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1. Introduction

In this paper we systematically develop, as a technical tool for our main applica-
tion below, a stochastic calculus for generalized Dirichlet forms (cf. [15]). In particu-
lar, we show Fukushima’s decomposition of additive functionals including its extended
version to functions not necessarily in the domain F of the generalized Dirichlet form,
cf. Theorem 4.5 (ii), and an Ité-type formula in this framework. The extended version
of the Fukushima decomposition will be applied in combination with the Itd-type for-
mula in Subsection 6.3. The class of generalized Dirichlet forms is much larger than
the well-studied class of symmetric and coercive Dirichlet forms as in [6] resp. [10]
and time dependent Dirichlet forms as in [12]. It contains examples of an entirely new
kind (cf. Section 6, [15]). Therefore, the results obtained in this paper lead to exten-
sions of the corresponding results in the “classical” theories. In particular the proofs
are “locally” completely different (cf. e.g. Theorem 2.3 and Theorem 2.5; though for
the reader’s convenience we tried to follow the line of argument in [6] as closely as
possible). This difference has several reasons: First of all we do not assume any sec-
tor condition; in certain cases we have to handle £-quasi-lower-semicontinuous func-
tions instead of £-quasi-continuous functions (cf. e.g. Remark 2.6 (i)), and finally, the
Dirichlet space of the classical situation generalizes to a space F which is not nec-
essarily stable under composition with normal contractions. In contrast to the classical
theory it is not known whether regularity or quasi-regularity alone imply the existence
of an associated process. An additional structural assumption on F is made in [15,
IV.2, D3] (i.e. the existence of a nice intermediate space ) has to be assumed) in or-
der to construct explicitly an associated m-tight special standard process M.

In addition to the new theoretical results described above we also present new ap-
plications. In Section 6 we construct weak solutions to stochastic differential equations
in infinite dimensions of the type

1 -
1) dX, =dW,+§ﬁ,",(X,)dt+ﬂ(X,)dt, Xo=2z



316 G. TRUTNAU

Here (X,);>0 takes values in some real separable Banach space E, z € E, (W;)»0 is
an E-valued Brownian motion, B is some square integrable vector field on E taking
values in a real separable Hilbert space H C E and B}, : E — E is the logarithmic
derivative of p associated with H (cf. Subsection 6.1). In the symmetric case, when
B =0, equation (1) has been studied intensively in [1].

In Subsection 6.2 we give a first application of (1) for more exphcu maps B
and B using existence results of [2] on invariant probability measures for some given
linear operator L, i.e. measures p solving the equation [ Ludu = 0 for all finitely
based smooth functions u. We also use results of [16] on the existence of diffusions
associated to extensions of such operators. More precisely, in this case we assume E
also to be a Hilbert space and that H C E densely by a Hilbert-Schmidt map. We then
apply (1) with 8 = (1 /2)(B — B};) where B : E — E is a Borel measurable vector field
of the form B = —idg+v, v: E — H, satisfying (B.1)-(B.3) of Subsection 6.2. Under
these assumptions on B there exists an invariant probability measure p such that the
stochastic differential equation

1 1
2) dX,=dW, — 5X,dt+§v(X,)dt, Xo=1z2

admits a weak solution M = (2, (F)r>0, (Xt)r>0, (P;);ce) for p-a.e. (even (quasi-)
every) z € E. In particular u is absolutely continuous w.r.t. the Gaussian measure y
on E with Radon-Nikodym derivative ¢? where ¢ is in H"“2(E;y), i.., the Sobolev
space over (E, H,y). Moreover By = —idg + 2(Vg/¢). It is known (see [2, Theo-
rem 3.10]) that the generator of M restricted to the finitely based smooth functions
L=(1/2)Ay +(1/2)B -V is pu-symmetric if and only if v = 2(Vg/¢) or equivalently
B = . In our general, i.e., non-symmetric situation, 2(Vg/g) is the orthogonal pro-
jection of v on the closure of the set {Vu | u € FC°} in L%(E, H; ). The diffusion
M = (ﬁ, (f'),zo, (?,),20, (E)ZGE) which is in duality to M w.r.t. © weakly solves

- o 1 Vo ~ 1 o .
3) dX,:dW,—5X,dt+2—‘p£(X,)dt—§v(X,)dt, Xo =2

for u-a.e. (even (quasi-)every) z € E where (W,),zo is an E-valued (f}),zo-Brownian
motion starting at 0 € E with covariance given by the inner product of H. Thus,
adding the drifts of (2) and (3) we obtain 28} as in the symmetric case (cf. e.g. [5]).
In Section 6.3 we show that M also satisfies an It6-type formula.

Let us now briefly summarize the contents of the remaining Sections 2-5. In Sec-
tion 2 we introduce the framework and then establish an integral representation the-
orem for coexcessive functions. As a result we obtain a description of £-exceptional
sets in terms of an appropriate class of measures Soo. This is the key-point for the
proof of Theorem 4.5(i) and (ii) below. In the symmetric case our class of measures
§00 is smaller than the corresponding one in [6, p. 78]. As a consequence the uniform
convergence in Lemma 4.1 can be determined (cf. Remark 4.3 below) by a weaker
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semi-norm than in [6, Lemma 5.1.2.]. In Section 3 following [13] we associate to ev-
ery positive continuous additive functional of M its corresponding Revuz measure. Sec-
tion 4 is devoted to the Fukushima-decomposition. Note that for the proof we only
assume the coresolvent to be sub-Markovian and strongly continuous on V. No dual
process is needed. In Theorem 4.5(ii) we give conditions for the extension of the de-
composition. In Section 5 similarly to [6], [11] we derive an Itd-type formula for the
transformation of the martingale part of the decomposition. However, since F is not
necessarily stable under composition with continuously differentiable Lipschitz func-
tions we have to make some assumptions (cf. Theorem 5.6). But these assumptions
are easy to check in applications (see Subsection 6.3).

For a large class of further examples and applications as well as for a more de-
tailed presentation we refer to [19] and to forthcoming papers.

2. Framework and supplementary Potential Theory of generalized Dirichlet
forms

Let E be a Hausdorff space such that its Borel o-algebra B(E) is generated
by the set C(E) of all continuous functions on E. Let m be a o-finite measure on
(E, B(E)) such that H = L%(E,m) is a separable (real) Hilbert space with inner prod-
uct (-, ). Let (A, V) be a real valued coercive closed form on H. Then V equipped
with inner product Ai(u, v) = (1/2)(A®u, v) + Av, u)) + (u, v)3 is again a separable
real Hilbert space. Let | - ||y be the corresponding norm. Identifying H with its dual
‘H’ we have that V C H C V' densely and continuously.

For a linear operator A defined on a linear subspace D of one of the Hilbert
spaces V, H or V' we will use from now on the notation (A, D). Let (A, D(A, H))
be a linear operator on H satisfying the following conditions:

D1 () (A, D(A, H)) generates a Cp-semigroup of contractions (U;);>o.
(i)  (Upiso can be restricted to a Cp-semigroup on V.

Denote by (A, D(A, V)) the generator corresponding to the restricted semigroup. From
[15, Lemma 1.2.3., p. 12] we have that if (A, D(A, H)) satisfies D1 then

A : DA, H)NY — V' is closable as an operator from V into V'. Let (A, F) denote
its closure, then F is a real Hilbert space with corresponding norm

2 . 2 2
lellz = llully, + | Auwlly,

By [15, Lemma 1.2.4., p. 13] the adjoint semigroup (0,),20 of (U;):>0 can be extended
to a Co-semigroup on V' and the corresponding generator (A, D(A, V') is the dual
operator of (A, D(A,V)). Let F = D(A, V)N V. Then F is a real Hilbert space with
corresponding norm

2 . 2 A2
Nl = Nully, + N Aully,.
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Let the form £ be given by

A@u,v) — (Au,v) forueF, veV

E,v) = N .
A, v) — (Av,u) forueV, veF

and &E,(u,v) := E(u, v) +a(u, v)y for @ > 0. £ is called the bilinear form associated
with (A, V) and (A, D(A, H)).

Here, (-,-) denotes the dualization between V' and V. Note that (-, -) restricted to
‘H x V coincides with (-, -)x and that £ is well-defined. It follows, from [15, Propo-
sition 1.3.4., p. 19], that for all ¢ > O there exist continuous, linear bijections W,
V' - Fand W, : V' — F such that E,(Wo f,u) = (f,u) = Exu, Wo f), Vf € V,
u € V. Furthermore (W,),-0 and (Wa),»o satisfy the resolvent equation

Wy —Wp=(B—a)W,Wg and W, — Ws=(8— )W, Ws.

Restricting W, to H we get a strongly continuous contraction resolvent (Gy)y>0 on H
satisfying limy_,oc @Gy f = f in V for all f € V. The resolvent (G)q>0 is called the
resolvent associated with €. Let (Gy)qs0 be the adjoint of (Gy)ys0 in H. (G,,)a>o is
called the coresolvent associated with £.

By [15, Proposition 1.4.6., p. 24] we have that (G4)s-0 is sub-Markovian if and only
if

D2 ueF=utAnleV and Eu,u—u*nl)>0

is satisfied.

DEerINITION 2.1.  The bilinear form £ associated with (A, V) and (A, D(A, H)) is
called a generalized Dirichlet form if D2 holds.

An element u of H is called 1-excessive (resp. 1-coexcessive) if BGpg.iu < u
(resp. ,Ba,gHu < u) for all B > 0. Let P (resp. P) denote the 1-excessive (resp.
1-coexcessive) elements of V. For an arbitrary Borel set B € B(E) and an element
u € Hsuchthat fv € H | v >u-l1g}NF # @ (resp. it € ﬁﬁ (cf. below for the
definition of ’ﬁf)) let up = e,.1, be the 1-reduced function (resp. iip := &;.1, be the
1-coreduced function) of u - 1p (resp. & - 1g) as defined in [15, Definition IIL.1.8., p.
65). Let u% (resp. 2%), @ > O denote the element (u - 15), (resp. (@ - 15)a) of [15,
Prop. II1.1.6., p. 62]. Note that in general only if B is open our definition of reduced
function coincides with the one of [6, p. 92], [10, Exercise III.3.10(ii), p. 84]. In par-
ticular, if B € B(E) is such that m(B) = 0, then ug = 0. Note also that by our def-
inition of reduced function [15, III. Lemma 2.1.(ii)] extends to general Borel sets. If
B = E we rather use the notation e, instead of ug. An increasing sequence of closed
subsets (Fi)>1 is called an E-nest, if for every function u € P N F it follows that
urg —> 0 in ‘H and weakly in V. A subset N C E is called £-exceptional if there is
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an £-nest (Fi)¢>) such that N C N> E\ F. A property of points in E holds £-quasi-
everywhere (£-q.e.) if the property holds outside some £-exceptional set. A function f
defined up to some £-exceptional set N C E is called £-quasi-continuous (£-q.c.)(resp.
£-quasi-lower-semicontinuous (£-q.l.s.c.)) if there exists an £-nest (Fi)en, such that
U1 Fk C E\ N and fi, is continuous (resp. lower-semicontinuous) for all k.
For an &-nest (Fik>1 let

C({Fk})=[f:A—>]R

U Fy C ACE, fi is continuous Vkl
k>1

G{F) = [f tA—>R

U Fy CACE, fr is lower-semicontinuous Vk]
k>1

We denote by f an £-q.c. m-version of f, conversely f denotes the m-class repre-
sented by an £-q.c. m-version f of f.

DerINITION 2.2. The generalized Dirichlet form £ associated with (A, V) and
(A, D(A, H)) is called quasi-regular if:
(i). There exists an £-nest (Ex)x>; consisting of compact sets.
(ii) There exists a dense subset of F whose elements have £-q.c. m-versions.
(iii) There exist u, € F, n € N, having £-q.c. m-versions ii,, n € N, and an &-
exceptional set N C E such that {&, | n € N} separates the points of E \ N.

From now on we assume that we have given a quasi-regular generalized Dirichlet
form. We remark that by quasi-regularity every element in F admits an £-q.c. m-
version. Let C, D C H. We define D¢ := {u € D | 3f € C, u < f}. For a subset
G C H denote by G all the £-q.c. m-versions of elements in G. In particular Pr de-
notes the set of all £-q.c. m-versions of 1-excessive elements in V which are domi-
nated by elements of F. Note that m C ﬁ}' and that ﬁ}‘ - 'f’}- is a linear lattice,
that is # A € ﬁ}‘ - ﬁ; for all @ > 0 and all & € ﬁ}- — ﬁ}-. We emphasize that an
element in Px not necessarily admits an £-q.c. m-version.

We are now in the situation to state an integral representation theorem for ele-
ments in 'ﬁﬁ.

Theorem 2.3. Let ii € 73}. Then there exists a unique o -finite and positive mea-
sure u; on (E, B(E)) charging no E-exceptional set, such that

f fdua = lim &(f,aGand) Vf e Pr—Pr.
Proof. Set I;(f) = limy_, o0 £1( f, a6a+.a), fe ﬁ;— - 73;. The limit exists since

&, aaa“ﬁ) splits into two parts which are both increasing and bounded. Then I; is
a nonnegative linear functional on Px — Px. Let (f,)nen C Pr — Px such that f, | 0
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pointwise on E for n — oo. Similar to the proof of Theorem 1 in [4] we will show
that

“4) L(f) 1 0as n—> oo.

Fix ¢ € LY(E;m) N B(E) such that 0 < ¢ < 1. By [15, Lemma IIL.3.10., p. 73] there
exists an £-nest (Fi)ien, such that éT(p > 1/k everywhere on F; for all k € N. Since
£ is quasi-regular we may assume that Fy, k € N, is compact. We may further assume
by [15, Lemma 3.5., p. 71] that (f,),en C C({Fi}). From Dini’s Theorem we know
that given kg € N there exists n(kg) € N, such that for all n > n(ko)

Jn < k_ Gip m-ae. on F,.

Since f, < fi € Pr — Pr there exists f € F such that f, < f and therefore we have
for alln e N

1
fn < % Glfp+fp;0 m-a.e..
Let f € 7 such that & < f. Then

Li(f)

lim gl(fnv aaaﬂﬁ)
a—> 00

< limsup & ( Gl(p+fpf aGM;u)

a—>00

<el(‘cm+fn f)

Since limy_,oo(1/k)G19 + fr; = 0 weakly in V we conclude that lim,_, o Iz (f) =0
and (4) is shown By the Theorem of Daniell-Stone there exists a unique measure say
Wi on G'(P}‘ ’P].-) such that P;- ’Py: C L'(uz). By [15, Proposition IV.1.9., p. 77]
we know that 'P;- ’P].- separates the points of E\ N where N is an &- exceptlonal set
and consequently o(’P}- ’P}-) D B(E \ N). Since p,u(N) = limy_, oo 51(1N,¢¥Ga+|u) =
0 for every £-exceptional set N we may assume that u; is a Borel-measure. Finally
[ Grpdus < £1(G1g, f) < oo implies that p; is o-finite. ]

From now on we fix an m-tight special standard process
M= (<, (-7::)130, (Yt)tzo, (Pz)zeEA)
with lifetime ¢ such that the resolvent R, f of M is an £-q.c. m-version of G, f for

all @ > 0, f € HN By(E). Note that in addition to quasi-regularity a structural as-
sumption on F is made in [15, IV.2, D3] in order to construct explicitly an associated
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m-tight special standard process. Since we make no use of this technical assumption
and since it may be subject to some further progress we instead prefer to assume the
existence of M. We remark that we use the resolvent of M in the proofs of Lemma
2.4 and Theorem 2.5 below but that the corresponding statements are independent of
M and only depend on the generalized Dirichlet form.

We remark that whenever we fix a filtration in this paper, it will be the natural
filtration.

For u € P we denote by & some £-q.ls.c. regularization, i.e. ¥ := Sup,; nRn41u.

Lemma 24. Let F C E be closed, g € L*(E;m) N B(E)*.
Then supp(LG,q),) C F.

Proof. Fix ¢ € LY(E;m) N B(E)* such that 0 < ¢ < 1. Define of =
E[fD e 'p(Y;)dt] where Df = 1nf{t > 0| Y, € F}. Using the strong Markov prop-
erty of M it is easy to see that ¢f is a Borel measurable m-version of an 1-excessive
element in V and that ¥ > (G,¢)r. In particular ¢f is 1-supermedian for (Ry)e>0
and

) (Gm)p—suanm(G.«p)F<suann+.<o <¢f Eqe,
furthermore
>0 £&-g.e.on F¢
Rio — of is
e I 0 onF.

Since pg,,), does not charge E-exceptional sets it follows from (5) that

f(R1<p — oM dug,e, < /(Rup —(G19)F)duG ),

but the expression on the right hand side is equal to zero since by Gi¢ = (G1¢)r
m-a.e. on F

/R,wdu(a,g), = alin;oa(GﬂP,((alg)‘; -Gig- 19w
= lim a(Gi9)r, (G18)F — Gig - 17) In
= lim 11m gl(ﬂRﬂH(Gl‘P)Fv(Glg)F)

a—»oo

SUP/ﬂRﬂH(Gl‘P)FdIL(G,g)F f(Gl‘P)FdM(G,g)F

l/\

For intermediate steps cf. [15, IIL1, p. 60ff]. Now wg,,,(F°) = 0 follows by a stan-
dard argument, because ug,,, is o-finite. O
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As a generalization of [6, p. 78] we introduce the following class of measures
Soo = {a | & € Pg,5; and pa(E) < oo}

where H} are the positive and bounded elements in H. Then we have

Theorem 2.5. For B € B(E) the following conditions are equivalent:
(i) B is E-exceptional
(i) pu(B)=0 VY € Su

Proof. (i) = (ii) is clear. Next we will show —(i) = —(ii). Fix ¢ € LY(E;m)N
B(E) such that 0 < ¢ < 1. If B is not £-exceptional then

cap,,(B) = inf{(G1¢)u, ¢)» | U D B, U open} > 0.

Since cap, is regular there exists a compact K C B with cap,(K) > 0. Let Dy — Dj
= {fu;n € N} be a countable dense subset of bounded functions in F with £-q.c.
m-versions _D—:; - 35 = {fusn € N} C 5{; - 53 C ﬁf - ’ﬁ;— which separate the
points of E \ N where N is an £-exceptional set (cf. [15, Proposition IV.1.9.(ii), p.
77] for the existence). There exists further (cf. [15, Lemma IV.1.10., p. 77]) an £-nest
(Fi)ken consisting of compact metrizable sets such that {R,p, f;;n € N} ¢ C({F})
and such that Rjp > 1/k £-q.e. on Fy for all k > 1. We may further assume, that
N C ﬂkz] F¢. Choose no € N such that cap(p(K N F) > 0 for all k > ng. Since
capv,(F,f) k—_)—go 0, there exists kg > ng with

6) cap,(K N Fy,) — cap,(Fy) > 0.

Let pr,, be a metric on Fj, which is compatible with the relative topology on Fj, in-
herited from E. Define for n € N

B, = {Z € Fk(]

1
kaO(ZvKano) < ;]a

B, = [Z € Fko

1
PR, (Z, K N Fy,) < ;] .

Then B, U F;; C E is open for all n and thus

cap,(K N Fy,)

inf cap,(U)
KNFy cU
U open

;g{ cap,(B, U Fy.)

IA

= 'i'gilré'l(GW,(alw)B,.uF,fo)

IA

jgffRW"“(&w»m +cap,(Fy,)
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since (6,¢)BnUF;0 < (aup)g" + (51<p)p;o. It now follows from (6) that

@) 0</R1‘Pd#(6.¢)m

where (51<p)00 is defined to be the weak limit of ((51‘/’)3,,)"51\1 in V. Note that
(’G\up)oo € ’ﬁam; and thus there exists a unique KgG ), by Theorem 2.3. For con-
venience we set [, = K@iz, M € N, and (i = MG o) We have to show
supp(flec) C K N Fy,, because then by (7)

0< /Rllpdﬂoo = f Ri¢plknR, dileo < floo(K N Fiy) < floo(B).

Clearly supp(fieo) C KNFy, implies floo(E) < 0o and thus fly € So0. We will proceed
in several steps.

Step 1. There exists a subsequence such that fi,, converges weakly to some u:
By Lemma 2.4 we know that supp(it,) C Fy, for all n € N and thus we have for all

f € Co(Fi,)
[ £an.

sup
neN

< II.f lloo Sup f1n(Fi,)
neN

< flleo Suggl(kOGl‘P, (Gi19)3,)
ne

< 1 flloo&1 koG 19, G19)

< OQ.

It follows that {fi,;n € N} is relatively compact for the vague topology. Let us choose

a subsequence (fin)ken Which is convergent to some p with respect to the vague

topology. Since Fi, is compact it follows that (fi, )en is weakly convergent to u.
Step 2. u is finite and supp(u) C K N Fy,:

Since 15, € Ch(Fi,) it follows that

W(Fip) = lim po, (Fi,) < ko€1(G19, Gi) < oo.

Further, since ch t (K N Fy)° as j — oo (the complements are taken in Fy,) we
conclude by the Porte-manteau-Theorem and Lemma 2.4 that

R(K N F)°) = lim u(B;°) < lim liminf 2, (B;") = 0.
Jj—00 J—=00 m=j
Step 3. u does not charge £-exceptional sets:

Setting 1(A) = w(A N Fy,) for A € B(E) we may interpret i as a Borel measure on
E. We will make no distinction between p and fi in the following. Let (Ei)ien be an
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arbitrary £-nest. Then (with the complements in E)

u(kol EZ)

llm u(EY)

Il\

llm lim mfu,, (Ep)

—)%]

lim liminff koRipdfin;
%

k=00 j—o0
(o)
ko llm llmlnf/E / e”'p(Y;)dt | dfi,
—)m _]—Pm aEi

< ko lim cap,(E;)
k— 00
=0

IA

IA

implies that u(N) =0 for every £-exceptional set N € B(E).

Step 4. 1 = oot
Let f € F. There exists (fm,)ken C Dy — Dg such that hmk_.oo f,,,,k = f in F. By [15,
Corollary II1.3.8., p. 73] we may assume that (fm, ke C Do — D0 converges £-q.e.
to some £-q.c m-version f of f. We will show that ( f,,,k)keN is L'(w)- Cauchy. Since
|fm,"‘fm,| € Cb(Fko) and |fmk—fm,| < Efm, —fm +Efm,~fm,, 8-q.e. where Efm‘,_fm,’ Ef"':_fw
are some £-q.l.s.c. regularizations we have

IA

lim (efm = fm + efml fmk)du’n;

Jj—>oo
EVE fo— fuy + € fr—fng» G190)
< e~y + € fm— £, Il @l 7

[ i = Fu

IA

and we conclude by [15, Lemma III1.2.2.(i), p. 66]. Then for a new subsequence even-
tually

f Fdu = lim lim / T din,
k—00 j—>00

1, firg, 61 (G193

= &1(f, Gi9p)eo),

but since u does not charge £-exceptional sets by Step 3 the equality holds for every
£-q.c. m-version f of f. From this it is easy to see that u = floo. O

REMARK 2.6. (i) Note that if every element in Pg,; admits an £-q.c. m-
version then before Step 1 in the proof of Theorem 2.5 one can show directly
supp(flec) C K. Indeed we may assume that G, ¢, (Gl<p)§j, aRa“(Gm)gl_ are contin-
uous on B; for every j, € N. We may also assume that G1¢ > 1/ko on each B;.
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We then have for each j € N

/Gl‘p —(G19)5,dfloo = lim lim lim f((GHP)E, — @R 1(G19)5 ) Al g oyt

a—>00 n>j p—00

lim (G19)5, — *Rent(G19)5, oo 3, f koG 19 d oo

IA

and the last expression is zero by Dini’s Theorem (here || || 0.B; denotes the sup norm
on the compact space E,-). We then conclude as in the proof of Lemma 2.4.

(ii) The assertion of Theorem 2.5 remains true if we replace Spy by {i € S0 |
u(E) = 1}. Note also that if (5‘,)0»0 is sub-Markovian we may replace S0 by the
larger class {uz | [#]loo < 00 and uz(E) < oo} and then our definition coincides with
the one of [6, p. 78].

(iii) Similar to [6], [12] it is possible to define the measures of finite (co-)energy
integral and to show that these measures have properties similar to those in [6], [12].
We will also use the notation 0|u1,~ for u.

3. Positive continuous additive functionals and Revuz measure

A family (A,);>0 of functions on  is called an additive functional (abbreviated

AF) of M = (Q, (F)r20, (Y1)r>0, (Py)zek, ), if:

(i)  A,(-) is F,-measurable for all + > 0.

(i) There exists a defining set A € F, and an £-exceptional set N C E, such that
P,[A]l =1 for all z € E\N, 6,(A) C A for all t > 0 and for each w € A, t
A¢(w) is right continuous on [0, oo[ and has left limits on ]O, {(w)[, A¢(w) =0,
|Ai(w)] < oo for t < ¢(w), Ar(w) = A;(w) for t > {(w) and Ass(w) = Ai(w) +
As(B,w) for s,t > 0.

An AF A is called a continuous additive functional (abbreviated CAF), if ¢t > A,(w)

is continuous on [0, 00), a positive, continuous additive functional (abbreviated PCAF)

if A;(w) > 0 and a finite AF, if | A;(w) |< oo for all t > 0,w € A. Two AF’s A, B

are said to be equivalent (in notation A = B) if for each t > 0 P,(A, = B;) = 1 for

&-q.e. 7 € E. For a Borel measure v on E and B € B(E) let P,(B) := fPZ(B)v(dz)

and E, be the expectation w.r.t. P,. The energy of an AF A of M is then defined by

l oo
®) e(A) = = lim o’E, f e A%dt|,
2 a—00 0

whenever this limit exists in [0, oo]. We will set €(A) for the same expression but with
Tim instead of lim.

From now on let us assume that the coresolvent (5a)a>0 associated with £ is sub-
Markovian.

Theorem 3.1. Let A be a PCAF of M. Then there exists a unique positive mea-
sure (L4 on (E, B(E)), charging no E-exceptional set and called the Revuz measure of
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A, such that
o0
) / fdua = lim ¢E, [/ e""'f(Y,)dA,] for all f € B(E)*.
E a—> 00 0

Furthermore, there exists an E-nest of compact sets (F,,)nzl such that ps(F,) < oo
and such that U,‘, 1% is an E-q.ls.c. m-version of some element in Pg,; for each n.

Proof. As usual we set U(;“f(z) = Ez[fooo e~ f(Y;)dA,] for a PCAF A of M
and f € B(E)*. Then we have the following resolvent equations (cf. e.g. [14, 36.16])
for0<a < B and f € B(E)*

(10) USf=Ulf+(B—a)RULf=ULf+(B—a)ReUST,

but one has to be careful not to substract because we make no finiteness assumptions
on Uf: f. As usual the sub-Markovianity of (aa).Do then implies the existence of f14.
Clearly u4 does not charge £-exceptional sets. Fix ¢ € L'(E;m) N B(E) such that
O<¢@<1.ForzeFE set

¢
d(z) = E, [/ e p(Ys)e s ds] .
0

By the original proof of D. Revuz (cf. [13, p. 509]) we have
Uld=Rip—-d E-qe.

and since U/"CD is £-q.ls.c. —® is also £-q.l.s.c. Let (F,,)n>1 be an E-nest of compact
sets such that —® € C;({F,}). Then

~ 1
F,,:=[d>z—]nF,,, n>1,
n

are compact subsets of E and similar to the proof of [6, Lemma 5.1.7.] one can show
that (F,),»1 is an E-nest. Finally (as in [13, Lemme IL.2, p. 508]) UlMg <nUj® <
nRyp £-q.e. implies that u A(T’,,) < 00, n > 1. Indeed, by the resolvent equation (10)
and the sub-Markovianity of (6a),,>0 we have forall 8> 1,n>1

f B(Rgnp — US13)dm
= f(ﬁ(Rnw — Ui13) — (B — DBRs(Ring — U4 15,)) dm

> /(R.mp —Ul)dm > 0,
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hence [ BRgngdm > fﬂUﬁl;ﬂ dm for all B > 1, and therefore w4 (F,) < [npdm <
00, n > 1. Clearly Ujl;n is £-q.ls.c. and by [15, Lemma III.2.1.(i), p. 65] UA]’F’-" is
an m-version of some element in Pg,3; for each n. O

Let A be a PCAF and let us be the associated Revuz measure of Theorem 3.1.
From its proof we know that there exists an £-nest of compact sets (f‘,.),,eN such
that p,A(f,,) < oo and such that U ,',177" is an £-q.l.s.c. m-version of some element in
P H;- Sinci E[A[] < €' sup,,, U}‘lfn £-q.e. it is straightforward to see by (10) that
for any v € Sp, £ > 0

(11) E,[A/] < €'|01v]lsotta(E).

4. Fukushima’s decomposition of AF’s

For the proof of Theorem 4.5 below we follow the same strategy as in [6, Chapter
5]. Let u be an £-q.c. function. Then (@(Y;) — u(Yo)):>0 is an AF of M, and indepen-
dent (up to equivalence) of the special choice %. We then set

(12) A = @(Y,) — 4(Yo)x0.
It follows from the sub-Markovianity of (6a)a>o that for it € H

(13) 2(A") < Tim o — aGqu, u)x.
a—>00

Note that in the case where (aa),»o is strongly continuous on V the right hand side
above is equal to E(u, u) for all u € F. Define

M = (M | M is a finite AF, E,[M?] < oo, E;[M,]1=0
for £-q.e. z € E and all ¢ > 0}.

M € M is called a martingale additive functional (MAF). Furthermore define
(14) M= (M e M| e(M) < o).

The elements of Ait are called MAF’s of finite energy.

Let M € M. There exists an £-exceptional set Ny, such that (M;, F;, P;);>o is
a square integrable martingale for all z € E \ Ny. Analogous to [9, III. Théoréme 3]
or see also [6, A. 3] there exists after a method of perfection a unique (up to equiva-
lence) PCAF (M), called the sharp bracket of M, such that (M,2 — (M), Fi, P)iso is
a martingale for all z € E \ Ny. It then follows that one half of the total mass of the
Revuz measure p(p associated to the quadratic variation of M € M is equal to the
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energy of M, i.e.

1
(15) e(M) = 5]}; dimy-

For M, L eAjt let
1
(M, L) = 5((M + L) — (M), — (L),).

Then ((M, L););>0 is a CAF of bounded variation on each finite interval of ¢ and sat-
isfies

E,M,L)=E,(M,L),) Vt>0, Eqe. z€E.

Furthermore the finite signed measure p(y,1) defined by wm,y = (1/2)(wm+r) —
WMy — M) is related to (M, L) in the sense of Theorem 3.1. If f € By(E)*, then

f ® p..y is symmetric, bilinear and positive on ,Ajt X ,Ajt, where f e ppm, 1)(A) =
Ju fdim,1y for every A € B(E) and every pair (M, L) e/\jt X /\it Define

N, = {N | N is a finite CAF, e(N) =0, E,[|N;|]] < 00
for £-q.e.z € E and all ¢t > 0}.

The “isometry” (15) and the continuity statement (13) are fundamental for the stochas-

tic calculus relateg to £.
We set A =M @N,. Namely A consists of AF’s such that

At=M'+N[ ME,A;[, NGN’C.

A is a linear space of AF’s of finite energy. Furthermore by (11) this decomposition
is unique. We define the mutual energy of A, B € A by

1 [o o]
e(A, B) = 3 lim o«*E, [ /0 e " A,B, dt] )

By the Cauchy-Schwarz inequality we know that e(A, B) = 0 when either A or B is
in N. Therefore

(16) e(A)=eM) if A=M+N, Me/\j[, N e N..

Using Theorem 2.5 and the Lemma of Borel-Cantelli the proof of the following lemma
is similar to the proof of [6, Lemma 5.1.2.(i), p. 182]

Lemma 4.1. Let (Fi)>1 be an E-nest. Let @, i, € C({F¢}), n € N. Let
(SuneN C R, such that lim,_, o S, = 0. Suppose that there exists for each u € Sy
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and T > 0 a constant CT**, such that

cT#
P, ( sup | a(Y) — an(Yy) |> 8) < Sn.
0<t<T £

Then there exists a subsequence (i, )ken, Such that for £-q.e. z € E

Py(itn, (Y;) converges to i(Y,;) uniformly in t on each compact interval of [0, 00)) = 1.

In contrast to [6], [12] in the following lemma we determine convergence in a
weaker semi-norm (cf. Remark 4.3 below).

Lemma 4.2. Let i € 7:2}'1 where Hr+ = {u € H | u,—u € Hx} and let ¢ > 0.
Then we have for any w € Spo and T > 0

T
- e
Pu( sup |a(Yy)| > 8) = —lIkliacllen + e—ulin,

0<t<T

where h is in H} such that ﬁl un =< ﬁlh.

Proof. Set U = {|ii| > &}. Then {supy., <y |#(Y;)| > €} C {oy < T;0y < ¢} where
oy is the first hitting time of U, i.e. oy =inf{t > 0 | ¥; € U}. By the right-continuity
of the associated process we have P;-a.s. for £-qe. z € E

T—oy >1 on {oy <T;oy <}

(Yo, )| is {_

£ >0 elsewhere.

Let e,, e_, be £-q.ls.c. regularizations of e,, e_,. Since |#| < e, + e_, £-q.e. by

making use of our smaller class of measures Soo it is just straightforward to conclude.

a

REMARK 4.3. Let us define a semi-norm on 7'7]—': by |[vlle = |ley + e—yll2¢. Let
(#n)neny C HgE+ be || - |lc-convergent to & € Hx+. Then, using Lemma 4.2 we see that
Lemma 4.1 applies. Since for f € F, | fll. < 6K| fllx we have in particular, that if

u,u, € F, n € N such that u, — u in F then u, — u wrt. || - |..
n—>oo n—>oo

Using Theorem 2.5 and (11) the proof of the following theorem is similar to [6,
p- 203].

Theorem 4.4. Let (M"),eN C_A;( be e-Cauchy. Then there exists a subsequence
(ni)ken and a unique M € M, such that lim,_, o, e(M" — M) =0 and for £-q.e. z € E

Pz(klim M[* = M, uniformly in t on each compact interval of [0, 00)) = 1.
—>00
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Let us assume from now on that (a,)bo is strongly continuous on V.

Theorem 4.5. (i) Let u € F. There exists a unique M™ e,)\si and a unique
NW e N, such that

an Al = g1 4 N,

(i) Let (Fi)i>1 be an E-nest. Let i, i, € C({F}), n € N, such that we have
(17) for A™), n € N and such that e(A“ Y — 0. Assume furthermore that the
n— 00

conditions of Lemma 4.1 are satisfied for i, ii,, n € N. Then (17) extends to A™).

REMARK 4.6. (i) In general it is not possible to find a decomposition of the ad-
ditive functional (@(Y,) — #(Yo))i>0 for all u € P of type (17) where N is of zero
energy. Here u denotes a 1-excessive regularization of u. As an example consider the
uniform motion (to the right) on the real line and %(x) = *1(_o0,0)(x), x € R.

(i) If we do not require the strong continuity of (50,)(»0 on V Theorem 4.5(i)
applies to all 4 € F, such that aGuu — u in V as a — oo.

Proof (of Theorem 4.5). After all preparations (among others Theorem 2.3, The-
orem 2.5, Theorem 3.1, (11), Lemma 4.2) we can finally show (i) similar to the proof
of the corresponding statement in [6, Theorem 5.2.2., p. 203ff]. Therefore we omit the
proof of (i) and only show (ii).

Let (17) be valid for ii,, n € N. By the uniqueness of the decomposition we know
that M¥] — Mlunl = pMu—un]l With (13) and (16) we have

e(M["n"um]) = e(A[un—um]) < 2E(A[u—“n]) + 2E(A[u_“m])‘

It follows that (MU¥n]),y C.Ajt is e-Cauchy and then by Theorem 4.4 it makes sense
to set

M™ = Lim M™] in (M, )

n— 0o

NI = AW _ gl

It only remains to show N € A. Note that there exists a subsequence n; such that
for £-qe. z€ E

PZ(N,["""] converges uniformly in ¢ on each compact interval of [0, 00)) =1

since the same is true for A™“! and M™®) by Lemma 4.1 and Theorem 4.4. Therefore
N™ is a CAF. Finally

E(N[“]) = E(A[u_un] _ (M[u] _ M[“n])+ N[Mn])
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< 3E(A[“_“n]) + 3e(M[“] _ M[“n])
implies that N™ is of zero energy. O

5. An Ito-type formula

Lemma 5.1. Let f € By(E) and M G,Ait. Then there exists a unique element
denoted by f e M € M, such that

(18) % f fdumsy =e(foM,L) forall LeM.
E

Proof. Let first f € By(E)* and M, L e/\j(. Since

1 1 12 /4 12
—/ fdum.ny| < (-/ fdum —/ fd#«(L))
2 Jg 2 Jg 2 Jg

< I flloce(M)'2e(L)'7?

there exists a unique bounded linear map Ty :,AZ——» /\31, such that (1/2) f gfdum.L
= e(Tf(M), L). Finally we set f ¢ M := Ty(M) and Ty(M) := Ty+(M) — T¢-(M) for
f=f"—f" €By(E). O

Let us assume from now on that in D1(ii) the adjoint semigroup (U,),zo of (Up)i>o0
can also be restricted to a Cyp-semigroup on V. Let (A, D(A, H)) denote the generator
of (17,),20 on H, A(u, v) := A(v, u), u, v € V and let the coform £ be defined as the
bilinear form associated with (A, V) and (A, D(A, H)). Note that since ((A;a)M was
assumed to be sub-Markovian the corresponding statement of D2 holds for the coform.
Let us further assume from now on that the coform € is quasi-regular too. We fix an
m-tight special standard process M= (ﬁ, (ﬁ),zo, (’Y\',),zo, (E)ZGEA) such that ﬁ,, f =
E.[f0°° e‘“’f(?,)dt] is an f-q.c. (= £-q.c.) m-version of 50,f for all f € H N By(E).
Necessary and sufficient conditions for the existence of such a process are given in
[15]. M is then in duality to M w.r.t. m.

REMARK 5.2. (i) Let (73})1, denote the set of bounded elements of ff.—. By

quasi-regularity of & we know that (’ﬁf)b — (’ﬁ;—)b separates the points of E \ N,
where N is an g—exceptional set. However, note that an element in (’ﬁf)b not nec-
essarily admits an f—q.c. m-version. Let pu, v be finite measures on (E, B(E)) charg-
ing no f-exceptional set. Then by/[\li Appendices A.0.8] it follows that u = v if
[Rufdu=[Ryfdv for all fe Pz

(ii) Let A, B be two PCAF’s. If us = up then A = B. Indeed if us = upg then
by (10) and (19) for every £-nest (Fy)ren Of compact sets Ufl,.-,‘ = U,‘;l,:.-,k £-q.e. for
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each k € N and B8 > 0. We may even choose (Fy)ien (cf. the proof of Theorem 3.1)
such that U)1p, < kRyp for every k € N. Then with AV := [ 15(Y;)dA,, A® =
Jo 17,(Y;)dB; for fixed k remarking that [ v;;dv < [2kRjpdv < oo for any v € Soo
(where v;; is as in [6, Theorem 5.1.2.]) we conclude as in the proof of [6, Theorem
5.1.2.]. Since k € N was arbitrary we get A = B.

Let w4 be the measure defined in Theorem 3.1. Then as in [11, Lemma 4.1.7., p.
91] one shows that for every f € B(E)*, g € LX(E;m)N\By(E)*, 8 >0

(19) f FRegdua = lim a(UL™ f, Rpgon.

Lemma 5.3. For f € B,(E) and M, L G,Ait. Then we have
Hirem,Ly = f ® lim,1)-

Proof. Let M ej\;t and f € By(E). Analogous to [9, Théoréme 4, p. 127] or
[6, Theorem A.3.19.] there exists (after perfection) a unique M €M, such that for all
L e_/\jt, t>0and £-qe. z€ E

E.(M,L)]=E, [ fo f(Y)d(M, L)s] .
For all g € L(E;m)(By(E), a > 0, we then have

/;’Rag du gLy = L(kag)fdﬂ(M.L),
and consequently
Kfom.Ly = f ® im,Ly,
since e(M — f e M, L) =0, for all L eAﬁ( by the preceding Lemma. O

The proof of the next Theorem is based on the proof of Theorem 5.3.2. in [11,
p.160]. For convenience we write f(, ., instead of gy pvy and p,, instead of

K (Mmiuly.

Theorem 5.4 (Product rule). Let f = (fi,..., f,) be an n-tuple of E-q.c. m-
versions of bounded elements in H such that A'®P) admits the decomposition of
Theorem 4.5 for all ® € C'(R") with ®(0) =0 and let e(AVi~*Rfily 5 0, as k — oo,
1 <i < n. Let further the martingale part M of the decomposition of Theorem 4.5
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be continuous for all u in GiHy. Let ®, ¥ € C'(R™), ®(0) =¥ (0)=0and & € ﬁ
w bounded such that we have the decomposition of Theorem 4.5 for A™), then:

(20 e = P, o fo) @ wnw) + V(L oo Fr) @ o))
Proof. It is enough to show
/;hdﬂw(f),w) = 2_/;’14’(171, cees Fr) AR (@(f) )

for h = ﬁﬂg, g € By(E)*(L'(E;m), B > 0, because then we will consider
(@(f)+w(f)?2w)- We may furthermore assume that [ hdm = 1. Then by (19)

f hdp gy

E

= lim a(a + ﬁ)Ehm [[ e—(CH-ﬂ)fM‘[@z(f)]M'[w] dt]
a—00 0

= alin;oa(a +B)Ewm [[) e~ @B DA F)(Y,) — DA FIYo)@(Y,) — B(Yo)) dt]

=2 Jim (@ +B)Epofim [ fﬂ e~ P @(F)Y:) — DU XBE,) — B(¥o)) dt]
+ lim (e + B)Enm [/(; e~ @B (D(F)(Y,) — DFN X)) W(Y,) — B(Yo)) dz]

=2 lim Iy + lim II,.
a— 00 a—00

By (19) and Lebesgue’s Theorem we have

lim I,

a—» 00

. a+p =\
Jim a(Uig(s, w1 hO()

lim o Hm (¥ RysaspUlpy ) 1o AO())

a—>00 y—>00

lim o im (YULe?, 1, Rass(hO(F))

a—00  y—>00

lim o / Rars(h®()) diios)uy
E

a— 00

fE hO(f) d e s),w

and for some constant L > 0 lim,_, /I, is dominated by
n 00
nLY Tim a(a+B)Em [ f e PN fiM) — Fi(Xo)|i(Y,) — D(Xo) dt] :
im1 a—>00 0

For 1 <i <n, k€N, we set fi; = kRyf,. Since we assumed that 2(Ali—ful) > 0, as
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k — oo, 1 <i <n, it is enough to show that for 1 <i <n
S o0
Jim a(a + B)Enm [ fo e P(fii (V) = fua(Yo)*|(Y,) — B(Yo)] dt]

tends to zero as k — oo. By our assumption (M,[f"‘], Fty Pum)i>0 is a continuous square
integrable martingale and consequently by the Burkholder-Davis-Gundy inequality

Enm [(Mt[f“])4] < CEnm [(M[fki])tz]

where C > 0 is a constant independent of f;;. Then

Jim (o + B)Epm [ /0 e P (fu(¥)) = f(Yo)[D(Y,) — B(Yo)| dt]

. 00 172 172
<2 1im (a(a +B)Epm [ / e~ @B (pTulyd dt]) ( / hdu,(w))

a—> 00 0

L 00 1/2 1/2
< 2 lim (a(a+ﬂ)E,,,,, [ f e—<“+ﬂ>'(M[f~1),2d:]> ( f hdp,(w)) .

a—>00 0

Then

o0
fim a(e + B)Enm [ f e~ @B ((plfly )2 dt]
a—>00 0

00 t
@oa(a + B)Epm [/ e—(a+ﬂ)12f ((M[fki])t _ (M[f"‘])s)d(M[f"i])s dt]
a— 0 0

[e2] oo
2a]i)n;° a(a + B)En, [/(; / e_(a+ﬂ)’(M[f“1),_s o ¥, dt d(M[f“])s]
—_ 00 ' 00
2 lim a(a + B)Epm [ f e P Ey, [ / e““*ﬂ)'(M[f“]),dt] d(M[f“])s]
a—00 0 0

2 1im a/hU(‘”" U*th ,1dm

@00 M fkily = (MUki)

< 2th(};”[,“,)1du(M(/k.-1)

1

M fh,)l(z) is bounded by the same constant for £-q.e. z

for every y > 0. Now since U
in E and since

Ul 1@ = Uy 12) = ¥ Ryt Uiy 12) 4 O

for £-q.e. z in E as y — oo we conclude by Lebesgue’s Theorem. O

Theorem 5.5 (Chain rule). Let f = (fi,..., f,) be an n-tuple of E-q.c. m-
versions of bounded elements in ‘H such that A'*") admits the decomposition of
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Theorem 4.5 for all ® € C'(R") with ®(0) =0 and let e(AVi*Rfly 5 0, as k — oo,
1 <i < n. Let further the martingale part M™ of the decomposition of Theorem 4.5
be continuous for all u in GHp. Let & € C'(R"), ®(0) =0 and & € H, w bounded
such that we have the decomposition of Theorem 4.5 for A™!, then

D~
@1 : o), w) = Z T(f) ® L(fiw)-
i=1 Xi
Proof. We first observe that any powers of the coordinate functions satisfy (21)
by the product rule and then by the product rule again all polynomials of n variables
vanishing at the origin.
Let K C R" be a compact set such that f(z) € K for £-qe. z € E. Let
X € CR"), x = 1on K C K’ = supp(x). There exists (cf. [3, 1142, 4.3, p.

57]) a sequence of polynomials vanishing at the origin (p;)jen, such that p; — &,
J—>00

@pj/ox;)) — (8P/3x;i), 1 <i < n, uniformly on K’. Note that [(d — pj)x](f)(z) =
j—o00o
(® — p;)(f)(z) for E-q.e. z € E. Then we have for all g € L2(E;m) N By(E), @ > 0

[ 0P ~
Ryg—(fduy,
le f «8 55 (P k0

n

) ~ Ap;i ~
Y lim f Rag 2L (P duisum
im1 Jj—>00 ax,-

Jim | Rag dbip,i)m

‘/ﬁag d L o(f),w)

where the second identity followed from the product rule. Because of (15) the third
identity follows since we assumed to have the decomposition of Theorem 4.5 for all
®(f) like above and therefore

e(M[d>(f)] — M[Pj(f)]) = e(A[((®—p;)x)(f)])

(P —pj)x)
8x,-

n

<nY

i=1

2
” e(AlAy,
oo

The last expression tends to zero as j — 00. O
Summarizing we get the following

Theorem 5.6 (It6’s Formula). Let f = (fi,..., f,) be an n-tuple of E-q.c. m-
versions of bounded elements in ‘H such that A'*") admits the decomposition of The-
orem 4.5 for all ® € C'(R") with ®(0) = 0 and let e(AVi~*Refily 5 0, as k — oo,
1 <i < n. Let further the martingale part M of the decomposition of Theorem 4.5
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be continuous for all u in G,’Hy. Then we have

n

~ ~ . . 0P - - 3
O(frveeos FIH) = @ FXH0) = 3 = (Fiv oo fo) o MU 4 NEP T

i=1 !

for all ® like above and this decomposition is orthogonal w.rt. e(-, ).

Proof. The assertion follows by Lemma 5.1, Lemma 5.3 and Theorem 5.5 be-
cause

n

3D ~ A\ 1

) (Mmm B> o e M[m) T2 f dppen -y @osaxyHemiiny =0. 0
i=1 4

6. An example

6.1. Weak solutions of SDE’s in infinite dimensions Let E be a separable
real Banach space and (H, (-, -)y) a separable real Hilbert space such that H C E
densely and continuously. Identifying H with its topological dual H’' we obtain that
E' ¢ H C E densely and continuously. Define the linear space of finitely based
smooth functions on E by

FCC :={f(i rlm) | m €N, f € COR™), 1y, ..., I € E'}.

Here C;°(R™) denotes the set of all infinitely differentiable (real-valued) functions on
R™ with all partial derivatives bounded. For u € FC°, k € E let

B 2= Luz+si) E
kD = ggu@*sh) =, z€E.

It follows that if u = f(ly, ...,1,) and k € H we have that

m

] d
ﬁ(z) = Z 3)%(11(2), v @MW k), z € E.

i=1

Consequently, k — (du/3k)(z) is continuous on H and we can define Vu(z) € H by

0
(Vu(z), k)g = 5%@).

Let u be finite positive measure on (E, B(E)). Assume for simplicity supp(u) = E.
An element k in E is called well-u-admissible if there exist B € L*(E;p) such that

for all u, v in FC°
du "
/ﬁdu——/uﬂk d;L.
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Let us assume

(A.1) There exists a dense linear subspace K of E’ consisting of well-u-admissible
elements.

Then it is well known that the densely defined positive definite symmetric bilinear
form

E%u,v) = %/(Vu, Vv)gdp u,v e FCP

is closable on L2(E;u) and that the closure (2, D(E?)) is a symmetric quasi-regular
Dirichlet form. Let (L%, D(L?)) be the associated generator. Let B € L%(E, H; ) (i.e.
B : E - E is B(E)/B(E)-measurable, B(E) C H and ||B|ly# € L*(E;u)) be such that

22) /(E, Vu)ydu =0 for all u € FC.

Since FCg° is dense in D(E®) (22) implies that [(B, Vu)ydu =0 for all u € D(E®)
and thus [ (B, Vu)yvdu = — [(B, Vv)yudu for all u, v € D(E%,. Let

Lu = L%+ (B, Vu)y, u € D(L®,.

It then follows from [16, Proposition 4.1.] that (L, D(L®),) is closable on L!(E;u)
and that the closure (L, D(L)) generates a Markovian Co-semigroup of contractions.
Furthermore D(L), C D(E®) and for u € D(L),, v € D(EY),

(23) E%u, v) — /(B, Vu)gvdp = ——/Zuvdu..

Let (L, D(L)) with associated resolvent (Go)s>0 be the part of (L, D(L)) on L%(E;w),
(L, D(L") with associated resolvent (G, )q>0 be the adjoint of (L, D(L)) in L*(E;pu).
According to [15, 1.4.9. (ii)] (L, D(L)) is associated with the generalized Dirichlet
form

(—Lu,v) foru € D(L), v e L¥E;p)

Eu,v) =
{ (u,—L'v) for u € L*(E;pn), ve D(L)

where (-, -) is the inner product in L2(E;u). There exists (cf. [16, Th.4.6., Prop. 4.7.])
a p-tight special standard process M = (2, Foo, (X:)t>0, (P;)zeE,) With life time ¢ that
is associated with (L, D(L)) in the sense that R, f(-) := E.[[;° €™ f(X,)d!] is an £°-
q.c. m-version of G, f for all f € B,(E) N L*(E;u), @ > 0. Furthermore P,[{ =
+00] = 1, P,[t — X, is continuous on [0, c0)] = 1 for £%-q.e z € E. Note that by [16,
Lemma 4.5] L-nests and £%-nests coincide. Therefore £-exceptional and £%-exceptional
sets coincide.
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Since —p satisfies the same assumptions as B the closure (Zl, D(Z/)) of L'u :=
L% — (B, Vu)y, u € D(L%, on L!(E;u) generates a Markovian Co-semigroup of
contractions too, D(L), C D(° and for u € D)y, v € DE®, E%u,v) +
[(B, Vuyyvdu = —fZ'uvdp.. It is easy to see that the part of (L', D(L)) on
LY(E; ) is (L, D(L")). Let (R.)q>0 denote the resolvent of the associated coprocess.
Since (G, )o>0 is sub-Markovian and strongly continuous on V = L*(E; w), Theo-
rem 4.5 applies for u € D(L) with N = fO'Lu(XS)ds. Let v € D(L), g €
L*(E; u) N By(E)*, y > 0, then by (19)

/ R gduy, = 26%v, vR,g) — £°(v*, R} g)
= /R;,g(Vv, Vu)gdu.

Now let u,, € D(L), such that u, —> u in D(L). Since by (23) u, —>u in D&Y
n—>oo n—

we have [ R,gduw) = [ R,g(Vu,Vu)ydu. In particular [ R ,gduw = [ R,gdua

where A = fo'(Vu(Xs), Vu(X;))y ds. Therefore by Remark 5.2(i) and (ii) it follows

that (M™)), = [1(Vu(X;), Vu(X,))n ds. Note that (M™)) is finite since (Vu, Vu)y €

LY(E; ). Assume

(A2) u(-):=g (k,"Yg € LA(E;p) for all k € K.

Here g (-, -)g denotes the dualization between E and E’. Then clearly u; € D(L),

1 —
24) Lug = Eﬂ,ﬁ‘ +(B, k), keKk,
and
(25) (MU Ml =tk KV, kK € K.

Choosing an ONB Ky C K of H which separates the points of E by Theorem 4.5
applied to uy, k € Ko we get a countable system of 1-dimensional SDE’s with inde-
pendent 1-dimensional Brownian motions according to (25) and drifts given according
to (24). If we assume

(A.3) For one (and hence all) ¢+ > O there exists a probability measure u, on
(E, B(E)), such that

/ eir ke (d7) = e~ V/DIKI for all k € E/

similar to [1, Theorem 6.6] it is then possible to lift the countable system of 1-
dimensional equations to a single equation on E, namely we have
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Theorem 6.1. There exist maps W, N° : Q — C([0, o0), E) with the following

properties:

(i) o W(w):=Ww)t) and w — N,o(a)) = NO%w)(t) are both F,/B(E) measur-
able for t > 0.

(i) There exists an E%-exeptional set S C E such that under each P, z € E\S,
W = (W;)»0 is an E-valued (F;);>0-Brownian motion starting at 0 € E with
covariance (-,-)y (i.e. under each P,, z € E\S, forall 0 <s <t W, — W;
is independent of F; and (k, W, — W;)g is mean zero Gaussian with variance
(t = kN,

(iiiy For each k € K, t > 0 and £%-q.e. z € E we have P,-a.s.

1 t
plk, W) = M") and gk, N)g = 5 f Bl (X,)ds.
0
(iv) For £%q.e. z € E we have P;-a.s.
t
(26) X, =z+W,+N+ f B(X,)ds
0

where the last integral is in the sense of Bochner (cf. the following Remark 6.2)
and where for k € K (k, [y B(Xs)ds)u = [ (B(X;), k) ds.

REMARK 6.2. (i) The assumption that the Gaussian measures satisfying (A.3)

exist is of course, necessary. It just means that there exists (cf. [7, p. 74]) a Brow-

nian

semigroup on E with covariance (-, -)y, i.e., there is a Brownian motion on E

over H. Hence (A.3) is the best one could hope for.

(ii) In the above general situation there is no garantee that k — B} (z), k € K, is

represented by an element in E for u-a.e. z € E. But if we assume

(A.4) There exists a B(E)/B(E)-measurable map B} : E — E such that

(@ ek, By)E =Bi wn-as. for each k € K,
® B4l € L'(E: )
then we may define the process N° in Theorem 6.1 as a Bochner integral. In
fact, it is easy to see that |84 ||g € LY(E; )N B(E) implies the finiteness of the
AF [ B4 lle(Xs)ds. Hence, by [20, Theorem 1, p. 133, Corollary 2, p. 134],
N? :=(1/2) f(; B (Xs)ds, t > 0 (where the integral is in the sense of Bochner
P;-a.s for £%-q.e. z € E) has the desired properties.

(iii)) It is easy to see that (A.4) is equivalent to the following assumption:

(A.4’) There exists a B(E)/B(E)-measurable map B : E — E such that

(@) (1/2)g/(k, BYg = Luy p-a.s. for each k € K,
() ||Bllg € L'(E; ).

Analogous to (ii) we may then replace N,°+ f(; B(X,)ds in (26) by the Bochner integral
(1/2) f; B(X)ds.
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6.2. Applications In this subsection we assume that E is a separable real
Hilbert space with inner product |-||£ := (-, -)}* and that H C E densely by a Hilbert-
Schmidt map. Then there exists a nonnegative definite injective self-adjoint Hilbert-
Schmidt operator T on E such that H = T(E) and || - ||z = |T~" - ||z. Analogous to
[7, Theorem 4.4 Step 3.] we see that || - ||g is measurable over H, hence (A.3) holds.

Let B : E — E be a Borel measurable vector field satisfying the following conditions:

(B.1) limy), 00 (B(2), 2)E = —00,
(B.2) g({l, B)g : E — R is weakly continuous for all / € E’.
(B.3) There exist C;, C,, d € (0, 00), such that ||B(2)|lg < C +C2||zll‘é for all z € E.

Then by [2, Theorem 5.2.] there exists a probability measure u on (E, B(E)) such that
g(l, B)g € L¥(E;p) for all I € E’ and such that

1 1
27 / (szu *+3 (Vu, B)E) du=0 for all u € FC°
E’

where Ay is the Gross-Laplacian, i.e.,

m

A,m:Z

i,j=1

(), oouy Ln (@)U, l_,')y if u= f(ll, v dm) € .7-'C,‘,’°

ax,- Bx,-

Assume that B(z) = —z+v(z), v : E — H. Because of (B.1), (B.3) it follows by [2,
Lemma 5.1.] that v € L?>(E, H; ). In particular we have ||z||z € LP(E, u) for all p >
1. Let ¥ be a Gaussian measure on E with covariance (-, -)y. By [2, Theorem 3.5.]
du = ¢*dy where ¢ is in the Sobolev space H!'2(E;y). Furthermore the logarithmic
derivative B}, of u associated with H exists and admits the representation By(2) =
—z+(2V@/p)(z). Note that possibly supp(u) # E. Nevertheless, since every k € E’ is
well-p-admissible (thus in particular (A.1) holds)

1
Eu,v) === | (Vu, Vo)gdu, u,ve FC®,
2 b

is well-defined and closable on L2(E;u) and the closure is a symmetric quasi-regular
Dirichlet form. Let (L%, D(L°)) be the associated generator. It is easy to see that
FCP C D(L and

1 1
Lo = 5A,,,u + EE«(Vu, Bie, ueFCP.

Set B := (1/2)(B — BY). Clearly B € L*(E, H; ) and by (27) since [ Ludu = 0,
u € FC®

(28) /(E. Vu)yduw=0 for all u € FCP.
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As in 6.1 we then construct a conservative diffusion M = (R, Foo, (X:)r>0, (Pr)zcEL)
associated to the part on L?*(E; ) (which we denote by (L, D(L))) of the closure
on LY(E,pn) of L' + (B,Vu)y, u € D(L%,. Note that Lu = (1/2)Axu + (1/2)
xg{Vu, B)g, u € FC°. Surely (A.2) is satisfied and clearly Luy = (1/2)g:(k, B)E
hence (A.4’) holds. By Theorem 6.1 and Remark 6.2(ii) we then have P;-a.s. for £°-
g.e. Z € E (thus in particular P,-a.s.)

1 t l t
(29) X,=z+W,——/ Xxds+—/ v(X,)ds
2 /o 2 J

where (W;);>o is an E-valued (F;);>0-Brownian motion starting at 0 € E with covari-
ance (-,-)y and where (1/2)f(; X,ds, (1/2)[0' v(X;)ds are in the sense of Bochner
P;-as. for £°-q.e. z € E. Note that [(v — 2(Ve/9), Vu)y du =0 for all u in FC°.
Let (L', D(L')) denote the adjoint operator of (L, D(L)) on L%(E;u). Clearly, since
L'w = p:(k, (1/2)idg + 2V /) — (1/2)v)g and |lidel|e, 12Ve/¢lle, lvilE € LX(E; p)
the coprocess M= (Q .7-'00, (X,),>o, (P ).k, ) associated to (L', D(L')) weakly solves

-~ -~ 1 ’A ! V -~ 1 : —~
Jq{,=z+w,—5f0 Xxds+/ 27¢(Xx)ds-—§f v(X,)ds
0 0

for £°-q.e. z € E where (W,),zo is an E-valued (ﬁ),zo-Brownian motion starting at
0 € E with covariance (-, ‘)y.

6.3. An Ité-type formula Let (Gy)as0 be the resolvent associated to (L, D(L)).
Since 5,,|Lz = G4, @ > 0, it follows that D(L), C D(L), is dense w.r.t. the L!-
graph norm. Note that since 1 € D(L), the 1-reduced function e exists for all f €
L*(E; ). Let u, := nGnu, u € D(_I:)b. By [16, Lemma 4.4.(iii)] we have that e,_,, +
€up—u 0 in D(EY), hence in L%(E;u). Furthermore e(A%“~*1)y = (=L(u — up), u —
U,) - 0. Now (cf. Remark 4.3) by Theorem 4.5(ii) the decomposition (17) extends

to A, u € D(L),. Similar to the finite dimensional case [16, Remark 1.7.(iii)] one
can show that D(L), is an algebra. Hence the decomposition (17) extends to AP
where f = (fi, ..., fu) is an n-tuple of elements in D(L), and p is a real polynomial
in n variables. Let ® € C'(R") with ®(0) = 0. Let pj, j € N, x be similar as in the
proof of Theorem 5.5. We then have by Lemma 4.2 for any u € S0, T >0

- lles, +e_fllw-

P, (OsupT (® — pFIXD| > e) al

3((4> p,)x) ”

i=1

Furthermore

n 2
HACPID < Y “ 3((4’3— P Zf. ).
Xi 00
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Hence, by Theorem 4.5(ii), the decomposition (17) extends to A®U)). As a conse-
quence Theorem 5.6 applies to the martingale part M!®")) of the decomposition.
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