.6.29)
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used in the discussion of Snew1
CS , we solve

D
cl

MD
cl

MΦSU(3) = 0. (A.6.30)

Assuming the ansatz;

ΦSU(3) =
3∑
a=1

χa(t)ua(ξ)
τa
2

(A.6.31)

the equation we have to now solve becomes

1

ξ3
d

dξ

(
ξ3
d

dξ
ua(ξ)

)
= 8

(1− f(ξ))2

ξ2
ua(ξ) (A.6.32)

with arbitrary constants Ca, the regular solution is obtained as

ua(ξ) = Caf(ξ). (A.6.33)

Moving this back to the previous gauge, then we obtain

ΦSU(2) = χa(t)Φa(x) (A.6.34)

Φa = f(ξ)g
τa
2
g−1 (A.6.35)

The arbitrary constant Ca was absorbed in χa. Still χa(t) has not been determined,

but if we remind that

A(t, xM ) =
(
Acl

(xM ;Xa(t)) + Φ(t, xM )dt
)W (t)

(A.6.36)

Φ(t, xM ) = g(xM ;Xα(t))
(
Φ(t, xM )− i∂0

)
g(xM ;Xα(t))−1 (A.6.37)

is gauge-fixed such that it is regular at infinity, even after giving it a time dependence,

we should still require

A(t, xM ) → 0. (A.6.38)

Therefore, with Φ = ΦX +Φρ +ΦSU(2), at infinity, A
cl → 0, so we should require

WΦW−1 − iW∂0W
−1 → 0. (A.6.39)

Then, χa are determined as

χa(t) = −2tr(taW
−1Ẇ ) = 2(a4ȧa − ȧ4aa + ϵabcabȧc), ta =

τa
2
. (A.6.40)
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From the above, we obtain ΦS(2). From this, the metric are given as

gIJ ȧI ȧJ =
2κλ−1

mX

∫
d3xdztr

(
Dcl
MΦSU(2)

)2
= 2ρ2ȧ2I , (A.6.41)

where we use

(χa)2 = 4ȧ2I (A.6.42)

a2I = 1. (A.6.43)

After the above calculations, we get

S =

∫
dtL =

∫
dt(Lkinetic − Lpotential) (A.6.44)

L =LX + LZ + Ly +O(λ−1) (A.6.45)

LX =−M0 +
mX

2
Ẋ2 (A.6.46)

LZ =
mZ

2
Ż2 − mZω

2
Z

2
Z2 (A.6.47)

Ly =
my

2
(ρ̇2 + ρ2ȧ2I)−

myω
2
ρ

2
ρ2 − Q

ρ2
(A.6.48)

=
my

2
ẏ2I −

myω
2
ρ

2
y2I −

Q

ρ2
(A.6.49)

with coefficients

M0 = 8π2κ, mX = mZ =
my

2
= 8π2κλ−1 = 8π2aNc

ω2
Z =

2

3
, ω2

ρ =
1

6
, Q =

N2
c

5mX
=

Nc
40π2a

. (A.6.50)

A.7 (3.2.25)

It is almost the same as A.6. With

A
cl

M (x) = g(x)−1
(
Acl(x)− i∂M

)
g(x) = −i(1− f(ξ))g(x)−1∂Mg(x) (A.7.1)

ΦSU(3)(t, x) = g(x;X(t))−1ΦSU(3)(t, x)g(x;X(t)) (A.7.2)

The only difference is that the solution of

D
cl

MD
cl

MΦSU(3) = 0. (A.7.3)

(A.7.4)
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we obtain as follows;

ΦSU(3) =
8∑
a=1

χa(t)ua(ξ)ta (A.7.5)

1

ξ3
d

dξ

(
ξ3
d

dξ
ua(ξ)

)
= Ca

(1− f(ξ))2

ξ2
ua(ξ) (A.7.6)

Ca =

 8, (a = 1, 2, 3)
3, (a = 4, 5, 6, 7)

0, (a = 8)
. (A.7.7)

(A.7.8)

A.8 (3.3.11)

From

L[ξm,ξn]s = fmnpLξps (A.8.1)

we derive

[ξm, ξn]
α̂ = fmnpξ

α̂
p . (A.8.2)

We have

L[ξm,ξn]s = ξα̂m∂α̂(ξ
β̂
n∂β̂)s− ξα̂n∂α̂(ξ

β̂
m∂β̂)s = (ξα̂m∂α̂ξ

β̂
n − ξα̂n∂α̂ξ

β̂
m)∂β̂s = [ξm, ξn]

β̂∂β̂s

= fmnpLξps = fmnpξ
β̂
p ∂β̂s (A.8.3)

for the arbitrary ∂β̂s,

[ξm, ξn]
α̂ = fmnpξ

α̂
p (A.8.4)

hold.

A.9 (3.3.15)

First we prove

(LξmLξn − LξnLξm)Aµ = LηAµ (A.9.1)

ηµ = [ξm, ξn]
µ = ξρm∂ρξ

µ
n − ξρn∂ρξ

µ
m (A.9.2)

177



The left-hand side expand

(LξmLξn − LξnLξm)Aµ

= ξρm(∂ρξ
ν
n)(∂νωµ) + ξρmξ

ν
n(∂ρ∂νωµ) + ξρm(∂ρ∂νξ

ν
n)ων

+ ξρm(∂µξ
ν
n)(∂ρων) + (∂µξ

ρ
m)ξνn(∂νωρ) + (∂µξ

ρ
m)(∂ρξ

ν
n)ων

− ξρn(∂ρξ
ν
m)(∂νωµ)− ξρnξ

ν
m(∂ρ∂νωµ)− ξρn(∂ρ∂νξ

ν
m)ων

− ξρn(∂µξ
ν
m)(∂ρων)− (∂µξ

ρ
n)ξ

ν
m(∂νωρ)− (∂µξ

ρ
n)(∂ρξ

ν
m)ων , (A.9.3)

Since the second and eighth, fourth and eleventh, and fifth and tenth terms cancel

each other out, we calculate

(LξmLξn − LξnLξm)Aµ

= ξρm(∂ρξ
ν
n)(∂νωµ) + ξρm(∂ρ∂µξ

ν
n)ων + (∂µξ

ρ
m)(∂ρξ

ν
n)ων

− ξρn(∂ρξ
ν
m)(∂νωµ)− ξρn(∂ρ∂νξ

ν
m)ων − (∂µξ

ρ
n)(∂ρξ

ν
m)ων (A.9.4)

On the other hand, since the right-hand side is calculated as

LηAµ =(ξµm∂µξ
ν
n − ξµn∂µξ

ν
m)∂νων + ∂ρ(ξ

µ
m∂µξ

ν
n − ξµn∂µξ

ν
m)ων

=ξµm(∂µξ
ν
n)(∂νωρ)− ξµn(∂µξ

ν
m)(∂νωρ) + (∂ρξ

µ
m)(∂µξ

ν
n)ων

+ ξµm(∂ρ∂µξ
ν
n)ων − (∂ρξ

µ
n)(∂µξ

ν
m)ων − ξµn(∂ρ∂µξ

ν
m)ων , (A.9.5)

By comparing both sides, we can see that they are equal. We have now proved this

for the case of 1-form Aµdx
µ, but this relation holds for general n-forms.

Next, we prove

Lξm(DµWn)− Lξn(DµWm) = Dµ(LξmWn − LξnWm − [Wm,Wn]) (A.9.6)

The left-hand side is calculated as

Lξm(DµWn)− Lξn(DµWm)

= (∂µξ
ρ
m)(∂ρWn + [Aρ,Wn]) + ξρm∂ρ(∂µWn + [Aµ,Wn])

− (∂µξ
ρ
n)(∂ρWm + [Aρ,Wm])− ξρn∂ρ(∂µWm + [Aµ,Wm])

= (∂µξ
ρ
m)(∂ρWn) + (∂µξ

ρ
m)[Aρ,Wn] + ξρm(∂ρ∂µWn) + ξρm∂ρ([Aµ,Wn])

− (∂µξ
ρ
n)(∂ρWm)− (∂µξ

ρ
n)[Aρ,Wm]− ξρn(∂ρ∂µWm)− ξρn∂ρ([Aµ,Wm]) (A.9.7)
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The right-hand side becomes

Dµ(LξmWn − LξnWm − [Wm,Wn])

= ∂µ(ξ
ρ
m∂ρWn − ξρρWm + [Wm,Wn]) + [Aµ, ξ

ρ
m∂ρWn]− [Aµ, ξ

ρ
n∂ρWm] + [Aµ, [Wm,Wn]]

= (∂µξ
ρ
m)(∂ρWn) + ξρm(∂µ∂ρWn)− (∂µξ

ρ
n)(∂ρWm)− ξρn(∂µ∂ρWm)

+ ξρm∂ρ([Aµ,Wn])− [ξρm∂ρAµ,Wn]− ξρn∂ρ([Aµ,Wm]) + [ξρn∂ρAµ,Wm] +Dµ([Wm,Wn])

= (∂µξ
ρ
m)(∂ρWn) + ξρm(∂µ∂ρWn)− (∂µξ

ρ
n)(∂ρWm)− ξρn(∂µ∂ρWm)

+ ξρm∂ρ([Aµ,Wn])− ξρn∂ρ([Aµ,Wm])

+Dµ([Wm,Wn])− [(∂µξ
ρ
m)Aρ + ξρm∂ρAµ,Wn] + [(∂µξ

ρ
m)Aρ,Wn]

+ [(∂µξ
ρ
n)Aρ + ξρn∂ρAµ,Wm]− [(∂µξ

ρ
n)Aρ,Wm]

= (∂µξ
ρ
m)(∂ρWn) + ξρm(∂µ∂ρWn)− (∂µξ

ρ
n)(∂ρWm)− ξρn(∂µ∂ρWm)

+ ξρm∂ρ([Aµ,Wn])− ξρn∂ρ([Aµ,Wm]) + (∂µξ
ρ
m)[Aρ,Wn]− (∂µξ

ρ
n)[Aρ,Wm]

+Dµ([Wm,Wn])− [DµWm,Wn] + [DµWn,Wm] (A.9.8)

by comparing with the left-hand side, we can see that the only difference is

+Dµ([Wm,Wn])− [DµWm,Wn] + [DµWn,Wm], (A.9.9)

however, this term is zero,

+Dµ([Wm,Wn])− [DµWm,Wn] + [DµWn,Wm]

= ∂µ([Wm,Wn])− [∂µWm,Wn]− [Wm, ∂µWn]

[Aµ, [Wm,Wn]] + [Wm, [Wn, Aµ]] + [Wn, [Aµ,Wm]]

= 0, (A.9.10)

because of the Jacobi identity. Thus, we achieved our aims.

A.10 (3.3.17)

We can prove

DνLξAµ −DµLξAν = LξFνµ. (A.10.1)
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as follows;

DνLξAµ −DµLξAν =(∂ν∂µξ
ρ)Aρ + (∂µξ

ρ)∂νAρ + (∂νξ
ρ)(∂ρAµ) + ξρ(∂ν∂ρAµ)

− (∂µ∂νξ
ρ)− (∂νξ

ρ)(∂µAρ)− (∂µξ
ρ)(∂ρAν)− ξρ(∂µ∂ρAν)

+ (∂µξ
ρ)[Aν , Aρ] + ξρ[Aν , ∂ρAµ]− (∂νξ

ρ)[Aµ, Aρ]− ξρ[Aµ, ∂ρAν ]

=(∂µξ
ρ)(∂νAρ − ∂ρAν + [Aν , Aµ]) + (∂νξ

ρ)(∂ρAµ − ∂µAρ + [Aρ, Aµ])

+ ξρ∂ρ(∂µAν − ∂νAµ) + ξρ[Aν , ∂ρAµ] + ξρ[∂ρAν , Aµ]

=(∂µξ
ρ)Fρµ + (∂νξ

ρ)Fνρ + ξρ∂ρFνµ

=LξFνµ. (A.10.2)

A.11 (3.3.18)

With Ψm = ξµmAµ −Wm, we prove

ξµmFµν = −DνΨm. (A.11.1)

By using the symmetry equation,

(∂µξ
ρ
m)Aρ + ξρm∂ρAµ = DµWm, (A.11.2)

we prove as follows;

ξµmFµν =ξµm(∂µAν − ∂νAµ − [Aµ, Aν ])

=DνWm − (∂νξ
µ
m)Aµ − ξµm∂νAµ − [ξµmAµ, Aν ]

=DνWm − ∂ν(ξ
µ
mAµ) + [Aν , ξ

µ
mAµ]

=Dν(Wm − ξµmAµ)

=−DνΨm. (A.11.3)

A.12 (3.3.20)

With Ψm = ξµmAµ −Wm, we prove

ξµmξ
ν
nFµν = fmnpΨp − [Ψm,Ψn]. (A.12.1)

To do this, first, we prove

LξmΨn − [Wm,Ψn] = fmnpΨp (A.12.2)
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Using the consistency condition;

LξmWn − LξnWm − [Wm,Wn]− fmnpWp = 0, (A.12.3)

we get

LξmΨn − [Wm,Ψn] =Lξm(ξµnAµ)− LξmWn + [Wm, ξ
µ
nAµ] + [Wm,Wn]

=ξρm(∂ρξ
µ
n)Aµ + ξρmξ

µ
n∂ρAµ + [Wm, ξ

µ
nAµ]− ξρn(∂ρWm)− fmnpWp.

(A.12.4)

Moreover, using the symmetry equation,

(∂µξ
ρ
m)Aρ + ξρm∂ρAµ = ∂µWm + [Aµ,Wm] (A.12.5)

we continue this calculation to obtain

LξmΨn − [Wm,Ψn] =ξ
ρ
m(∂ρξ

µ
n)Aµ + ξρmξ

µ
n∂ρAµ + [Wm, ξ

µ
nAµ] + ξρn[Aρ,Wm]

− fmnpWp − ξρn(∂ρξ
µ
m)Aµ − ξρnξ

µ
m(∂µAρ)

=(ξρm∂ρξ
µ
n − ξρn∂ρξ

µ
m)Aµ − fmnpWp = fmnpξ

µ
pAµ − fmnpWp

=fmnpΨp, (A.12.6)

so we get

LξmΨn − [Wm,Ψn] = fmnpΨp (A.12.7)

Using this relation,

ξµmFµν = −DνΨm (A.12.8)

Ψm = ξµmAµ −Wm, (A.12.9)

and the fact that the Lie derivative of scalar fields become

LξnΨm = ξνn∂νΨm, (A.12.10)

we can prove (3.3.20) as follows;

ξµmξ
ν
nFµν =− ξνn(∂νΨm + [Aν ,Ψm]) = −ξνn∂νΨm − [ξνnAν ,Ψm]

=− LξnΨm + [Wn +Ψn,Ψm] = −[Wn,Ψm]− fnmpΨp + [Wn +Ψn,Ψm]

=fmnpΨp − [Ψm,Ψn]. (A.12.11)
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A.13 (3.3.27)

Rewriting Wm in

LξmWn(y
α̂)− LξnWm(yα̂) + [Wm(yα̂),Wn(y

α̂)]− fmnpWp(y
α̂) = 0 (A.13.1)

as

Wm = ξα̂mWα̂, (A.13.2)

we prove

∂α̂Wβ̂ − ∂β̂Wα̂ + [Wα̂,Wβ̂ ] = 0. (A.13.3)

We substitute Wm = ξα̂mWα̂ into above equation, we obtain

ξα̂m∂α̂(ξ
β̂
nWβ̂)− ξα̂n∂α̂(ξ

β̂
mWβ̂)− [ξα̂mWα̂, ξ

β̂
nWβ̂ ]− fmnpξ

β̂Wβ̂

= ξα̂m(∂α̂ξ
β̂
n)Wβ̂ − ξα̂n (∂α̂ξ

β̂
m)Wβ̂ + ξα̂mξ

β̂
n∂α̂Wβ̂ − ξα̂nξ

β̂
m∂α̂Wβ̂ − ξα̂mξ

β̂
n [Wα̂,Wβ̂ ]− fmnpξ

β̂Wβ̂

(A.13.4)

Here, noting

ξα̂m(∂α̂ξ
β̂
n)Wβ̂ − ξα̂n (∂α̂ξ

β̂
m)Wβ̂ − fmnpξ

β̂Wβ̂

= ([ξm, ξn]
β̂ − fmnpξ

β̂)Wβ̂ = 0, (A.13.5)

we can show

ξα̂mξ
β̂
n∂α̂Wβ̂ − ξα̂nξ

β̂
m∂α̂Wβ̂ − ξα̂mξ

β̂
n [Wα̂,Wβ̂ ] = 0

→ ξα̂mξ
β̂
n(∂α̂Wβ̂ − ∂β̂Wα̂ + [Wα̂,Wβ̂ ]) = 0 (A.13.6)

so, we can prove (3.3.27).

A.14 (3.3.54)

ξα̂mFα̂i = −DiΨm = −Di(Wm − ξα̂mAα̂) (A.14.1)
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Now, noting Wm = 0, by substituting the solution Aα̂ of the symmetry equation into

above equation and multiplying both sides by ξmβ̂ , we can calculate

ξmβ̂ξ
α̂
mFα̂i = ξmβ̂ξ

α̂ξ̃nα̂(−∂iΦn − [Ai,Φn])

→ Fβ̂i = ξ̃nβ̂(−∂iΦn − [Ai,Φn]) (A.14.2)

using ξα̂mξmβ̂ = δα̂
β̂
.

To satisfy constraint Fωi = 0, consider the case β̂ = ω for Fβ̂i = ξ̃nβ̂(−∂iΦn −
[Ai,Φn]) = 0 in the above equation. For N ≤ N ′, we have ξ̃nω = 0, so this is trivially

satisfied, but for m > N ′, we have ξ̃nω ̸= 0, so

∂iΦn + [Ai,Φn]) = 0 (A.14.3)

is required.

A.15 (3.3.55)

Multiplying both sides of

ξα̂mξ
β̂
nFα̂β̂ = fmnpΨp + [Ψm,Ψn] = fmnpξ

α̂
pΦk ξ̃kα̂ + [ξα̂mΦk ξ̃kα̂, ξ

β̂
nΦlξ̃lβ̂ ] (A.15.1)

by ξmγ̂ξnδ̂ = hγ̂ρ̂hδ̂σ̂ξ
ρ̂
mξ

σ̂
n yields

ξmγ̂ξnδ̂ξ
α̂
mξ

β̂
nFα̂β̂ = hγ̂ρ̂hδ̂σ̂fmnpξ

ρ̂
mξ

σ̂
nξ

α̂
pΦk ξ̃kα̂ + ξmγ̂ξnδ̂ξ

α̂
mξ

β̂
n ξ̃kα̂ξ̃lβ̂ [Φk,Φl] (A.15.2)

Using fmnpξ̃
α̂
mξ̃

β̂
n ξ̃

γ̂
p = −fmnpξα̂mξβ̂nξγ̂p , we get

Fγ̂δ̂ =− fmnpξ̃mγ̂ ξ̃nδ̂Φp + ξ̃mγ̂ ξ̃nδ̂[Φm,Φn]

=− ξ̃mγ̂ ξ̃nδ̂(fmnp − [Φm,Φn]). (A.15.3)

To satisfy constraint Fτω = 0 (ω, τ are indices of the subgroup R),

Fτω = −ξ̃mτ ξ̃nω(fmnp − [Φm,Φn]) = 0 (A.15.4)

is required and to satisfy constraint Fαω = 0,

Fαω = −ξ̃mαξ̃nω(fmnp − [Φm,Φn]) = 0 (A.15.5)

is required. Thus,

ξ̃nω(fmnp − [Φm,Φn]) = 0 (A.15.6)
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is required for both Fτω and Fαω = 0 to be satisfied.

For m ≤ N ′, this equation is trivially satisfied because of ξ̃nω = 0, but for m > N ′,

fmnp − [Φm,Φn] = 0 (A.15.7)

is required because ξ̃nω ̸= 0. Note that m, p can take arbitrary values.

A.16 (3.3.63)

On the subgroup R, with r(yω) the element of the group (s(yα̂) = r(yω)s0(y
α) the

element of the group S) and its generator as ξ̃ωm, we have

Lξ̃ms = −Jms = −Jmrs0
= ξ̃ωm(∂ωr)s0

→ −Jmr = ξ̃ωm(∂ωr), (A.16.1)

in the same way as it holds on S.

Multiplying both sides by ξ̃mτ leads to

− ξ̃mτJ
mr = ξ̃mτ ξ̃

ω
m(∂ωr) = ∂τr

→ (∂ωr)r
−1 = −ξ̃mωJm. (A.16.2)

A.17 The calculation of section 3.3.2

We show the some formula.

t1 =
i

2
(χγ + χ−γ), t2 =

1

2
(χγ , χ−γ), t3 =

i

2
hγ , y =

i

2
h (A.17.1)

hω =
2ωi
ω · ω

Hi, h =
2

√
γ · γ

1√
γ21 + γ22

(γ2H1 − γ1H2) (A.17.2)

[Hi, χω] = ωiχω, [χω, χ−ω] =
2ωi
ω · ω

Hi, [χω, χτ ] = cω,τχω+τ (A.17.3)

→ [χγ , χβ ] = ±χα, [χ−γ , χ−β ] = ∓χ−α, [χ−γ , χα] = ±χβ , [χγ , χ−α] = ∓χ−β
(A.17.4)

(A.17.5)
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The α+ γ and β − γ are not roots.

[t1, χα] =
i

2
[χ−γ , χα] = +

i

2
χβ (A.17.6)

[t1, χβ ] =
i

2
[χγ , χβ ] = +

i

2
χα (A.17.7)

[t2, χα] = −1

2
[χ−γ , χα] = −1

2
χβ = +

i

2
(+iχβ) (A.17.8)

[t2, χβ ] =
1

2
[χγ , χβ ] =

1

2
χα = +

i

2
(−iχα) (A.17.9)

[t3, χα] =
i

2

2γi
γ · γ

[Hi, χα] =
i

2

2γ · α
γ · γ

χα =
i

2
⟨α, γ⟩χα =

i

2
χα (A.17.10)

[t3, χβ ] =
i

2
⟨β, γ⟩χβ =

i

2
⟨α− γ, γ⟩χβ =

i

2
(1− 2)χβ = − i

2
χβ (A.17.11)

[y, χα] =
i

2
hi[Hi, χα] =

i

2
hiαiχα =

i

2
tan θχα, (hiαi = tan θ) (A.17.12)

[y, χβ ] =
i

2
hi[Hi, χβ ] =

i

2
hiβiχβ =

i

2
hi(αi − γi)χβ =

i

2
tan θχβ (A.17.13)

Here, we use

(hα, hα) =
2αi
α · α

2αj
α · α

(Hi,Hj) =
4

α · α
(A.17.14)

(hα, hβ) =
2αi
α · α

2(αj − γj)

β · β
δij =

4

α · α
− 2

α · α
⟨γ, α⟩ = 2

α · α
(A.17.15)

(hα, χγ) = (hβ , χγ) =
2αi
α · α

(Hi, χγ) = 0 (A.17.16)

to above calculate.
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Appendix B

Gauss’s law

In this doctoral thesis, I mentioned that one should pay attention to whether Gauss’s

law is satisfied when we give time dependence to the static soliton solutions in gauge

theory by the collective coordinate. Gauss’ law is an equation that determines the

time component of the gauge field, which is not an equation of time evolution because

it does not include the time derivative for the time component of the gauge field

(due to the fact that the field strength is completely antisymmetric). In fact, this

time component is not an independent dynamical variable that disappears in the

Hamiltonian. Let us now follow the textbook [108] to clarify what is implied by

Gauss’s law and to better understand the collective coordinate quantization of solitons

in gauge theory.

In the following, for simplicity, let us consider a U(1) gauge theory of

L = −1

4
fµνf

µν +
1

2
DµϕD

µϕ (B.0.1)

with gauge fields aµ, (µ = 0, 1, 2, 3) and scalar fields ϕ, where fµν is field strength

and Dµϕ = ∂µϕ+ iaµϕ covariant derivative (Dµϕ is its complex conjugate.). Gauss’

law is the time component of the EOM of Aµ which is obtained as

(
∇2 − ϕϕ

)
a0 = ∂i∂0ai +

i

2

(
ϕ∂0ϕ− ϕ∂0ϕ

)
. (B.0.2)

This equation implies that A0 is determined if the time derivatives of ai, (i = 1, 2, 3)

and ϕ at a certain time are known, which means that A0 is not an independent

dynamical variable.
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To understand the role of a0, we consider the coordination space A, which is the set

of fields {ϕ(x),a(x)} at a certain time (Fig. B.1). The physical configuration space is

!

"

#

{%&, %(}

{%&*, %(*}
{+,&, ∇,}

Fig.B.1 The rotational symmetric fields

the coset space C = A/G, which is divided by the configuration space shifted by the

gauge transformation G = {eiα(x)}.
Suppose that the coordination of a field, which was {ϕ,a} at a certain time t,

changes to {ϕ+ δϕ,a+ δa} with a infinitesimal shift t+ δt. Then, the kinetic energy

changes to

1

2

∫
1

(δt)2
(
δa · δa+ δϕδϕ

)
d4x. (B.0.3)

If there is a component along the direction {iαϕ,∇α} of G at t due to (B.0.3), the

energy will be changed by the gauge transformation, which means that the gauge

symmetry of the theory will be broken. To avoid such a situation, we should restrict
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the time variation of the field configuration to {δϕ⊥, δa⊥} of

δϕ⊥ = δϕ− iβϕ (B.0.4)

δa⊥ = δa−∇β. (B.0.5)

The β is determined from the condition that {δϕ⊥, δa⊥} and {iαϕ,∇α} are orthog-

onal, ∫ (
δa⊥ · ∇α+

1

2

(
δϕ⊥(iαϕ) + (δ⊥)iαϕ

))
d4x = 0. (B.0.6)

In this way, it is understood that the time component of the gauge field a0 plays the

role of β, which limits arbitrary time changes of {ϕ(x),a(x)} at a certain time so that

they are physically consistent, as follows.

integrating (B.0.6) by parts and dropping the surface term, we get∫ (
∇ · δa⊥ +

i

2

(
ϕδϕ⊥ − ϕδϕ⊥

))
αd4x = 0. (B.0.7)

Since this should hold for any infinitesimal α, it is required that

∇ · δa⊥ +
i

2

(
ϕδϕ⊥ − ϕδϕ⊥

)
= 0. (B.0.8)

Substituting (B.0.4) and (B.0.5), we obtain

(
∇2 − ϕϕ

)
β = ∇ · δa+

i

2

(
ϕδϕ⊥ − ϕδϕ⊥

)
. (B.0.9)

Dividing both sides by δt, and from δa/δt = ∂0a, δϕ/δt = ∂0ϕ, we obtain Gauss’s law

(B.0.2) by regarding β/δt = a0.

Thus, even if the time component of the gauge field is zero to begin with, the time

component is induced when the gauge field at a certain time t is time development.

This β corresponds to ∆A0(t, x) in (2.4.57) when the gauge field is given a time

dependence by the collective coordinate.
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Appendix C

Lie derivative

In this section, we explain the Lie derivative according to the textbook [143]. Now,

the vector field at each point on the manifold M is written as X ∈ X (M) and the

1-form is written as ω ∈ Ω1(M). A curved line is defined on the manifoldM such that

this vector field is a tangent vector. With x as a certain point, the infinitesimal trans-

formation along the curve generated by X can be expressed as σµϵ (x) = xµ + ϵXµ(x)

with the infinitesimal quantity ϵ (When there is no subscript of µ, the argument is

valid regardless of whether or not coordinates are introduced.). The derivative of

1-form ω along this change is called the Lie derivative. However, it does not make

sense to simply compare the 1-forms in x and σx, because they are 1-forms belonging

to different cotangent spaces.

Now, we define the map σϵ : x → σϵ(x), then this map induces a map (σϵ)∗ :

TxM → Tσϵ(x)M in the tangent space. As a result, the map (σϵ)
∗ : T ∗

σϵ(x)
M → T ∗

xM

is induced in the cotangent space. This mapping (σϵ)
∗ is called the pullback of σϵ.

From this, the 1-form on T ∗
σϵ(x)

M in σϵ(x) (written ω|σϵ(x) in the following) can be

pulled back (written (σϵ)
∗ω|σϵ(x)) on T

∗
xM . Thus, a meaningful derivative is defined

by comparing (σϵ)
∗ω|σϵ(x) and ω|x. Concretely, we can define it as

LXω = lim
ϵ→0

1

ϵ

[
(σϵ)

∗ω|σϵ(x) − ω|x
]
, (C.0.1)

where the operator of the Lie derivative along X is written as LX . Let’s transform

the equation on the right hand side into a convinient form by introducing coordinates.

Let us write X = Xµ∂/∂xµ for the vector field on TxM and ω = ωµdx
µ for the 1-form

on T ∗
xM . Then σϵ(x) has the coordinate xµ + ϵXµ(x), and the 1-form on T ∗

σϵ(x)
M is
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transformed as follows;

ω|σϵ(x) =ωµ(x
ν + ϵXν)d(xµ + ϵXµ)

=
(
ωµ(x) + ϵXν(x)∂νωµ(x) +O(ϵ2)

)
d(xµ + ϵXµ). (C.0.2)

If this is pulled back over T ∗
xM by (σϵ)

∗, it is computed to be

(σϵ)
∗ω|σϵ(x) =

(
ωµ(x) + ϵXν(x)∂νωµ(x) +O(ϵ2)

)d(xµ + ϵXµ)

dxρ
dxρ

=
(
ωµ(x) + ϵXν(x)∂νωµ(x) +O(ϵ2)

)(
δµρ + ϵ∂ρX

µ
)
dxρ

=ωµdx
µ + ϵ

(
Xν(x)∂νωµ(x) + ∂µX

ν(x)ων(x)
)
dxµ +O(ϵ2). (C.0.3)

From the above, the Lie derivative of ωµdx
µ by Xν∂/∂xν is expressed as

LXω =
(
Xν(x)∂νωµ(x) + ∂µX

ν(x)ων(x)
)
dxµ. (C.0.4)

In this doctoral thesis, when we say that a field is symmetric or invariant with

respect to the transformations generated by the vector field X, we mean that this

Lie derivative is zero (for gauge fields, this restriction is more relaxed, as in (3.3.3)).

We can correspond X to ξ and ω to the gauge field A = Aµdx
mu. From the above

definition, it is understood that symmetric fields are, for example, those shown in

Fig. C.1 and C.2.

Fig.C.1 Rotational symmetric fields
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Fig.C.2 Translation-symmetric fields
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Appendix D

Chern-Simons term

D.1 CS term

In section 3, we obtained the mass formula for baryons in the flavor SU(3) Sakai-

Sugimoto model, yet we proceeded with the analysis assuming that a constraint term

(3.2.47), which does not actually derive from the CS term used in the Ref. [10, 11].

So far, there have been studies to improve the CS term so that the SakaiSugimoto

model produces a constraint term [87, 88]. In the following, we will refer to [87, 88]

and explain the issues regarding the CS term, including a discussion of the constraint

term in the Sakai-Sugimoto model.

First, let us summarize a few things that need to be clarified when considering

the problems associated with the CS term in the Sakai-Sugimoto model. Consider a

five-dimensional YM-CS theory in the Sakai-Sugimoto model defined on a manifold

M5. The boundary of this manifold M5 in the Sakai-Sugimoto model is the four-

dimensional manifold M
(±∞)
4 at z → ±∞. That is,

∂M5 =M
(+∞)
4 ∪

(
−M

(−∞)
4

)
. (D.1.1)

The minus sign means that the orientations are reversed. Here, the field defined on

M
(±∞)
4 is written as Â± = A|z→±∞. These are the gauged external fields correspond-

ing to the chiral symmetry U(Nf )L × U(Nf )R of QCD, respectively. The CS term

is invariant under gauge transformations that act trivially on this boundary, but it

changes under gauge transformations that act nontrivially on the boundary, which

leads to the chiral anomaly in QCD.
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In fact, the variation caused by the infinitesimal gauge transformation δΛA = dΛ+

[A,Λ] = DΛA of CS term

SCS
D8 =

iNc
24π2

∫
M4×R

ω5(A) (D.1.2)

ω5(A) =tr
(
AF 2 − 1

2
A3F +

1

10
A5
)

(D.1.3)

=tr
(
AdAdA+

3

2
A3dA+

3

5
A5
)

(D.1.4)

used in Ref. [10, 11] (In this section, we use the anti-Hermitian U(Nf ) gauge field

A† = −A, so i appears in the coefficients of the CS term and the CS 5-form notation

is different.) become

δΛSCS =C

∫
M4×R

δΛω5(A)

=C
(∫

M+∞
4

ω1
4(Λ̂+, Â+)−

∫
M−∞

4

ω1
4(Λ̂−, Â−)

)
, (D.1.5)

which is the chiral anomaly of QCD (see also the textbook on [144]). Here, with

C =
iNc
24π2

(D.1.6)

ω1
4(Λ, A) = tr

(
Λd
(
AdA+

1

2
A3
))

(D.1.7)

Λ̂± = Λ|z→±∞, (D.1.8)

we wrote in differential form and omitted the wedge product ∧ and further used the

relation,

δΛω5(A) = dω1
4(Λ, A) +O(Λ2) (D.1.9)

and Stokes’ theorem.

We now define the gauge field on the boundaryM
(±∞)
4 as Â± = A|z→±∞. However,

as long as we use such a globally well-defined gauge field, we see that the baryon

number is necessarily zero.

Different from the coordinate z, |xµ| → ∞ is not considered a boundary, so we

compactify it to M4 = S1 × S3 to avoid confusion, where S1 is time and S3 space.

The baryon number is the instanton number given as

NB =
1

8π2

∫
S3×R

tr(F 2), (D.1.10)
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where the space z extends is denoted as R. Here, from

tr(F 2) = dω3(A) (D.1.11)

ω3(A) = tr
(
AF − 1

3
A3
)
= tr

(
AdA+

2

3
A3
)
, (D.1.12)

it can be transformed to

NB =
1

8π2

(∫
S3

ω3(A)|z→+∞ +

∫
S3

ω3(A)|z→−∞

)
. (D.1.13)

From this formula, we conclude that if A|z→±∞ = 0, then the baryon number NB is

zero. Therefore, if we define Â± = A|z→±∞, we can always set Â± = 0 by a gauge

transformation, so we can only describe the case NB = 0, as long as we consider

a globally well-defined gauge field. This result does not suit our purpose of trying

to analyze baryons in instantons. However, in gauge theory, only the field strength

needs to be globally well-defined, not the gauge field. Keeping this in mind, we can

construct a solution for NB > 1, which also allows us to use the BPST Instanton

solution.

To obtain a gauge configuration with NB > 1, we divide the space-time manifold

M5 into two or more patches

M5 =M−
5 ∪M+

5

M±
5 = {(x, z) ∈M5| ± z > −ϵ}

M−
5 ∩M+

5 ≃M
(0)
4 × (−ϵ,+ϵ)

M
(0)
4 = {(xµ, z) ∈M5|z = 0} ≃ S1 × S3 (D.1.14)

and define a gauge field on each of these patches (Fig. D.1). For the field strength to

be globally well defined, the gauge field should be connected to

A+ = Ah− = hA−h
−1 + hdh−1 (D.1.15)

by h ∈ U(Nf ) atM
−
5 ∩M+

5 ≃M
(0)
4 ×(−ϵ,+ϵ) where these two patches overlap. Also,

the gauge transformation should be defined by

A± → A
g±
± = g±A±g

−1
± + g±dg

−1
± , h→ g+hg

−1
− (D.1.16)

with g± ∈ U(Nf ).
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Fig.D.1 The space-time manifold in the Sakai-Sugimoto model

Here, different from the previous case, we define the gauge field at the boundary of

z → ±∞ by

Â± = A±|z→±∞. (D.1.17)

Furthermore, the gauge transformation g± ∈ U(Nf ) acts like

ĝ± = g±|z→±∞ (D.1.18)

to the boundary z → ±∞, which corresponds to the gauged elements of the chiral

symmetry, (ĝ−, ĝ+) ∈ U(Nf )L × U(Nf )R.

This allows for a gauge configuration of NB > 1. Denoting the space manifold in

Z = −∞, 0,+∞ as S3
(−∞), S

3
(0), S

3
(+∞), the baryon number is transformed into the

following form

NB =
1

8π2

(∫
S3×(−∞,0]

dω3(A−) +

∫
S3×[0,+∞)

dω3(A+)
)

=
1

8π2

(∫
S3
(+∞)

ω3(A+) +

∫
S3
(−∞)

ω3(A−)

+

∫
S3
(0)

ω3(A+) +

∫
−S3

(0)

ω3(A−)
)
, (D.1.19)

195



with the first line unchanged and the second line added. Here, if we use

ω3(A
g) = ω3(A)−

1

3
tr((gdg−1)3)− dtr(dg−1gA) (D.1.20)

with Â± = 0, we obtain the formula

NB =
1

24π2

∫
S3

tr((hdh−1)3)|z=0, (D.1.21)

which is nothing but the definition of the mapping degree of h : S3 → SU(Nf ),

namely π3(U(Nf )) = Z.

Vanishing of the constraint term

In the following, we show that in the CS term used in the Sakai-Sugimoto model,

the constraint term that plays an important role in obtaining the baryon spectrum

does not appear, as explained in section 3.1. From now on, we will use Hermitian

gauge fields. First we give some formulas related to the CS 5-form. Under the gauge

transformation A → AV = V (A − id)V −1 of the gauge field A (decomposed as

(2.4.14)) of the U(Nf ) gauge group, we deform it as

ω5(AV ) = ω5(A) +
1

10
trL5 + dα4(L.A), (D.1.22)

where it is defined to be

L = −iV −1dV (D.1.23)

α4(L,A) =
1

2
tr
[
L(AF + FA− iA3) +

i

2
LALA− iL3A

]
. (D.1.24)

Also, in an arbitrary infinitesimal transformation A → A+ δA of this gauge field, we

deform it as

ω5(A+ δA) = ω5(A) + 3tr(δAF2) + dβ(δA,A) +O((δA)2), (D.1.25)

where β(δA,A) is defined to be

β(δA,A) = tr
[
δA
(
FA+AF − i

2
A3
)]
. (D.1.26)
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Using the above formula, the CS 5-form in the gauge field with time dependence

by the collective coordinate is given in the form

ω5(A) =ω5

(
(Acl +Φdt)W

)
=ω5(Acl +Φdt) +

1

10
tr(−iW−1Ẇdt)5 + dα4(−iW−1Ẇdt,Acl +Φdt)

=ω5(Acl) + 3tr
(
Φdt(Fcl)2

)
+ dβ(Φdt,Acl) + dα4(−iW−1Ẇdt,Acl)

=ω5(Acl) + 3tr
(
Φdt(F cl)2

)
+ dβ(Φdt,Acl) + dα4(−iW−1Ẇdt, Acl). (D.1.27)

In the last line of the deformation, we used ÂclM (x;Xα(t)) = F̂ clMN (x;Xα(t)) = 0 from

the solution we already obtained (3.2.20). Therefore, the CS 5-form is transformed by

giving time dependence to the collective coordinates, leading to three terms other in

addition to ω5(Acl). However, the contributions of these three terms cancel each other

out, eventually resulting in ω5(A) = ω5(Acl). Let us explain this in the following.

We first consider the term 3tr
(
Φdt(F cl)2

)
. Since AclM is an embedded SU(2) BPST

instanton solution (3.2.8), we get

(F cl)2 =
1

2
P2tr(F

cl)2. (D.1.28)

Since only t8 of the SU(3) generators survive when multiplied by P2 and take a trace,

we obtain the relation

tr
(
Φ(F cl)2

)
=tr
(
χaΦaP2)

1

2
tr
(
F cl
)2

=
1

2
√
3
tr
(
F cl
)2
, (D.1.29)

with

tr(ΦP2) =
1√
3
χ8(t) (D.1.30)

From

P2 =

 1 0 0
0 1 0
0 0 0

 =
2√
3
t8 +

2

3
13, t8 =

1

2
√
3

 1 0 0
0 1 0
0 0 −2

 (D.1.31)

it is computed that

Nc
24π2

∫
M5=R×M4

3tr(Φdt(F cl)2) =
Nc
24π2

√
3

2

∫
dtχ8(t)

∫
M4

tr(F cl)2

=
Nc

2
√
3

∫
dtχ8(t), (D.1.32)
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where we use the baryon number is 1, i.e.,

NB =
1

8π2

∫
M4

tr(F cl)2 = 1. (D.1.33)

This is exactly a constraint term, but as we will see below, it just cancels out with

the other two terms.

Using that dβ(Φdt,Acl) and dα4(−iW−1Ẇdt, Acl) behave as

(Acl)3 → (−igdg−1)3 ∝ P2 (D.1.34)

F cl(x) ∼ 1/ξ4 (D.1.35)

at ξ → ∞, we obtain

Nc
24π2

∫
R×M4

dβ(Φdt,Acl) =
Nc
24π2

i

4
√
3

∫
dtχ8(t)

∫
∂M4

tr(−igdg−1)3

=− Nc

4
√
3

∫
dtχ8(t) (D.1.36)

Nc
24π2

∫
R×M4

dα4(−iW−1Ẇdt, Acl) =
Nc
24π2

i

4
√
3

∫
dtχ8(t)

∫
∂M4

tr(−igdg−1)3

=− Nc

4
√
3

∫
dtχ8(t). (D.1.37)

Here, in general, because of

NB =
1

8π2

∫
M4

tr(F cl)2 =
−i
24π2

∫
S3

tr(−igdg−1)3, (D.1.38)

we used

NB =
−i
24π2

∫
S3

(−igdg−1)3 =
1

2
P2. (D.1.39)

Therefore, the three terms cancel each other out and we have

SCS [A] = SCS [Acl]. (D.1.40)

This means that as long as we use the CS term used in Ref. [10, 11], we can conclude

that the constraint term does not appear. This is a significant problem because the

constraint term is important for the flavor SU(3) to regard the soliton as a baryon,

as we have explained in the SU(3) Skyrme model. In Ref. [87] they point this out

and have tried to solve this problem tentatively. Their new CS term leads to a well

derived constraint term, but at the same time reveals some problems. We will look

at this next.
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D.2 New CS term 1

In Skyrme mode, a constraint term emerged from the WZW term, which was de-

fined on a 5-dimensional manifold. Accordingly, the collective coordinates were also

dependent on two variables. The CS term that we have been using until now may

also have a constraint term if it is constructed in correspondence with the Skyrme

model. Let us now define the CS term as

Snew1
CS =

Nc
24π2

∫
M6

trF3. (D.2.1)

This new CS term leads to a constraint term. The manifold M6 is labeled by

(t, xM , s) = (t,x, z, s) and is understood by a schematic like Figure D.2, which follows

the configuration [145, 70] of WZW term in Skyrme model. We have so far consid-

! = 1

! = 0

%&

%'

t

s

Fig.D.2 A schematic of M6

ered a 5-dimensional YM-CS theory, but to consider this new CS term, we need to

introduce an additional dimension. Let us now label this axis s and introduce the

corresponding gauge field component As. The gauge field is then written as

A(t, x, s) = A0(t, x, s)dt+AM (t, x, s)dxM +As(t, x, s)ds. (D.2.2)
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Here, the boundary of M6 at s = 0 is M5, i.e., ∂M6 = M5. Following the WZW

term case, s extends in the radial direction at (t, s) and compactifies t to form disk

D2 (Figure. D.3). Let us define the s dependence of the gauge field as

!

"

! = 1

! = 0

&'

Fig.D.3 A schematic of D2

Acl
0 =W (s)Acl

0 (x, s;X
α(s))W (s)−1,

(
Acl

0 |s=0 = Acl
0 (x;X

α = const), Acl
0 |s=1 = 0

)
(D.2.3)

Acl
M =W (s)Acl

M (x;Xα(s))W (s)−1,
(
Acl
M |s=0 = Acl

M (x;Xα = const)
)

(D.2.4)

Acl
s = −iW (s)∂sW (s)−1 (D.2.5)

[Acl
0 (x, s), g(x)] = 0. (D.2.6)

In this way, we can use the same solutions (3.2.8), (3.2.9), (3.2.10) and (3.2.14) as a

static (time-independent) classical solution on s = 0, i.e., M5.

For further explanation, let us discuss in detail the manifold we are now considering.

This will also clarify the meaning of the expressions (D.2.3)∼(D.2.6) that gives the
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restriction on the s-dependence. We defined the CS term as (D.2.1), and from

trF3 = dω5(A), (D.2.7)

by Stokes’ theorem, (D.2.1) seems to be equivalent to the original CS term. However,

as discussed in the previous section, the two CS terms are not equivalent because the

gauge field cannot be defined globally well-defined to form a field configuration with

a finite baryon number, and two patches must be considered.

The BPST instanton solution we have adopted as the solution to the baryon number

1 is

AclM (x) = −if(ξ)g(x)∂Mg(x)−1

f(ξ) =
ξ2

ξ2 + ρ2
, ξ =

√
(xM −XM )2

g(x) =

(
gSU(2)(x) 0

0 1Nf−2

)
, gSU(2)(x) =

1

ξ

(
(z − Z)12 + i(xi −Xi)τi

)
g∂Mg

−1 =

{
i
ξ2

(
(z − Z)τ i − ϵija(x

j −Xj)τa
)

− i
ξ2 (x

a −Xaτa
, (D.2.8)

which diverges at z → ∞. Now, if we define

A
cl

M (x) = g(x)−1
(
AclM − i∂M

)
g(x) = −i

(
1− f(ξ)

)
g(x)−1∂Mg(x) (D.2.9)

by gauge transformation, we can obtain a regular gauge field at z → ∞ (it diverges

at z → 0).

Now the BPST instanton solution is defined on the manifold as shown in Figure

D.4.

M4 in M5 = R × M4 (R is the time axis) is covered by two patches M
(0)
4 and

M
(∞)
4 (M4 = M

(0)
4 +M

(∞)
4 ). We define Acl(x) on M

(0)
4 and Acl

(x) on M
(∞)
4 , and

on B = ∂M
(0)
4 = −∂M (∞)

4 where the two patches overlap, we connect the two gauge

configurations by a gauge transformation. Since the time components Âcl0 and Acl0 of

the solution are written by 1 and t8, they are invariant to the transformation of g(x)

and regular in the whole region, so the same form of solution is available in the two

patches. From the above discussion, we can define

Acl
(x) = (Acl(x))g(x)

−1

= g(x)−1(Acl(x)− id)g(x) (D.2.10)

as a gauge field that is regular on M
(∞)
4 , including U(1) part and time components.
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Fig.D.4 The manifold where the BPST solution is defined.

Now, let us give a time dependence to the collective coordinates and extend the

gauge field on M5. On M
(0)
5 = R×M

(0)
4 , we can use

A(t, x) =
(
Acl(x;Xα(t)) + Φ(t, x)dt

)W (t)
(D.2.11)

On M
(∞)
5 = R×M

(∞)
4 , it is reasonable to define

A(t, x) =
(
Acl

(x;Xα(t)) + Φ(t, x)dt
)W (t)

= A(t, x)W (t)g(x;X(t))−1W (t)−1

(D.2.12)

Φ(t, x) =g(x;X(t))−1
(
Φ(t, x)− i∂0

)
g(x;X(t))

=− ẊN (t)A
cl

N (x;Xα(t)) +
8∑
a=1

χa(t)ua(ξ)ta (D.2.13)(
AV1V2 =

(
AV2

)V1
)
. (D.2.14)

Let us now define a gauge field on the manifold M6 described in Figure D.2. With
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M6 = D2 ×M4 =M
(0)
6 +M

(∞)
6 (M

(0/∞)
6 = D2 ×M

(0/∞)
4 )), we use

A(t, x, s) = A0(t, x, s)dt+AM (t, x, s)dxM +As(t, x, s)ds (D.2.15)

on M
(0)
6 , as shown in (D.2.2). At s = 0, (D.2.1) should return to the original CS

term, so the gauge field should satisfy

A(t, x, s = 0) = A(t, x). (D.2.16)

Also, since s = 1 is the center of disk D2,

O(t, x, s = 1) = t indep., ∂sO(t, x, s)|s=1 = 0, (O =W,Xα,Φ,Ψ) (D.2.17)

should also be satisfied. Furthermore, we need to require

Acl
0 (t, x, s = 1) = 0 (D.2.18)

for the time component. This is necessary so that the mass formula does not change

form at the classical level and corresponds to Acl
0 |s=1 = 0 in (D.2.3).

On M
(∞)
6 , we use the gauge field

A(t, x, s) =
(
Acl

(x, s;Xα(t, s)) + Φ(t, x, s)dt+Ψ(t, x, s)ds
)W (t,s)

=A(t, x, s)W (t,s)g(x;X(t,s))−1W (t,s)−1

(D.2.19)

Φ(t, x, s) =g(x;X(t, s))−1
(
Φ(t, x, s)− i∂0

)
g(x;X(t, s)) (D.2.20)

Ψ(t, x, s) =g(x;X(t, s))−1
(
Ψ(t, x, s)− i∂s

)
g(x;X(t, s)). (D.2.21)

We require

A(t, x, s = 0) = A(t, x), A(t, x, s = 1) = t indep. (D.2.22)

in the same way as for A(t, x, s). Also, since Âcl0 (t, x) and Acl0 (t, x) are, as already

mentioned, invariant to the transformation of g(x) and regular in the whole region,

we can use solutions of the same form in the two patches. In order for this property

to hold when extended over M6,

[Acl
0 (x, s), g(x)] = 0 (D.2.23)

must be satisfied, which corresponds to (D.2.6). We have now defined a gauge field

on M6.
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Now prepared, let’s see that a constraint term does actually emerge from this CS

term. Using

DδA = dδA+ i(AδA+ δAA) (D.2.24)

(δA)3 = (DδA)(δA)2 = DF = 0 (D.2.25)

D2δA = i[F , δA], (D.2.26)

etc., with δA = Φdt+Ψds, we have

F(A+ δA) = F(A) +DδA+ i(δA)2 (D.2.27)

trF(A+ δA)3 = trF(A)3 + 3dtr
(
δAF(A)2 + δA(DδA)F(A

)
. (D.2.28)

Note that Snew1
CS is gauge invariant, hence a constraint term arises like

Snew
CS

[
A = (Acl +Φdt+Ψds)W

]
− Snew

CS [Acl]

=
Nc
24π2

∫
M6

3dtr
(
δA(Fcl)2 + δA(DclδA)Fcl

)
=

Nc
8π2

∫
M5

tr
(
Φdt(F cl)2

)
=

Nc

2
√
3

∫
dtχ8(t) (D.2.29)

Nc

2
√
3
χ8(t) =

Nc√
3
tr(−iW (t)−1Ẇ (t)t8), (D.2.30)

where we used

δA = Φdt (D.2.31)

δA(DclδA) = 0 (D.2.32)

F̂ clMN = 0 (D.2.33)

etc. on M5 at S = 0.

Here, for getting the constraint term, we used Stokes’ Theorem,

Nc
24π2

∫
M6

3dtr
(
δA(Fcl)2 + δA(DclδA)Fcl

)
=

Nc
8π2

∫
M5

tr
(
δA(Fcl)2 + δA(DclδA)Fcl

)
, (D.2.34)

which can be transformed in such a way that tr
(
δA(Fcl)2+δA(DclδA)Fcl

)
is a gauge

invariant quantity. Therefore, since ω5 is not gauge-invariant, a deformation like∫
M6

trF3 =

∫
M5

ω5(A) (D.2.35)
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is incorrect. The correct transformation should be∫
M6

tr
(
F3 − (Fcl)3

)
=

∫
M

(0)
5

(
ω5(A)− ω5(Acl)

)
+

∫
M

(∞)
5

(
ω5(A)− ω5(A

cl
)
)

+

∫
D2×B

[(
ω5(A)− ω5(A)

)
−
(
ω5(Acl)− ω5(A

cl
)
)]
. (D.2.36)

Please refer to Ref. [87] to see that a constraint term can still be obtained in this way.

Finally, I would like to comment on the problems with Snew1
CS . First, since trF3 is a

gauge invariant, the chiral anomaly is not reproduced from this CS term, which was

well reproduced by the original CS term. In the Sakai-Sugimoto model, Z → ±∞
is the boundary, as shown in Figure D.1. That is, ∂M5 = M−∞

4 ∪M+∞
4 . However,

∂(∂M) = 0 is satisfied for any manifoldM in general. If ∂M6 =M5, then ∂(∂M) = 0

must hold, which is a contradiction. Also, the origin of the new introduced dimension

has not been clear. To solve these problems, another New CS term was considered in

Ref. [88]. In the following, this CS term will be explained.

D.3 New CS term 2

In this section, we use the anti-Hermitian U(Nf ) gauge field used in section D.1.

The following discussion can be used not only for BPST instanton solutions.

To solve the problems described in the previous section, the following CS term was

proposed;

Snew2
CS =C

(∫
M−

5

ω5(A−) +

∫
M+

5

ω5(A+)

+
1

10

∫
N

(0)
5

tr
(
(h̃dh̃−1)5

)
+

∫
M

(0)
4

a4(dh
−1h,A−)

)
, (D.3.1)

whereM−
5 , M

+
5 , M

(0)
4 is defined in Fig.D.1. N

(0)
5 were defined in Fig. D.5 (This figure

is only as an help for understanding, and the following figures are also not so much

concerned with a rigorous). N
(0)
5 is a manifold such that it satisfies ∂N

(0)
5 = M

(0)
4 .

We define h̃ ∈ U(Nf ) on N
(0)
5 which satisfies h̃|

∂N
(0)
5

= h. Since we are now using an

anti-Hermitian gauge field, (D.1.24) is rewritten as

α4(V,A) =
1

2
tr
(
V (A3 −AF − FA) +

1

2
V AV A+ V 3A

)
(D.3.2)

=− 1

2
tr
(
V (AdA+ dAA+A3)− 1

2
V AV A− V 3A

)
. (D.3.3)
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Fig.D.5 Manifolds on which Snew2
CS are defined.

This CS term seems artificial but we can immediately find that it is determined quite

uniquely from several physical requirements.

We now discuss the assumptions for defining this CS term. We need to assume the

existence of N
(0)
5 and the field h̃ ∈ U(Nf ) defined on it, as described above. This

corresponds to the fact that in the discussion of Snew1
CS , we assumed the existence of

a new dimension s and a gauge field As defined on it.

We will see that Snew2
CS is appropriate for the CS term we are looking for and

discuss the meaning of each term in the equation (D.3.1). Snew2
CS satisfies the following

properties.

1. When h is topologically trivial (baryon number is 0), Snew2
CS returns to the

original CS term, (D.1.2).
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2. Under a gauge transformation (D.1.16) satisfying g±|z→±∞ → 1, Snew2
CS is in-

variant (shift of 2πZ).
3. If we identify Â± = A±|z→±∞ and ĝ± = e−Λ̂± = g±|z→±∞, it reproduces the

QCD chiral anomaly (D.1.5).

4. If a manifold M6 (Fig. D.6) exists such that M5 has no boundary and satisfies

(M
(±∞)
4 = ∅), ∂M6 = M5, M6 = M+

6 ∪M−
6 , M+

6 ∩M−
6 = N

(0)
5 × (−ϵ, ϵ), and

∂M±
6 =M±

5 ∪ (±N (0)
5 ), then Snew1

CS becomes (D.2.1).

!"
($)

&'
($)

ℎ)

ℎ

!*
+

!'
+

!*
,

!'
,

Fig.D.6 The manifold M6 on which Snew1
CS is defined.

The following explanation shows that the CS term that satisfies these physically

required properties is determined quite uniquely to be (D.3.1).

Let us look at these properties of Snew2
CS one by one.

First consider the property 1. When h is topologically trivial, that is, when h can

be transformed to h = 1 by continuous transformation, we can define h̃ ∈ U(Nf ) on

M−
5 that satisfies h̃ = h on M−

5 ∪M+
5 and h̃|z→−∞ → 1 on the boundary. Using this
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h̃, we see that we can define a globally well-defined 1-form A over M5 as

A =

{
Ah̃−, (on M−

5 )
A+, (on M+

5 )
. (D.3.4)

Now if we define N
(0)
5 =M−

5 ∪N−∞
5 (∂N−∞

5 =M−∞
4 , see also Fig. D.7 for details),

we find that with h̃|
N

(−∞)
5

= 1, h̃ is a function on N
(0)
5 that returns to the original

!
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(27)
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(17)06
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3 = 3245 = 31 (! = 0)
,-(27)

Fig.D.7 The manifolds for which property 1 holds.

CS term, like

Snem2
CS =C

(∫
M−

5

ω5(A−) +

∫
M+

5

ω5(A−)

+

∫
M−

5

[ 1

10
tr
(
(h̃dh̃−1)5

)
+ dα4

(
dh̃−1h̃, A−

)])
=C
(∫

M−
5

ω5(A
h̃
−) +

∫
M+

5

ω5(A+)
)

=C

∫
M5

ω5(A). (D.3.5)
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Here, we used the formula

ω5(A
g) =ω5(A) +

1

10
tr
(
(gdg−1)5

)
+ dα4

(
dg−1g,A

)
, (D.3.6)

which corresponds to the (D.1.22) formula when using an anti-Hermitian gauge field,

and the fact that the fourth term of (D.3.1) can be written as∫
M

(0)
4

α4(dh
−1h,A−) =

∫
N

(0)
5

dα4 =

∫
M−

5

dα4 +

∫
N

(−∞)
5

dα4(dh
−1h|z→−∞, A−)

=

∫
M−

5

dα4(dh
−1h,A−) (D.3.7)

in the present case.

Next consider the property 2. Under the gauge transformation,

A± → A
g±
± = g±A±g

−1
± + g±dg

−1
± , h→ g+hg

−1
− , (g±|z→±∞ → 1), (D.3.8)

Snew2
CS can be written as

Snew2
CS →C

(∫
M−

5

ω5(A
g−
− ) +

∫
M+

5

ω5(A
g+
+ )

+
1

10

∫
N

(0)
5

tr
(
(h̃′dh̃′

−1
)5
)
+

∫
M

(0)
4

α4

(
dh̃′

−1
h̃′, A

g−
−
))
, (D.3.9)

where h′ = g+hg
−1
− and h̃′ are functions that take values in U(Nf ) on M−

5 ∩M+
5

and N
(0)
5 respectively, which satisfy h̃′|

∂N
(0)
5

= h′|z=0. At the boundary, g±|z=0 is

topologically trivial, because of g±|z→±∞ → 1. In such a case, we can define a

function g̃± such that g̃±|∂N(0)
5

= g±|z=0 is satisfied on N
(0)
5 and write h̃′ = g̃+h̃g̃

−1
− .
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Using formula

α4(V,±V ) =0 (D.3.10)

α4(dgg
−1, Ag) =− α4(dg

−1g,A) (D.3.11)

α4(d(gh)(gh)
−1Ag) =α4(g(H −G)g−1, Ag)

=α4(H,A)− α4(G,A)

− 1

2
tr
(
G3H +GH3 − 1

2
GHGH

)
+

1

2
dtr
(
(H −G)(AG−GA)

)
(D.3.12)

α4(d(gh)
−1(gh), A) =α4(dh

−1h,A) + α4(G,A
h)

+
1

2
tr
(
G3H +GH3 − 1

2
GHGH

)
− 1

2
dtr
(
(H −G)(AhG−GAh)

)
(D.3.13)

tr((U−1dU)5) =− tr(G5) + tr(H5)

+ 5dtr
(
G3H +GH3 − 1

2
GHGH

)
(D.3.14)

(G = dg−1g, H = dhh−1, U = gh)

and (D.1.22), etc., Snew2
CS can be gauge transformed as follows,

Snew2
CS →C

(∫
M−

5

ω5(A−) +

∫
M+

5

ω5(A+)

+
1

10

∫
N

(0)
5

tr
(
(h̃dh̃−1)5

)
+

∫
M

(0)
4

α4

(
dh−1h,A−

))
+
C

10

(∫
M+

5

tr
(
G5

+

)
+

∫
N

(0)
5

tr
(
G̃5

+

))
+
C

10

(∫
M−

5

tr
(
G5

−
)
+

∫
N

(0)
5

tr
(
G̃5

−
))
, (D.3.15)

with G± = dg−1
± g± and G̃± = dg̃−1

± g̃±. The first and second lines of this equation

are Snew2
CS (D.3.1), and the third and fourth lines take the value 2πZ. Thus, we can

see that the third and fourth terms in (D.3.1) were introduced to just cancel out the

changes in the first and second terms by this gauge transformation. We can also

see that property 1, which reduces to the original CS term when h is trivial, is also

ensured by the third and fourth terms.

Next, let us consider the property 3. Under the infinitesimal gauge transformation

ĝ± ≃ 1− Λ±, from the first and second terms of Snew2
CS (D.3.1), as shown in (D.1.5),
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the QCD chiral anomaly emerges. The third and fourth terms of (D.3.1) also change

with this gauge transformation. However, in the vicinity of z = 0 where these terms

exist, the gauge transformation g± we are now considering can be regarded as trivial.

Therefore, as explained in property 2, the change of this two terms is equal to 2πZ.
From the above, the chiral anomaly of QCD is reproduced. It can be seen that

the form of the first and second terms in (D.3.1) are required to produce the chiral

anomaly.

Finally, let us look at the property 4. When M5 has no boundary and there exists

a manifold M6 such that Fig. D.6, we find that ∂M±
6 = M±

5 ∪ (±N (0)
5 ), then using

Stokes’ theorem, Snew1
CS is transformed to

Snew1
CS =C

(∫
M−

6

dω5(A−) +

∫
M+

6

dω5(A+)
)

=C
(∫

M−
5

ω5(A−) +

∫
M+

5

ω5(A+)

+

∫
N

(0)
5

(
ω5(A+)− ω5(A−)

))
. (D.3.16)

Since A+ = Ah̃− on M−
6 ∩M+

6 = N
(0)
5 × (−ϵ,+ϵ), and using (D.1.22), we find∫

N
(0)
5

(
ω5(A+)− ω5(A−)

)
=

∫
N

(0)
5

1

10
tr
(
(h̃dh̃−1)5

)
+

∫
∂N

(0)
5

α4

(
dh̃−1h̃, A−

)
, (D.3.17)

so in such a case, Snew2
CS is equivalent to Snew1

CS . Again, we understand the importance

of the third and fourth terms in (D.3.1). It should be emphasized that the property

4 suggests that Snew2
CS has the potential to correctly lead to a constraint term. As we

will explain later, we find that Snew2
CS involves Snew1

CS , not only in the current special

case, so this CS term leads to the constraint term correctly, as we had expected.

From the above explanation, it is understood that our desired CS term is quite

uniquely determined in the form Snew2
CS (D.3.1).

We show some alternative expressions for Snew2
CS (D.3.1). From one of these expres-

sions, we can conclude that Snew2
CS leads to a constraint term. First, let us define a

new, globally well-defined gauge field A that can take non-zero baryon numbers. Such
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a gauge field can be defined as

A = A
h±
± , (on M±

5 ) (D.3.18)

h+hh
−1
− = 1, A

h+

+ = A
h−
− , (on M−

5 ∩M+
5 ). (D.3.19)

The A at the boundary is not exactly equal to the external field Â± and becomes

A|z→±∞ = Â
ĥ±
± , (ĥ± = h±|z→±∞). (D.3.20)

The field configuration of a global gauge field defined in this way should be specified

by (A, ĥ±). That is, we need to physically distinguish between (A, ĥ±) and (A, ĥ′±).

When the external field Â± is zero, the baryon number is defined to be

NB = − 1

24π2

∫
S3

(
tr((ĥ+dĥ

−1
+ )3)− tr((ĥ−dĥ

−1
− )3)

)
(D.3.21)

with A|z→±∞ = ĥ±dĥ
−1
± . If ĥ± is topologically nontrivial, it gives a finite baryon

number.

If we now consider a gauge transformation like

A→ Ag, ĥ± → (gĥ±)|z→±∞, (D.3.22)

we see that this gauge transformation does not act on the external field Â±, i.e.,

Â± → Â±,
(
under (A, ĥ±) → (Ag, gĥ±)

)
. (D.3.23)

For the chiral transformation, by defining (ĝ−, ĝ+) ∈ U(Nf )L × U(Nf )R as

ĝ± = (ĥ−1
± gĥ±)|z→±∞ (D.3.24)

and considering the gauge transformation

A→ Ag, ĥ± → ĥ±, (D.3.25)

we obtain

Â± → Â
ĝ±
± ,

(
under (A, ĥ) → (Ag, ĥ)

)
. (D.3.26)

Following the same calculation as when we showed the property 2, (D.3.1) is rewrit-

ten in the form

Snew2
CS =C

(∫
M5

ω5(A) +

∫
N

(+∞)
5

1

10
tr
(
(h−1

+ dh+)
5
)
+

∫
M

(+∞)
4

α4

(
dĥ+ĥ

−1
+ , A

)
−
∫
N

(−∞)
5

1

10
tr
(
(h−1

− dh−)
5
)
−
∫
M

(−∞)
4

α4

(
dĥ−ĥ

−1
− , A

))
, (D.3.27)
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using the globally well-defined gauge field A defined by (D.3.18). Here, N
(±∞)
5 is a

five-dimensional manifold satisfying ∂N
(±∞)
5 = M

(±∞)
5 and h± is a function which

takes the value of U(Nf ) on N
(±∞)
5 satisfying h±|∂N(±∞)

5
= ĥ±. Moreover, using

(D.3.11), it can be transformed to

Snew2
CS =C

(∫
M5

ω5(A) +

∫
N

(+∞)
5

1

10
tr
(
(h−1

+ dh+)
5
)
−
∫
M

(+∞)
4

α4

(
dĥ−1

+ ĥ+, Â+

)
−
∫
N

(−∞)
5

1

10
tr
(
(h−1

− dh−)
5
)
+

∫
M

(−∞)
4

α4

(
dĥ−1

− ĥ−, A−
))
. (D.3.28)

From this expression, we see that Snew2
CS is equivalent to the original CS term (D.1.2)

when Â± = 0 with Nf = 2.

Furthermore, we define the manifold N5 as

N5 = N
(+∞)
5 ∪

(
−N

(−∞)
5

)
∂N5 = ∂M5 =M

(+∞)
4 ∪

(
−M

(−∞)
4

)
(D.3.29)

and the function h of U(Nf ) on N5 as

ĥ± = h|
M

(±∞)
4

(D.3.30)

to get a more simplified form

Snew2
CS =C

(∫
M5

ω5(A) +

∫
N5

1

10
tr
(
(h−1dh)5

)
+

∫
∂M5

α4

(
dhh−1, A

))
=C
(∫

M5

ω5(A) +

∫
N5

1

10
tr
(
(h−1dh)5

)
+

∫
∂M5

α4

(
dh−1h, Â

))
, (D.3.31)

where Â is represented by

Â± = Â|
M

(±∞)
4

(D.3.32)

and the (D.3.19) formula is represented by

A|∂M5 = Âh. (D.3.33)

The gauge transformation (D.3.22), which does not act on the boundary, is

A→ Ag, h→ gh, Â→ Â. (D.3.34)
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The chiral transformation (D.3.25) is represented as

A→ Ag, h→ h, Â→ Âĝ (D.3.35)

ĝ = (h−1gh)|∂M5
, ĝ± = ĝ|

M
(±∞)
4

. (D.3.36)

It is easy to see that the properties 2 and 3 are satisfied, respectively.

We can now solve the problem that Snew1
CS poses, while correctly realizing the in-

tention of Ref. [87]. Define the manifold M6 as such that it satisfies

∂M6 =M5 ∪ (−N5) (D.3.37)

(see Fig. D.8). Since M5 ∪ (−N5) has no boundary, such a manifold M6 is possible.

!
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Fig.D.8 M6 in Snew
CS (N−∞

5 and N+∞
5 are compactified)

Also, if we focus only on M5, this manifold itself can have a boundary, so a manifold

like (D.1.1) is possible. From the above, we find∫
M6

tr(F 3) =

∫
M5

ω5(A)−
∫
N5

ω5(A), (D.3.38)
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and if we define the external field on N5 as Â = Ah
−1

and note that ∂N5 = ∂M5, we

find ∫
N5

ω5(Â) =

∫
N5

(
ω5(A) +

1

10
tr
(
(h−1dh)5

))
+

∫
∂N5

α4

(
dhh−1, A

)
, (D.3.39)

so we obtain a new expression for

Snew2
CS = C

(∫
M6

tr(F 3) +

∫
N5

ω5(Â)
)

(D.3.40)

with a more explicit connection to Snew1
CS . From this, we observe that from the first

term of (D.3.40), we derive a constraint term. The chiral anomaly is also correctly

derived, as explained using another expression.
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Appendix E

The wave function of the SU(2)

rotation W (t)

E.1 W (t)

The SU(2) rotation W (t) is written by

W = a4(t) + iaa(t)τ
a, (E.1.1)

where, the group manifold SU(2) is parameterized by

a4 = cos θ0, (E.1.2)

a3 = sin θ0 cos θ1, (E.1.3)

a2 = sin θ0 sin θ1 cos θ2, (E.1.4)

a1 = sin θ0 sin θ1 sin θ2, (E.1.5)

dΩ3 = sin2 θ0 sin θ1dθ0dθ1dθ2, (E.1.6)

The spin and isospin are expressed as follows;

Ji =M0ρ
2tr(−iW−1Ẇ ti), (E.1.7)

Ia =M0ρ
2tr(iẆW−1ta) = −WJitiW

−1. (E.1.8)

We use the canonical momentum

ΠI = 2M0ẏI = −i ∂
∂yI

, (E.1.9)

216



then the spin and isospin operator are rewritten by

Ia =
i

2

(
a4

∂

∂aa
− aa

∂

∂a4
− ϵabcab

∂

∂ac

)
(E.1.10)

Ja =
i

2

(
− a4

∂

∂aa
+ aa

∂

∂a4
− ϵabcab

∂

∂ac

)
, (E.1.11)

(E.1.12)

where yI = ρaI .

E.2 Wave function for W (t)

Here, the wave function of W (t) is written, for example

|l = 1, I3 = J3 = l/2⟩ = π−1(a1 + ia2), (E.2.1)

|l = 3, I3 = J3 = l/2⟩ =
√
2

π
(a1 + ia2)

3, (E.2.2)

where the normalization constants were determined as follows,∫
dΩ3π

−2(a1 − ia2)(a1 + ia2) =

∫
dΩ3π

−2(a21 + a22)

=

∫
dΩ3π

−2(sin2 θ0 sin
2 θ1) = 1 (E.2.3)∫

dΩ3
2

π2
(a1 − ia2)

3(a1 + a2)
3 =

∫
dΩ3

2

π2
(a21 + a22)

3

=

∫
dΩ3

2

π2
(sin2 θ0 sin

2 θ1)
3 = 1 (E.2.4)

With ladder operator

I− = I1 − iI2, I− = I1 + iI2 (E.2.5)

J− = J1 − iJ2, J− = J1 + iJ2, (E.2.6)
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we obtain several baryon states

|l = 1, I3 =
1

2
, J3 = −1

2
⟩ = J−(a1 + ia2)

=
[ i
2

(
− a4

∂

∂a1
+ a1

∂

∂a4
− a2

∂

∂a3
+ a3

∂

∂a2

)
+
1

2

(
− a4

∂

∂a2
+ a2

∂

∂a4
+ a1

∂

∂a3
− a3

∂

∂a1

)]
(a1 + ia2)

= −iπ−1(a4 − ia3)

|l = 1, I3 = −1

2
, J3 =

1

2
⟩ = I− |l = 1, I3 =

1

2
, J3 =

1

2
⟩ = iπ−1(a4 + ia3) (E.2.7)

|l = 1, I3 = −1

2
, J3 = −1

2
⟩ = J− |l = 1, I3 =

1

2
, J3 =

1

2
⟩ = −π−1(a1 − ia2) (E.2.8)

|l = 3, I3 =
3

2
, J3 =

1

2
⟩ = J− |l = 3, I3 =

3

2
, J3 =

3

2
⟩ = −

√
6

π
i(a1 + ia2)

2(a4 − ia3)

(E.2.9)

|l = 3, I3 =
1

2
, J3 =

3

2
⟩ = I− |l = 3, I3 =

1

2
, J3 =

3

2
⟩ =

√
6

π
i(a1 + ia2)

2(a4 + ia3)

(E.2.10)

|l = 3, I3 =
1

2
, J3 =

1

2
⟩ = J−I− |l = 3, I3 =

3

2
, J3 =

3

2
⟩

=

√
2

π
(a1 + ia2)(2a

2
3 + 2a24 − a21 − a22) (E.2.11)

E.3 Some expectation values

We show the calculations of some expectation values as follows.

tr(Wτ3W−1τ3) = 4a24 + 4a23 − 2 (E.3.1)

■ ⟨N |tr(Wτ3W−1τ3)|N⟩

⟨l = 1, I3 = J3 = l/2|tr(Wτ3W−1τ3)|l = 1, I3 = J3 = l/2⟩

=

∫
dΩ3π

−2(a1 − ia2)(4a
2
4 + 4a23 − 2)(a1 + ia2) =

∫
dΩ3π

−2 sin2 θ0 sin
2 θ1(2− 4 sin2 θ0 sin

2 θ1)

= −2

3
(E.3.2)
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■ ⟨∆|tr(Wτ3W−1τ3)|N⟩

⟨l = 1, I3 = J3 = l/2|tr(Wτ3W−1τ3)|l = 3, I3 = J3 = l/2⟩

=

∫
dΩ3π

−1(a1 − ia2)(4a
2
4 + 4a23 − 2)

√
2

π
(a1 + ia2)(2a

2
3 + 2a24 − a21 − a22)

=

∫
dΩ3π

−2 sin2 θ0 sin
2 θ1(2− 4 sin2 θ0 sin

2 θ1)(2− 3 sin2 θ0 sin
2 θ1)

=
2
√
2

3
(E.3.3)

tr(W
τ2

2
W−1 τ

3

2
) = tr[(a4 + iaaτ

a)
τ2

2
(a4 − iabτ

b)
τ3

2
] = a2a3 − a1a4 (E.3.4)

tr(W
τ1

2
W−1 τ

3

2
) = tr[(a4 + iaaτ

a)
τ1

2
(a4 − iabτ

b)
τ3

2
] = a1a3 + a2a4 (E.3.5)

■ ⟨∆+, 32 |
[
tr(Wτ2W−1τ3)− itr(Wτ1W−1τ3)

]
|N⟩

⟨l = 3, I3 = 3/2, J3 = 1/2|
[
tr(Wτ2W−1τ3)− itr(Wτ1W−1τ3)

]
|l = 1, I3 = J3 = l/2⟩

=

√
6

π2
i

∫
dΩ3(a

2
1 + a22)

2(a23 + a24) =

√
6

π2
i

∫
dΩ3 sin

4 θ0 sin
4 θ1(1− sin2 θ0 sin

2 θ1)

= i
1√
6

(E.3.6)

■ ⟨∆+, 12 |
[
tr(Wτ2W−1τ3)− itr(Wτ1W−1τ3)

]
|N⟩

⟨l = 3, I3 = 1/2, J3 = 1/2|tr(Wτ3W−1τ3)|l = 1, I3 = 1/2, J3 = −1/2⟩

= i

√
2

π2

∫
dΩ3(a

2
1 + a22)(a23 + a24)(2a

2
3 + 2a24 − a21 − a22)

= i

√
2

π2

∫
dΩ3 sin

2 θ0 sin
2 θ1(1− sin2 θ0 sin

2 θ1)(2− 3 sin2 θ0 sin
2 θ1)

= i

√
2

6
(E.3.7)
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