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Abstract

In this doctoral thesis, various properties of baryon resonances are investigated
using the Sakai-Sugimoto model, one of the holographic QCD models. Even though
the Roper resonance is one of the most experimentally established baryon resonances,
it is difficult to explain its various properties theoretically. We find that the mass
formula obtained from the Sakai-Sugimoto model captures the characteristics of the
experimental data of Roper resonances well. Therefore, we attempted to calculate
other properties of the Roper resonance, especially the electromagnetic transition
amplitude and the decay width of the one pion emission. We also tried to do similar
analyses for other nucleon resonances (A(1232), N*(1535)).

For this purpose, it is necessary to obtain the baryon wave function and chiral
current in the Sakai-Sugimoto model. In the holographic QCD model, baryons appear
as D-branes. In particular, in the Sakai-Sugimoto model, this D-brane is identified
with an instanton on D8 brane. Therefore, we consider the motion of this instanton
in moduli space and quantize it to obtain the wave function of the baryon. This
is the conventional method used in the analysis of solitons and is called collective
coordinate quantization. After that, we performed calculations and compared them
with experimental data using the current defined as the Noether current of chiral
symmetry in the Sakai-Sugimoto model. On the other hand, some problems exist in
the definition of chiral current, therefore we pointed out these problems.

In addition, Roper-like excitations have recently been found in heavy baryons.
Therefore, we discuss the extension of the Sakai-Sugimoto model to heavy flavor

for the purpose of these analyses.
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Chapter 1.

Introduction

The strong interactions forming the baryons that occupy more than 99% of the
visible matter in our universe are described by quantum chromodynamics (QCD).
However, due to their non-perturbative nature, the behavior of low-energy QCD is
not always well understood. While the properties of the ground state baryons such as
masses and magnetic moments of the octet baryons, are thought to be well understood,
much part of them are actually governed by the flavor symmetry. The dynamics
of low energy QCD is more directly reflected in the excited/resonant states of the
baryons [1]. This was the case as we have seen in the developments of the atomic
physics where various observations of atomic spectra revealed their origin due to the
motion of electrons and their interactions. We expect a similar situation for QCD;
from the study of baryon spectra we may be able to extract the information of the
constituents, or effective degrees of freedom, that govern the structure of baryons and
their interactions. This motivates us to study baryon resonances.

While the first-principles calculations of the ground state have been developed by
Lattice QCD, the simulations of resonances is difficult, because resonances are rec-
ognized as a continuum (scattering) state. For this reason, investigation by effective
models that incorporate the appropriate degrees of freedom have been useful. Among
various effective models, the most standard one is the constituent quark model that
describes baryon resonances as excitations of quarks that are confined inside the
baryons [2, 3, 4, 5, 6, 7]. The model reproduces well the properties of the ground
state baryons and reasonably well the first resonant states. The model can also pre-

dicts further resonant states. However due to its simplicity the predictive power is



limited, and for some resonances, the model lead serious discrepancies in comparison
with experimental data. Difficulties are in many cases decay properties of resonances,
which are the most important dynamical properties, for example, the decay widths
and electromagnetic transition amplitudes [8]. This is because the quark model de-
scribe the resonances as a stable particle, although the actual baryon resonances are
recognized as poles appearing in the scattering amplitudes of mesons and baryons.
The dynamically coupled-channel model (DCC model) is a well-known model that re-
spects the actual resonances [9]. This model explains the properties of resonances very
well by using scattering cross-section data as input. However, it is a phenomenological
model that requires a large amount of data input.

In this doctoral thesis, the dynamical properties of nucleons are discussed in the
Sakai-Sugimoto model, which is the most successful holographic QCD description of
low-energy QCD [10, 11]. So far, static properties such as the mass spectra have been
investigated in this model by well utilizing the extra-dimensional degrees of freedom,
where its success has been shown [12, 13, 14, 15, 16]. On the other hand, it is also
essential to elucidate the dynamical properties of resonances and their interactions. In
this study, as a milestone of the new development of the study of dynamical properties
in the holographic model of QCD, the properties of the nucleon resonance are investi-
gated [17, 18]. Moreover, this model describes nucleon as solitons (instantons) [12, 14],
whose are resonances expressed as their collective motion excitations, namely stable
particles. Here, the extra-dimensional degrees of freedom play an important role. As
described below, this extra-dimension includes the degrees of freedom of the meson
and its resonances. Then, from the viewpoint of our four-dimensional spacetime, this
solitons (instantons), baryon, can be interpreted as a meson-baryon composite sys-
tem. Considering that the actual nucleon resonance is recognized as the poles of the
scattering amplitudes of the meson and baryon, this baryon picture is very interesting.
From this point of view, it is worthwhile to investigate various properties of nucleon
resonance using this model.

In addition, hadrons with heavy quarks and their resonances have been studied with
great interest in recent years [19, 20, 21, 22, 23, 24]. In particular, the existence of
Roper-like heavy baryons is of intriguing concern [8]. The Roper-like excitations are
observed at energies above about 500 MeV from the ground state that shows flavor-

independent properties [23]. Therefore, it is desirable to extend the Sakai-Sugimoto
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model to cases involving heavy flavors [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. This
thesis also presents our work on the development of the Sakai-Sugimoto model in this
direction [36].

Hadron resonance as a fundamental excitation produced by the QCD vacuum shows
various aspects and opens up many interesting research areas. The nature of the
resonance states can be not only theoretically understood but also experimentally
verified. Therefore, theoretical and experimental investigation of the structure and

properties of hadron resonance are expected to reveal the puzzle of low-energy QCD.

1.1  Nucleon resonances

In the following, we discuss the specific resonances.

1.1.1 The A(1232) resonance

The A(1232) resonance is a resonant state with isospin 3/2 and spin-parity 3/27"
quantum numbers, with a mass of 1232 MeV and a decay width of about 100 MeV [37].
In the picture of the quark model, which describes a nucleon as three quarks, it can be
interpreted as an excitation by a magnetic dipole transition that flips the spin-isospin
of one quark of the nucleon.

It is the most strongly excited compared to the other nucleon resonances, and
decay to a pion and a nucleon with a branching ratio of almost 100%. The quark
model, which successfully explains the magnetic moment of the nucleon, was expected
to reproduce the A(1232) resonance electromagnetic transition amplitude, but its
prediction is much smaller [3, 38, 7] than the amplitude observed in experiments [39].
It has been found that a simple description of the nucleon as a three-body system of
quarks is not sufficient to explain this transition amplitude, in which it is important
to take into account the meson clouds produced by the strong coupling of the A(1232)
resonance to the pion and nucleon [40]. It is now becoming clear that this picture
of a meson-baryon composite system is also very important for understanding other

nucleon resonances.



1.1.2 Roper resonance

The Roper resonance is the first excited state of the nucleon, with spin-parity 1/2%,
a mass of 1440 MeV and a decay width of about 160 ~ 190 MeV, which is one of the
most established resonances since L. D. Roper observed its existence in the 1960s [41].
Nevertheless, there are many unsolved puzzles regarding its structure and properties.

A long-standing controversial puzzle is the issue of the mass of the Roper reso-
nance. Since the establishment of the picture of baryons composed of three constituent
quarks, there have been many studies using the non-relativistic quark model. On one
hand, the quark model was found to reproduce experimental values of the masses of
many nucleon resonances by using harmonic oscillator-type confinement potentials.
On the other hand, the mass of the Roper resonance cannot be explained by the
quark model picture. Its mass smaller than the negative parity nucleon N*(1535) has
attracted great amount of interests because the naive quark model predicts the mass
of the Roper resonance much higher than that of the negative parity state.

Turning to the dynamical properties of the Roper resonance, a further problem was
unveiled. That is the fact that the quark model cannot reproduce the data obtained
from the electromagnetic transitions of the Roper resonance. The electromagnetic
excitations of nucleon resonances have long been studied experimentally and theo-
retically as an important source of information for understanding QCD. The helicity
amplitudes extracted from this electro-production data distinguish competing mod-
els. In earlier years, the data were insufficiently precise and the amount of helicity
amplitude data points was limited. However in recent years, mainly with the advent
of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jef-
ferson National Accelerator Facility (JLab), a large amount of precise data has been
obtained [42, 43, 44, 45, 46]. Motivated by this, many theoretical studies [47, 8, 9, 24]
have been devoted to the understanding of this process for the Roper resonance, in
particular, it has been argued that the quark three-body picture is inappropriate and
that it is important to consider the effect of the meson cloud [9, 8].

This is not the only problem with the Roper resonance. An almost vanishing decay
width of one pion emission, which is a forbidden process in the limit of zero momentum

of the outgoing pion in the non-relativistic quark model, disagrees with the large value



of the experimental data. To solve these problems about electromagnetic transition
and one pion emission, many theoretical efforts have been devoted. It was pointed
out that relativistic effects of the confined quarks at short distance and meson cloud
effects at long distance are important to improve the problems [9, §].

It follows that these two problems about electromagnetic transition and one pion
emission of the Roper resonance stem from the properties of the non-relativistic quark

model. These transition processes are related to the following matrix element;
(spin ® isospin|Ogpin isospin |SPIN ® isospin) x <¢N* |eii’f\¢N> ) (1.1.1)

where the Ogpin, isospin 15 the operator of the spin and isospin, N (V") is the wave
function of the nucleon (the Roper resonance), ¢ is the momentum of a pion or
a photon. This transition process is forbidden in the limit of ¢ — 0 due to the
orthogonality of the wave function. However, the experimental value has a finite
value in this limit, which is a contradiction.

In Ref.[47], the prediction for the helicity amplitude of the electromagnetic transi-
tion at the real photon point was improved by adding a correction for the effect of
internal quark dynamics. Recently, similar results have been obtained for the decay
width of one pion emission. The effect of internal quark dynamics, which is important
for the solution of this problem, contributes as a relativistic correction term to the
matrix elements as follows. Denoting the momentum of the internal quark as p, we

find that the relativistic corrections add the following terms to the matrix elements;

(spin ® isospin‘(?spinyisospin spin ® isospin) x (wN* |ﬁei§'f‘wN) . (1.1.2)

Due to the internal quark momentum p, this matrix element is not zero even in the
limit of ¢ — 0.

The importance of the effect of the meson clouds around the quark is also remarked

on for the understanding of the Roper resonance [9, 8]. As discussed below, the baryon

picture of the Sakai-Sugimoto model leads us to expect that the effect of meson clouds

is incorporated.

1.1.3 Negative parity resonance

The negative parity resonance N*(1535) is the second excited state of the nucleon

with a mass slightly larger than the Roper resonance. There has been interest in
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studying N*(1535) from several perspectives, as follows For example, it has been dis-
cussed that when chiral symmetry is restored at finite temperature and finite density,
a degenerate pair of different parity states are observed, i.e., the existence of chiral
partners. The negative parity resonance N*(1535) is considered to be a reasonable
candidate for a nucleon’s chiral partner [48, 49, 50, 51]. This fact is of great interest
because it indicates that N*(1535) may play an important role in understanding the
chiral symmetry of QCD.

On the other hand, this resonance is known to be strongly coupled to n/N, which is
an almost exclusive property of this resonance [52, 53, 54]. Therefore, the production
of N*(1535) can be identified by observing the n meson. This property also allows
the study of N*(1535) through meson-nucleus bound states. When the 1 meson-
nucleus bound states are observed, the energy and structure of the bound state depend
strongly on the interaction between the n meson and the nucleus, which in other words
can also be said to reflect the nature of N*(1535) in the nucleus. Therefore, N*(1535)
is an interesting research issue because it allows us to further understand the nucleon
resonance by studying the meson-nucleus bound state. So far, the search for this
resonance state has been conducted, which has not yet led to its identification[55, 56],
but the above-mentioned interest has led to ongoing intensive research.

While in the quark model nucleon resonances are described as three-quark systems,
in several models [57, 58, 59], the negative parity state N*(1535) may be described
as composite states of a ground state baryon and a negative parity meson such as
K?3.. The baryon picture of the Sakai-Sugimoto model can be interpreted as a meson-
baryon composite system, and the analysis of this doctoral thesis has a very interesting

possibility for the understanding of baryon resonances including N*(1535).

1.2 Sakai-Sugimoto model

The Sakai-Sugimoto model [10, 11] has been recognized as the holographic QCD
that best reconstructs strongly coupled massless QCD in the large N, limit at low en-
ergies. In the holographic QCD, the question is how to realize QCD in the framework
of string theory.

After Polchinski pointed out the importance of D-branes [60], the AdS/CFT (anti-de

Sitter /conformal field theory) correspondence was conjectured by Maldacena [61]. A
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non-conformal, supersymmetric four-dimensional pure Yang-Mills (YM) theory and
its dual gravity theory were constructed, for example by Witten, by using N. D4
brane [62, 63]. We see that the open string with two endpoints on this N. D4-brane
corresponds to a U(N.) gluon field of N. x N, adjoint representations. The field
of U(N,.)-fundamental representations corresponding to the quark is an open string
with one of its two endpoints on this D4-brane. The other endpoint should be placed
on the D-brane corresponding to the flavor degrees of freedom. In this way, we can
introduce quarks into the pure YM theory. However, due to the addition of the new
D-brane, we can no longer use the gravity solution proposed by Witten. In general,
it is quite difficult to obtain a gravity solution for such a complex D-brane system.
Therefore, it was proposed in Ref. [64], to introduce D-branes corresponding to the
degrees of freedom of the flavor as probes (that have a negligible back reaction to
the background field). This allows us to incorporate quark degrees of freedom into
four-dimensional pure YM theory based on Witten’s N. D4-brane system and its dual
gravity theory. Furthermore, an assignment of D-branes that reproduces the chiral
symmetry and its spontaneous breaking was proposed by Ref. [10, 11]. This is the
SakaiSugimoto model used in this thesis.

The gravity theory equivalent to massless QCD can be regarded as an effective ac-
tion of the flavor gauge field in the five dimensional space (four space-time and one
extra dimension), implementing the spontaneous breaking of chiral symmetry [65, 66],
allowing many hadron physics predictions to be obtained with simple analytical cal-
culations [10, 11]. For example, from this effective theory of mesons, scalar and vector
meson spectra can be obtained, which well reproduce experimental data. It also shows
that the model contains a pion, which is an Nambu-Goldstone (NG) boson associated
with the spontaneous breaking of the chiral symmetry. This pion is massless, as one
would expect from the fact that the Sakai-Sugimoto model is the gravitational theory
equivalent of massless QCD. This model also contains the Skyrme model including
the Wess-Zumino-Witten (WZW) term and the (axial-) vector meson. Furthermore,
the chiral anomaly is reproduced from the Chern Simons (CS) term corresponding to
the WZW term in this model. In addition, many other qualitative and quantitative
predictions related to hadron physics are possible, such as vector meson dominance,
the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relation, the pion form

factor, the U(1)4 anomaly, and so on. Moreover, surprisingly, there are practically
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only two parameters in this model. Nevertheless, it has achieved great success in

explaining light flavor hadron physics.

1.3 Baryons for Sakai-Sugimoto model

In the Sakai-Sugimoto model, baryons are analyzed by soliton picture [12, 14].
T. Skyrme constructed the Skyrme model, which describes baryons as solitons of an
infinite number of pions, which can explain many properties of baryons [67, 68, 69, 70,
71]. On the other hand, the Sakai-Sugimoto model is a hadron effective model of 144
dimensional spacetime, which leads the Skyrme model by projecting the model onto
four-dimensional spacetime employing Atiyah-Manton’s method [72]. Furthermore,
the extra dimension of the model naturally accommodates various excited states of
mesons. The baryons in the Sakai-Sugimoto model are known to emerge as instantons
on the D8 brane [73, 74, 14, 12, 75]. The dynamics of baryons is described as the
collective motion of instantons/solitons, which is a very different description from the
quark model with a single-particle picture. Interestingly, as we will see below, the
baryon picture of the Sakai-Sugimoto model is closely related to that of the meson
cloud, which has recently been revealed in the study of Roper resonances.

For the purposes of this doctoral thesis, there are several facts that are particu-
larly noteworthy in this model, as described below. First, the model describes baryon
resonances as meson-baryon composite systems. Baryon resonances are represented
using extra dimensions that play a crucial role in the realization of the description
of mesons and their resonant states. When the baryon resonance is viewed from
a 4-dimensional space-time perspective, the Lagrangian appears as a meson-baryon
composite system. The extra-dimensional degrees of freedom are also used to rep-
resent the negative parity excitation, because the meson-baryon (soliton) composite
system is critically important for the description of negative-parity states. In the
quark model, we describe the negative parity excitation as an orbital excitation of a
single quark. This model, which describes baryons as solitons (instantons), is simi-
lar to the baryon picture of the Skyrme model, but it is known that it is generally
difficult to deal with negative parity excitation in the Skyrme model. One way is to
introduce meson fluctuations around the soliton solutions i.e., meson-baryon compos-

ite system [57, 58]. Therefore, one of the unique points of this model is that it can
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describe the negative parity excitation by utilizing the extra dimensional degrees of
freedom. Furthermore, in the obtained mass formula, the masses of the Roper reso-
nance and the negative parity state are degenerate [12]. This is a good feature of the
hadron resonance mass spectra than the quark model.

In addition to the discussions in the light flavor sector, recent experiments have also
discovered Roper-like states in heavy flavors, which has stimulated some theoretical
works. Under these situations, studies on the extended the Sakai-Sugimoto model to
heavy flavors have been performed in Ref. [36, 31] and others. In particular, in our
study Ref. [36], we find that the extra dimension again plays an important role in
introducing heavy flavors to the Sakai-Sugimoto model.

Further studies of the static properties of baryons in this model have been conducted
by [16, 13]. For this purpose, it is necessary to define the chiral current using this
model. There are two ways to define the chiral current in this model. One is to define
the current using the GKP-Witten relation from the standpoint of the AdS/CFT
correspondence [16], and the other is to obtain the current as the Noether current
from the standpoint of the hadron effective model [13]. The former method is a
natural definition of current from the viewpoint of AdS/CFT correspondence, but it
causes problems in the analysis of baryons because the current is defined as coupling
with the external field in the extra-dimensional boundary. The baryons in this model
are identified with instanton solutions in a 341 dimensional space including one extra
dimension, but since instanton solutions usually have spatial SO(4) symmetry, the
current becomes zero when the baryons exist. This is because the classical solution
is obtained by ignoring the effect of the warp factor. In Ref. [16], they obtained an
asymptotic solution at the boundary that incorporates the effect of the warp factor
leading to a well-defined current evaluation. They used this current to investigate the
static properties of the baryon and found that it roughly captured the experimental
data. On the other hand, almost at the same time as Ref. [16], a study of nucleon
resonance with the current obtained from the latter definition was carried out and
found to roughly reproduce the experimental data. However, since this current has
non-uniqueness in its form, they determine this non-uniqueness so that the chiral
current of the Skyrme model is derived when reduced to four-dimensional space-time.

Using these currents, we investigate the dynamical properties of baryons, in partic-

ular, electromagnetic transition amplitudes and the decay width of one pion emission.
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They are related to the following matrix elements, using a certain function f for the

soliton picture of the baryon.
(spin ® isospin‘(’)spin,isospin spin ® isospin) x <¢/])V* ‘f(:?, p)eﬁ'f‘w/fj\’> , (1.3.1)

where @Dév " is the wave function for instanton monopole vibration of size p. Unlike
(1.1.1), this matrix element has a nontrivial form and thus has the potential to solve
problems concerning the dynamical properties of the Roper resonance from a different
perspective in comparison to relativistic corrections. In particular, analysis of the
properties of baryon resonance by the Sakai-Sugimoto model is essential to verify the
validity of the description of baryon resonance and to understand its phenomenological
meaning. In this doctoral thesis, we will explain both current definitions and calculate
the physical quantities. The results will show that the latter definition is more effective

for a comprehensive analysis of baryon resonances.

1.4 Construction of the doctoral thesis

The role of each chapter is described below. Chapter 2 reviews the analysis of
mesons and baryons in the Sakai-Sugimoto model. In particular, we emphasize
that the SakaiSugimoto model has a meson cloud picture. In addition, the reso-
nances of baryons and their dynamics are expressed as the collective motion of in-
stantons/solitons. By explaining this point, we will clarify the baryon picture as a
meson-baryon complex system. In addition, Roper-like excitations have recently been
found in heavy flavor baryons. Therefore, we first review the treatment of flavor SU(3)
including s quark and then discuss the extensions that introduce heavy flavor to the
Sakai-Sugimoto model based on Chapter 3. Furthermore, we define the chiral current
to analyze the dynamical properties of the baryon resonance. Therefore, in Chapter
4, we will first discuss the definition of the chiral current, and then calculate various
physical quantities and compare them with experimental data. Finally, we summarize

and discuss prospects in Chapter 5.

14



Chapter 2.

Hadrons in the Sakai-Sugimoto model

Since the gauge/gravity (string) correspondence was conjectured, there have been
many attempts to use this correspondence to elucidate the non-perturbative effects
of QCD. The Sakai-Sugimoto model has attracted attention as the holographic QCD
that most reproduces low-energy QCD phenomena [10, 11].

2.1 The gauge/gravity (string) correspondence

For this section, we briefly describe the gauge/gravity (string) correspondence. In
the next section, we will introduce the holographic QCD model that best explains
low-energy QCD, the Sakai-Sugimoto model.

First, we give the least required introduction to superstring theory. Superstring
theory provides a unified description of gravity and gauge theory. This is because there
are naturally two possible types of strings. One is a closed string whose ends are closed
and looped, and the other is an open string whose ends have two endpoints. In the
low energy region, where the string can be regarded as a point particle, the properties
of particles are reflected in differences in oscillations of these strings, indicating that
the closed string is a graviton and the open string is a gauge particle. Closed and open
strings can interact to transit with each other, and the consistency of the quantization
of the strings shows that the space-time of superstring theory can be formulated only
in ten dimensions.

Now consider a superstring theory that consists of only closed strings. At low energy,

this theory is known to be a supergravity theory, and it is known that there are several
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vacuum solutions, in other words, several ten-dimensional spacetime structures. The
most trivial solution is flat spacetime. Not only that there is a black-p-brane solution,
which is a ten-dimensional spacetime that corresponds to a four-dimensional black
hole, with a charge and a horizon extending into p + 1 dimensions. For example, in
the case of p = 3, it is represented by the following metric;

ds® = H(r)"'?(=dt* + d2%) + H(U)"? (dr® + r*d3)

H(r) =1+ :—é ro = (4mgsN.) 415, (2.1.1)
where there exists a horizon at r = 0. The charge carried by the black-p-brane is called
the Ramond-Ramond charge (RR charge), which is coupled to a tensor field (gauge
field) called the Ramond-Ramond field (RR field). Hence, the black-p-brane solution
is the source of the graviton and RR fields. From here, the most important work
towards the gauge/gravity (string) correspondence was done by Polchinski [60]. He
showed that a D-p-brane placed on a flat spacetime, i.e., spreading in p+1 dimensions,
and an object that is an endpoint of an open string is equally a source of graviton
and RR fields. It should be emphasized here that at the same time, an open string
that behaves as a gauge field was introduced.

This fact implies the equivalence of a theory with a D-p-brane placed in flat space-
time and a string theory in black-p-brane spacetime. From here, we have one more
thing to consider to elevate this conjecture to the equivalence of gauge theories and
gravity (string) theories. Now, the former theory consists of a gauge field correspond-
ing to an open string and a closed string. In order to discuss the correspondence with
the gauge theory, we need to extract only the degrees of freedom of the gauge theory
on the D-p-brane. For this purpose, we consider the following limit (decoupling limit)

which decouples the closed strings from the gauge fields;
Goar = (2m)P g2 7% = fixed, I — 0. (2.1.2)

Then, the coupling constant x = (27)7/2g,14/v/2 of the open and closed strings are
zero, decoupling them. Next, consider keeping the energy scale of the physical quan-
tity related to the open string finite under the decoupling limit. Now, if one of the
multiple D-p-branes is separated by dl in parallel, the open string stretched between
the separated branes gains a mass of §1/l2. This mass corresponds to the energy scale

that should be kept finite. To keep this mass finite under the decoupling limit, we
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need to set 61 — 0. If we replace the overlapping D-p-brane with a black-p-brane, we
see that the limit of §] — 0 corresponds to considering a near horizon. Based on the
above observations, Maldacena proposed the equivalence between the gauge theory
on the D-p-brane and the gravity theory in the near horizon of the black-p-brane [61].
This is roughly how we reached the gauge/gravity (string) correspondence.

In the actual analysis, technical problems require the following further condition.
Instead of considering superstring theory as a spacetime equivalent to D-p-brane,
we have considered a supergravity theory in which the string is treated as a point
particle. The condition for this treatment to be viable is that the string length must
be sufficiently smaller than the energy scale considered. The string length [, correction

in supergravity theory is expressed as

(Classical gravity theory) + O(RI?). (2.1.3)

This means RI? < 1. As concretely shown in the description of the Sakai-Sugimoto
model, this corresponds to the limit where the 't Hooft coupling is large, i.e., the case
of \=g%,;N.> 1.

Furthermore, in the explanation so far, we have considered the classical theory of
gravity, but a quantum correction to the supergravity theory must be suppressed to

justify this treatment. It is known that this quantum correction is added as follows;

(Classical gravity theory) + O(R*G1o), (2.1.4)

where G19 = (2m)7g218/(167) is the gravitational constant in ten dimensions, and this

correction is known to correspond to an expansion of 1/N? in terms of gauge theory.

2.2 The Sakai-Sugimoto model

In order to adapt this gauge/gravity (string) correspondence to the QCD analysis,

the following points need to be further resolved

1. Introduce quarks of fundamental representation
2. Break the supersymmetry

3. Break the conformal invariance and introduce Agcp

For the items 2 and 3, an idea was proposed by Witten to solve them [25]. Let us

consider a 4 + 1 dimensional gauge theory on an N, D4-brane. The extra dimension
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is S1 compactified. Assuming the compactification radius as R, this theory can
be regarded as a 3 + 1-dimensional gauge theory to a good approximation in energy
regions sufficiently lower than 1/ Rk x = Mk k. Gauge theories on D4-branes were not
initially conformally invariant and in the present case Rk k is introduced as the scale
in this case. This Ry k plays the role of Aqcp. In addition, for the § I compactification
direction, supersymmetry can be broken by imposing periodic boundary conditions
on the boson and anti-periodic boundary conditions on the fermion. In this way,
we can construct a strongly coupled SU(N,) large N, pure Yang-Mills theory at low

energy.

Introduce quarks

To introduce quarks as fundamental representations of SU(N,..), we perform the fol-
lowing procedures. In the setup so far, we only have fields of adjoint representations
of SU(N,), i.e., gluons and their superpartners. In order to approach QCD, it is nec-
essary to incorporate the fundamental representations of SU(N.) gauge groups into
the theory. The reason why only adjoint representations exist is that the endpoints
of open strings only lie on D4-branes. To introduce the fundamental representation,
we need to consider the situation where only one endpoint is on the D4-brane. Then,
the other endpoint should also be on the D-brane, which introduces a flavor D-brane
that plays the role as the other endpoint [64]. Quarks and antiquarks are distin-
guished by the orientation of the open string. This is because the color charge of
the endpoints on the D4-brane is reversed when the orientation is altered. At this
time, a new open string with both ends on the flavor D-brane also arises. This degree
of freedom is decoupled in the near-horizon limit like the closed string. The open
string corresponding to a quark is also the fundamental representation of the U(Ny)
gauge group because it has endpoints on the flavor D-brane. The flavor symmetry of
QCD is a global symmetry, which means that the quark we have just introduced has
a different symmetry than ordinary QCD. However, as mentioned above, the adjoint
representation that guarantees gauge symmetry on the flavor D-brane is decoupled in
the near horizon limit, so this flavor symmetry can be regarded as a global symmetry.

Here, it is necessary to restrict the flavor D-brane to a combination of branes such

that the ground state that appears by quantizing the open string stretched between
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the color D-brane and the color D-brane is stable.

The gravity dual and probe approximation

It is generally difficult to obtain the gravitational duality of a complex brane sys-
tem in which there are two types of branes with color and flavor degree of freedom
respectively. Therefore, we consider a situation in which a flavor D-brane is put as a
probe in the gravity dual spacetime of a color D-brane. This flavor D-brane should
deform the background spacetime, but since the contribution is proportional to Ny,
we can neglect the effect of the flavor D-brane on the background spacetime in the
case of N > Ny. Such a treatment of the brane is called probe approximation [64].
On the other hand, the flavor D-brane is influenced by the background spacetime and
its induced metric needs to be considered. Recalling that the color D-brane carries
gluons and the flavor D-brane carries quarks, this treatment corresponds to an ap-
proximation in which the gluons affect the quarks but the quarks do not affect the

gluons, which, in Lattice QCD terms called the quench approximation.

2.2.1 The brane construction

Now that we have described how to introduce quarks, we next need to introduce a
proper flavor D-brane. At this time, it is necessary to introduce a flavor D-brane that
reproduces the chiral symmetry and its breaking, which are important for low-energy
phenomena in QCD.

The Sakai-Sugimoto model consists of N. D4 branes and N; D8, D8 branes in type
ITA superstring theory [10, 11]. Table 2.1 shows the brane configurations in the model.

The numbers label the direction of each axis of the ten-dimensional spacetime, and

Table 2.1 The brane configuration in the Sakai-Sugimoto model
o 1 2 3 4 5 6 7 8 9

D4ijo o o o o X X X X X

DR|o o o o X o o o o o

D8] o o o o X o o o o o

the symbols o and x indicate whether the brane is extended in that axis direction or
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not. Please refer to Figure 2.1 together.

qL

D8\

A <0

Fig.2.1 Schematic of D brane configuration

In this brane configuration, under the decoupling limit, the undesired degrees of
freedom are decoupled and low-energy massless QCD is realized. Under strong cou-
pling and large N., by replacing the D4-brane with the corresponding classical super-
gravity theory solution (black-4-brane) and considering an open string theory on the
D8-D8 brane put as a probe (probe approximation), we obtain an effective theory for
QCD analysis. In classical supergravity theory, the decoupling limit corresponds to
the vicinity of the black-4-brane horizon, then the analysis of massless QCD can be
realized by examining the open string theory on the D8 brane considering the induced
metric in this background space-time. From this theory, the effective theory of mesons
is obtained in which the baryon is analyzed as its soliton solution. The replacement
of the black-4-brane shows the existence of a solution such that the D8, D8 brane
connects, which can be interpreted as a geometric realization of the spontaneously
chiral symmetry breaking.

By placing the D4 brane at the origin of R® labeled by -2, the brane configura-
tion of the Sakai-Sugimoto model is invariant to the SO(5) rotation that rotates the
coordinate system of the space manifold R5. Since this symmetry does not exist in

QCD, the fields appearing in the theory must be singlet for the SO(5) symmetry.

2.2.2 The metric of the black 4-brane

For the analysis of QCD, we need a holographic dual of the described above brane

configuration. Treating D8-DS as a probe, we are now interested in the near-horizon of
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the holographic dual of the D4 brane, which corresponds to QCD. The black 4-brane

solution near the horizon is given by

2 (U 3/2 v 432 R\3/2/ dU? 2 102
ds® = (—) (nwdx“dm + f(U)(dz™) )+ (_U> (f(U) +U dQ4> (2.2.1)
U\3/4 21N, 3
o_ (U - c U Uik
e" = gS( R) ) 4 — dCB - ‘74 €4, f( ) - 1 U3 ’ (222)

with the Minkowski metric as 7,, = (—1,1,1,1) [62]. Here ¢ is the dilaton field, C3
the RR 3-form, and Fj its field strength. This ten-dimensional spacetime consists of
the manifold R* x [0,00) x S*, where U labels the radial direction orthogonal to S*
and U = Uk i represents the horizon in the black 4-brane background spacetime [62].
The S* is labeled by €4, and V, = 872 /3 and €4 are the volume and volume form of
S4, respectively. The constant R is expressed by using the string coupling constant
gs and string length [, as follows;

R® = ng,N,I3. (2.2.3)
4 is compactified to S*. Con-
sider the behavior of f(U) =1 — Us,/U? in front of this (dz*)?. For U > Uk, as

U increases, the radius of the circle around which z* is wrapped also increases. On

To decouple the redundant fermions in this metric, x

the other hand, when U = Uk, this circle vanishes, which means that at U < Uk,
spacetime no longer exists. Since chiral symmetry is realized as a global symmetry
on D8 and D8, the geometry in which D8 and D8 are connected to the black 4-
brane background spacetime represents the spontaneously chiral symmetry breaking
(Fig. 2.2).

2.2.3 Conditions to be satisfied by parameters on the YM theory side

Let us summarize the conditions for allowing the analysis of massless QCD by the
gravity theory described above. In the following, the restrictions on the parameters
R, Uk, gs, etc. in string theory are rewritten as conditions on parameters on the
YM theory side. Furthermore, we find that all these constants can be expressed in
the dimension M g, which makes the expression of the action very simple. This is
very useful for the analysis in this thesis [11].

The relation between the YM coupling constant gy j; and the parameters of string
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Black 4 brane

\

No spacetime — Q —

U< Ugg Uk < U < Uy

Fig.2.2 The geometrical realization of the spontaneously chiral symmetry breaking

theory can be written as follows by reading from the effective action of D4 brane;

2 Js (27T)295ls
= = 2.2.4
9y m Ti(2ma)26T oT ( )
_ 1 r_ 2
T, = 2T o =13 (2.2.5)

Also, although there seems to be singularity in U = Ug i in (2.2.1), the compacti-
fication of z# into S! naturally introduces periodicity in this axis by one rotation of
S1. By choosing this periodicity well, singularity can be avoided (see Appendix A.4
of [76]). With dz* for this periodic, singularity can be eliminated by choosing

41 R3/?
ort = . (2.2.6)
1/2
3 UK/K
In terms of the compactification radius 1/Mg, we are written as
Szt =2r , 2.2.7
Mrr (2:2.7)
so there is a relation
3 Ui’k
Mgk = S B2 (2.2.8)

between Mgk, Uxk and R.
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From the above, we see that the parameters on the string theory side and those on

the YM theory side are related to

1g%,,N.? 2
R = - =2XM 22 Ugpe = —gy NeMic k13

2 Mrx ) KK 99YM KKlg

1 Q%M
= JYM 2.2.9
95 = on Mgl (2.2.9)

We now consider the conditions on the YM theory side for the validity of the
description by the black 4-brane of the D4-brane. As mentioned in the previous
section, for the description by classical supergravity theory to be valid, the string
length must be sufficiently smaller than the energy scale considered, and the quantum
corrections of the supergravity theory must be suppressed.

The curvature of the black-4-brane spacetime is R ~ v/Aly, which imposes the
condition that [, is smaller than the curvature R, the typical length scale of spacetime.

Thus, it is attributed the following conditions for ’t Hooft coupling A;

ls
= = A2l 5 A1 (2.2.10)

The effective coupling constant e? of the string should be small enough for the loop

correction of the closed string to be negligible, which is given by (2.2.2) is

-l ) BRGE)" ee

with the relations (2.2.9). Since we are now considering a near-horizon neighborhood,

U/Ukk ~ 1, the condition e? < 1 is rewritten as

gy < 1. (2.2.12)

If we express the above requirements in terms of parameters on the YM theory side,

we get

1
Gy < y <L (2.2.13)

This condition is realized by g%,;, — 0 and N, — oo, by taking ) finite yet large
values, which shows that this massless QCD is a strongly coupled gauge theory with
large N..
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Furthermore, it can be seen that the string length [; does not appear explicitly
in the action S5E! (2.3.5) that we analyze and derive later in this thesis. Since

U ;(/ ;R?’/ 2> 2 is required with A > 1 as mentioned above, it is possible to set

9. 1.,—
2= PR M5 (2.2.14)
with a value of the same dimension that is small enough without losing generality.
Using this and the relation (2.2.9), we can express them as Mgk, and if we set

Mgk = 1, then we find that we can set them as

9
Mgr =1, R®= 7 Uk =1 (2.2.15)

They can be easily recovered in the final dimensional analysis.

2.3 Mesons in the Sakai-Sugimoto model

We can perform the study of mesons by examining the open string theory on the
D8 brane, which is set as a probe in the black 4-brane. Fig. 2.3 shows that the meson
of the Sakai-Sugimoto model is an open string with both ends on the D8 brane. The
open string with one end on the D4 brane and the other on the D8 brane corresponds
to a quark. The distinction between quark and anti-quark is defined by the orientation
of the strings. When the D4 brane is replaced by the black 4 brane, the two strings
are attached and are interpreted as a meson, as shown in the lower right picture in
Fig. 2.3. At this time, the definition of quark and anti-quark orientation works well.

A high-dimensional meson field appears as the massless mode of the open string on
the D8 brane. By mode expansion of this meson field and dimensional reduction to
four-dimensional space-time, we obtain the spectra of actual mesons. These meson
spectra include not only pions but also scalar and vector mesons and their resonance
states. Considering that the actual nucleon resonance appears as a pole of scattering
between the meson and the nucleon, it is reasonable to describe them as a meson-
baryon multi-system. The dimensional reduction of the open string theory on the
D8 brane leads to the action of the Skyrme model with scalar and vector mesons,
which has already been studied in the framework of hidden local symmetry [77]. If we
consider the skyrmion as a nucleon, it is indeed nothing but a meson-baryon composite

system.
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gauge field on D8 brane >

D8 brane

Black 4 brane

Fig.2.3 Mesons in the Sakai-Sugimoto model

2.3.1 Open string theory on the D8 brane

Now consider the gauge field on the D8 brane placed in the black four-brane
background space-time. The gauge field on the D8 brane has nine components:
(Au(z¥, U, y%), Az, U,y%), Aa(a*,Uy?)), (p,v=0,1,2,3, a,8=16,7,8,9). As
mentioned in section 2.2.1, S* is labeled by y® while the radial direction orthogonal
to them is U. The brane configuration is invariant under the SO(5) transformation
that rotates the coordinate of R® labeled by (U, y®), therefore the gauge field on the
D8 brane is also required to be invariant to this transformation (Appendix C).

In the Sakai-Sugimoto model, this invariance is realized by only utilizing the radial
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component among the gauge field components on R% and ignoring the others (Fig. 2.4:
In this figure, the rotation of R is depicted as a rotation of a two-dimensional plane).

Namely, it means to consider the case where the gauge field on the D8 brane is

n
>

D el
RN

a

-
<

Fig.2.4 The SO(5) symmetric gauge fields in the Sakai-Sugimoto model

(A, (2, U), Ay (z*,U), Ay = 0).
By using the gauge fields described above, the DBI action S52! on the D8 brane is

written as
SDD?I =Ty /d9x6_¢Trf \/—det(ng + 2w’ F) (2.3.1)
1 U~ 3/4
/P — ¢ — S(_) —p
P omptt © TI\R) 0 T

where [, is string length, g, string coupling constant, and Tr; the trace for flavor
space (Hereafter, unless otherwise noted, we consider the trace for the flavor.). The
det is performed on a 9 x 9 matrix of space-time components, e.g., gyn (gps =
gundzMdz™N) and Fyny = Oy An — OnAnr + [Aar, An]. When we consider the D8
brane embedded in the black 4-brane, the induced metric on the D8 brane is written

as [62, 76]

ds?, = (%)3/ pdatda + (5)3/2 FYU)AU? + <g>3/2U2d§24. (2.3.2)
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Using det(AB) = detAdetB and detX = det(e™X) = e X) we obtain

V/—det(g + 21’ F) = \/—det(g)(det[1 + 2ma/ gL F])1/?

=/ —det(g exp[ trin (1 + 2wa’g™ 1F)]
1
=4/ —det(g)e [ tr(27rag ) J——

2!

R 1
—1/2 (1% 20 MN  PQ 4
(U) <2+4(2m) g FupFo + O(F"))
(2.3.3)

(2ma’ g F)? + O(F4)>}

Then, substituting A, = 0 and e = g,(U/R)*>* into SBE!, we have the SPP! as

follow;

3/4

SPBI — Ty g=1 (2710 )? /d4dedQ4<§> Ut 12 (U)

1 1
x Try <19W9paFupFuo + §QWQUUFMUFVU)

+ const + O(F*). (2.3.4)
Furthermore, we perform the following replacements, g*¥ = (U/R)~3/?nt gVV =
(R/U)=3/2f(U) and
U= UKKU
du 2
3 _ 2 4 1/201)2
=1 — = —
U + 27, 7~ 3 =,
then we finally obtain
1 1
SBBI _ / dizd2Tr; (ZK—l/?’anPUFWFW + §KWFWFVZ> (2.3.5)
9 AN,
2’ )3 TRV < 2.3.
4(7ra) sVige " = {0g.5 (2.3.6)

with u(2)° = K(2) =14 2“ an .2.15). Here, because all fields does not depend on
ith =K 14 2% and (2.2.15). H b 11 fields d d d

y*, we integrate as follow;

/dQ4 = V. (2.3.7)

2.3.2 Mode expansion

To obtain the actual meson field, we employ a mode expansion of the five-

dimensional gauge fields by a complete set of the function of z and obtain
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four-dimensional gauge fields [10]. It is arbitrary how to choose a complete set; we
take the one to diagonalize the kinetic and the mass term in the four-dimensional
space-time. Here we discuss how to find such a complete set systematically based on
the discussion in Ref. [25], even though such a complete set is easily found in the
original action of the Sakai-Sugimoto model. The key point is to impose an on-shell
condition.

By ignoring interaction terms, the equations of motion are

A, 2 9,0,A, —0,0,A, + K'/30,(Kd,A,) — KY20,(Kd,A.) =0 (2.3.8)
At 9,0,A, —9.0,A, =0.

Here, the gauge fields are Fourier transformed into momentum space

A (x”,z) = /d4peu(p”,z)eip'm (2.3.10)
A, (2, z) = —i/d4pez(p“,z)eip'x, (2.3.11)
to obtain
P2+ pup - €+ K30, [K (0., — puez)] =0 (2.3.12)
—p’e. +0.(p-€) =0, (2.3.13)

where the polarization vector is redefined as

€, = €, —pu/dzez. (2.3.14)

This redefinition corresponds to a gauge fixing, the A, = 0 gauge, in position space.

Then, equations of motion become

—p?€, +pup- €+ KY30,(K0,€,) =0 (2.3.15)
d.(p-&)=0. (2.3.16)

(a) Transverse mode (p- € =0)

In the case of the transverse mode, with the on-shell condition (—p? = (m))?), the

equation of motion (2.3.15) is

(mY)2e, + K'/30,(Kd.é,) = 0, (2.3.17)
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while (2.3.16) is trivially satisfied. By performing a mode expansion €,(p*,z) =

n(2) X (x#) and transferring it back to position space, the EOM becomes
W
(mn )an(Z) K 1/367; (liazwn(’z)) 07 (2318)

which is the eigenvalue equation that must be satisfied by the complete set ¥, (2)
such that the kinetic term and the mass term are diagonalized. The mode expansion

performed here is rewritten as follows,

Al ) = [ dipe, et = un(e) [ apXp)er
=Y Yn(2)X](2") (2.3.19)

A, (z*,2) =0. (2.3.20)

(b) Longitudinal mode (€, = p,€)
In the case of the longitudinal mode, the equations of motion become

0.(K8.€) =0 (2.3.21)
(m2)20,(€) = 0. (2.3.22)

Solving the above equation, we obtain

0.6 = O (p")K~! (2.3.23)
C1(p") arctan z + Cy(p*) (2.3.24)

™
I

with an arbitrary p# function C;(p*). Then, the lower equation means (m:)? = 0.

The mode expansion is written as
A,z 2) = /d4ppu€(p”, 2)e’P "

:arCtanZ(—i)aM</d4p01(p1/)eip-m> +C2

= Cy arctan 20, Y° (z") + C» (2.3.25)
A, (xt,2) =0, (2.3.26)

where (' 2 are determined by normalization and Cy = 0.
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From the above, together with transverse and longitudinal mode, we obtain the

mode expansion

Au(@",2) =Y Yn(2)X]1(2") + Cy arctan 20, Y (z") (2.3.27)
n>1
A.(z", z) =0. (2.3.28)

if we perform a gauge transformation, we get

A, (zt, 2) = Z VYn(2) X (z") + Cy arctan 20,Y°(z") (2.3.29)
n>1
A, (xH,2) =0, (2.3.30)

where, in the Ref. [10], X}}(z") and Y"(z*) are denoted as Bj;(z") and ¢"(z") re-
spectively. The above discussion also applies to the case where a mass term is added
to the 5-dimensional YM action.

Without the interaction term and substituting the mode expansion (2.3.29) into
(2.3.5), we obtain

Fuy = (0,X] = 0,X) > tn(2) (2.3.31)
n>1
F.=-XY 0:bn(2) — 0,Y°C1K " (2.3.32)
n>1

Using the eigenvalue equations (2.3.18) and the normalization condition

K / dzK Y390 = Spm (2.3.33)
/@‘/deC'IQ(QOO)Q =1, (2.3.34)

we get a 4-dimensional meson effective action;

1 1 1
SDBI _ _ / ATy |51 0, Y 0,0 + 3 (g0 F S (m P XX |
n>1

(2.3.35)

with Fj}, = 0, X — 9, X};. Let me comment on what can be learned from the above

discussion. First, we see that Y is a massless scalar field. It will be easy to guess
V)Q

that this corresponds to a pion field. Second, B}; is a vector field, whose mass (m,,
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should be determined by finding the eigenvalues of the eigenvalue equation (2.3.18).
The vector meson spectra are obtained in this way and are found to be in good

agreement with experimental values. This is explained below.

2.3.3 Party and charge conjugation

We have discussed how the spectrum of vector mesons is obtained, however, to
identify the fields that correspond to actual mesons, it is necessary to investigate the
transformational properties of these vector fields concerning the parity transformation
P and the charge conjugate transformation C.

At first, the action is obviously invariant under the 5-dimensional proper Lorentz
transformation (¢, 2!, 22,23, 2) — (¢, —x!, —2?, —23, —2). This transformation is noth-
ing but a parity transformation in 4-dimensional theory after the z integral. Thus,

we have the parity transformation
P (t,x', 2?23 2) = (t, —2t, —2? —23, —2) (2.3.36)

in this 5-dimensional theory. Because this parity transformation P is a proper Lorentz

transformation, the transformation property of the gauge field is
P : (Ag, Ay, Ag, A3, A,) — (Ao, — Ay, —Ag, — Az, —A,), (2.3.37)
namely,
P (A, A) = (A", —A)). (2.3.38)

Furthermore, because (2.3.18) is invariant with respect to P : z — —z, ¥,(2) is

either an even or an odd function. By solving the eigenvalue equation, we find

n=1, 1(z) : even
n=2 (z) : odd
n=3, s3(z) : even

and determine that ¢9 = K~1 = (1 + 2?)7! is an even function. Considering this
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properties of the fields and (2.3.38), we find

n=1, XV(z)—+x+M
n=2XP(z)—-xr®
n=3, Xl(f’)(z) — X1

and we finally conclude

Y% : pseudo scalar particle
X1 . pseudo vector particle
X2 . vector particle

X3 . pseudo vector particle

with attention to the raising and lowering indices.

On the other hand, the charge conjugation C' switches particles and antiparticles,
which from the string theory viewpoint corresponds to reverse the orientation of the
string. Therefore, C' : A — — AT corresponds to a charge conjugation. However, by
this definition, we see that the DBI action is invariant under this transformation, but
the CS term,

/CgTrfF3, (2.3.39)

changes its sign.

Therefore, let us define
C : (Az)— (AT, —2) (2.3.40)

to keep the action invariant. Because we are concerned with charge conjugation in
four-dimensional theory, the property of transformation for z is arbitrary as long as

the integral value remains unchanged. Thus, the charge conjugation of the field is

32



determined to be
C: A, — Al A, — AL (2.3.41)

From the above, we determine

Yo . 0t
1. 1——
X, 1
2 .+t
X2 1
3 . 1——
X3

with the JPC of the fields in the four-dimensional theory. As expected, Y° is an NG
boson, or pion, associated with spontaneous breaking of the chiral symmetry, and has
zero mass in the case of the chiral limit. For vector mesons, we also identify them
as X}L ;P Xﬁ saq, Xﬁ : p(1465), Xﬁ : a4 (1640), ....etc. Finally, in the next section,
we will calculate the masses of these vector mesons to verify that we reproduce the

experimental values.

2.3.4 Spectra for vector mesons

To calculate the mass of a vector meson, we just need to solve for Eq. (2.3.18). As
this eigenvalue equation is solved numerically in Ref. [10], we will discuss their method
of computation. The eigenvalue equations with their normalization conditions that

must be solved are shown once again as follows;
—Kl/?’@z(Kazwn(z)) = (mY) 4, (2) (2.3.42)
K / dzK Y3t = 6. (2.3.43)

To solve the eigenvalue equation, we need to know the asymptotic behavior of ¢, (z).
First, in order to avoid divergence of the integral of the normalization condition,
the integrand should be such that it decreases more rapidly than z=! at z — oo.

Therefore, the asymptotic behavior,

UYn(z) ~O0(2%), a<-1/6, (z— o0) (2.3.44)
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is required. Also, at large z, the eigenvalue equation becomes
22 (2) + 22hp (2) = 0. (2.3.45)
From these two observations, we know that the behavior of i, (2) at z — oo is
¥n(2) ~ O(z71). (2.3.46)

Therefore, if we define a new function

VYn(2) = 2¢n(2), (2.3.47)
we can conclude that it behaves as
Un(2) ~ O(2%), (2 — ). (2.3.48)

For the new function ¢,(z), we find a formal solution in the form of an infinite

series. The eigenvalue equation for this new function is
2,7, 2, 7 2 VN2 7-—1/3)\ 7
K02y = 0.0 + (5 + (mi)* K% )y, = 0. (2.3.49)
z z

A transformation into 7 for z = e” this equation become

024y, + Adyth, + Bipy = 0 (2.3.50)
143 N, _a,

A=t o gAle : (2.3.51)
2e~21 _2 —9n\—4/3 - —2L

B = m‘f’)\ne 3n<1+6 77) /3= ;Ble 37]7 (2352)

and we that A and B are given as infinite series of e_%l”, with

Ag=-1, A, =0, Ay =0, A3 =-2, Ay =0, A5 =0, .... (2.3.53)
4
By=0, Bi=Xy, By=0, By=2, By=—gAy, B;=0,.... . (2.3.54)

From this, by expanding Yy, with

Un = e, (2.3.55)
l
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the a; are obtained by. a recurrence formula. Substituting this series expansion Un
for (2.3.50), we obtain the following recurrence formula as

l -1

412 2
9 U3 Z MA|_ Qi + Z Bi_ o, = 0. (2.3.56)

m=1 m=0
By choosing ag = 41 appropriately and solving this ecurrence formula sequentially,

we obtain

9 81
—E(mX)Q, g = %(m){){ ag=—=———(mY)° ... . (2.3.57)

a1 =

At large z, it is sufficient to truncate e~ %" at about [ = 3. In the region of large z,
using (2.3.55), the differential equation is solved toward the origin by the difference
method. At the origin, shooting method with the boundary condition

0:n(0) =0 or 1,(0)=0 (2.3.58)
yields the result
(my)?=067"", 1.6vF, 29— 45 . . (2.3.59)

If we restore Mgk by dimensional analysis and determine Mg i to reproduce the

experimental value of 776 MeV for the mass p, we obtain Table 2.2. Here, we chose

Table 2.2 The spectra for vector mesons

/ /
P ay P ay

theory [776] 1189 1607 2023
experimetal | 7767 | 12307+ | 1465~ | 17207 "

ag =1 for p and a1, and ap = —1 p’ and af. Also, Mk was chosen to be 949 MeV.

2.4 Baryons in the Sakai-Sugimoto model

In the previous section, we saw that the open string theory on D8 brane is a five-
dimensional effective theory of mesons that includes also resonances. If we reduce
this theory to four dimensions, we find that the YM term yields the Skyrme action,
and the CS term yields the WZW term. Considering that Skyrmion is regarded as
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a baryon, this effective theory is interpreted as a meson-baryon composite system in
four-dimensional space-time. Moreover, this fact is important for the explanation of
realistic nucleon resonances.

In the Sakai-Sugimoto model, baryons are interpreted as D4 branes (baryon vertices)
wrapped around S* [73, 74]. The open string theory on the D4 brane (baryon vertex)
that characterizes the dynamics of this baryon is regarded as ADHM data. This
ADHM data is interpreted as instantons on the D8 brane. The relation between the

instanton and the Skyrmion is written as

U(z") = Pexp ( - /Oo dz’Az(xu,z/)), (2.4.1)

—o0
where U(z#) is the chiral field [72]. Thus, in the Sakai-Sugimoto model, the soliton
interpretation of baryons is justified from the standpoint of superstring theory.
Studies of baryons by the Sakai-Sugimoto model have been done by Ref. [14] and
Ref. [12]. In this thesis, we use the latter approach which is much easier to analyze.
In this approach, baryons are treated and analyzed as instantons in a 4-dimensional

space in a b-dimensional space-time.

2.4.1 Classical Solutions

The first step is to find a static solution that is independent of time. The time de-
pendence is introduced by assigning it to the collective coordinates. This is a method
called the moduli space approximation method, which is used when considering the

case of slow-moving solitons [78, 79].

CS term

At first, we introduce the CS term, which has been neglected until now. The
effective action of D), branes is described by DBI action and CS term [80]. The CS

term is

S8 =, / 3 Cy A Tr(e2me P (2.4.2)
D8 q
1

36



where C), is the RR p-form field, By the KR field, and A the wedge product. From the
properties required for the black 4-brane solution, we have By = 0, Cy, = 0 (k # 7—4),
and the sum remains valued only at ¢ = 3. Since this integral is in nine-dimensional
spacetime, only the 9-form survives. Performing the series expansion, there is only

one term that is the 9-form together with the 3-form Cj3, then, the CS term is

SSS o / C3 A Tr(Fy)3. (2.4.4)
D8
Since (Fy)? is a 6-form, we see that it is zero as long as we consider the five components
of (A, A).
With
(Fa(A))? = dus (4) (2.4.5)
_ o Gtz 15
ws(A) = Tr(AF AP — A ) (2.4.6)

if we remind that it was

27N,

Fy=dCs = 17

€4 (247)
in the black 4 brane solution in (2.2.1), the (2.4.4) is computed as
/ Cg/\de,:/ dC's A\ ws
D8 R4 x[0,00) x S+

2N,
= 64/\/ ws (2.4.8)
Vi Jga R4 x[0,00)

(it is non-trivial to ignore the surface term), and using

/ Fy = 2m, (2.4.9)
5’4

we have the final expression of the CS term

Ne
2471'2 R4 x[0,00)

SS8 = ws(A). (2.4.10)
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Action

The action used in the analysis of baryons is
SDS :SDBI + SCS

1 1
=— m/d4xdzTrf (ZK(Z)_I/Bfil, + iK(Z)‘Fiz)

Ne
2.4.11
2472 R4 [0,00) W5(A) ( )
K= %, K(z) =1+ 2* (2.4.12)
2 i 3 1 5
w5 (A) = Tr(AF? - SAMF — A ). (2.4.13)

omitting the notation D8 and using the shorthand notation n**n*°F,,F,.. = }"EW.
The Hermitian conjugate U(N;) gauge field is denoted by A (A" = A). Sometimes it
is more convenient to use the anti-Hermitian conjugate gauge field, so in such cases,
after a word of caution, we denote it by A — iA (AT = —A). When there is no
subscript, it is assumed that the notation is in differential form. This U(1) term
physically corresponds to an w meson (or ¢ meson). Taking into account that, in
the Skyrme model, the w meson is responsible for stabilizing the soliton solution, this
term is expected to play an important role in the present case as well. The field

strength is a term in differential form, denoted
F=dA+iANA. (2.4.14)

d is the outer derivative and A is the wedge product.

The U(Ny) gauge field is decomposed into and U(1) and written as

A~

Al (2.4.15)

1
A= A" +
V2N,
where I is the unit matrix of Ny x Ny. The coefficients of the U(1) term are chosen
to be

1 1 1 1
Tr ( I I> - Tr(]) = =, 2.4.16
e e, = a0 = (24.16)
aligned with the normalization of
1
Trp(t%t%) = 55“1’. (2.4.17)
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Then, the action is written as

AN 1 1
DBI __ c 4 —1/3 2 2
PPt = — 2ot [ dhadz Ty (LK TR, + SKE)
1 1 1.
- §m/d4xdz(ZK_1/3F5V + iKFiz) (2.4.18)
N, 3 1
598 =25 [ |ws () + ATr,F? + AF?
2ar? | |5+ AN, T T 2 AN

+ #d@mf (2F A — %A:”))], (2.4.19)

V2N,

where (2.4.16) is used. To obtain the above expression, which separates the U(1) part
of the CS term, requires a complicated calculation, which is shown in Appendix A.1.
The calculations so far are valid for arbitrary Ny.

In the rest of this section we will mainly discuss the case Ny = 2. In this case, the

identity (Appendix A.2) is

ws(A) =0, (2.4.20)
and the action is
AN, 1
DBI __ c 4 ~1/3 2 2
SPP = - o5 [ d a:dzTrf(ZK 132, +KFW> (2.4.21)
N,

SCS

3 . 3.
~ 242 MNPQ / d4xdz[§A0Trf(FMNFPQ) — 5 AMTrs (Do AN Frq)

3 - 1 . - - 1~ ~ =
+ ZFMNTrf(AOFPQ) + EAOFMNFPQ — ZAMFONFPQ —+ (total derivative terms)],
(2.4.22)

where M, N,P,Q = 1,2,3,z and €"123% = ¢153, = +1 (see Appendix A.3 for the
calculation of the CS term). In the following parts of this section, M, N, P,Q =

1,2, 3, z unless otherwise noted.

The stability of the instanton solution

Because the direction z is curved and the time component is coupled, It is generally
difficult to find the classical solution of the obtained action (2.4.24). If we now recall
A > 1, we will expect the 1/ expansion to work. As we will soon show, this expansion

works well to find the classical solution analytically, keeping up to the next-leading
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of the 1/\ expansion. If we also drop the next-leading of the 1/A expansion, the
instanton shrinks, and there is no stable solution.

First, by using

eiijjkeimnan :(6Jm5kn - 6jn5km)ijan
=FjiFjx — FjpFr; = 2FFjg, (2.4.23)
the lower bound of energy is found to be

K

1 — a a
B(p) =5 [ dads(GK -V el)? + K(F2P)

K a a
25 /d4mdz<\/K(Z)_l/SK(Z)|€z’ijij7;z|>

> ‘ g / d4$d26iij;-lkFii

=87%k|Ng, (2.4.24)

where the second line of deformation used Schwartz’s inequality, and the last expres-

sion used

Np =

— 3271.2 /d?’l'dZEMNthI‘(FMNFpQ)

1
=~ 162 /dgxdzeiijkoi‘;. (2.4.25)

The equality condition is

\ K (2)~ /3¢ = VK(2)F, (2.4.26)
and this is satisfied at p = 0, so if we drop the next leading of the 1/ expansion, the
instanton shrinks.

1/X expansion

We have shown that if we drop the next leading of the 1/ expansion, there is no
stable solution. If we include up to the next leading, we no longer ignore the CS term.
Then, we expect the solution to be stable as follows [12]. If we focus on the first term
of the CS term (2.4.22), we find

EMNPQ /d4$dZAoTrf(FMNFpQ). (2.4.27)
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This is the term that represents the Coulomb interaction in 5 dimensions, whose
energy is known to behave as 1/p?. Therefore, it is expected that the instanton do
not shrink because of this term. It has also been discussed that the soliton is stabilized
by the w meson, in the context of the Skyrme model [81, 82]. Since the U(1) part of
the gauge field corresponds to the w meson, it is expected to stabilize the instanton
solution similarly to the Skyrme model.

The current approach considers the motion of the soliton in moduli space, so the
spatial integration is performed at the end. Therefore, it is better to do a rescale so
that the classical solution is easy to obtain. By choosing a good rescale, the equations
of motion for each field can be separated to easily find the classical solution. Such a

rescale is

oM s ATV 2 M Ay = A2 A

Fun — )\./TMN, ./TOM — )\1/2./TOM. (2.4.28)

Under this rescale the action become

Z2

A
SpPBI :—aNc/d4a:dzTrf [§F]%4N+ (— 5

FZQJ + Z2Fi22 - F02M> + O()‘_l)}
1 4 A o 2 2 2 fa2 2 -1
— 5N, [ d :cdz[EFMN n (— B4 22FY - FOM) + O )} (2.4.29)

N, 3. 3 4
SCS :mEMNpQ/d4$dz[§A0TI‘f(FMNFpQ> — §AMTrf(80ANFpQ)

3 - 1. - ~ 1. - -
+ ZFMNTrf(AOFPQ) + EAOFMNFPQ — ZLAMFONFPQ —+ (total deI‘iVEL'CiVGS)i|7
(2.4.30)
with 4,j = 1,2,3. Because of K~/3 — (1+ (A™Y/22)%) 718 21— I1x"122 + O(A2),
note that the effects of curved extra dimensions are sub-leading of 1/A expansion.

Because the 1-form A does not change under the rescale, the form of the CS term,

which is a 5-form integral, also do not change.
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Classical solutions

We perform the 1/A\? expansion and obtained a solution order by order. The action
(2.4.29) gives the EOM;

Ao : Dy F FunF -1 = 2.4.31
0 MmEom + a2 CMNPQEMN P +OA ) =0 (2.4.31)
Ay 0 DNnFyn + O()\_l) =0 (2432)
o o 1 1 - o

Ay O Fonm + MEMNPQ [TI‘f(FMNFPQ) + §FMNFPQ + O()\_l) (2.4.33)
Ay o OnEyun + 0NN =0, (2.4.34)

In the leading order, the SU(2) and the U(1) part of the gauge field are obtained as
follow. First, within the above EOM, the classical solution of (2.4.32) is called the
instanton solution. The solution with topological number (baryon number) B =1 is

known as a BPST instanton[83] and is written as

Ap () = —if(€)gOmg ™" (2.4.35)

f6 =25, e=\JE- Xt (-2 (2.4.36)
€2 +p2’ ) 4.

glw) = E=D = Z(x —X) 7 (2.4.37)

where (X' , Z) represents the position of the instanton in (z!,z2,23,2) space and p

is the size of the instanton. Next, (2.4.34) requires that Ay be pure gauge, which

always is vanished by a gauge transformation, then we obtain
Ay =0. (2.4.38)

In the next to leading order, by using the above two solutions, we obtain the time-

components of the SU(2) and U(1) gauge field as follow. Gauss’ s law (2.4.31) becomes

D3,A¢ =0, (2.4.39)

which is the solution to this equation obtained in the Appendix A.6. Finally, by

substituting the solution obtained so far into (2.4.41), we get

3 pt

2 A4 —
Mot (@ ey

(2.4.40)
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Solving this equation gives the solution,
. 11 p
Ap = ——(1 — —) 2.4.41
Dosta e\ (@4 p?)? —

The solution obtained from the above can be summarized as

Ao =0 (2.4.42)
Ap () = —if(€)gOmg™" (2.4.43)
;11 p4

do=gmm (1 - E T p2)2> (2.4.44)
Ay =0, (2.4.45)

which is an instanton solution with baryon number one.
Finally, we obtain the mass of the soliton for the static case. The action (2.4.29)

has the form

S = §PBl 4 505 — / dt(E(t)kinetic — E(t) potential)- (2.4.46)
In the static case, the time derivative term vanishes (FExinematic = 0), so the action is
written as
S =— /th(t)potential = — /dtM (2.4.47)
3 Ao 2 2 2 12 2 -1
M =+ aN, [ dzd:Tr; bFMN v ( — S F 4 2FL - FOM) OO )}
1 3 A o 2 ) 2 72 2 -1
~ SaN. [ d xdz[EFMN + (— e F0M> + OO )]
NC 3 3 I 3 ~
— 242 EMNPQ d’xdz [gAOTrf(FMNFPQ) — iAMTI‘f(aoANFpQ)
3 - 1 . . . 1. -~ .
+ ZFMNTrf (AonQ) + 1_6AOFMNFPQ - ZAMFONFPQ] . (2448)

Substituting the classical solution, we obtain

2
M =87%k + kA1 /d3mdz[ - %Trf(Fi )2+ 22Ty (F; )2]

1 - 1 . _
— 5/‘6)\_1 /dgxdz |:(6MA0)2 + %AoeMNPQTrf(FMNFPQ)} + O()\ 1)
2 2
2 -1(P 1 L 7 ~1
_ P~ 4z 2.4.4
87 H[HA (6 + Somia o t 3>+(9(A )] (2.4.49)

43



(see A.4). We find that this static solution takes the minimum value
2 2
Min = 87K + ENG (2.4.50)

Z=0 (2.4.51)

1 /6
= e (2.4.52)

at

p

The reason for the stabilization of the solution is understood to be due to 1/p?. This

1/ p? term is originated from

EMNPQ /d4$dZAoTI‘f(FMNFpQ). (2453)

The physical meaning of this term has already been explained.

In the discussion so far we have considered the static case. The baryon state could
be obtained by giving the time dependence to the collective coordinate of the instanton
solution and considering a quantum mechanical system in which this coordinate is the

dynamical variable. We will discuss this step by step.

2.4.2 Collective coordinates

The solution space spanned by the collective coordinates is called moduli space,
which is a solution space that can move without changing its energy. By regarding
these collective coordinates as dynamical variables with time dependence, a quantum
mechanical system is obtained. By quantizing this system, we obtain the baryon
state. As will be described later, if we include the sub-leading of the 1/\ expansion,
the energy changes with the moving of (Z, p), and these variables are not precisely the
collective coordinates. The moduli space of instanton solutions of topological number

one that we are dealing with is denoted as
M =R*xR*/Zj. (2.4.54)

The first R* is the space labelled by ()Z ,Z) and is interpreted as the position of the
instanton in the 4-dimensional space (2!, 22, 23, 2). On the other hand, R*/Z, is rep-

resented by the size of the instanton p and its SU(2) orientation W € SU(2). This
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W can also be expressed as W = a = a4l + ia,7% using Pauli matrices 7% and unit
matrix I, where a; satisfies ), a? =1, (I =1,2,3,4). This four-dimensional mani-
fold R*/Zs can also be parameterized using the parameter yr, which is the coordinate
that labels the coset space of the four-dimensional Cartesian coordinate system by Zo

The y; transforms to y; — —y; for Z, where two different coordinate are related as

ar =yr/p (2.4.55)

p= \/y? +y5 + Y3+l (2.4.56)

Now, we consider the case of a slowly moving soliton. The method often used in
such cases is the moduli space approximation method [78, 79]. As already mentioned
several times, this method considers a quantum mechanical system in moduli space,
with time dependence on the collective coordinates. It has been argued in (2.4.49)
that the variables (Z, p) is no longer precisely the collective coordinate if we keep up
to the sub-leading of 1/A. However, since the excitation energies involved in them are
smaller than in the others [12], we can still deal with them as collective coordinates.
This allows us to treat the baryon excitation modes.

Thus, an arbitrary solution of the gauge field with time dependence in the moduli

space is denoted by

Ao(t, 1‘) = AA()(t, 1‘) (2457)
Apr(t,z) = W) A, (z; X2 ()W (1)1, (2.4.58)

with X = (XM p). We use the notation 2° = ¢ since we consider time and space
independently. So far, there seems to be no reason why the time component of the
gauge field should be induced in (2.4.57). The induced time component is an essential
requirement in the gauge theory (Appendix B). We can also understand this time
component from the fact that the EOM (2.4.31) would not be satisfied without this
induced term.

If we give a time dependence to the collective coordinates of the solution, this
solution only moves in moduli space and is still expected to be a solution of (2.4.32).
However, this does not mean that the other equations of motion are unchanged.
Therefore, we will check whether the solution given the time dependence satisfies the

equations of motion again.
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First, after giving a time dependence to the gauge field in collective coordinates,

the field strength is written as

Fyn =WFg W1 (2.4.59)
Four :60AM — OMAAO + Z[AA(),AM]
:W(Xaa%Aﬁg - D;@cb). (2.4.60)

The calculation of Fyys is shown in Appendix A.5, where ® is defined by
O =W LAAW — W IW. (2.4.61)

With this &, (2.4.57) and (2.4.58) are together denoted as

W(t)

At,z) = (AN (z; X (t)) + @(t, x)dt) (2.4.62)

The calligraphic letter in the notation when including to SU(2) and U(1) terms.
The above equation is of the 5-form in the (¢, 2!, 22, 23, 2) such that it In the above
equation, a 5-form of (¢,z!, 2% 23, 2), which is a shorthand for AV ) — V1AV 4
iV=tdv.

From the above, (2.4.32) becomes

DnFyn =0— DS FS =0, (2.4.63)

which does not change the form of the equation of motion when the solution has a

time dependence. Therefore, the solution is still BPST instanton;
Ane(w) = —i F(€(1)g(w: X° (1)) Drrg (s X° (1), (2.4.64)

This is natural since it is just the definition of the collective coordinates. We also
see that (2.4.34) does not change its form, hence (2.4.41) does not change either,

indicating that we can still use

o 11 p(t)*
Ao = gz (U~ o+ o) (2.4.65)

Ay =0 (2.4.66)

as a solution to the equation of motion. So, the three solutions only change the

collective coordinate from constants to variables with time dependence.
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The only equation that changes is (2.4.31), which becomes

0
oxX«

DeL (Xa Ag, — Df&@) —0, (2.4.67)

where we use the Eq. (2.4.60), The & is determined by solving this equation. As
shown in Appendix A.6, the solution of ®(¢,x) is obtained as follow;

O(t,x) = XN ()AL (z) + x4 (1) Do () (2.4.68)
Oy = f(E)g(x; X(t)tag(z; X (1) (2.4.69)
X (t) = —=2itr(ta W IW) = 2(a4aq — G404 + €apetpic). (2.4.70)

Here, it is useful to have the following equation;

1 %((Z—Z)Ti — €ija(@? — X7)T7)
gaMg { _giz(xa _ XaTa) (2471)
O (90rrg™ ) o (a™ — XM)gopy g™ = 0. (2.4.72)
and spin and isospin are defined by
J; = 8m2kpttr(—iW TLWty), (2.4.73)
I, = 8m2kp*tr(iWW ™) = —WJit, W L. (2.4.74)

By introducing the time dependence, a kinetic term of (2.4.29) appears. We can
now identify the coefficients (mass) of the kinetic term with the metrics of the moduli

space (the kinetic term in the U(1) term is still zero) which is written as

+aN, / d*xdzTr; F}yy =aN. / d*xdzTr; (DS, ® — AS))?

:mga JapX X7, (2.4.75)

Since X = (X, X%, p) are found to be orthogonal to each other, the mass is written
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as mya«. From the above, Lagrangian is obtained as

S :/dtL - /dt(Lkinetic - Lpotential) (2476)

L=Lx+Lz+L,+0M\") (2.4.77)

Ly =— M+ %5@ (2.4.78)
2

Ly :%22 - %ZQ (2.4.79)

(2.4.80)

2 02
2
My o MW, 5 Q)

The plus term in L is the result of the time dependence, and the minus term is the

original potential term (2.4.49), with

m _
My = 87r2/$, mx =my = —2 =8’k ! = 87%aN.,

2 1 N2 N,

2 2 c c
w2 == w2 == Q= — . 2.4.82
zZ7 g roo6’ Smx  4072a ( )

As described above, we have obtained a quantum mechanical system with a finite

number of time-dependent collective coordinates as dynamical variables.

2.4.3 Collective coordinates quantization

The derived mechanical system is quantized to obtain the spectra of baryons. We
consider here the case where the position of the instanton, the baryon, is X =0. The
collective coordinate quantization described here is often used in the quantization of
solitons[84, 85, 81, 86].

For the dynamical variable (Z, p,a;) in the Lagrangian, we impose the canonical

commutation relation and quantize the system. Then, we obtain the Hamiltonian,

H=My+H,+ Hy (2.4.83)
1 1 1 1

Hy = _% <Fap(:036p) + ?(V?JS - meQ)> + §mywp2p2 (2.4.84)
1 1

where V%g, is Laplacian on the S3.
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Since the Hz is the Hamiltonian of the harmonic oscillator, its eigenvalue is

1>_2nz+1

E:w(n—i——
z z\nz + 5 NG

(2.4.86)

Let us find the eigenvalues and eigenfunctions for the H,. V253 is the Laplacian on

53, whose eigenvalues and eigenfunctions are
V2, T® = —1(1 4 2)T®.
Here, T® is the spherical harmonics on S®, which is expressed as

T(l) = C’Il.,,llall...ah

(2.4.87)

(2.4.88)

with the traceless symmetric tensor C7r,. ;, of rank . Using this function, we write

the eigenfunctions of the H, in the variable-separated form

U(yr) = Ru(p)T(ar).
When operate H, on R;(p), we obtain the eigenvalue equations,
HiRi(p) = EyRi(p)

1 1
H, = <_36p(036p) -

_me p

[(1+2) +2m,Q
2

1
> + §mywﬁp2.

Here, if we replace

[=—14,/0+ 12 +2m,Q, I(0+2)=10+2)+2m,Q.

we can write it as

1 /1 5 42\ 1 5,
=, <Fa”(p %) = ) + g’
Now, if we write
MW 7
Ri(p) = e:cp( - %f)plv(mywppz),
with @ = myw,p?, we see that v(z) must be satisfied by
. 1/E, -
(mm +(+2-2)0; + §<W_Z —1- 2>>v(x) = 0.
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(2.4.90)

(2.4.91)

(2.4.92)

(2.4.93)

(2.4.94)

(2.4.95)



This is a confluent hypergeometric differential equation for v(z), and a normalizable

and regular solution exists only at

%(f_z i 2) —nel (2.4.96)

Since v(z = myw,p?) can be labeled by n and I, if we denote v(z = myw,p?) =

F(—n, ; x), then the confluent hypergeometric function

F(a,v;2) = i (a—ki (2.4.97)
= (V)k k!
() =ala+1) - (a+k—1) (2.4.98)
satisfies
<x@m +(+2—2)0, + n)F(—n, [ x) = 0. (2.4.99)
Using F(—n,[; myw,p?), we can write
R(p) = exp < - %pﬂp[F(—n., I;myw,p?), (2.4.100)
so the eigenvalue is obtained as
E, =w,(l+2n +2) (2.4.101)
:\/(l +61)2 B 12—5Nc2 N %p_\/%rl_ (2.4.102)
From the above, the eigenvalues of H are
M =My + E, + Ey (2.4.103)
— M, + \/% + 1—25N§ L 2 +\/%Z +1) (2.4.104)

which is the baryon mass formula we desired.

2.4.4 Physical interpretation of quantum numbers

We discuss the physical interpretation of quantum numbers appearing in the mass
formula. Considering the SU(2);, x SU(2)g transformation for W (t);

W(t) = gtW(t)gr, 9gr/r € SU22)L/r (2.4.105)
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the gauge field A, transforms as
Ap(t,a™) = W) Af @)W ()~
=g W (t)grAf («™)gz' W ()" gr

= grAn(t, Rz™)g; . (2.4.106)

This means that g corresponds to the isospin I, and gr, which causes spatial rota-
tion, corresponds to the spin J,. Furthermore, as discussed in the 3.1.3 section, we

see that the relation

-+

tr(12) = tr(J2?) (2.4.107)

[=J= (2.4.108)

DO | =~

Let us now look at the quantum number (n,,nz). The parity transformation is
defined by P :

with odd (even) quantum numbers ny correspond to negative (positive) parity ex-

(t,2M) — (t,—a™M), as discussed in the 2.3.3 section. The baryons

citation, because the wave functions are odd (even) with respect to the Z7 — —Z
transformation. The states of each baryon obtained from the Sakai-Sugimoto model

should be identified with the states shown in Fig. 2.3 and 2.4. with Mg g = 500.

Table 2.3 The spectra of N(I =1)

Prediction || [940+] | 1348F 1348~ | 1756~ 1756%,1756~ | 2164—,2164+ 2164+,2164F
Experiment 940" | 1440" 1535 | 1655~ 17107, ? 2090, 7 2100*, ?
Table 2.4 The spectra of A(l = 3)
(np, n2) 0,00 | 1,0) (0,1) | (L) (2,0)/(0,2) | (21)/(0,3)  (1,2)/(3,0)
Prediction 1240% | 1648T 1648~ | 2056~ 20567,2056 | 2464~ ,2464T 24641, 2464"
Experiment || 1232% | 1600" 1700~ | 1940~ 19201, ? 7,7 7,7

Finally, we comment on the obtained baryon mass formula. At large V., the mass

formula (2.4.103) is approximately written as

N, > 1
2 1[50 +1)?
M~ Mo+ ) —N.+ /2
0T\ 15 +4\/g N,

ol

(2.4.109)
2(np +nz + 1)

V6

(2.4.110)



Considering up to the order of O(N.), we see that it is a static baryon mass formula
(2.4.50). Interestingly, the N. dependence of (2.4.109) has the same form as the result
of Ref. [69, 81] in large N. QCD. This means that the mass splitting between states
of the same internal excitation states of different spins is of the order of 1/N,., and
the mass splitting between the internal excitation states of each other is of the order
of NO.

The wave functions of baryon states

Here is a summary of the baryon wave function. The canonical momentum of
(X ) A y YI ) is

. R 0 . 0 0
P=MyX=—-1—, Py;=MysZ=—1—, I} =2Myy; = —1—.
0 Z@X Z 0 Z@Z I oyr Z@y;

(2.4.111)

Also, as mentioned above, the left rotation gy, of W corresponds to isospin I, and the

right rotation gr of W corresponds to spin J,, so isospin and spin are given as

7 0 0 0
I, =~ Yy — Egpely—— 2.4.112
5 <y4 g, Ve, ~ Cabeth 8yc> ( )
) 0 0 0
i 2. 92.4.11
J, 2( y48ya +y " €ab yb8y0> ( 3)
(2.4.114)

See also the discussion of Appendix E for this. The Hamiltonian is given by

1 = 1
H=_—(P*+P3)+——113+U(p, Z 2.4.115
N2 1 z?

c t>. (2.4.116)

2

p
U,Z:82<1 Py _fe - 2
(. 2) = 8w k(1 + 5+ ez 2 T 3

The eigenfunctions of this Hamiltonian are characterized by (I, I3, J3,n,,n.) and mo-

mentum p and are denoted by

N 1 i X
|p7B7S> = |]5> |B>7 |ﬁ> = (271-)3/26]3)(, (24117)

|B) = |l, I3, J3) [n,) Inz) - (2.4.118)
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In the following, we omit the normalization constants and provide specific wave func-

tions. First, with respect to |l, I3, J3), for example, it is given as

|l:1,13:J3:l/2> :a1+ia2,

(2.4.119)
1 =313 = J3 =1/2) = (a1 +iaz)®. (2.4.120)

From this expression, using the ladder operator I = I; — il5, we get
|l = 1,[3 == —l/2, J3 == l/2> == I_(Cll + iag) = a4 + iag. (24121)

Also, with respect to |p), we obtain
M,
In, =0) = ,0_14'2@8—78927

(2.4.122)

(2.4.123)
Finally, for |Z), we have
M, 2
Iy =0)=¢ V&7, (2.4.124)
_ Mg 72
Iny =1)=Ze V67 . (2.4.125)
From the above, the wave functions of the proton and neutron are
2 _ My 2 Moy 2
p) = p ITAVIENE/5 el e e (a1 + iag) (2.4.126)
M M
In) = p~ I FVIANEB R R (44 iay), (2.4.127)
respectively (see also Appendix E). Also, A(1232)"™ is represented as
M M
IA(1232)++) = p +2VIENE5 =P B (4 ian)?. (2.4.128)
(2.4.129)

Furthermore, the wave functions of the Roper and negative parity resonances are
given by

2M _My
‘N*(1440)> :<760p2 —1-21+ NCQ/5>IO—1+2,/1+N3/56 \/gPQ

M, 2
xe Vo7 (a1 + iag)

(2.4.130)
|N*(1535)) =p~ 1 +2VITNE/5 o~

(2.4.131)

2 Mg 2
P Ze_ng (CLl +ia2).
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Chapter 3.

SU(Ny =2+ 1) Sakai Sugimoto
model

In this chapter, we discuss the description of hadrons by the SU(N¢ = 2+ 1) Sakai-
Sugimoto model toward the analysis of hyperons and heavy baryons. The s quarks
can be introduced by SU(3) rotations in the collective coordinate quantization, as
is accomplished in the conventional quantization of solitons. To demonstrate this,
section 3.1 will review how to introduce s-quarks as SU(3) rotations in the Skyrme
model. Then, in section 3.2, we review how to introduce s-quarks using the same
method in the Sakai-Sugimoto model. At this time, it is known that the following

two problems occur.

1. Although the introduction of the mass of the s-quark is important for the
analysis of hyperons, the Sakai-Sugimoto model is a massless QCD, which does
not have an established way to introduce the mass.

2. In flavor SU(3), the constraint term that should be imposed on the hypercharge,
which is necessary to consider solitons as baryons (fermions), does not appear

from the CS term of the Sakai-Sugimoto model.

For the first point, we will briefly review one way to introduce mass. For the second
point, we succeeded in obtaining a constraint term in Ref. [87], but the chiral anomaly,
which was well reproduced in the original Sakai-Sugimoto model, disappeared. Later,
in Ref. [88], the CS term was obtained that reproduced the chiral anomaly and still

produced the constraint term. These points are discussed in detail in Appendix D

54



because they are beyond the scope of this paper.

Next, we show how to introduce heavy quarks such as ¢ and b into the Sakai-
Sugimoto model, based on the method we proposed in Ref. [36]. We obtain the
mass spectrum of the heavy baryons by collective coordinate quantization of the
classical solution of the action obtained using the dimensional reduction method of
gauge theory proposed by Forgacs-Manton. This method, which is similar to the
bound state approach in the Skyrme model[57, 58, 89, 90, 91], is shown to reproduce
well the mass spectra of the heavy baryon and its resonance states, as well as the P,
state, which has attracted much attention due to its recent experimental observations.
Similar studies have been made in Ref. [27, 28, 30, 31, 33, 92].

In this thesis, we will explain the following flow concerning the study of the Sakai-
Sugimoto model of SU(N;y = 2 + 1). In section 3.1, we first explain the flavor
SU(3) Skyrme model to prepare the analysis of baryons in the flavor SU(3) Sakai-
Sugimoto model. The necessity of the constraint term and the analysis method when
a mass term is incorporated will be useful for understanding subsequent sections. In
section 3.2, we discuss how to introduce s-quarks in Sakai-Sugimoto. The problems
with the constraint terms are described in Appendix D. It can be seen that this
constraint term does not appear from the CS term used in the original paper on the
Sakai-Sugimoto model [10, 11]. We explained in the Appendix along with Ref. [87, 88|,
which solved this problem. In the former paper, the chiral anomaly disappeared, and
the latter paper realized both the constraint term and the chiral anomaly. Then,
in the section 3.2.2, we will briefly review how to deform [93, 94, 95] the Sugimoto
model so that quarks have masses. Next, we discuss how to introduce heavy quarks
such as ¢ and b quarks into the Sakai-Sugimoto model. For this purpose, the method
of dimensional reduction proposed by Forgacs-Manton will be explained. Then, we
introduce heavy quarks into the Sakai-Sugimoto model and obtain their mass spectra.

This discussion is based on our study Ref. [36].

3.1 Flavor SU(3) Skyrme model

In this section we explain how to obtain the Hamiltonian of a quantum mechan-
ical system in collective coordinates through the flavor SU(3) Skyrme model. This

explanation helps to understand similar arguments in the Sakai-Sugimoto model (the
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difference with the Sakai-Sugimoto model is the absence or not of (p,Z)). It is im-
portant in the next section to discuss how the constraint terms impose restrictions on
the state and how to deal with the mass terms. In this section, we have adapted the

notation to Ref. [76] and discuss it in more detail with reference to Ref. [85] etc.

3.1.1 Classical solutions

The action of the SU(3) Skyrme model is written by

S = Ssk + Ssg + Swzw (3.1.1)
2
~ [tz gty 1 t o 12
Sex /d m( =10, U0"U" + = T(U'0,0,U19,U] ) (3.1.2)
S—d“f’%Q DTe(U+UT -2
SB = x Z(mﬁern) r(U+U" —2)
V3 1
+ 2 fAmE = i) Tt (U + UT)]> (3.1.3)
Swzw = — Ne Tr[UTdU]®
WIW T 04072 Jgs
N.
- ePoe / PrTe[UT0,UUT0,UU 0, UUT9;UU 0. U], (3.1.4)
24072 $3x D,

2 23, s, the 2-dimensional disk Dy is parameterized by (¢, s).

where, with ¢ = ¢, 2!, x
The first term in (3.1.2) is a chiral term, g = 0,1, 2,3, U(x) = e*maX)ta/fr tr(t,t)) =
dab/2, and the second term is the Skyrme term, which is the higher-order derivative
term needed to prevent the soliton from shrinking. The action (3.1.3) is the symmetry
breaking term, which is expanded to lead to

Lags ~ / d‘%(%mi(ﬂf 42 )+ %mwz b2 ga?4ond) 4 %mgwg). (3.1.5)
The action (3.1.4) is the Wess-Zumino-Witten term, which is necessary to reproduce
the chiral symmetry and is also important in the sense that only the parity symmetry
in QCD is extracted from the redundant symmetry [70, 71].

As a static (time-independent) soliton solution Uy(z) of baryon number 1, it is
known that the SU(3) hedgehog solution given by

Up(x) = ( eXp(i"z’O' F(r)) 2 ) (3.1.6)

, F(r=0)=0, F(r—o0)=nn(=m). (3.1.7)

26



3.1.2 Collective coordinates

Let us give time dependence to the collective coordinates as in the previous section.
Focusing only on the collective coordinates that generate the soliton rotation, we

consider the motion in the moduli space as written as

Ut,x) = W) Us(t,x)W(t)™* (3.1.8)
W(t) =elaWta  q=1~8, (3.1.9)

where, for Sy zw on the different manifold, it is defined as

W(t,s=0)=W(t) (3.1.10)
Wit,s=1)=1. (3.1.11)

In fact, W(t) € SU(3) is not precisely a collective coordinate due to the symmetry
breaking term, but we will treat it as a collective coordinate in the same sense as
(p, Z) in the previous chapter.

The transformation of the collective coordinate W (¢) and the corresponding quan-

tum numbers are given as follows;
1. Isospin rotation SU(2), C SU(3), : (I,1I3)
W(t) — gtW(t), gr € SU2)L (3.1.12)
2. Hypercharge U(1), C SU3);, : Y
W(t) — LW (t), e“tlsw(t) e U(1)L (3.1.13)
3. spin rotation (spatial rotation) SU(2)r C SU3)r : (J,J3)
W(t) — W(t)gr', gr€SUQ2)r (3.1.14)

4. Right hypercharge U(1)r C SU(3)r : Ygr

W(t) — W(t)e ®rts € U(1)p (3.1.15)
L[ 10 0 5

Ye==| 0 1 0 |, Ygp=-=tg (3.1.16)
3\o o0 —2 V3
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It can be seen from

exp(iz - F(r)) 0
0 1

i) e )i

that the transformation of the right hypercharge is an unnecessary degree of freedom.
Thus the moduli space is the homogeneous space SU(3)/U(1)g, and Yg is not a
physical degree of freedom. We consider SU(3) as a moduli space according to Ref. [84,
86, 85, 96, 97| instead of SU(3)/U(1)g, and treat the degrees of freedom of U(1)r as
constraints.

By substituting (3.1.8) into the action S (Lgp will be treated as perturbative later),

the Lagrangian is given as
S :/dtL (3.1.18)
1 1
L=— M+ 510(51% +a5+a3) + 515(@3 + az + ag + a3)

2
+ ——N.B(Up)as, (3.1.19)

V3

where B(Uy) is the baryon number, Zy and Z;) are the coefficients obtained by per-
forming the spatial integration numerically. Since we are now considering the case of

baryon number 1, the Lagrangian can also be written as

3 7
B 1 . . 1_, . .
L=—Mo+ ;T ; baCabbeCay + 5T géacabscocb

1 .
+ mNcgacag, (3.1.20)
with
W) W (t) = iCup(E(t))taly = itaty (3.1.21)
a2 = A[Tr(—it, W () TW (@))%, Cups = aq (3.1.22)
4 i 2 .
(—3NCB(U0)Tr(—zt8W W(t)) = ENCB(UO)aS) (3.1.23)
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3.1.3 Hamiltonian and constraint term

Let us quantize and find the Hamiltonian. From L(&,€) (3.1.20), the canonical

momentum of & is derived as

: 3 7
R > CukeCar+ T3 CueCas SECw (3120
Colma = To€aCupy b=1,2,3 (3.1.25)
Coa'Ta = T4aCap, b=14,5,6,7 (3.1.26)
Oyl = % b=38, (3.1.27)
where we impose the canonical commutation relation

(€, 78] = i0ap (3.1.28)

€0, 6] =0, [mq, ] = 0.

We now define

R, =C;'m,. (3.1.29)

This is the generator of SU(3)r acting on W (t) from the right, as shown soon. In

the same way as Cyp(€), from
W (W ()" = iEab(€)tabs, (3.1.30)
the SU(3) [, generator is defined to be
Lo=E; 'm,. (3.1.31)
From these definitions, we obtain the relation between R, and L, as
WWWW ™ = iCo (Wt W',
= —WW™! = B, (Etués

Cab(&)WtaW_l = _Eab(g)ta
L,=-WR,W™L, (3.1.32)

From the above, the two Casimir operators are

tr[(Rata)?] = tr[(Lata)?] (3.1.33)
tr[(Rata)®] = —tr[(Lata)?], (3.1.34)
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which are interpreted as spin and isospin rotations, where they are complex conjugate
representations of each other.

From the canonical commutation relation (3.1.28), we can derive

10
. = — 3.1.35
e = G 3E, ( )
1 0 1 0
R,=-C'— L,=-E'—, 3.1.36
i ab a§b7 i ab agb ( )
so by using (3.1.32), we obtain
1 ow 1
W YR W) ==C W — = -CliCyt.
( ) i ab 65(, i ab b
=t,
R,W =Wt,. (3.1.37)
Similarly, using (3.1.32), we obtain
1 ow 1
WW- YL W)YW™! :;WE;;W*%W* = zEa—blz'c*bcmcvv—1
b
=t,
LW =—t,W. (3.1.38)
Furthermore, since
W Ry Ry )W =W 'R Wty, — W IR,Wty, = W W lta, t] = i fapete
=i fupe W TR, W (3.1.39)
W Ly L)W = = W Loty W + W Lyt W = =W "t o, t,|W = —ifop W 1 WV
=ifope W 1L W (3.1.40)
and
R, LyW = —t, R,W = —t; Wt,
LyR,W = L ,Wt, = —t; Wt,
(3.1.41)
are confirmed, we obtain the commutation relation between R, and L,
[Ra-Rb] = ifabcRa (3142)
[Lo.Lp) = ifapeLla (3.1.43)
[Ra, Ly] = 0. (3.1.44)
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From this commutation relation and (3.1.37) and (3.1.38), we identify R, as the spin
rotation of SU(3)g and L, as the isospin rotation of SU(3)y.
Using R, (3.1.29), Hamiltonian can be expressed as

H=M,+-—) R+ R? 3.1.45
0 + 57, Z 21(,) g ( )
or
8 11
H =M, (- — —> 32 > - -—R2 3.1.46
Also, from (3.1.29) and (3.1.24) we have
2 2 2 N,
Yp=—=Rg = —=Cg,' M, = -
B3 3R V32V3
—_° 3.1.47
d (3.1.47)

In N. = 3, the constraint Yr = 1 is imposed on this system.

Since the weight diagram for the 8- and 10-dimensional representations of SU(3)g
is Fig. 3.1, this constraint restricts the spin state to a half-integer (1/2 in the 8-
dimensional representation and 3/2 in the 10-dimensional representation). These
represent the spin 1/2 flavor octuplet baryon (V,3, A, =) and the spin 3/2 flavor
decuplet baryon (A, ¥* =% ), respectively.

Here, considering (3.1.37) and (3.1.38), we define the wave function of the Hamil-

tonian (3.1.46) as a function as follows;
\Ijgzy)}g?Y;J,J&YR:l(W) = <(p7 Q)7 Iu I37 Y ) D(Tb) (W) ‘ (p7 q)’ J7 J37 YR = ]-> ) (3148)

where D (W € SU(3)) is the n-dimensional matrix representation of SU(3), and
SU(3)r, and SU(3)r generators, which were previously denoted t,, are now distin-
guished as I, and J, (ts remains the same Y and Yg). This function is called the
Wigner D-function. Then, from (3.1.37) and (3.1.38), R, and L, act on the wave

function as

Ra\ijj}Z?Y;J,Js,YRzl(W) = <(p, q); 1,13, Y ‘ D™ (W)J,

(p,q);J,J3, YR = 1>

(3.1.49)
La¥ Py s sanas W) = (9, @) 1, 15, Y | LD (W) | (9, )3 J, J, Vi = 1),
(3.1.50)
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Fig.3.1 Weight diagram and constraint

where the operations of J, and I, on |(p,q);J,J3,Yr = 1) and ((p,q); I, I3,Y]| can
be expressed by R,, L, and \II%}Z?Y;J’J?”YRzl(W). In other words, I, and J, act in

Hilbert space, while L, and R, act in a space spanned by the coordinate &, where

8 8
1
D La=) Ri=3b*+¢ +pa+3p+a) (3.1.51)
a=1 a=1
3
Y R2=J(J+1) (3.1.52)
a=3

holds.
Finally, from this constraint, we show that the transformation properties of the

wave function for spatial rotation are that of a fermion. For a spatial rotation, W ()
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transforms to

€i9/2 0 0 ei9/2 0
wwy swo | o ez g | < I ) cSUQR).  (3.153)
0 0 1

In particular, for the transformation of § = 27 that makes one rotation, it transforms

to
-1 0 0 10 0
Wit)y—-Ww| 0 -1 0 |=Wexplir| 0 1 0
0 0 1 0 0 -2
= WedimYr (3.1.54)

If we let it act on the wave function, it becomes

STRGPI e (W) =¥/ <(p, Q) 1,13, Y ‘ D™ (W) ‘ (9, q); J, J3, YR = 1>

—imNe \I’gjf}(j?y;J,Jg,yRﬂ (W) (3.1.55)

so we know that it converts to

B(W) = emNew (W) = { ;‘f’p((VVVV)): J]\GZ: Zizn (3.1.56)
Therefore, we conclude that for N. = 3, the wave function is a fermion.
3.1.4 Mass deformation
In the previous discussions, the mass term
Ssp = /d"‘w(’%(mi +my)Te(U +U' - 2)
B 2 iyl + U]
=D w)) (3.7
D (W) = %tr(thT tsW) (3.1.58)
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has been neglected. In this thesis, we treat the mass term as a perturbation according
to Ref. [84, 86, 85, 96, 97] etc. Now the Hamiltonian is the sum of

1
OH =+ 57(1 - D (W) (3.1.59)

The problem we are considering now is the case H = 3v(1 — Déz) (W)), while we
generalize to 0H = 2~(1 — D((:Z)(W)), (a =1~ 8). With baryons labeled

B=(P,N,A,YT, X0 %7 2 =27 ATH AT AY A~ 2% 30 s =20 = 07 L),
(3.1.60)

the wave function Wp (W) of the baryon corresponding to B can be expressed for

example as

Up(W) = <(1, 1) I=1/2,1;=1/2,Y =1 ’ D® (W) ( (1,1);J = 1/2, J3, Vi = 1>
(3.1.61)

and
Uy (W) = <(3,0); 1,-1,0 ( Do) () ‘ (3,0);3/2, Js, 1>. (3.1.62)

When 6H operates on the wave function, it should be represented by a linear
combination of all baryon states belonging to the irreducible representation. Let us
consider only the diagonal terms, ignoring the off-diagonal components as they are
small. Let dH operates on a certain state and let <D((£)(W)>B be the expansion
coefficient of the baryon wave function in the same irreducible representation, then it
is expanded as

D (W) W(W) = (DS (W) e (W), (3.1.63)

where B’ runs in the octuplet. Multiplying by U% (W) and integrating over W yields

(D) [ awwsresw) = (DSw)

= / AW s (W)D® (W)W 5 (W), (3.1.64)
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then summing the product of

(D) = [ awwp D w)wsw)

:;(i Z 7":7)(2 " ”VW) (3.1.65)

and the Clebsch-Gordan coefficients of SU(3) over the two 8-dimensional represen-

B

tations gives <D$)(W)>B [94, 84]. n and n. are the representation dimensions
of Wp(W), while the other quantum numbers that label Wp (W) are denoted p =
(Y,I,13) and v = (Yr, J, J3).

For example, we show the quantum numbers of the baryons in the 8-dimensional
representation, where a,b = (Y,I,I3) = (0,1,0) or (0,0,0) for a,b = 3 or 8.
B is labeled by (u;v) = (Y,1,13;YR,J,J3) and <D((18b)(W)>B is calculated as

Table 3.1 The quantum numbers of the 8-dimensional representation baryons

v w7 [n]{0R) ]{OF)
P | 1 |1/2| 1/2 1| 1/2 ]| J3 el 3
N | 1 [ 1/2|=1/2|| 1 [1/2] J3 —ﬁg 3
Ao o0 0 1| 1/2 | Js 0 =
st o | 1 1 1| 1/2|Js NG -3
000 | 1 0 1| 1/2|Js 0 -3
Y| 0 1 —1 1| 1/2 | Js3 —ﬁg -
200 1] 1/2 | 1/2 1| 1/2 ]| Js e —1
ET |l =112 =172 1 | 1/2 | J3 —% —3

(y,i,i3;y',1',i%) = (a;p) or (y,i,i3;y,4',i5) = (b;v) in Table [98]. From the above

discussion, the baryon mass formula becomes

1,1 1 111
M:H+5H:Mo+—< )J(J+1)+——§[p2+q2+pq+3(p+Q)]

2\7, I} 21}
_ %Iié (?)2 + %7(1 - (DRwW)) ) (3.1.66)
8 : (pg)=(11), J=1/2 (3.1.67)
10 : (p,q) = (3,0), J=3/2. (3.1.68)
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This treatment of the mass term is essentially the same for baryons in the Sakai-

Sugimoto model.

3.2 Hyperons in the Sakai-Sugimoto model

Let us analyze baryons in the SU(3) Sakai-Sugimoto model with respect to the
analysis of the flavor SU(3) in the Skyrme model. The analysis will proceed as follows.
First, in section 3.2.1, we obtain the mass formula for the baryon. The problem of
the CS term is discussed in detail in the Appendix D. In section D.1, we summarize
the problems of the CS term, and in sections D.2 and D.3, we introduce two CS terms
that were proposed to solve these problems. Next, in section 3.2.2, we discuss how to

introduce quark masses into the Sakai-Sugimoto model.

3.2.1 Baryons in flavor SU(3) Sakai-Sugimoto model

As shown in (2.4.18) and (2.4.19), the action is

AN, 1
DBI _ _ c 1/3 2 2 )
s S5 [ d xdzTrf<4K F}, + SKE,
1 1 1
- §ﬁ/d4xdz(ZK_1/3F3,, + §KF32> (3.2.1)
gos - Ne SUINS (4 d*zd AT FynF
=502 | @ 247T2 €MNPQ x Z oTr s (FvnEFpg)

- _AMTrf(aoANFPQ) + 4FMNTrf(A0FPQ) + 6AOFMNFPQ - _AMFONFPQ
+ (total deI‘lV&thG)] ) (3.2.2)
for any Ny (Appendix A.3). For Ny > 2, the significant difference from the SU(2)

case is that ws(A) is not zero. Under the same rescale as in the SU(2) case, the DBI

action becomes

A\ 2
SPB = — aNc/d433dZTrf [iFJ%M\I + < - %Fzzy + 2% Ff - FO2M) + O()‘_l)}

1 A 2, o
- §aNc/d4xdz[§Ffm + ( - %F@ 4 22F2 FO2M) + O(A—l)], (3.2.3)

which is exactly the same as in the SU(2) case, where since the CS term is an integral

in differential form, it does not change form under this rescale.
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Classical solutions

Since the analysis is performed up to the order of \°, we can solve the equation
of motions by considering only the highest order of 1/ expansion. The equation of

motions can be obtained as

1 2 -
Ag : Dy F —_— [ — FynF
0 M 0M+647r2a NfGMNPQ MNI'PQ

1 1
b (F Fpo — —Tr(Fyn F. >+O A1) =0 (3.24
sav3nza MvPe\FunFro = 1 t(FunEFpQ) (A7) (3.2.4)

AM : DNFMN + O()\_l) =0 (325)
Ao ¢ OnFon + ——— | = [Tr (FunF )+1F I3 }+(’)()\_1)
0 - Omfom 6420 Nf€MNPQ FfEMNLEPQ 5 MNIPQ

(3.2.6)
Ay OnEyn +0NYH) =0. (3.2.7)

Apart from the change in coefficients due to SU(2) becoming SU(Ny), the only dif-
ference from the SU(2) case is the last term in (3.2.4). This difference is due to the
fact that w? U(Ny) (A) is not zero, which means that the classical solution of Ay has a
finite value unlike the SU(2) case.

Let us first solve (3.2.5). The solution of this equation is obtained by embedding

the BPST instanton solution (2.4.35) of SU(2) in SU(Ny) as follows;
SU(2)BPST
Ak (2N = ( Am 0 ) (3.2.8)
0 On;—2
Setting this ansatz means that all the degrees of freedom of the strange quark are
carried by the collective coordinates.
The equation of motions (3.2.6) and (3.2.7) can be solved exactly as in the case of
SU(2) as
; 11 p
do= — o (1- 523) 3.2.9
"7 8r2a 2\ (&4 p2)2 (3:2:9)
Ay =0. (3.2.10)

Finally, let us find the solution for SU(Ny) of (3.2.4), which is the only difference

from the SU(2) case. Substituting the solutions we have found so far, we get the
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equation

DAy 5P (73 24 >—0 (3.2.11)
MEO T on2g (24 p2)2 "2 NN T -
where P is
1 0 0
Po=l01 o |, (3.2.12)
0 0 On, s

such that it can be expressed as

2 2
in the case Ny = 3. This equation can be obtained as
1 1 pt 2
Acl:———(l——) (73 — =1 ) 3.2.14
0 1672a &2 (&2 + p?)? 2 Ny Ny ( )

From the above, the mass formula for the static soliton solution is calculated to be

S:—/dtM
2

]. c _ c C C
M = [ a5 (i) - X7 (R + 2FD? - (Fh?)

Ky 2 3 Ac c c 3 cl e c
- §>\ 1€MNPQ/d3de[H EEAOZTYJC(FI\/ZINFPZQ) + ZTrf(AOlF]\}NFPIQ)}
+ 0\ h

2 11 2
A N )
A b 6 " 320ria2 2 3

Interestingly, this mass formula takes the same form for any Ny, despite the new con-

(3.2.15)

tributions of (F§i,)? and Trp(ASFE G F I%ZQ) compared to SU(2) case. The minimum

value of this mass formula also remains the same,

[ 2
Mpin = 872K + ENC (3.2.16)
at
1 /6
2
= -, Z=0. 3.2.17
p 87T2a\/; ( )

The argument so far is true for arbitrary N¢. In the following, we only talk about
the case Ny = 3.
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Collective coordinates
In Ny = 3, the collective coordinate is

1. The position of the instanton in the (Z,z) space : XM = (X, 2)
2. The size of instanton : p
3. SU(3) orientation : W € SU(3).

Let us consider the motion of a soliton in moduli space with time dependence on this

collective coordinate. In this case, the time-dependent gauge field can be written as

A (t, ™) = W) AS, (N X (t)w! (3.2.18)
Ao(t, ™) = W) AL (2™ X)W () "' + Adg(t, z™) (3.2.19)
Ap (2N, 4) =0 (3.2.20)
Ag(zN 1) = A (2M; X (t)). (3.2.21)

Except for Ag, the equation of motion for the static case is satisfied even if we make
the collective coordinate time-dependent. For Ay, we add AAg(t,2*) because the
original equation (3.2.4) (Gauss’ law) cannot be satisfied if the field is time-dependent.
This is a unique property to gauge theory, and although Gauss’ law seems to be a
redundant equation, one should always pay attention to whether it is satisfied or not
(Appendix B).

Let us resolve Gauss’ law. First, we see that the field strength, which is time-

dependent due to the insertion of the collective coordinate, is written as

Fyn = W@)FSyW(t)™! (3.2.22)
Fonr = W(t) (Xaa%Agg Do — D%ASZ>W(t)_1, (3.2.23)

which is defined as
O(t,zM) = W) LAAW (1) — iW (t) LW (t). (3.2.24)

Gauss’ law (3.2.4) then becomes

A 4 pa%Aﬁg - Dggq)) =0 (3.2.25)

9

D5 (X" 5

From this, by determining ®, the time-dependent Ay is solved again.
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We need to consider the case where each collective coordinate is orthogonal to each

other, so let’s separate them like
P =>Tx + q)p + q)SU(S) (3.2.26)

and find the solution. For details, please refer to Appendix A.7. For ®x and ®,, we

can find

dx = -—XNAY (3.2.27)
®,=0 (3.2.28)

exactly as in SU(2). The rest can be solved for

D D§®sy(3) = 0, (3.2.29)
and the result is obtained as
Psu(3) = X* (1) Pal; X (1)) (3.2.30)
O, (z; X (1) = u(&)g(w; X (1)) ta(a; X (1)~ (3.2.31)
f(é.)a (a: 17273)
u(€) =< FOY?, (a=4,56,7) (3.2.32)
1, (a=38)
XA (t) = —2itr(t, W (1) LW (1)), (3.2.33)

Since the collective coordinates give the field time-dependent, Lagrangian L of

Sym + Scs = [ dtL has changed, denoting the change as §L,
0L =0Lvnm + 0Lcs (3.2.34)
dLym :aNc/dgxdztr(FgM - (Fg]’w)Z)
3 - N el . 0 cl a el 2
=alN, [ d xdztr(X Fyn + pa—AM — X DM<I>a> . (3.2.35)
P
where ¢ Ly is the change caused by
_ o N el 2 cd  anc ya el gl -1
Fom =W)X Fin +p8pAM XD§; @ — DS AG )W (t) ™, (3.2.36)

and, from this change, arises the kinetic term of each collective coordinate. §Lcg is
zero as far as we use the CS term used in the original paper [10, 11] of the Sakai-

Sugimoto model (the problems with the CS term are comprehensively explained in
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Appendix D.1). Without considering the CS term here, the Lagrangian of the system

with the collective coordinates listed above as the dynamical variables is

L=— M+ %5@ 4+ Lz+L,+ Lo+ Les (3.2.37)
Ly :%(22 — w2 Z?) (3.2.38)
_Mp .2 2 2 K
3 7
Low =mpp® (5 S0 + 75 S () (32.40)
ow =mpp® (5 ) _(x 6 2. 2.
a=1 4
3 ) ) 7 ) 0
=2T1(p) Y _ [tr(—iW " Wito)]” +2Ta(p) Y _ [tr(—iW ' Wit,)]",  (3.241)
a=3 a=4

where we can calculate the coefficients as follows,

My = 87%k (3.2.42)

mx = my = % = 8m2k\~! = 872aN., (3.2.43)
2 1
N.m 2

K=-—"S"_-Z2N? 3.2.45
40120 5 € ( )

1 2 1 2
Li(p) = ympp”,  Ia(p) = gmpp”. (3.2.46)

No further analysis will yield the constraint terms necessary to obtain the baryon
spectra, so we will replace the CS terms with those shown in Appendix D.2 and D.3,
and continue the analysis by assuming that the constraint terms have arisen. In other

words, we will analyze L in (3.2.37) plus

N, N,

2\/§X8(t) = \/gtr(—iW(t)”W(t)ts)- (3.2.47)

Collective coordinate quantization

The wave function can be separated as

P(2) ¥ (W)Y (p), (3.2.48)
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thus the Hamiltonian can be written as

H:M0+HZ+Hp+HpW

1 1
HZ = —%6% + 2’I’I’LZ(A)QZZ2
1 < 1 <
H,w = R.)? + R,)?
W = o7,y 2 )"+ g,y 2 ()
1 1 K
- - n 2 2
Hp - 2mp pn P(p ap) + Qmpwpp + mpr

(3.2.49)

(3.2.50)
(3.2.51)

(3.2.52)

For Hyz, it is the same as in the SU(2) Sakai-Sugimoto model, and for H,, the

eigenvalue equations can be solved in the same way as explained in the SU(3) Skyrme

model. For n of H,, we can set n = 8 in the SU(3) case, but let us continue the

analysis with the general 7. Considering the constraint

= e (3.2.53)
2V/3
then the Hamiltonian is
/1 1hyv¢ 11 11
How =5 <I_1 - 1—2) ;Rg + 5—2;@ 57
_ mpr (-iG+1+ 2;(]?2 F 4 pa+3(p+q) — ]\é ) G250
so we can write the mass formula as
Ho(z)¥ (W) (p) = Mod(2)¥(W)¥(p) + (H.0(2))¥(W)(p)
+ (Hpv(p))o(2) U (W) + (How ¥ (W))o(2)1(p)
= (Mo + \/g (nz + %))qb(z)\lf(W)w(p)
" 4 NZ
e e L0

= (Mo + \/g(nz + %) + B ) o(2) (W) (p).
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E(ZLQ)

stot. as follows;

Here, the eigenvalues of H°" are

—2j(j+ 1)+ 50*+¢*+pg+3(p+q) — A;,

< 2 + Hp)lb(/?)
mpp
1 1 1 K’

_ - n - 2 2
- ( 2mp pn aP(ﬂ ap) + 2mpwpp + mpp2>¢(p)
= H(p) = EX:Dp(p) (3.2.55)

, N2 4 4 s
K = +§(p +¢*+pg+3p+q) —2j(G+1). (3.2.56)

Therefore, the mass formula can be obtained by solving the eigenvalue equation

Hi(p) = Eyied v (p) (3.2.57)
1 1 1 K/
Htot — —_— n . 2 2 N
P om, pi 0,(p"0,) + 5 MWl =+ —— (3.2.58)
N A .
K =15 +30" +0 +pe+3p+9) -2/ +1) (3.2.59)

at the end. Now, by replacing
Y(p) = e */22Pu(2) (3.2.60)

s = mpp, = (V= D2 — (1), (3261

the eigenvalue equation becomes the differential equation

& n+l_ Nd ERD o+l
(o 1) (BR )0 o
(zdz2+(5—|— 5 Z) -+ 2, 1 v(z) =0 (3.2.62)

which is that of the congruent hypergeometric function. Since it is known that this

equation must be

(,9)

B 1

;;t— —%zn, n e Z (3.2.63)
Wp

to have a regular solution, for n = n,, we can write v(2) using the confluence hyper-

geometric function

Fla,v;2) = i (a) 22 (3.2.64)

k=0 \1/F
(@) = ala+1) - (a+k—1) (3.2.65)



like

1
v(z) = F( —np, 20 + 1 —5 ;z), (3.2.66)
whose eigenvalue is obtained as
1
B =, (2n, + SV =12 +8K + 1). (3.2.67)
From the above, the mass formula is obtained as
-1)2 K’ 2

3.2.2 Introduce quark masses and obtain the Hyperon spectora

Several attempts have been made to introduce quark masses in the Sakai-Sugimoto
model [93, 99, 100, 101, 102, 103]. This doctoral thesis will introduce quark masses
into the Sakai-Sugimoto model according to Ref. [93] and explain the analysis of flavor
SU(3) baryons in the Sakai-Sugimoto model.

Since the chiral symmetry is not explicitly broken on the original brane configuration
of the Sakai-Sugimoto model, in the Ref. [93], by adding N; D6 brane to the D4—D8—
D8 brane system, they achieve a chiral symmetry is broken. That is, we placed the D6

branes as shown in Table 3.2 and connected the D8-branes and D8 branes. This brane

Table 3.2 Configuration of D6-brane

0o 1 2 3 4 5 6 7 8 9

D4 o o o o o X X X %X X

D8~D8 | o o o o x o o o o o

D6 o o o o o X o o %X X

configuration leads to the existence of a worldsheet instanton, and it was shown in
Ref. [93] that this worldsheet instanton introduces quark masses. Furthermore, from
the gravity theory side, this worldsheet instanton is found to have the form [93]

c/d4thr [M(exp [—i

Zm Azdz} — leﬂ + c.c., (3.2.69)

—Zm
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which is consistent with the result obtained from the chiral perturbation theory, where
c is a constant determined from experimental values as a parameter and M is the quark
mass matrix.

In the following, we take into account that the action on the gravity theory side

involves the deformation

z

08 = c/d4thr [M(exp [—i " Azdz} - 1Nf)] + c.c. (3.2.70)
+oo o

Pexp| i /_ ) dzA.| = expl2in(z)/ f] = U(2) (3.2.71)

5 = / d*zsL (3.2.72)

6L = ctr[M(U +U' —21y,)], (3.2.73)

incorporating this mass term as a perturbation, as discussed in the Skyrme model.
The difference from the Skyrme model is that this term depends not only on the
collective coordinates of the SU(3) orientation but also on p, so we also need to
calculate the expectation value of the part that depends on p.

The variation 0L of the Lagrangian is calculated as

5L = —%(1 — o8 f(r))| (may + mg +my) — ?(md — ma) D (@) —

2Mgs — My, — My

using (3.2.8) and Aj; = 0 of the solution obtained in section 3.2.1, where we used
DE(G) = Str(GTAG
ab (G) = StE(GTAGN) (3.2.75)

already defined in the description of the Skyrme model. Now, using the Gell-Mann-

Oakes-Renner relation

2c 2c 2c
m72ri = _g(mu+md)> m%(i = _2<mu+m5)7 m%(O,f(O = ﬁ(md"’mé’)»
s s s
(3.2.76)

(where ¢ is input to best reproduce the masses of m +, mg+, and Mo, o), the

deformation of the mass formula due to the introduction of quark masses in the
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Sakai-Sugimoto model is given by

oM = — / d3x6 L[A] (3.2.77)
SM —dr f20° x 1.104 x %[(1 — V3DE(G) — D (G))mZo o
+ (1+VBDR(G) - DF(@)mies + (1 +2DF(G)m2:]. (32,78

Then, using the wave function

o(2)¥(W)p(p) (3.2.79)

defined by (3.2.48), we can calculate § M to obtain the mass splitting for each baryon

state. Concretely, we need to calculate

/ " dop o) (3.2.50)
and
/ AW U (W)DS (W)W 5 (W), (3.2.81)

with n = 8 for SU(3). Since calculation for the latter are described in the discussion of
the Skyrme model, we will only give an explanation of the former. The wave function

has the form

w2 n+1
Y(p) = C’np(p,q)le pWpP /Q(mpwpp2)6F< —ny, 206 + T;mpwpp2>. (3.2.82)

Cnp(p,q)l is a normalization constant, which is determined from

/oo dpp"y? = 1. (3.2.83)

0

From the above, if we write the equation only for n, = 0, we get

28+ = +n/2)
(mpwp)”/QF(Qﬂ + "TH)

(0", =0,(pa)t = / dpp"p"p(p)* = (3.2.84)
0

This allows us to evaluate the mass splitting of baryons, but quantitatively it does

not reproduce the experimental data very well (see Ref. [94]).
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3.3 Dimensional reduction

In the next section, we discuss how to introduce heavy flavor into the Sakai-
Sugimoto model. We have proposed a method to implement heavy flavor in the
Sakai-Sugimoto model by employing dimensional reduction while utilizing the extra-
dimensional degrees of freedom. Therefore, in this section, as a first step, we explain
the Forgacs-Manton approach to dimensional reduction of gauge theories [104, 105].

We mentioned in section 2.3.1 that the theory on the gravity side of the Sakai-
Sugimoto model is a 9-dimensional YM-CS theory. In Ref. [10, 11], they have obtained
five-dimensional YM-CS theory by setting the gauge field component on S* in the
9-dimensional spacetime R* x [0,00) x S* to zero and considering the gauge field
configurations that ignores the S* coordinate dependence. However, it is not necessary
to treat the gauge field in this way. Therefore, it is a worthwhile attempt to review
the analysis of higher-dimensional gauge theories from a more general perspective.
High-dimensional gauge theory has been studied in Ref. [104, 106, 107] etc (As a
textbook, Ref. [108] is very helpful).

In this chapter, we will explain Forgdcs and Manton’s argument [104, 105]. They
showed that if a gauge field (G is the gauge group) is symmetric under some group
S *! as well as a metric on a space-time manifold has the same symmetry, then the
YM theory can be generally reduced to a lower dimensional YM-Higgs theory.

In this thesis, we will explain the Ref. [104, 105] in the following steps. First, in the
section 3.3.1, we derive the symmetry equation and the consistency condition (called
in this thesis following Ref. [104]), which are used to determine the form of a gauge
field with a certain symmetry. It is important to understand what it means for a
gauge field to be symmetric for a space-time transformation. We will then explain
how to solve the symmetry equation and the consistency condition in the section 3.3.2.
It is easy to solve these equations on the group manifold of the group S, but from
the viewpoint of dimensional reduction, it is important to be able to find solutions

on the homogeneous space of this group as well. Based on the above discussion, in

*1 The symmetry of vector fields was outlined in Fig. 2.4, but in the case of gauge fields, the
restriction is weakened, as will be explained later

7



section 3.3.3 we will discuss in general how higher dimensional gauge theories can be
reduced to lower dimensional YM-Higgs theories. In the section 3.3.4, we solve for the
constraints that emerge in the dimensional reduction (the discussion in this section is

not only for the Sakai-Sugimoto model, but can be used in general).

3.3.1 Symmetry equations

Tensor field T/7- is symmetric (Appendix C) with respect to the group S generated

by the generator &, means that
Le, T/7 =0 (3.3.1)
is satisfied by the Lie derivative Lg¢,, (see also Fig. 2.4), where
Le, Tf0 = (OuE)TE + (0T + -
— (NI — (DTN — e
+ &80T (3.3.2)

On the other hand, a gauge field is symmetric under a group S if the gauge trans-

formation absorbs the change caused by the symmetric transformation (see Fig. 3.2).

We write g = exp(W (z)) for the elements of G with W (x) = W*(z)T* (T* is the
generator of G) and expand it to W (z) = A, Wy, (x) with the basis A, of the vector
space of & = A&,. Then, (3.3.1) is the weakened condition

Le, A, = DWW, (3.3.3)

where W, is the Lie algebra of the gauge group G and D, W,,, = 0, W, + [A,, Wp,].

Now we found that the symmetry equations of the gauge field A, are
(00 A, +E0,(0,A,) = Dy Wi, (3.34)

where m is the number of generators of the group S. W transforms as a scalar for

the coordinate transformations, and its gauge transformation is

W9 =gWg~! +£°(0,9)9~"
=gWg ' + (Leg)g™ (3.3.6)
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gauge transformation

— N

—

Spatial rotation

Fig.3.2 Symmetric gauge fields

This means that the symmetry equation is an equation that depends neither on the
choice of coordinates nor on the choice of gauge.

We will show the definition of the symmetry generator &, and discuss how &, can
be obtained. It is important to note that & is defined not only on S, but also on coset
space S/R. The generator &,, of a group S (of dimension V) is a vector field such
that it satisfies

using Lie brackets

nt = [gmagn]“ = f,,pnapfﬁ - ng'Lapé.#l
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Since the Lie bracket operator is antisymmetric to satisfy the Jacobi identity, it is a
representation of the Lie algebra of the group S. We now turn from the discussion on
space-time manifolds to that on group manifolds. When we use p in the subscripts,
it means that we have a space-time manifold in mind; otherwise, we use « or A.
The relation between arguments on group manifolds and space-time manifolds will
be discussed in section 3.3.3. The most fundamental solution of (3.3.7) is the set of
infinitesimal right transformations of the group S. Suppose that the group manifold
S has coordinate y®*. Then, we define the infinitesimal right transformation &% (yfé )

to be
s X (14 eJ™) = s(y® + e€2) ~ 5 + e£% D45, (3.3.8)

where s(y®) € S. It means that the result of the group operator on the left-hand
side causes a transformation of the coordinates as shown on the right-hand side. This

equation can be written as
sJ™ =Lg, s. (3.3.9)

From this equation, we can obtain £%. We can verify that the infinitesimal right
transform &% (yB ) defined in this way satisfies (3.3.7) as follows. The action of the

commutator of the Lie derivative on s is written as
(Le,, Le, — Lg, Le, )s = s[J™, J"] = frnpsI®o (3.3.10)
This expression is transformed into

Li¢,. .15 = frnpLe,s (3.3.11)

(Appendix A.8), from which we can derive (3.3.7).

We can also obtain a solution of (3.3.7) from a right transformation on the right
coset space of S. Let R be a subgroup of S of dimension N — N’ such that it has
generator J™, (N'4+1=<m = N), Then this coset Rs has N’ coordinates y* and

Rs x (1+€J™) = Rs + €€, 0a Rs (3.3.12)

is obtained by the same argument as before.
We can assign y* to the coset space S/R and y* to the subgroup R. If we determine

the representative element of coset S/R to be

so(y®) € Rs(y®) (3.3.13)
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in each class, all elements of S can be uniquely written as
s(y*) = r(y*)so(y®) (3.3.14)

by y* = (y*,y%).
Under the transformation of the group S, we can find the relation satisfied by the

Lie algebra W, used to absorb the change in A,. The commutator
of the Lie derivative becomes

LfmnpipAu = Du(Lngn — LgnWm + [Wm, WnD, (3315)

with the left and right sides transformed, respectively (Appendix A.9). From this, we

obtain
Le, Wy — Le, Wy, + (Wi, Wa] — JrmnpWp = 0. (3.3.16)

The equation that W,, must satisfy is called the consistency condition, following
Ref. [104]. Therefore, when there is a pair of Lie algebras of G such that (3.3.16) is
satisfied, we can obtain an S-symmetric gauge field A, by applying the constraints
of (3.3.4).

In the rest of this section, we will find some relations that we will use later. From

(3.3.4), the symmetry equation for F,, = 0,4, — 0, A, + [A,, A,] is given by

L¢, F =D,L¢, A, — D,L¢, A, = (D,D, —D,D,)W,,
= —[F, W] (3.3.17)

(Appendix A.10). Using (3.3.4), we obtain
& Fuy = Dy, (W, — € AL) (3.3.18)
(Appendix A.11). If we define ¥,,, = £# A, — W,,,, we can write this as
Sy = =Dy W, (3.3.19)
Furthermore, using (3.3.19), (3.3.16), and (3.3.7), we obtain
EménFu = frnpVp + [P, Un] (3.3.20)
(Appendix A.12). The ¥, is related to the Higgs sector after dimensional reduction.
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3.3.2 The solution of the symmetry equation

Again, symmetry equations and consistency conditions are given as

Le, Ay, = D, W, (3.3.21)

Le, Wy, — Le, Wyt [Wn, Wo] = frmpW,y = 0. (3.3.22)

Since both symmetry generators (3.3.8) and (3.3.12) for S and S/R satisfy the com-
mutation relation (3.3.7), solutions for (3.3.21) and (3.3.22) exist for both S and
S/R. From the viewpoint of dimensional reduction, the solution defined on S/R is

important. The consistency condition on S/R is
Le, Wn(y®) = Le, W (y*) + Wi (y*), Wi (y*)] = FrnpWp(y™) = 0. (3.3.23)
Now, W,, is redefined as
Win(y”,y%) = Wi (y®)  Vy*. (3.3.24)

For W,,, it is sufficient that exist the ones satisfying (3.3.21) and (3.3.22), so such a
redefinition is no problem as long as it can be solved. It is easy to conclude that this

W, also satisfies the consistency condition on S. That is,
Le, Wi (y®) = Le, Win (Y )+ [Win (y*), Wa(y*)] = frnpWp(y®) =0 (3.3.25)
is satisfied. If we define the new field Wy as
W, = 2 W, (3.3.26)
(3.3.25) becomes
0aWy — 05Wa + (Wa, WB] =0 (3.3.27)
(Appendix A.13), and thus Wy can be expressed as
Wa = (0ag)g™* (3.3.28)

in pure gauge on S. Although W,, satisfies the consistency condition both on S and
on S/R, by considering the fields on S, W,,, can also vanish because Wy can be set

to zero by gauge transformation using (3.3.5) *2.

*2 If we consider on S/R, we can only perform gauge transformations independent of y*.
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Symmetry equation is also considered in the same way as the consistency condition.
The symmetry equation on S/R is
L¢,, Ay = DoWh,
& (0a€8)As + P05 A0 = 0a W — [Aa, Wy] (3.3.29)

using A, (y?) and W, (y®). In order to embed in S, W,, (y) and A, (y?) are redefined
by (3.3.24) and

Aa(@?) = (Au(P), Aa@?)) = (0, Aa(y?)), (3.3.30)

respectively. This restriction on Ad(yB ) should be understood as the restriction that
symmetry equations impose on gauge fields. This restriction will be discussed later.

In this case, because of

(0a82)Ap = (0a€5)A; (3.3.31)
POpAn = €705 Aa, (3.3.32)

(3.3.29) can be written as
(0atD)Ag + €05 40 = 0 Wry — [Aa, Wi]- (3.3.33)

On the other hand, considering that £, is independent of y*, (3.3.24), and (3.3.30),
then

(awgrﬁ;z)AB + géagAw = 3me - [Awa Wm] (3334)

automatically holds. Therefore, by combining these two equations, we obtain the

symmetry equation on S,
Le,,Aa = DaWi, (3.3.35)

with A, (y?) and W, (y*) defined on S/R. As mentioned above, since W,,, can be set

to zero by embedding on S, the symmetry equation can be simplified to the form

Le, Aq =0, (3.3.36)

m

which is known how to solve. Now the restriction to A4 is attributed to (3.3.30) and
(3.3.36).
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Instead of solving (3.3.36), we solve the more general equation
Lngzg”“ —0. (3.3.37)

We defined the symmetry generator (vector field) &, as an infinitesimal right trans-
formation in (3.3.8). In the same way, the infinitesimal left transformation &,, can be
defined as

(1+eJ™)s =85 — €€ 0458 (3.3.38)
& JMs = —Lg,s. (3.3.39)

The vector field &, 1& &, satisfies Lie bracket algebra as well as &,,. In fact, this

infinitesimal left transformation turns out to be
Le, £ =0. (3.3.40)

This is trivial from the fact that the Lie derivative and Lie bracket are equivalent

with

L Le,, s = —J"(sJ™) = =(J"s)J™ = L¢, Lg s
g [£m7£n] =0 (3341)

in the present case, by noting that éﬁ‘ is a tensor with superscripts. Furthermore, if

we define as the inverse gm@,
Emal® = Oy Emall = 0" (3.3.42)
of €& with (m, &), it is easy to show that this vector field also satisfies
Le, &ma =0 (3.3.43)
by Leibniz rule. Based on the above discussion, the solution of (3.3.37) is given by
T2 = M. Emabpg- 380 (3.3.44)

with the constant Ay, pq...-

Now the solution of symmetry equation (3.3.36) can be expressed as

AG = OF (2)Emaly), (3.3.45)
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with A,, = ®% (x). Since ® only has not to depend on y, we have given it an x
dependence. In the discussion so far, we have considered only group manifolds, so
we do not need to consider z-dependence. However, as we will discuss later, when
the group S acts on the space-time manifold, we introduced the z-dependence here
because it exists as a coordinate of a space not related to the group S. The reason
A, components seem to remain is that we have performed a gauge transformation to

set W,, to zero. Furthermore, setting A\, = d,nn gives the rank two tensor,
hoB = g éB (3.3.46)

This is the (left) metric tensor of the Lie group, since it gives the inner product of

two vectors, like

3Q>

Emah®® = €5, (3.3.47)

We can also define the (right) metric tensor h® af = 57‘}15@, which now satisfies

Le, h* = (L, 60)%6% + €2 (L, €0)°

= Fonp€2 €0 + Frnnptl€l
=0, (3.3.48)

because the Lie derivative and the Lie brackets are equivalent. This means that héB
and h%? are covariant for symmetric transformations that shift with ¢. Moreover,

with

Lee=E20se =eJ™ = J™
L-e=£%0e=—Jme=—Jm

Em
o8 = €8 (3.3.49)

we conclude
hoB = [8, (3.3.50)

which holds for arbitrary elements, because the metric keeps on the Lie group in the

present case. We also note that a similar argument yields

fmnpggzégg;y = —fmnpf%€§€Z» (3351)
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which we will need later.

Finally, we discuss the constraint (3.3.30) imposed on Ad(yB ) when the symmetry
equation is embedded. This requires that A, = 0 and that the remaining components
are independent of y“. A necessary and sufficient condition for this constraint is that
Fi,, Fu., F, must all be zero. F,, = 0 requires A, = 0 while F;, =0, F,, =0
requires A;, A, to be independent of y“ respectively. Noting that we can now set
Wy, =0, from (3.3.19) and (3.3.20), the field strength are written by

Fai = &na(0i®m + [Ai, @) (3.3.52)

Fap = _émdgné (frnp®p + [P, Pn]) (3.3.53)

(we used (3.3.51) when obtaining the second equation), so in order to set Fj,, Fae
to zero, we require

Ema(0i®m + [A;, @) =0 (3.3.54)

Enco (Frnp®@p + [@m, ©n]) = 0. (3.3.55)

The meaning of the above equation can be understood as follows. For m > N’, 5;; is

also the symmetry generator of the subgroup R, so the following equation obtains

€8 0as = —J™s (3.3.56)
£ 0us = —J™s, (3.3.57)
from which conclude
£,=0, m>N. (3.3.58)
Then,
mw =0, m< N (3.3.59)

is also trivially satisfied. In the case m > N’ (where N’ is determined to be the Lie
algebra of R), fmw is an infinitesimal left transformation of R. On the other hand, in

the case m < N, &y is zero. Therefore, (3.3.54) and (3.3.55) become

0;®,, + [A;, ] =0 n> N’ (3.3.60)
Fonp®p + [, @] =0 0 < N, (3.3.61)

which is the final form of the constraint we wanted (Appendix A.14 and A.15).
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Taking this constraint into account, we can further discuss about (3.3.45). First,
from (3.3.61), by setting ®/, = —®,,, (m > N’), & can be regarded as the generator
of the subgroup R of G. Then @/ is a constant and (3.3.60) is

[A;, ] = 0. (3.3.62)

Here, looking at (3.3.45), A, are non-zero. As already mentioned, one of the impli-
cations of constraint was that this component is zero. By gauge transformation, we
can show that this A, component can be set to zero. For m > N’, J™ and —®,, are

generators of S and the subgroup R of G, respectively, so A, is written by
Ay = P = —J " = (Dur)r ™! (3.3.63)
(Appendix A.16), where r(y“) = exp(au, (y*)J™) = exp(am, (y*)(—P,,)) and we used
(D)™t = =T (3.3.64)
Since r is also an element of the gauge group, we can vanish as follows;
Ay, =r YA + (0, ) r = v 1 Our)r e + (Or™
=r~Y0,r) + (O,r Hr=0. (3.3.65)
Since r commutes with A;, the other gauge field components are

Ay = 171076 (3.3.67)

under this gauge transformation, where 7 is the index that labels the space-time
manifold that is not affected by S transformations. Note that A; is y® independent

because this fields should also be S-symmetric, which means

Le,, Ai(z,y) = (0:6") Ay + € (0 Ai(z, y))
= £¥(0,Ai(x,y)) =0, (3.3.68)

with & (z,y) = (£'(x,y), €% (z,y)) = (0,£*(y”)). Under this gauge fixing, Wi is

W, = —r_l(awr) = —r_l(é’wr)r_lr = —r_lq)mémwr (3.3.69)
Wy =0 (3.3.70)
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so W,, = §%Wd is
W, = _Tilq)nrf;%émwa (3371)

which allows A, to be absorbed within W,,. Since A, and W,, are independent of

y“, we can always take r = 1 by choosing r appropriately. Thus, it is simplified to
Aa = (pmgma (3372)
Wi = —®pt% € (3.3.73)

3.3.3 Dimensional reduction of the action

When the subspace of a space-time manifold is 2" and the group S acts transitively
on 2", we have a homogeneous space S/R = 2. Then the metric of 2 is proportional
to the metric h*? on S/R. The S-symmetric gauge fields that lived on the group
manifold S discussed in the previous section are also S-symmetric gauge fields on 2.
For example, R? and S? can be divided into [0, 00) x S2. Since SO(3) acts transitively
on S? (corresponding to 27), SO(3)/SO(2) = S2. When, for example, the metric of

a space-time manifold can be written as

Uy (% o 0\ h”(l’)| 0
W (@t y )—( 0 | 2P () ) (3.3.74)

dimensional reduction is possible in general.

If the original action can now be written as
1
P — _gTr/de#h1/2FWth“"h”, (3.3.75)
it can be expanded to

1 ' N L2 3
& = —gTr/dD z'dN y*ht/? [Fiijlh""“hﬂ + 5 Fio Fighh®P +

1
= FaFysh® 7).

Rt
(3.3.76)

If we gauge transform A, = 0 and note that hab = pab , the second term of this
action can be calculated as
FijBhijho‘B = (0;Aq — 00 Ai — [Ai, AL))(0;Ag — 0gA; — [A;, AB])EO‘Bhij

= (0 1P, — [Ai,rflq)mr])gma((?jr*hbnr — [Aj,rflq)nr])énﬁﬁaﬁhij

= r_l(ai(pm - [Au (I)m])émd(aj(pn - [Aj7 Cpn])gnﬁggélfh”r

=7 'D;®,.D;®,h"r, (3.3.77)
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which is no longer y“ dependent. We also see that r disappears from the action
without taking » = 1. This result can also be obtained using (3.3.19). The third term

can be calculated in the same way as

FaﬁFv6ha’yh66 - (frstq)t + [(I)Ta (bs])(frst(bt + [(I)'m (I)s])
=2V (®). (3.3.78)

From the above, the action is reduced to

, , 1 o 1 ¥ 1
Z =9 / AP xRN (dethi;) '/ Tr| 2P Fah™ W7 + ooy Di®u D@yl 4 ooy V(@)
(3.3.79)

by dimension reduction.

3.3.4 Solution of Constraint

A general method for solving the constraints arising from dimensional reduction
is given by Manton in Ref. [105]. The constraint we want to solve now is for the
SU(241) case including ¢ and b quarks, which is also specifically calculated for the
SU(3) gauge group in this paper. In this case, the constraints (3.3.60) and (3.3.61)

we want to solve now become

0,35 + [A,, &3] =0 (3.3.80)
8. ®3 + [A,, B3] =0 (3.3.81)
fmSpq)p + [(I)Tm (I)3] = 0. (3382)

First, let us briefly review the essential knowledge of group theory required in this
section. For details, please refer to Ref. [105]. In this section, we will use a Chevalley
basis, which allows us to relate the properties of commutation relations and Killing
forms to root usefully.

Choose all d bases of any compact Lie algebra g that are commutative with each

other and denote them by H;, then H; satisfying
[H;,H;] =0, (i,j=1,...,rank(g)) (3.3.83)

is called a Cartan subalgebra and its maximum number is denoted by rank (g). The
adjoint representation of all H; has a common eigenvector v,, of d—rank(g) eigenvalues

w; (w denotes each root). For a v, w; is called the root of g. The root is a finite set
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of vectors spanning rank(g) -dimensional Euclidean space. Each root has a one-to-
one correspondence with its generator, which we denote by x,. In this case, we can
replace the basis of g with a new d basis of H; and x,. The commutation relation of

the newly chosen generators, including (3.3.83), is

[Hi, Xw] = wiXw (3.3.84)
2(.4.)1'

wrs X—w| = 3.3.85

DYoo) X—w] = ——— ( )

[Xw: XT] = (T + 1)Xw+7'~ (3386)

Furthermore, the Killing form has the property

(Hi7 Xw) =0
(Xws X—w) = %
(Xws xr) =0, (T #w). (3.3.87)

An w string through 7 means a set of roots 7 — rw, ..., 7 4+ qw consisting of root w

and 7. The r,q is the largest integer for which 7 — rw,...,7 4+ qw. If we define the

quantity
2T - w
(T,w) = T (3.3.88)
then
r—q=(r,w). (3.3.89)
holds.

In particular, in the case of SU(3), we consider a v string through « consisting of

two roots of a — v, a because we will use it later. For r = 0,q¢ = 1, we obtain

|

(a,v) = ZMCOSH =1 (3.3.90)

using (3.3.89), where 6 is the angle between a and «. Then, since

(v,a) = 2’|l|’0039 (3.3.91)
«
is also satisfied, the relation
TT — 4eos? = (v, a) (3.3.92)
-



is also concluded. Furthermore, with § = a—~, we get that the commutation relation

between these two is

[X77Xﬁ] = Xas [X—w X—B] = " X—a
[X—v>Xal = X8 [XvsX=al = —X=5;
[Xar X—8] = (1 )Xy,  [X—arXB] = — (7, @)X (3.3.93)

Now we are ready to solve constraint. To solve (3.3.80) and (3.3.81), we first set
up ansatz ®3 = ¢3; H;(= const). In this case, (3.3.80) and (3.3.81) is

[A,, B3] =0 (3.3.94)
[A,, &3] = 0. (3.3.95)

Therefore, A, . also satisfies this constraint if it is a linear combination of Cartan

subalgebras. For A, ., another solution exists. From (3.3.84), we have
[©3, x+] = P3iviXy, (3.3.96)

so if we choose ®3; so that ®3;7; = 0, the constraint is satisfied by writing A, . as
a linear combination of Cartan subalgebra and x+~. Now, when we define a Cartan

subalgebra denoted

27
AN

hy = —"H, (3.3.97)

we can write

1 1 1. 1.
1 = §Z(X’y +X—y); t2= §(X’Y —X—vy), l3= §Zh7’ Y= §Zh (3.3.98)

for the generator of SU(2)xU(1). Here h is another Cartan subalgebra defined or-

thogonal to h, and normalized to

4
hyh) = (hy,hy) = —. 3.3.99
(1) = (o) = —— (3.3.99)
From the above discussion, to satisfy (3.3.80) and (3.3.81), we should choose &35 =
¢3iHi and
A, .= Alli,z (x,2)t; + Ai7z($, 2)ts + Ai,z(l’, 2)ts + B, .(x, 2)y, (3.3.100)

where q)gi’)/i =0.
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Next, let’s solve constraint (3.3.82). Since fp,np is a structure constant of SO(3),

constraint is written as

(D3, Py (x, 2)] = —Pa(z, 2) (3.3.101)
(D3, Pa(z, 2)] = P1(x, 2). (3.3.102)

Here, by defining ® = &, 4 iP5, b = ®, — iP5, the constraint is

(@3, ®(z,2)] = i1D(x, 2) (3.3.103)

(@3, B(z, 2)] = —i®(x, 2). (3.3.104)

Considering a « string through «, we can choose ®3;,a; = i to keep ®3;,7; = 0. Then

®3,0; = ®3;(7; — ;) = —i, which satisfies constraint (3.3.82) by setting
® = d1Xa + P2X5, ® = ¢31X—a + &2)(_/3. (3.3.105)

Since ®, 5 is a real linear combination of generators of Lie algebras, we also find that

@1,2 is
b1 =@}, 2= —05. (3.3.106)
Finally, ®3 is chosen such that ®3;,7; = 0 and ®3;; = 7, so that ®3 is determined
as follows;
1. 1 1
®3 = 5iZ(ha + hp), Z = (2 - 5(7,a>) : (3.3.107)

This ®3 can be identified with the subgroup U(1) of SU(3) if the basis is well chosen,
so the extra gauge field component (w component) is zero, which satisfies another

requirement of the constraint. From the above, the constraint has been solved.

3.4 Heavy and exotic baryons in the Sakai-Sugimoto model

In the Sakai-Sugimoto model, we study the hadron physics by analyzing the 8 + 1
dimensional flavor gauge theory on the D8 brane in the black 4-brane background.
The gauge fields are denoted as A%, where a = 1,...,8 are for the flavor index and
M =0,...,3,206,...,9 for gauge field components. In comparison with actual QCD,
they have utilized five components, Aj,_ 5., while the other four were ignored

when they derived a five-dimensional gauge theory as discussed in section 2.3.1 [10].
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Then the fifth-dimensional degrees of freedom play a role in generating various hadron
resonances of light flavors of u, d quarks in the four-dimensional space-time.

In this section, by utilizing a gauge field that lives in the extra dimension, we
extend the Sakai-Sugimoto model to the SU(2+1) flavor with heavy quarks. We find
that this gauge field transforms to a heavy meson by the method of dimensional
reduction proposed by Forgics and Manton (refer to the previous section and also
Ref. [36, 104, 105]). Thus, by this method, we obtain an action consisting of a
heavy meson and a light meson, where the mass term is supplemented. Starting from
this action, we derive the mass formula for the heavy baryon based on the method
of collective coordinate quantization of solitons. It is worth noting that our mass

formula includes not only conventional states but also exotic states such as P, states.

3.4.1 Effective action with heavy and light mesons

In this subsection, we introduce heavy flavor to the action of the Sakai-Sugimoto
model by using the extra-dimensional gauge field. Therefore, we start the discussion
from the 9-dimensional action (2.3.1). The SU(2+1) (light+heavy flavors) gauge fields
on the probed D8 brane in the D4 brane background R* x S° have nine components,
Ay (M = 0-3,U, ), where U is a radial coordinate of S® and a = 1, @, 01, 0 angular
coordinates of S°. The gauge fields have also flavor components denoted by the index
a, where Apy = A$,;A*/2 and A* are the Gell-Mann matrices. In the previous chapter
and Ref. [10, 11], the gauge field components on S*, A,, were ignored. In the present
work, by regarding A%~7 among A% as heavy mesons, we try to introduce heavy flavors
in the Sakai-Sugimoto (SS) model. Following Forgécs-Manton method, this field is
transformed into a scalar field corresponding to the heavy meson field by dimensional
reduction of the extra dimension S* with keeping the gauge field A%~7.

Since there are two types of terms in our action, this section is divided into two
parts. First, we explain how to reduce the dimensions of the higher dimensional Yang-
Mills gauge theory based on the explanation in the section. Second, we discuss the

Chern-Simons term that we will need.
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The Yang-Mills part

In the present analysis, we treat A, and A, components as a heavy-meson field to
study the system consisting of heavy-mesons and nucleons. Ay, and Ay, components
are ignored for the minimal use of the extra-dimensional degrees of freedom. To reduce
the nine-dimensional theory to four dimensions while preserving the gauge field A2~7
we use Forgdcs-Manton’s dimensional reduction method [104].

We start our discussion with the action (2.3.1);

1
SEBT ~ Ty (2772a')2 /dgxe_‘b\/ —detggMN gFQtr <ZFEED(3)FJ§]%(3)> . (3.4.1)

Here, for the latter discussion, the metric of the D4 black brane is written as the

following 9 x 9 matrix;

(B) 2 0 0
gMN = 0 (2)*2 0 : (3.4.2)
0 0 (9P U298 ()

where U is the radial coordinate of S, R and Uk g characterize the structure of S,
with f = 1 — U} /U? and the Minkowski metric, diag (n*¥) = (—1,+1,+1,+1).
With the generator of SO(3) transfomation &,,,

0 0
_ M — _ iny —
&1=&"0u = cosgoa¢ coty smgpa@,
0 0
& = 52 V= smgpaw — coty) cosgo%,
0
=My, = — 3.4.3
&= &0u = 5, (3.4.3)

which causes rotations around each axis in the (U, 1, ) space as Cartesian coordinate,

from the discussion of subsection 3.3, symmetry equation (3.3.4)

(OMmEN) An + ENONAnr = O Wi + i [Anr, W] . (3.4.4)

94



finally reduces to the following ansatz

sing Ccosp
Wm - (b 9 @ . 9 0 9 345
( ’ siny) ’ siny) ) ( )

Au,U = AH,U (x”, U) ;
Aw = —431 (I’“,U),

A, = ®y (2, U) singy — P3costy, (3.4.6)
and constraint
(@3, 1] = —iPy,
[(1)37 @2] = Z.(I)17
[®3,A4, 0] =0, (3.4.7)

considering the consistency condition (3.3.16), where ®; o are a function of (z*,U),
®3 a constant and we employ a set of ansatz for field configurations.

If we substitute (3.4.5) and (3.4.6) for (3.4.1), we can perform the integration of
the higher dimensional manifold S* (also refer to section 3.3.3), resulting in a five-

dimensional action;

1
Sym = /i/d4scdztr {—iK_l/BFiy — KFiZ

4 4
~5 (Duten)? = G (D0’
16

—8—1K1/3 (i€rst®s + [®,, D)),

(3.4.8)

where K = N.\/2167% = aN.\, N, is a color number, and \ the t’'Hooft coupling
constant. We use the change of variables between U and z by U3 /U3 - = 1+2? = K.
R and Uk g are expressed by Kaluza-Klein mass Mk (2.2.15), which set Mg = 1.

Following section 3.3.4, we solve the constraint (3.4.7), then we have the solutions;

)\1 )\2 )\3 >\8
_ g1 2 3 8
A, .= AMZ; + AM? + AH,27 + AW?. (3.4.9)
1[0 0 & 1[0 00
@:5 0 0 ¢ ,c1>:5 0o 0 |, (3.4.10)
0 0 0 o5 0
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where ® = &, + Py, & = &, — P, and ¢1,2 are complex scaler fields [105]. These
expressions imply that the gauge fields A, . correspond to light mesons and ¢; to
heavy mesons. In fact, this situation corresponds to the separation of the brane
carrying the heavy flavor from the two light branes in the brane picture. The ¢
corresponds to the string which connects the light and heavy branes, thus this can
be regarded as a heavy meson. It is also discussed in Ref. [109] that the mass of the
string on S? is heavier. Substituting the light-heavy decomposed fields (3.4.9) and
(3.4.10) for the Yang-Mills action (3.4.8), we find

1
Sym = /i/d%dz {tr {—iK_l/S’FiV — KFIEZ}

5 (D,9) (D) — SK3(D.9)! (D)

16

16 s (E — 2916+ (¢*¢)2)2} (3.4.11)
& : . 4.

where ¢ = (4%, ¢3) is a two component isospinor [105]. F),, , is the field strength of
the SU(2)x U(1) gauge fields (3.4.9), and D,, . a covariant derivative.

The Chern-Simon part

We consider the dynamics of (anti) heavy meson fields under the soliton background
in the next subsection. It is known that the Wess-Zumino-Witten term plays an
important role in the dynamics of the heavy baryon [57, 58, 90], which leads to, for
example, the contribution of the attraction (repulsion) that the heavy meson receives
from the soliton background. We start with the following Chern-Simons (CS) term
*3introduced in Ref. [87], because this term leads to the WZW term.

N,
Scs /’CI‘]:3

T 2472
trF> =dws (A)
—d [u« (A]—“Q - %AS}“ - 1—10A5)} , (3.4.12)

*3 The Chern-Simon term is defined properly in an odd dimensional space-time. Here following
Ref. [87] we call the CS term for [ trF3.

96



where F is the field strength of A, and the 1-form A is A = Aydae™ = Apda™ +
Apdaz™(M =0,1,2,3,2,5).
The U(1) term of (3.4.12) decomposes

NC 3
Scs =502 /tI‘F

N. 1 A 1.
+ / [3AtrF2 + §AF2} : (3.4.13)

247T2 1/2Nf

where in the second term we have used the Stokes’s theorem to reduce the six-
dimensional integral to the five-dimensional one. If we choose A, = 0 gauge, omit

massive modes, and integrate over z, the first term is

N, 7N, 5
¢ [P~ ——° [t (UdU T 3.4.14
2472 / ' 24077 / t( ) (3.4.14)

which is nothing but the WZW term [87].
Using the instanton solution of Ref. [12], the Atiyah-Manton approach [72] yields a
chiral field U of the following form;

Uls=o = exp ( i (X>§ T/ 8 ) , (3.4.15)

where x is a unit vector, 7 a Pauli matrix, f, the decay constant of the pion and the

function H (x) is given as

“+oo
/ 2/ A (x,2') = H (x) % - 7. (3.4.16)

The choice of s = 0 corresponds to the boundary of the six-dimensional manifold on
which the WZW term is defined. In order for the WZW term to vanish identically in
the SU(2) case, we introduce the heavy meson fields ¢ (x) corresponding to the A\y_7

components into the chiral fields as follows;

_ iHx)%-7/fr ©(x)/fu
Uls=o = exp ( o' (x) [ fu 0 ) , (3.4.17)

where fy is the decay constant of heavy mesons. As we will discuss later, the function

¢ (x) corresponds to the lowest eigenmode of the heavy meson fields ¢ when performed

the mode expanded in the fifth z-dimension.
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Substituting (3.4.17) for (3.4.14) we find

. Nc —_1\9
—22407T2 /tr (UdU )
1N,
= 2 d*zB" (WTDMD - (DM(P)T 90) ) (3.4.18)

where B, is the baryon number current by the soliton,

etwvap

pr=S__
2472

tr [(UﬂﬁyUﬂ_l) (UT('aOéUTr_l) (UﬂaﬁUw_l)} ’
(3.4.19)

with U = exp (iH (x)x-7/fx) [58].

The model action

To achieve our aim, we need to introduce a mass term into the action, which is not
easy to implement in the Sakai-Sugimoto model. We discussed a way to accomplish
this in section 3.2.2, but here, for simplicity, we will supplement the mass term to the

action we will use as follows.
S=8vm+ Scs — m2K1/3¢T¢ (3.4.20)

where the function K'/3 is introduced in accordance with (3.4.11) in consideration of

the curved nature of the fifth-dimension.

3.4.2 Classical solutions

In the same way as section 2.4.1, we performe the 1/)\ expansion and obtain a
solution for the gauge configuration order by order. In the leading order, the SU(2)
€ SU(3) part of the gauge field AS(x, z) and the U(1) part AS,(x, z) are same as the
solution (2.4.45). In the next to leading order, the time-components of the SU(2) and
U(1) gauge fields are the solution (2.4.45),

The solution of the heavy meson fields ¢

Now we find a static classical solution of the heavy meson field ¢(x,z) under the

above gauge field background. For this purpose, we first employ mode expansion with
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a complete set {1, (z)} according to section 2.3.2.
¢ (x,2) =D on (%) (2), (3.4.21)
n=0

where ¢,, are two component isospinors. We can choose an arbitrary complete set
{n, (2)}, and therefore, we choose the one to diagonalize the kinetic and mass terms
in the four-dimensional space-time. The eigenvalue equations that such a complete

set should satisfy are found according to section 2.3.2 as follows,

—a, (K4/3az¢n (z)> Fm2KY3, (2) = Anthn ().
(3.4.22)

These eigenstates 1, (z) correspond to various meson resonances with their eigenval-
ues regarded as their squared masses. If we consider only the lowest eigenmode, the

quadratic terms in ¢ of (3.4.11) become

/{/d‘lx [—QAOT (x) 0@ (x) — m% ' (x) @ (x)] (3.4.23)

where M = 0,1,2,3,2z, mg = /Ao, and we redefine ¢ = g, ¢ = 2/3py. The
mass parameter m is determined such that mpy becomes the heavy meson mass
(D(1870), B(5279)).

Next, we perform a 1/ expansion to derive the equation of motion that ¢ = 2/3pq

must satisfy. We consider the following rescale;

70— 0, GM — \2pM

/{0 = Ay, AM = )\_1/2AM, Q= )\_1/2(,0, (3.4.24)

where M = 1,2,3,z. In the following calculations, we omit the tilde for simplicity.

Then, the action for ¢, S, becomes to the leading order of 1/ expansion
Sy ~ aN /d4x (—meigo — ! (/ dz@DQA?V[) gp) )

where A%, is proportional to identity matrix by substituting the solution (2.4.45).

(3.4.25)

Therefore, to solve the equation of motion for ¢ (x) we can decompose the two com-

ponent SU(2) spinor ¢ (x) into f (x)x, where x is a two component spinor. Then,

99



the resulting equation of motion for ¢ is given as

) 2, . Y2 (22 +1?) B
8Tf+T8rf (3/d2(22+r2+p2)2 f=0.

(3.4.26)

To solve this equation, we discuss asymptotic behavior, where for simplicity, we
rescale the variables as £ — p€. First, at r — 0, the third term of (3.4.26) approaches

1

zero, so we know that f has the asymptotic form f ~ r~". Next, we consider the

behavior in r — co. To do so, multiply (3.4.26) by 72 to get

22/r2 41
PO 0] <3/dw2 (22/52 irli&mf) F=0.

(3.4.27)

If z is small, the integrand of the third term of (3.4.27) becomes

(22/7“2 +1)
(22/r2 41+ 1/7"2)2

Also if z is large, that term becomes smaller than 1. However, in this case ¢ becomes
almost zero, so in this region, the third term does not contribute to the equation of
motion (3.4.27). Therefore, we can set the third term equals 3f. From the above,

flr—oo satisfies the following equation;
r20%f +ro,.f —3f = 0.

Therefore, the asymptotic behavior at r — oo is

f~r =5

We have solved Eq. (3.4.26) numerically satisfying the above asymptotic behaviors.
Considering the classical solution of the gauge field and the moduli space parame-
terized by the collective coordinates of this solution, we will see next that the mass
formula of the heavy baryon can be obtained by performing a collective coordinate

quantization.
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3.4.3 Quantization
Collective coordinates

The collective coordinates of the present model consist of those used in section 2.4.2

in addition to that generated by the introduction of the heavy mason.

e Position of the instanton (X, Z)
e Size of the instanton p

e SU(2) orientation V'

e Two component SU(2) spinor x

where (X, Z) and p are the position and size of the instanton, respectively, and V' the

SU(2) matrix corresponding to soliton rotations. The two component SU(2) spinor is

introduced as the collective coordinate corresponding to the vibrations of the heavy
meson field as follows.

o=rve) (X)) =1 (3.429)

We give time dependence to the classical solutions from these through the collective

coordinates. In the collective coordinate quantization of the gauge theory, we need

to be a bit careful [108], which we discussed in Appendix B. Now, for the classical

solution we have obtained, we introduce the collective coordinate for the gauge field
and for ¢ as follows.

Ay (t,2N) = VA (™ XN (), p#) VT —iVou VT,
(3.4.29)
b (t,a™) = Vo (o5 p(t), x (), (3.4.30)

where V =V (t, xN) is an element of the gauge group SU(2). In the Ag = 0 gauge

with imposing the Gauss’s law:

. 0 0
cl N cl . cl cl _
DYy (X 8X—NAM + pa—pAM — DM<I>> =0, (3.4.31)
where M, N = 1,2,3,z, ® = —V~'V and D§, = Oy + i [AS}, ]. By having the
solution of ® to (3.4.31) [12], spurious motions along the gauge orbits are removed in

the collective motions (refer to Appendix B).
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Heavy meson field

The action involving the heavy meson fields is written as follows;

» =aN, /d4 {/\1( Oipt0'p — (/dwz%) 90)

+A? </ dzp? (Do) Doy — mfnf@*wﬂ
OZN
fh

where the covariant derivative Dy is defined as Dyp = dyp + i.Agp.

+A dizB* (gof Dy — (Do)t gp) , (3.4.32)

It is convenient to introduce the heavy meson field as [110]
b= TG = f (x) 1 (2) TR (1) (3.4.33)

where —/+ correspond to heavy/anti-heavy mesons. Here we perform a 1/mpy ex-
pansion in addition to the 1/A expansion and consider only its leading term. Then,
we substitute the solutions (3.4.30) for (3.4.32), the first line of (3.4.32) is zero and

the second line becomes
[ dtadz 2 (Do (V) Do (V) ~ i x
~ 2mpy / d*zdz f2% T Do . (3.4.34)
Finally, the third line becomes
Ner 4 2 2 3 Al 12 22\ ot o
—( drsin H—f d°xdzAGV° f )X X, (3.4.35)
Tf%
because the only the time component of B* contributes, i.e.

1 sin?H dH
BY = 3.4.36
o2 2 dr’ ( )
where using the rescale 2M — pz™ Agl is

(3.4.37)

a1 11
0 7 8r2a €2 (£2+1)°
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Quantization

By employing the normalization aN, [ d3zdzf?1? = 1, absorbing the coefficient
of the kinetic term of x and integrating over the space of (z*, z), in addition to the

Lagrangian (2.4.77), we obtain the Lagrangian of the collective coordinate x

/dt [Lx +Lz+ L]+ 0O (XN mg'),
.N—'- ~ NC ~T~
L, =+ix'0x £ AFX X, (3.4.38)

where we define constant A as follows;
N./ 4 ) dH e it~
? <ﬁ / drstHsz —a / dgxdonlw2f2>XTx,

(3.4.39)

Before giving the mass formula, we discuss the physical meaning of quantum num-
bers [57]. In the classical solution, the heavy meson fields have the spin 0 and the
isospin 1/2. First, we consider the isospin rotation. By the isospin rotation g; = €%®'T,

the gauge fields are transformed into

Apr— grAmg; "t —igromg;!
= (g1V) ATy (grV) ™" =i (91V) O (91V) ™" (3.4.40)

On the other hand, the heavy meson field transforms
Vx — grVx. (3.4.41)

Therefore, V' carries the isospin, and V' and x have the following transformation

properties:
{ V=aV (3.4.42)
X =7 X-
Second, we consider the spatial rotation. When the gauge transformation which
i6-J

is equivalent to the spatial rotation is written as g; = €', spatial rotation act the

gauge field as follows:
Ay (t, RprP)
=VAS (Rypa"; Ryp X))V —ivV !
= (Ve i0T) A%, (™, XN) (Ve? D) ™! =i (Ve 0T) gy, (Ve 1) ™' (3.4.43)
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where the hedgehog like structure relates the spatial rotation to isospin rotation, and

so the spatial rotation is expressed by g;. Also, the scalar field is transformed into
Vo (t,x) = Vo (t,Runa) = VeIp=Ve @I fpe®Ty (1), (3.4.44)
where T = J + 1 is the grand spin operator. Therefore, V and y have the following

transformation properties:

i0-T ¢ (3.4.45)

V — Ve 01
X — € X-

From the above, after doing the collective rotation, x has the spin 1/2 and the isospin

0. Thus, we should quantize x as fermions:

{f(i, )Zj} = XX+ X% = 6. (3.4.46)

3.4.4 Mass formula

By correcting the term proportional to 1/p? in (2.4.77), our Hamiltonian has the
same form as in Ref. [12]. Therefore, we perform the same quantization procedure,

which leading to the following mass formula,
M =M, + (NQ + N§> ma

(1+1)> 2N2 40a2 A 5
+\/ Tl L (N = Ng) ) Mk

2(ny,+nz)+2
Mk, 3.4.47
+ NG KK ( )

where My is the instanton mass, N /0 the number of heavy/anti-heavy mesons. The

numerical constant, A, is the new term added to the mass formula of Ref. [12] in our
analysis.

The spin of a heavy baryon is represented by the sum of the spin of the instantons
and havey mesons. The instanton spin and isospin are both [/2 from the hedgehog
structure. Also, as mentioned in subsection 2.4.4, when nz is even or odd, the wave
function of nz has even and odd parities. Note that gz~3 = f1x has parity even.

Parameters in or mass are (Mo, Mk, m, fr) and are shown in Table. 3.3. Also,

m is determined so that my is the mass (D(1870), B(5279)) of the heavy meson.
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The pion decay constant is fr, = 61.2 MeV which is about 30% smaller than the
experimental value 93.2 MeV [111, 81]. The heavy meson decay constant fy was
determined to be fp/fr = 1.7 and fg/fr = 1.6 in the charm and bottom baryon
analyses, respectively, with reference to Ref. [111]. For the Kalza-Klein mass, we
used Mg = 500 MeV, which reproduces the nucleon and A(1232) mass splitting,
following Ref. [12]. Having these inputs, there is only one free parameter M, which
is fixed to reproduced the mass of A.(2286). We see that our mass formula differs
from Ref. [31] by a term proportional to A. This term depends on the heavy meson
decay constant fy, while there is no such parameter dependence in the mass formula
of Ref. [31]. From (3.4.39) with the decay constant values as in Table. 3.3, we find
A = 0.078 for charm and A = 3.7 for bottom sectors, respectively.

Table 3.3 Parameters in our model.
M()(MGV) MKK(MGV) m/MKK m/MKK fﬁ/MKK
-572 500 4.385 10.62 0.122
(charm)  (bottom)

Results are summarized in Table. 3.4.

These results have some characteristic properties as follows.

e Asin Ref. [12] and Table. 2.3, this mass formula shows degeneracy of the Roper
resonance and negative parity resonance, which is consistent with the experi-
mental data in the light flavor sector, while this feature is difficult to explain
in the quark model. This feature is also generalized to the hyperon case [112],
hence it is an interesting question whether this feature exists when extended
to charms and bottoms. Possible candidates are A.(2765) and A,(6072), while
their spin and parity are to be determined. In particular, since it has been
argued that the excitation energy of the Roper resonance is flavor independent,
our results are consistent [23] with this context.

e If we expand the mass formula (3.4.47) by 1/N,., the mass splitting of A. and
Y. is proportional to 1/N,. This splitting is related to the spin-spin interaction,
and the N, dependency is consistent to that of the 1/N. expansion scheme.

e Because we have included only the leading terms of 1/mpy expansion, we have
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Table 3.4 Predictions of our mass formula for the charmed and bottomed
baryons in comparison with experimental data where available. Masses of heavy
quark doublet, for instance ¥, and X, are degenerate in the heavy meson limit

myg — OO.
B 1Jj* Il n, n. N Ng ourmodel/MeV exp./MeV
Ae 037 0 0 0o 1 o0 [2286] 2286
. 11T 2 0 0 1 0 2523 2453
12 2 0 0 1 0 2523 2520
Ar 0 0 0 1 1 0 2694 (2595)
04" o1 0 1 0 2694 (2765)
> 13,13 2 0 1 1 0 2931 -
11713 2 1 0 1 0 2031 -
P 41704271 0 0 1 1 4255 4312/4380,/4440,4457
Pro2i i3 1 0 11 1 4664 -
AT o 0 11 4664 -
Ay 02T 0 0 0 1 0 5676 5620
% 11T 2 0 0 1 0 5919 5810
12 2 0 0 1 0 5919 5830
Ap 0 0 0 1 1 0 6084 5912
04" o1 0 1 0 6084 (6072)
> 13,13 2 0 1 1 0 6327 -
1113 2 1 0 1 o0 6327 -
p, 32431 0 0 1 1 11070 -
Pro3i i3 1 0 11 1 11480 -
st o 0 11 11480 -

obtained the heavy quark symmetry (HQS) singlet Ac,b(O%Jr) and the degen-
erate doublet Ec,b(1%+, 1%+). On the other hand, the lowest A.;(05 ) and

Ac,b(ng), which correspond to A mode in a quark model, do not exist in the

present model. This is because the present analysis considers only instanton

excitations, which in terms of the quark model is related to the p mode. The

negative parity lowest mode A. (01 ) and A, (02 ) corresponding to A mode
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should be described by considering the bound state of the instanton as a nu-
cleon and the second lowest eigenmode of the mode expansion (3.4.22). These
are future work.

e Empirically, the mass splitting of A, and A} is about twice larger than that of
A. and X.. In the present study, the value of A plays an important role to make
this order of baryon masses. In particular, for Ay _x, = M(3.) — M(A.) and
Ap:—n, = M(AY) — M(A:), we have Ag, A, < Ap-_a, in accordance with
the experimental data, while the formula in Ref. [31] results in the reversed

relation. Let B be

40am?A
B=1- N, (3.4.48)
For B =0, we find A, _r, = Ap-—a,. As A becomes smaller (i.e. B becomes
larger), As, A, becomes larger, and at some point, Ax«_5, equals 2Ax, 4, .
Recently, in Ref. [33], they have realized the same mass ordering as ours by the
correction to the mass formula of Ref. [31], as a result of their analysis of the
subleading term up to 1/mpy.

e Our mass formula can also predict the recently reported P.(4312/4380/4440,4457)states.
Similarly, we predict the masses of the hidden bottomed pentaquark states,
which have not yet been observed (denoted as P, in this paper). However, due

15+t

to the instanton hedgehog structure, our mass formula cannot generate 353

3.4.5 Conclusion

In this section we discuss how to analyze the heavy baryon by the Sakai-Sugimoto
model and derive the mass formula. We describe the heavy baryon as a bound state
of instantons and heavy mesons corresponding to nucleons by interpreting the extra-
dimensional component of the gauge field as a heavy meson, which was ignored in
Ref. [10]. The heavy baryon is described as the bound state of the instanton and
heavy meson corresponding to the nucleon. In this process, we obtained the action
consisting of the light meson and heavy meson fields that form the instanton by using
the Forgacs-Manton method [104, 105] as a method of dimensional reduction while
keeping the extra dimensional component of the gauge field corresponding to the

heavy meson. To obtain the mass formula, we introduced a new collective coordinate
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for the vibrations of the heavy meson and performed the quantization of the system
according to the method of collective coordinate quantization. When quantizing our
model, as in Ref. [57], heavy mesons behave as heavy quarks, which was referred to
as transmutation of quantum numbers in the intrinsic frame of the hedgehog instan-
ton [31]. Finally, we compared the obtained mass spectra with the experimental data
and confirmed that our results are consistent with the experiments.

In our model, we have considered the limit of the large N. and the t’Hooft coupling
A as in [12], and also took the limit of large mpy. We have treated the only lead-
ing terms of 1/my, so we have obtained the HQS singlet Ac,b(O%Jr) and the doublet
Ec,b(1%+, 1%+). Also, our mass formula has yielded the degenerate Roper like and odd
parity excitations. Moreover, we have realized the mass ordering Ay, ., < A A —Ae
which is failed to reproduce in Ref. [28] in accordance with the experimental data. Fur-
thermore, our model has hidden charmed pentaquark states P,.(4312/4380/4440, 4457)
reported recently [113, 114]. Similarly, we have predicted the masses of hidden bot-
tomed pentaquark states not yet observed.

As a further development, the analysis performed for nucleon resonance in section
4.3 may be applied to heavy baryons. The Forgacs-Manton method [104] used in this
study may also be applied to the study of neutron stars with hyperons. Our recent
work has shown that this method can be useful in considering ansatz for introducing s
quarks in the study of neutron stars by holographic QCD. This is another interesting

future work.
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Chapter 4.

Properties of nucleon resonances

In this chapter, we use the Sakai-Sugimoto model to calculate the electromagnetic
transition amplitudes and decay widths of several low-lying nucleon excited states.
These observables strongly reflect the internal structure of hadrons, leading to a fur-
ther understanding of the properties of hadron resonances and a deeper understanding
of low-energy QCD. In particular, since the Sakai-Sugimoto model represents hadron
resonances by utilizing the geometry of extra dimensions, it is useful to investigate
the dynamical properties in order to verify the validity of this picture.

First, in the next section, we define the chiral current. In the Sakai-Sugimoto
model, the current has been defined from two points of view. Therefore, we discuss
these points and review two definitions. After that, in section 4.2, we will explain the
analysis of static properties of nucleons, and finally, in section 4.3, we will introduce

our recent works on the analysis of dynamical properties of nucleon resonances.

4.1 The definition of the chiral current in the Sakai-Sugimoto

model

In order to investigate the dynamical properties of nucleon resonances, it is neces-
sary to define the chiral current. In the Sakai-Sugimoto model, the chiral current is
defined using the GKP-Witten relation. However, because this method defines the
chiral current in the boundary of the bulk theory, the matrix element of the current by
baryon states vanishes in the case where there is a BPST instanton solution (baryon)

with SO(4) symmetry in a four-dimensional space. This is attributed to the fact that
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by procesure of the 1/X expansion, we ignore the effects of the warp factors h(z) and
k(z), and obtain the classical solution. Therefore, taking into account the effect of the
warp factor, we determine the asymptotic behavior of the soliton solution to allow the
calculation of well-defined currents. Alternatively, by considering the bulk theory as
a five-dimensional hadron effective theory, we can have another definition of currents.
The former is a proper method from the viewpoint of AdS/CFT correspondence,
which has been confirmed to explain the nucleon properties well [16]. On the other
hand, the latter method, which also reproduce the nucleon properties well [13], has
an unclear connection with the AdS/CFT correspondence. However, considering that
the five-dimensional hadron model proposed in Ref. [77] leads to the same action as
the Sakai-Sugimoto model, the bulk theory of the Sakai-Sugimoto model is expected

to work as a hadron effective theory, which ensures the validity of the latter current.

4.1.1 The chiral current in the GKP-Witten relation
The GKP-Witten relation

The GKP-Witten relation regards the field in the bulk as external fields of the
gauge theory existing at its boundary and allows the analysis of physical quantities

coupled to it [115, 116]. Here, we defined the external fields as follow;
Ag (2t 2) = A (2", 2) + 6 Ay (29, 2) (4.1.1)

which are related to the left and right gauge fields in the four dimensional space at

z — F00,

5 Ay (27, = +00) = Ap (%)
dA, (2", 2 = —o0) = Agr, (27) .

Substituting this field into the action, the coefficients of the first order in Az, Ag,
is identified with the left and right currents J}', J} with the sign properly taken into

account,

Z=—00

K / d'z [2tr (847K (2) ]—“ﬁlz)] e )

= —2/d4xtr (AL Jp + AruJg) - (4.1.2)
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where

Tl =—k (k (z)]-"ﬁi) |

z=-4o00’
Th =4k (k) FL) | __. (4.1.3)
The vector and axial-vector currents are then obtained by
TE=T+Th=—r[k(z)FL] "~
Th=T8 —Th=—r[o(2)k(z) FiL] (4.1.4)
with g (z) = (2/7) arctan z.
The baryon number current is defined as
Ry _im[l«(z)ﬁﬂzrzm. (4.1.5)
BNV N 2=—o00
Then, baryon number density is given by
2 . 2 o ]E= o0 2 -
7o — b= _EH[MZ)FO»ZL:_OO - _Em/dzaz (k(2)F%%).  (4.1.6)
Here, by using equation of motion, it becomes
1
Jy = ~ 612 /dzeOMNPQFf\}NFI‘;".Q + (total derivative). (4.1.7)

Furthermore, integrating this in space, it coincides with the instanton number, as
expected.

In the following, we will derive the four-dimensional effective action including the
external field by mode expansion and see how Jv,,, and J4,, are written by the
meson field, which is a component of this action. By using Vv 4, = AL, £ Ar,u,

this effective action is written as

Sloar,ar) = —2/d4xtr(Vv,uJé‘ +Va,uJh). (4.1.8)

Now, as in (2.3.29), we perform the mode expansion of the gauge fields as

Zv )21 —l—Za z)h2n (2 (4.1.9)
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then substitute it into the action to get the 4-dimensional action

Sloas.ar) = /d49€2tr (Vv,u D 9ot + Vay ( > Gana; + fﬂé?MH)),
n=1 n=1

(4.1.11)

where f, is the pion decay constant and g,» and g,» the decay constant of the vector

and axial vector meson, respectively, giving as
K
Jn=2 g Gon = —26(k(2)0:%2n-1)|2=+00, Gan = —26(k(2)0:12n)]2=—co-
(4.1.12)

It should be emphasized that in the Sakai-Sugimoto model, these constants are not
parameters but quantities determined by the functions ,,(z) of the complete system
and the warp factor h(z),k(z), which reflects the QCD information. For later use,

the following expressions are also given;

gyn = Agnlﬁ/dzh(Z)Q/}in, GJarn = /\ini/dzh(z)@bgnlﬁo. (4113)

From this action, by reading Jv,, and J4,,, we obtain the following expression,

jV,u - - ngnvZ7 jA“u, = _f'rral,l,l_[ - Zganaz, (4114)
n=1 n=1

which show that vector currents are denoted by vector mesons only, indicating vector

meson dominance.

The asymptotic behavior of the instanton solutions

The above current defined by z — oo vanishes when the BPST instanton solution
with SO(4) symmetry is substituted. This is because the effect of the warp factor
in the z direction is neglected to solve the classical solutions at the large A\ limit.
Therefore, in the following, we will consider asymptotic behavior in z — oo of the
instanton solution.

We will determine the asymptotic behavior of the soliton solution, which allows

to evaluate a well-defined of the U(Ny)r x U(Ny)g chiral symmetry. Without 1/\
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expansion, the equations of motion are

N,
2K [Du(h(Z)FV“) + ,Dz(k?(z)]'-zﬂ)] + WG“NPQR.FNP}-QR =0, (4.1.15)

z NC vpo
2H’DM<IC(Z).F'M ) + 32?6‘“ “ fuvfpa = 0, (4116)

with N, P,Q, R =0,1,2,3, 2. Let us consider time-dependent gauge configuration in
the moduli space. We have already discussed in section 2.4.2, we can give a time

dependence to the classical solutions of the gauge field as follows;
Ay = VA,V —iVoyu V1, (4.1.17)
where V' and W are related as
O =W IAAW —iW W = V1V, (4.1.18)

In the following transformation of the equation, this notation is more convenient, so

we will use V (¢, Z, z). Here, it is useful to perform the following gauge transformation;
Ay — AS = GALG™! —iGO,G 71, (4.1.19)

with G = Wg—'V~!. Then, the gauge fields are
A§ = —i(L = fOWW ! +i(1 = fO)XMW (g oug)W ™, (4.1.20)
ASr = —i(1 = F(€)W (g™ Oug)W 1, (4.1.21)

where this choice of gauge is helpful in considering asymptotic behavior.
Now, we treat the U(1) part as a perturbation under the background of the gauge
configuration of the SU(2) instanton with asymptotic behavior. The leading contri-

bution to the U(1) part is obtained by solving the following linearized equation of

motion.
9y M A0 = Wi @ i4p2)4 (4.1.22)
O OM A" = 7T2?;/\ @ _’i4p2)4 <X1 + X?a(ewjxj — 62 + pf) (4.1.23)
oM A, = WQ?;A G —i4p2)4 (z+ Xa;a + 'é—pz) (4.1.24)

Here we have substituted (4.1.20) and (4.1.21) into the equations of motion for (4.1.15)
and (4.1.16) with the warp factors k(z) = h(z) = 1. We also neglected the terms
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involving 93 because we are interested in slowly moving solitons. The regular solution

is found as follows.

A 1 1 4 1 2 4 2p?
02——[ - } - S 2 (4.1.25)
8m2al £2 (&2 4 p?)? 8m2a\ (&2 + p?)?
~ 1 52 + 2p2 .. p2 Xa . . pxz
A, = — X S (Mgt — 5 4.1.2
S e s+ g (g € =+ ) a0
R 1 52 + 2,02 . p2 Xaxa /.)Z
A =— Z pz 41.27
8m2a\ [(52 + p?)? (&2 + p?)? < 2 p )] ( )

The solutoins (4.1.26) and (4.1.27) were ignored when obtaining the mass formula
because they are subleading in the 1/)\ expansion but kept here because they are
leading contributions to the U(1) current.

So far we have considered solutions valid in the £ < 1 region. Now we consider how
to find solutions in the region of 1 < €. The key observation is that all components
of the gauge field are suppressed in the p < £ < 1 region in the large A limit. This
implies that the nonlinear terms in the equations of motion can be neglected. Thus,
our strategy is to find a solution to the linearized equation of motion in the p < &
region and smoothly connect it to the previous solution in the overlapping region

p < & < 1 (much larger than p but much smaller than 1). At p < § < 1, considering

1 &2 +2p° 1 11
— 4.1.28
8m2a\ (&2 + p?)? ~ Dan a2 £2 ( )
the gauge field can be approximated as follows;
) 1 g
~__ "t fa 4.1
AO 2a\ (.@,Z,X,Z) ( 29)
. 1 PP (XY s O 0 p 0 P

Az:_[ 7 _{_(zag : _520,_) __}} at : ;X,Z

2 T\ o 9z) * paxis|CT @ X 2)
(4.1.30)

2 L, p(x* 0 p 0 flat (= . ¥
AZ:—[Z —(— ——>] (7 2 X 7 41.31
oan 2T 3 \(Taxa t,a7) 16T @ X 2) (4.1.31)
AS~ am? p2iWW LG (7, 2 X Z)
. 0 o) .0 >

) 2 2 a —1<Xz<m' _ az_) VA > flat [ =2 -X. 7

2 p* W W €iaj 5% o 57 + 3xa G (%2, X,7)
(4.1.32)
AS~ 2722 (WTZW—1i +ei WT“W—li)Gﬂat(f %=X, 2) (4.1.33)

i — EYA ija an )~y ) -1

AC~ —QWQPQWTGW_la;;Gﬂat(f,Z;X,Z), (4.1.34)
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where the function,

= 1
flat (= .. —
is the Green’s function in the flat R*, which satisfy
MG (2 2 X, Z) = 6%(Z — X)d(2 — Z). (4.1.36)

We can verify that, as expected, these gauge configurations also satisfy the non-

sourced and linearized YM equations and the gauge condition;

aﬁpaﬁ = 85Fa,8’11near =0 (4137)
%Ay =0, 9°AS =0. (4.1.38)

In order to connect the solution to the large £ region, we have to consider the effect
of the curved background. In this region, we only need to generalize (4.1.37) and

(4.1.38) to the case of nontrivial warp factors as follows,

h(2)0rA; + 0. (k(2)0.A;) =0, 92A, + 0.(h(2) 19.(k(2)A.)) =0, (4.1.39)
h(z)éﬁA,iG + 9. (k(2)0,AS) = 0, (?iAZG + 0.(h(2) 710, (k(2)A9)) = 0, (4.1.40)
h(z)0" A, + 0. (k(2)A.) =0, h(2)0"AS + 0. (k(2)AS) =0, (4.1.41)

where, in this case, all gauge field components are suppressed again, so the nonlinear

terms can be neglected. To solve this, we need to define two Green’s functuons in the

curved space,

G(# X, 2)=r Y _ hn(2)n(2)Yn(|7 — X|) (4.1.42)
H(#, % X,Z) =k ¢n(2)pn(Z)Ya (|7 - X]), (4.1.43)
n=0

where the 1,,(2) and ¢,,(z) are the complete sets defined in the mode expansion, and

Y, (r) is the Yukawa potential with meson mass m,, = v\,

v 1 e*\/xr 4144
" (r) = — ’ 1.
(r) 4T 7 ( )
which satisfy

(07 = \)Yo (17 — X|) = 8°(7 — X). (4.1.45)



Here, It is no coincidence that the complete sets of mode expansions were used here.
Recalling that the discussion of mode expansion also dropped the nonlinear terms

(section 2.3.2), it is easy to see that (4.1.39) and (4.1.40) is, for instance,

b Un D2V, + h() O (k)00 Yo = O (4.1.47)
= (0% — Ap)Yn = 0. (4.1.48)

Using (2.3.17) and (4.1.45), one can easily verify

h(2)02G + 0, (k(2)0.G) = 6°(& — X)d(z — Z), (4.1.49)
O2H + 0, (h(2) 10, (k(2)H)) = k(z)"*6%(Z — X)d(z — 2), (4.1.50)
9. (k(2)H) + h(2)d,G = 0, (4.1.51)

where we used the condition
kh(2) Y Un(2)n(Z) = 0(2 = Z), Kk(2) D én(2)¢n(Z) = 6(z — Z) (4.1.52)

for the complete system. This condition ensure normalized orthogonality of the eigen-

functions for v, and ¢y, as follow,
[ @zt~ 2) = y(2)= i_oj [ @b n(2)

- i St (Z) (4.1.53)
[ @620~ 2) = gu(2)= i [ R0 (021602

= i Spm®n(Z). (4.1.54)

Thus, the completeness condition (4.1.52) can also be used in the case where n is a

sum of even numbers or odd numbers only, where we will use these conditions later.
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From the above, the solution is given as

" 1 L =

AOZ—EG(JI,Z,X,Z),

ﬁ_l P (X iaja_iaa p 0 L

A= g {X 3 (2 (e oxi az) T pax G<$’Z’X’Z>’

o 1 . p2 Xa 0 0 0 N -

A, = — | Z+ = | = ~— || H(Z,zX,Z), 4.1.
2a)\{+2(2(9Xa+paZ (7.5 %, 2) (4.1.55)

Ay = 42 p%iW W@ (f,z;ff, Z>
D 0 0 >
2 2 ayry—1 % aj _ sta eSO
2 p W W (X (e X7 4} aZ>+ZaXa)G(:U,z,X,Z>,

! 9 .
o — 9.2 2 ayry—1 iaj __ sta = .
A; 2 p* W W (e X7 0 —82)G<x,z,X,Z>,
0

0oXea

A, = 202 p*Wr' Wl —H (f,z;)z,Z) , (4.1.56)

where the index ¢ runs 1 - 3.

The chiral current

We substitute the classical solution into the definition of above chiral current. In
the following calculations, since we consider wave functions in low-lying states, Z can
be considered as Z ~ O(A" V2N, L/ 2) > 1, from which we can approximate that
hZ) = k(Z) = 1. The eigenvalue equation satisfied by the complete sets 1, (z) of

mode expansions is then approximated by
—0%20n(2) ~ Mt (2). (4.1.57)
Using this and (4.1.51), the following approximation holds;
OzH +0.G ~0, (0? 4+ 0%)G ~0, (0? +0%)H ~0 (4.1.58)

By taking this approximation into account, the field strength is given as

£ 2; [ZE’) H- X19.G - ”i‘ (9300 — 5702V H — eiajajaz(;)] (4.1.59)
Fo. 21200 (p*Wr*W )0, H — 4x?p?iWW ~16.G

2w P W W X (9,0, — 6702 H — €999;0.G) (4.1.60)
Fy, =212 p*Wrew 1 (([iiaa — 5”8?)H — emj8j3zG). (4.1.61)
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With (4.1.13), GY/A(Z,r), HV/4(Z,r) are defined by

GV (2,7) = [k(x)0.G) _" " = ngnw% 1(Z)Yan(r) (4.1.62)
G (Z,r) = [o(2)k(2)0.G) "% = — Z Ganan (Z)Yan (1) (4.1.63)
HY(Z,r) = [k(z)H]"~' = sznlaz%”—l(Z)YZ”(r) (4.1.64)

HAZ,r) — [l/io(Z)k:(z)H]zj_rZ - —21?%% =3 800 (2)Van 1)

(4.1.65)
From these, The vector and the axial vector current are obtained as follow;
. N,
IV :7GV7A (4.1.66)
Ji _Ne Z0.HVA _ XigVA _ pPX° ((8 8; — 5992 H"VA — mjaGV,A)
V,A — 2 (2 4 alz j € g
(4.1.67)
Ty a =272k (W WO HYA — 2% W WGV A
—pQWT“W_lXi((aaai — (5ia8]2)HV’A — emjajGV’A)}
(4.1.68)
Ji 4 ==20kp* Wr W ((020; — 6“07)H A — €99;GV4), (4.1.69)

where, since 19,_1(Z) are an even function of Z and v9,(Z) an odd function of Z,
GV, H* are an even function and G4, H" an odd function.

4.1.2 The chiral current in the 5-dimensional effective theory

Chiral symmetry in the Sakai-Sugimoto model

Now, we define the chiral current as of the Noether current of chiral symmetry from
the point of view of the effective theory of hadrons [13]. Therefore, we first discuss
the chiral symmetry of this model.

The pion field of this model is defiened by the Atiyah-Manton construction [72] in
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gauge condition Ay (z#,2) — 0 (2 — £00) as follows;

U(z") = Pexp( - z/::o dzA,(x*, z)), (4.1.70)

where the pass ordering is product of left at z — +o00 to right at z — —oo. The chiral

transformation of the pion field,

U(z") = gLU(z")gr, (4.1.71)
(9, 9r) € U(Nf)L X U(N¢)r,

is realized by a gauge transformation of the flavor SU(Ny) gauge field as follows;

Anv — gApg t —igdygt, (4.1.72)
gz, 2) = {gL (2= +0) (4.1.73)
gr (z = —0)
with g(z#,2) € SU(Ny¢) and constants (gz,, gr)-
Noether currents
The infinitesimal local gauge transformation,
deAn (a2, z) = e(a#, 2)Dp((2#, 2), (4.1.74)
leads to the following Noether currents;
I = e + I8s¢ (4.1.75)

T rre (@, 2) = =2ntx (h(2) F¥/ Dy + K(=) FHD.0),
JéMg(fB, z) = —Qlﬁk(z)tr(f-'ZV’DzC)?

N,
J%C(xz) = —WEMNPQRJCI‘({]:NP, FQR}Q)

with u(NNy) Lie algebra ((«*, z), with a function e(z#, z) vanishing at infinity, and the
covariant derivative Dy;((z#, z) = Oy + i Ap¢. Because of the chiral symmetry of
the Sakai-Sugimoto model is related to the SU(Ny) gauge transformation, The chiral

current in the 4-dimensional space-time is defined as

+oo
j¢ (@) = / dzJ¢ (v, 2). (4.1.76)

— 00
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Here, to satisfy the 4-dimensional current conservation law, we impose the following

boundary condition,
Jé(w, 2 — Fo0) = 0. (4.1.77)

With unit and Pauli matrices tc = 1/2(1,7%) (C =0,1,2,3) and

1 1 1 +
Y1 (z) = - £ —arctanz — (2 = o) ) (4.1.78)
2 7 0 (z = Foo)
we adopt as ( the following one:
((z,2) = Y (2)tc, (4.1.79)

then the expression of our current (4.1.76) leads to left/right current j7 / r(2); There-

fore, the vector/axial-vector current is then defined as follows;

i =tC + ke, (4.1.80)
e e o (4.1.81)
(4 (@) = jiGto = JL/R +jL/R£ ) (4.1.82)
Here, we define
Yy (2) = ¥4 (2) +h-(2) =1 (4.1.83)
Ya(z) =4 (z) —v_(2) = %arctanz, (4.1.84)

then the vector / axial vector current are written by

J“j/A’ —2irtr{ (h(z)[F"*, A] + k(2)[F"*, A:])ta fobv)a(z)

dipya(2)
dz

L tNPQRG ({ Fap, Forta) by a(z). (4.1.85)

—2kk(z2)tr(FH*t,)

N,
 64n2

Because of the AZCIZ = 0 in the static case, the baryon number current become

. 2 - o0 .
@) =@ = [ a=dy
N MNPQR >
=— % dztr(FNpFQR), (4186)

which identifies with the topological number current of instanton solutions.
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The 1/\ expansion of the current

In the following, we will carry on the discussion by using the 1/\ expansion order
by order. Therefore, we will consider rescaling the current by A\. With @V, A(z) and
k= O()\), by using the following rescaling,

oM S N2 M A = N2 Ay,

Fun = AFun,  Forr — A2 Four, (4.1.87)

the chiral current are written as

Pl 2) =20\ tx( S Four, Awlt v, a(2) + r(Foet) 2204
M=i,z
- 6{4\[7:2 Nenrnpott({Fun, Frotta)dv,a(z)
) ) i
anfir((= S Fo AT 4 2P Al a2) + 2Pir(Fiat) A
J
(4.1.88)
i _ 3/2 , 7 , d@EV,A(Z)
Topnale2) =20 {tx( D7 [Fiar Awalta ) Bra(e) + tr(Fista) 525 |
M=i,z
1/2 & e 2r 7 2 ‘ dIZV,A(Z)
—2mN 2t (= S D Fu A+ 2 A ) Bra(2) + 22 te(Fiat) =5 |
J
N \3/2 -
]2 eijktr[(fjk}-o,z + 2-7'—0j~7:kz)ta]¢v,A(z)a (4.1.89)

where the gauge fields (4.1.20), (4.1.21), (4.1.25), (4.1.25) and (4.1.25) rescaled as

follows;

AF = —i(1 = FOWW ™ +i(1— f() XMW (g™ oug)W ! (4.1.90)
AG, = —i(1— F(E)W (g Darg) W (4.1.91)
Ay = 873% éz j: ig; (4.1.92)
A, = —873% [ éiii@; ﬁ(%(ewﬂjj s+ pji)] (4.1.93)
i, = —873% [éz j: ig;z' t fPQ)Q (Xa;a + p—:)] (4.1.94)
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In the following calculations, we will proceed with the analysis by considering only
terms that give the main contribution to the 1/ expansion for a certain physical
quantity. For some physical quantities, the contribution of the first term as leading
vanishes, hence the second and third terms of J‘]y/ A which are subleading of the 1/
expansion, provide the main contribution.

We give some comments on what we learn from the above rescaling for later discus-
sion. First, we find that the effect of the warp factor is a contribution from subleading
in both the time and spatial components of the current. Therefore, unless the con-
tribution from the leading term is zero, we can treat it as k(z) = h(z) ~ 1. Next,
regarding the contribution from the CS term, on the one hand, it contributes to the
leading term of the time component of the current. On the other hand, it gives a sub-
leading contribution to the spatial component. The spatial component of the U(1)
gauge field can be set zero in the calculation of leading order, since it only contributes

to the CS part of the current. These facts are employed in the following calculations.
4.1.3 Some comments for two definitions of current

The relation between the two current definitions

First, we discuss the connection between the definitions of the two currents. The

5d Noether current [13] is transformed as follows,

JE (7, 2) ==2K0,tr [h(2) F* (z, 2)¢(, 2)] — 260, tr[h(2) F** (2, 2)¢(x, 2)]
—tr[(EOM term) x ¢(z, 2)]. (4.1.95)

With the current j/ /R(x) based on the bulk/boundary correspondenc, j¢(r) =
[ dzJE (z, 2) is written by

5é(2) = tr(CLif (@) + Crif (@) + Oux™ (x) + (EOM term), (4.1.96)

where x*¥(z) is the following antisymmetric tensor,

X =—x"" = -2k /OO dztr [h(2) F" (2, 2)¢(z, 2)]. (4.1.97)

— 0o
We will remark on what can be learned from the above relation. First, the identity

0,0, X" = —0,0,x"" = 0 indicates that the difference between the two currents
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does not contradict the conservation law of currents. Also, if the surface term coming
from 9;x% can be ignored, then we can show that the conserved charge, such as
the baryon number defined by @ = [d®zj°(x), leads to the same result with the
two different definitions. Similarly, global quantities such as axial vector coupling,
which involve spatial integration of currents, do not depend on the definition of the
two currents. However, since local currents take different forms from each other, the
two currents lead to different results for physical quantities, for example, the isovector
magnetic moment py—; (4.2.27) and isospin charge density, to which the local currents

contribute explicitly.

Gauge non-invariance of the current

Next, while the current j¥ / r(z) based on the bulk/boundary correspondence is
gauge-invariant from the above expressions, the 5d Noether chiral current is generally
gauge-dependent. As a result, it is gauge-dependent concerning physical quantities
that depend on the local current form. It is still unknown how this problem should
be solved. Here, conserved charges, such as baryon number, take the same form in
both definitions, as described above. Therefore, these quantities can still be defined
as gauge invariant. Related to this, there is another problem that ((z, z) cannot be
uniquely determined. The quantity ((x, z) only needs to be any function that satisfies
the boundary condition (4.1.73) and takes values on U(Ny). Thus, using this non-
uniqueness, we see that the current is gauge-invariant under a simultaneous gauge

transformation

Ap— gAmg ™" —igoug™!
(—g¢g™! (4.1.98)

In this thesis, we have already mentioned that we determine this ((z, z) to reduce to
the chiral current of the Skyrme model by dimensionality reduction. Considering that
the hadron effective action of the Sakai-Sugimoto model has the same structure as
that of the phenomenological model using hidden local symmetry proposed by Son-
Stephanov [77], the above treatment seems reasonable. However, it cannot be claimed

that this method follows the dictionary of gauge/gravity (string) correspondence.
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4.2  The static properties of the nucleon

Using currents and classical solutions obtained above, in this section, we review
the analysis of static properties of nucleons. We have introduced two definitions
of currents and summarized the results obtained from each current. Note that the
choice of parameters is different for each analysis of the two currents. When using
the chiral current obtained from the GKP-Witten method (hereafter named GKP-
Witten current), we have chosen (k, Mk k) = (0.00745,940 MeV) to reproduce the p
meson mass (776 MeV) and the pion decay constant (92.4 MeV) following Ref. [16].
On the other hand, when using the chiral current as a 5d Noether current (called 5d
Noether current), we consider the nucleon mass as the classical mass M of the soliton
according to Ref. [13], and choose a parameter set (k, Mxg) = (0.0243,488 MeV)
that reproduces the mass of nucleon (939 MeV) and the mass splitting of N(940) and
A(1232) (293 MeV).

4.2.1 Baryon number current and isoscalar mean square radius

We have considered baryons as instantons in this doctoral thesis. Therefore, the
baryon number corresponds to the topological number of instantons. Since the topo-
logical number current is defined as

JE(x) = ?Q%GONPQR /OO dztr(FnpFQR), (4.2.1)

™ — 00
we therefore expect the baryon number current to be defined in the same form. The
baryon number current obtained from the GKP-Wittten current coincides with the
instanton topological number current, as shown in (4.1.5). A similar fact can be
derived from the baryon number currents obtained from the Neother currents, as
shown in (4.1.86).
The baryon number density is defined by

pp(r) = 4mr? (J3(r)) . (4.2.2)
Using this, the isoscalar mean square radius is written by
(r),_, = / drr2pp(r). (4.2.3)
0
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In the following, we will calculate the baryon number, baryon number density, and
isoscalar mean square radius for each current.
B GKP-Witten current

We confirm that the baryon number B = 1 is actually obtained by substituting
the classical solution into the baryon number currents. First, by substituting the
asymptotic solution(4.1.56) and (4.1.55) into the GKP-Witten current, we obtain

Jh == gutban_1(Z)Yan_1(r). (4.2.4)

The baryon number is computed as follows,

Np =3 gun (Yan1(2)) - /O drdmr®Yan 1 (r)) = AZZ"I (an—1(Z))
=3 s / " deh(2) a1 (2) (o (2)) = { / T db(e—2Z) =1, (4.25)

wheret he shorthand notation (O) = (B|O|B) is used hereafter, with attention to

normalization, which is defined as follows;

<¢2n—1(Z)> = <nZ|¢2n—1(Z)\nZ> (426)

by using (2.4.124).

The baryon number density is
r) =1 gon (an_1(Z)) eV 2tr, (4.2.7)
n=1

therefore, the isoscalar mean square radius is defined by

(1), = /O " drr? pp(r) = 62 Ag“" (WYon_1(2)) (4.2.8)

2n—1

Numerical calculations show that this value is estimated to be

\/ (%) 1= ~ 0.785fm, (4.2.9)

which roughly reproduces the experimental value of 0.806 fm.
M The 5d Noether current
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Substituting the classical BPST instanton solution for the 5d Noether current, we

obtain
jo ($ Z) = h iJO (,T Z) = — L EMNPQ /OO tr({FMN FpQ}z)
By o N TV 3272 . ’ 2
4 > 15 pt
== 3536k /OO tr(FijFr.) = 87 (12 1 P27 (4.2.10)

where the contribution from Fij, F,, is negligible here, because the spatial integration
leads to zero. We also dropped the terms involving Z in order to take the expectation
value with the nucleon state. Furthermore, the effect of the warp factor is treated as
h(z) ~ k(z) ~ 1 because it is a contribution of sublearding in the 1/\ expansion. If
we spatial integrate this, we get

N /004 2gp 0P (4.2.11)
= mredr =1. -4
*= 7 (72 + )72

By the same calculation as (4.2.8), the isoscalar mean square radius is evaluated to
be

V) —o =/ @ = 0.82fm, (4.2.12)

which is larger than the result by GKP-Witten current. Here, the expected value of

p? can be obtained analytically as follows;

0o _ 2 _2Mg 2
() = |p2|n - fo p3dpp2p 24+44/1+N2/5 =5 P
' ' Jo dePP_2+4\/mef%p2

6 N2
:1(;7/;2% (1+2\/1+?C>. (4.2.13)

by using (2.4.122).

4.2.2 Charge density

In this subsection, we discuss the nucleon charge density, which is written as

1
ng(t, I) = J&a:B(t?m) + §J%(t,.’l,’), (4214)
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with the isospin density J{,_;(¢, ) and the baryon number current. Therefore, the

electric charge is calculated as

me:/d%ﬂgawy (4.2.15)

As a result, Qem = Is + Np/2 should be obtained. Also, the electric charge radius is
given by

(r?), = /d?’xTQng(t,:v). (4.2.16)

B GKP-Witten current
Since we take the expectation value with the nucleon state, we only need to consider

the even function terms of Z in the current JO (t,z). Therefore, the current matrix

element is
. Coy Iy o >
(80) (kW) = 2) 3 gon Wana (2)) [ 472 Yana ()
n=1 0

N 1

I+ - =+, (4.2.17)
2 2

where I, = —idn?kp*tr(7*WW 1) and the same calculation as (4.2.5) was performed.

Thus, as expected, Qem = 1 for the proton case and Qe,, = 0 for the neutron case.
You can see from the calculation of (4.2.17) that we can check (r?),_, = (r?),_;.

Therefore, the electric charge radius is obtained as

<7“2>E’p = <r2)120 = (0.785 fm)? (proton) (4.2.18)
<7°2>E,n =0 (neutron), (4.2.19)

where the experimental values are <7“2>2ﬂx’1; ~ (0.875 fm)?, <7“2)2§’i ~ —0.116 fm?,
which fails to reproduce neutron data.
M The 5d Noether current

The electric charge radius can be written as the sum of the isoscalar mean square
radius and the isovector mean square radius discussed in the previous subsection.
Therefore, here we discuss the isovector mean square radius before considering the

electric charge radius. The five-dimensional isovector current is written by

Iy alw,2) = 26tx| (D0 z’[%Aﬁ&,,A}iﬂp(t)— S iP5, AL )W () W (1))

:i,Z M:’L,Z

(4.2.20)
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By using

. cl ® c 8 =
> i[D§y, ASy] = = F()*ta, (4.2.21)
M=i,z P
the isovector current is calculated
3o (¢ m):/oo dzJy (= z):ip—QI (4.2.22)
V,a 5 e V,a ) 47_(_ (7“2 + p2>5/2 a- /N

Therefore, the isovector mean square radius is defined by

B (b0,
T T b)),

which is logarithmically divergent at  — oo. This occurs in the Skyrme model as well,

r?),_, (4.2.23)

and it is quite natural to obtain similar results from this current, which is determined

to realize the chiral current of the Skyrme model with a low energy limit.

4.2.3 Magnetic moment

The magnetic moment p is defined as

1
p=g /dem X Jom, (4.2.24)
where Jom = (JL,, J2,, J3,) is the electromagnetic current
1
Jem = JV,a:?, + §JB (4225)

The magnetic moments are decomposed into isovector and isoscalar magnetic mo-

ments, respectively, as follows,

1 1
U= —pi—1 + == (4.2.26)
2 2
Hr=1 = /dew X Jv.q (4.2.27)
1 3
Mi=0 =3 d’zx X Jp. (4.2.28)
These are generally written in the following form;
gi=1 O
= - 4.2.29
Hi=1 oMn 2 ® T3 ( )
gi=0 O
0= - 4.2.30
HIi=0 2MN 92 ) ( )



where gr—1 o is the isovector and isoscalar g-factor, respectively, and My is the nucleon

mass. The magnetic moment of a proton or neutron is also defined as

9 0 _lgi=1+gi—00o

_ _ 4.2.31
He=9oMy2 2 oMy 2 (42.31)
g 0 _lgimit+gi—oo

= == = 4.2.32
Hn=oMy2 ~ 2 2My 2 (42.32)

where g, , is the g-factor of the proton and neutron.

B GKP-Witten current
The isovector magnetic moment was calculated to be

ph_y = €IF /dexjtr(J"ﬁT?’) = —An?kp*tr(Wr' W —173), (4.2.33)

where we performed the same procedure as when we calculated the baryon number

charge (4.2.5). If we use the relation,

1
(N'[er(t: WV~ W) [N) =7 (N[tx(0i WL W)|N)

12

valid for nucleon states (Appendix E.3.2), ut_, is calculated to be

1672k X4
— ) 4.2.35
3 e (42.35)
Therefore, the g-factor is obtain
1672k 1672k /5 + 2,/5 + N2
gr=1=2Mn (p?) = 2My P
3 2N,
1672k V5 +2y/5+ N2 N, [6
=2My =
3 2N, 82k V 5
AMy 1+24/1+ N2/5
_ SN T NS 7.03, (4.2.36)
MK 6

where Mk dependence was recovered by dimensional analysis in the last expression.

Next, we calculate the isoscalar magnetic moment. It is easy that only the last
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term in (4.1.67) contributes to the following integral:

. 1 .. . 1 . .
Ui—o :—e”k/d:gxijg = Fe”k/d%xﬂﬂi

2 c
1 .. " N.. 02y
:_ﬁcwk/d?’v’m]f'gf EkalajGV
2.4 oo 2. i i
PoX 35 70 P X J
=— drdmr®0,J = =
12 /0 rdmr 0I5 (1) = = = Toas
o
_ 4.2.37
32712k ( )
From the above, g-factor is
My
gr—0 =g 5~ = 1.68. (4.2.38)
The experimental value is g7-t) ~ 1.76, which gives a quite good prediction.
M The 5d Noether current
The isovector magnetic moment can be calculated as
pioy =€ [ daat il (t2), (4.2.30)

First, we need the current j%/,a(t, x). In the present case, we ignore the contributions
coming from the warp factor and CS term, since they are 1/X subleading. Therefore,

the only current to consider now is
Tialw,2) = =2nte (3 ilFdy, A )W) (4.2.40)
M=j,z
Here, using
16p*

W(Zti — €ijat’ta), (4.2.41)

> ilFq, AS =
M=j,z
the current is calculated to be
. oo .
raltia) = [ ded o)

— 00

ATk (8 8rt +20p%r? 4 15p*
02 \r (r2 + p2)5/2

Using this, the isovector magnetic moment is calculated to be

)eijkxjtr(tkW_ltaW). (4.2.42)

ph_q = €k /d?’x:ﬁjj&a::},(t, x) = —8r’kp*tr(t;W(t) 'tsW(t)), (4.2.43)
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then we obtain the g-factor

167 2 NZ
gr_1 = 7; My (p?) = \/;<1 + 2\/1 +2/14 = )MN — 6.83. (4.2.44)

This result is inconsistent with the experimental data and closer to the Skyrme model
results than the (4.2.36) results.

Next, the isoscalar magnetic moment is calculated as

1

Ta— S €iik /d3a:xjj§(t,x). (4.2.45)

Again, using the current

, 1
J}B(I, Z) :—@eijktr(FjEng —+ QFOijz)
3 p4 i a A d
:pm [(6iaz — Eijal'j)x (t) + 2z % In p(t)] (4246)
ignoring the contributions from the warp factor and CS term, the subleading terms

of 1/A, the 4-dimensional current is given as

g (t,x) :/ dzJs(z, 2)
= 15 p2 J\a i d
= (TQHQ)?/Q(—W:U ()20 (). (42.47)

From this, the isoscalar magnetic moment is calculated to be

Hi=o = 5€ijk /dBIx]]B(tax) = X(t)= Tonzn i (4.2.48)
so the g-factor is given as
My
g = =1. 4.2.49
91=0 = g2y, ( )

Again, this value is much smaller than the prediction obtained from the GKP-Witten

current and does not agree with the experimental data.
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4.2.4 Axial coupling and axial radius

In the non-relativistic kK — 0 limit, the axial coupling of the nucleon is defined by

using the axial current J () as follows;

/d?’xezkmU\f s5I5| %N, 53, I3) x 2

2 " .
= gngN(k = 0) (0 )53,33 (7’ )Ié,lg , (4250)

where the factor 2/3 on the right-hand side is needed in the chiral limit [14]. Here,
axial coupling is related to coupling g,nyn of 7NN through the Goldberger-Treiman

relation

NN frgrNN
— JTImANIN 4.2.51

B GKP-Witten current

With axial current (4.1.69), the matrix elements of axial current are computed as

.Y ‘
/deJj’Z = §w2mp2tr(W7JW_17'a)/dgxé’?HA. (4.2.52)

Using (4.1.45), 82 H* transformed to

277A 92 L 1 1_ Gar
2 =0 (s S Ol 2 Yau(r))
= (4 g s fj ) 0n(2)) 5% = ) = 3 g O () Vo 1)
72 k(Z) Z )\2n n Z a n n )
(4.2.53)
the first and second terms of (4.2.53) cancel each other because
i‘;" (O20(2)) = 02 [ debols an (Yo (2))
—_a/d e~ 2= o)=L (1.254)
=0z ztho (2 AL 7rk:(Z) -l
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is satisfy by the same argument as (4.2.5). Because of

/d%aﬂ (HA) = Zg o (Dgtpan(Z )>/Oodr4w2(_i6’__ A)
¢ " 0 41 T
:Z 9an Oz2n(2) /OO drre VAnT = EL, (4.2.55)

gV is obtained by

NN _ 167m< P> >

g4 3 \k(2)

(4.2.56)

where (4.2.5) is used. If a numerical calculation is performed, the axial coupling is

computed as
N ~0.734, (4.2.57)

where the experimental value is g} Y exp = 1.27, indicating that the predicted value
of this model is considerably smaller than the experimental value.
M The 5d Noether current

In leading of 1/ expansion, the effect of the warp factor and the contribution from

the CS term can be ignored, hence the 5d axial current is calculated to be

8kp? 4p*21p 4(2) 22 Pa(2) -
Serrdicey il Gl e I CLLC AU

(4.2.58)

Jza,a(x7 Z) - -

Although 1 4(2) is written as ¥ 4(z) = (2/7)arctan z, as far as leading of the 1/A
expansion is concerned, we can treat ¥ 4(z) ~ (2/7)z as well as the effect of the warp

factor. Thus, the 4-dimensional current can be written as

Jisalts ) = / dz Ty (2, 72)

— 00

32k [ 8rt + 12p%r2 + 3p*
" 3p2 (r2 + p2)3/2

Since this 4-dimensional current becomes

[t ew). (4259

. 2 2
/ Pafiy (o) = > T (W (6 D), (4.2.60)
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by spatial integration, axial coupling is calculated as

167K
3

ga = T g2y (4.2.61)

From this, we obtain the axial coupling

6 NZ
g4 = £<1+2\/1+—C> — 1.13. (4.2.62)
3 5

Remarkably, in the leading calculation of the 1/A expansion, this value does not
depend on the parameters of the model. Nevertheless, we find that it predicts a value

quite close to the experimental data.

Table 4.1 Results from the each analysis on the static properties of the nucleon.

GKP-Witten current  5d Noether current ANW [81]  Exp

(r?),_, 0.785 0.82 0.59 0.806
) g, 0.785 - - 0.875
(r) g 0 - - —0.116
gr=1 7.03 6.83 6.38 9.41
gr=o 1.68 1 1.11 1.76
gV 0.734 1.13 0.61 1.27

4.3 Dynamical properties of the nucleon resonances

In the previous section, we reviewed static properties of nucleons, which have been
carried out by [16, 13], etc. However, to understand the nature of the baryon reso-
nances, it is also necessary to reveal their dynamical properties. When considering
dynamical processes of baryons, it is important to include interactions involving pions,
because many baryon resonances are formed and decay through pions. The contribu-
tion of mesons other than pions is also important, and it has been shown that many
phenomena can be explained by a hybrid structure where constituent quarks form the
core structure which is dressed by meson clouds [8, 9].

The Sakai-Sugimoto model leads to an effective model of hadrons as a flavor gauge

theory in five dimensions as a holographic dual of massless QCD. The gauge field,
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which plays the fundamental role in this model, originated from an open string with
both ends in the D8 brane carrying the flavor, and by mode expansion, we identify
each mode, including pions, with an infinite number of vector/axial-vector mesons.
According to Chapter 2, baryons are interpreted as instantons on the D8 brane [74,
73, 12]. The dynamics of baryons at low energies are given by collective motions of
instantons/solitons, which is quite different from the quark model based on a single
particle picture of quarks. Moreover, in the low energy limit, it is known that the
Skyrmion [67] is derived by projecting an instanton in the five-dimensional spacetime
onto 4-dimensional spacetime using the Atiyah-Manton method [72]. As mentioned
in Chapter 2, these baryon pictures of the Sakai-Sugimoto model are closely related
to the meson cloud picture, which has been found in the study of nucleon resonances
so far. A particularly remarkable fact in this model is that the masses of the Roper
resonance and the negative parity state degenerate in the resulting mass formula.
This shows that it captures the features of the hadron spectroscopy better than the
other models. We consider it a worthwhile attempt to investigate the dynamical
properties of nucleon resonance using the Sakai-Sugimoto model, which has the above
features. This attempt is also expected to be a milestone in the development of the
study of dynamical properties of nucleon resonance using holographic QCD. In this
section, in subsection 4.3.1, we first calculate the axial coupling and the decay width
of one pion emission calculated from this coupling using GKP-Witten current. Next,
in subsection 4.3.2, we attempt to analyze the electromagnetic form factor. Finally,

in subsection 4.3.3, we summarize the results.

4.3.1 The axial coupling and one pion emission

In this subsection, we investigate the one-pion emission processes of nucleon reso-
nances using the GKP-Witten current of the Sakai-Sugimoto model. In particular,
we aim to calculate the axial coupling and decay width.

Formulation

By evaluating the matrix elements of the axial vector current, the axial coupling

gV " is obtained. The axial coupling is related to the coupling constant gy~ of
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wNN* through the Goldberger-Treiman relation, one of the low energy theorems.
From this g,nn+, the decay width of one pion emission is calculated.

It turns out that the equation of axial coupling is completely different for positive
and negative parity resonance states. In the non-relativistic limit, the axial current
between the nucleon N and the positive/negative parity excited state NJ . Jodd is
defined by

Th = NV Nz (4.3.1)
T = PNy 5Nz, (4.3.2)
(4.3.3)
with
Yy = (“69> , B =N,Nin Niga, (4.3.4)

where 75 is required if the parities of the initial and final states are the same, but

not if they are different. From the above, in the case of B = N/, only the spatial

even>
component of the current, and in the case of N 4, only the time component of the
current contributes to the current in the relativistic limit.

Therefore, in the following, we present the formulation of the axial coupling and
the decay width in each case.
M Positive parity N

even
Neven (k) for the transition N

even

The axial coupling gg — N+ is defined as follows

/ d3re™®® (N, shI5| T4 N ..y 83, I3) X 2
NN* kzka a a
— gA even (k) (62(1 _ k2 > (O- )83,83 (T )Ié,fs . (4.3.5)
in the chiral limit, this is written as

/ 0 (N, s, T TGN s 53, T3) X 2

2 NN*

= ggA eren (O-a)sg,sg, (Ta)]éJg ) (436)

where the factor 2/3 on the right-hand side is needed [81].
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The decay width of N¥,., — N + 7 can be computed by the formula

even

Py sNyr =

even

1 / pN d*pr
2Mnz,. ) (27)°2EN (27)° 2E,
x (2m)* 6% (pv + pr) [t5il (4.3.7)

where the amplitude ty; is given by the Lagrangian

My + My~ T -
j— N TN NNeve”q/)N* V5T - TYN + h.c., (4.3.8)

L = g
2f7T A even

as follows

ti = (N(=E)m (k)| LI N yen(0))

NN
o Mn Mg, ga =

2fx En + My

(555 - K|s3) . (4.3.9)

Here we have expressed the effective m NN, coupling gy in terms of the axial

coupling by using the Goldberger-Treiman relation,

gXN:ven — fﬂ—gﬂ-NN:ven . (4310)

(My + My-_ ) /2

even

Hence we obtain

Py Nir

even

. 2
_ k My +Ey (My+ My, g4~k (4.3.11)
~Am My 2fx Exn+My ) -~ o
where £ is the momentum of the decaying pion and is given by
1/2 1/2
k = (M]2V:V6n B (MN + mﬂ-)Q) / (M]2Ve*ven B (MN B mﬂ-)2) /
N 2Mng,
(4.3.12)

M Negative parity transition

The axial coupling ggN‘:dd (k) for the transition N;; — N +7 is defined as follows:
NN:dd a _ d3 ik-ax N I/ -a0 N* T ) 4 1
9a (T )I3I§ = re (N, I3]3% [ Noaa, I3) % (4.3.13)
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The decay width of NJ;; — N + 7 can be computed by the formula

(2m)*0% (pn + pr)ltpsl? (4.3.14)

NZyg—Nm — (

2MN:dd 27‘(’)32EN (27‘(’)32f?7r
The transition matrix ts; of the Lagrangian
NN;dd

-g a__a
L=i AQfW YNy B TN (4.3.15)

is defined as

tri= (N(=k); m(k)|£|N5qq(0))

NNchd
:ZgAQf EW\/EN+MN1/2mM§dd(SSBSg. (4316)
Hence we obtain
NN*
0dd T 167 f2My- -

Here we have expressed the effective m NN, coupling gy in terms of the axial

coupling by using the Goldberger-Treiman relation,

NNlgqa _ fwgnNNgdd .
(My+  — Mpy) /2

*
odd

(4.3.18)

Results

There are two parameters of this model, Mk and k. Following Ref. [81] they are
determined to reproduce the mass of the p (776 MeV) meson, and the pion decay
constant f, = 92.4 MeV,

Mgk =940 MeV, k= 0.00745 (4.3.19)

In Table. 4.3.1, we also summarize the results with the parameter set used in Ref. [13].

Now that we are prepared to calculate the axial coupling and decay width for
one pion emission, we will present the results for the low-lying nucleon resonances
described in Chapter 1.

B Roper resonance
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First, we obtain the axial coupling g4 for the transition from the Roper resonance

to the nucleon. In momentum space, the axial current is given by

Jq) = e_i‘j')z27r2np tr (r°WrWw )

X ( ) 3 gar 0720 (Z) (4.3.20)

n>1 k + )\271

where the following equation is used,

/ Bre~FTY, (|7 — X|) = —e"iFX (4.3.21)

i = 1 > ana n 7
/dS:z;e_Zk"”HA(Z, 7 - X)) = e FX Y Yar Oz 2n(Z) (4.3.22)
k2 + )\Qn

Using (4.3.20), (2.4.122), (2.4.123) and (E.3.2), we obtain

* 87'(' K an 8 n
ggz\] (1440) @) =R p_l\P \Rnp_ Z Ja, (Oz%2n (Z))
k2 + Ao,

n=1

(4.3.23)

where (0712, (Z)) stands for the expectation value using the wave functions of Z and

R,, is the confluent hypergeometric functions (2.4.122), which normalized as follow,

/ alpp?’Rnp(p)2 =1. (4.3.24)
0

The matrix element of p? can be computed and the result is

e ~1/2
\/ 5C ) (Ry|p°|RN)
1/2
5) N2
- 2\]/\7_ <1 +24/1+ ?> 02 (4.3.25)

with p. being the classical instanton size given by

(R~ (1440)|p*| Rv) = (

N, §
812k \V 5

We notice that the transition matrix elements of N*(1440) — N + 7 are related

P2 = (4.3.26)

to the nucleon matrix elements, which is an interesting feature of the present model
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associated with the collective nature of the baryons. The axial coupling constant is

then defined ggN*(1440) = ggN*(MAlO) (0) at k = 0. Using the relation (4.2.5),

Ja 82 2n (Z) 2 1

e s = (4.3.27)

nZ::l Aon mk(Z)
gXN*(IMO) can be expressed in a compact form:
NN*(1440) 167K 5 1
= —— (Rn-|p°|R — ). 4.3.28
o) ™ (1) (s ) (1.3.25)

Using the two parameters mentioned in (4.3.19), the prediction of the present model

NN*(1440) .
for g4 (1440) 4

g N0 — 0 359, (4.3.29)

With the axial coupling (4.3.29), we investigate the one pion emission decay
N*(1440) — wN. Before we go on, we will give an explanation of the experimental
values. Because the Roper resonance has a very large width causing uncertainties in
the Breit-Wigner fitting, we refer to the result of the pole analysis. Following the
PDG table [117], we quote the following nominal values

My+(1440) = 1360 — 1380 (~ 1370) MeV, (4.3.30)
Tiotal = 160 — 190 (~ 175) MeV,

and the branching ratio of the one pion decay
N*(1440) — N7 : 55 —75 %. (4.3.31)

Using the lower and upper bounds for the total decay width and branching ratio, we

find the partial decay width of the one pion decay

T+ (1440) sy ~ 90 — 140 MeV. (4.3.32)

Using My = 940 MeV, My~ = 1370 MeV, m, = 140 MeV (pion mass), k =
342 MeV, we find

FN*(1440)—>N+7F =49 MeV (4333)
By considering the form factor effect, the ggN*(lMO) value at k = 342 MeV becomes

about 13 % smaller, and hence I N*(1440)— N4 ~ 43 MeV (The form factor is given
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in Fig.1 in Ref. [16].). If we use My~ = 1440 MeV and k = 398 MeV [117], we find
77 MeV for (4.3.78) and 64 MeV for the finite k. These estimations show that there
is ambiguity in comparison with actual experimental data due to uncertainties in the
exact resonance point.

Our predictions of the decay width obtained from different resonance points is
are smaller than the experimental value (4.3.32). This is because the nucleon axial
coupling gA " is small. In fact, the nucleon g¥¥ is computed in a similar manner as

for gXN*(M‘m). The result is

g =0.732. (4.3.34)

This value is significantly smaller than the experimental value gV = 1.25. The
small g4 is a common problem of the solitonic description of baryons. One possible
resolution to recover the experimental value g4V = 1.25 is to take into account 1/N,
corrections (Ref. [118] and references there). Here, we will not discuss this point
further and point out some interesting features of the present model. We find that
the following relation holds between the axial coupling of the nucleon and that of the

transition from Roper to the nucleon.

—1/2
: N?
gy o _ (1 s ;)

=0.5. (4.3.35)

It is worth remarking here that this relation is independent of the parameters of the
model. If we determine the value of ggN*(Mm) to derive the experimental value of

I'n+«_xn ~ 110 MeV, we find the ratio

gﬁN*(IMO)/QEXN =0.77/1.25 ~ 0.6, (4.3.36)

which agrees well with the present model prediction within ~ 20 % accuracy, whose
agreement is better than the absolute value.
B Negative parity resonance N*(1535)

It is obvious from the structure of the axial current that the spatial component of
the axial current does not contribute to the axial coupling nggdd due to the parity
determined by the wave function of Z and the completely anti-symmetric tensor €;;.

Therefore, only the time component of the axial current contributes in the negative
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parity transition in the non-relativistic limit [119]. The time component of the axial

current is written as

~ k ana §
J?x,a(k) =27 K[l—tr[T“(‘) (PPWrtw—1 } —ik-X Z 522 +z;\b2
2n
Pi iaj - ga"¢2n
972,02 71 jiajp | ,—ik-X
"‘([a, 27 Kp ]\4’06 k]) Z k2 +>\2 (4337)
~. . k k ana .
o) <2 (5, ) $° O
ibj ga”¢2n
e Z k2 + )\ZJ (4.3.38)

in the momentum space. The axial coupling at the transition momentum k=0is

expressed as

« o0 a”w n
gV 559 g2y / A2, =0(Z2)tn =1 ( Z e (1339)

using this axial current and the wave functions (2.4.124) and (2.4.125) which are

normalized as follows,

/oo dZ, ,(Z)? = 1. (4.3.40)

o0

The axial coupling constant is defined by k=0 and g NN (1535) ggN*(1535)(6).

Using the relation (4.2.54), we obtain

ggN*(1535) _ /_ A2 ;=1 (Z)n ,—0(Z)1po(Z). (4.3.41)

We analytically obtain the following result;

. 2 | 2
ggN (1535) _ \/;GQMO/\/éerfC< %M()), (4.3.42)

where erfc(z) is a complementary error function. From the above, we obtain the

following values as axial coupling,

gh N IE30) — 0 42, (4.3.43)
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Fig.4.1 The emitted pion momentum k dependence of the form factor

Using My = 940 MeV, My« = 1510 MeV, m, = 140 MeV (pion mass), ¢ =
448 MeV, we find

FN*(1535)—>N+TF = 54: MeV, (4344)

where the mass of the resonant state is the result from pole position. In this computa-
tion the value of g¥ v " at ¢ = 0is used. By considering the form factor effect, the gV )
value at ¢’ = 448 MeV becomes about 25 % smaller, and hence I'y+(1535)— N4 ~ 30
MeV (Fig. 4.1). According to PDG, the total decay width of the negative parity
resonance N*(1535) is 130 MeV, and the branching ratio of the one pion emission is
32 ~ 52%, so the partial decay width is

TP 535 r = 42 — 68MeV. (4.3.45)

Although our results are somewhat smaller than the experimental values, This value
is in good agreement with the experimental value at the level of accuracy that is to
be expected for models of this type.
W A(1232)

Using (4.3.20) and (2.4.122), we obtain

8212k Ya,,
=— (Rn|p’|Rn) D
n=1

(0zan (2)).

NN*
9 q =
A (@ I

(4.3.46)
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where we used the following instead of (4.2.34),

(N, I}, ss|tr(Wr" W 17%) | AT (1232), I3 = 1/2,53 = 1/2) = (o—i)sgnm(ﬂ)lé’l/2
(refer to (E.3.3) Appendix E) (4.3.47)

2v/2
3

From the above, the axial coupling glf A is obtained as
gVA =1.18. (4.3.48)

Using My = 940 MeV, My~ = 1232 MeV, m, = 140 MeV (pion mass), k =
229 MeV, we find

Tt nin = 160 MeV (4.3.49)

By considering the form factor effect, the gY* value at k = 229 MeV becomes about
10 % smaller, and hence I'a _, ny1. ~ 140 MeV. Therefore, our prediction reproduces

the experimental value of I'an _nyr ~ 131 MeV quite well.

Discussion

The parameter set used so far was chosen to reproduce the p meson mass and the
pion decay constant f.. This parameter set does not reproduce the mass splitting
of the baryon resonance. On the other hand, we can reproduce the mass splitting
of a nucleon and A(1232) by choosing Mgk = 488 MeV as in section 2.4. Also we
determine xk = 0.0137 to reproduce the pion decay constant f, = 64.5 MeV, following
Adkins et al. [81]. In addition to the parameter set in the main discussion, this

parameter set is also included and the results are summarized in Table. 4.3.1.

Table 4.2 The axial coupling obtained from each set of parameters.

My B G N ggN*(1440) ggN*(1535) QXA(HSQ)
Setl 940 MeV  0.00745 0.732 0.352 0.42 1.18
Set2 488 MeV  0.0137  0.837 0.402 0.35 1.35
EXP. - - 1.25 0.77 0.51 1.07

By choosing Set2, a large decay width can be obtained. However, in this case, it

can be seen that the form factor decreases rapidly with increasing k. Therefore, when
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the effect of the form factor is taken into account, the decay width becomes smaller
than the result of Setl.

Thus, the behavior of the result depends on the choice of parameters. Nevertheless,
we find that our results reproduce relatively well the decay width of the one-pion emis-
sion of the Roper resonance, which is almost zero in the quark model. Furthermore,
it should be emphasized that one of the unique and remarkable features of this model
is that the relation between the nucleon axial coupling constant g}y and ngN*(lMO)
is independent of the parameters of the model.

So far transitions of one pion emissions have been described well. Turning to the
electromagnetic transitions, however, we have found that the GKP-Witten current
does not reproduce the experimental data of the Roper resonance well. Therefore,

in the next chapter, we will attempt to calculate the electromagnetic transition form

factor using the 5d Noether current instead of the GKP-Witten current.

4.3.2 The electromagnetic transition form factor

The pion loop gives an important contribution to the electromagnetic transition
amplitude at relatively small momentum transfers because the spontaneous breaking
of the chiral symmetry produces Goldstone bosons (pions) that are massless at the
chiral limit. The importance of this contribution was already known long ago from
the fact that the electromagnetic transition amplitude of A(1232) is underestimated
when only the constituent quarks is taken into account [3, 38, 7]. Furthermore,
recent experiments at the Thomas Jefferson National Accelerator Facility (JLab) have
extracted helicity amplitudes wide range of momentum transfer of electromagnetic
transitions from the nucleon to the Roper resonance [42, 43, 44, 45, 46|, which is in
serious conflict with the prediction of the naive quark model. To solve these problems,
many theoretical efforts have been made [6, 7, 47, 8, 9, 24]. It was pointed out that
relativistic effects of the confined quarks at a short distance and meson cloud effects
at a long distance are important to improve the above-mentioned problems [8, 9].
The Sakai-Sugimoto model justifies the description of baryons as solitons of mesons,
and the picture here is like the meson cloud picture itself. Therefore, by analyzing
the electromagnetic transition amplitude in this model, the importance of the meson

cloud effect can be understood from a different perspective, in terms of the soliton
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picture.

In particular, the electromagnetic transition amplitude of A; /5 of the Roper reso-
nance shows a unique feature not found in other nucleon resonances. The experimental
data of A;/, of the Roper resonance is shown in Fig. 4.2. It takes a finite negative
value near the real photon point Q? ~ 0. This feature essentially cannot be explained
from the quark model, which has successfully explained the properties of many baryon
resonances, as explained in section 1. Understanding this behavior is important for
revealing low-energy QCD. Therefore, in this subsection, which fails to explain this

behavior, we will analyze it using the 5d Noether current.
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Formulation

Using the current obtained in section 4.1.2, the helicity amplitude is given by

o Jem

1 -
eth) jn ‘wN*,s?, - §> e'"17°(4.3.50)

2Tx 1 ] 1 iEle

Ap(@Q) =\ == /d% <wN,53 =5 &b |- 55 = —§> e'lF17°(4.3.51)
(2T 1]k . I\ iEle

51/2(Q2) = K /d?’x <wN783 = 5 %Eﬁo)]gm YN+, 83 = §> Ll 3'(4.3.52)

Here, « is the fine structure constant, () the virtuality of the photon, and the 3-

momentum k of the photon is assumed to be directed along the x® axis in the N*

rest frame. Also, A3/ is defined only when considering the transition from a resonant

state with spin 3/2 to a nucleon. Due to the energy conservation law, we have the

following equation:

(@ +m 3
4m3

k*=Q*+ (4.3.53)

In the case of real photons, i.e., Q?> = 0, we find that ]l;| becomes K = (mfc —

m?)/(2my). The polarization vectors for the axis are defined by

1

e = §(|12|, 0,0,—ko) (longitudinal mode) (4.3.54)
1
e/(f) = E(O’ 1,+i,0) (transverse mode). (4.3.55)

Results

In this subsection, we determine two parameters Kaluza-Klein Mass Mk and k,

which we determine according to Ref.[13] as follows;

MKK = 488 MeV (4356)
K = 0.0243. (4.3.57)

B Roper resonance
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Here we substitute (4.1.20), (4.1.21) and (4.1.25) into the electromagnetic current

expression,

1o
) C= 1, C=
Gl =30+ i (4.3.58)

then we get the following concrete expression [13];
3 p? 15 pt

— —[3 +

AT (r2 + p2)5/2 167 (r2 + p2)7/2
47k (8 8rd +20p%r2 4 15p4

Jem (") :7 ro (12 + p2)5/2

Joa) = (4.3.59)

)Eijkxjtl"(tkw_lt;J,W)

15 4
- P (
327 (12 + p?)7/2

. d
— €ja’ X* + Zmzalnp) (4.3.60)

where [, is isospin operator I, = 87rzf<op2tr(z'WW_1ta) and i,a = 1,2,3. Here, in the
present case, the term of the time derivative of Z is omitted because it is zero due to
the evenness of the wave function.

This completes the preparation for calculating the helicity amplitude of the elec-
tromagnetic transition.

Using the wave function (2.4.122), (2.4.123), and the concrete expression of the
current (4.3.59) and (4.3.60), the helicity amplitude is calculated as follows

A1/2 —\ 277@/ dPP ?/)npfo( )Qﬂnpfl( )

/ e {167T /<o<8 8rd —|—20T2,02—|—15,0> 15 p? } (k)
0 3v/2)? (r2 + 2772 52v/2m2r (2 + p2) 2 ST
(4.3.61)
2T
§12(Q?) = - 2 / dpp? %p_o( wnp_l( )
4
P .
/0 drr? (2 2 +,0 DEE + (r2 n 2)7/2)jo(kr), (4.3.62)

where j, () is a spherical Bessel function, the normalized wave function wfj is defined
by

, (4.3.63)

%p (p) = OORnp (p)
VIo oo B2, (p)

with the confluent hypergeometric functions R,, (2.4.94) and for the calculation of

Si/2, we used j2,, from the current coservation law @, j%, = 0.
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By performing numerical integration, the helicity amplitudes of the electromagnetic

transition for the Roper resonance obtained from our calculation are shown in figure.

It can be seen that this result achieves global agreement with experimental data.

These results have some remarkable properties, as follows.

(i)

(i)

(iii)

(iv)

We find that our A; /5 near the real photon point @Q? = 0 has a finite negative
value. The non-relativistic quark model fails to explain this property. This is due
to the orthogonality between the radial wave function of the Roper resonance
and the ground state nucleon obtained from the quark model, which leads to
the transition process mentioned to be a forbidden process. Several theoretical
studies have attempted to solve this problem and have discussed the importance
of relativistic corrections and the effect of meson clouds. The present approach
shows that, in addition to the above, it is important to take into account the
collective motion resulting from the soliton picture of the baryon. An impor-
tant result of the collective motion comes from a dependence the current on the
instanton size p. When we expand the current by powers of p, its leading term
starts from p?. This is an essential property of the soliton picture of baryons,
indicating that the collective motion of mesons plays an important role. This
picture is quite different from the single-particle picture of the quark model. Our
results indicate that the collective motion mechanism of baryons is an impor-
tant contribution to our understanding of the phenomena associated with Roper
resonances (excitation energies and decays).

The experimental data for A; 5 flips its sign around Q? ~ 0.5 GeV2. Our results
roughly capture this behavior around Q% ~ 0.7 GeVZ.

Our model prediction underestimates the experimental data of A, at Q?* >
1 GeVZ. This is because our results are calculated up to order 1/\. Moreover, the
model by meson fields should be applied to the low energy region Q% < 1 GeV?.
Also, for energy regions larger than Mgk, the contribution from redundant
modes not present in QCD, which should have been decoupled in section 7?7, is
larger, making the prediction less reliable.

Our prediction closely approximates the experimental data for S;,, although
there is some overestimate. In the calculation of Sy, we used only the time

component of the current (4.3.59) because we used the current conservation law.
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This charge density satisfies

1
/d?’xjgm = I+, (4.3.64)

for the electric charge. We consider that the fact that our prediction of S /9
reproduces the experimental data well is ensured by the fact that it satisfies
(4.3.64).

(v) There are only two parameters in this model, x and Mgg. We determined
these parameters from the mass of the nucleon and the delta. With this set of
parameters, the static nature of the baryons has been studied, and it has been
found to predict the experimental data well (subsection 4.2). We emphasize that
the tuning of only two parameters predicts well not only the static but even the

dynamical properties of baryons.

Bl N*(1535)

In the calculation of the helicity amplitude of the negative parity resonance
N*(1535), when using (4.3.59) and (4.3.60) as the electromagnetic current, it
becomes zero due to the wave function evenness of Z. Therefore, it is necessary to
newly consider the time derivative term of Z, which was ignored in the analysis of

the Roper resonance. The electromagnetic current obtained is as follows,

N Ut [(8 8t +20p%r% + 15p

3 5 b —1
="z [(; R )]Zx tr(WtyW=,),  (4.3.65)

where the spatial component of the current contributing to A/, of the N*(1535)
becomes zero when only the leading of the 1/ expansion is considered. Therefore,
by considering the effect of the warp factor and the spatial component of the U(1)

gauge fields, the current spatial component is

: 8k [/ 8r2(4r? + 3p?) p°
(L) = [( — 8r(4r? + p? )Zt Wit W,
jem( LE) ,04 \/m + (TQ +p2)3/2 T‘( Tt +p ) I'( )

+4 <4(6r2 +p%)  24rf +40p%2 + 15p4

3 r (r2 + p2)3/2 Jo'a Za(Wew )],

(4.3.66)

when the calculation is performed up to subleading of the 1/ expansion. Here, we

still see that the spatial component of U(1) gauge fields does not contribute to A, /5.

151



From the above, the helicity amplitudes can be calculated as follows.

[2ma 3272k [°° >
A1/2 = K 3 / dppgwnp—O(p)Q/ dZZ%pnz:O(Z)wnz:l(Z)
0 —00

e 8r2(4r? + 3p?) p°
drr® — 8r(4r? + p?)) jo(k
/0 TT [( /rZ 4 p2 + (r2 + p2)3/2 r(4r +p ))]0( r)
(241" + 40p°r® + 15p4)> g1 (k)
(r2 + p2)3/2 kr

—%(47’(67‘ +p?) — }(4.3.67)

/2
Si/2 = — wa/ dPP wnp—o )

/ drr [87r/<;rp (8 84 + 20p%r2 4 15p4
-
0 3v/6 (r2 + p2)372

where, note the normalization, (Z?2) is the expectation value of the wave function of

) (2%) }jl(kr), (4.3.68)

Z, and using

oo 2 i 0 — Mo 72
s = 11— DYy =y = = T (i)
nz T Myoz)"7 TV T Mo 2 3, g
Mooz VI azzze B [ aze W
0o z ; Yo 72 0 _2My
J2dzze WE (- z)e 2 [ dze w7 .
- _%22 _%ZQ = T = —%Z2< Z:0|Z |nZ:0>
[ dzz2e” w2 [ dze e V6 [* 4772
2 3272
= -2 27, (4.3.69)

V6 V6
with (2.4.111).
We have performed numerical computations of the integral (4.3.67) and (4.3.68)
and show the helicity amplitudes of the electromagnetic transition amplitudes for the
negative parity resonance N*(1535), Fig. 4.5 and Fig. 4.6. Some comments on these

results are given below.

(i) For A;/,, there is no contribution from leading of 1/\ expansion. It is also
found that the calculation with the contribution of subleading underestimates
the experimental data. We consider that this is because this calculation is based
on the 1/\ expansion. It is possible to evaluate the current without the 1/A
expansion. It is important to consider the contribution of the warp factor to the
classical solution, because the excitation of the negative parity state corresponds

to the oscillation in the Z direction. By the same argument as in section 4.1.1,
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it is possible to obtain an asymptotic solution for the instanton configuration.
Substituting this solution into the 5d Noether current yields a new contribution
from the j’g/R(x) term in Eq. (4.1.96). This term is essentially the same as
the contribution coming from the GKP-Witten current. The difference in the
gauge configuration of the instanton solution appears in the difference in the
magnitude of the coupling constant of the meson-baryon complex system in four
dimensions. As explained in section 1.1, the Negative parity resonance is known
to be strongly coupled to nIN. Therefore, it is necessary to consider a gauge-
field configuration that reproduces the coupling properties of the negative parity
resonance to the meson. From this point of view, it is also necessary to consider
the effect of the warp factor to obtain a classical solution. This is a future
challenge, which, if accomplished, is expected to further deepen understanding
of holographic QCD dynamics.

(ii) It can be seen that the shape of A,/ is very similar to the experimental data,
even though the absolute values are quite small. In particular, the peak value is
Q? = 0.6 GeV?, which is very close to the experimental behavior.

(iii) For Sj /o, there is a leading contribution of 1/A expansion, indicating that it
reproduces the experimental data very well.

(iv) The 5d Noether current has a non-uniqueness in the determination of ((z, z),
which has been determined to reproduce the chiral current of the Skyrme model.
However, in the Skyrme model it is not easy to generate negative parity states
within the collective quantization method; one way is to introduce meson fluc-
tuations around the soliton solutions [57]. To take into account such dynamics,
it may be necessary to reconsider the criteria for determining ((z, z), which is

however beyond the present study.

B A(1232)
Calculate the helicity amplitude of the Delta resonance A(1232). For As/, and
Ay /2, we can use the current of (4.3.60). As for S;/;, we can see that if we define

it using j°, the value will vanish in the leading of 1/ expansion, so we consider the
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effect of the warp factor, the current time component is

1 8  8rt+20p%r? + 15p*
Bonlt) =[5 = 5 ) 72
67 p (r2 + p2)5/2

3 8rt + 12p%r% + 3p*
_( - (r2 4 p2)3/2

From the above, the helicity amplitudes are written as

2ra
Ayjg =— \/ / drr/ dpp?’wnp_o (p)2j1(kr)

)] (@) Jatr (Wt W™ 't3). (4.3.70)

87T K 8r 4+ 20p%r? 4 15p*
_ (_ Ty ) (4.3.71)
2T
Az = \/ / drr? / dpp 1/1n,,—0 ) j1(kr)
_8f7m< 8r4 4 20p%r +15p> (4.3.72)
r (r? + p?)5/2 -

/27ra o2sinkr — (kr)®sinkr — 2kr cos kr
Sl/2 - / d?”f’ / dpp wnp:O ) ( )(kT)S

\/_r [<22 ( 8rt 4+ 20p%r2 + 15p% ) B (8 8t 1272 +3p4)}
18p ) ; (r2 4 p2)5/2 r (72 + p2)3/2

(4.3.73)

We performed numerical computations of the integral (4.3.71), (4.3.72) and (4.3.73)
and show the helicity amplitudes of the electromagnetic transition amplitudes for the
delta resonance A(1232), Fig. 4.7, 4.8 and 4.9. Some comments on these results are

given below.

(i) For Ay/5, there is a leading contribution of 1/A expansion. However, the ob-
tained values are considerably smaller than the experimental data, although
they reproduce the approximate behavior. We consider that this is because the
present calculation follows the prescription of 1/ expansion as well as Roper
resonance and Negative parity resonance.

(ii) For S; /o, there is no leading contribution from the 1/ expansion. Therefore,
we performed a calculation of the subleading of the 1/A expansion including
the effect of the warp factor. However, the absolute values obtained are much

smaller than the experimental data.
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(iii) The results of our analysis depend significantly on the parameter  of this model.
We show the xk dependence of the numerical results in Fig. 4.10. We can see that
the absolute value of our prediction of the electromagnetic transition amplitude
becomes larger as x becomes larger. However, as x increases, we overestimate

the experimental data in the high-momentum transition region.

Discussion

In this subsection, we have performed an analysis of the electromagnetic form factor
of a typical nucleon resonance using the 5d Noether current. As a result, it is shown
that S;/, of the Roper resonance and the negative parity resonance approximately
reproduce the experimental data. In particular, for the Roper resonance A, /5, we find
that at the real photon point @2 = 0, it reproduces an interesting feature that takes
a finite negative value, which the quark model fails to explain. This is essentially
owing to the representation as a collective motion of the nucleon resonance. The

representation of baryon resonances is completely different from the quark model,
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Fig.4.10 the x dependence of the numerical results of the transverse helicity
amplitude A, in units of 1072 GeV ™2 as function of the four-momentum
transfer Q2.

which considers quark three-body dynamics, suggesting the importance of the collec-
tive motion in the excitation created by the QCD vacuum. In Fig. 4.11, we compare
our prediction with the non-relativistic quark model. Our prediction shows a signifi-
cant improvement compared to that of the quark model concerning the reproduction
of the experimental data.

On the other hand, our results underestimate the experimental data overall for the
Ay /o of the negative parity resonance and Delta resonance A(1232). However, the
results we have given in this subsection are calculations based on the 1/\ expansion.
Therefore, we expect an improvement in our results by performing the calculations
without the 1/X expansion. This method is discussed in Ref. [16]. We expect that
our results will be further improved by using their asymptotic solutions (4.1.55) and
(4.1.56).

The 5d Noether current can be used to obtain the axial coupling obtained in sub-

section 4.2.4. By using the current (4.2.59) defined in section 4.1.2, the axial coupling
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of nucleon is written by,

1 i.C=i
SN = [ i
/ 3 32K 8rt +12p%r2 + 3p*
=[d :U—( r—
32 (r2 + p2)3/2
327k p?

)tr(tfiW_ltaW)

= 3 tr(t; Wt W). (4.3.74)

By performing the Fourier transform, we obtain the axial coupling;

GYN(F = 0) =2 (il Pl

NG N2
V2 (1214 28) =1 43,
37r( o4 /1+ 5) 3, (4.3.75)

where k is 3-momentum of pion. It is interesting to note that the axial coupling

constant obtained from this current is a value that does not depend on the parameters

of our model. In the same way as in subsection 4.3.1 there is also a relation between
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the axial coupling gV (4.3.75) and the axial coupling of the N*(1440) — N + 7

transition that does not depend on the parameters of our model as follows;

NN NN* Nc2 1/2
AN XY = (14214 55) T =208 (4.3.76)

From this relation, we obtain g%/N" = 0.543. According to Ref. [17, 119], the decay
width of the N*(1440) — N + 7 transition is

U (1440) 5 N

_ k My+Ey (My+My- gY¥"'gq

~4dm My 2fr En + My
Using My = 940 MeV, My~ = 1370 MeV, k = 342 MeV, m, = 140 MeV (pion mass), fr =
64.5 MeV (pion decay constant), we find

2

(4.3.77)

FN*(1440)—)N+7T =117 MeV, (4378)

where, In this computation, the value of g}y ¥ " at k = 0 is used. These results provide
quite good values for the experimental data. However, the shape of the form factor
shows a sharp decrease with increasing k. Therefore, when the effect of the form
factor is taken into account, the value is considerably smaller than the experimental
value (Fig. 4.12). On this point, again, the 5d Noether current does not explain the
behavior well.

As described above, there are several problems when analyzing the dynamical prop-
erties of nucleon resonance using the 5d Noether current. Nevertheless, it is notewor-
thy that we can reproduce the experimental data of A;/, of the Roper resonance.
It is difficult to explain the experimental data of A;/, (Roper) in the quark model.
Therefore, our results indicate the importance of the collective motion mechanism of

the mesons that construct the nucleon.

4.3.3 Summary and discusstion

In this section, we investigate the dynamical properties of nucleons by using the
current defined by the Sakai-Sugimoto model. There is a problem with the definition
of current in the Sakai-Sugimoto model. The solution to this problem is discussed

from two viewpoints [16, 13], leading to the GKP-Witten current and the 5d Noether
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current, respectively. First, using the GKP-Witten current, we calculated the axial
coupling of the nucleon resonance and the decay width of the one pion emission
derived from it, showing that it reproduces the experimental data well. This suggests
that the effect derived from the collective motion of baryons/solitons in this model is
important. On the other hand, turning to the electromagnetic transition amplitudes,
we find that the GKP-Witten current cannot reproduce the experimental data for A; /5
of the Roper resonance. Therefore, we next calculated the electromagnetic transition
amplitude of the nucleon resonance using the 5d Noether current and compared it
with the experimental data. As a result, we succeeded in capturing the features of the
experimental data of A/, of the Roper resonance well. However, it fails to reproduce
the experimental data of the electromagnetic transition amplitudes of the Negative
parity resonance and the Delta resonance. Moreover, while it reproduces the value
of axial coupling well, the momentum dependence of its form factor is inconsistent
with the experimental data. This may indicate a limitation of the analysis by 1/A
expansion. In Ref. [16], an analysis method beyond the 1/ expansion is presented,
which is expected to improve the results by performing the same analysis using an
asymptotic solution for the instanton solution.

Despite the above problems, our analysis suggests that the collective motion mech-
anism of the meson field plays an important role in a comprehensive understanding of

the nucleon resonance created by the QCD vacuum, for which further developments
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are expected. We need to clearly understand the role of each of the several mecha-
nisms (for example, collective motion, single particle picture, and so on) for explaining

nucleon resonances for the description of nucleon resonances in future studies.
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Chapter 5.

Summary and Outlook

In this doctoral thesis, we attempted to study the dynamical properties of nucleon
resonance using the Sakai-Sugimoto model. Therefore, as a preparation, in section 2,
we gave a brief description of the Sakai-Sugimoto model and mainly discussed how
to treat mesons and baryons. In particular, we emphasized that the effective theory
of hadrons derived from this model can be interpreted as a meson-baryon composite
system. The Sakai-Sugimoto model leads to a 5-dimensional hadron effective theory
as a holographic dual of QCD. The extra dimension then provides a description of
pions, p-mesons and their infinite resonant states. By performing mode expansion
and dimensional reduction, we obtain an action consisting of a Skyrme field as a
nucleon and an infinite number of meson fields (Skyrme model and infinite number of
meson fields and their couplings). This meson-baryon composite system is critically
important for studying the nature of nucleon resonance. This is because the recent
simple hadron models (e.g., the quark model) face some limitations with respect to
the analysis of nucleon resonances, whereas models that describe nucleon resonances
as resonant states of mesons and nucleons have had much success. The importance
of such a description of the resonance state is also suggested from the experimental
point of view. This is because the quark model describes nucleon resonances as stable
particles, whereas the actually observed nucleon resonances are recognized as poles of
the scattering amplitudes of mesons and baryons. We should try to understand the
nature of nucleon resonance with respect to these facts.

The Sakai-Sugimoto model describes nucleon resonance as a soliton in 5-dimensional

space-time consisting of meson fields. As mentioned above, this model leads to a
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meson-baryon composite system by dimensional reduction to 4 dimensions, so we be-
lieve that it is an interesting attempt to study the properties of nucleon resonance
using this model. In particular, the Roper resonance, the first excited level of the nu-
cleon, is considered to correspond to the monopole excitation, and the Sakai-Sugimoto
model, which describes the Roper resonance as a soliton size vibration, respects this
picture.

Furthermore, hadron resonances involving heavy quarks have been studied inten-
sively in recent years. In particular, it has been shown that Roper-like excitations
exist even in heavy baryons [23]. Interestingly, it was noted that Roper-like excitations
have an excitation energy of roughly 500 MeV from the ground state, even in situa-
tions where one of the quarks is replaced by a heavy quark. This flavor-independent
nature of Roper-like excitations is very interesting. We showed in chapter 3 that the
extra dimensional degrees of freedom of the Sakai-Sugimoto model are also useful in
the description of heavy hadrons [36]. We derived the mass spectra of heavy baryons
using the Sakai-Sugimoto model in section 3.4. As a further development, we expect
a similar analysis to our chapter 4.

As a further development of the study of hadron resonances in the Sakai-Sugimoto
model, we described in chapter 4 the study of the dynamical nature of nucleon reso-
nances. One of the significant results of this doctoral thesis is that we have pointed
out the importance of the aspect of collective motion of mesons for a comprehensive
understanding of nucleon resonance. We have performed calculations of the decay
widths of one pion emission and have shown that they reproduce well the experimen-
tal data for low lying states. A particularly interesting feature is that the relation
between the axial coupling ngN*(MLLO) and the nucleon axial coupling is independent
of the model parameters. Such a relation is a feature not obtained from other models.
We then performed a calculation of the electromagnetic transition amplitudes. In par-
ticular, our analysis captures well the A; /, feature of the Roper resonance (Fig. 4.3),
suggesting the importance of the collective motion aspect of nucleon resonances in the
description of Roper resonances. On the other hand, the transition amplitudes of the
Delta resonance A(1232) and the negative parity resonance N*(1535) underestimate
the experimental data. This may be due to the fact that our calculations are based
on the 1/)\ expansion. Therefore, analysis beyond the 1/\ expansion is expected.

Specific analysis is an important issue to be addressed in the future. One possible
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analysis method is to use asymptotic solutions for instanton solutions as described
in section 4.1.1. This produces a contribution from 35 /R in the current’s expression
(4.1.96). Since this contribution is practically the same as the current contribution
used in Ref. [16], a large change in the analytical results is expected.

Finally, we remark on several points regarding further future developments.

First, as mentioned immediately above, we expect to improve our results by con-
cretely performing an analysis beyond the 1/A expansion. In particular, as we have
already mentioned many times, this model, when reduced to 4 dimensions, leads to an
action consisting of mesons and baryons, and furthermore, their coupling constants
are not parameters but fully determined by the warp factor and the eigenfunctions of
the mode expansion, reflecting the QCD information. By clarifying the relationship
between the magnitude of these couplings and the asymptotic solution of the instan-
ton solution, the phenomenological aspect of the Sakai-Sugimoto model becomes more
clear. As a result of such analysis, a deeper understanding of the dynamic nature of
holographic QCD can be achieved.

It is also possible that some of the failures in our analysis arise from problems as-
sociated with the definition of chiral currents in the Sakai-Sugimoto model. While
the chiral current obtained from the GKP-Witten method, which is a proper tool for
holographic QCD analysis, gives a good prediction for the decay width of the one
pion emission, it does not reproduce the experimental data of A, /, for the Roper res-
onance, which exhibits characteristic behavior. Therefore, we have analyzed A;/, of
the Roper resonance by considering the 5d bulk theory of the Sakai-Sugimoto model
as a bd hadron effective model like Ref. [77] and by defining the chiral current as a
Noether current, and found that we succeeded in reproducing the approximate be-
havior of A;/5 of the Roper resonance. The relationship between these two currents
is a theoretical issue to be clarified in the future. For example, in Ref. [121], it is
confirmed analytically that the definition of the energy momentum tensor in terms
of the Noether current of the bulk theory of the Sakai-Sugimoto model and the defi-
nition obtained from the bulk/boundary correspondence exactly coincide in the zero
momentum transfer case.

Furthermore, the dynamical properties of resonance states of heavy baryons can
be investigated by using our proposed method of introducing heavy flavor into the

Sakai-Sugimoto model, as in section 4.3. In particular, Roper-like excitations in heavy
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baryons exhibit flavor independent properties, thus understanding how Roper reso-
nances corresponding to monopole-like excitations are generated in situations where
one quark is replaced by a ¢ quark or b quark is of great interest for understanding
the dynamics of low-energy QCD.

Such monopole excitations, which have the same spin parity as the ground state
and cannot be captured by a simple picture, are also known in the nuclear physics
context, such as the Hoyle state, the first excited state of Carbon, and the JI =
0" excited state of Oxygen. The existence of such monopole excitations can be
interpreted as suggesting that components strongly bound by a strong force may
benefit energetically from monopole-like excitations rather than from excitation of
them alone. Such nuclear excitations by solitons have been studied [122, 123, 124,
125], and our study may be able to be extended in this direction. It is hoped that
understanding these unique excitations to many-body systems governed by strong
forces will open up a deeper understanding of QCD.

Finally, there has been great interest in recent years in the study of the gravitational
form factor of hadrons, that our research is expected to develop in this direction as
well. The gravitational form factor is a form factor derived from the matrix elements of
the energy-momentum tensor, and is responsible for information on the mass and spin
distribution in hadrons, as well as the distribution of pressure and stress that confine
quarks and gluons into hadrons. These quantities, in addition to the electromagnetic
and axial form factors obtained in this doctoral thesis, have the possibility to lead to a
more detailed understanding of the structure of hadrons. Recently, in Ref. [126, 127],
experimental pressure and stress distributions for nucleons have stimulated the study
of gravitational form factors, which have been seen only as theoretical objects, and
many theoretical studies have been conducted [128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141] (Review : [142]). Furthermore, using the Sakai-Sugimoto
model, the expectation value of the energy-momentum tensor of the nucleon has been
calculated to obtain the D-term, which is one of the gravitational form factors [121].
One of our future research directions is to analyze the gravitational form factor of
nucleon resonances. By studying the gravitational form factor of nucleon resonances,
we can understand their internal pressure and stress distribution, which may open a

new insight into how the strong force confines the quarks and gluons.
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Appendix A

Details of the calculation

Al (2.4.19)
We show the following expression for the CS term;
Scs :% x[o,oo)Trf(A}—Q—_AB]:__‘AE))
i [ [ony+ ey
+ i(imstera- 50)] v

All products are wedge products.

F=dA, F =dA+iA? Ty (T°T) = 167,
From the properties of wedge product, AA + AA = AA — AA = 0.
From the antisymmetric properties of wedge product, A2 =o.

The terms of one power of the field (F' and A) in SU(Ny) are zero from traceless.

Al e

Since the coupling constant is absorbed in the gauge field, more than three
squares of the SU(Ny) field is zero.

6. From the properties of trace and antisymmetry of the wedge product, TryA? =
0.

are used as needed, where

A= AT + Al (A.1.2)

1
V2N,
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Substituting
1

2_(A A) =A% 4 (AA + AA —A2 A? A.1.3
A= (44 m ) Jan, AT AT oy (A.1.3)
1
A3 = (A+ A)A? = A% + A? (A.1.4)
( w/z f ) ,/2Nf
5 (A3 AAZ) A2 = AP AA* A15
A ( * \/2Nf ) + /QNf ( )
1 .. 1 . 1
2 - f? FF+FF)+ —F%2=F? dAF —dA2 A.1.6
d MRV i 7 TN e -
1 . 1 .
SF= (A3 AA%)(F o
AF = (4 + = AR?) (F+ —=F)
1 . 1 . 1 . .
= A3F + —dAA3 AA%F —AA2dA A1.7
* 2N * f2Nf ToN ; ( )
AF? = (A + LA) (F2 4 ——_JdAF + —dA2>
V2N ,/2Nf 2Nf

— AF? ¢ —dAAF + —dAzA + AF? ¢ —AdAF + ;Aﬁ

2N 2N , /2Nf Ny 2N;\/2N;

(A.1.8)
for the CS term, we get
; !
Sps = Tr, [(AF2 L) ;A5>
247’(’2 R4><[0 00) 2 10
b2 ARPtAF 4 A 4 — AP x N
/2Ny /2Ny 2N¢\/2Ny
i . i .
— dAtrA® — dAtrA?F A19
o /2N, 0 T o AN, ] (A.1.9)
Here, we calculate the total derivative term;
! a( Aty (2P 4 - EA?’)) = 2 JAtwAF - — ' dAnA?
V2N, ! 2 2N, 2,/2N;
1 . . .
- Ar(20FA+2FdA ~ ZdAA? + S AdAA — £ A%AA)
2Ny 2 2 2
(A.1.10)
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Furthermore, the calculation of the term of the second line yields

2 . 2 . .
(second line) = — mAtr(—dAA —iAdA)A — \/2—TfAterA + 2\/BTZTfAtrA2dA
4i - 2 . 3 .
=— AtrA?dA — —=——=AtrFdA + — —=AtrA%?dA
N N 22N,
51 4 2 .
=— AtrA*dA — AtrFdA
N V2N,
7 - ~ 1 - 20 .
=— AtrA*dA + AtrA%iA?) — AtrA* — AtrA*dA
2 N, A AT = N AA T A
2 A . 2 . 2 .
— AtrFdA + AtrFiA®) + AtrdAA? — AtrA*
A, A R N A o,
1 ~ 2 .
=— ———AtrA’F — AtrF?, A.1.11
52N, N (A-1.11)
which shows the desired expression.
A2 (2.4.20)
For SU(2), by identity,
_ T T
ws(A) = Tr(AF SATF - A ) —0. (A2.1)
The formula for the product of generators of SU(N) is listed below.
TaTb — Léab + ldabcTc + ifabcTc (A 2 2)
2N 2 2 o
1
tr(TT°) = 55“” (A.2.3)
1
tr(TTT¢) = Z(dabc + 4 fabe) (A.2.4)
1 1
tI‘(TaTbTCTd) — W(sabécd + g(dabe + ifabe)(dcde + idee) (A25)
1 1
arpbycrpdey .~ gabg jede - rede _— (abe - rabe\ ccd
tr(TTtTT)—8N5 (d°* +if )+4N(d +1f)0
1
+ 1—6(dabf +id™)(d°9 4 d°19)(d°TI 4- d°79) (A.2.6)

Using the fact that, d®*¢ = 0 for Ny = 2, there are only three generators of SU(2),
and that in the calculation of tr(A4®), the terms involving §%° are also zero due to the

antisymmetry of the wedge product, we have ws(A) = 0 for SU(2).
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A3 (2.4.22)

For arbitrary Ny, we show

2 2
503_2471'2“]\60/ S AtrF + - AF -l-d( )

3 - 3 .
/d :cdz[ AoTl"f(FMNFpQ) — —AMTI‘f(aoANFpQ)

24
3. ~ oA A n oA N
+ ZFMNTrf(AOFPQ) —+ EAOFMNFPQ — ZAMFONFPQ —+ (total derivative term) .
(A.3.1)

If we factor out \/2/—N , this calculation can be used regardless of Ny. The point
is to drop terms over two squares in the SU(Ny) field (A and F'). This is because
considering ¢%,, < 1/\ < 1, g3, should be dropped, which is consistent with
keeping the zeroth-order of X\ in the analysis of baryons here.

Using that the differential form is written by

1
Wy = ad”xe“l”””"wm,,_,ﬂn, (A.3.2)

we expand

A 1
AtrF? =d°pe®MNPQ — 51 3] (AotrFMNFPQ AMtrFoNFPQ + AMtrFNOFPQ
- MtI‘FNpFOQ + AMtI'FNPFQo)

1, 4 ~ .
:d5CL‘60MNPQZ(A0tI'FMNFPQ — AMtraoANFpQ X 4+ AMtI'aNAoFPQ X 4) + O(A3),
(A.3.3)

the last term becomes

e MNPQ 4y trdn AgFpg = — MNPR(9y AptrAgFpg + ApytrAgdn Frg)
= — OMNFPQyy AprtrAgFpg

1 A
= — §EOMNPQFMNtrA0FpQ, (A34)

Therefore, we obtain

A 1. A 1~
AtI‘F2 :d5x€0MNPQ (ZAOtrFMNFPQ - AMtI‘aQANFPQ - iFMNtI‘A()FpQ> + O(Ag)
(A.3.5)
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Also, the term with only U(1) term expand
AFQ = GOMNPQ(A()FMNFPQ - 4AMF0NFPQ), (A36)

so the first equation could be proved.

A4 (2.4.49)

We prove

2
M =87k + kA1 /d3xdz[ — %Trf(Fi 02+ 22T (F; )2]

1 _ A 1 A~ _
— 5/1)\ 1 /dS.CEdZ |:(6MA0)2 + %AOGMNPQTI')”(FMNFPQ)} + O()\ 1)
2 2
B P 7 S S N .
=82k |1+ 27 5t S3aE 3 ) +o0) (A.4.1)

For this, we can just integrate by substituting the classical solution obtained. One

should use as follows;

92 2 2
Fij = Lﬁijﬂa, F.; =

V@42

2p

mTj. (A42)

A5 (2.4.60)

Calculate the field strength of the time-dependent gauge field in collective coordi-
nates. By substituting the time-dependent gauge field into Fyys = oAy — O Ao +
i[Ag, A, the field strength is calculated as

Forr =00An — O A A + i[AAo, AM]
=WAS W™ + WAL, W' + Wo A, w1
— W (OuW T TAA W)W L — W [AS, WA AW W L, (A.5.1)

Here, using

oW IW)=0=Ww+wlw (A.5.2)
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we calculate
WAGW =+ WAG W
= WW WAL YW —w AW twyw !
= W[Wtw, AS w1
= WA, iW W w1 (A.5.3)
and we obtain
Fort =W 0 AY W ™1+ Wy (W W)W "W + W([AS, iw W))W
— WD, (W tAA W)W L

:W(X“%A%>W_1 — (WD (WL AAW)W ™! — WD, (W~ W)W )
_ o 0 cl cl
_W<X S AT DM<I>>, (A.5.4)

where ® is defined by
O =W TAAW — W IW (A.5.5)
With 93, W (t) = 0, note that we introduce, for example,

(0 =)W W W)W 1w 1, (A.5.6)

A6 (2.4.67)
Here, we determine the metric of the collective coordinates,
L :%gaﬁxaxﬁ —UX*)+ 00\ (A.6.1)
2 2
p 1 1 A
U(X®) =U(p, Z) = M (Bt g+ 5 A6.2
( ) (p ) 0o+ mx 6 + 3207'('4@2 ,02 + 3 ( )
ds® =gopdX*dX" (A.6.3)
=dX? + dZ* + 2(dp? + p*da?) (A.6.4)
=dX? +dZ? + 2dy°. (A.6.5)
To do this, we use
+aN, / d*zd2Tr Fgy; =aN, / dxdzTr (DS ® — AS)?
:m;““ JapX X7, (A.6.6)
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Then, we need to solve

0

D;@(XaaX A — <1>> — 0. (A.6.7)

Since we desire a metric such that each of (X' , Z,ar) is diagonalized, we decompose

as
P =>Dx + (Pp + (I)SU(2)~ (A68)

As a result, the equations we need to solve are also decoupled to become

)
cl N _
DeL <X e Al @X) ~0 (A.6.9)
De, ( agAcl DﬁﬁICI)p> ~0 (A.6.10)
DS DS B gy a) = 0. (A.6.11)

We will solve them in the steps below. It is useful to know that we can write

1 ( 2)T" = €ija(x? — XI)1%)
999 —{ —?2 0 xara (A.6.12)
O (gonrg™) o (2™ — XM gOprg™' =0 (A.6.13)

for the BPST solution.
First, for

)
cl N —
D (X Fn A @X)_o, (A.6.14)

We easily find that we can write
by =—-XNVAg (A.6.15)

X for the BPST solution. From this, noting

9 et —ON A, (A.6.16)
ON
we obtain
XN 8§NA Sdy =— XNoNyAG, + XNoy AL +iXN[AG, A
=XNFe . (A.6.17)
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Therefore, we calculate

%gMNXMXN :HA1/dsxdztr[(—XMFI%ZM)(—XNFI%ZN)]

=kATIXM XN / Brdztr ey, Fey (A.6.18)

then, by substituting the solution and integrating this, we obtain

2’%)\71 3 cl cl
mx
Next, for
cl - 0 Acl cl A
Ds. (pa—p o _ DMq>p) =0 (A.6.20)
because of
2p
cl __ cl
(A.6.22)
we can calculate
el :n ac 200 e 20+ yel ge
then we obtain
¢, =0. (A.6.24)
From this, in the same way as above, we get the following metric
2kA 7L 0 2
- dBrdzt (—Acl) — 9. A.6.25
9pp x / razir dp M ( )
Finally, for
D§ D5 @ g9y = 0, (A.6.26)

Moving on to singular gauge,

—cl

Ay () = g(2) (A (x) —idwr) g(w) = —i(1 = f(©)g(z) ' Omg(z)  (A6.27)
Doyt x) = glz; X (1) Psu)(t,2)g(z; X (1)) (A.6.28)
(A.6.29)
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used in the discussion of SE&"!, we solve

—cl —=cl —
Dy Dy ®sus) = 0. (A.6.30)
Assuming the ansatz;
Bsum = Y X" (Bu'()5 (A.6.31)
a=1

the equation we have to now solve becomes

figdi‘é(fsd%u“@)) - 8“}#1%) (A.6.32)

with arbitrary constants C'*, the regular solution is obtained as
u"(€) = C*£(E). (A.6.33)

Moving this back to the previous gauge, then we obtain

Dsr(2) = X (1) P () (A.6.34)
o= f(©)9597" (A.6.35)

The arbitrary constant C'* was absorbed in x®. Still x%(¢) has not been determined,

but if we remind that

Alt, M) = (A (@M X(1) + B(t, aM)dt) " (A.6.36)
O(t,zM) = g(=™; X)) (@(t, M) — i@o)g(xM;Xo‘(t))_l (A.6.37)

is gauge-fixed such that it is regular at infinity, even after giving it a time dependence,

we should still require
A(t, ™) = 0. (A.6.38)
Therefore, with ® = ®x + @, + Pgyy(2), at infinity, Zd — 0, so we should require
Woew ! —iWo,Ww~—1! — 0. (A.6.39)
Then, x* are determined as

X(t) = =2tr(t, W IW) = 2(a4dq — G404 + €apetnie), ta = —. (A.6.40)
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From the above, we obtain ®g(,). From this, the metric are given as

26\~ 1
mx

. . 2 .
grraray = /dgl’dZtr(Dz\Z‘I’SU(Q)) = 2p%af,

where we use

(x*)? = 4a3

a? =1.
After the above calculations, we get

S :/dtL = /dt(Lkinetic - Lpotential)
L=Lx+Lyz+L,+0X1)

Lx =— My + TX2
L, =2 g2 TG g
2 2
2
m myW Q
L:_y(p2+p2 2) prQ i
v I 2 0>
My . myw Q
—%y% 9 py% - F
with coefficients
My = 87%k, mx =my = My _ 8r2k\~! = 8n2aN,
2 1 N2 N,
2 _ “ 2 _ — c_ _ c )
=3 Y=g 9T 5y T d0r%a
A7 (3.2.25)

It is almost the same as A.6. With

Ay () = g(2) (A% (@) — i0ar)g(x) = —i(1 — £(€))g(x) ' Onrg(x)
Dsus) (t,2) = gz X(8) ™ Psua) (t, 2)g(x; X (1)

The only difference is that the solution of

—cl —=cl —
Dy Dy ®sus) = 0.
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(A.6.42)
(A.6.43)

(A.6.44)

(A.6.45)
(A.6.46)
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(A.6.48)

(A.6.49)

(A.6.50)



we obtain as follows;

A8 (3.3.11)
From
Ligm,e, 18 = fmnplic, s
we derive
[Ems n)® = frnply -
We have

(A.7.5)

(A.7.6)

(A.7.7)

(A.7.8)

(A8.1)

(A.8.2)

Licm.e,)5 = Em0a(€005)s — €30a(E0,05)s = (5085 — €30a€0)055 = [Em, 617055

= fmnplie,5 = fmnp€y 039
for the arbitrary 6[;3,

[gma gn]& = fmnpgg

hold.

A9 (3.3.15)

First we prove

N = [Em,&n]" = gﬁmapfﬁ — &00ps,
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>
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The left-hand side expand

(Le,, L, — Le, Le,, ) A,
= £0(0,6) (Ovwy) + €0,61,(9,0,w,) + &1,(0,0,€ )wr
+ & (9u8,) (Opwy ) + (9,60,)6, (Ouwy) + (0,0, (0,6,, ) wn
— &0(0p8) (Ovwp) — §7€(0p0pwp) — §1(0,0,8,, Jwr
- fﬁ(aILme)(apwu) - (3H§Z)§Zl(5’,,wp) - (3M§£)(8p§,,l;l)w,,, (A.9.3)

Since the second and eighth, fourth and eleventh, and fifth and tenth terms cancel

each other out, we calculate

(Le,, L, — Le, Le,, ) A,
= & (0,8,) (Ovwy) + £1,(0p0,& )w + (0u€0,) (0p&5 Jwy
— &0 (080 ) (Ouwp) — E6(0,0,8,, )wu — (0uER) (Dprr Jwy (A.9.4)

On the other hand, since the right-hand side is calculated as

Ly Ay =(&0,0u85 — §,0uEm)0vwy + 0p(€,0,8,, — £10uE, )wy
=11, (0u€0) (Ouw)p) — 50 ) (Ouw)p) + (0p€h, ) (0pé )wr
+ &0(0p0u&5 )wu — (0pE0) (0 )wu — €5(0,0,65, )Wy, (A.9.5)

By comparing both sides, we can see that they are equal. We have now proved this
for the case of 1-form A, dz", but this relation holds for general n-forms.

Next, we prove
The left-hand side is calculated as

Lﬁm(DuWn) — L, (Dqu)
= (%&’;)(3an + [Apa Wn]) + §%ap(auWn + [A/u Wn])
— (0 (Wi + [Ap, Win]) — £1.0p(0,Win + [Apy, Winn])
= (0u€0) (0, Wn) + (9470 [Ap, Wil + £7,(0,0,Wn) + 5,0, ([Ayr, Wh])
— (00 (0o Win) = (0,87) [Ap, Win] — £1(0p0uWin) = 7.0, ([Ap, W) (A.9.7)
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The right-hand side becomes

D“(Lngn — L¢ W, — Wy W)
= 0u(€00p Wi — EgWon + [Win, W) + [Ap, £5.0,Wn] = [Ap, £00,Win] + [Apy, Wi, W]
= (auffn)(apwn) + 5&(auapwn) - (auff&)(apwm) - gﬁ(auapwm)
+ 800, ([A, Wal) = (60,00 A, Wa] = €10, ([Ay, Win]) + [£70p Ay, Win] + Dy (Wi, Wh])
= (0u€7)(0pWhn) + £7,(8,0,Wn) — (0,€7) (0, W) — €700, W)
+&0.0p([Ap, Wh]) = £2.0,([Ay, Win])
+ Dp(Win, W) = [(0u€0,) Ap + E5,.0p Ay, Wil + [(0u€5,) Ap, W]
+[(9,80)Ap + 70 Aps Win] = [(8,67) A, W]
= (0u€7)(0pWn) + £7,(8,0,Wn) — (0,€7) (0, W) — £(0,0p W)
+&0.0p([Ap Whl) = €0, ([A, Winl) + (0851 Ap, Wa] — (0,87)[Ap, Win]
+ DH([Wm, Wy — [DHI/Vm7 W,] + [DHWn, Wil (A.9.8)

by comparing with the left-hand side, we can see that the only difference is
+D,, (Wi, W]) = (D Wi, Wi ] + [DuWa, W], (A.9.9)

however, this term is zero,

+ Dp([Win, Wn]) = [DuWen, W] + [Dy W, Wiy
= au([Wm7 Whl) — [aqun Wh] — [WM78MWn]
[Aps W, Wal] + (Wi, Wa, ALl + [Wa, [Ay, W]
=0, (A.9.10)

because of the Jacobi identity. Thus, we achieved our aims.

A10 (3.3.17)

We can prove

D,L¢A, — D, LeA, = L¢Fy,. (A.10.1)
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as follows;

DyLeAy — DyLe Ay =(0,0,87)Ap + (9u67)00 Ap 4 (0,6°)(0p Ap) + £7(9,0,A,)
= (040,€7) = (0uE")(0uAp) — (0,8°)(0pAv) — £P(0,0,Av)
+ (0u8")[Av, Ap] + E[Av, 0,A ] — (0087)[Ap, Apl — E°[Ap, 0p AL
=(0u€") (00 Ap = 0pAy + [Ay, A]) + (0,€7)(0p A — O Ap + [Ap, Aul)
+£°0,(0,A, — 0, A,) + (AL, 0,A,) +£P[0,AL, A,
=(0u&" ) Fpp + (0uE°)Fyp + §P0,F
—L¢F,,. (A.10.2)

A1l (3.3.18)
With ¥,, = ¢&h A, — W,,, we prove
Sy = =Dy W, (A.11.1)
By using the symmetry equation,
(0uéh)Ap +E5,0pA, = Dy W, (A.11.2)

we prove as follows;

fﬁmFuu :ffn(auAv - auAu - [Aua Au])
=D ,W,, — (augﬁz)Au - fﬁzaz/Au - [@%AWAV]
=Dy Win — 0, (&, Au) + [Av, &1, Al
:Du(Wm - fanu)
= D,U,,. (A.11.3)

A12 (3.3.20)
With ¥, =& A, — W, we prove
e Ey = frnp¥p — [, Ul (A.12.1)
To do this, first, we prove

Lfm W — [Wma \Ijn] = fmnpq[p (A122)
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Using the consistency condition;
Le, Wy, —Le, Woy — (W, Wa| — franpWp =0, (A.12.3)
we get

Lﬁm\lln - [Wma an] :Lﬁm (éﬁAu) - LémWn + [Wm7£ﬁAu] + [WTTM Wn]

(A.12.4)

Moreover, using the symmetry equation,
(auggJAp + ggqapAu = aqu + [AM, Wm] (A.12.5)
we continue this calculation to obtain

Le, Wi — [Win, U] =€0,(0p80) A + E0.80 0p Ay + [(Win, S5 AL] + &1 [Ap, W]
- fmanp - g'rg (apgﬁn)Au - 5ﬁ£#®(8HAP)

:(fgmapgrli - fﬁapﬁfn)Au - fmanp - fmnpggAu - fmanp

m

=fmnp¥p, (A.12.6)
so we get
Le,, W — (Wi, Un] = frnp¥p (A.12.7)
Using this relation,
St =—Dy¥n, (A.12.8)
U, =&A,— Wy, (A.12.9)

and the fact that the Lie derivative of scalar fields become
Le U, = £20,0,,, (A.12.10)
we can prove (3.3.20) as follows;

éﬁngFw/ = - 571;(81/@171 + [Ay, \Ijm]) - _Siauqlm - [fZAu, \I]m]
=—L¢ ¥, + W, + 9,9, =—[W,,¥,,] — frmp¥p + W, + ¥, 9,,]
= frnnp¥p — [P, Unl. (A.12.11)
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A.13 (3.3.27)
Rewriting W,, in
Le, Wi (y®) — Le, W (y®) + Wi (y®), Wa(y™)] = frnpWp(¥*) =0 (A.13.1)
as
W, = 2 W, (A.13.2)
we prove
0a W5 — 05 Wa + [Wa, W;] = 0. (A.13.3)
We substitute W,,, = £& W, into above equation, we obtain
£0,0a(EW ) — E20a(ERW;) — [E5Wa, E5W5] — Frnp” W
= E8 (DalDYWy — €2(0aE0 )Wy + EXE5 W — E365.0a W — EE5 Wa, Wl — Funp’ W

(A.13.4)
Here, noting
€2 (0aYW5 — E3(Bal )W — Frnnpt® W
= ([gm,én]é - fmnpr)WB — U, (A135)
we can show
E8EBOW — E3€0.0aW 5 — EL.E5Wa, W] =0
— E5ED(0aW; — 05Wa + [Wa, W5]) =0 (A.13.6)
so, we can prove (3.3.27).
A.l4 (3.3.54)
& Fai = —DiVp = —Di(Wy, — £3Ag) (A.14.1)
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Now, noting W,,, = 0, by substituting the solution A4 of the symmetry equation into

above equation and multiplying both sides by & 4> We can calculate

EmiimFai = &,,58%Ena(—0i®n — [A;, Dy))
= Fy = &,5(—0i0y — [Ai, @) (A.14.2)

using gf;Lme = (52‘

To satisfy constraint F,,; = 0, consider the case § = w for F,éz‘ = §n3(—6i<bn —
[A;, ®,,]) = 0 in the above equation. For N < N’, we have &, = 0, so this is trivially
satisfied, but for m > N’, we have Enw %0, so

0;®,, + [As, ) = 0 (A.14.3)

is required.

A15 (3.3.55)
Multiplying both sides of
ERETF 5 = FounpWp + (Wi, U] = Frump€o Prra + (€0, Prbra E1®1E5]  (A15.1)
by Emal,s = haphss€h,En yields
Emi€ GESEDF, 5 = haphsy FrnpCh o €3 ®uha + Ems€, 56060 Eralis[®r, 1] (A15.2)
USINg frnpbmn€ny = —Frmnpbn€ats we get
Fi5 == Frinp€m3&,58p + Ems&,5(@m, @
=~ EmiEps (frnnp — [@m, Pu))- (A-15.3)
To satisfy constraint F,,, = 0 (w, 7 are indices of the subgroup R),
Fro = ~Emeni fonny — [, ©,]) = 0 (A15.4)
is required and to satisfy constraint F,, = 0,
Fow = —&malnw(fnp — [@m, @]) =0 (A.15.5)
is required. Thus,

gnw(fmnp - [(I)ma (I)n]) =0 (A156)
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is required for both F,, and F,, = 0 to be satisfied.
For m < N’, this equation is trivially satisfied because of Enw =0, but for m > N’,

fmnp - [(I)my (I)n] =0 (A157)

is required because &,,, # 0. Note that m, p can take arbitrary values.

A.16 (3.3.63)

On the subgroup R, with r(y~) the element of the group (s(y®) = r(y*)so(y®) the

element of the group S) and its generator as éﬁl, we have

Léms =—J"s=—-J"rsg
= éﬁz(awr)so
— —JMr = €9 (D), (A.16.1)

in the same way as it holds on S.

Multiplying both sides by ém leads to

- ngJmT = émTérﬁ(awT) = 01
— (Br)r ™t = =€ ™. (A.16.2)

A.17 The calculation of section 3.3.2

We show the some formula.

1 1 1 1
ty = §<X7 +X—) t2= §(X’Y7X—’Y)7 t3 = 5}% y= §h (A.17.1)
2w; 2 1
2&)1'

[Hi Xoo] = wiXw,  [XwyX-w] = ———Hi,  [Xus Xr] = CorXowtr (A.17.3)
— [X’Y,XB] = :tXa: [Xf’yyXf,B] = FX-a [Xf'y,Xa] = j:X,Ba [wafa] = F+X-8

(A.17.4)

(A.17.5)

184



The o+ v and 8 — v are not roots.

1

7
[tlvxc'é] - §[X—’77Xa] - +2

XB

i i
=[xy X8) = F5Xa

t —
[t2, Xal = —2[X s Xa] = —5X5 = = (+ixs)
al = 5 X=—v: Xal — 73 = a ?
1 1 T, .
[t2, x8] = §[XA/7X[3] = 5Xa = +§(—2Xa)
1 2, 127«
t37Xa = 3 HiaXa =3
| | 2y 7[ | 2 vy

[t3, x8] = % (B,7) x5 = = (@ —1,7) X8

2

]

)
o) = zhilHi, Xa| = shicg

7 7 7
v, xs] = §hi[Hi>X6] = —hiBixg = zhi(a; —vi)xp =

2

Here, we use

20; 20 4
haihe) = - 2% (L H ) =
( ) ) Oz'OéOé'le( J) o

20; 2(c; — ;) 4
hos hg) = L
(a; hs) a-a (-8 T aa

20(1'
(has Xv) = (hgy Xy) = ———(Hi; x4)

to above calculate.

?
2

(1=2)xp =

l

Xa = 5 <a7'7> Xa = 5 Xa

2
l

2XB

Xo = ? tan OXo, (h;o; =tan)

2

2
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1

tan 6
2&11)(5

(A.17.6)
(A.17.7)
(A.17.8)
(A.17.9)

(A.17.10)

(A.17.11)
(A.17.12)

(A.17.13)

(A.17.14)
(A.17.15)

(A.17.16)



Appendix B

Gauss's law

In this doctoral thesis, I mentioned that one should pay attention to whether Gauss’s
law is satisfied when we give time dependence to the static soliton solutions in gauge
theory by the collective coordinate. Gauss’ law is an equation that determines the
time component of the gauge field, which is not an equation of time evolution because
it does not include the time derivative for the time component of the gauge field
(due to the fact that the field strength is completely antisymmetric). In fact, this
time component is not an independent dynamical variable that disappears in the
Hamiltonian. Let us now follow the textbook [108] to clarify what is implied by
Gauss’s law and to better understand the collective coordinate quantization of solitons
in gauge theory.

In the following, for simplicity, let us consider a U(1) gauge theory of

L= _if’“’fw + %D—,@D% (B.0.1)

with gauge fields a,, (© = 0,1,2,3) and scalar fields ¢, where f,, is field strength
and D, ¢ = 0,¢ + ia,¢ covariant derivative (D, ¢ is its complex conjugate.). Gauss’

law is the time component of the EOM of A, which is obtained as

(VZ - 6(}5) ag = 0;00a; + %(g_ﬁao(ﬁ - Qﬁaoa) (B02)

This equation implies that Ay is determined if the time derivatives of a;, (i = 1,2,3)
and ¢ at a certain time are known, which means that Ay is not an independent

dynamical variable.
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To understand the role of ag, we consider the coordination space A, which is the set

of fields {¢(x),a(x)} at a certain time (Fig. B.1). The physical configuration space is

Fig.B.1 The rotational symmetric fields

the coset space C = A/G, which is divided by the configuration space shifted by the
gauge transformation G = {?*(¥)},

Suppose that the coordination of a field, which was {¢,a} at a certain time ¢,
changes to {¢ + d¢,a + da} with a infinitesimal shift ¢ + §¢. Then, the kinetic energy

changes to

%/ (51)2 (da- 6a + 3606) d'z. (B.0.3)

If there is a component along the direction {ia¢p, Va} of G at t due to (B.0.3), the
energy will be changed by the gauge transformation, which means that the gauge

symmetry of the theory will be broken. To avoid such a situation, we should restrict
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the time variation of the field configuration to {6¢*,daL} of

St =6 —ifo (B.0.4)
dat =da— Vp. (B.0.5)

The 3 is determined from the condition that {§¢+,dat} and {iagp, Va} are orthog-

onal,

/ ((saL Va+ %(5&@ + @m(p))d% ~0. (B.0.6)

In this way, it is understood that the time component of the gauge field ag plays the
role of 3, which limits arbitrary time changes of {¢(x),a(x)} at a certain time so that
they are physically consistent, as follows.

integrating (B.0.6) by parts and dropping the surface term, we get

/ (V -dat 4+ %(55¢L — ¢<5¢T)>ad4x =0. (B.0.7)

Since this should hold for any infinitesimal «, it is required that
V. dal 4+ %(55& — $3¢L) = 0. (B.0.8)

Substituting (B.0.4) and (B.0.5), we obtain

(V2= 60)8 = V - da+ 2 (66" — ¢3oT). (B.0.9)

Dividing both sides by dt, and from da/dét = dpa, d¢/5t = Oyp, we obtain Gauss’s law
(B.0.2) by regarding 8/t = ay.

Thus, even if the time component of the gauge field is zero to begin with, the time
component is induced when the gauge field at a certain time ¢ is time development.
This S corresponds to AAg(t,z) in (2.4.57) when the gauge field is given a time

dependence by the collective coordinate.
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Appendix C

lLie derivative

In this section, we explain the Lie derivative according to the textbook [143]. Now,
the vector field at each point on the manifold M is written as X € 2 (M) and the
1-form is written as w € Q'(M). A curved line is defined on the manifold M such that
this vector field is a tangent vector. With = as a certain point, the infinitesimal trans-
formation along the curve generated by X can be expressed as o#(z) = z + eX*(x)
with the infinitesimal quantity e (When there is no subscript of u, the argument is
valid regardless of whether or not coordinates are introduced.). The derivative of
1-form w along this change is called the Lie derivative. However, it does not make
sense to simply compare the 1-forms in  and ox, because they are 1-forms belonging
to different cotangent spaces.

Now, we define the map o, : © — o0c(x), then this map induces a map (o).
Ty M — T, ()M in the tangent space. As a result, the map (o.)* : T;:(x)M — 1M
is induced in the cotangent space. This mapping (o.)* is called the pullback of o.
From this, the 1-form on T /M in oe(z) (written wl, () in the following) can be
pulled back (written (0c)*w|s_(z)) on Ty M. Thus, a meaningful derivative is defined

by comparing (0.)*w|s, () and w|,. Concretely, we can define it as

1
Lxw = lim — [(0¢)*w|y(2) — wlz], (C.0.1)

e—0 €

where the operator of the Lie derivative along X is written as Lx. Let’s transform
the equation on the right hand side into a convinient form by introducing coordinates.
Let us write X = X*0/0x* for the vector field on T, M and w = w,dz* for the 1-form
on Ty M. Then oc(x) has the coordinate 2 + eX*(z), and the 1-form on T ()M is
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transformed as follows;

w|06(m) :wu($V + GXV)d($H + GXH)
= (wp(2) + X (2)Opwy(x) + 0(62))(1(:17“ +eXH).

If this is pulled back over T M by (o.)*, it is computed to be

(06) Wlo, (@) =(wp (@) + X¥ (2)Bpwy(z) + O()) dep
:(wu(ﬂf) + EXV(x)a,,wu(:E) + 0(62)) (5;; + eapXu)de

=w,dz" + €( XY (2) 0w, () + 0, X" (2)w, (z))dat + O(€%).

From the above, the Lie derivative of w,dz* by X"0/0z" is expressed as

Lxw = (X" (z)0,wy(z) + 0, X" (@)w, (z))da*.

(C.0.2)

(C.0.3)

(C.0.4)

In this doctoral thesis, when we say that a field is symmetric or invariant with

respect to the transformations generated by the vector field X, we mean that this

Lie derivative is zero (for gauge fields, this restriction is more relaxed, as in (3.3.3)).

We can correspond X to £ and w to the gauge field A = A,dz™". From the above

definition, it is understood that symmetric fields are, for example, those shown in

Fig. C.1 and C.2.

A

DaRd

A

<
<

Fig.C.1 Rotational symmetric fields
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Fig.C.2 Translation-symmetric fields
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Appendix D

Chern-Simons term

D.1 CS term

In section 3, we obtained the mass formula for baryons in the flavor SU(3) Sakai-
Sugimoto model, yet we proceeded with the analysis assuming that a constraint term
(3.2.47), which does not actually derive from the CS term used in the Ref. [10, 11].
So far, there have been studies to improve the CS term so that the SakaiSugimoto
model produces a constraint term [87, 88]. In the following, we will refer to [87, 88]
and explain the issues regarding the CS term, including a discussion of the constraint
term in the Sakai-Sugimoto model.

First, let us summarize a few things that need to be clarified when considering
the problems associated with the CS term in the Sakai-Sugimoto model. Consider a
five-dimensional YM-CS theory in the Sakai-Sugimoto model defined on a manifold
Ms. The boundary of this manifold M5 in the Sakai-Sugimoto model is the four-

dimensional manifold M iioo) at z — +oo. That is,

OMs = M) U (— My, (D.1.1)

The minus sign means that the orientations are reversed. Here, the field defined on
M iioo) is written as fli = A|.—+00- These are the gauged external fields correspond-
ing to the chiral symmetry U(Ny)r x U(Nf)r of QCD, respectively. The CS term
is invariant under gauge transformations that act trivially on this boundary, but it
changes under gauge transformations that act nontrivially on the boundary, which

leads to the chiral anomaly in QCD.
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In fact, the variation caused by the infinitesimal gauge transformation dy A = dA +
[A,A] = Dy A of CS term

N,
gos — Ve ws (A D.1.2
D% “2am2 fu 5(A) ( )
ws(A) =tr (AF2 Ly iA5> (D.1.3)
> 2 10 o

—tr (AdAdA + gA?’dA + §A5> (D.1.4)

used in Ref. [10, 11] (In this section, we use the anti-Hermitian U(Ny) gauge field
AT = — A, so i appears in the coefficients of the CS term and the CS 5-form notation

is different.) become

orScs =C daws(A)
M4 xR

:c(/w wim,/u)_/ Wl A), (D.1.5)

which is the chiral anomaly of QCD (see also the textbook on [144]). Here, with
1N,

- (D.1.6)
T

Wi(A, A) = tr(Ad(AdA + %A?’)) (D.1.7)

Ar = At (D.1.8)

we wrote in differential form and omitted the wedge product A and further used the

relation,
Saws(A) = dwi(A, A) + O(A?) (D.1.9)

and Stokes’ theorem.

We now define the gauge field on the boundary Miioo) as fli = A|,-1+0. However,
as long as we use such a globally well-defined gauge field, we see that the baryon
number is necessarily zero.

Different from the coordinate z, |x*| — oo is not considered a boundary, so we
compactify it to My = S' x S3 to avoid confusion, where S! is time and S space.
The baryon number is the instanton number given as

1

Np=—
87'('2 S3xR

tr(F?), (D.1.10)
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where the space z extends is denoted as R. Here, from
tr(F?) = dws(A) (D.1.11)
_ L3 _ 2 3
wa(A) = tr(AF 34 ) - tr<AdA+ ~A4 ) (D.1.12)

it can be transformed to

No = gz ([ sl + [ en)]imic) (D.1.13)
s g3 g3

From this formula, we conclude that if A|,_,1,, = 0, then the baryon number Np is
zero. Therefore, if we define Ay = Al 100, We can always set AL =0 by a gauge
transformation, so we can only describe the case Np = 0, as long as we consider
a globally well-defined gauge field. This result does not suit our purpose of trying
to analyze baryons in instantons. However, in gauge theory, only the field strength
needs to be globally well-defined, not the gauge field. Keeping this in mind, we can
construct a solution for Np > 1, which also allows us to use the BPST Instanton
solution.

To obtain a gauge configuration with Ng > 1, we divide the space-time manifold

M5 into two or more patches

Ms = MI UM

MZE ={(z,2) € Ms| + 2 > —¢}

Mz A M~ M x (—€, +e)

Mio) = {(2*,2) € M5|z =0} ~ S' x §° (D.1.14)

and define a gauge field on each of these patches (Fig. D.1). For the field strength to
be globally well defined, the gauge field should be connected to

Ay = A" = hA_h7! + hdh™! (D.1.15)

by h € U(Ny) at My N M ~ MLEO) X (—e€, +€) where these two patches overlap. Also,
the gauge transformation should be defined by

A = AP = g2 Argy! +grdgs’, h—gihg™! (D.1.16)

with g4+ € U(Ny).
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J- g- g+ J+

A A_ h A, A,

Mi—oo) MiO) Mi+oo)
, >

Fig.D.1 The space-time manifold in the Sakai-Sugimoto model

Here, different from the previous case, we define the gauge field at the boundary of

z — o0 by
A = Ailistoo. (D.1.17)
Furthermore, the gauge transformation g4+ € U(Ny) acts like
g+ = gt |zt00 (D.1.18)

to the boundary z — 400, which corresponds to the gauged elements of the chiral
symmetry, (§—,J+) € U(Ny)r x U(Ny)r.

This allows for a gauge configuration of N > 1. Denoting the space manifold in
Z = —00,0,+00 as S?_OO), S?O), S?+OO), the baryon number is transformed into the

following form

1
NB :—2</ dw?,(A_) —I—/ dwg(A+)>
8%\ J 93 x (—00,0] 53 x[0,4-00)

aalda)+ [ wnld)

3
(+o0) 57— o0)

+/S3 Ws(A+)+/_S w3(A—))» (D.1.19)

3
(0) (0)
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with the first line unchanged and the second line added. Here, if we use
1
w3(AY) = w3(A) — gtr((gdg_l)?’) — dtr(dg~1gA) (D.1.20)

with Ay = 0, we obtain the formula

1
Np=—— [ tr((hdh™")?)|.= D.1.21
b= gz [, (), (D.1.21)
which is nothing but the definition of the mapping degree of h : S — SU(Ny),
namely 73(U(Ny)) = Z.
Vanishing of the constraint term

In the following, we show that in the CS term used in the Sakai-Sugimoto model,
the constraint term that plays an important role in obtaining the baryon spectrum
does not appear, as explained in section 3.1. From now on, we will use Hermitian
gauge fields. First we give some formulas related to the CS 5-form. Under the gauge
transformation A — A" = V(A — id)V~! of the gauge field A (decomposed as
(2.4.14)) of the U(Ny) gauge group, we deform it as

1
ws(AY) = ws(A) + 1—0trL5 + doy (L. A), (D.1.22)
where it is defined to be
L=—iV1dv (D.1.23)

as(L, A) = %tr L(AF + FA—iA%) + %LALA —iL3Al. (D.1.24)

Also, in an arbitrary infinitesimal transformation A4 — A+ § A of this gauge field, we

deform it as
ws( A+ 6A) = ws(A) + 3tr(SAF?) + dB(8.A, A) + O((6.A)?), (D.1.25)

where $(0A, A) is defined to be

B3A,A) = te[5A(FA+ AF - %A3>}. (D.1.26)
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Using the above formula, the CS 5-form in the gauge field with time dependence

by the collective coordinate is given in the form
ws (.A) =Wws ((.ACZ + (I)dt)w)
1 . .
ws (A% 4 Ddt) + Etr(—iw—lwcztf + dog (—iW T W dt, A% + ®dt)

=ws (A) + 3tr(@dt(F)?) + dB(Ddt, A”) + dag(—iW W dt, A%

=ws (A?) + 3tr(®dt(F?)?) + dB(®dt, AY) + dau(—iW 1 Wdt, A%). (D.1.27)
In the last line of the deformation, we used A%, (z; X(t)) = F& (23 X(t)) = 0 from
the solution we already obtained (3.2.20). Therefore, the CS 5-form is transformed by
giving time dependence to the collective coordinates, leading to three terms other in
addition to ws(A). However, the contributions of these three terms cancel each other
out, eventually resulting in ws(A) = ws(A). Let us explain this in the following.

We first consider the term 3tr(®dt(F)?). Since A§; is an embedded SU(2) BPST

instanton solution (3.2.8), we get
1
(Fh? = §P2tr(F0l)2. (D.1.28)

Since only tg of the SU(3) generators survive when multiplied by Ps and take a trace,

we obtain the relation

tr(®(F)?) =tr(x"®.P2) = tr(FCl)

1
=—tr(F%)", D.1.29
Ve ) ( )
with
1
tr(®Py) = —=\3(¢ D.1.30
(®P2) 73X (t) ( )
From
1 0 0 5 5 ) 1 0 0
Po=| 0 1 0 |=-"ctg+=13, ts=——=| 0 1 0 (D.1.31)
0 0 0 V3o o3 2v3\ o 0 —2
it is computed that
N, N,
Btr(@dt(F?) = V3 [ a8 / br(Fel)?
247T2 Ms=Rx M, 247 2472 2 My
_ N ditx®(t), D.1.32
= [ (D132
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where we use the baryon number is 1, i.e.,

1
Np=— [ tr(F)?=1. D.1.33
b= g [, 0O (D.1.33)
This is exactly a constraint term, but as we will see below, it just cancels out with
the other two terms.

Using that d3(®dt, A®) and day(—iW ~'Wdt, A°) behave as

(A3 = (—igdg™")3 o Py (D.1.34)
F(z) ~ 1/ (D.1.35)
at & — oo, we obtain
N, N, i
< dp(®dt, A%) =—=< /dtSt/ tr(—igdg~*)?
el . B( ) 2t 15 ) X (t) - (—igdg™")

N. .
- / dix® (1) (D.1.36)

N, : N, i
< day(—iW tWdt, A%) =—° /dt 8(t / tr(—igdg™1)?
sics ], e ) =gt 1vg ] 0O [ ir(igds™)

N, 8
__ M§/dt>< (®). (D.1.37)

Here, in general, because of

1 —1
Ng= — tr(F)2 = tr(—igdg—1)3 D.1.38
B=3 M4r( ) 247T2/53r(299), ( )
we used
Np = — /(—igdg_l)?’:lp (D.1.39)
B o4r? [ 2% o

Therefore, the three terms cancel each other out and we have
Scs[A] = Scs[.ACl]. (D.1.40)

This means that as long as we use the CS term used in Ref. [10, 11], we can conclude
that the constraint term does not appear. This is a significant problem because the
constraint term is important for the flavor SU(3) to regard the soliton as a baryon,
as we have explained in the SU(3) Skyrme model. In Ref. [87] they point this out
and have tried to solve this problem tentatively. Their new CS term leads to a well
derived constraint term, but at the same time reveals some problems. We will look

at this next.
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D.2 New CS term 1

In Skyrme mode, a constraint term emerged from the WZW term, which was de-
fined on a 5-dimensional manifold. Accordingly, the collective coordinates were also
dependent on two variables. The CS term that we have been using until now may
also have a constraint term if it is constructed in correspondence with the Skyrme

model. Let us now define the CS term as

N,
Snewl — c
ST o2 [

tr . (D.2.1)

This new CS term leads to a constraint term. The manifold Mg is labeled by
(t,#Ms) = (t,x, 2, s) and is understood by a schematic like Figure D.2, which follows

the configuration [145, 70] of WZW term in Skyrme model. We have so far consid-

Ms

Fig.D.2 A schematic of Mg

ered a 5-dimensional YM-CS theory, but to consider this new CS term, we need to
introduce an additional dimension. Let us now label this axis s and introduce the

corresponding gauge field component A;. The gauge field is then written as

A(t,z,8) = Ag(t, z, s)dt + Ap(t, x, s)da™ + A, (t, z, s)ds. (D.2.2)
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Here, the boundary of Mg at s = 0 is M5, i.e., 0Mg = M5. Following the WZW
term case, s extends in the radial direction at (¢,s) and compactifies t to form disk

D5 (Figure. D.3). Let us define the s dependence of the gauge field as

Fig.D.3 A schematic of Do

AG =W (s) A (z,5; X*(s))W(s) ™!, (A |s=0 = AF (2 X* = const), Af[s=1 =0)

(D.2.3)
ASy =W ()AL (; X ()W (s) ™!, (Af]s=0 = AG;(z; X = const)) (D.2.4)
A = W (5)0,W (s) (D.2.5)
[AF (2, ), 9(x)] = 0. (D.2.6)

In this way, we can use the same solutions (3.2.8), (3.2.9), (3.2.10) and (3.2.14) as a
static (time-independent) classical solution on s = 0, i.e., Ms5.
For further explanation, let us discuss in detail the manifold we are now considering.

This will also clarify the meaning of the expressions (D.2.3)~(D.2.6) that gives the
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restriction on the s-dependence. We defined the CS term as (D.2.1), and from
trF> = dws(A), (D.2.7)

by Stokes’ theorem, (D.2.1) seems to be equivalent to the original CS term. However,
as discussed in the previous section, the two CS terms are not equivalent because the
gauge field cannot be defined globally well-defined to form a field configuration with
a finite baryon number, and two patches must be considered.

The BPST instanton solution we have adopted as the solution to the baryon number

1is

Ay (z) = =i f()g(x)Onrg(z) ™

9= gt €= — Xy
s = (7L ) ) = L Dtk = X))
9omg ' = { ié((zx: f);a;eija(x] - X : (D.2.8)
which diverges at z — co. Now, if we define
Ay () = g(2) 1 (AS) — i0u)g(x) = —i(1— f(©))g(x) 'Oug(z) (D29

by gauge transformation, we can obtain a regular gauge field at z — oo (it diverges
at z — 0).

Now the BPST instanton solution is defined on the manifold as shown in Figure
D.4.

My in Ms = R x My (R is the time axis) is covered by two patches MAEO) and
Mioo) (My = Mio) + Mioo)). We define A (z) on Mio) and ZCZ<Q7) on Mioo), and
on B=0M io) = —0M ioo) where the two patches overlap, we connect the two gauge
configurations by a gauge transformation. Since the time components Agl and Ag of
the solution are written by 1 and tg, they are invariant to the transformation of g(x)
and regular in the whole region, so the same form of solution is available in the two

patches. From the above discussion, we can define

—=cl

A% () = (A (2))9 D7 = g(a) " (AN (2) — id)g(x) (D.2.10)

)

as a gauge field that is regular on M ioo , including U(1) part and time components.
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Fig.D.4 The manifold where the BPST solution is defined.

Now, let us give a time dependence to the collective coordinates and extend the
gauge field on M5. On Méo) =R x Mio), we can use

A(t,z) = (A% (2; X (1)) + D(t, z)dt) " (D.2.11)

On Méoo) =R x Mioo), it is reasonable to define

Aty z) =(A% (2 X (1) + B(t,2)dt) " = A(t, )V Do@XO)TWOT (g 19)
B(t, 2) =g(w; X (£)) 7 (D(t, %) — D) glw; X (¢))
8
= — XN (AN (2 X0) + Y X (Bu(E)ta (D.2.13)
a=1

(AT =(a')"). (D.2.14)
Let us now define a gauge field on the manifold Mg described in Figure D.2. With
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Mg = Dy x My = M + MO (M%) = Dy x M), we use
A(t,z,8) = Ao(t, z, s)dt + Ap(t, z, s)dx™ + A,(t, z, s)ds (D.2.15)

on Méo), as shown in (D.2.2). At s = 0, (D.2.1) should return to the original CS
term, so the gauge field should satisfy

A(t,z,s =0) = A(t, z). (D.2.16)
Also, since s = 1 is the center of disk Do,
O(t,z,s =1) =t indep., 0s;0(t,z,s)|s=1 =0, (O=W, X* o ¥) (D.2.17)
should also be satisfied. Furthermore, we need to require
Ad(t,z,s =1) =0 (D.2.18)

for the time component. This is necessary so that the mass formula does not change
form at the classical level and corresponds to A |s—1 = 0 in (D.2.3).

On Méoo), we use the gauge field

A(t,z, s) =(.71€l (z,8, X%(t,s)) + ®(t,x,s)dt + U(t, z, s)ds)W(t’s)
:A(t,:c, S)W(t,s)g(ac;X(t,s))flI/V(t,s)f1 (D.2.19)
O(t,x,8) =g(z; X(t,8) " (R(t,z,8) —i0p) g(z; X (t,5)) (D.2.20)
U(t,z,s) =g(x; X (t,8) " (U(t,x,8) —i0s)g(x; X (2, 5)). (D.2.21)
We require
A(t,z,s =0) = A(t,z), A(t,z,s=1) =1t indep. (D.2.22)

in the same way as for A(t,z,s). Also, since A (t,z) and A& (t,z) are, as already
mentioned, invariant to the transformation of g(z) and regular in the whole region,
we can use solutions of the same form in the two patches. In order for this property

to hold when extended over Mg,
(A (z, ), g()] = 0 (D.2.23)

must be satisfied, which corresponds to (D.2.6). We have now defined a gauge field
on Msg.
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Now prepared, let’s see that a constraint term does actually emerge from this CS

term. Using

DSA = doA+i(ASA+ 0AA)
(6A)® = (DSA)(SA)? = DF =0
D?6A = i[F,5A],

etc., with 64 = ®dt + Uds, we have

F(A+6A) = F(A) + DSA +i(5.A)?
trF(A+ 6A)? = trF(A)® + 3dtr (SAF(A)? + SA(DSA)F(A).

Note that SE&¥! is gauge invariant, hence a constraint term arises like

SEY[A = (A + @dt + Wds)" ] — Sz [A]

o NC cl\2 cl cl
=502 ), 3dtr(6A(F)? + 6A(D6A)F)
N, N,
= tr(®dt(F)?) = C/dtSt
o ], (@t E?) = 7 [dnc ()
Nc 8 Nc . — 177
t) = tr(—eWi(t)” " W(t)ts),
S0 = TR W ()T W (O1s)
where we used
0A = ®dt
SA(DSA) =0

etc. on M5 at S = 0.

Here, for getting the constraint term, we used Stokes’ Theorem,

N
247T2 Mg

3dtr (SA(F)? + S A(DYSA)F)

= —5 | tr(SAFY)? + 6ADYSA)FY),

o 2
87T Ms

(D.2.24)
(D.2.25)
(D.2.26)

(D.2.27)
(D.2.28)

(D.2.29)

(D.2.30)

(D.2.31)
(D.2.32)
(D.2.33)

(D.2.34)

which can be transformed in such a way that tr(§.A(F)? +0A(D"6A)F) is a gauge

invariant quantity. Therefore, since ws is not gauge-invariant, a deformation like

/M6 = /M5 ws(A)
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is incorrect. The correct transformation should be

/M tT(.Fg — (fCl)g) = /M(O) (W5(A) — W5(ACZ>) +/ (W5(.7t) — OJ5(ZCZ))

M)
+ /D N [(ws(/l) — ws(A)) — (ws(AY) — W5(J7l0l)):|. (D.2.36)

Please refer to Ref. [87] to see that a constraint term can still be obtained in this way.

Finally, I would like to comment on the problems with SE&¥!. First, since trF? is a
gauge invariant, the chiral anomaly is not reproduced from this CS term, which was
well reproduced by the original CS term. In the Sakai-Sugimoto model, Z — 400
is the boundary, as shown in Figure D.1. That is, M5 = M, *° U M;>°. However,
0(0OM) = 0 is satisfied for any manifold M in general. If 0Mg = M5, then O(OM) =0
must hold, which is a contradiction. Also, the origin of the new introduced dimension
has not been clear. To solve these problems, another New CS term was considered in

Ref. [88]. In the following, this CS term will be explained.

D.3 New CS term 2

In this section, we use the anti-Hermitian U(Ny) gauge field used in section D.1.
The following discussion can be used not only for BPST instanton solutions.
To solve the problems described in the previous section, the following CS term was

proposed;

se? =C( [ wsta+ [ wslan)
L[ w(any) + /

— “Ih A ) D.3.1
10 N5(0) Mio) a4(dh ha ) ) ( 3 )

where M, Mz, M(” is defined in Fig.D.1. N{* were defined in Fig. D.5 (This figure
is only as an help for understanding, and the following figures are also not so much
concerned with a rigorous). Néo) is a manifold such that it satisfies 8]\75(0) =M io)‘
We define i € U(Ny) on Néo) which satisfies B|8N5(o) = h. Since we are now using an

anti-Hermitian gauge field, (D.1.24) is rewritten as
1 1
as(V, A) :§tr<V(A3 — AF — FA)+ JVAVA+ V3A) (D.3.2)

1 1
_ §tr<V(AdA +dAA+ AY) = SVAVA - V3A>. (D.3.3)
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Fig.D.5 Manifolds on which S2&"? are defined.

This CS term seems artificial but we can immediately find that it is determined quite
uniquely from several physical requirements.

We now discuss the assumptions for defining this CS term. We need to assume the
existence of N5(O) and the field h € U(N #) defined on it, as described above. This
corresponds to the fact that in the discussion of SE&V!, we assumed the existence of
a new dimension s and a gauge field A, defined on it.

We will see that SE&2 is appropriate for the CS term we are looking for and
discuss the meaning of each term in the equation (D.3.1). SE&V? satisfies the following

properties.

new?2

1. When h is topologically trivial (baryon number is 0), SAZY* returns to the
original CS term, (D.1.2).
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new2

2. Under a gauge transformation (D.1.16) satisfying g+|.—400 — 1, SEg¥° is in-
variant (shift of 277Z).

At = g4 |. 100, it Teproduces the

3. If we identify Ay = Ail,100 and gp =€
QCD chiral anomaly (D.1.5).

4. If a manifold Mg (Fig. D.6) exists such that M5 has no boundary and satisfies
(M{F*) = (), OMg = My, Mg = My UM, My 0 My = N\ x (—¢,¢€), and

OMFE = ME U (j:NéO)), then SE&! becomes (D.2.1).

Fig.D.6 The manifold M6 on which S&&"* is defined.

The following explanation shows that the CS term that satisfies these physically
required properties is determined quite uniquely to be (D.3.1).

Let us look at these properties of S&&"2 one by one.

First consider the property 1. When h is topologically trivial, that is, when A can
be transformed to h = 1 by continuous transformation, we can define h € U(N £) on

M;~ that satisfies h =hon M: U M; and ﬁ\zﬁ_oo — 1 on the boundary. Using this
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h, we see that we can define a globally well-defined 1-form A over Mj5 as

_ A’E, (on M; )
A {A+, (on M¥) (D.3.4)

Now if we define Néo) = M; UN; > (ON; > = M, >, see also Fig. D.7 for details),

we find that with E|N<_oo> =1, h is a function on Néo) that returns to the original
5

A=A" =4, (z=0)

/ /

A=A,

=l

Fig.D.7 The manifolds for which property 1 holds.

CS term, like

sey=c( [

n /M_ [te((hd ) + do(ah 5, A))

=o( [, sty [ ear)

5

_ /c%M) (D.3.5)
Ms

ws(A_) + /M5+ ws(A-)
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Here, we used the formula

ws(AY) =ws(A) + 1—10tr((gdg_1)5) + doy (dg_lg, A), (D.3.6)

which corresponds to the (D.1.22) formula when using an anti-Hermitian gauge field,

and the fact that the fourth term of (D.3.1) can be written as

/(0) a4(dh_1h,A):/<O) da4:/ )
M4 N5 M5

:/ day(dh™ h, A_) (D.3.7)
.

doy + / doy (dh ™ h|,es oo, AL)
N§To)

in the present case.

Next consider the property 2. Under the gauge transformation,
Ay =AY = g4 Argit +g2dgs’, h—=grhg™ (gxl:nte = 1), (D3.3)

S22 can be written as

s -0 ( /
M,

10 Jyo

ws (49°) + /M5+ ws (AL

(i ™Y) + /

M

5

g (1, A7), (D.3.9)

where b/ = g, hg~" and R’ are functions that take values in U(Ny) on My N M
and Néo) respectively, which satisfy ﬁ’]aNm) = h'|,=0. At the boundary, gi|.—o is
topologically trivial, because of gi|,—4+0 — 1. In such a case, we can define a
)

function g+ such that gi |, = g+|.=o is satisfied on Néo and write ' = g hg_'.
5

209



Using formula

as(V,£V) =0 (D.3.10)

ay(dgg™t, A9) = — ay(dg™ g, A) (D.3.11)
as(d(gh)(gh) ' A%) =au(g(H — G)g™*, A9)
2044(H, A) — 044(G, A)

- %tr (G3H +GHS - %GHGH)
+ %dtr((H — G)(AG — GA)) (D.3.12)
ay(d(gh) " (gh), A) =au(dh™h, A) + ay(G, A")
+ %tr <G3H +GH? — %GHGH)
_ %dtr((H _G)(A"G — GAM)) (D.3.13)
tr((U1dU)%) = — tr(G®) + tr(H)

+ 5dtr <G3H +GH? - %GHGH) (D.3.14)
(G=dg'g, H=dhh™', U=gh)

and (D.1.22), etc., SAY? can be gauge transformed as follows,

see? -0 / ws(A_) + /M+ ws(45)

/ ((hdh™1)%) + /M<°> a4(dh_1h,A_)>
(ot [ )
([, ey« [ wE), 0315

with G4+ = dgilgi and Gy = dg;lgi. The first and second lines of this equation
are SE&¥? (D.3.1), and the third and fourth lines take the value 27Z. Thus, we can

see that the third and fourth terms in (D.3.1) were introduced to just cancel out the

10
Q
10

changes in the first and second terms by this gauge transformation. We can also
see that property 1, which reduces to the original CS term when h is trivial, is also
ensured by the third and fourth terms.

Next, let us consider the property 3. Under the infinitesimal gauge transformation
g+ ~1— Ay, from the first and second terms of S2&"* (D.3.1), as shown in (D.1.5),
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the QCD chiral anomaly emerges. The third and fourth terms of (D.3.1) also change
with this gauge transformation. However, in the vicinity of z = 0 where these terms
exist, the gauge transformation g+ we are now considering can be regarded as trivial.
Therefore, as explained in property 2, the change of this two terms is equal to 27Z.
From the above, the chiral anomaly of QCD is reproduced. It can be seen that
the form of the first and second terms in (D.3.1) are required to produce the chiral
anomaly.

Finally, let us look at the property 4. When M5 has no boundary and there exists
a manifold Mg such that Fig. D.6, we find that IMF = M U (iNéO)), then using

newl

Stokes’ theorem, S¢g

set=c( [
(),

+/N(O> (w5(A+) —w5(A_))). (D-3.16)

is transformed to

dws(A_) + /M+ dw5(A+)>

6

anld)+ [ wn(dy)

6

Since A, = A" on Mg N Mg = NEEO) X (—€,+e€), and using (D.1.22), we find

[ o (enldi) —en(4-)
:/ itr((ﬁdﬁ—1)5)+/ aq(dh™th, AL), (D.3.17)

© 10 N

so in such a case, Sg%w is equivalent to Sgesm. Again, we understand the importance

of the third and fourth terms in (D.3.1). It should be emphasized that the property

new2

4 suggests that SEg"“ has the potential to correctly lead to a constraint term. As we

will explain later, we find that SEgY2 involves SEEV!, not only in the current special
case, so this CS term leads to the constraint term correctly, as we had expected.
From the above explanation, it is understood that our desired CS term is quite
uniquely determined in the form Sgg"? (D.3.1).
We show some alternative expressions for Sgg2 (D.3.1). From one of these expres-
new2

sions, we can conclude that SEg"* leads to a constraint term. First, let us define a

new, globally well-defined gauge field A that can take non-zero baryon numbers. Such
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a gauge field can be defined as
A=A (on M) (D.3.18)
hehh~t =1, A" = A" (on My N M) (D.3.19)

The A at the boundary is not exactly equal to the external field Ay and becomes
Alsosioe = Al (b = ha|osao0). (D.3.20)

The field configuration of a global gauge field defined in this way should be specified
by (A, h). That is, we need to physically distinguish between (A, hy) and (A, A'4).
When the external field A is zero, the baryon number is defined to be

1
2472

Np = /S (tr((hydhi")?) — tr((h_dhZ")®)) (D.3.21)

with A|, 4400 = Bidﬁf. If hy is topologically nontrivial, it gives a finite baryon
number.

If we now consider a gauge transformation like
A= A9 hy = (ghs)]smstoos (D.3.22)
we see that this gauge transformation does not act on the external field Ay, i.e.,
Ay — Ay, (under (A, hy) — (A9, ghy)). (D.3.23)
For the chiral transformation, by defining (§—,g+) € U(Nf)r x U(Nyf)r as
G = (hi'ghs)]sstee (D.3.24)
and considering the gauge transformation
A— A9 hy — hy, (D.3.25)
we obtain
Ay — A%, (under (A, h) — (A9, h)). (D.3.26)

Following the same calculation as when we showed the property 2, (D.3.1) is rewrit-

ten in the form
new 1 - L=
Seg? :C</M5 ws(A) + /N§+°°) l—otr((h+1dh+)5) + /Mi+°°) oy (dhihit, A)

1 s o
_/IV(_OO) ]__Otr((h* dh_) )_ /Mi_oo) a4(dh_h* 7A)>7 <D327)

5
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using the globally well-defined gauge field A defined by (D.3.18). Here, Néioo) is a
five-dimensional manifold satisfying 0N éioo) = Méioo) and hy is a function which
takes the value of U(Ny) on Néioo) satisfying hi’aNs(:l:oo) = hx. Moreover, using
(D.3.11), it can be transformed to

1 L
new2 __ —1 5\ —1
588 —C</M5 ws(A) +/N(+oo) Tt (hitdny)?) /Mi'“”) as(dhithy, AY)

5
1 o
- /N<-oo> 1ot ((AZ1dh-)°) + /M(_Oo) oy (dh=ho, A2)), (D.3.28)
5 4

From this expression, we see that SE&"2 is equivalent to the original CS term (D.1.2)

when Ay = 0 with Ny = 2.

Furthermore, we define the manifold N5 as

N5 =Ny 0 (= Ny ™))
ON5 = OMs = M U (= M) (D.3.29)

and the function h of U(Nyf) on N5 as
hy = hl g (D.3.30)

to get a more simplified form
new2 __ i -1 5 —1
Seav? =C ws(A) + [ 5 Otr((h dh)’) + o (dhh ™1, A)
M5 NE') 8M5

:c(/M w5(A)+/N 1—10tr((h_1dh)5)+/aM as(dh~'h, 4)),  (D.3.31)

5

where A is represented by
Ay = Al o (D.3.32)
and the (D.3.19) formula is represented by
Al = AM. (D.3.33)
The gauge transformation (D.3.22), which does not act on the boundary, is

A— A9, h—gh, A—A. (D.3.34)
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The chiral transformation (D.3.25) is represented as
A— A9, h—h A= A9 (D.3.35)
g=(h"‘gh)|ons,, G+ = g|M£ioo>. (D.3.36)
It is easy to see that the properties 2 and 3 are satisfied, respectively.

We can now solve the problem that SE&"!' poses, while correctly realizing the in-

tention of Ref. [87]. Define the manifold Mg as such that it satisfies
OMg = Ms U (—Ns) (D.3.37)

(see Fig. D.8). Since M5 U (—N5) has no boundary, such a manifold Mg is possible.

Fig.D.8 Ms in S&g" (N5 > and N; > are compactified)

Also, if we focus only on Mj5, this manifold itself can have a boundary, so a manifold
like (D.1.1) is possible. From the above, we find

/MG tr(F7) = /Ms ws(A4) = /N 5 ws(A), (D.3.38)
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and if we define the external field on N5 as A = A" and note that ON5 = OMs5, we
find

. 1
/ ws(A) = / <w5(A) + Etr((h_ldh)f’)) +/ aa(dhh™ A),  (D.3.39)
Ns Ns ONs
so we obtain a new expression for

Spev2 — C( /MG tr(F3) + /N 5 w5(!1)> (D.3.40)

with a more explicit connection to SE&¥!. From this, we observe that from the first

term of (D.3.40), we derive a constraint term. The chiral anomaly is also correctly

derived, as explained using another expression.
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Appendix E

The wave function of the SU(2)
rotation W (t)

E1 W(t)
The SU(2) rotation W (t) is written by
W = ay(t) +iaq(t)T?, (E.1.1)

where, the group manifold SU(2) is parameterized by

a4 = cos by, (E.1.2)
a3 = sin g cos 64, (E.1.3)
a9 = sin B sin 61 cos O, (E.1.4)
a1 = sin g sin 01 sin >, (E.1.5)
ng = Sin2 90 sin 91d90d91d92, (E16)

The spin and isospin are expressed as follows;
Ji = MothI'(—Z.W_l‘/Vti), (E17)
I, = Mop*tr((WW ~tt,) = =W Jt, WL (E.1.8)

We use the canonical momentum
. .0

H[ = 2M0y[ = 1= (Elg)

8y17
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then the spin and isospin operator are rewritten by

where y; = pay.

E.2  Wave function for W (t)

Here, the wave function of W (¢) is written, for example
l=1,I3 = J3 =1/2) = 7 (a1 +iay),
2
=31 =J5=1/2) = \/7_(a1 +ias)?,

where the normalization constants were determined as follows,

/dﬂgﬂ'_Q(al — iag)(al + iag) :/ ng?T_Q(CL% + CL%)

dQsm™ Sm2 0, sin? 01)=1

(sin? fpsin® ;)% = 1

2
/dQsﬁ(m —ia2) ai +a2 /ng 5 a1+a2)

With ladder operator

I =0L—1iy, [I_=1 +1l
J_=J1—1Jy, J_=J1+1Jo,
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(E.1.10)

(E.1.11)
(E.1.12)

(E.2.1)

(E.2.2)

(E.2.3)

(E.2.4)



we obtain several baryon states

1
|l = 1,[3 = §7J3 = —§> = J_((l1 +’LCL2)
—[£<—a +a 0 ai—ka 8)
2\ Maa; T ey Pag T Bay
+1<—a 0 +a 0 +a 0 —a 8)}(@ + ias)
2 46 2 28@4 18 3 38@1 ! 2
= —in (a4 — iaz)
1 1 1 .1 .
|l = 1,[3 = —= J3 = §> =1_ ‘l = 1,]3 5 J 2) (2 (CL4 + Z(lg) (E27)
1 1 1
l=1,13=—=,J3= —5) =J |l=1,I3= 38 = 5> = -1 Yay —iap) (E.2.8)
3 1 3 3 6. . :
|Z = 3,[3 = §,J3 = §> =J_ ‘l = 3,[3 = §,J3 = 5) = —?z(al +ZCL2)2(CL4 — Zag)
(E.2.9)
1 3 1 3, V6. . ,
|l—3,]3—§,J3=§>—I_ ’1—3 Ig 5 J3:§>:7z(a1+za2)2(a4+za3)
(E.2.10)
1 1 3 3
| 37 3 27J3 2> J | 37 3 27J3 2>
= — (a1 +1a2)(2a3 + 2a; — a7 —a 2.11
( )(2a3 + 2af — af — a3) (E.2.11)
E.3 Some expectation values
We show the calculations of some expectation values as follows.
tr(Wr*W~17%) = 4a3 + 4a3 — 2 (E.3.1)

B (N|t(Wr3W—17%)|N)

(I=1,I; =

= /ngﬂ'_ (a1 —iaz)(4a3 + 4a3 — 2)(ay +iaz) =

=12tr(WW |l = 1,13 =
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Qgﬂ'

2 sin” fy sin” 0 (2 — 4sin” fy sin® 6,)

(E.3.2)



B (A|tr(Wr3W—1r3)|N)
(Il=1,I3=J3 =12le(WrW |l = 3,13 = J3 = 1/2)
2
= /ngﬂ_l(al —iay)(4aj + 4a3 — 2)\/—_(a1 +iaz)(2a3 + 2a3 — a7 — a3)
s

= /ngW_2 sin? 6 sin? 6, (2—-4 sin? 6 sin? 01)(2—3 sin? 6, sin? 61)

2v/2
— %_ (E.3.3)
2 3 2 3
tr(W%W_l%) = tr[(aq + iCLaTa)%(CM — iabTb)%] = agaz —arjay (E.3.4)
1 3 1 3
tr(W%W_l%) = tr[(aq + iCLaTa)%(CM - iabTb)%] = aiaz + azay (E.3.5)

B (AT 3 [tr(Wr2W1r3) — it (Wt W 13) || N)

(1=3,13=3/2,J3 =1/2|[tr(Wr*W ') —itr(Wr' W3]l = 1, I3 = J3 = 1/2)
V6

=i dQs(a® + a3)*(a3 4 a3) = LEZ / dQ3 sin? 6y sin® 61 (1 — sin? @y sin? 0;)
s s

—i L (E.3.6)

V6
W (AT %\ [tr(WTZW_lTS) — itI‘(Wle_lT?’)} |N)
(1=3,I3=1/2,J3 =1/21tr(WrW |l = 1,13 =1/2,J3 = —1/2)
= z\/—g dQs(a? + a3)(a2s + a?)(2a3 + 2a3 — a3 — a3)

=i— [ dQ3sin®fysin® 0 (1 — sin® O sin® 6;)(2 — 3 sin? O sin? 0, )

== (E.3.7)
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