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Abstract

Although the standard model (SM) in particle physics is consistent with the results in collider
experiments, it cannot explain several cosmological observations such as the baryon asymmetry of
the Universe (BAU) and the existence of dark matter. In order to solve these problems, we should
consider new physics. When we consider new physics models with extensions of the Higgs sector
from the SM, aspects of the electroweak symmetry breaking can be drastically changed. Especially,
dynamics of the electroweak phase transition (EWPT) at the early Universe can be changed. In
the SM, the EWPT is crossover. On the other hand, the EWPT can be a first-order in extended
Higgs models. We are able to observe remnants of the first-order EWPT by using cosmological
observations.

The first-order EWPT plays an important role to solve problems such as the BAU. The elec-
troweak baryogenesis is a promising scenario to explain the baryon asymmetry. In this scenario,
the baryon asymmetry can be produced when the first-order EWPT occurred. It indicates that
testing first-order EWPT is important.

In general, in extended Higgs models with the strongly first-order EWPT, the triple Higgs
boson coupling hhh deviates from the SM prediction about 20–30%. It implies that we can test the
strongly first-order EWPT at future collider experiments; i.e., International Linear Collider (ILC)
and High-Luminocity LHC (HL-LHC). On the other hand, there is a possibility that a special
shape of gravitational waves (GWs) can be produced by the first-order phase transition. The
first-order phase transition at the early Universe occurs via the vacuum bubble nucleation. Then,
characteristic GWs can be produced by vacuum bubble collisions. Therefore, the first-order EWPT
can be tested by GW observations. For the first-order EWPT, the predicted GW spectrum has a
peak around 10−3–10−1Hz. Such GWs may be detected at future space-based interferometers such
as the Laser Interferometer Space Antenna (LISA) and DECi-hertz Interferometer Gravitational
wave Observatory (DECIGO).

In this thesis, we first discuss the dynamics of the EWPT in the two Higgs doublet model
as an example of renormalizable extended Higgs models. We show the prediction on the triple
Higgs boson coupling and GW spetrum in this model. We also show that new scalar bosons,
whose masses are lighter than 2TeV, must exist in order to realize the scenario of electroweak
baryogenesis. In addition, we discuss how we can know a typical mass scale of new scalar bosons
by the combination of the measurement of hhh coupling with GW observations.

We then discuss the EWPT in a new effective field theory (EFT). As already mentioned,
the SM is consistent with results in the LHC. Furthermore, no signatures for new particles have
been observed. For these reasons, the framework of the Standard Model Effective Field Theory
(SMEFT) is often used. In the SMEFT, higher dimensional operators composed of field contents
in the SM are introduced to describe new physics beyond the SM. Whereas, there is a possibility
that large quantum corrections in Higgs couplings can be realized by heavy new particles. Such
effects are often called as the non-decoupling effects. The non-decoupling effects are important
to realize the strongly first-order EWPT. Unfortunately, the SMEFT is not a good framework to
describe new physics with the non-decoupling effects. It means that we need a new EFT instead of
the SMEFT. In recent, the nearly aligned Higgs Effective Field Theory (naHEFT) is proposed as
a good candidate. The naHEFT can describe new physics with the non-decoupling effects. In this
thesis, model independent predictions on the hhh coupling and GW spectra are shown by using
the naHEFT.

Finally, we discuss the relation between the first-order EWPT and primordial black holes. If the
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first-order EWPT occurs at the early Universe, a large energy density fluctuation may be realized.
As a result, primordial black holes can be formed. It means that the first-order EWPT may be
tested by current and future PBH observations. We discuss the PBH formation in the naHEFT
to obtain model independent results. The mass of PBHs produced by the EWPT is about 10−5 of
the solar mass. Such PBHs may be observed by microlensing observations such as Subaru Hyper
Suprime Cam (HSC), Optical Gravitational Lensing Experiment (OGLE), PRime-focus Infrared
Microlensing Experiment (PRIME) and Nancy Grace Roman (Roman) Space Telescople. It means
that we may be able to test the first-order EWPT by using microlensing observations. We show
complementarity of PBH observations, future GW observations and collider experiments to test
the first-order EWPT.
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Chapter 1

Introduction

The Standard Model in particle physics is a theory which successfully explains experimental results
in various experiments such as collider experiments, flavor experiments and cosmological observa-
tions [1]. Interactions with particles in the SM are determined by the gauge principle. Masses of
particles in the SM are given by the Higgs mechanism [2–6]. The Higgs mechanism is based on the
spontaneous electroweak symmetry breaking (EWSB). The EWSB occurred at the early Universe
is called as the electroweak phase transition (EWPT). According to the lattice simulations, the
EWPT in the SM is not a first-order [7, 8]. On the other hand, the EWPT can be a first-order
when we consider extended Higgs models. If the first-order EWPT occurs at the early Universe,
remnants of the first-order EWPT may be observed by using cosmological observations and collider
experiments.

In the SM, an isospin doublet scalar field is only introduced to realize the EWSB. Although
this assumption is minimal, there is no principle to determine the structure of the Higgs sector like
the gauge principle characterizing the interactions with elementary particles. In addition, several
phenomena beyond the SM (BSM) have been already confirmed by cosmological observations,
i.e., the baryon asymmetry of the Universe (BAU), neutrino oscillations and the existence of dark
matter. These facts indicate that extensions of the Higgs sector from the SM are natural ways to
solve the BSM phenomena. Phenomenological consequences of extended Higgs models at current
and future collider experiments have been thoroughly investigated. For instance, the collider
phenomenology in two Higgs doublet model [9–24], the SM with singlet scalar fields with a scalar
mixing [25–32], the inert doublet scalar field [21, 33–36], the SM with triplet scalar fields [37–41]
have been examined.

The extended Higgs models may solve BSM phenomena such as the BAU. To generate the
observed baryon asymmetry from a baryon-symmetric early Universe, we need a mechanism which
satisfies Sakharov’s conditions [42]. For example, the electroweak baryogenesis (EWBG) is a
promising scenario satisfying Sakharov’s conditions [43]. In the EWBG, the baryon asymmetry
can be generated when the first-order EWPT proceeds [43]. The sphaleron process, which violates
baryon numbers, plays an important role to generate the baryon asymmetry in the EWBG [44,45].
In order to explain the observed baryon asymmetry via the EWBG, the sphaleron process de-
couples after the first-order EWPT [43]. This condition is often called as the sphaleron decou-
pling condition. We call the first-order EWPT satisfying the sphaleron decoupling condition as
the strongly first-order EWPT. The EWPT in extended Higgs models with an additional doublet
scalar field [46–58], a singlet scalar field with scalar mixing [59–65] or without scalar mixing [66–69]
have been analyzed.

We can obtain several predictions in the collider phenomenology from the sphaleron decoupling

9
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condition. For instance, the triple Higgs boson coupling hhh deviates from the SM prediction by
20–30% to satisfy the sphaleron decoupling condition in several extended Higgs models like the
two Higgs doublet model [50]. The hhh coupling can be measured precisely at future collider
experiments. For example, the hhh coupling are measured at 50% accuracy at the HL-LHC [70].
At future lepton colliders such as the ILC with 1TeV center mass energy, the hhh coupling can
be measured at 10% accuracy [71]. It means that the first-order EWPT may be tested by future
collider experiments where the hhh coupling can be precisely measured.

The EWBG predicts not only characteristic collider signatures but also cosmological phenom-
ena. When the first-order phase transition occurs at the early Universe, stochastic gravitational
waves (GWs) can be produced [72]. The first-order phase transition at the early Universe occurs
via the nucleation and expansion of vacuum bubbles. Characteristic spectrum of GWs can be pro-
duced via the dynamics of the vacuum bubbles [73]. For the first-order EWPT, the predicted GW
spectrum has a peak around 10−3–10−1Hz. Such characteristic GWs may be detected at future
space-based interferometers such as the Laser Interferometer Space Antenna (LISA) [74] and the
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) [75]. Predictions on GWs
produced by the first-order EWPT have been thoroughly investigated in various extended Higgs
models [56, 57, 61, 65, 68, 69, 72, 76–88] By using future GW observations, we may be able to test
the first-order EWPT.

The strongly first-order EWPT, which is important to realize the EWBG, requires the large
deviation in the hhh coupling. This fact is confirmed in renormalizable extended Higgs models
and effective field theories (EFTs). In the THDMs, the large deviation in hhh coupling can be
realized by quantum corrections from heavy additional scalar bosons [9]. Such large quantum
corrections to Higgs couplings are often called as the non-decoupling effects. The relation between
the strongly first-order EWPT and the deviation in the hhh coupling is also discussed in effective
field theories (EFTs) [89]. The Standard Model Effective Field Theory (SMEFT) is often used in
order to obtain model independent results. The EWPT in the SMEFT has been analyzed in the
literatures [76, 79, 80, 84, 88–92]. Although the SMEFT is a proper EFT to describe new physics
that has decoupling properties, it cannot describe extended Higgs models with the non-decoupling
effects [93, 94]. It means that a new EFT framework describing models with the non-decoupling
effects is required.

In this thesis, we first discuss the EWPT in extended Higgs models. Especially, we focus on
the two Higgs doublet model (THDM) as an example of renormalizable extended Higgs models.
We precisely evaluate the sphaleron decoupling condition in the THDM. The predictions on the
hhh coupling and GW spectra are evaluated by using the precise sphaleron decoupling condition.
We show that upper bounds on new additional scalar fields can be obtained by combining the
sphaleron decoupling condition and the unitarity bound. It is well known that the unitarity bound
gives upper bounds on masses of new scalar fields [14,19,95,96]. However, the mass upper bounds
cannot be determined by using only the unitarity bound in a case where the discovered Higgs
boson is SM-like. We show that the mass upper bounds can be determined by combining the
sphaleron decoupling condition and the unitarity bound even if the discovered Higgs boson has
SM-like properties. In addition, we show that the typical mass scale of new scalar fields may be
determined by using the measurement of the hhh coupling and GW observations.

We next discuss the dynamics of the EWPT in a new EFT, which is the nearly aligned Higgs
EFT (naHEFT). The naHEFT is an extension of the Higgs EFT [97–110]. The Higgs EFT may be
able to describe extended Higgs models with the non-decoupling effects [93,94]. We show that the
naHEFT can appropriately describe extended Higgs models with the strongly first-order EWPT.

Finally, we discuss a relation between the first-order EWPT and primordial black holes (PBHs).
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PBHs can be generated by a large energy density fluctuation at the early Universe [111–113].
So far, various possibilities of the PBH formation via the first-order phase transition have been
discussed [87, 114–122]. In our analysis, we focus on the PBH formation mechanism proposed by
Liu et al. [120]. For the PBH formation discussed in Ref. [120], the large density fluctuation can
be realized because of the delay of the first-order phase transition. Since the delay of the phase
transition only depends on the structure of the effective potential, the abundance of PBHs can
be determined in any models with the first-order EWPT. Properties of PBHs produced by the
first-order EWPT were discussed by using the SMEFT framework [87]. In our analysis, we utilize
the effective potential in the naHEFT in order to obtain model independent results. The mass
of PBHs formed by the EWPT is about 10−5 of the solar mass. Such PBHs may be observed by
microlensing observations such as Subaru HSC, OGLE, PRIME and Roman Space Telescope. We
discuss complementarity of PBH observations, future GW observations and collider experiments
to test the first-order EWPT.

The structure of this thesis is as follows. In Chapter 2, we review the standard model in particle
physics. In Chapter 3, we give a brief review for extended Higgs models and effective field theories.
In addition, we explain the details of the first-order phase transition. In Chapter 4, we discuss
the EWPT in extended Higgs models. We mainly focus on the two Higgs doublet model in this
chapter. In Chapter 5, we define the naHEFT and discuss its phenomenology. In Chapter 6, we
discuss the relation between PBHs and the first-order EWPT. Finally, we give the grand summary
in Chapter 7.





Chapter 2

The standard model in particle physics

2.1 Particle contents in the standard model

The SM possesses the gauge symmetry SU(3)C ×SU(2)L×U(1)Y Particle contents in the SM are
shown in Tab. 2.1. The subscripts L and R represent the chirality. The subscript i indicates the
generation. Numbers shown in Tab. 2.1 are the representation of each gauge group. The U(1)Y
charge Y and the third component of the weak isospin I3 are related to the observed electric charge
Q by Nisjima-Gell-mann formula [123,124]:

Q = I3 + Y. (2.1.1)

This formula is related to the spontaneous electroweak symmetry breaking (EWSB) SU(2)L ×
U(1)Y → U(1)EM. In the SM, the EWSB is occurred by a isospin doublet scalar field Φ shown in
Tab. 2.1. The Higgs field can give masses of fermions and gauge bosons. In this thesis, we focus
on the part related to the electroweak symmetry SU(2)L × U(1)Y . We call a model with the EW
symmetry and a isospin doublet scalar field as Weinberg-Salam theory [125–127].

2.2 Higgs mechanism

Although masses of fermions and gauge bosons are forbidden by the gauge symmetry, the Higgs
mechanism can give the masses. The Higgs mechanism is realized by a Higgs boson in the SM. As
shown in Tab. 2.1, the Higgs boson can be expressed by

Φ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
(ϕi ∈ R). (2.2.1)

In Weinberg-Salam theory, the Higgs potential at the tree-level is given by

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2

= λ

{(
Φ†Φ

)
− µ2

2λ

}2

− µ2

4λ
, (2.2.2)

where we assume µ2 > 0. The last term is a constant. Since the parameter µ2 is not negative, the
Higgs potential has a minimum value. Then, the Higgs field should satisfy the following condition
at the minimum value

|Φ|2 = µ2

2λ
. (2.2.3)

13



14 CHAPTER 2. THE STANDARD MODEL IN PARTICLE PHYSICS

Table 2.1: Particle contents in the SM.

ℓ
(i)
L =

(
ν
(i)
L

e
(i)
L

)
e
(i)
R q

(i)
L =

(
u
(i)
L

d
(i)
L

)
u
(i)
R d

(i)
R Φ =

(
ϕ+

ϕ0

)
SU(3)C 1 1 3 3 3 1
SU(2)L 2 1 2 1 1 2
U(1)Y –1/2 –1 +1/6 +2/3 –1/3 +1/2

This condition characterize the topological structure of the vacuum. By using the expression for
the Higgs field given in Eq. (2.2.1)), we can obtain

4∑
i=1

ϕ2
i =

µ2

λ
. (2.2.4)

This result indicates that the topological structure of the vacuum in the SM corresponds to S3.
It means that any stable topological solitons cannot exist in Weinberg-Salam theory [128]. Con-
versely, there is a possibility that unstable particle-like solutions in field equations can exist, i.e.,
electroweak sphalerons [44, 45].

The Higgs field around the vacuum can be parameterized by

Φ =
1√
2

(
w+

v + h+ ia

)
. (2.2.5)

The fluctuation around the vacuum can be expressed by using fields π = (π1, π2, π3) as

Φ = e
iσ·π(x)

v
1√
2

(
0

v + h

)
. (2.2.6)

Since the Weinberg-Salam theory is invariant under the gauge symmetry SU(2)L, effects from the

factor e
iσ·π(x)

v cannot appear in any physical quantities. Therefore, it is sufficient to consider the
following expression when we discuss phenomenology around the vacuum

Φ =
1√
2

(
0

v + h

)
. (2.2.7)

We here confirm that gauge bosons can acquire their masses by the Higgs mechanism. The
kinetic term of the Higgs field can be expressed by using the expression (2.2.7) as

|DµΦ|2 =
∣∣∣∣(∂µ + ig

1

2
σ⃗ · W⃗µ − ig′

1

2
Bµ

)
1√
2

(
0

v + h

)∣∣∣∣2 , (2.2.8)

σ⃗ · W⃗µ =

(
W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −W 3
µ

)
, W±

µ =
W 1

µ ∓ iW 2
µ√

2
, (2.2.9)

where σi (i = 1, 2, 3) is the Pauli matrix. g and g′ are the gauge couplings for SU(2)L and U(1)Y .
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Then, we can obtain

|DµΦ|2 =
∣∣∣∣ 1√

2

(
0

∂µh

)
+

ig′

2

(
0

Bµ
1√
2
(v + h)

)
+

ig

2

(
W+

µ (h+ v)
−W 3

µ
1√
2
(v + h)

)∣∣∣∣2
=

g2

4
W+

µ W−µ(h+ v)2 +
1

2
∂µh∂

µh+
g′2

8
BµB

µ(h+ v)2

− gg′

4
BµW 3

µ(h+ v)2 +
g2

8
W 3

µW
3µ(h+ v)2. (2.2.10)

We define Zµ, Aµ and θW as follows;

Zµ = W 3
µ cos θW − Bµ sin θW ,

Aµ = W 3
µ cos θW +Bµ sin θW ,

tanθW =
g′

g
, (2.2.11)

where Zµ, Aµ and θW represent the Z boson field, the photon field andWeinberg angle, respectively.
Then, we can express the kinetic term of the Higgs field in terms of Zµ and Aµ as

|DµH|2 = 1

2
∂µh∂

µh+
g2

4
(h+ v)2W−

µ W+µ +
g2 + g′2

4
(h+ v)2ZµZ

µ + 0 · AµA
µ(h+ v)2 (2.2.12)

Thus, the masses of W±
µ , Zµ and Aµ are given by

mW =
1

2
gv, (2.2.13)

mZ =
1

2

√
g2 + g′2 v, (2.2.14)

mA = 0. (2.2.15)

We next confirm the masses of fermions. We first consider the masses of leptons. The renor-
malizable interaction terms between the Higgs doublet field and leptons, which are invariant under
the gauge group SU(2)L × U(1)Y , can be given by

Llepton
yukawa = −yℓij(ℓ

(i)
L Φ)e

(j)
R + h.c., (2.2.16)

where yℓij are Yukawa coupling constants for leptons. As already mentioned, the subscript i indi-
cates the generation. After the EWSB, the interaction terms can be expressed by

Llepton
yukawa = −

yℓij√
2
ve

(i)
L e

(j)
R −

yℓij√
2
he

(i)
L e

(j)
R + h.c.. (2.2.17)

We here define mass eigenstates for leptons by using unitary matrices U and V as

e
(j)
L → e

m(j)
L = V †

jie
(i)
L ,

e
(i)
R → e

m(i)
R = U †

ije
(j)
R .

(2.2.18)

Then, we can obtain

yℓije
(i)
L ℓ

(j)
R = e

m(a)
L V †

aiy
ℓ
ijUjbℓ

m(b)
R . (2.2.19)
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By defining U and V to diagonalize V †
aiy

ℓ
ijUjb, we obtain

Llepton
yukawa = − v√

2
Y ℓ
i e

m(i)
L e

m(i)
R − 1√

2
Y ℓ
i e

m(i)
L e

m(i)
R h. (2.2.20)

Therefore, the masses for leptons can be expressed by

M ℓ
i =

v√
2
Y ℓ
i . (2.2.21)

Since the SM does not have right handed neutrino, the masses of neutrino are zero.
The masses of quarks can be discussed in the same way as in the lepton case. The Yukawa

interaction terms for quarks can be given by

Lquark
yukawa = −ydijq

(i)
L ΦdR − yuijq

(i)
L ΦCuR + h.c., (2.2.22)

where ΦC is the charge conjugate of the Higgs doublet field, which is defined by ΦC = iσ2Φ. We
define two unitary matrices Ũ and Ṽ to obtain mass eigenstates for quarks as

u
m(j)
L = Ṽ †

(u)jiu
(i)
L , d

m(j)
L = Ṽ †

(d)jid
(i)
L ,

u
m(i)
R = Ũ †

(u)iju
(i)
R , d

m(i)
R = Ũ †

(d)ijd
(j)
R ,

Ṽ †
(u,d)aiy

u,d
ij U(u,d)jb = Y u,d

a δab.

(2.2.23)

Then, the masses of quarks can be given by

Mu,d
a =

v√
2
Y u,d
a . (2.2.24)

In the SM, the masses of quarks and leptons are proportional to the vacuum expectation value
v. As we will see later, the SM prediction is consistent with the results at the Large Hadron
Collider experiments.

2.3 CKM matrix and CP violation

We here give a review for the CP violation in the SM.
In the previous section, we have discussed the mass eigenstates for quarks. We here discuss the

weak-charged current part. The weak-charged current part for quarks is expressed by

LW± ∝ W+
µ u

(i)
L γµd

(i)
L + h.c.. (2.3.1)

When the flavor eigenstates in LW± are replaced by the mass eigenstates, we can obtain

LW± ∝ W+
µ u

(i)
L γµd

(i)
L + h.c. → W+

µ u
m(i)
L γµ(Ṽ(u)Ṽ

†
(d))ijd

m(j)
L + h.c.. (2.3.2)

In general, Ṽ(u)Ṽ
†
(d) is not a diagonal matrix. Therefore, the flavor violation can be induced via the

weak-charged current. The matrix V CKM ≡ Ṽ(u)Ṽ
†
(d) is often called as Cabibbo-Kobayashi-Maskawa

(CKM) matrix [129,130]. In the SM, there is a CP violation phase in the CKM matrix.
For the weak-neutral current, the flavor violation cannot appear because of the CKM matrix

is a unitary matrix. Thus, the flavor changing neutral current (FCNC) is suppressed in the SM.
This mechanism is often called as Glashow-Iliopoulous-Maiani (GIM) mechanism [131].
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2.4 Theoretical constraints on the Higgs sector

In this section, we discuss the theoretical constraints on the Higgs sector. These constraints are
used in our numerical analysis discussed after Chapter 3.

2.4.1 Perturbative unitarity

We here explain the concept of perturbative unitarity.
When the perturbative expansion is violated, the S-matrix cannot satisfy S†S = 1. Substituting

S = 1 + iT into the above condition, we can obtain [132]

T †T = −i(T − T †). (2.4.1)

We here consider the matrix element for two-particle scattering with the initial state |i⟩ = |p1p2⟩
and the final state |f⟩ = |q1q2⟩. Then, we can obtain the following condition for the scattering
amplitude

−i [M (i → f)−M∗ (f → i)] =
∑
n

(
n∏

i=1

∫
d3ki
(2π)3

1

2Ei

)
M∗ (f → {ki})M (i → {ki}) , (2.4.2)

where the scattering amplitude is defined by

⟨f |iT |i⟩ = (2π)4δ4(p1 + p2 − q1 − q2)iM(i → f). (2.4.3)

Considering the forward scattering (pi = qi), we can obtain

2ImM(p1, p2 → p1, p2) = 2Ecmpcmσtot(p1, p2 → anything), (2.4.4)

where Ecm and pcm is the total center-of-mass energy and the momentum in the center-of-mass
frame, respectively. σtot(p1, p2 → anything) is the total cross section for the process p1, p2 →
anything. In the case where Ecm is much larger than masses of any particles (Ecm ≃ 2|pcm|),
Eq. (2.4.4) implies

1

E2
cm

ImM(p1, p2 → anything) = σtot(p1, p2 → anything) ≥ σ(p1, p2 → p1, p2). (2.4.5)

The cross section for two-body scattering σ(p1, p2 → p1, p2) is expressed by

σ(p1, p2 → p1, p2) =
1

E2
cm

∫
d cos θ

M2(p1, p2 → p1, p2)

32π2
. (2.4.6)

When we use the partial wave expansion, the scattering amplitude for two-body scattering can be
expressed by

M = 16π
∞∑
J=0

(2J + 1)PJ(cos θ)aJ , (2.4.7)

where PJ(cos θ) is Legendre polynomials. Since we here consider the forward scattering (θ = 0),
the Legendre polynomials satisfy PJ(cos θ = 1)1. As a result, Eq. (2.4.5) implies

∞∑
J=0

(2J + 1)
[
Im(aJ)− |a2J |

]
≥ 0. (2.4.8)
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Therefore, we can obtain

|Re(aJ)| ≤ η, (2.4.9)

where η = 1 [133,134] or 1/2 [135].
Before the discovery of the Higgs boson with 125GeV, the upper bound on the Higgs mass was

obtained by using the condition (2.4.9) with η = 1 [133, 134]. This upper bound is often called
as Lee-Quigg-Thacker bound, which is about 1TeV. The authors of Ref. [133, 134] considered
two-body scatterings for channels (W+

L W−
L , ZLZL, hh, ZLh) in the SM, where WL and ZL are

longitudinal components of gauge bosons.
After the discover of the Higgs boson, the unitarity bound (2.4.9) can be used to determined

upper bounds on masses of new particles. For example, upper bounds for masses of additional
scalar bosons in the THDM was discussed [95]. The upper bounds cannot be obtained in the case
where the couplings of discovered Higgs boson to fermions and gauge bosons are SM-like.

2.4.2 Vacuum stability

We next discuss bounds from the vacuum stability.
In the SM, there are two parameters µ2 and λ as shown in Eq. (2.2.2). The parameter λ should

satisfy

λ > 0. (2.4.10)

This condition is required to guarantee that the Higgs potential has a global minimum only at the
VEV v ≃ 246GeV (we call this vacuum as the EW vacuum). If the condition Eq. (2.4.10) is not
satisfied, the EW vacuum is a false vacuum. It means that the vacuum in our Universe may be
changed.

If we consider the structure of the Higgs potential at large field values, renormalization scale or
field value dependence of the parameter λ should be taken into account. In the SM, the vacuum
stability at the next-to-next-to leading order is discussed [136]. According to the analysis in
Ref. [136], the Higgs potential in the SM may be a metastable. However, the energy scale µ, where
the vacuum stability is broken, strongly depends on the value of the top quark mass mt.

The vacuum stability bound in various extended Higgs models has been also discussed. For
instance, the vacuum stability in the THDM is discussed in Refs. [137–140]. In the following
analysis, we utilize the vacuum stability as a theoretical constraints on extended Higgs models.

2.5 Experimental constraints on the Higgs sector

In this section, we review experimental constraints on the Higgs sector.

2.5.1 Electroweak precise measurement

The oblique parameters are useful to parametrize new physics effects in electroweak observables.
The oblique parameters S T and U are defined by two point functions of gauge bosons. The two
point function ΠXY (q

2) are defined by the following equation [141]

igµνΠXY (q
2) + (qµqν term) ≡

∫
d4xe−iqx⟨Jµ

X(x)J
ν
Y (0)⟩, (2.5.1)
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where Jµ
X(x) (X = 1, 2, 3, Q) are currents coupling to the EW gauge bosons, which are defined by

LW+ + LW− + LZ + LA

=
e√
2sW

W+
µ Jµ

+ +
e√
2sW

W−
µ Jµ

− +
e

sW cW
Zµ(J

µ
3 − s2WJµ

Q) + eAµJ
µ
Q, (2.5.2)

with

Jµ
± = Jµ

1 ± iJµ
2 . (2.5.3)

We consider the Taylor expansion for ΠXY (q
2) in terms of the external momentum q2 as

ΠXY (q
2) = ΠXY (0) + q2Π′

XY (0) + O(q4). (2.5.4)

Since the O(q4) terms are proportional to the inverse of squared masses of new particle, these
terms can be negligible.

Then, the oblique parameters S, T and U are defined as [141]

αS ≡ 4e2
[
Π′

33(0)− Π′
3Q(0)

]
, (2.5.5)

αT ≡ e2

s2W c2Wm2
Z

[Π11(0)− Π33(0)] , (2.5.6)

αU ≡ 4e2 [Π′
11(0)− Π′

33(0)] . (2.5.7)

Considering S, T and U in terms of the two point functions of the gauge fields W µ
±, Z

µ and Aµ,
we can obtain [142]

α

4s2W c2W
S = −Re

[
ΠZZ (m2

Z)− ΠZZ(0)

m2
Z

− c2W − s2W
cW sW

ΠZγ (m
2
Z)

m2
Z

− Πγγ (m
2
Z)

m2
Z

]
, (2.5.8)

αT = −Re

[
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

]
, (2.5.9)

α

4s2W
U = −Re

[
ΠWW (m2

W )− ΠWW (0)

m2
W

− c2W
ΠZZ (m2

Z)− ΠZZ(0)

m2
Z

−2sW cW
ΠZγ (m

2
Z)

m2
Z

− s2W
Πγγ (m

2
Z)

m2
Z

]
. (2.5.10)

The parameter T is related to ρ parameter via

ρ− 1 = αT. (2.5.11)

The measured value of ρ parameter is [1]

ρ = 1.00038± 0.00020. (2.5.12)

The oblique parameter S, T and U have been investigated at LEP experiments. The experi-
mental constraints on these parameters are given by [143]

S = 0.04± 0.11, T = 0.09± 0.14 U = −0.02± 0.11. (2.5.13)

The SM predictions for these parameters are consistent with these experimental results at 95%
confidence level. Therefore, the oblique parameters can give strong constraints on new physics.
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predictions from the SM, as shown in Fig. 3 (left).
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Figure 3: A portrait of the Higgs boson couplings to fermions and vector bosons.
(left) Constraints on the Higgs boson coupling modifiers to fermions (κf) and heavy gauge
bosons (κV), in different data sets: discovery (red), the full LHC Run 1 (blue), and the data
presented here (black). The SM prediction corresponds to κV = κf = 1 (diamond marker).
(right) The measured coupling modifiers of the Higgs boson to fermions and heavy gauge
bosons, as functions of fermion or gauge boson mass, where υ is the vacuum expectation value
of the BEH field (cf. Methods section A.7). For gauge bosons, the square root of the coupling
modifier is plotted, to keep a linear proportionality to the mass, as predicted in the SM. The
p-value with respect to the SM prediction for the right plot is 37.5%.

A second fit is performed to extract the coupling modifiers κ for the heavy gauge bosons (κW ,
κZ) and the fermions probed in the present analyses (κt , κb , κτ , κµ ). Predictions for processes
that in the SM occur via loops of intermediate virtual particles, e.g. Higgs boson production via
ggH, or Higgs boson decay to a pair of gluons, photons, or Zγ, are computed in terms of the
κi above. The result is shown in Fig. 3 (right), as a function of the mass of the probed particles.
The remarkable agreement with the predictions of the BEH mechanism over three orders of
magnitude of mass is a powerful test of the validity of the underlying physics. Statistical and
systematic uncertainties contribute at the same level to all measurements, except for κµ , which
still is dominated by the statistical uncertainty.

In extensions of the SM with new particles, the loop-induced processes may receive additional
contributions. A more general fit for deviations in the Higgs boson couplings can then be
defined by introducing additional modifiers for the effective coupling of the Higgs boson to
gluons (κg), photons (κγ ), and Zγ (κZγ ). Results for this fit are shown in Fig. 4 (left). Coupling
modifiers are probed at a level of uncertainty of 10%, except for κb and κµ (≈20%), and κZγ

(≈40%), and all measured values are compatible with the SM expectations, to within 1.5 s.d.
These measurements correspond to an increase in precision by a factor of≈5 compared to what
was possible with the discovery data set. Figure 4 (right) and Extended Data Fig. B.8 (left)
illustrate the evolution of several κ measurements and their uncertainties using the data set:

• at the time of discovery (July 2012) [2, 3],

• for the full Run 1 (end of 2012) [35],

• for results presented in this paper, and

Figure 2.1: Higgs coupling constants for quarks, leptons and gauge bosons. The black dotted line
is the prediction in the SM. The results in the LHC are consistent with the SM prediction. This
figure is taken from Ref. [144].

　

2.5.2 Measurements of Higgs couplings

When we consider extended Higgs models, the Higgs boson couplings can deviate from the SM
prediction. Such deviations can be parameterized by the κ framework [145]. In the κ framework,
the couplings of the observed Higgs boson to gauge bosons and fermions are expressed by

ghV V = κV g
SM
hV V , ghff = κfg

SM
hff , (2.5.14)

where V and f indicate the gauge bosons (i.e., W± and Z) and the fermions (i.e., t and τ). gSMhV V

and gSMhff are the couplings of the discovered Higgs bosons to the gauge bosons and the fermions
in the SM, respectively. If the discovered Higgs boson is SM-like, the factor κV and κf satisfy
κV = κf = 1 at the tree level. We often call the case satisfying κV = κf = 1 as the alignment
limit.

In Fig. 2.1, measured Higgs boson couplings to fermions and gauge bosons are shown. This
figure is taken from Ref. [144]. The black dotted line is the SM prediction. The constraints on
κt, κZ , κW , κb and κµ in Fig. 2.1 are determined by the measurement of the branching ratio for the
Higgs boson decay. Since 2mt > mh, the constraint on κt is indirectly determined by measuring
the radiative correction in the decay h → γγ [144]. As we can see, the SM prediction is consistent
with the LHC result. This fact gives strong constraints on new physics. Especially, new physics
satisfying the conditions κV ≃ 1 and κf ≃ 1 can be an allowed candidate.

Although the measured Higgs couplings are consistent with the LHC results, several Higgs
couplings can deviate from the SM prediction. For instance, the triple Higgs boson coupling hhh
can deviate from the SM prediction. In the SM, hhh coupling can appear after the EWSB. The
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triple Higgs boson coupling can be approximately evaluated by using the effective potential.

∂3Veff(h)

∂h3

∣∣∣∣
h=0

= λSM
hhh

(
1− ∆λhhh

λSM
hhh

)
, ∆λhhh ≡ λnew

hhh − λSM
hhh, (2.5.15)

where λSM
hhh is the triple Higgs boson coupling in the SM, which is given by

λSM
hhh ≃ 3m2

h

v

(
1− m4

t

π2m2
hv

2

)
. (2.5.16)

Since the radiative correction from the top quark is leading in the SM, we only consider the effect
from the top quark. λnew

hhh is the triple Higgs boson coupling in extended Higgs models. If models
with extended Higgs sectors are considered, the triple Higgs boson coupling can deviate from the
SM prediction. The deviation is parameterized by ∆λhhh.

The current constraints on the hhh coupling are at 95 % confidence level

−1.4 <
∆λhhh

λSM
hhh

< 5.3 (ATLAS [146]), (2.5.17)

−2.24 <
∆λhhh

λSM
hhh

< 5.49 (CMS [144]). (2.5.18)

As we can see, the large deviation in hhh coupling can be allowed. Actually, such large deviation
can be realized by quantum corrections from heavy new particles, i.e., two Higgs doublet models [9].
As discussed later, the large deviation in the triple Higgs boson coupling is related to the first-order
EWPT [50,89].

For future collider experiments, hhh coupling can be measured precisely. At the HL-LHC, hhh
coupling can be measured at 50 % accuracy at the 68 % confidence level [70]. In addition, at future
lepton collider such as energy upgraded versions of the ILC with 500GeV and 1TeV center mass
energy, it is expected that hhh coupling can be measured by 27% and 10% accuracies at the 68 %
confidence level, respectively [71].





Chapter 3

Extended Higgs models

In this chapter, we give a brief review for extended Higgs models. We here focus on the two Higgs
doublet models, O(N) scalar singlet model and the inert doublet model as examples for renormal-
izable extended Higgs models. Then, we explain why we need effective field theory frameworks to
discuss phenomenology in model independent ways. Finally, we give a review for the first-order
electroweak phase transition.

3.1 Review of two Higgs doublet models

We here give a brief review for the two Higgs doublet models (THDMs). It has been discussed by
many theorists whether the THDMs with CP violation can explain the baryon asymmetry of the
Universe or not [51,86,147,148]. On the other hand, the CP violation is strongly constrained by the
electric dipole moment experiments [149,150]. In recently, it has been shown that the CP-violating
THDMs may be able to explain the BAU without contradicting the EDM experiments [86, 147,
151,152]. Therefore, investigating the dynamics of the EWPT in the THDMs is important.

In this section, we discuss the EWPT in the THDMs. Since the dynamics of the EWPT is
not much changed by CP violation in the THDMs [54, 153], we focus on the THDMs without the
additional CP phase for simplicity.

3.1.1 Definition of the two Higgs doublet model

We consider the CP-conserving THDMs with a softly broken Z2 symmetry Φ1 → Φ1, Φ2 → −Φ2.
The Higgs potential in the THDMs is given by [9]

V THDM
tree (Φ1,Φ2) = m2

1 |Φ1|2 +m2
2 |Φ2|2 −

(
m2

12Φ
†
1Φ2 + h.c.

)
+

λ1

2
|Φ1|4 +

λ2

2
|Φ2|4 + λ3 |Φ1|2 |Φ2|2 + λ4

∣∣∣Φ†
1Φ2

∣∣∣2 + [λ5

2

(
Φ†

1Φ2

)2
+ h.c.

]
,

(3.1.1)

where m2
12 and λ5 can be complex numbers. For simplicity, we assume that m2

12 and λ5 are real.
The doublet fields Φi (i = 1, 2) are parameterized as

Φi =

[
w+

i
1√
2
(vi + hi + zi)

]
(i = 1, 2), (3.1.2)

23
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Φ1 Φ2 QL LL uR dR eR

Type-I + − + + − − −
Type-II + − + + − + +
Type-X + − + + − − +
Type-Y + − + + − + −

Table 3.1: Z2 charge assignment in each type of the THDM.

where v1 and v2 are the vacuum expectation values (VEVs) of each doublet with v =
√

v21 + v22 ≃
246GeV. Also, we define the ratio of the VEVs as tan β = v2/v1. The mass parameters m2

1 and
m2

2 can be reduced by the tadpole conditions

∂V THDM
tree

∂h1

∣∣∣∣
min

=
∂V THDM

tree

∂h2

∣∣∣∣
min

= 0. (3.1.3)

In this model, there are five mass eigenstates; two CP -even states (h,H), a CP -odd state (A) and
charged state (H±). These mass eigenstates are obtained by introducing the mixing angle α and
β (

h1

h2

)
= R(α)

(
H
h

)
,

(
z1
z2

)
= R(β)

(
z
ζ

)
,

(
w+

1

w+
2

)
= R(β)

(
w+

H+

)
, (3.1.4)

with

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (3.1.5)

The fields z and w± are the Nambu-Goldstone bosons, whose degrees of freedom are absorbed by
the longitudinal components of Z and W± bosons. In this paper, we identify the field h as the
discovered Higgs boson, whose mass is 125GeV.

The squared masses of the charged fields H± and CP -odd field A are given by

m2
H± = M2 − λ4 + λ5

2
v2, (3.1.6)

m2
A = M2 − λ5v

2, (3.1.7)

where M2 is defined by M2 = m2
12/(sin β cos β), which plays an important role to realize the first

order EW phase transition at the early Universe. The masses of the CP -even field H and h are
given by

m2
H = M2

11 cos
2(β − α) +M2

22 sin
2(β − α)−M2

12 sin 2(β − α), (3.1.8)

m2
h = M2

11 sin
2(β − α) +M2

22 cos
2(β − α) +M2

12 sin 2(β − α), (3.1.9)

with

M2
11 =

(
λ1 cos

4 β + λ2 sin
4 β
)
v2 +

1

2
λ345v

2 sin2 2β, (3.1.10)

M2
22 = M2 +

1

4
(λ1 + λ2 − 2λ345) v

2 sin2 2β, (3.1.11)

M2
12 = −1

2

(
λ1 cos

2 β − λ2 sin
2 β − λ345 cos

2 2β
)
v2 sin 2β, (3.1.12)

tan 2(β − α) = − 2M2
12

M2
11 −M2

22

, (3.1.13)
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ζu ζd ζe

Type-I + cot β +cot β +cot β
Type-II + cot β − tan β − tan β
Type-X + cot β +cot β − tan β
Type-Y + cot β − tan β +cot β

Table 3.2: Mixing factors of Yukawa interactions in the THDM in each type

where λ345 ≡ λ3 + λ4 + λ5. The free parameters in this model are given by

mH , mA, mH± , tan β, M 2, sin(β − α). (3.1.14)

In this model, the coupling constants of the discovered Higgs boson with the gauge bosons and
fermions can deviate from the SM prediction because of the scalar mixing between the CP-even
scalar fields h and H. The deviation in the coupling of the Higgs to the gauge bosons at the tree
level is expressed by

gTHDM
hV V

gSMhV V

= κV = sin(β − α), (3.1.15)

where gTHDM
hV V is the coupling of the Higgs boson to the gauge bosons in the THDM. For the

couplings of the Higgs to fermions, the deviation in the couplings are given by

gTHDM
hff

gSMhff
= κf = sin(β − α) + ζf cos(β − α), (3.1.16)

where gTHDM
hV V is the coupling of the Higgs boson to the fermion f in the THDM. The expression

of ζf in each type of the THDMs is summarized in Tab. 3.2.

3.1.2 Triple Higgs boson coupling in the two Higgs doublet models

The deviation in the triple Higgs boson coupling in the THDMs at the one-loop level is approxi-
mately given by [9]

∆λTHDM
hhh

λSM
hhh

≃
∑

Φ=H,A,H±

nΦm
4
Φ

12π2m2
hv

2

(
1− M2

m2
Φ

)3

, (3.1.17)

where nΦ and mΦ are the degree of freedoms and the masses of the additional Higgs bosons,
respectively. In the parameter region with sin(β − α) ≃ 1, the masses mΦ (Φ = H,A,H±) can be
expressed by

m2
Φ ≃ M2 + λΦv

2 (Φ = H,A,H±), (3.1.18)

where λΦ is the linear combination of λi in the Higgs potential given in Eq. (3.1.1). Then, we can
consider two cases; (1) λΦv

2 ≪ M2 and (2) λΦv
2 ≳ M2. The deviation in the triple Higgs boson

coupling can be expressed in each case as follows

∆λTHDM
hhh

λSM
hhh

≃
∑

Φ=H,A,H±

nΦm
4
Φ

12π2m2
hv

2

(
1− M2

m2
Φ

)3

≃


∑
Φ

nΦλ
3
Φv

4

12π2m2
hm

2
Φ

(λΦv
2 ≪ M2)

∑
Φ

nΦm
4
Φ

12π2m2
hv

2
(λΦv

2 ≳ M2)

. (3.1.19)
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In the case with λΦv
2 ≪ M2, the deviation in the hhh coupling is proportional to the inverse of

the square masses m2
Φ. Hence, new physics effects on the hhh coupling by the additional Higgs

bosons are getting small as the masses of the additional Higgs bosons in the THDMs are heavy.
Such behavior is often called as the decoupling behavior. On the other hand, in the case with
λΦv

2 ≳ M2, the deviation in the hhh coupling is proportional to the fourth power of m2
Φ. It means

that the heavy additional Higgs bosons can give large quantum corrections in the hhh coupling. We
often call such large effects in Higgs couplings as the non-decoupling effects [9]. In order to realize
the large deviation in the hhh coupling in the THDMs, the non-decoupling effects are important.

The hhh coupling in extended Higgs models is also evaluated not only the one-loop level but
also the two-loop level by using the effective potential approximation [20, 21, 154, 155]. The two-
loop corrections by new scalar bosons, which are about 20% of the one-loop corrections, enhance
the deviation in the hhh coupling [20, 21].

3.1.3 Non-decoupling effects in Higgs boson couplings

Not only the hhh coupling but also other Higgs couplings can also deviate from the SM prediction
via the quantum corrections by heavy additional Higgs bosons in the THDMs. For instance, the
hZZ coupling in the SM at the one-loop level is given by [9]

gSMhZZ =
2m2

Z

v

(
1− 5m2

t

32π2v2

)
. (3.1.20)

On the other hand, the deviation in the hZZ coupling at the one-loop level in the THDMs with
sin(β − α) = 1 is given by

κ1ℓ
Z ≃

∑
Φ

nΦm
2
Φ

64π2v2
−
∑
Φ

nΦm
2
Φ

96π2v2

(
1− M2

m2
Φ

)2

. (3.1.21)

In the decoupling situation (mΦ ∼ M), the second term in Eq. (3.1.21) vanishes. Therefore, the
radiative corrections to the hZZ coupling are small in the decoupling region. On the contrary, the
loop corrections are maximal in the non-decoupling region (M ≃ 0). This behavior is the same
as the deviation in the hhh coupling. As a result, the hZZ coupling can deviate from the SM
prediction about O(1)%.

The hγγ coupling can also deviate from the SM prediction via the heavy charged Higgs boson
H± in the THDMs. The value of κ1ℓ

γ in the THDM is given by [156]

(κ1ℓ
γ )

2 ≃
∣∣∣∣1 + ATHDM

ASM

∣∣∣∣2 , (3.1.22)

where

ASM = κWA1(τW ) +
4

3
κtA1/2(τt), (3.1.23)

ATHDM =
v

m2
H±

ghH+H−A0(τH±). (3.1.24)

In the alignment limit (κW = κt = 1), the value of ASM is given by ASM = −6.498. The parameter
τi is defined as τi = m2

h/(4m
2
i ) for the particle i. The function A0(τ), A1/2(τ) and A1(τ) are defined
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by

A0(τ) = −[τ − f(τ)]τ−2, (3.1.25)

A1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2, (3.1.26)

A1(τ) = −[2τ 2 + 3τ + 3(2τ − 1)− f(τ)]τ−2, (3.1.27)

with

f(τ) ≃


arcsin2 √τ (τ ≤ 1)

−
1

4

[
log

1 +
√
1− τ−1

1−
√
1− τ−1

− iπ

]
(τ > 1).

. (3.1.28)

ghH+H− in Eq. (3.1.3) corresponds to the coupling in the Lagrangian of the THDMs LTHDM ∋
ghH+H−hH

+H−. In the case with sin(β − α) = 1, ghH+H− is given by [11]

ghH+H− = −m2
h

v
−

2m2
H±

v

(
1− M2

m2
H±

)
. (3.1.29)

This result means that the deviation in the hγγ coupling is a constant in the non-decoupling limit
(M = 0). In the decoupling region (mH± ≃ M), the deviation in the hγγ coupling is proportional
to m−2

H± . Therefore, the deviation is small in the large mH± region in the decoupling case. The
hγγ coupling can deviate from the SM prediction about O(1)%.

3.1.4 Experimental constraints on the two Higgs doublet models

The THDMs have been thoroughly investigated by collider experiments. The THDMs with mH± <
78GeV are ruled out by the LEP experiments [157]. In addition, the lower bounds on the masse of
the additional Higgs bosons are determined by the measurements of A → ττ and A → tt processes
at the LHC experiments. For instance, in the type-I THDM with tan β = 1, the mass region
mΦ < 600GeV (Φ = H, A, H±) is excluded. In the type-II THDM with tan β < 2 (tan β > 10),
the mass region mΦ < 350GeV (mΦ < 400GeV) is ruled out.

The mass mH± are strongly constrained by flavor experiments [143]. In the type-I THDM with
tan β ≤ 1.5, mH± < 300GeV is constrained by the Bs → µµ process measurement. In the type-II
THDM, the region mΦ < 590GeV is ruled out independently of tan β by the B → Xsγ process.

If sin(β − α) ̸= 1, the Higgs couplings to gauge bosons and fermions can deviate from those
in the SM. As shown in Fig. 2.1, κV and κf are strongly constrained by the LHC experiments.
Therefore, the results in the LHC give constraints on the scalar mixing angle sin(β − α). In the
type-I THDM with tan β = 1 (tan β = 2), | cos(β − α)| > 0.18 (0.25) is excluded. For the type-II
THDM with tan β = 1 (tan β = 2), | cos(β−α)| > 0.09 (0.11) is ruled out. These results indicates
that the Higgs couplings to gauge bosons and fermions should be the SM-like.

Another important parameters in discussing constraints on the Higgs sector is the oblique
parameters S, T and U [141]. The two-point function of W and Z bosons in the THDMs are
calculated in Refs. [158–160]. According to these theoretical calculations and the measurement of
ρ parameter [161], the following conditions should be required approximately

mH± ≃ mA or mH± ≃ mH with sin(β − α) ≃ 1. (3.1.30)

These conditions can be satisfied when the Higgs potential possesses a custodial symmetry [162–
164].
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3.1.5 Theoretical constraints on the two Higgs doublet models

We here discuss theoretical constraints on the THDM. The unitarity bound is a useful tool to
determine constraints on the THDM. The elastic scatterings of the following channels have been
considered [9];

W+
L W−

L , W+
L H−, H+W−

L , H+H−, ZLZL, ZLA,

AA, ZLh, ZLH, Ah, AH, hh, hH, HH.
(3.1.31)

As shown the above, the longitudinal component of the gauge bosons is important when we discuss
the unitarity bound. According to the equivalent theorem [165,166], the elastic scattering process
including longitudinal component of the gauge bosons can be replaced by the Nambu-Goldstone
boson at the high energy. Then, 14 processes shown in (3.1.31) can be expressed as [95]

w+w−, w+G−, G+w−, G+G−, zz, zζ,

ζζ, zh, zH, ζh, ζH, hh, hH, HH.
(3.1.32)

The eigenvalues of S matrix for the above processes are given by [95]

a± =
1

16π

[
3

2
(λ1 + λ2)±

√
9

4
(λ1 − λ2)2 + (2λ3 + λ4)2

]
, (3.1.33)

b± =
1

16π

[
1

2
(λ1 + λ2)±

√
1

4
(λ1 − λ2)2 + λ2

4

]
, (3.1.34)

c± = d± =
1

16π

[
1

2
(λ1 + λ2)±

√
1

4
(λ1 − λ2)2 + λ2

5

]
, (3.1.35)

e1 =
1

16π
(λ3 + 2λ4 − 3λ5) , (3.1.36)

e2 =
1

16π
(λ3 − λ5) , (3.1.37)

f+ =
1

16π
(λ3 + 2λ4 + 3λ5) , (3.1.38)

f− =
1

16π
(λ3 + λ5) , (3.1.39)

f1 = f2 =
1

16π
(λ3 + λ4) . (3.1.40)

The unitarity bound is given by

|a±|, |b±|, |c±|, |d±|, |e1,2|, |f±|, |f1,2| < η, (3.1.41)

where we take η = 1/2 [135]. In the following, we use the unitarity bound given in Eq. (3.1.41) as
a theoretical constraint.

Another theoretical constraint is the vacuum stability bound. The vacuum stability bound at
the tree level in the THDM is given by [137,140,167]

λ1 > 0, λ2 > 0,
√

λ1λ2 + λ3 +min(0, λ4 + λ5, λ4 − λ5) > 0. (3.1.42)

If this condition is not satisfied, the EW vacuum (
√

v21 + v22 ≃ 246GeV) is not a global minimum.
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3.2 Review of O(N) scalar singlet model

We here consider the model with additional N singlet real scalar fields Si, which have a global
O(N) symmetry. We call this model as the O(N) scalar singlet model in the following. The Higgs
potential in this model is given by [77,168]

VO(N)(Φ, S⃗) = −µ2Φ†Φ + λ(Φ†Φ)2 +
µ2
S

2
|S⃗|2 + λS

4!
|S⃗|4 + λΦS|S⃗|2Φ†Φ, (3.2.1)

where (S⃗)T = (S1, S2, · · ·SN) is a vector under the O(N) symmetry. We here assume µ2
S ≥ 0 to

avoid that the additional singlet scalar fields get the vacuum expectation values ⟨Si⟩ = 0.
The EWPT in the O(N) scalar singlet model has been thoroughly investigated [68,69,77,168,

169]. Since the additional singlet scalar fields stabilize because of the symmetry, these can be a
candidate of dark matter [77]. In the O(N) scalar singlet model with N = 1, the phenomenology
at future hadron collider is discussed by Curtin, Meade and Yu [169]. The authors showed that the
direct production of the additional singlet field is difficult even at future 100TeV hadron colliders
since the singlet field only interact with the SM Higgs. On the other hand, it was also shown that
the indirect test via the measurement of the triple Higgs boson coupling can be useful to explore
the scalar singlet field.

For theoretical constraints, the unitarity bound is expressed by [69]

1

32π

[
3λ+ (N + 2)λS +

√
{3λ− (N + 2)λS}2 + 4Nλ2

ΦS

]
<

1

2
. (3.2.2)

In our analysis, we use this bound as a theoretical constraint in the O(N) scalar singlet model.

3.3 Requirement of the effective field theory describing

new physics

According to the current LHC experiment results, the SM is a successful theory. On the other
hand, the SM cannot explain several cosmological observations such as the baryon asymmetry of
the Universe. Various models with extended Higgs sectors have been considered to explain these
observations. These extended Higgs models are strongly constrained by collider experiments. In
particular, the typical mass scale of new particles should generally be larger than the EW scale.
The effects on low energy observations from new particles can be well described by using the
framework of the effective field theory (EFT). In this section, we discuss the implication of the
EFT. Then, two famous EFT frameworks – the Standard Model EFT (SMEFT) and the Higgs
EFT (HEFT) – are reviewed.

3.3.1 Review of the standard model effective field theory

The new physics effects on low energy observations can be studied by introducing higher mass
dimensional operators to the SM. This systematic framework is the SMEFT. These higher mass
dimensional operators are originated from the effects of integrated out heavy new particles. The
contributions from heavy new particles are getting small when we take the limit where the masses
of new particles are sufficiently heavier than the EW scale. This fact is based on the decoupling
theorem [170].
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The SMEFT is a good EFT framework which effectively describes decoupling new physics
models. In the SMEFT, the effects from new physics are expressed by polynomials of the fields
in the SM, which transform linearly under the EW symmetry. For the dimension-six operators in
the SMEFT with one generation of fermions, there are 59 independent operators which conserve
the baryon number [171]. In the case with three generations of fermions, there are 2499 operators
in the SMEFT [172]. A systematic method to relate the dimension-six operators with specific
renormalizable models is established (see Ref. [173]).

Constraints from the higher dimensional operators including the fermion and the gauge fields
in the SMEFT has been discussed thoroughly [174]. To obtain constraints on operators involving
only the Higgs field (i.e., |Φ|6/Λ2), it is important to measure the Higgs self-coupling constant such
as the triple Higgs boson coupling [175]. As mentioned in Chapter 2, the current constraint of the
triple Higgs boson coupling is not stringent. Therefore, the operators involving only the Higgs field
may give a large deviation in Higgs couplings from the SM prediction. In addition, such operators
play an important role to realize the strongly first-order EWPT. The dynamics of the EWPT is
also discussed in the literatures [76, 88–92,176].

3.3.2 Review of the Higgs effective field theory

The SMEFT is used as a useful EFT framework in order to discuss model independent phe-
nomenology in extended Higgs models. On the other hand, the Higgs EFT is also discussed as a
good candidate for new EFT framework. In the Higgs EFT, new physics effects are expressed by
polynomials of the fields in the SM, which transform non-linearly under the EW symmetry. We
here compare the part of the SMEFT that only includes the Higgs field and the Nambu-Goldstone
bosons with the same part in the Higgs EFT. In the SMEFT, the part depending only the Higgs
field and the Nambu-Goldstone bosons is expressed by [94]

LSMEFT ∋ A(|Φ|2) |∂µΦ|2 +B(|Φ|2)
(
∂µ|Φ|2

)2 − V (Φ) + O(∂4), (3.3.1)

where Φ is the Higgs doublet field in the SM. The form factors A(|Φ|2) and B(|Φ|2) can parameterize
new physics effects. In the SM, the form factors take A(|Φ|2) = 1 and B(|Φ|2) = 0. The function
V (Φ) is the Higgs potential. The important property of the SMEFT is that A(|Φ|2), B(|Φ|2) and
V (Φ) are analytic at the origin |Φ|2 = 0. On the other hand, the same part in the Higgs EFT is
expressed by

LHEFT ∋ 1

2
K(h)∂µh∂

µh+
v2

2
F (h)Tr [∂µU∂µU ] + V (h), (3.3.2)

where the matrix U is defined in terms of the Nambu-Goldstone bosons π⃗ as

U = exp

[
i
σ⃗ · π⃗
v

]
. (3.3.3)

The form factors K(h) and F (h) include new physics effects. The function V (h) is the Higgs
potential. In the SM, the form factors satisfy K(h) = 1 and F (h) = 1. In the Higgs EFT, K(h),
F (h) and V (h) need not be analytic except for h = 0. It means that the Higgs EFT can be convert
into the SMEFT. However, the opposite is not always possible. This fact is shown in Ref. [177].

As shown in subsection 3.1.2, heavy new particles can give large quantum corrections in Higgs
couplings such as hhh coupling. The non-decoupling effects in hhh coupling come from the radiative
correction to the Higgs potential, which is so-called the Coleman-Weinberg potential [178]. As well
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known, the Coleman-Weinberg potential includes the logarithmic functions. Therefore, the Higgs
EFT is a proper EFT framework when we consider new physics with the non-decoupling effects.
Conversely, the SMEFT may not be a good framework when we discuss new physics with the non-
decoupling effects. Actually, it has been shown that the non-decoupling effects in hhh coupling
cannot be described by the SMEFT [93,94].

Considering extensions of the Higgs EFT, we can obtain a new EFT which is able to describe
new physics with the non-decoupling effects. In recently, a candidate for the new EFT has been
proposed in Ref. [179]. We explain the new EFT in Chapter 5.

3.4 Dynamics of the first-order phase transition

In this section, we give a review for the details of the first-order phase transition. We first explain
the scenario of EW baryogenesis where the first-order phase transition plays an important role. In
addition, we explain the sphaleron process which is the baryon number violating process. Then,
we describe how to determine the vacuum bubble nucleation rate. The sphaleron decoupling
condition, which is a criterion to realize the EW baryogenesis, is also discussed. Finally, we define
parameters characterizing the first-order phase transition. Gravitational waves from the first-order
phase transition can be parameterized by these parameters.

3.4.1 Importance of the first-order EW phase transition

Dynamics of the EWPT is still unknown. If the EWPT is a first-order, the BAU may be able to
be solved via the mechanism of EWBG [43].

The ratio of the baryon number to the photon number is measured by the cosmic microwave
background (CMB) and light element abundances related to the big bang nucleosynthesis (BBN)
at 95% confidence level [1]:

nb

nγ

≃ (6.5− 5.8)× 10−10 (BBN), (3.4.1)

nb

nγ

≃ (6.12± 0.04)× 10−10 (CMB). (3.4.2)

The observation results cannot be explained in the standard cosmology model. We here consider
the case that the Universe satisfies nb/nγ = 0 as the initial condition. At the early Universe with
T < 1GeV, number densities of nucleons nb and anti-nucleons nb are given by

nb

nγ

≃ nb

nγ

≃
(mp

T

)3/2
exp

[
−mp

T

]
, (3.4.3)

wheremp is the mass of protons. When T < 20MeV, the nucleons and anti-nucleons are decoupled.
Then, nb and nb take the following values [180]

nb

nγ

≃ nb

nγ

≃ 10−18. (3.4.4)

The above number is smaller than the observed baryon number (3.4.2). This fact implies that
the BAU cannot be explained within the framework of the standard cosmology. Therefore, a
mechanism to produce the baryon asymmetry is required.
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In order to generate the baryon asymmetry from the baryon symmetric Universe, a mecha-
nism satisfying Sakharov’s condition is required [42]. Sakharov’s condition is composed of three
conditions [42];

1. Baryon number violation

2. C and CP violation

3. Departure from the thermal equilibrium

The necessity of the first condition is trivial to explain the baryon asymmetry from the baryon
symmetric Universe. In order to explain why the second condition is required, we consider a
process X + A → B + C, which violates baryon numbers n. If the C symmetry is respected,
the C-conjugated process XC + AC → BC + CC occurs with the same possibility. The process
XC +AC → BC +CC violates the baryon number −n. Thus, the net baryon numbers disappears.
The necessity of the CP violation is also shown by the same argument as for the C symmetry.
Therefore, the C and CP violations are needed to generate the baryon asymmetry. If the system
is in thermal equilibrium, the baryon number density and the anti-baryon number density have
the same density distribution. Then, the net baryon number is vanished by the pair annihilation
of baryons and anti-baryons. It means that the third condition is also required to produce the
baryon asymmetry.

In the scenario of EWBG, Sakharov’s condition can be satisfied by the following mecha-
nisms [43];

1. Sphaleron process

2. C and CP violation in extensions of Higgs sectors

3. Strongly first-order EWPT

The sphaleron process is a vacuum transition process at finite temperatures. This process violates
the baryon and lepton numbers via the chiral anomaly [181, 182]. In the EW theory, the sum of
baryon and lepton numbers B + L is not conserved. The current for B + L is expressed by using
the field strength for the SU(2)L gauge field W a

µν and U(1)Y gauge field Bµν as

∂µJ
µ
B+L =

nf

32π

(
g2ϵµνρσW a

µνW
a
ρσ + g′2BµνBρσ

)
, (3.4.5)

where g and g′ are the gauge couplings for SU(2)L and U(1)Y , respectively. Since the U(1)Y part is
not important, we neglect the part in the following. The constant nf is the number of generations.
Using Eq. (3.4.5), we can obtain

∆(B + L) = Nf [NCS(t = +∞)−NCS(t = −∞)] , (3.4.6)

where NCS(t) is the Chern-Simons number, which is defined as

NCS(t) =
g2

16π2

∫
t

d3xϵijk

(
W a

i ∂jW
a
k +

1

3
ϵabcW a

i W
b
jW

c
k

)
. (3.4.7)

The field W a
i is the SU(2)L gauge field. Degenerate classical vacua are distinguished by the integer

NCS. These vacua are often called as topologically distinct vacua. Eq. (3.4.6) indicates that B+L
can be changed when the vacuum transition process occurs.
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Since there are energy barriers between the topological distinct vacua, it is difficult to occur the
vacuum transition process frequently. The height of the energy barrier is characterized by energies
of sphalerons. The sphalerons are non-perturbative solutions in field equations for the EW gauge
and Higgs fields [44, 45]. At the zero temperature, the vacuum transition can be realized via the
quantum tunneling [182]. The tunneling rate Γtunneling is given by

Γtunneling ∝ exp

[
−8π2

g2

]
. (3.4.8)

Therefore, such vacuum transition hardly occurs.
At finite temperatures, thermal fluctuations can induce the vacuum transition via the sphalerons.

These processes are called as the sphaleron process. The sphaleron transition rate at the temper-
ature T in the broken phase (v(T ) ̸= 0) is given by [183]

Γbr
sph(T ) ≃

[
2Ntr(T )Nrot(T )Vrot

ω−(T )

gv(T )

]
T 4
(αW

4π

)4(4πv(T )

gT

)7

κ(T )e−Esph(T )/T , (3.4.9)

where Ntr and Nrot are the normalization factors for the zero mode related to the translation and
the rotation, respectively. The factor Vrot is the volume of the rotation group, which is given by
Vrot = 8π2. The factor ω− is the frequency for the negative mode around sphalerons. αW is defined
by αW = α/ sin2 θW . The factor κ is the fluctuation determinant around sphalerons. Esph(T ) is an
energy of sphalerons at finite temperatures, which can be expressed by

Esph(T ) =
4πv(T )

g
E(T ). (3.4.10)

The factor E depends on details of models. Eq. (3.4.10) indicates that the Boltzmann suppression
factor in the sphaleron transition rate (3.4.9) disappears at the symmetric phase (v(T ) = 0).
Therefore, the sphaleron process rapidly occurs in the symmetric phase. It is expected that the
sphaleron process plays an important role to explain the BAU.

Since the sphaleron energy characterizes the sphaleron transition rate, determination of the
sphaleron energy is important. In general, the sphaleron energy depends on the details of ex-
tended Higgs models. The sphaleron solutions in extended Higgs models have been calculated in
the literatures [49, 59, 62, 83, 85, 184–191]. The sphaleron energy at the zero temperature can be
determined indirectly via the measurement of the hhh coupling in several extended Higgs mod-
els [190].

3.4.2 Bubble nucleation at the early Universe

The first-order phase transition at the early Universe proceeds via the nucleation and expansion
of vacuum bubbles. The nucleation rate of the vacuum bubbles Γ(T ) is given by [192]

Γ(T ) ≃ T 4

(
S3(T )

2πT

)3/2

exp

[
−S3(T )

T

]
, (3.4.11)

where S3(T ) is three-dimensional action for bounce solutions, which is defined by

S3(T ) =

∫
d3x

[
1

2

(
∇⃗ϕb

)2
+ Veff (ϕb, T )

]
. (3.4.12)
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The field ϕb is the bounce solution, which is determined by solving the following field equation
with the boundary conditions

d2ϕb

dr2
+

2

r

dϕb

dr
− ∂Veff

∂ϕb

= 0,
dϕb

dr

∣∣∣∣
r=0

= 0, ϕb|r=∞ = 0. (3.4.13)

Calculating the bounce solutions in extended Higgs models, we utilize the public code CosmoTran-
sitions [193]. In order to complete the first-order phase transition by today, at least one vacuum
bubble must be nucleated in the horizon. A temperature at which one vacuum bubble is nucleated
in the horizon is called as the nucleation temperature Tn, which is defined by

Γ(T )

H4(T )

∣∣∣∣
T=Tn

= 1, (3.4.14)

where H(T ) is the Hubble constant, which is given by

H(T ) ≃ 1.66

√
g∗(T )T

2

Mpℓ

. (3.4.15)

The factor g∗(T ) is the effective degrees of freedom at temperatures T . The factor Mpℓ is the
Planck mass, which is given by Mpℓ ≃ 1.22× 1019 GeV.

The condition Eq. (3.4.14) means that a single vacuum bubble can be nucleated in a single
Hubble volume at the nucleation temperature. If the condition Γ(T )/H4(T ) ≥ 1 is not satisfied
at any temperatures, the phase transition cannot be completed by today. It means that we may
observe several areas in our Universe where the vacuum expectation value of the Higgs field is zero.
Since we have not observe such regions, the phase transition should be completed by today.

3.4.3 Sphaleron decoupling condition

The sphaleron process plays an important role to produce the baryon asymmetry, i.e., EW baryo-
genesis [43] and leptogenesis [194]. In this section, we focus on the scenario of EW baryogenesis.

In the EW baryogenesis, the chiral asymmetry can be produced via the dynamics between
the expanding vacuum bubble walls and the plasma. The produced chiral asymmetry can be
transformed into the baryon number via the sphaleron process. Then, the generated baryon number
is injected into the insider of the vacuum bubbles. If the sphaleron process can be decoupled inside
the vacuum bubbles, the washout of the baryon number can be avoided. As a result, the observed
baryon asymmetry can be produced.

As we mentioned, the sphaleron process should be decoupling after the phase transition in
order to success the scenario of EWBG. The condition avoiding the washout of produced baryon
number is given by [43,52, 183]

− dNB

NBdt
≃ 13

2
Nf

[
2Ntr(T )Nrot(T )Vrot

ω−(T )

gv(T )

]
T
(αW

4π

)4(4πv(T )

gT

)7

κ(T )e−Esph(T )/T < H(T ).

(3.4.16)

Transforming the above inequality, we can obtain

Esph(T )

T
> 38.849− 1

2
ln

g∗(T )

106.75
+ ln κ(T ) + ln

[
2Ntr(T )Nrot(T )

ω−(T )

gv(T )

]
+ 7 ln

(
v(T )

T

)
− ln

(
T

100GeV

)
. (3.4.17)
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In general, the factors g∗(T ), Ntr(T ), Nrot(T ) and ω−(T ) depend on temperatures and details of
extended Higgs models. For instance, the temperature and model dependences of the factors
Ntr(T ) and Nrot(T ) have been evaluated in the minimal supersymmetric standard model [52].
However, effects on the sphaleron decoupling condition from these dependences are logarithmic.
Hence, we can expect that the dependences are negligible. In this thesis, we use the values of
g∗(T ), Ntr(T ), Nrot(T ) and ω−(T ) in the SM at the zero temperature. We take Ntr(T = 0) ≃ 7.6
and Nrot(T = 0) ≃ 11.2 [195]. In addition, we take ω−(T )

2 ≃ 0.65 g2v(T )2 [195] and κ ≃ 0.12 [196].
Then, the condition (3.4.17) is expressed by

v(T )

T
>

g

4πE(T )

[
41.65 + 7 ln

v(T )

T
− ln

T

100GeV

]
≡ ζsph(T ). (3.4.18)

In the following, this condition is used when we discuss the feasibility of EWBG. The similar
condition has been calculated by several theorists [52, 60, 188]. In the SM with a scalar singlet
field, the value of ζsph(T ) is about 1.2 [60]. The value of ζsph(T ) is often taken as the unity as the
approximate sphaleron decoupling condition.

3.4.4 Gravitational waves from the first-order phase transition

If the first-order phase transition occurs at the early Universe, the vacuum bubbles are produced.
The vacuum bubbles can collide with each other as these expands. Then, characteristic GWs can be
predicted. The GWs from the first-order phase transition can be characterized by four quantities;
latent heat of the phase transition, duration of the phase transition, nucleation temperature and
vacuum bubble wall velocity. α is the normalized released latent heat by radiative energy density,
which is defined by

α ≡ ϵ(Tn)

ρrad(Tn)
, (3.4.19)

where ρrad(T ) = (π2/30)g∗T
4, and ϵ(T ) is given by

ϵ(T ) = ∆Veff − T
∂∆Veff

∂T
, ∆Veff = Veff(φ−(T ), T )− Veff(φ+(T ), T ), (3.4.20)

where φ+ and φ− denote the true and false vacua, respectively. The parameter β/H corresponds
to the inverse of the duration of phase transition, which is defined by

β

H
= β̃ ≡ Tn

d

dT

(
S3

T

)∣∣∣∣
T=Tn

, (3.4.21)

where S3 is the three-dimensional Euclidian action.
If the first-order phase transition occurs in the early Universe, GWs can be produced due to the

vacuum bubble dynamics. The GWs from the first-order EWPT have three sources: collisions of
the vacuum bubbles, compressional waves (sound waves) and magnetohydrodynamics turbulence.
The GW amplitude from the collisions of the vacuum bubbles, which is obtained by using the
envelope approximation [197], is given by

Ωenv(f)h
2 = 1.67× 10−5

(
H

β

)2(
κφα

1 + α

)2(
100

g∗

)1/3(
0.11 v3w

0.42 + v2w

)(
3.8 (f/fenv)

2.8

1 + 2.8(f/fenv)3.8

)7/2

.

(3.4.22)
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where vw is the wall velocity. In this thesis, we take the value of vw as a free parameter. The factor
κφ is the efficiency factor, which is given by

κφ ≃ 1

1 + 0.715α

(
0.715α +

4

27

√
3α

2

)
with vw = 1. (3.4.23)

The peak frequency fenv is given by

fenv = 1.65× 10−5 Hz

(
0.62

1.8− 0.1vw + v2w

)(
β

H

)(
Tn

100GeV

)( g∗
100

)1/6
. (3.4.24)

The amplitude of the GWs from sound wave is given by [198]

Ωsw(f)h
2 = 2.65× 10−6vw

(
H

β

)(
κvα

1 + α

)2(
100

g∗

)1/3

(f/fsw)
3

(
7

4 + 3(f/fsw)2

)7/2

, (3.4.25)

The factor κv is the fraction of the released latent heat contributing to sound wave formation,
which is given by [199]

κv(vw, α) ≃



c11/5s κAκB

(c11/5s − v11/5w )κB + vwc
6/5
s κA

(vw < cs),

κB + (vw − cs)δκ+
(vw − cs)

3

(vJ − cs)
3 [κC − κB − (vJ − cs)δκ] (cs < vw < vJ),

(vJ − 1)3v
5/2
J v−5/2

w κCκD

[(vJ − 1)3 − (vw − 1)3]v
5/2
J κC + (vw − 1)3κD

(vJ < vw),

(3.4.26)

where

κA ≃ v6/5w

6.9α

1.36− 0.037
√
α + α

, κB ≃ α2/5

0.017 + (0.997 + α)2/5
,

κC ≃
√
α

0.135 +
√
0.98 + α

, κD ≃ α

0.73 + 0.083
√
α + α

,

(3.4.27)

cs = 1/
√
3 ≃ 0.577, (3.4.28)

vJ =

√
2α/3 + α2 + 1/

√
3

1 + α
, (3.4.29)

δκ ≃ −0.9 ln

√
α

1 +
√
α
. (3.4.30)

The peak frequency fsw is given by [198]

fsw = 1.9× 10−2mHz
1

vw

(
β

H

)(
Tn

100GeV

)( g∗
100

)1/6
. (3.4.31)
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The leading contribution among the three sources is the GWs from sound waves (for instance, see
Ref. [69]).

The GW amplitude from magnetohydrodynamics turbulence is given by [200,201]

Ωturb(f)h
2 = 3.35× 10−4

(
H

β

)(
κturb α

1 + α

) 3
2
(
100

g∗

)1/3

vw
(f/fturb)

3

(1 + (f/fturb))
11/3 (1 + 8πf/h)

.

(3.4.32)

The efficiency factor κturb is given by κturb = ϵκsw with ϵ ≃ 0.05%. The peak frequency fturb is
given by

fturb = 2.7× 10−5 Hz v−1
w

(
β

H

)(
Tn

100GeV

)( g∗
100

)1/6
. (3.4.33)

To examine parameter regions where GWs can be detected at LISA and DECIGO, we use the
signal-to-noise ratio for the observation of the GW spectrum, which is discussed in Ref. [202]. The
criterion is such that the signal-to-noise ratio for the GW spectrum is larger than 10, which is
adopted in the analysis in Chapter 6.





Chapter 4

EW phase transition in renormalizable
extended Higgs models

4.1 EW phase transition in the two Higgs doublet models

In this section, we discuss the EWPT in the two Higgs doublet models. We first discuss the
sphaleron decoupling condition in the two Higgs doublet model. Then, we discuss the phenomenol-
ogy at collider experiments and gravitational wave observations.

4.1.1 EW phase transition in the two Higgs doublet model

In order to discuss the phase transition, the effective potential at finite temperatures is important.
The effective potential in the THDM is given by

Veff(φ1, φ2, T ) = V THDM
tree (φ1, φ2) + VCW(φ1, φ2) +

T 4

2π2

∑
i

niJi

(
m2

i (φ1, φ2)

T 2

)
, (4.1.1)

where VCW is the Coleman-Weinberg potential [178]. The third term in Eq. (4.1.1) is the thermal
corrections to the effective potential [203]. The function Ji(x) is defined by

Ji(x) =

∫ ∞

0

dkk2 ln
[
1− sign(ni) exp

(
−
√
k2 + x

)]
, (4.1.2)

where

sign(ni) =

{
1 (ni > 0)

−1 (ni < 0)
. (4.1.3)

As well known, the infrared divergence can appear in the zero mode of Matsubara frequencies
of boson fields [203]. In order to avoid the divergence, we should include thermal corrections
to masses of boson particles. There are two famous methods to include the higher order thermal
corrections; (1) Parwani scheme [204] (2) Arnold-Espinosa scheme [205]. Since the Parwani scheme
can appropriately describe the phase transition at relatively low temperatures, we here take the
Parwani scheme. In the Parwani scheme, we should replace the field dependent masses of boson
fields in Eq. (4.1.1) with the thermal masses

m2
i (φ1, φ2, T ) → M2

i (φ1, φ2, T ) = m2
i (φ1, φ2) + Πi(T ), (4.1.4)
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where Πi(T ) is the thermal correction to the mass of particle i. The detail of the calculation for
Πi(T ) is discussed in Appendix A. We here consider the phase transition in the three scenarios of
the THDMs:

1. Alignment with degenerated masses

2. Alignment with mass differences

3. Non-alignment

In the following, we discuss the EW phase transition in each scenario.
In order to realize the scenario of electroweak baryogenesis, the sphaleron decoupling condition

should be satisfied. Since the sphaleron energy depends on the detail of models, the sphaleron
solutions should be calculated to evaluate the constraint on the THDM from the sphaleron de-
coupling condition. It is difficult to get the sphaleron solutions without the simplification of the
field equations. It is economical to simplify the field equations by using an ansatz, which has the
symmetry and other properties of the sphaleron 1. Here, we take the following ansatz

W a
i (ξ⃗) =

v(T )

2

[
ϵaijnj

1−R(ξ) cos θ(ξ)

ξ
+ (δai − nani)

R(ξ) sin θ(ξ)

ξ

]
, (4.1.5)

Φ1(ξ⃗) =
v1(T )√

2
S1(ξ)e

inaσaϕ1(ξ)

(
0
1

)
, (4.1.6)

Φ2(ξ⃗) =
v2(T )√

2
S2(ξ)e

inaσaϕ2(ξ)

(
0
1

)
, (4.1.7)

where ξ⃗ = gv(T )r⃗/2, ξ = |ξ⃗| and v(T ) =
√
v1(T )2 + v2(T )2. The radial functions R, S1 and S2

satisfy the following boundary conditions

lim
ξ→0

R(ξ) → −1, lim
ξ→0

S1(ξ) → 0, lim
ξ→0

S2(ξ) → 0,

lim
ξ→∞

R(ξ) → 1, lim
ξ→∞

S1(ξ) → 1, lim
ξ→∞

S2(ξ) → 1.
(4.1.8)

Here, we take θ(ξ) = π and ϕi(ξ) = π/2 (i = 1, 2) as taken in Ref. [189]. Then, the sphaleron
energy at finite temperatures Esph(T ) is given by

Esph(T ) =
4πv(T )

g
E(T ), (4.1.9)
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∫
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∂S2
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+
1

2ξ2
S2
2(1−R(ξ))2

}
+

8ξ2

g2v(T )4
{Veff(S1, S2, T )− Veff(v1, v2, T )}

]
,

(4.1.10)

where Veff is the effective potential at finite temperatures.

1In recent, it was shown that the sphaleron solutions can be obtained by using the method of the gradient flow
without assuming any ansatz [206].
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Figure 4.1: The parameter region where the strong first order EW phase transition can be realized
in Scenario 1. In the red region, the sphaleron decoupling condition cannot be satisfied. The blue
region is constrained by the completion condition for the phase transition. The black region is
excluded by the perturbative unitarity bound. In the green region, the EW phase transition is two
step phase transition in which the first step phase transition is second order phase transition. If
the value of tan β is large, the strong first order EW phase transition cannot be realized.

By substituting the ansatz in Eq. (4.1.7) into the field equations for the gauge and Higgs fields,
we can obtain the differential equations for the functions R, S1 and S2 as

∂2R

∂ξ2
+

1

ξ2
R(1−R2) + (1−R)

{
v1(T )

2

v(T )2
(S1)

2 +
v2(T )

2

v(T )2
(S2)

2

}
= 0, (4.1.11)

2ξ2
∂2Sα

∂ξ2
+ 4ξ

∂Sα

∂ξ
− Sα(1−R)2 − 8ξ2

g2vα(T )2v(T )2
∂Veff(S1, S2, T )

∂Sα

= 0 (α = 1, 2), (4.1.12)

with the boundary conditions described in Eq. (4.1.8). By combining E(T ) in Eq. (4.1.10) with the
sphaleron decoupling condition in Eq. (3.4.18), we can discuss the sphaleron decoupling condition
in the THDM.

Scenario1: Alignment with degenerated masses

In Fig. 4.1, we show the parameter region where the strong first order EW phase transition
can be satisfied with several theoretical constraints. In the red region, the sphaleron decoupling
condition cannot be satisfied. The blue parameter region is excluded by the completion condition
for the phase transition. This condition is expressed as

Γ(T )

H4(T )
≤ 1. (4.1.13)
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Figure 4.2: The parameter region where the strong first order EW phase transition can be realized
in the THDM with mH± = mA = mH +mZ , sin(β−α) = 1 and tan β = 1, 2, 2.5. The definition
of each colored region is the same in Fig. 4.1. As in Fig. 4.1, if the value of tan β is large, the
strong first order EW phase transition cannot be realized.

If this condition cannot be satisfied, the phase transition does not finish by today. In the green
region, the EW phase transition can be a two step phase transition where the first step phase
transition is second order. To realize the scenario of EW baryogenesis, the first step phase transition
should be first order. Therefore, the EW baryogenesis cannot be realized in the green parameter
region. The black region is constrained by the perturbative unitarity bound in Eq. (3.1.41).
From Fig. 4.1, upper bounds on the masses of additional Higgs bosons can be constrained by the
unitarity bound and the sphaleron decoupling condition. If there is a mass difference between
additional Higgs bosons or sin(β − α) ̸= 1, the mass upper bounds can be determined by only the
unitarity bound. This fact is called as the new no-lose theorem, which has been discussed in the
literatures [14, 19, 29, 96]. Our result shows that upper bounds on additional Higgs bosons can be
obtained by combining the unitarity bound with the sphaleron decoupling condition even if the
discovered Higgs boson is SM-like.

Scenario2: Alignment with a relatively small mass difference

In Fig. 4.2, we show the result of the THDM with a relatively small mass difference. As an
example, we here consider the THDM with mH± = mA = mH +mZ and sin(β − α) = 1. As we
can see, when the mass difference is relatively small, upper bounds on masses of additional Higgs
bosons can be determined by the unitarity bound and the sphaleron decoupling condition.

In Fig. 4.3, we consider the THDM with mH± = mA = mH + 1.5mZ , tan β = 1.5 and sin(β −
α) = 1. According to Fig. 4.2 and Fig. 4.3, the mass upper bounds are determined by only the
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Figure 4.3: The parameter region where the strong first order EW phase transition with the
theoretical constraints. The mass upper bound is determined by the unitarity bound without
the sphaleron decoupling condition. By combining the vacuum stability bound and the unitarity
bound, we can get the mass upper bound.

unitarity bound when the mass difference is getting large. This reason is as follows. When we
consider the difference between m2

H± and m2
H in the case with mH± = mA = mH + 1.5mZ and

sin(β − α) = 1 as an example, we can obtain

m2
H± −m2

H = 3mHmZ = λ̃v2, (4.1.14)

where λ̃ is a linear combination of λi (i = 1, · · · 5) in the Higgs potential given in Eq. (3.1.1).

Eq. (4.1.14) indicates that the large mH cannot be taken while keeping the value of λ̃ small. As
a result, the mass upper bounds on additional Higgs bosons can be determined by the unitarity
bound when the additional Higgs bosons in the THDM have a mass difference.

Scenario3: Non-alignment

In Fig. 4.4, we show the result in the THDM with or without alignment. When we consider
the non-alignment case sin(β − α) ̸= 1, the mass upper bound lowers. Actually, in the THDM
with mH = mH± = mA, tan β = 1 and sin(β − α) = 1, the mass upper bound is around 1.6TeV.
On the other hand, in the case without alignment sin(β − α) = 0.999, the mass upper bound is
around 1.2TeV. It means that the strong first order EW phase transition prefers the alignment
limit sin(β − α) = 1.

In this subsection, we have analyzed the EWPT in the THDMs. We have shown that even if
the discovered Higgs boson is SM-like, the masses of additional Higgs bosons can be determined
by combining the unitarity bound and the sphaleron decoupling condition. We have confirmed the
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Figure 4.4: The parameter region satisfying the theoretical constraints with sin(β − α) = 1 and
sin(β−α) ̸= 1. It lowers in the sin(β−α) ̸= 1 case that the mass upper bound determined by the
sphaleron decoupling condition and the unitarity bound.

upper bound is given by

mΦ < 1.6− 2 TeV (Φ = H,A,H±). (4.1.15)

This bound means that if we cannot detect a new particle whose mass is below the upper bound in
Eq. (4.2.1), the scenario of EW baryogenesis cannot be realized. For this reason, our result plays
an important role to test the feasibility of EW baryogenesis at future collider experiments.

4.1.2 Phenomenology in extended Higgs models with relatively heavy
additional Higgs bosons

In the previous subsection, we have obtained the upper bounds on masses of additional Higgs
bosons in Eq. (4.2.1). This bound means the THDM with relatively heavy Higgs boson ∼ O(1)TeV
may realize the strong first order EW phase transition. On the other hand, testing such models is
difficult at future collider experiments such as HL-LHC and the ILC. Then, how can we know the
mass scale of new Higgs bosons?

In order to show how to know the mass scale, we focus on the correlation between the triple
Higgs boson coupling hhh and the gravitational waves from the first order EW phase transition. In
this paper, we consider three benchmark scenarios to reveal the correlation. The benchmarks are
shown in Tab. 4.1. We note that BM0 cannot be allowed by the experimental constraints from the
LHC and the flavor physics [143]. But, we dare to show the GW spectrum in BM0 for comparison.
Also, we show the deviation in the triple Higgs boson coupling in each benchmark in Tab. 4.1.
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mH± mA mH M tan β ∆λ1ℓ
hhh/λ

SM
hhh ∆λ2ℓ

hhh/λ
SM
hhh vn/Tn

BM0 373GeV 373GeV 373GeV 50GeV 1 71.5% 86.4% 3.80
BM1 464GeV 464GeV 373GeV 200GeV 1.8 80.2% 112% 2.60
BM2 891GeV 891GeV 800GeV 720GeV 1.8 80.2% 125% 2.37

Table 4.1: Benchmark scenarios with sin(β − α) = 1. ∆λ1ℓ
hhh/λ

SM
hhh is the deviation in the triple

Higgs boson coupling at the one-loop level. ∆λ2ℓ
hhh/λ

SM
hhh is that at the two-loop level.
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Figure 4.5: Predicted GW spectra in the benchmarks shown in Table 4.1.

In Fig. 4.5, we show the predicted GW spectra in the benchmarks in Tab. 4.1. The black
lines are the sensitivity curves in BBO [207], DECIGO [75], LISA [74], Taiji [208], TianQin [209].
The solid (dashed) lines are the case where the wall velocity vb is 95% (40%) of the light speed.
According to Fig. 4.5, the peak of the GW spectra in BM1 is higher than that of BM2. On the
other hand, the predicted triple Higgs boson couplings in BM1 and BM2 are the same values. It
means that we may be able to know the mass scale of new particles as follows:

1. The peaked GW spectrum is observed and the large hhh coupling is measured
→ Relatively light new scalar bosons may exist

2. The peaked GW spectrum is not observed and the large hhh coupling is measured
→ Relatively heavy new scalar bosons may exist

This fact plays an important role when we test extended Higgs models with heavy additional
Higgs bosons. As we mentioned in the introduction, testability of relatively light Higgs bosons
have been thoroughly investigated by using the results at current and future collider experiments.
Conversely, testing the existence of relatively heavy new scalar fields might be difficult at near
future collider experiments. On the other hand, we have shown that the extended Higgs models
with heavy new scalar fields may predict the peaked GWs and the large triple Higgs bosons
coupling. It means that the mass scale of new scalar fields may be searched by observing the
peaked GWs and triple Higgs boson coupling at future space-based interferometers or collider
experiments.
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In addition, we have analyzed the prediction on the hhh coupling in the THDMs with relatively
heavy additional Higgs bosons like BM2. In order to satisfy the sphaleron decoupling condition in
the THDMs with mΦ > 700GeV (Φ = H,A,H±), ∆THDM

hhh /λSM
hhh > 60% is required at the one-loop

level. At the two-loop level, ∆THDM
hhh /λSM

hhh > 80% is required to satisfy the sphaleron decoupling
condition in the THDMs with mΦ > 700GeV. When we have obtained the constraint on the hhh
coupling from the sphaleron decoupling condition at the two-loop level, the two-loop corrections
to the effective potential at finite temperatures. It means that the hhh coupling should deviate
from the SM prediction to realize the scenario of the EWBG in the THDMs with relatively heavy
additional Higgs bosons.

4.2 Summary

We have shown that the masses of additional Higgs bosons can be determined by combining the
unitarity bound and the sphaleron decoupling condition even if the discovered Higgs boson is
SM-like. We have confirmed the upper bound is given by

mΦ < 1.6− 2 TeV (Φ = H,A,H±). (4.2.1)

If we cannot discover a new particle whose mass is below the upper bound in Eq. (4.2.1), the
scenario of EW baryogenesis may not be realized. Our result plays an important role to test the
feasibility of EW baryogenesis at future collider experiments.

In addition, we have discussed phenomenology in the THDMs. We have shown that the typical
mass scale of new scalar fields can be determined by future GW observations and collider exper-
iments. It means that we are able to know mass scale indirectly even if exploring models with
relatively heavy new scalar fields may be difficult at near future collider experiments.



Chapter 5

Nearly aligned Higgs effective field
theory

In the previous section, we have discussed the EW phase transition in the THDM as an example.
In the literatures, in order to obtain the model independent results of the dynamics of EW phase
transition, the standard model effective field theory (SMEFT) is often used. In the SMEFT with a
dimension six operator |Φ|6/Λ2 in the Higgs potential, the sphaleron decoupling condition requires
Λ < 900GeV [76, 88–92, 176]. From this result, we can naively expect that the mass of new
particles should be smaller than 900GeV to realize the strong first-order EW phase transition. On
the other hand, we have shown that the strong first-order EW phase transition may be realized
even if the masses of new scalar fields are above 1TeV in the THDM. The origin of the discrepancy
is non-decoupling effects. The SMEFT can be used when we discuss model independent properties
of the decoupling new physics. On the contrary, in several extended Higgs models, large quantum
corrections to Higgs couplings can be realized by heavy new particles . This effect is so-called the
non-decoupling effect, which is important to realize the strongly first-order EW phase transition.
Unfortunately, the SMEFT may not be appropriate when we discuss new physics models with the
non-decoupling effects. This fact is confirmed by several theorists [9]. It indicates that we should
consider a new EFT framework to discuss physics related to the non-decoupling effects. In this
section, we discuss a candidate of the new EFT. Also, we discuss the dynamics of the EW phase
transition by using the new EFT.

5.1 Definition of the nearly aligned Higgs EFT

We define a new EFT framework which can describe the non-decoupling effects from new physics.
We call this EFT as the “nearly aligned Higgs effective field theory (naHEFT)” [179]. The naHEFT
is an extension of the Higgs EFT. This EFT can describe not only the large quantum corrections in
the Higgs potential but also those in Higgs couplings to gauge bosons and fermions. The effective
Lagrangian in the naHEFT is expressed by [179]

LnaHEFT = LSM + LBSM, (5.1.1)

47
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where LSM is the SM Lagrangian, and LBSM is the BSM part which is defined as

LBSM = ξ

[
−κ0

4

[
M2(h)

]2
ln

M2(h)

µ2

+
v2

2
F(h) Tr

[
DµU

†DµU
]
+

1

2
K(h) (∂µh) (∂

µh)

− v
(
q̄iLU

[
Y ij

q (h) + Ŷ ij
q (h)τ

3
]
qjR + h.c.

)
−v
(
l̄iLU

[
Y ij

l (h) + Ŷ ij
l (h)τ

3
]
ljR + h.c.

)]
,

(5.1.2)

with ξ = 1/(4π)2 and v ≃ 246GeV. κ0 and µ2 are real parameters. h is the discovered Higgs boson
field whose mass is 125GeV. The matrix U parameterizes the Nambu-Goldstone bosons πa,

U = exp

(
i

v
πaτa

)
, (5.1.3)

where τa (a = 1, 2, 3) is the Pauli matrices. The fields qiL and liL are the SU(2)L doublet SM quark
and lepton fields, respectively. The index i characterizes the generation. The fields qiR and liR are
defined as qiR = (ui

R diR)
T and liR = (0 eiR)

T , where ui
R, d

i
R and eiR are the SU(2)L singlet up-type

quark fields, down-type quark fields and lepton fields, respectively. The covariant derivative of U
is defined by

DµU = ∂µU + igWµU − ig′UBµ, (5.1.4)

where Wµ and Bµ are defined as Wµ =
∑3

a=1 W
a
µ τ

a/2 and Bµ = Bµτ
3/2, respectively. The BSM

part in the naHEFT given in Eq. (5.1.2) includes five form factors M2(h), F(h), K(h), Y ij
q (h)

and Y ij
l (h). These form factors are polynomials in terms of h, and characterize the new physics

effects. Since we are interested in the dynamics of the EWPT in this thesis, we only consider the
correction to the Higgs potential in Eq. (5.1.2). The effect on the EWPT from the kinetic term
for the Higgs boson is discussed within the framework of the SMEFT [88,92, 210].

The effective potential at the zero temperature in the naHEFT is defined by [179]

VnaHEFT(φ) = VSM(φ) + VBSM(φ), (5.1.5)

with

VBSM(φ) =
κ0

4
ξ
[
M2(φ)

]2
ln

M2(φ)

µ2
, (5.1.6)

where φ is defined by φ = h+ v with v ≃ 246GeV. VSM is the effective potential in the SM up to
the one-loop level. The form of VBSM is inspired by results in extended Higgs models with the non-
decoupling effects in the Higgs potential. In such models, the non-decoupling effects in the Higgs
potential can be described by the Coleman-Weinberg potential [178]. The most important aspect of
the Coleman-Weinberg potential is that it contains a logarithmic function. This property is taken
into account in the naHEFT. The form factor M2(φ) corresponds to the field dependent mass of
BSM particles. For simplicity, we here assume that the form factor M2(φ) can be parameterized
by

M2(φ) = M2 +
κp

2
φ2, (5.1.7)
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where M2 and κp are real parameters. Then, VBSM has three free parameters,

Λ =

√
M2 +

κp

2
v2, κ0, r =

κp

2
v2

Λ2
. (5.1.8)

The parameters Λ and κ0 correspond to the mass and degree of freedom of BSM particles. The
parameter r is called as “non-decouplingness”. By changing the value of r, the naHEFT can
describe not only the decoupling new physics but also the non-decoupling new physics. When the
non-decouplingness r is changed in the region 0 ≤ r ≤ 1, the form factor M2(φ) is expressed by

M2(φ) ≃

{
(1− r)Λ2 (r ≃ 0)

(Λ2/v2)φ2 (r ≃ 1)
. (5.1.9)

In the case with r ≃ 0, the form factor M2(φ) does not dependn on the field φ. This situation
corresponds to the decoupling case. Whereas, when r ≃ 1, the form factor M2(φ) is proportional
to φ2. This case is just the non-decoupling case.

In our analysis, we impose the following renormalization conditions

dVnaHEFT

dφ

∣∣∣∣
φ=v

= 0, (5.1.10)

d2VnaHEFT

dφ2

∣∣∣∣
φ=v

= m2
h, (5.1.11)

where mh ≃ 125GeV. By using these renormalization conditions, we can determine the parameter
µ in Eq. (5.1.6). As a result, the effective potential VnaHEFT can be expressed by Λ, κ0, r, mh and
v.

When we consider the decoupling case (r ≃ 0), new physics effects should be decoupled. It
means that the naHEFT has the same structure as the SMEFT in the decoupling case. We here
confirm the relation between the naHEFT and the SMEFT. When M2 ̸= 0 (corresponding to
r ̸= 1), lnM2(Φ)/µ2 in Eq. (5.1.6) can be decomposed as

ln
M2(Φ)

µ2
= ln

M2

µ2
+ ln (1 + xΦ) , (5.1.12)

where

xΦ =
r

1− r

|Φ|2
v2

2

. (5.1.13)

We note that xΦ ≪ 1 when r ≃ 0 and |Φ| ≲ v. If xΦ ≪ 1, we can expand ln(1 + xΦ) as

ln (1 + xΦ) = xΦ − x2
Φ

2
+

x3
Φ

3
+O(x4

Φ) . (5.1.14)

Substituting the right-handed side of Eq. (5.1.14) into the original effective potential given in
Eq. (5.1.6), we can obtain higher dimensional operators in the effective potential.

If we truncate ln(1 + xΦ) up to O(xΦ), VBSM given in Eq. (5.1.6) can be expressed by the
SMEFT form with a mass dimension six operator. By imposing the conditions Eqs. (5.1.10) and
(5.1.11), the new physics contribution VBSM is expressed as

VBSM(Φ) =
1

f 2

(
|Φ|2 − v2

2

)3

, (5.1.15)
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where the scale f is given as

1

f 2
=

2

3
ξ κ0

Λ4

v6
r3

1− r
. (5.1.16)

The decoupling limit corresponds to r → 0, which leads to f → ∞.
Whereas, if we truncate ln(1 + xΦ) up to O(x2

Φ), our effective potential is expressed as the
SMEFT form up to mass dimension eight operators. By using Eqs. (5.1.10) and (5.1.11) again, we
obtain

VBSM(Φ) =
1

f 2
6

(
|Φ|2 − v2

2

)3

− 1

f 4
8

(
|Φ|2 − v2

2

)4

, (5.1.17)

where f6 and f8 are given as

1

f 2
6

=
1

f 2

1− 2r

1− r
, (5.1.18)

1

f 4
8

=
1

2f 2v2
r

1− r
. (5.1.19)

The decoupling limit corresponds to r → 0, which leads to f6,8 → ∞.
In the same way, we can obtain the SMEFT form up to mass dimension ten operators by

truncating ln(1 + xΦ) up to O(x3
Φ). We find

VBSM(Φ) =
1

F 2
6

(
|Φ|2 − v2

2

)3

− 1

F 4
8

(
|Φ|2 − v2

2

)4

+
1

F 6
10

(
|Φ|2 − v2

2

)5

, (5.1.20)

where F6, F8, and F10 are given as

1

F 2
6

=
1

f 2

3r2 − 3r + 1

(1− r)2
, (5.1.21)

1

F 4
8

=
1

2f 2v2
r(1− 3r)

(1− r)2
, (5.1.22)

1

F 6
10

=
2

5f 2v4

(
r

1− r

)2

. (5.1.23)

We note that the SMEFT approximations (5.1.15), (5.1.17), and (5.1.20) fail when the case with
|xΦ| ≃ 1, which corresponds to the non-decoupling case.

The hhh coupling in the naHEFT can be expressed by

λnaHEFT
hhh ≡ 3m2

h

v
κ3, (5.1.24)

where κ3 is given by

κ3 = 1 +∆κ3, (5.1.25)

∆κ3 =
4

3
ξκ0

Λ4

v2m2
h

r3. (5.1.26)

The deviation in the hhh coupling ∆κ3 comes from the new physics effect. We here only consider
the new particle effect on the hhh coupling via the corrections of the effective potential. The hhh
coupling can be deviated from the SM prediction by the corrections to the kinetic term of the
Higgs field, which corresponds to the third term in Eq. (5.1.2). However, such effects are relatively
smaller than the effects from the quantum corrections in the effective potential when we consider
the non-decoupling situation [179]. In the following, we neglect the deviation in the hhh coupling
from the corrections in the kinetic term of the Higgs field.
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5.2 The nearly aligned Higgs EFT at finite temperatures

In order to discuss the EWPT in the naHEFT, we should extend the effective potential at the zero
temperature Eq. (5.1.5) to that at finite temperatures. We here discuss the thermal corrections in
the naHEFT.

New physics corrections in the effective potential in the naHEFT given in Eq. (5.1.6) can be
expressed as

VBSM(φ) =
κ0

2

∫
d4kE
(2π)4

ln
[
k2
E +M2(φ)

]
, (5.2.1)

where kE is the Euclidian momentum. We note that the ultraviolet part and the constant term are
neglected because the two parts are irrelevant in the following discussion. The thermal corrections
from new particles can be introduced by performing the following replacement [203,211]∫

d4kE
(2π)4

ln
[
k2
E +M2(φ)

]
→ T

∞∑
n=−∞

∫
d3k⃗

(2π)4
ln
[
k⃗ 2 + w2

n +M2(φ)
]
, (5.2.2)

where T is the temperature, and wn is Matsubara frequency for integrated new particle which is
given by

wn =

{
2nπT (κ0 > 0)
(2n+ 1)πT (κ0 < 0)

. (5.2.3)

Hence, the thermal corrections from new particles is expressed by

VBSM(φ, T ) =
κ0

2
T

∞∑
n=−∞

∫
d3k⃗

(2π)4
ln
[
k⃗ 2 + w2

n +M2(φ)
]
. (5.2.4)

Then, the effective potential at finite temperatures in the naHEFT is defined as [212]

VnaHEFT(φ, T ) = VSM(φ, T ) + VBSM(φ) + ∆VBSM,T (φ, T ), (5.2.5)

where VSM(φ, T ) is the effective potential at finite temperatures in the SM. The thermal correction
from BSM particles ∆VBSM,T (φ, T ) is given by

∆VBSM,T (φ, T ) = 8ξT 4κ0JBSM

(
M2(φ)

T 2

)
, (5.2.6)

where

JBSM

(
M2(φ)

T 2

)
=

∫ ∞

0

dkk2 ln

[
1− sign(κ0)e

−
√

k2+
M2(φ)

T2

]
, (5.2.7)

with

sign (κ0) =

{
1 (κ0 > 0)
−1 (κ0 < 0)

. (5.2.8)

When we consider the case with κ0 > 0, the infrared divergence appears in the thermal correc-
tion to the effective potential from the zero mode [203]. In order to avoid the infrared divergence,
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we should consider the thermal mass correction to BSM particles. In our analysis, we utilize the
prescription discussed by Parwani [204]. In this prescription, we should replace the form factor
M2 as following,

M2(φ) → M̂2(φ, T ) = M2(φ) + ΠBSM(T ), (5.2.9)

where ΠBSM(T ) is the thermal correction to the mass of BSM particles. In order to determine
ΠBSM(T ) precisely, we should specify a model. In this thesis, we take

ΠBSM(T ) =
c

6
T 2Θ(κ0), (5.2.10)

where

Θ (κ0) =

{
1 (κ0 > 0)
0 (κ0 < 0)

. (5.2.11)

Since the zero mode does not exist in thermal corrections by fermions, we take ΠBSM(T ) = 0 when
κ0 is negative. Since the constant c is a free parameter, we take c = κp. This choice is based on
an analogy with the O(N) scalar singlet model. The detailed discussion is given in Appendix A.

We note that thermal corrections from BSM particles in the decoupling case is suppressed. In
the case with κ0 > 0 and r ≃ 0, JBSM has the Boltzmann suppression as

JBSM

(
M2(φ)

T 2

)∣∣∣∣
r≃0

∝ exp

[
−M2(φ)

T 2

]
≃ exp

[
−Λ2

T 2

]
. (5.2.12)

This fact means that thermal corrections from bosonic BSM particles with r ≃ 0 have the Boltz-
mann suppression. As a result, sizable thermal corrections from BSM particles cannot be realized
within the framework of the SMEFT in a self-consistent method. In the non-decoupling case
(r ≃ 1), the form factor M2(φ) can be zero around the origin φ ≃ 0 as shown in Eq. (5.1.9).
Thus, the Boltzmann suppression does not appear in JBSM around the origin φ ≃ 0. Therefore,
thermal corrections from BSM particles can be significantly large in the non-decoupling case. In
this case, the coefficient of the cubic term φ3 in the effective potential can be enhanced by ∆VBSM,T .
Actually, by using the high temperature expansion, we can obtain

∆VBSM,T (φ, T )|κ0>0, r≃1 ∋ −EBSMTφ
3, (5.2.13)

where

EBSM =
4π

3
ξκ0

Λ3

v3
. (5.2.14)

This result implies that the naHEFT can appropriately describe the strongly first-order EW phase
transition in models with the non-decoupling effects.

By combining Eqs. (5.1.26) and (5.2.14) with the condition r ≃ 1, we can obtain

EBSM ∝ (∆κ3)
3/4. (5.2.15)

This relation indicates that the large deviation in the hhh coupling is important to realize the
strongly first-order EWPT. The relation between the deviation in the hhh coupling and the strongly
first-order EWPT has been discussed in the literatures [50, 89].
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Figure 5.1: The relation between the strength of the phase transition vn/Tn and the non-
decouplingness r in the naHEFT. We take Λ = 1TeV and κ0 = 1.

5.3 EW phase transition in the naHEFT

We here investigate the parameter region where the strongly first-order EWPT can be realized
within the framework of the naHEFT. In this thesis, we focus on the case with κ0 > 0 because we
can obtain the large coefficient of φ3 term, which plays an important role to realize the strongly
first-order EWPT. In addition, we consider the parameter region 0 ≤ r ≤ 1. We use the public
package CosmoTransitions to calculate the nucleation rate for the vacuum bubbles [193].

In Fig. 5.1, the relation between vn/Tn and the non-decouplingness r is shown. We here take
Λ = 1TeV and κ0 = 1 as an example. As explained, the strongly first-order EWPT can be
realized when vn/Tn ≥ ζsph(Tn). We here take ζsph(Tn) = 1 for simplicity. As we expected, the
strongly first-order EWPT can be realized when the value of r is relatively large. For instance, the
strongly first-order EWPT is realized if the non-decouplingness r is larger than 0.39 in the case
with Λ = 1TeV and κ0 = 1. Even if the mass of BSM particles is at the TeV scale, Tn and vn
are at the electroweak scale, not the TeV scale. In the case with r = 0.39, the values of Tn and vn
are 126 GeV and 133 GeV, respectively. We note that vn/Tn rapidly blows up when the value of
r is relatively large as the temperature for starting the EWPT gets close to zero. The gray region
in Fig. 5.1 corresponds to the region in which the first-order EWPT cannot be realized. We find
that the non-decouplingness r should be larger than ≃ 0.25 to realize the first-order EWPT when
Λ = 1TeV and κ0 = 1.

In Fig. 5.2, the parameter region for the strongly first-order EWPT is shown. We here take
κ0 = 1 and κ0 = 4. In the white region, the strongly first-order EWPT can be realized. The
blue region is constrained by the vacuum stability bound. We have confirmed that our results in
the naHEFT are consistent with results in renormalizable extended Higgs models [68, 69]. The
contours of κp = 4π and 8π are also shown. If we consider the SM with additional singlet scalar
fields as the UV theory [68, 69], the perturbative unitarity bound is given by κp < 8π/

√
κ0 with
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Figure 5.2: Parameter region where the strongly first-order EW phase transition can be realized.
The left (right) figure corresponds to the case with κ0 = 1 (κ0 = 4). In the red region, the strongly
first-order EW phase transition cannot be realized. The vacuum stability cannot be satisfied in
the blue region. The contours of κp = 4π and 8π are also shown.

O(1) ambiguities coming from the prescription of the unitarity bound. By combining the unitarity
bound and the sphaleron decoupling condition vn/Tn > 1, we can obtain the upper bound on the
value of Λ. In the case with κ0 = 4, the upper bound is about 2TeV. This fact is well consistent
with the results in the THDMs discussed in the previous chapter.

5.4 Validity of finite number truncation of higher dimen-

sional operators

We here discuss the validity of the prescription with the finite number truncation of higher dimen-
sional operators. As we have shown, the approximation with the finite number truncation of higher
dimensional operators does not work well when |xΦ| ∼ 1 which corresponds to the non-decoupling
case in general. We estimate the validity of the finite number truncation in the parameter space
where the strongly first-order EWPT can be realized.

In Fig. 5.3, we compare the prediction on vn/Tn in our EFT with the results estimated by the
effective potential truncated up to dimension six (5.1.15), dimension eight (5.1.17) and dimension
ten (5.1.20). In order to compare our EFT analysis with the SMEFT analysis equally, we neglect
the finite temperature corrections from new physics in this analysis. The red, blue, blue dashed, and
blue dotted lines correspond to the results in our EFT, the EFT truncated up to mass dimension
six, eight and ten, respectively. If we consider the dimension six effective potential (5.1.15), we
find that vn/Tn > 1 requires r ≳ 0.35 when Λ = 1TeV and κ0 = 1. This requirement corresponds
to f ≲ 890GeV, which is consistent with the results in the literatures [76, 89–92,176].

However, we note that the dimension six approximation seems to fail because of the large
discrepancy in the prediction of vn/Tn between our EFT and the the dimension six approximation.
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Figure 5.3: Predictions on vn/Tn estimated by our EFT without finite temperature corrections
from new physics (red), the effective potential approximated up to the dimension six (blue), eight
(dashed blue), and ten (dotted blue) operators. We here take Λ = 1TeV and κ0 = 1 as an example.

In the case with r = 0.35, Λ = 1TeV and κ0 = 1, the discrepancy is about 44%. In order to
improve the discrepancy, we need to include higher mass dimension operators consisted of up to
mass dimension six operators. For instance, when we consider the region 0.25 ≲ r ≲ 0.5, we can
improve the EFT prediction on vn/Tn by adding higher mass dimension operators appropriately.
The importance of higher dimensional operators for studying the strongly first-order EWPT has
been also emphasized in Refs. [80, 84, 92, 213, 214]. However, the improvement with finite number
of the higher dimensional operators does not work when r ≳ 0.5 because the Taylor expansion
(5.1.14) is ill-defined due to the large xΦ. Therefore, in order to discuss new physics with r ≳ 0.5,
we have to use our EFT formalism instead of the EFT formalism with the finite truncation of
higher dimensional operators.

5.5 Predictions on gravitational waves from the strongly

first-order EWPT

We next estimate the GW spectrum from the strongly first-order EWPT, which is one of the
important signatures in our scenario. The GW spectrum from the strongly first-order EWPT
can be characterized by two parameters, α and β/H. The parameters α and β/H are defined in
Eqs. (3.4.19) and (3.4.21).

In Fig. 5.4, we show the prediction on values of α and β/H with different values of Λ and κ0.
The green, blue, and red lines correspond to the cases with κ0 = 1, 4, and 20, respectively. The
numbers in these figures are the values of Λ. We here set r = 1 and 0.5 in the left and right
figures, respectively. The maximum value of Λ is determined by the completion condition of the
phase transition given in Eq. (4.1.13). On the other hand, the minimum value of Λ is fixed by the
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Figure 5.4: α and β/H in our EFT. We take r = 1 and 0.5 in the left and right figures, respectively.
The red, green and blue lines correspond to κ0 = 1, 4, and 20 cases. The numbers in these figures
are the value of Λ.

sphaleron decoupling condition vn/Tn > 1 or Λ ≥ v. We find that the large Λ predicts the large α
and small β/H. This is because, in the case with sizable r (corresponding to the non-decoupling
case), the large Λ induces the large vn/Tn.

We show the GW spectra for some benchmark scenarios in Fig. 5.5. The colored lines are
the predicted GW spectra, while the black lines are the sensitivity curves of the LISA [74], DE-
CIGO [75], TianQin [209], Taiji [208] and BBO [207]1. In the top-left figure, we show the r-
dependence in the GW spectra. Here we take Λ = 1TeV and κ0 = 1. The red, blue, green, and
purple lines correspond to the results for r = 0.525, 0.52, 0.48, and 0.44, respectively. We find
that the large r makes the amplitude and the peak frequency larger and lower. This is because the
large r makes the first-order phase transition stronger, and results in the large α and small β/H.
We also show the dependences of Λ and κ0 on the GW spectra in the top-right and the bottom
figures, respectively. We find that the large Λ and κ0 also make the height and the peak frequency
of the GW spectrum higher and lower. This is due to the same reason as the large r case.

5.6 Discussions and conclusions

Finally, we discuss the predictions of our scenario by combining all results we have obtained so
far. The final result is summarized in Fig. 5.6, in which we add the information of future GW
observations and the deviation in the hhh coupling to Fig. 5.2. The green and purple regions
correspond to the parameter regions where the predicted GW spectrum is above the sensitivity
curves of LISA and DECIGO shown in Fig. 5.5. We also show the deviation in the hhh coupling
(∆κ3 = κ3−1) by the black lines, which correspond to ∆κ3 = 0.2, 0.5 and 1. In addition to the GW

1Performing the detailed analysis of the sensitivity, one can find the factor improved effective sensitivity com-
paring than ones shown in Fig. 5.5 [82].



5.7. SUMMARY 57

10 5 10 4 10 3 10 2 10 1 100 101

f[Hz]
10 19

10 17

10 15

10 13

10 11

10 9
h2

G
W

TianQin
Taiji

LISA
DECIGO
BBO

( , 0, r) = (1000 GeV, 1, 0.525)
( , 0, r) = (1000 GeV, 1, 0.52)
( , 0, r) = (1000 GeV, 1, 0.48)
( , 0, r) = (1000 GeV, 1, 0.44)

10 5 10 4 10 3 10 2 10 1 100 101

f[Hz]
10 19

10 17

10 15

10 13

10 11

10 9

h2
G

W

TianQin
Taiji

LISA
DECIGO
BBO

( , 0, r) = (450 GeV, 1, 1)
( , 0, r) = (530 GeV, 1, 1)
( , 0, r) = (560 GeV, 1, 1)
( , 0, r) = (567 GeV, 1, 1)

10 5 10 4 10 3 10 2 10 1 100 101

f[Hz]
10 19

10 17

10 15

10 13

10 11

10 9

h2
G

W

TianQin
Taiji

LISA
DECIGO
BBO

( , 0, r) = (500 GeV, 1, 0.79)
( , 0, r) = (500 GeV, 2, 0.79)
( , 0, r) = (500 GeV, 3, 0.79)
( , 0, r) = (500 GeV, 4, 0.79)

Figure 5.5: The GW spectra for some benchmark values.

observations, the hhh coupling measurements at future colliders are also important to investigate
the parameter region with the strongly first-order EWPT. As we can see, the parameter region
with strongly first-order EWPT predicts O(10%) ∼ O(100%) deviation in the hhh coupling from
the SM prediction. Such large deviation is expected to be tested by future collider experiments.
For example, the HL-LHC can reach 50% accuracy [70], and the lepton colliders such as the ILC
with

√
s ≃ 1TeV is expected to achieve a precision of some tens of percent [71]. Therefore, we can

expect that the strongly first-order EWPT can be tested by the ILC and HL-LHC.
In summary, we find that the scenarios in which the strongly first-order EWPT can be realized

by the non-decoupling quantum effects can be widely tested by the future GW interferometers and
the precise measurement of the hhh coupling at future colliders. This fact has been pointed out
in many concrete renormalizable model studies so far (See Refs. [68, 69] for example). Our EFT
analyses are consistent with the results obtained in these model-dependent studies.

5.7 Summary

We have provided an effective field theoretical framework for the strongly first-order EWPT. We
have employed an extension of the Higgs EFT in which the Higgs potential is parameterized by
a Coleman-Weinberg like form. Our EFT can describes a class of new physics models in which i)
the mixing between new scalar particles and the SM Higgs boson is much suppressed (alignment
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limit) and ii) the sizable non-decoupling quantum effect appears. We have formulated the finite
temperature corrections to the effective potential in the EFT, and studied the EWPT by using
the EFT framework.

We have found that the non-decoupling effect plays an essential role in realizing the strongly
first-order EWPT. This fact is consistent with the results discussed in many concrete models
studies. The importance of the non-decoupling effect means that the conventional EFT description
with the finite number truncation of the higher-dimensional operators is not appropriate for the
study on the strongly first-order EWPT. Comparing our EFT results with the those estimated
by the effective potential with finite number truncation of higher dimensional operators, we have
numerically shown that the approximation of the finite number truncation does not work well in
the parameter region with the strongly first-order EWPT.

Applying our EFT formalism, we have estimated the spectra of the stochastic GWs produced
by the strongly first-order EWPT. We have found that the non-decoupling effect results in the
GW spectrum which can be detected at future GW interferometers like LISA and DECIGO. We
also emphasized that the deviation in the hhh coupling is also an important signature of our
scenario. We have shown that O(10%) ∼ O(100%) deviation of the hhh coupling is predicted in
the parameter space where the strongly first-order EWPT is realized. This result means that the
future hhh coupling measurements and the GW observations are important probes for scenarios
with the strongly first-order EWPT. Our results can be generally applied to the class of new physics
models in which the strongly first-order EWPT is realized by non-decoupling quantum effects.

We finally emphasize the importance of the study on non-decoupling physics. The non-
decoupling effects are essential origin of the strongly first-order EWPT, and provide us rich phe-
nomenology such as the large deviation in the hhh coupling. Therefore, it is important to study
these non-decoupling new physics in a complemental way. Our EFT description is a promising
candidate of the simplest and most systematic descriptions for this EFT approach. In the next
chapter, we discuss the further phenomenological analysis based on the naHEFT.
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Figure 5.6: Parameter space in which the GW will be detected at LISA (green) and DECIGO
(purple). The color notation of the red and blue regions are same with Fig. 5.2. We take κ0 = 1 and
4 in the left and right figure, respectively. The black lines are contours of ∆κ3 = κ3 − 1 = 0.2, 0.5
and 1.





Chapter 6

Primordial black holes and the
first-order phase transition

In this section, we discuss a new possibility to test the strongly first-order EWPT. The possibility is
the measurement of primordial black holes (PBHs). PBHs may be produced at the early Universe
before the star formation [111–113]. In order to realize the PBH formation mechanism, a sufficiently
large energy density fluctuation is required. The first-order phase transition at the early Universe
may realize the large density fluctuation. The first-order phase transition proceeds by the vacuum
bubble nucleation. In general, the vacuum energy density in the vacuum bubbles is smaller than
that in the outside the vacuum bubbles because of the difference of the vacuum energy density.
Thus, the large energy density fluctuation may be produced as the first-order phase transition
proceeds [114,115].

6.1 Review of PBHs

If a large density fluctuation is realized at the early Universe, PBHs may be formed before the star
formation [111–113]. It means that we may know what happened in the early Universe by using
PBH observations.

We here give a brief review for PBHs. The following discussion is based on the literature [215].
In order to form a PBH by collapsing an overdensity region in the early Universe, the size of the
overdensity region Rover should be larger than the Jeans scale RJ [113]. This requirement is so
called the Jeans criterion. In order for the overdense region to avoid the separation from the rest
of the Universe, it is necessary to satisfy Rover ≲ RPH, where RPH is a particle Horizon. Therefore,
the PBH formation requires

RJ ≲ Rover ≲ RPH. (6.1.1)

The particle Horizon and the Jeans scale is given by

RPH ≃ c√
8πGρover

, (6.1.2)

RJ ≃ wc√
8πGρover

= wRPH, (6.1.3)

where ρover is the energy density of the overdense region. The constant G is the Newton constant.
We here assume that the equation of state is given by p = wρc2. The condition (6.1.1) can be

61
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PBHs and 1st order phase transition

16
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• We focus on a region where the phase transition delays

• Large energy density fluctuation can be realized  
b/w the false and true vacuum

PBHs can be produced from the 1st OPT

[Liu et al., PRD105 (2022)]

Γbubble(T ) ≃ A(T )exp[−S3(T )/T ]

←  can be evaluated in any models with the 1st OPTfPBH

T = Tn

H−1
Hubble

Figure 6.1: Conceptual figure for the origin of the large energy density fluctuation between the
symmetric phase and the broken phase. In the gray region, the symmetry is broken. In the white
region, the symmetry breaking does not occur.

expressed in terms of energy density fluctuations as [113]

w ≃ δc ≲ δ ≲ δmax ≃ 1, (6.1.4)

where δc and δmax are the threshold value and the maximum value to realize the PBH formation.
The energy density fluctuation δ is defined by

δ ≡ ρover − ρback
ρback

, (6.1.5)

where ρover and ρback are the density in the overdensity region and the average energy density
in the Universe, respectively. The condition for the PBH formation (6.1.4) is called as Carr’s
condition [113]. If we consider the PBH formation at the radiation dominant Universe (w = 1/3),
the following condition should be satisfied

δ > δc =
1

3
. (6.1.6)

The result given in Eq. (6.1.6) is based on the simple analytical calculation. More precise analytical
calculations are discussed by Harada et al. [215]. The numerical evaluation of the threshold for δ
is analyzed in Refs. [216–218]. In this thesis, we use the following condition as the criteria for the
PBH formation

δ > 0.45. (6.1.7)

If this condition is satisfied, the overdensity region can collapse into PBHs.

6.2 PBH formation by the first-order phase transition

There are several ways to produce PBHs as a remnant of the first-order phase transition [219]. In
this thesis, we focus on the the PBH formation mechanism discussed by Liu et al. [120]. According
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to Ref. [120], the large density fluctuation can be generated by delaying the nucleation of vacuum
bubbles. Since the bubble nucleation is probabilistic, there is a possibility that the symmetry
breaking is delayed in a whole Hubble volume.

In Fig. 6.1, the delay of the first-order phase transition is shown. In the gray region, the
symmetry is already broken. On the other hand, in the white region, the symmetry is not broken.
Each patch corresponds to the Hubble volumes. In the red region, the first-order phase transition
is not completed. If this situation is realized, the large energy density fluctuation can be realized
between the outside and the inside of the red region. The vacuum energy density in the unbroken
symmetry region is larger than that in the broken symmetry region because the difference of the
vacuum energy density is related to the difference of the height of the Higgs potential. This energy
density difference leads to the energy density fluctuation between the inside and outside of the
Hubble volume (red region) in which the symmetry breaking is delayed. We here define the energy
density fluctuation as

δ ≡ ρ in − ρout
ρout

, (6.2.1)

where ρ in and ρout is the total energy density inside and outside the Hubble volume, respectively.
When the energy density fluctuation δ satisfy the condition given in Eq. (6.1.7), the inside of the
Hubble volume can gravitationally collapse into a PBH. Therefore, the mass of PBHs is roughly
determined by the Hubble horizon mass at the time when the PBHs are produced. For the first-
order EWPT, the mass of PBHs is about 10−5M⊙ (M⊙ is the solar mass). Hence, the fraction of the
PBHs fPBH produced by the first-order EWPT can be probed by current and future microlensing
observations such as Subaru HSC, OGLE, PRIME and Roman Space Telescope. The fraction fPBH

can be determined by the phase transition parameters α and β/H in Eqs. (3.4.19) and (3.4.21).
In order to realize the PBH production mechanism we focused on, the delay of the first-order

phase transition is important. Thus, we should calculate the ratio of the symmetry unbroken
region and the symmetry broken region. The fraction of the false vacuum in the whole Universe
is given by [220]

F (t) = exp

[
−4π

3

∫ t

ti

dt′Γ(t′)a3(t)r3(t, t′)

]
, (6.2.2)

where ti is the time when a first vacuum bubble is produced in the Universe, a(t) is the scale
factor, and r(t, t′) is the comoving radius of the true vacuum from t′ to t. The comoving radius
r(t, t′) is defined by [79]

r(t, t′) ≡ r0(t
′) +

∫ t

t′

vw

a(t̃)
dt̃, (6.2.3)

where r0(t
′) is the initial radius of the vacuum bubbles. If the first-order phase transition is

supercooling, the phase transition is completed by the vacuum bubble expansion instead of the
bubble nucleation. For example, for the first-order EWPT in the SM with mh = 60GeV and
mt = 120GeV, 10% of space in the Universe is converted into the broken phase by the vacuum
bubble nucleation. The other region is also converted into the broken phase by the vacuum
bubble expansion [221]. Therefore, the initial radius r0(t

′) can be negligible when we consider the
supercooled first-order phase transition. In our analysis, we neglect the contribution from r0(t

′). In
addition, we assume that the velocity of vacuum bubbles vw is closed to the light speed (vw ≃ 1).
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Figure 6.2: Current constraints on the fraction fPBH by microlensing observations. The constraints
from Subaru HSC [223], OGLE [224] and EROS [225] are shown.

Then, the energy density for the vacuum bubbles ρw can be regarded as part of the radiation
energy density. Thus, the total radiation energy density ρR is given by

ρR = ρrad + ρw. (6.2.4)

The evolution of ρR is determined by

dρR
dt

+ 4ρRH = −dρV
dt

, (6.2.5)

where ρV is the vacuum energy density, which is given by

ρV = F (t)∆Veff . (6.2.6)

The evolution of the Hubble parameter H is described by the Friedmann equation [222],

H2 =
ρR + ρV

3
, (6.2.7)

where we take the unit with Mpℓ = 1. Since the potential energy density difference ∆Veff is related
to the parameter α, the energy densities of radiation and vacuum at the time ti are given by

ρR(ti) =
1

1 + α
ρtot(ti), ρV (ti) =

α

1 + α
ρtot(ti), (6.2.8)

where ρtot(ti) = ρR(ti)+ρV (ti). These values are used as the initial conditions in solving Eqs. (6.2.5)
and (6.2.7).

From Eqs. (6.2.2), (6.2.5) and (6.2.7), we can determine the time evolutions of a(t), ρR(t)
and ρV (t). Then, we can evaluate the probability that Hubble volumes collapse into PBHs. The
probability is given by

P (tn) = exp

[
−4π

3

∫ tn

ti

a3(t)

a3(tPBH)

1

H3(tPBH)
Γ(t)dt

]
, (6.2.9)
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where tPBH is the time when the PBHs are produced, which can be determined by the condi-
tion (6.1.7). If the condition (6.1.7) is satisfied, the symmetry unbroken Hubble volume (red
region in Fig. 6.1) can collapse into a PBH. The mass of the PBHs MPBH is roughly given by

MPBH ∼ 4π

3
H−3(tPBH)ρtot(tPBH) = 4πH−1(tPBH). (6.2.10)

Since the PBH production time tPBH is related to a time when the first-order phase transition
occurs, MPBH is also related to the time.

If PBHs are produced by the first-order EWPT, the PBH mass is given by

MEW
PBH ∼ 10−5M⊙, (6.2.11)

where M⊙ is the solar mass. The fraction of the PBHs in dark matter density fPBH can be observed
by PBH observations. For the EWPT, the fraction fEW

PBH is given by

fEW
PBH ≡ ΩEW

PBH

ΩCDM

∼ 1.49× 1011
(

0.25

ΩCDM

)(
TPBH

100GeV

)
P (tPBH), (6.2.12)

where ΩCDM is the current energy density of cold dark matter normalized by the total energy
density, and TPBH is temperature when the PBHs are produced.

In Fig. 6.2, the current constraint on the PBH fraction is shown. We note that the fraction
around the mass region of 10−5M⊙ is already constrained by current microlensing observations
such as Subaru HSC and OGLE. It means that the first-order EWPT can be tested by using
results at microlensing observations. For future microlensing experiments, such as Roman Space
Telescope and PRIME, may be able to test the parameter region with fPBH > 10−4 [226].

6.3 PBH formation via the first-order phase transition in

the naHEFT

We here discuss the PBH formation in the naHEFT.
In Fig. 6.3, model independent results of the PBH fraction fPBH are shown in the (α, β/H)

plane. This result was first discussed in Ref. [87]. The brown, green, orange, blue and red solid
lines correspond to the contours for fPBH = 10−8, 10−6, 10−4, 10−2, 1, respectively. We find that
the PBH fraction fPBH is sensitive to the value of β/H. According to Fig. 6.3, the large PBH
fraction can be realized in the case with large α and β/H. It indicates that the strongly first-order
EWPT is preferred to produce large amounts of PBHs. In the white region above the brown
line, the PBH abundance becomes too small to detect future PBH observations or the PBHs
cannot be produced from the first-order EWPT. In the white region below the red line, PBHs
are overproduced (fPBH > 1). It means that we can discuss constraints on the Higgs sector by
assuming the condition fPBH ≤ 1. Current microlensing experiments, such as Subaru HSC and
OGLE, can explore the parameter region between the red and blue lines with 10−2 < fPBH < 1.
The parameter region between the red and orange lines with 10−4 < fPBH < 1 may be tested by
future microlensing observations such as PRIME and Roman Space Telescope.

In Fig. 6.4, the parameters α and β/H are shown in the naHEFT. The non-decouplingness r
is assumed as r =1 and 0.5 in the left and right panels, respectively. The red, green and blue lines
correspond to the predictions on the parameters α and β/H in the case with κ0 = 1, 4 and 20,
respectively. Points on these lines in Fig. 6.4 represent the value of Λ. Purple dotted and solid
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Figure 6.3: Contours for the PBH abundance are shown in the α and β/H plane. Red, blue,
orange, green and brown lines correspond to the contours with fPBH = 1, 10−2, 10−4, 10−6 and
10−8, respectively. The region 10−4 < fPBH < 1, between red and orange lines, can be explored by
PBH observations, such as PRIME and Roman Space Telescope. In the white region above the
brown line, the abundance of the PBH cannot be produced or otherwise is too small. In the white
region below the red line, PBHs are overproduced (fPBH > 1). This result was first discussed in
Ref. [87].

lines are the contours of fPBH = 10−4 and 1, respectively. These purple lines are already shown in
Fig. 6.3. According to Fig. 6.4, the PBH fraction is sensitive to the value of Λ in the naHEFT. As
we expected, by using the overproduction condition fPBH ≤ 1, we can obtain constraints on Λ in
each κ0. For instance, in the case with κ0 = 4 and r = 1, we can obtain Λ < 399.471GeV by using
the condition fPBH ≤ 1.

We here comment on the behaviors of the lines in right panel of Fig. 6.4, which are degenerate
in the case with large Λ values. The behavior is ascribed to the Boltzmann suppression with
respect to finite temperature effects: ∆VBSM,T (0, T ) ∝ exp [−Λ2(1− r)/T 2]. For small r and large
Λ, the effective potential is mainly determined by the zero temperature BSM effects. Then, the
difference between the origin (φ = 0) and the bottom (φ = v) of the effective potential, which is
related to the phase transition parameters. The potential difference ∆Veff at the zero temperature
is roughly given by

∆Veff(T = 0) ≃ m2
hv

2

8
− ξ

4
κ0Λ

4
[
(1− r) ln(1− r)− r

2

]
. (6.3.1)

In Fig. 6.5, the relation between the potential difference ∆Veff and the parameter α is shown in
the naHEFT with r = 0.5. The red and green lines are the potential differences in the cases with
κ0 = 1 and κ0 = 4, respectively. The value of the potential barrier is normalized by the vacuum
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Figure 6.4: Parameters α and β/H with respect to κ0, Λ and r. Left (right) figure represents α
and β/H in the naHEFT with r = 1 (0.5). The red, green and blue lines are κ0 = 1, 4 and 20,
respectively. The points on these lines correspond to the Λ value. Purple dotted and solid lines
respectively are fPBH = 10−4 and 1.

expectation value. Each point indicates the values of Λ. This figure indicates that α is determined
by the effective potential at the zero temperature as the value of Λ gets large in the decoupling
case (r ̸= 1). For instance, in the cases with (κ0, Λ [GeV], r) = (1, 1039, 0.5), (4, 736, 0.5) and
(20, 492, 0.5), the values of ∆Veff are almost the same. These three points are depicted in the right
panel of Fig. 6.4. Actually, these points get close to each other.

In Fig. 6.6, predictions on masses of the PBHs are shown. We take κ0 = 5 and r = 1 in
Fig. 6.6. As we have confirmed in Fig. 6.4, the PBH fraction fPBH is sensitive to the parameters
in the naHEFT. Since tPBH is almost the same, the PBH mass is hardly changed even if we take
different values of Λ.

Why does the large PBH fraction favor the small β/H? In the following, we give a qualitative
answer for the question. For simplicity, we use the high temperature expansion for the effective
potential [227]

Veff(ϕ, T ) ≃ D(T 2 − T 2
0 )ϕ

2 − ETϕ3 +
λT

4
ϕ4. (6.3.2)

At the critical temperature, there is the potential barrier between the true vacuum and the false
vacuum. We define the configuration at the maximum point of the barrier as ϕM . The configuration
ϕM can be expressed by

ϕM =
ETc

λT

=
ϕc

2
. (6.3.3)
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Then, the potential barrier between ϕ = 0 and ϕ = ϕM can be expressed by

∆V (ϕM , Tc) ≡ V (ϕ = ϕM , Tc)− V (ϕ = 0, Tc)

≃ E

32
T 4
0

(
λD

λD − E2

)2(
ϕc

Tc

)3

. (6.3.4)

The above approximate equation indicates that the potential barrier ∆V (ϕM , Tc) can be large
when the strongly first-order EWPT can be realized (ϕc/Tc > 1). In order to realize the PBH
production via the mechanism we focused on, the first-order EWPT should be delayed. The delay
of the first-order phase transition can be realized when the potential barrier is large because of the
suppression of the tunneling rate. Therefore, the first-order EWPT can be delayed when the phase
transition is strong. It means that the fraction fPBH can be large when the strongly first-order
EWPT occurs.

On the other hand, the relation between the parameter β/H and ϕc/Tc is given by [228]

β

H
≃ 36 · 21/4

π1/2λ
3/4
T

(
D − E2

λT

)(
S3 (Tc)

Tc

) 5
2
(
ϕc

Tc

)−5/2

. (6.3.5)

Thus, small β/H is favored to realize the strongly first-order EWPT. By combining Eq. (6.3.4)
and Eq. (6.3.5), we can expect that the large fPBH can be realized when the parameter β/H is
small. This is the reason why the large PBH fraction requires small β/H.

Fig. 6.7 represents the region of strongly first-order EWPT in the naHEFT with κ0 = 1, 4, 8
and 16 in the r-Λ plane. For example, assuming the O(N) singlet scalar field theory as the UV
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Figure 6.6: Predictions on the PBH mass in the naHEFT. We take κ0 = 5 and r = 1. The
constraints from Subaru HSC [223], OGLE [224] and EROS [225] are also shown.

theory, the parameter region with r < 0.3 is prohibited by the perturbative unitarity bound [69].
Thus, we do not take into account the parameter region with r < 0.3 in the following numerical
analysis. The black dotted lines correspond to the contours of ∆λhhh/λ

SM
hhh = 20, 50, 100 and 200 %

from the bottom, respectively. In the red region, the PBH fraction fPBH can be larger than 10−4.
Therefore, the red region can be tested using PBH observations. In this region, we can also use GW
observations to test the EWPT. In the blue (orange) parameter region, the first-order EWPT can
be tested by using GW observations at both LISA and DECIGO (only at DECIGO). In the green
region, although GWs cannot be detected at LISA nor DECIGO, the first-order EWPT can still
be tested by the precise measurement of the hhh coupling at future collider experiments. In the
top right white region above the red solid line of these panels, the EWPT has not been completed
at the current Universe, in which Γ/H4 < 1. In the bottom left white region below the colored
region of this figure, the strongly first-order EWPT cannot be realized because of vn/Tn < 1. As
the value of r gets small, the parameter region with the large Λ value is preferred to realize the
strongly first-order EWPT.

Fig. 6.8 represents the parameter region where the strongly first-order EWPT can be realized in
the naHEFT with r = 0.3, 0.5, 0.8 and 1 in the κ0 –Λ plane. The colored regions and black dotted
contours have the same definitions in Fig. 6.7. For large κ0 value, the strongly first-order EWPT
can be realized by small Λ value. According to Figs. 6.7 and 6.8, the naHEFT with the first-
order EWPT can be complementarily tested by collider experiments, GW and PBH observations.
These results do not depend on the model details. Therefore, we can expect that extended Higgs
models with the strongly first-order EWPT may be tested by collider experiments, GW and PBH
observations.

Finally, we show the parameter region where the PBHs can be formed by the first-order EWPT
in Fig. 6.9. The solid and dashed red lines in this figure correspond to the same as the red region
of Fig. 6.8 for r = 1 and 0.3, respectively. In the red region, the PBH fraction may be sizable with
fPBH > 10−4 for 0.3 < r < 1. The PBH observation may be able to be used to explore the strongly
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first-order EWPT in such a wide parameter region.

6.4 Discussion

We give a comment on the criterion for the PBH formation. The criterion of the PBH formation
given in Eq. (6.1.7) is calculated in the case where the radiative components realize a large energy
density fluctuation. On the other hand, we have considered the PBH formation mechanism pro-
posed by Liu et al. [120] in this thesis. In order to realize the mechanism, the vacuum energy plays
an important to produce the large energy density fluctuation. Therefore, one may doubt whether
it is really correct to use the condition (6.1.7). We expect that the analysis of the PBH formation
by domain walls will be helpful in resolving this question. The PBH formation via gravitationally
collapsing the domain walls is numerically analyzed by Liu, Guo and Cai [229]. The authors have
shown that PBHs can be formed when the energy contract between the inside and the outside of
the domain walls is sufficiently large. The important point is that the dominant energy component
of the domain walls is the vacuum energy. The vacuum energy plays an important role to realize
the PBH formation mechanism we focused on in this thesis. Thus, the results in Ref. [229] indicate
that the PBH formation mechanism can work well. In the future, however, the mechanism should
be verified precisely.

In our analysis, we assume that the Hubble volume collapsing to a PBH has a spherical sym-
metry. If the shape of the Hubble volume is deformed from the sphere, the criterion (6.1.7) may be
changed. The PBH formation with a spheroidal over density region is numerically analyzed [230].
In Ref. [230], it was shown that the criterion for the PBH formation is not changed even if the
shape of the overdensity region is not spherical. Therefore, we can expect that the PBH formation
mechanism discussed in this thesis works well. Detailed analysis is a future work.

6.5 Summary

In this chapter, we have discussed the relation between the first-order EWPT and PBHs. In order
to obtain model independent results, we have used the naHEFT, which is appropriate when we
discuss extended Higgs models with the strongly first-order EWPT. We have shown that the first-
order EWPT can be tested by PBH observations such as Subaru HSC, OGLE, PRIME and Roman.
The wide parameter region with the first-order EWPT may be tested by PBH observations. We
have also discussed complementarity of PBH observations, future GW observations and collider
experiments to test the first-order EWPT.
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Figure 6.7: Regions of strongly first-order EWPT, where vn/Tn ≥ 1, are shown as colored regions
in the r-Λ plane for κ0 = 1, 4, 8 and 16. In the red region, fPBH can be larger than 10−4. The
EWPT has not been finished at the current Universe in top right white regions above the red one:
Γ/H4 < 1. The orange regions represent that the detectable GW at DECIGO experiment can be
produced. The GW spectrum for the blue and red regions can be observed by both LISA and
DECIGO experiments. The black dotted lines are the deviation in the hhh coupling from the SM
prediction value ∆λhhh/λ

SM
hhh = 20, 50, 100 and 200 % from the bottom, respectively.
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Figure 6.8: Regions of strongly first-order EWPT, where vn/Tn ≥ 1, are shown as colored regions
in the κ0-Λ plane for r = 0.3, 0.5, 0.8 and 1. Otherwise the same as Fig. 6.7.
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Figure 6.9: The parameter region where PBHs from strongly first-order EWPT may be able to be
detected in the κ0-Λ plane (fPBH > 10−4).





Chapter 7

Grand summary

In this chapter, we summarize the contents in this thesis.

In Chapter 2, we have reviewed the SM in particle physics. In the SM, the interactions between
elementary particles are determined by the gauge principle. Particles in the SM get their masses
via the Higgs mechanism. The predictions on the SM is consistent with the results in the LHC.
On the other hand, the SM cannot explain several cosmological observations such as the BAU. In
order to explain those cosmological observation facts, extensions of the Higgs sectors have been
discussed. If the Higgs sector is extended, dynamics of the EWPT can be changed.

In Chapter 3, we have given a review for extended Higgs models and the details of the first-order
EWPT. As examples for renormalizable extended Higgs models, we have focused on the THDMs
and O(N) scalar singlet model. In general, extended Higgs models predict existence of heavy new
particles. Effects on low energy observations from the new particles can be described by the EFT
framework. In this chapter, we have reviewed the SMEFT and the Higgs EFT. We have shown
that extensions of the Higgs EFT can describe extended Higgs models with the non-decoupling
effects. The non-decoupling effects are important to realize the strongly first-order EWPT, which
satisfy the sphaleron decoupling condition given in Eq. (3.4.18). If the strongly first-order EWPT
occurs at the early Universe, characteristic GW spectrum can be produced. It means that we can
test the strongly first-order EWPT via the GW observations like the LISA and DECIGO.

In Chapter 4, we have discussed the EWPT in the THDMs. To obtain the precise sphaleron
decoupling condition, we have numerically calculated the sphaleron energy in the THDMs. By
using the improved sphaleron decoupling condition, the parameter regions with the strongly first-
order EWPT have been shown. Lower bounds and upper bounds on additional scalar bosons can be
determined by using the sphaleron decoupling condition and the unitarity bounds. We have shown
that mass upper bounds of additional scalar bosons can be determined by combining the sphaleron
decoupling condition and the unitarity bound. The mass upper bounds are about 1.6 − 2TeV.
The bounds implies that the scenario of the EWBG cannot be realized if we cannot discover new
scalar bosons whose mass are lighter than 2TeV. We have also shown that the typical mass scale
of new scalar bosons can be determined by using GW observations and the precise measurement
of the hhh coupling. It means that we can obtain the information of heavy new particles by
the combination of GW observations and hhh coupling measurement even if heavy new particles
cannot be detected at collider experiments.

In Chapter 5, we have discussed phenomenology in the naHEFT. The naHEFT can describe
extended Higgs models with the non-decoupling effects. We have shown that the naHEFT is
appropriate to discuss models with the strongly first-order EWPT. The comparison between the
SMEFT and the naHEFT has been also discussed. We have shown that the SMEFT may not be a
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good framework when we discuss the strongly first-order EWPT. The predictions on special GW
spectra have been also calculated.

In Chapter 6, the relation between the first-order EWPT and PBHs has been discussed. In this
thesis, we have focused on the PBH formation mechanism proposed by Liu et al. [120]. In order to
obtain model independent results, we have utilized the effective potential in the naHEFT. We have
shown that the strongly first-order EWPT can be tested by PBH observations. Especially, PBHs
produced by the first-order EWPT can be observed by current and future microlensing observations
such as the Subaru HSC, OGLE, PRIME and Roman Space Telescope. Complementarity of PBH
observations, future GW observations and collider experiments to test the first-order EWPT has
been shown in Figs. 6.7 and 6.8. As shown in Fig. 6.9, wide parameter regions with the strongly
first-order EWPT can be explored by PBH observations.



Appendix A

Thermal masses in extended Higgs
models

In this appendix, we discuss thermal corrections to masses in the THDMs and O(N) scalar singlet
model.

A.1 Thermal masses in the THDMs

In the THDMs, the order parameters ϕi (i = 1, 2) are defined by

Φi =
1√
2

(
0
ϕi

)
. (A.1.1)

Then, mass matrices for the Higgs bosons in the THDMs are given by

M2
h(ϕ1, ϕ2) =

1

2

(
2m2

1 + 3λ1ϕ
2
1 + (λ3 + λ4 + λ5)ϕ

2
2 −2m2

12 + 2(λ3 + λ4 + λ5)ϕ1ϕ2

−2m2
12 + 2(λ3 + λ4 + λ5)ϕ1ϕ2 2m2

2 + 3λ2ϕ
2
2 + (λ3 + λ4 + λ5)ϕ

2
1

)
, (A.1.2)

M2
z(ϕ1, ϕ2) =

1

2

(
2m2

1 + λ1ϕ
2
1 + (λ3 + λ4 − λ5)ϕ

2
2 −2m2

12 + 2λ5ϕ1ϕ2

−2m2
12 + 2λ5ϕ1ϕ2 2m2

2 + λ2ϕ
2
2 + (λ3 + λ4 − λ5)ϕ

2
1

)
, (A.1.3)

M2
±(ϕ1, ϕ2) =

1

2

(
2m2

1 + λ1ϕ
2
1 + λ3ϕ

2
2 −2m2

12 + 2(λ4 + λ5)ϕ1ϕ2

−2m2
12 + 2(λ4 + λ5)ϕ1ϕ2 2m2

2 + λ2ϕ
2
2 + λ3ϕ

2
1

)
. (A.1.4)

The field dependent masses for the Higgs and Nambu-Goldstone bosons are given by

m2
h,H(ϕ1, ϕ2) = Eigenvalue[M2

h(ϕ1, ϕ2)], (A.1.5)

m2
G,A(ϕ1, ϕ2) = Eigenvalue[M2

z(ϕ1, ϕ2)], (A.1.6)

m2
G±,H±(ϕ1, ϕ2) = Eigenvalue[M2

±(ϕ1, ϕ2)]. (A.1.7)

When we consider the thermal corrections to the masses of the Higgs and Nambu-Goldstone bosons,
the mass matrices can be expressed by

M̂2
h(ϕ1, ϕ2, T ) = M2

h(ϕ1, ϕ2) +

(
c1 0
0 c2

)
T 2, (A.1.8)

M̂2
z(ϕ1, ϕ2, T ) = M2

h(ϕ1, ϕ2) +

(
c1 0
0 c2

)
T 2, (A.1.9)

M̂2
±(ϕ1, ϕ2, T ) = M2

±(ϕ1, ϕ2) +

(
c1 0
0 c2

)
T 2, (A.1.10)
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where ci is given by

c1 =
3

16
g2 +

1

16
g′ 2 +

λ1

4
+

λ3

6
+

λ4

12
, (A.1.11)

c2 =
3

16
g2 +

1

16
g′ 2 +

λ2

4
+

λ3

6
+

λ4

12
+

y2t
4

+
y2b
4
. (A.1.12)

For weak gauge bosons, thermal mass corrections depend on the component of the gauge boson.
The weak gauge bosons with the transverse component does not receive thermal mass corrections.
Therefore, we can obtain

M̂ 2
WT

(ϕ, T ) = M 2
WT

(ϕ), (A.1.13)

M̂ 2
ZT

(ϕ, T ) = M 2
ZT

(ϕ). (A.1.14)

On the other hand, the weak gauge bosons with the longitudinal component receive thermal mass
corrections. The thermal masses are given by

M̂ 2
WL

(ϕ, T ) = M 2
WL

(ϕ) + ΠW (T ), (A.1.15)

M̂ 2
ZL
(ϕ, T ) =

1

2

g2 + g′ 2

4
ϕ2 +ΠW (T ) + ΠB(T ) +

√(
g2 − g′ 2

4
ϕ2 +ΠW (T )− ΠB(T )

)2

+
g2g′ 2

4
ϕ4

 ,

(A.1.16)

M̂ 2
AL

(ϕ, T ) =
1

2

g2 + g′ 2

4
ϕ2 +ΠW (T ) + ΠB(T )−

√(
g2 − g′ 2

4
ϕ2 +ΠW (T )− ΠB(T )

)2

+
g2g′ 2

4
ϕ4,


(A.1.17)

where ϕ2 = ϕ2
1 +ϕ2

2. Thermal corrections ΠW (T ) and ΠB(T ) in the SM and the THDMs are given
by

ΠW (T ) =


11

6
g2T 2 (SM)

2g2T 2 (THDMs)
, (A.1.18)

ΠB(T ) =


11

6
g′ 2T 2 (SM)

2g′ 2T 2 (THDMs)
. (A.1.19)

A.2 Thermal masses in the O(N) scalar singlet model

Since the additional singlet scalar field cannot interact with the weak gauge bosons, the thermal
masses of the weak gauge bosons are the same as those in the SM. On the contrary, scalar fields
can receive thermal corrections. The thermal masses of the singlet scalar fields are given by [68]

M̂2
S(ϕ, T ) = µ2

S +
λΦS

2
ϕ2 +ΠS(T ), (A.2.1)

where the thermal correction ΠS is expressed by

ΠS(T ) =
T 2

12
[(N + 2)λS + 2λΦS] . (A.2.2)
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The thermal mass correction in the naHEFT (5.2.10) with c = κp corresponds to the ΠS with
λS = 0. By changing the value of the constant c in Eq. (5.2.10), we can take into account thermal
mass corrections from self-interactions of new particles.





Appendix B

Analysis for the PBH production

B.1 Fraction of the false vacua in radiation dominant Uni-

verse

In this appendix, we explain the analysis for the PBH production by the first-order phase transition.
The following formulae are based on Ref. [231].

As we mentioned, the false vacua with the large vacuum energy are important to realize the
PBH formation. The fraction of the false vacuum in the inside and outside of the Hubble volume
is given by

F 0
in(T ) = exp

[
−IRin(T )

]
, (B.1.1)

F 0
out(T ) = exp

[
−IRout(T )

]
, (B.1.2)

where

IRout(T ) = 12π(mpℓξg)
4

∫ TC

T

dT ′

T ′ 2

(
S3(T

′)

2πT ′

)3/2

exp

[
−S3(T

′)

T ′

](
1

T
− 1

T ′

)3

, (B.1.3)

IRin(T ) = 12π(mpℓξg)
4

∫ Tin

T

dT ′

T ′ 2

(
S3(T

′)

2πT ′

)3/2

exp

[
−S3(T

′)

T ′

](
1

T
− 1

T ′

)3

. (B.1.4)

We here assume that the Hubble parameter is mainly determined by the radiation component in
the Universe. At T = Tin, the first-order phase transition starts in the Hubble volume we focus
on.

B.2 Determination of the inside and outside Hubble pa-

rameter

By using the results in Eqs. (B.1.1) and (B.1.2), we can calculate the vacuum energy density. The
vacuum energy densities inside and outside the Hubble volume are given by

ρinV = F 0
in(T )∆Veff(T ), (B.2.1)

ρoutV = F 0
out(T )∆Veff(T ). (B.2.2)
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Figure B.1: Fraction of the false vacuum in the naHEFT. We take κ0 = 4, r = 1, Λ = 400.15GeV
and Tin = 40GeV. The red solid and red dashed line indicate the fraction of the false vacua in the
Hubble volume, which may be able to collapse into a PBH. The blue solid and blue dashed line is
the fraction of the false vacua outside the Hubble volume.

Effects on the development of the radiation energy density from the vacuum energy densities are
determined by the following equations

dρinR
dT

+
4ρinR
T

= −dρinV
dT

, (B.2.3)

dρoutR

dT
+

4ρoutR

T
= −dρoutV

dT
. (B.2.4)

When we solve the above differential equations, the initial conditions (6.2.8) are used.

As a result, we can obtain the Hubble parameter in the inside and the outside of the Hubble
volume as

H2
in =

1

3

(
ρinR + ρinV

)
, (B.2.5)

H2
out =

1

3

(
ρoutR + ρoutV

)
. (B.2.6)

B.3 Fraction of the false vacua with the vacuum energy

contribution

In Eqs. (B.1.3), the fraction of the false vacua has been evaluated with the assumption that the
radiative component is dominant in the Universe. However, the fraction can be changed by the
contribution of the vacuum energy in the false vacua. The fraction of the false vacua with the
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vacuum energy contribution is expressed by

Fin,out(T ) = exp[−Iin,out(T )], (B.3.1)

with

Iin(T ) =
4π

3

∫ TC

T

dT ′ Γ(T ′)

H in
V T ′ 4

√
1 + χin(T ′)−1

∫ T ′

T

dT̃

H in
V

√
1 + χin(T̃ )−1

3

, (B.3.2)

Iout(T ) =
4π

3

∫ Tin

T

dT ′ Γ(T ′)

Hout
V T ′ 4

√
1 + χout(T ′)−1

∫ T ′

T

dT̃

Hout
V

√
1 + χout(T̃ )−1

3

, (B.3.3)

where (H in,out
V )2 = Fin,out(T )∆V/(3M2

pℓ) and χin,out = ρin,outV /ρin,outR . Tc is the critical temperature.
In Fig. B.1, the temperature dependence in the fractions of the false vacua are shown in the

naHEFT. We here take κ0 = 4, r = 1, Λ = 400.15GeV and Tin = 40GeV. The red solid and red
dashed line indicate the fraction of the false vacua in the Hubble volume, which may be able to
collapse into a PBH. The blue solid and blue dashed line is the fraction of the false vacua outside
the Hubble volume.

Then, we can obtain the total energy density in the inside and outside of the Hubble volume,
which are given by

ρin(T ) = ρinR(T ) + ρinV (T ) = ρinR(T ) + Fin(T )∆Veff(T ), (B.3.4)

ρout(T ) = ρoutR (T ) + ρoutV (T ) = ρoutR (T ) + Fout(T )∆Veff(T ). (B.3.5)

By substituting ρin and ρout into the PBH formation criterion (6.2.1), we can determine the values
of tPBH and TPBH.

In Fig. B.2, the temperature dependence in the fluctuation of the energy density δ is shown
in the naHEFT with κ0 = 4, r = 1, Λ = 400.15GeV and Tin = 40GeV. The gray dotted line
corresponds to the case with δ = 0.45. As we can see, the PBH formation condition δ > 0.45 is
satisfied when TPBH = 32.87GeV.
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Figure B.2: Fraction of the false vacuum in the naHEFT. We take κ0 = 4, r = 1, Λ = 400.15GeV
and Tin = 40GeV. The condition δ > 0.45 is satisfied when T = 32.87GeV.



Bibliography

[1] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022)
083C01.

[2] P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145
(1966) 1156.

[3] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13
(1964) 508.

[4] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964)
132.

[5] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys.
Rev. Lett. 13 (1964) 321.

[6] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Global Conservation Laws and Massless
Particles, Phys. Rev. Lett. 13 (1964) 585.

[7] K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Is there a hot
electroweak phase transition at mH ≳ mW?, Phys. Rev. Lett. 77 (1996) 2887
[hep-ph/9605288].

[8] M. D’Onofrio and K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev.
D 93 (2016) 025003 [1508.07161].

[9] S. Kanemura, Y. Okada, E. Senaha and C. P. Yuan, Higgs coupling constants as a probe of
new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364].

[10] A. Arhrib, M. Capdequi Peyranere, W. Hollik and S. Penaranda, Higgs decays in the two
Higgs doublet model: Large quantum effects in the decoupling regime, Phys. Lett. B 579
(2004) 361 [hep-ph/0307391].

[11] E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair
production at a photon-photon collision in the two Higgs doublet model, Phys. Lett. B 672
(2009) 354 [0809.0094].

[12] E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair
production in new physics models at hadron, lepton, and photon colliders, Phys. Rev. D 82
(2010) 115002 [1009.4670].

85

https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.77.2887
https://arxiv.org/abs/hep-ph/9605288
https://doi.org/10.1103/PhysRevD.93.025003
https://doi.org/10.1103/PhysRevD.93.025003
https://arxiv.org/abs/1508.07161
https://doi.org/10.1103/PhysRevD.70.115002
https://arxiv.org/abs/hep-ph/0408364
https://doi.org/10.1016/j.physletb.2003.10.006
https://doi.org/10.1016/j.physletb.2003.10.006
https://arxiv.org/abs/hep-ph/0307391
https://doi.org/10.1016/j.physletb.2009.01.050
https://doi.org/10.1016/j.physletb.2009.01.050
https://arxiv.org/abs/0809.0094
https://doi.org/10.1103/PhysRevD.82.115002
https://doi.org/10.1103/PhysRevD.82.115002
https://arxiv.org/abs/1009.4670


86 BIBLIOGRAPHY

[13] S. Kanemura, H. Yokoya and Y.-J. Zheng, Complementarity in direct searches for
additional Higgs bosons at the LHC and the International Linear Collider, Nucl. Phys. B
886 (2014) 524 [1404.5835].

[14] S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting nonminimal Higgs
sectors, Phys. Rev. D 90 (2014) 075001 [1406.3294].

[15] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment
limit in two-Higgs-doublet models: mh=125 GeV, Phys. Rev. D 92 (2015) 075004
[1507.00933].

[16] M. Krause, R. Lorenz, M. Muhlleitner, R. Santos and H. Ziesche, Gauge-independent
Renormalization of the 2-Higgs-Doublet Model, JHEP 09 (2016) 143 [1605.04853].

[17] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment
limit in two-Higgs-doublet models. II. mH=125 GeV, Phys. Rev. D 93 (2016) 035027
[1511.03682].

[18] D. Chowdhury and O. Eberhardt, Update of Global Two-Higgs-Doublet Model Fits, JHEP
05 (2018) 161 [1711.02095].

[19] S. Kanemura, M. Kikuchi, K. Mawatari, K. Sakurai and K. Yagyu, Full
next-to-leading-order calculations of Higgs boson decay rates in models with non-minimal
scalar sectors, Nucl. Phys. B 949 (2019) 114791 [1906.10070].

[20] J. Braathen and S. Kanemura, On two-loop corrections to the Higgs trilinear coupling in
models with extended scalar sectors, Phys. Lett. B 796 (2019) 38 [1903.05417].

[21] J. Braathen and S. Kanemura, Leading two-loop corrections to the Higgs boson
self-couplings in models with extended scalar sectors, Eur. Phys. J. C 80 (2020) 227
[1911.11507].

[22] M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, K. Sakurai and K. Yagyu, Probing
extended Higgs sectors by the synergy between direct searches at the LHC and precision
tests at future lepton colliders, Nucl. Phys. B 966 (2021) 115375 [2010.15057].

[23] S. Kanemura, M. Kikuchi and K. Yagyu, Next-to-leading order corrections to decays of the
heavier CP-even Higgs boson in the two Higgs doublet model, Nucl. Phys. B 983 (2022)
115906 [2203.08337].

[24] S. Iguro, T. Kitahara, Y. Omura and H. Zhang, Chasing the two-Higgs doublet model in the
di-Higgs production, 2211.00011.
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